Project identification for methane reduction options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, T.
1996-12-31
This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of themore » projects, and additional gains which come from the projects.« less
Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment
Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin
2018-01-01
Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.
Aerobic methane production in surface waters of the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Finke, N.; Crespo-Medina, M.; Schweers, J.; Joye, S. B.
2011-12-01
Near surface water of the global oceans often show elevated methane concentrations compared to the water column below with concentrations in supersaturation in regard to the atmosphere (Lamontagne et al. 1973), resulting in a source of this potent greenhouse gas to the atmosphere. The mechanisms leading to methane supersaturation in surface waters remains unclear. Incubations with Trichodesmium-containing Pacific surface water suggested methylphosphonate as potential methane precursor under phosphate limiting conditions (Karl et al. 2008), whereas in phosphate rich Arctic surface waters, DMSP addition stimulated methane production (Damm et al. 2010). Surface waters of the Gulf of Mexico typically exhibit a methane maximum that is conincident with the deep chlorophyll maximum, below the depths where Trichodesmium is abundant. Addition of methylphosphonate, dimethylsulfoniopropionate (DMSP) or methane thiol (MeSH), the proposed methane precursor in DMSP conversion to methane, to oxic sea water did not affect methane production within the chlorophyll maximum at most stations, whereas methyl phosphonate addition stimulated methane production in the surface water and proposed deep Trichodesmium horizon. Pre-filtration of the water through a 10 μm sieve, which eliminated Trichodesmium, or through a 1.2 μm filter, which eliminated additional cyanobacteria such as Synechococcus, did not reduce methane production. Under dark oxic and dark anoxic conditions, however, methane production was reduced 5 and 7-20 fold, respectively, indicating that anerobic methane production in anoxic microniches is not responsible for the methane production. The reduction of methane production under dark conditions suggests that methane production is, in some yet unrecognized way, linked to phototrophic metabolism. Cyanobacteria are likely not responsible for the observed aerobic methane production in the surface waters of the Gulf of Mexico and while methylphosphonate is a potential precursor in the surface waters, the precursor and methanism of methane production within the coincident deep chlorophyll/methane maximum remains unknown. Lamontagne R, Swinnert J, Linnenbo V, Smith WD (1973) Methane concentrations in various marine environments. Journal of Geophysical Research 78, 5317-5324 Karl DM et al. (2008) Aerobic production of methane in the sea. Nature Geosciences 1, 473-478 Damm E et al. (2010) Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences 7, 1099-1108
30 CFR 75.151 - Tests for methane; qualified person; additional requirement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests for methane; qualified person; additional... Certified Persons § 75.151 Tests for methane; qualified person; additional requirement. Notwithstanding the... methane unless he demonstrates to the satisfaction of an authorized representative of the Secretary that...
30 CFR 75.151 - Tests for methane; qualified person; additional requirement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests for methane; qualified person; additional... Certified Persons § 75.151 Tests for methane; qualified person; additional requirement. Notwithstanding the... methane unless he demonstrates to the satisfaction of an authorized representative of the Secretary that...
Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke
2016-11-01
Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.
2014-12-01
Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in pelagic ocean waters. Some methanotrophs may obtain a competitive advantage in nitrogen-limited oceanic environments by fixing molecular nitrogen. The importance of such "methano-diazotrophy" on a global scale warrants further investigation.
30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of § 77.101, on and after December 30, 1971, no person shall be a qualified person for testing for methane...
NASA Astrophysics Data System (ADS)
Kotowska, Martyna M.; Werner, Florian A.
2013-12-01
bromeliads are common epiphytic plants throughout neotropical forests that store significant amounts of water in phytotelmata (tanks) formed by highly modified leafs. Methanogenic archaea in these tanks have recently been identified as a significant source of atmospheric methane. We address the effects of environmental drivers (temperature, tank water content, sodium phosphate [P], and urea [N] addition) on methane production in anaerobically incubated bromeliad slurry and emissions from intact bromeliad tanks in montane Ecuador. N addition ≥ 1 mg g-1 had a significantly positive effect on headspace methane concentrations in incubation jars while P addition did not affect methane production at any dosage (≤ 1 mg g-1). Tank bromeliads (Tillandsia complanata) cultivated in situ showed significantly increased effluxes of methane in response to the addition of 26 mg N addition per tank but not to lower dosage of N or any dosage of P (≤ 5.2 mg plant-1). There was no significant interaction between N and P addition. The brevity of the stimulatory effect of N addition on plant methane effluxes (1-2 days) points at N competition by other microorganisms or bromeliads. Methane efflux from plants closely followed within-day temperature fluctuations over 24 h cycles, yet the dependency of temperature was not exponential as typical for terrestrial wetlands but instead linear. In simulated drought, methane emission from bromeliad tanks was maintained with minimum amounts of water and regained after a short lag phase of approximately 24 h. Our results suggest that methanogens in bromeliads are primarily limited by N and that direct effects of global change (increasing temperature and seasonality, remote fertilization) on bromeliad methane emissions are of moderate scale.
Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol
2014-12-28
Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.
Jones, Elizabeth J.P.; Voytek, Mary A.; Corum, Margo D.; Orem, William H.
2010-01-01
Biogenic formation of methane from coal is of great interest as an underexploited source of clean energy. The goal of some coal bed producers is to extend coal bed methane productivity and to utilize hydrocarbon wastes such as coal slurry to generate new methane. However, the process and factors controlling the process, and thus ways to stimulate it, are poorly understood. Subbituminous coal from a nonproductive well in south Texas was stimulated to produce methane in microcosms when the native population was supplemented with nutrients (biostimulation) or when nutrients and a consortium of bacteria and methanogens enriched from wetland sediment were added (bioaugmentation). The native population enriched by nutrient addition included Pseudomonas spp., Veillonellaceae, and Methanosarcina barkeri. The bioaugmented microcosm generated methane more rapidly and to a higher concentration than the biostimulated microcosm. Dissolved organics, including long-chain fatty acids, single-ring aromatics, and long-chain alkanes accumulated in the first 39 days of the bioaugmented microcosm and were then degraded, accompanied by generation of methane. The bioaugmented microcosm was dominated by Geobacter sp., and most of the methane generation was associated with growth of Methanosaeta concilii. The ability of the bioaugmentation culture to produce methane from coal intermediates was confirmed in incubations of culture with representative organic compounds. This study indicates that methane production could be stimulated at the nonproductive field site and that low microbial biomass may be limiting in situ methane generation. In addition, the microcosm study suggests that the pathway for generating methane from coal involves complex microbial partnerships.
Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O
2015-04-01
Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.
Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.
van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico
2010-08-01
Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.
The determination of methane resources from liquidated coal mines
NASA Astrophysics Data System (ADS)
Trenczek, Stanisław
2017-11-01
The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.
Influence of methane addition on selenium isotope sensitivity and their spectral interferences.
Floor, Geerke H; Millot, Romain; Iglesias, Mónica; Négrel, Philippe
2011-02-01
The measurements of stable selenium (Se) isotopic signatures by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) are very challenging, due to the presence of spectral interferences and the low abundance of Se in environmental samples. We systematically investigated the effect of methane addition on the signal of Se isotopes and their interferences. It is the first time that the effect of methane addition has been assessed for all Se isotopes and its potential interferences using hydride generator multi-collector inductively coupled plasma mass spectrometry (HG-MC-ICP-MS). Our results show that a small methane addition increases the sensitivity. However, the response differs between a hydride generator and a standard introduction system, which might be related to differences in the ionization processes. Both argon and hydrogen-based interferences, the most common spectral interferences on selenium isotopes in HG-MC-ICP-MS, decrease with increasing methane addition. Therefore, analyte-interference ratios and precision are improved. Methane addition has thus a high potential for the application to stable Se isotopes ratios by HG-MC-ICP-MS. Copyright © 2011 John Wiley & Sons, Ltd.
Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines
NASA Astrophysics Data System (ADS)
Borowski, Marek; Kuczera, Zbigniew
2018-03-01
Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location of the sensors is defined by law, additional ventilation equipment used in places of lower intensity of ventilation and places where methane is concentrated.
Small Molecule Catalysts for Harvesting Methane Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, S. E.; Ceron-Hernandez, M.; Oakdale, J.
As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseousmore » methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.« less
30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized representative...
30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized representative...
30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized representative...
30 CFR 77.102 - Tests for methane; oxygen deficiency; qualified person, additional requirement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests for methane; oxygen deficiency; qualified... methane; oxygen deficiency; qualified person, additional requirement. Notwithstanding the provisions of... and oxygen deficiency unless he has demonstrated to the satisfaction of an authorized representative...
Carbon isotope fractionation during microbial methane oxidation
NASA Astrophysics Data System (ADS)
Barker, James F.; Fritz, Peter
1981-09-01
Methane, a common trace constituent of groundwaters, occasionally makes up more than 20% of the total carbon in groundwaters1,2. In aerobic environments CH4-rich waters can enable microbial food chain supporting a mixed culture of bacteria with methane oxidation as the primary energy source to develop3. Such processes may influence the isotopic composition of the residual methane and because 13C/12C analyses have been used to characterize the genesis of methanes found in different environments, an understanding of the magnitude of such effects is necessary. In addition, carbon dioxide produced by the methane-utilizing bacteria can be added to the inorganic carbon pool of affected groundwaters. We found carbon dioxide experimentally produced by methane-utilizing bacteria to be enriched in 12C by 5.0-29.6‰, relative to the residual methane. Where methane-bearing groundwaters discharged into aerobic environments microbial methane oxidation occurred, with the residual methane becoming progressively enriched in 13C. Various models have been proposed to explain the 13C/12C and 14C content of the dissolved inorganic carbon (DIC) of groundwaters in terms of additions or losses during flow in the subsurface4,5. The knowledge of both stable carbon isotope ratios in various pools and the magnitude of carbon isotope fractionation during various processes allows geochemists to use the 13C/12C ratio of the DIC along with water chemistry to estimate corrected 14C groundwater ages4,5. We show here that a knowledge of the carbon isotope fractionation between CH4 and CO2 during microbial methane-utilization could modify such models for application to groundwaters affected by microbial methane oxidation.
Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna
2017-06-01
The effect of aerobic pretreatment and fly ash addition on the production of methane from mixed sludge is studied. Three assays with pretreated and not pretreated mixed sludge in the presence of fly ash (concentrations of 0, 10, 25, 50, 250 and 500mg/L) were run at mesophilic condition. It was found that the combined use of aerobic pretreatment and fly ash addition increases methane production up to 70% when the fly ash concentrations were lower than 50mg/L, while concentrations higher than 250mg/L cause up to 11% decrease of methane production. For the anaerobic treatment of mixed sludge without pretreatment, the fly ash improved methane generation at all the concentrations studied, with a maximum of 56%. The removal of volatile solids does not show an improvement compared to the separate use of an aerobic pre-treatment and fly ash addition. Therefore, the combined use of the aerobic pre-treatment and fly ash addition improves only the production of methane. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Fleck, D.
2017-12-01
Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of <30 ppb and <10 ppb, respectively at <1 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10 ppm in a single measurement. Furthermore, a high precision methane only mode is available for surveying and locating leakage with a 1-σ precision of <3 ppb. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS in order to visualize horizontal plane gas propagation.
Seasonal Rates of Methane Oxidation in Anoxic Marine Sediments
Iversen, Niels; Blackburn, T. Henry
1981-01-01
Methane concentrations and rates of methane oxidation were measured in intact sediment cores from an inshore marine sediment at Jutland, Denmark. The rates of methane oxidation, determined by the appearance of 14CO2 from injected 14CH4, varied with sediment depth and season. Most methane oxidation was anoxic, but oxygen may have contributed to methane oxidation at the sediment surface. Cumulative rates (0- to 12-cm depth) for methane oxidation at Kysing Fjord were 3.34, 3.48, 8.60, and 17.04 μmol m−2 day−1 for April (4°C), May (13°C), July (17°C), and August (21°C), respectively. If all of the methane was oxidized by sulfate, it would account for only 0.01 to 0.06% of the sulfate reduction. The data indicate that methane was produced, in addition to being oxidized, in the 0- to 18-cm sediment stratum. PMID:16345784
Davis, Katherine J.; Lu, Shipeng; Barnhart, Elliott P.; Parker, Albert E.; Fields, Matthew W.; Gerlach, Robin
2018-01-01
Slow rates of coal-to-methane conversion limit biogenic methane production from coalbeds. This study demonstrates that rates of coal-to-methane conversion can be increased by the addition of small amounts of organic amendments. Algae, cyanobacteria, yeast cells, and granulated yeast extract were tested at two concentrations (0.1 and 0.5 g/L), and similar increases in total methane produced and methane production rates were observed for all amendments at a given concentration. In 0.1 g/L amended systems, the amount of carbon converted to methane minus the amount produced in coal only systems exceeded the amount of carbon added in the form of amendment, suggesting enhanced coal-to-methane conversion through amendment addition. The amount of methane produced in the 0.5 g/L amended systems did not exceed the amount of carbon added. While the archaeal communities did not vary significantly, the bacterial populations appeared to be strongly influenced by the presence of coal when 0.1 g/L of amendment was added; at an amendment concentration of 0.5 g/L the bacterial community composition appeared to be affected most strongly by the amendment type. Overall, the results suggest that small amounts of amendment are not only sufficient but possibly advantageous if faster in situcoal-to-methane production is to be promoted.
Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest
NASA Astrophysics Data System (ADS)
Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.
2017-12-01
Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that exceeded simultaneous oxidation of atmospheric methane in shallow, aerobic soils.
Methane in Sediments From Three Tropical, Coastal Lagoons on the Yucatan Peninsula, Mexico
NASA Astrophysics Data System (ADS)
Young, B.; Paytan, A.; Miller, L.; Herrera-Silveira, J.
2002-12-01
Tropical wetlands are significant sources of methane (CH4) to the atmosphere, and the majority of research on methane flux and cycling in the tropics has been conducted in fresh-water wetlands and lakes. However, several previous studies have shown that tropical coastal ecosystems can produce significant methane flux to the atmosphere despite the presence of moderate to marine salinities. Information regarding methane cycling within the sediments is crucial to understanding how natural and anthropogenic changes may influence these systems. We measured methane concentrations in sediments from two tropical coastal lagoons during different seasons, as well as in a third, heavily polluted, lagoon (Terminos) during the rainy season. These three lagoons, Celestun, Chelem, and Terminos, have similar vegetation, seasonal temperature and rainfall patterns, and substrate geology, but very different levels of ground water discharge and pollution. Methane concentrations in Celestun and Terminos lagoon showed high spatial variability(> 0.001 to 5 mmol kg-1 wet sediment), while sediments in Chelem Lagoon, which has near marine salinities and little sewage discharge, showed much lower variability of methane concentrations. Methane concentrations in Celestun sediments displayed two predominant patterns: some profiles contained a peak in methane concentration (1 to 2 mmole methane kg-1 wet sediment) between 5 and 15 cm below the surface while the other sediment profiles instead displayed a steady or monotonic increase in methane concentration with depth to approximately 0.025-0.080 mmol kg-1 at 10-15cm below surface followed by stable methane concentrations to the bottom of the cores (20-45 cm below the surface). A subsurface peak in methane concentrations was also found in some locations in Chelem, however, the concentrations were much lower than those measured in Celestun. Previous studies have shown that sewage pollution may drastically increase methane production in tropical coastal ecosystems. Laboratory experiments using sediment from the upper 20 cm in Celestun lagoon resulted in high rates of biogenic production of methane from the addition of trimethylamine, hydrogen, and, while additions of formate and acetate stimulated methane production to a lesser extent. This indicates that methane production in these sediments may be highly responsive to natural or anthropogenic changes in substrate availability. By synthesizing laboratory data and extensive field measurements from the lagoons, we hope to shed light on the factors controlling methane cycling in these sediments, and to better estimate methane flux to the atmosphere from these ecosystems.
Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes
Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.
2015-01-01
Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458
González-Suárez, A; Pereda-Reyes, I; Pozzi, E; da Silva, A José; Oliva-Merencio, D; Zaiat, M
2016-04-01
The effect of natural mineral on the mono-digestion of maize straw was evaluated in continuously stirred tank reactors (CSTRs) at 38 °C. Different strategies of mineral addition were studied. The organic loading rate (OLR) was varied from 0.5 to 2.5 g volatile solid (VS) L(-1) d(-1). A daily addition of 1 g mineral L(-1) in reactor 2 (R2) diminished the methane production by about 11 % with respect to the initial phase. However, after a gradual addition of mineral, an average methane yield of 257 NmL CH4 g VS(-1) was reached and the methane production was enhanced by 30 % with regard to R1. An increase in the frequency of mineral addition did not enhance the methane production. The archaeal community was more sensitive to the mineral than the bacterial population whose similarity stayed high between R1 and R2. Significant difference in methane yield was found for both reactors throughout the operation.
NASA Technical Reports Server (NTRS)
Oehler, D. Z.; Allen, C. C.; McKay, D. S.
2005-01-01
Reports of methane in the Martian atmosphere have spurred speculation about sources for that methane [1-3]. Discussion has centered on cometary/ meteoritic delivery, magmatic/mantle processes, UV-breakdown of organics, serpentinization of basalts, and generation of methane by living organisms. This paper describes an additional possibility: that buried organic remains from past life on Mars may have been generating methane throughout Martian history as a result of heating associated with impact metamorphism.
Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim
2017-02-01
Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.
Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming
2016-09-01
Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatial and temporal characterization of methane plumes from mobile platforms
NASA Astrophysics Data System (ADS)
O'Brien, A.; Wendt, L.; Miller, D. J.; Lary, D. J.; Zondlo, M. A.
2013-12-01
The spatial and temporal characterization of methane plumes from hydraulic fracturing well sites are presented. Methane measurements from the Marcellus shale region obtained using a commercial instrument on a motor vehicle are discussed. Over 100 well sites in the region were sampled and the methane signature in the vicinity of these wells is presented. Additionally, measurements of methane from our open-path instrument flown aboard the UT Dallas AMR Payload Master 100 remote-controlled, electric aircraft in the Barnett shale region are presented. Using our observations of aircraft surveys near well sites and a gaussian plume dispersion model emission estimates of fugitive methane are presented.
Extreme methane emissions from a Swiss hydropower reservoir: contribution from bubbling sediments.
Delsontro, Tonya; McGinnis, Daniel F; Sobek, Sebastian; Ostrovsky, Ilia; Wehrli, Bernhard
2010-04-01
Methane emission pathways and their importance were quantified during a yearlong survey of a temperate hydropower reservoir. Measurements using gas traps indicated very high ebullition rates, but due to the stochastic nature of ebullition a mass balance approach was crucial to deduce system-wide methane sources and losses. Methane diffusion from the sediment was generally low and seasonally stable and did not account for the high concentration of dissolved methane measured in the reservoir discharge. A strong positive correlation between water temperature and the observed dissolved methane concentration enabled us to quantify the dissolved methane addition from bubble dissolution using a system-wide mass balance. Finally, knowing the contribution due to bubble dissolution, we used a bubble model to estimate bubble emission directly to the atmosphere. Our results indicated that the total methane emission from Lake Wohlen was on average >150 mg CH(4) m(-2) d(-1), which is the highest ever documented for a midlatitude reservoir. The substantial temperature-dependent methane emissions discovered in this 90-year-old reservoir indicate that temperate water bodies can be an important but overlooked methane source.
Exhaled methane concentration profiles during exercise on an ergometer
Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A
2016-01-01
Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807
Technical Note: Methionine, a precursor of methane in living plants
NASA Astrophysics Data System (ADS)
Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.
2015-03-01
When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.
Technical note: Methionine, a precursor of methane in living plants
NASA Astrophysics Data System (ADS)
Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.
2014-11-01
When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.
Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.
2016-01-01
Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.
Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia
NASA Technical Reports Server (NTRS)
Roslev, Peter; King, Gary M.
1996-01-01
The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic bacteria and thus on methane oxidation potential per se.
Zhang, Yue; Lucier, Bryan E G; Fischer, Michael; Gan, Zhehong; Boyle, Paul D; Desveaux, Bligh; Huang, Yining
2018-03-25
Methane is a promising clean and inexpensive energy alternative to traditional fossil fuels, however, its low volumetric energy density at ambient conditions has made devising viable, efficient methane storage systems very challenging. Metal-organic frameworks (MOFs) are promising candidates for methane storage. In order to improve the methane storage capacity of MOFs, a better understanding of the methane adsorption, mobility, and host-guest interactions within MOFs must be realized. In this study, methane adsorption within α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and M-MOF-74 (M=Mg, Zn, Ni, Co) has been comprehensively examined. Single-crystal X-ray diffraction (SCXRD) experiments and DFT calculations of the methane adsorption locations were performed for α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , and SIFSIX-3-Zn. The SCXRD thermal ellipsoids indicate that methane possesses significant mobility at the adsorption sites in each system. 2 H solid-state NMR (SSNMR) experiments targeting deuterated CH 3 D guests in α-Mg 3 (HCO 2 ) 6 , α-Zn 3 (HCO 2 ) 6 , SIFSIX-3-Zn, and MOF-74 yield an interesting finding: the 2 H SSNMR spectra of methane adsorbed in these MOFs are significantly influenced by the chemical shielding anisotropy in addition to the quadrupolar interaction. The chemical shielding anisotropy contribution is likely due mainly to the nuclear independent chemical shift effect on the MOF surfaces. In addition, the 2 H SSNMR results and DFT calculations strongly indicate that the methane adsorption strength is linked to the MOF pore size and that dispersive forces are responsible for the methane adsorption in these systems. This work lays a very promising foundation for future studies of methane adsorption locations and dynamics within adsorbent MOF materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martian Methane From a Cometary Source: A Hypothesis
NASA Technical Reports Server (NTRS)
Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.;
2016-01-01
In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.
Biogas and methane yield in response to co- and separate digestion of biomass wastes.
Adelard, Laetitia; Poulsen, Tjalfe G; Rakotoniaina, Volana
2015-01-01
The impact of co-digestion as opposed to separate digestion, on biogas and methane yield (apparent synergetic effects) was investigated for three biomass materials (pig manure, cow manure and food waste) under mesophilic conditions over a 36 day period. In addition to the three biomass materials (digested separately), 13 biomass mixtures (co-digested) were used. Two approaches for modelling biogas and methane yield during co-digestion, based on volatile solids concentration and ultimate gas and methane potentials, were evaluated. The dependency of apparent synergetic effects on digestion time and biomass mixture composition was further assessed using measured cumulative biogas and methane yields and specific biogas and methane generation rates. Results indicated that it is possible, based on known volatile solids concentration and ultimate biogas or methane yields for a set of biomass materials digested separately, to accurately estimate gas yields for biomass mixtures made from these materials using calibrated models. For the biomass materials considered here, modelling indicated that the addition of pig manure is the main cause of synergetic effects. Co-digestion generally resulted in improved ultimate biogas and methane yields compared to separate digestion. Biogas and methane production was furthermore significantly higher early (0-7 days) and to some degree also late (above 20 days) in the digestion process during co-digestion. © The Author(s) 2014.
Methane production by anaerobic digestion of Bermuda grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1981-01-01
Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids (VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the methane yields increased. This observation along with the compositional data compiled on the grass used in this work indicated that the nitrogen content ofmore » the unsupplemented grass was insufficient to sustain high-rate digestion at the higher yield level. However, as the C/N ratio was reduced by addition of ammonium chloride, the methane yield continually increased up to 3.5 SCF/lb added at the lowest C/N ratio examined (6.3) even after relatively high concentrations of ammonium nitrogen were measured in the effluent. It appears that the added nutrient had a stimulatory effect on methane production above the point where nitrogen was not limiting. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated. It was concluded from this work that Coastal Bermuda grass can be converted to high-methane gas under conventional anaerobic digestion conditions. The performance of the particular lot of grass studied was substantially improved by supplemental nitrogen additions. (Refs. 12).« less
Laboratory formation of non-cementing, methane hydrate-bearing sands
Waite, William F.; Bratton, Peter M.; Mason, David H.
2011-01-01
Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.
Methane oxidation coupled to oxygenic photosynthesis in anoxic waters
Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J
2015-01-01
Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533
NASA Astrophysics Data System (ADS)
Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.
2017-12-01
Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.
Light-induced diurnal pattern of methane exchange in a boreal forest
NASA Astrophysics Data System (ADS)
Sundqvist, Elin; Crill, Patrick; Mölder, Meelis; Vestin, Patrik; Lindroth, Anders
2013-04-01
Boreal forests represents one third of the Earth's forested land surface area and is a net sink of methane and an important component of the atmospheric methane budget. Methane is oxidized in well-aerated forest soils whereas ponds and bog soils are sources of methane. Besides the microbial processes in the soil also forest vegetation might contribute to methane exchange. Due to a recent finding of methane consumption by boreal plants that correlated with photosynthetic active radiation (PAR), we investigate the impact of PAR on soil methane exchange at vegetated plots on the forest floor. The study site, Norunda in central Sweden, is a 120 years old boreal forest stand, dominated by Scots pine and Norway spruce. We used continuous chamber measurements in combination with a high precision laser gas analyzer (Los Gatos Research), to measure the methane exchange at four different plots in July-November 2009, and April-June 2010. The ground vegetation consisted almost entirely of mosses and blueberry-shrubs. Two of the plots acted as stable sinks of methane whereas the other two plots shifted from sinks to sources during very wet periods. The preliminary results show a clear diurnal pattern of the methane exchange during the growing season, which cannot be explained by temperature. The highest consumption occurs at high PAR levels. The amplitude of the diurnal methane exchange during the growing season is in the order of 10 μmol m-2 h-1. This indicates that besides methane oxidation by methanotrophs in the soil there is an additional removal of methane at soil level by a process related to ground vegetation.
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source
Timmers, Peer HA; Suarez-Zuluaga, Diego A; van Rossem, Minke; Diender, Martijn; Stams, Alfons JM; Plugge, Caroline M
2016-01-01
The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment. PMID:26636551
NASA Astrophysics Data System (ADS)
Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.
2014-12-01
Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.
Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans
Pohlman, J.W.; Bauer, J.E.; Waite, W.F.; Osburn, C.L.; Chapman, N.R.
2011-01-01
Marine sediments contain about 500-10,000 Gt of methane carbon, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined, but it releases relatively little methane to the ocean and atmosphere. Sedimentary microbes convert most of the dissolved methane to carbon dioxide. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use ??14 C and ??13 C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13 C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000-6,000 year age of dissolved organic carbon in the deep ocean, and provide reduced organic matter and energy to deep-ocean microbial communities. ?? 2011 Macmillan Publishers Limited. All rights reserved.
Method for generating methane from a carbonaceous feedstock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, Seth W.; Urgun-Demirtas, Meltem; Shen, Yanwen
The present invention provides a method for generating methane from a carbonaceous feedstock with simultaneous in situ sequestration of carbon dioxide to afford a biogas comprising at least 85 percent by volume methane, the method comprising anaerobically incubating a particulate additive in contact with a carbonaceous feedstock in a neutral or alkaline aqueous culture medium containing a culture of methanogenic consortia and collecting methane generated therefrom. The additive comprises at least one material selected from a biochar, an ash produced by gasification or combustion of a carbonaceous material, a black carbon soil, and a Terra Preta soil.
Increase of methane formation by ethanol addition during continuous fermentation of biogas sludge.
Refai, Sarah; Wassmann, Kati; van Helmont, Sebastian; Berger, Stefanie; Deppenmeier, Uwe
2014-12-01
Very recently, it was shown that the addition of acetate or ethanol led to enhanced biogas formation rates during an observation period of 24 h. To determine if increased methane production rates due to ethanol addition can be maintained over longer time periods, continuous reactors filled with biogas sludge were developed which were fed with the same substrates as the full-scale reactor from which the sludge was derived. These reactors are well reflected conditions of a full-scale biogas plant during a period of 14 days. When the fermenters were pulsed with 50-100 mM ethanol, biomethanation increased by 50-150 %, depending on the composition of the biogas sludge. It was also possible to increase methane formation significantly when 10-20 mM pure ethanol or ethanolic solutions (e.g. beer) were added daily. In summary, the experiments revealed that "normal" methane production continued to take place, but ethanol led to production of additional methane.
Rodriguez-Chiang, Lourdes; Llorca, Jordi; Dahl, Olli
2016-10-01
The methane potential and biodegradability of different ratios of acetate and lignin-rich effluents from a neutral sulfite semi-chemical (NSSC) pulp mill were investigated. Results showed ultimate methane yields up to 333±5mLCH4/gCOD when only acetate-rich substrate was added and subsequently lower methane potentials of 192±4mLCH4/gCOD when the lignin fraction was increased. The presence of lignin showed a linear decay in methane production, resulting in a 41% decrease in methane when the lignin-rich feed had a 30% increase. A negative linear correlation between lignin content and biodegradability was also observed. Furthermore, the effect of hydrotalcite (HT) addition was evaluated and showed increase in methane potential of up to 8%, a faster production rate and higher soluble lignin removal (7-12% higher). Chemical oxygen demand (COD) removal efficiencies between 64 and 83% were obtained for all samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Xiaoling; Liu, Jinhuan; Liu, Jingjing; Yang, Fuyu; Zhu, Wanbin; Yuan, Xufeng; Hu, Yuegao; Cui, Zongjun; Wang, Xiaofen
2017-10-01
Silage processing has a crucial positive impact on the methane yield of anaerobic treated substrates. Changes in the characteristics of switchgrass after ensiling with different additives and their effects on methane production and microbial community changes during anaerobic digestion were investigated. After ensiling (CK), methane yield was increased by 33.59% relative to that of fresh switchgrass (FS). In comparison with the CK treatment, methane production was improved by 17.41%, 13.08% and 8.72% in response to ensiling with LBr+X, LBr and X, respectively. A modified Gompertz model predicted that the optimum treatment was LBr+X, with a potential cumulative methane yield of 178.31mL/g total solids (TS) and a maximum biogas production rate of 44.39mL/g TS·d. Firmicutes and Bacteroidetes were the predominant bacteria in FS and silage switchgrass; however, the switchgrass treated with LBr+X was rich in Synergistetes, which was crucial for methane production. Copyright © 2017. Published by Elsevier Ltd.
Methane Pyrolysis and Disposing Off Resulting Carbon
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Rapp, D.; Rahotgi, N. K.
1999-01-01
Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is a waste of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduce the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (i) recover hydrogen from the excess methane produced by the S/E process, (ii) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (iii) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. The goals of a research program on recovery of hydrogen from methane are (in descending priority order): 1) Study the kinetics of pyrolysis to arrive at a pyrolysis reactor design that produces high yields in a confined volume at the lowest possible operating temperature; 2) Study the kinetics of carbon burnoff to determine whether high yields can be obtained in a confined volume at acceptable operating temperatures; and 3) Investigate catalytic techniques for depositing carbon as a fine soot which can be physically separated from the reactor. In the JPL program, we have made significant measurements in regard to goal 1, cursory measurements in regard to goal 2, and would plan to pursue goal 3 if additional resources are secured.
Photocatalytic conversion of methane to methanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.E.; Noceti, R.P.; D`Este, J.R.
1995-12-31
A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifiermore » product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.« less
Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane
NASA Astrophysics Data System (ADS)
Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.
2001-12-01
Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.
NASA Astrophysics Data System (ADS)
Ars, S.; Broquet, G.; Yver-Kwok, C.; Wu, L.; Bousquet, P.; Roustan, Y.
2015-12-01
Greenhouse gas (GHG) concentrations keep on increasing in the atmosphere since industrial revolution. Methane (CH4) is the second most important anthropogenic GHG after carbon dioxide (CO2). Its sources and sinks are nowadays well identified however their relative contributions remain uncertain. The industries and the waste treatment emit an important part of the anthropogenic methane that is difficult to quantify because the sources are fugitive and discontinuous. A better estimation of methane emissions could help industries to adapt their mitigation's politic and encourage them to install methane recovery systems in order to reduce their emissions while saving money. Different methods exist to quantify methane emissions. Among them is the tracer release method consisting in releasing a tracer gas near the methane source at a well-known rate and measuring both their concentrations in the emission plume. The methane rate is calculated using the ratio of methane and tracer concentrations and the emission rate of the tracer. A good estimation of the methane emissions requires a good differentiation between the methane actually emitted by the site and the methane from the background concentration level, but also a good knowledge of the sources distribution over the site. For this purpose, a Gaussian plume model is used in addition to the tracer release method to assess the emission rates calculated. In a first step, the data obtained for the tracer during a field campaign are used to tune the model. Different model's parameterizations have been tested to find the best representation of the atmospheric dispersion conditions. Once these parameters are set, methane emissions are estimated thanks to the methane concentrations measured and a Bayesian inversion. This enables to adjust the position and the emission rate of the different methane sources of the site and remove the methane background concentration.
Methane fluxes from tropical coastal lagoons surrounded bymangroves, Yucatán, Mexico
Chuang, Pei-Chuan; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A; Paytan, Adina
2017-01-01
Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m−2 d−1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.
Microbial methane production in oxygenated water column of an oligotrophic lake
Grossart, Hans-Peter; Frindte, Katharina; Dziallas, Claudia; Eckert, Werner; Tang, Kam W.
2011-01-01
The prevailing paradigm in aquatic science is that microbial methanogenesis happens primarily in anoxic environments. Here, we used multiple complementary approaches to show that microbial methane production could and did occur in the well-oxygenated water column of an oligotrophic lake (Lake Stechlin, Germany). Oversaturation of methane was repeatedly recorded in the well-oxygenated upper 10 m of the water column, and the methane maxima coincided with oxygen oversaturation at 6 m. Laboratory incubations of unamended epilimnetic lake water and inoculations of photoautotrophs with a lake-enrichment culture both led to methane production even in the presence of oxygen, and the production was not affected by the addition of inorganic phosphate or methylated compounds. Methane production was also detected by in-lake incubations of lake water, and the highest production rate was 1.8–2.4 nM⋅h−1 at 6 m, which could explain 33–44% of the observed ambient methane accumulation in the same month. Temporal and spatial uncoupling between methanogenesis and methanotrophy was supported by field and laboratory measurements, which also helped explain the oversaturation of methane in the upper water column. Potentially methanogenic Archaea were detected in situ in the oxygenated, methane-rich epilimnion, and their attachment to photoautotrophs might allow for anaerobic growth and direct transfer of substrates for methane production. Specific PCR on mRNA of the methyl coenzyme M reductase A gene revealed active methanogenesis. Microbial methane production in oxygenated water represents a hitherto overlooked source of methane and can be important for carbon cycling in the aquatic environments and water to air methane flux. PMID:22089233
Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico
NASA Astrophysics Data System (ADS)
Chuang, P.-C.; Young, M. B.; Dale, A. W.; Miller, L. G.; Herrera-Silveira, J. A.; Paytan, A.
2017-05-01
Methane concentrations in the water column and emissions to the atmosphere were determined for three tropical coastal lagoons surrounded by mangrove forests on the Yucatán Peninsula, Mexico. Surface water dissolved methane was sampled at different seasons over a period of 2 years in areas representing a wide range of salinities and anthropogenic impacts. The highest surface water methane concentrations (up to 8378 nM) were measured in a polluted canal associated with Terminos Lagoon. In Chelem Lagoon, methane concentrations were typically lower, except in the polluted harbor area (1796 nM). In the relatively pristine Celestún Lagoon, surface water methane concentrations ranged from 41 to 2551 nM. Methane concentrations were negatively correlated with salinity in Celestún, while in Chelem and Terminos high methane concentrations were associated with areas of known pollution inputs, irrespective of salinity. The diffusive methane flux from surface lagoon water to the atmosphere ranged from 0.0023 to 15 mmol CH4 m-2 d-1. Flux chamber measurements revealed that direct methane release as ebullition was up to 3 orders of magnitude greater than measured diffusive flux. Coastal mangrove lagoons may therefore be an important natural source of methane to the atmosphere despite their relatively high salinity. Pollution inputs are likely to substantially enhance this flux. Additional statistically rigorous data collected globally are needed to better consider methane fluxes from mangrove-surrounded coastal areas in response to sea level changes and anthropogenic pollution in order to refine projections of future atmospheric methane budgets.
Roles of Sodium Dodecyl Sulfate on Tetrahydrofuran-Assisted Methane Hydrate Formation.
Siangsai, Atsadawuth; Inkong, Katipot; Kulprathipanja, Santi; Kitiyanan, Boonyarach; Rangsunvigit, Pramoch
2018-06-01
Sodium dodecyl sulfate (SDS) markedly improved tetrahydrofuran (THF) - assisted methane hydrate formation. Firstly, methane hydrate formation with different THF amount, 1, 3, and 5.56 mol%, was studied. SDS with 1, 4, and 8 mM was then investigated for its roles on the methane hydrate formation with and without THF. The experiments were conducted in a quiescent condition in a fixed volume crystallizer at 8 MPa and 4°C. The results showed that almost all studied THF and SDS concentrations enhanced the methane hydrate formation kinetics and methane consumption compared to that without the promoters, except 1 mol% THF. Although, with 1 mol% THF, there were no hydrates formed for 48 hours, the addition of just 1 mM SDS surprisingly promoted the hydrate formation with a significant increased in the kinetics. This prompts the use of methane hydrate technology for natural gas storage application with minimal promoters.
Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?
NASA Astrophysics Data System (ADS)
Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.
2017-12-01
Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake
Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard
2014-01-01
Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842
NASA Astrophysics Data System (ADS)
Pagano, T. J.; Worden, J. R.
2016-12-01
Methane is the second most powerful greenhouse gas with a highly positive radiative forcing of 0.48 W/m2 (IPCC 2013). Global concentrations of methane have been steadily increasing since 2007 (Bruhwiler 2014), raising concerns about methane's impact on the future global climate. For about the last decade, the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura spacecraft has been detecting several trace gas species in the troposphere including methane. The goal of this study is to compare TES methane products to that of the Atmospheric Infrared Sounder (AIRS) on the EOS Aqua spacecraft so that scientific investigations may be transferred from TES to AIRS. The two instruments fly in the afternoon constellations (A-Train), providing numerous coincident measurements for comparison. In addition, they also have a similar spectral range, (3.3 to 15.4 µm) for TES (Beer, 2006) and (3.7 to 15.4 µm) for AIRS (Chahine, 2006), making both satellites sensitive to the mid and upper troposphere. This makes them ideal candidates to compare methane data products. In a previous study, total column methane was mapped and global zonal averages were compared. It was found that bias of the total column measurements between the two sounders was about constant over tropical and subtropical regions. However, because AIRS spectral resolution is lower than that of the TES, it is important to analyze the difference in vertical sensitivity. In this study, we will construct vertical profiles of methane concentration and compare them statistically through RMS difference and bias to better understand these differences. In addition, we will compare the error profile and total column errors of the TES and AIRS methane from the data to better understand error characteristics of the products.
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.
Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard
2014-12-23
Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.
Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps
Sivan, Orit; Antler, Gilad; Turchyn, Alexandra V.; ...
2014-09-22
Seep sediments are dominated by intensive microbial sulfate reduction coupled to the anaerobic oxidation of methane (AOM). Through geochemical measurements of incubation experiments with methane seep sediments collected from Hydrate Ridge, we provide insight into the role of iron oxides in sulfate-driven AOM. Seep sediments incubated with 13C-labeled methane showed co-occurring sulfate reduction, AOM, and methanogenesis. The isotope fractionation factors for sulfur and oxygen isotopes in sulfate were about 40‰ and 22‰, respectively, reinforcing the difference between microbial sulfate reduction in methane seeps versus other sedimentary environments (for example, sulfur isotope fractionation above 60‰ in sulfate reduction coupled to organicmore » carbon oxidation or in diffusive sedimentary sulfate–methane transition zone). The addition of hematite to these microcosm experiments resulted in significant microbial iron reduction as well as enhancing sulfate-driven AOM. The magnitude of the isotope fractionation of sulfur and oxygen isotopes in sulfate from these incubations was lowered by about 50%, indicating the involvement of iron oxides during sulfate reduction in methane seeps. The similar relative change between the oxygen versus sulfur isotopes of sulfate in all experiments (with and without hematite addition) suggests that oxidized forms of iron, naturally present in the sediment incubations, were involved in sulfate reduction, with hematite addition increasing the sulfate recycling or the activity of sulfur-cycling microorganisms by about 40%. Furthermore, these results highlight a role for natural iron oxides during bacterial sulfate reduction in methane seeps not only as nutrient but also as stimulator of sulfur recycling.« less
Chauhan, Ashvini; Pathak, Ashish; Ogram, Andrew
2012-10-01
Agricultural runoff of phosphorus (P) in the northern Florida Everglades has resulted in several ecosystem level changes, including shifts in the microbial ecology of carbon cycling, with significantly higher methane being produced in the nutrient-enriched soils. Little is, however, known of the structure and activities of methane-oxidizing bacteria (MOB) in these environments. To address this, 0 to 10 cm plant-associated soil cores were collected from nutrient-impacted (F1), transition (F4), and unimpacted (U3) areas, sectioned in 2-cm increments, and methane oxidation rates were measured. F1 soils consumed approximately two-fold higher methane than U3 soils; additionally, most probable numbers of methanotrophs were 4-log higher in F1 than U3 soils. Metabolically active MOB containing pmoA sequences were characterized by stable-isotope probing using 10 % (v/v) (13)CH(4). pmoA sequences, encoding the alpha subunit of methane monooxygenase and related to type I methanotrophs, were identified from both impacted and unimpacted soils. Additionally, impacted soils also harbored type II methanotrophs, which have been shown to exhibit preferences for high methane concentrations. Additionally, across all soils, novel pmoA-type sequences were also detected, indicating presence of MOB specific to the Everglades. Multivariate statistical analyses confirmed that eutrophic soils consisted of metabolically distinct MOB community that is likely driven by nutrient enrichment. This study enhances our understanding on the biological fate of methane being produced in productive wetland soils of the Florida Everglades and how nutrient-enrichment affects the composition of methanotroph bacterial communities.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-05
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-01-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system. PMID:25652244
NASA Astrophysics Data System (ADS)
Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie
2015-02-01
Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.
Methane yield in source-sorted organic fraction of municipal solid waste.
Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour
2007-01-01
Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.
Methane hydrate-bearing seeps as a source of aged dissolved organic carbon to the oceans
Pohlman, John; Waite, William F.; Bauer, James E.; Osburn, Christopher L.; Chapman, N. Ross
2011-01-01
Marine sediments contain about 500–10,000 Gt of methane carbon1, 2, 3, primarily in gas hydrate. This reservoir is comparable in size to the amount of organic carbon in land biota, terrestrial soils, the atmosphere and sea water combined1, 4, but it releases relatively little methane to the ocean and atmosphere5. Sedimentary microbes convert most of the dissolved methane to carbon dioxide6, 7. Here we show that a significant additional product associated with microbial methane consumption is methane-derived dissolved organic carbon. We use Δ14C and δ13C measurements and isotopic mass-balance calculations to evaluate the contribution of methane-derived carbon to seawater dissolved organic carbon overlying gas hydrate-bearing seeps in the northeastern Pacific Ocean. We show that carbon derived from fossil methane accounts for up to 28% of the dissolved organic carbon. This methane-derived material is much older, and more depleted in 13C, than background dissolved organic carbon. We suggest that fossil methane-derived carbon may contribute significantly to the estimated 4,000–6,000 year age of dissolved organic carbon in the deep ocean8, and provide reduced organic matter and energy to deep-ocean microbial communities.
A simple headspace equilibration method for measuring dissolved methane
Magen, C; Lapham, L.L.; Pohlman, John W.; Marshall, Kristin N.; Bosman, S.; Casso, Michael; Chanton, J.P.
2014-01-01
Dissolved methane concentrations in the ocean are close to equilibrium with the atmosphere. Because methane is only sparingly soluble in seawater, measuring it without contamination is challenging for samples collected and processed in the presence of air. Several methods for analyzing dissolved methane are described in the literature, yet none has conducted a thorough assessment of the method yield, contamination issues during collection, transport and storage, and the effect of temperature changes and preservative. Previous extraction methods transfer methane from water to gas by either a "sparge and trap" or a "headspace equilibration" technique. The gas is then analyzed for methane by gas chromatography. Here, we revisit the headspace equilibration technique and describe a simple, inexpensive, and reliable method to measure methane in fresh and seawater, regardless of concentration. Within the range of concentrations typically found in surface seawaters (2-1000 nmol L-1), the yield of the method nears 100% of what is expected from solubility calculation following the addition of known amount of methane. In addition to being sensitive (detection limit of 0.1 ppmv, or 0.74 nmol L-1), this method requires less than 10 min per sample, and does not use highly toxic chemicals. It can be conducted with minimum materials and does not require the use of a gas chromatograph at the collection site. It can therefore be used in various remote working environments and conditions.
A First: NASA Spots Single Methane Leak from Space
2016-06-14
Atmospheric methane is a potent greenhouse gas, but the percentage of it produced through human activities is still poorly understood. Future instruments on orbiting satellites can help address this issue by surveying human-produced methane emissions. Recent data from the Aliso Canyon event, a large accidental methane release near Porter Ranch, California, demonstrates this capability. The Hyperion imaging spectrometer onboard NASA's EO-1 satellite successfully detected this release event on three different overpasses during the winter of 2015-2016. This is the first time the methane plume from a single facility has been observed from space. The orbital observations were consistent with airborne measurements. This image pair shows a comparison of detected methane plumes over Aliso Canyon, California, acquired 11 days apart in Jan. 2016 by: (left) NASA's AVIRIS instrument on a NASA ER-2 aircraft at 4.1 miles (6.6 kilometers) altitude and (right) by the Hyperion instrument on NASA's Earth Observing-1 satellite in low-Earth orbit. The additional red streaks visible in the EO-1 Hyperion image result from measurement noise -- Hyperion was not specifically designed for methane sensing and is not as sensitive as AVIRIS-NG. Additionally, the EO-1 satellite's current orbit provided poor illumination conditions. Future instruments with much greater sensitivity on orbiting satellites can survey the biggest sources of human-produced methane around the world. http://photojournal.jpl.nasa.gov/catalog/PIA20716
Sanphoti, N; Towprayoon, S; Chaiprasert, P; Nopharatana, A
2006-10-01
In order to increase methane production efficiency, leachate recirculation is applied in landfills to increase moisture content and circulate organic matter back into the landfill cell. In the case of tropical landfills, where high temperature and evaporation occurs, leachate recirculation may not be enough to maintain the moisture content, therefore supplemental water addition into the cell is an option that could help stabilize moisture levels as well as stimulate biological activity. The objectives of this study were to determine the effects of leachate recirculation and supplemental water addition on municipal solid waste decomposition and methane production in three anaerobic digestion reactors. Anaerobic digestion with leachate recirculation and supplemental water addition showed the highest performance in terms of cumulative methane production and the stabilization period time required. It produced an accumulated methane production of 54.87 l/kg dry weight of MSW at an average rate of 0.58 l/kg dry weight/d and reached the stabilization phase on day 180. The leachate recirculation reactor provided 17.04 l/kg dry weight at a rate of 0.14l/kg dry weight/d and reached the stabilization phase on day 290. The control reactor provided 9.02 l/kg dry weight at a rate of 0.10 l/kg dry weight/d, and reached the stabilization phase on day 270. Increasing the organic loading rate (OLR) after the waste had reached the stabilization phase made it possible to increase the methane content of the gas, the methane production rate, and the COD removal. Comparison of the reactors' efficiencies at maximum OLR (5 kgCOD/m(3)/d) in terms of the methane production rate showed that the reactor using leachate recirculation with supplemental water addition still gave the highest performance (1.56 l/kg dry weight/d), whereas the leachate recirculation reactor and the control reactor provided 0.69 l/kg dry weight/d and 0.43 l/kg dry weight/d, respectively. However, when considering methane composition (average 63.09%) and COD removal (average 90.60%), slight differences were found among these three reactors.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.
2014-06-01
Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These results suggest that type I methanotrophs can outcompete type II methane oxidizers in nitrogen-rich environments, rendering the interactions among methane and ammonia oxidizers more complicated than previously appreciated.
Methane production from grape skins. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yunghans, W.N.
1981-10-09
Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment frommore » stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.« less
Annual variability and regulation of methane and sulfate fluxes in Baltic Sea estuarine sediments
NASA Astrophysics Data System (ADS)
Sawicka, Joanna E.; Brüchert, Volker
2017-01-01
Marine methane emissions originate largely from near-shore coastal systems, but emission estimates are often not based on temporally well-resolved data or sufficient understanding of the variability of methane consumption and production processes in the underlying sediment. The objectives of our investigation were to explore the effects of seasonal temperature, changes in benthic oxygen concentration, and historical eutrophication on sediment methane concentrations and benthic fluxes at two type localities for open-water coastal versus eutrophic, estuarine sediment in the Baltic Sea. Benthic fluxes of methane and oxygen and sediment pore-water concentrations of dissolved sulfate, methane, and 35S-sulfate reduction rates were obtained over a 12-month period from April 2012 to April 2013. Benthic methane fluxes varied by factors of 5 and 12 at the offshore coastal site and the eutrophic estuarine station, respectively, ranging from 0.1 mmol m-2 d-1 in winter at an open coastal site to 2.6 mmol m-2 d-1 in late summer in the inner eutrophic estuary. Total oxygen uptake (TOU) and 35S-sulfate reduction rates (SRRs) correlated with methane fluxes showing low rates in the winter and high rates in the summer. The highest pore-water methane concentrations also varied by factors of 6 and 10 over the sampling period with the lowest values in the winter and highest values in late summer-early autumn. The highest pore-water methane concentrations were 5.7 mM a few centimeters below the sediment surface, but they never exceeded the in situ saturation concentration. Of the total sulfate reduction, 21-24 % was coupled to anaerobic methane oxidation, lowering methane concentrations below the sediment surface far below the saturation concentration. The data imply that bubble emission likely plays no or only a minor role in methane emissions in these sediments. The changes in pore-water methane concentrations over the observation period were too large to be explained by temporal changes in methane formation and methane oxidation rates due to temperature alone. Additional factors such as regional and local hydrostatic pressure changes and coastal submarine groundwater flow may also affect the vertical and lateral transport of methane.
Role of Megafauna and Frozen Soil in the Atmospheric CH4 Dynamics
Zimov, Sergey; Zimov, Nikita
2014-01-01
Modern wetlands are the world’s strongest methane source. But what was the role of this source in the past? An analysis of global 14C data for basal peat combined with modelling of wetland succession allowed us to reconstruct the dynamics of global wetland methane emission through time. These data show that the rise of atmospheric methane concentrations during the Pleistocene-Holocene transition was not connected with wetland expansion, but rather started substantially later, only 9 thousand years ago. Additionally, wetland expansion took place against the background of a decline in atmospheric methane concentration. The isotopic composition of methane varies according to source. Owing to ice sheet drilling programs past dynamics of atmospheric methane isotopic composition is now known. For example over the course of Pleistocene-Holocene transition atmospheric methane became depleted in the deuterium isotope, which indicated that the rise in methane concentrations was not connected with activation of the deuterium-rich gas clathrates. Modelling of the budget of the atmospheric methane and its isotopic composition allowed us to reconstruct the dynamics of all main methane sources. For the late Pleistocene, the largest methane source was megaherbivores, whose total biomass is estimated to have exceeded that of present-day humans and domestic animals. This corresponds with our independent estimates of herbivore density on the pastures of the late Pleistocene based on herbivore skeleton density in the permafrost. During deglaciation, the largest methane emissions originated from degrading frozen soils of the mammoth steppe biome. Methane from this source is unique, as it is depleted of all isotopes. We estimated that over the entire course of deglaciation (15,000 to 6,000 year before present), soils of the mammoth steppe released 300–550 Pg (1015 g) of methane. From current study we conclude that the Late Quaternary Extinction significantly affected the global methane cycle. PMID:24695117
Effect of silane concentration on the supersonic combustion of a silane/methane mixture
NASA Technical Reports Server (NTRS)
Northam, G. B.; Mclain, A. G.; Pellett, G. L.; Diskin, G. S.
1986-01-01
A series of direct connect combustor tests was conducted to determine the effect of silane concentration on the supersonic combustion characteristics of silane/methane mixtures. Shock tube ignition delay data indicated more than an order of magnitude reduction in ignition delay times for both 10 and 20 percent silane/methane mixtures as compared to methane. The ignition delay time of the 10 percent mixture was only a factor of 2.3 greater than that of the 20 percent mixture. Supersonic combustion tests were conducted with the fuel injected into a model scramjet combustor. The combustor was mounted at the exit of a Mach 2 nozzle and a hydrogen fired heater was used to provide a variation in test gas total temperature. Tests using the 20 percent silane/methane mixture indicated considerable combustion enhancement when compared to methane alone. This mixture had an autoignition total temperature of 1650 R. This autoignition temperature can be contrasted with 2330 R for hydrogen and 1350 R for a 20 percent silane/hydrogen mixture in similar hardware. Methane without the silane additive did not autoignite in this configuration at total temperatures as high as 3900 R, the maximum temperature at which tests were conducted. Supersonic combustion tests with the silane concentration reduced to 10 percent indicated little improvement in combustion performance over pure methane. The addition of 20 percent silane to methane resulted in a pyrophoric fuel with good supersonic combustion performance. Reducing the silane concentration below this level, however, yielded a less pyrophoric fuel that exhibited poor supersonic combustion performance.
Methane Pyrolysis and Disposing Off Resulting Carbon
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Rapp, D.; Rahotgi, N. K.
1999-01-01
Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.
Liu, Yiwen; Zhang, Yaobin; Zhao, Zhiqiang; Ngo, Huu Hao; Guo, Wenshan; Zhou, Junliang; Peng, Lai; Ni, Bing-Jie
2017-01-01
Recent studies have shown that direct interspecies electron transfer (DIET) plays an important part in contributing to methane production from anaerobic digestion. However, so far anaerobic digestion models that have been proposed only consider two pathways for methane production, namely, acetoclastic methanogenesis and hydrogenotrophic methanogenesis, via indirect interspecies hydrogen transfer, which lacks an effective way for incorporating DIET into this paradigm. In this work, a new mathematical model is specifically developed to describe DIET process in anaerobic digestion through introducing extracellular electron transfer as a new pathway for methane production, taking anaerobic transformation of ethanol to methane as an example. The developed model was able to successfully predict experimental data on methane dynamics under different experimental conditions, supporting the validity of the developed model. Modeling predictions clearly demonstrated that DIET plays an important role in contributing to overall methane production (up to 33 %) and conductive material (i.e., carbon cloth) addition would significantly promote DIET through increasing ethanol conversion rate and methane production rate. The model developed in this work will potentially enhance our current understanding on syntrophic metabolism via DIET.
Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo
2017-05-01
Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cai, W.; Lu, H.; Huang, X.
2016-12-01
In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.
Limbri, Hendy; Gunawan, Cindy; Thomas, Torsten; Smith, Andrew; Scott, Jason; Rosche, Bettina
2014-01-01
Methane emitted by coal mine ventilation air (MVA) is a significant greenhouse gas. A mitigation strategy is the oxidation of methane to carbon dioxide, which is approximately twenty-one times less effective at global warming than methane on a mass-basis. The low non-combustible methane concentrations at high MVA flow rates call for a catalytic strategy of oxidation. A laboratory-scale coal-packed biofilter was designed and partially removed methane from humidified air at flow rates between 0.2 and 2.4 L min−1 at 30°C with nutrient solution added every three days. Methane oxidation was catalysed by a complex community of naturally-occurring microorganisms, with the most abundant member being identified by 16S rRNA gene sequence as belonging to the methanotrophic genus Methylocystis. Additional inoculation with a laboratory-grown culture of Methylosinus sporium, as investigated in a parallel run, only enhanced methane consumption during the initial 12 weeks. The greatest level of methane removal of 27.2±0.66 g methane m−3 empty bed h−1 was attained for the non-inoculated system, which was equivalent to removing 19.7±2.9% methane from an inlet concentration of 1% v/v at an inlet gas flow rate of 1.6 L min−1 (2.4 min empty bed residence time). These results show that low-cost coal packing holds promising potential as a suitable growth surface and contains methanotrophic microorganisms for the catalytic oxidative removal of methane. PMID:24743729
NASA Astrophysics Data System (ADS)
Aoyama, D.; Aoyama, C.
2014-12-01
The plume comes out to the surface of the water, and methane is released for low water temperature and low temperature in the Arctic Ocean by the atmosphere. Methane released by the atmosphere is combined with oxygen and becomes carbon dioxide and the water, and the greenhouse effect is higher in 20 times than carbon dioxide. If quantity of the methane plume is quantified, I may estimate the quantity of existing methane underground and can estimate the scale of methane melting into it in seawater. The methane plume solved in seawater is one element of the carbon cycle. It is important that I elucidate this element in thinking about the carbon cycle of the wide sense. However, there is not the report that I showed quantitatively how much methane melts into it in seawater a year from the methane plume. Therefore, in this article, I identified an aspect of gush methane as it by the sound data with the fishfinder and by a gush picture of the methane plume. With that in mind, I quantified the quantity of the methane plume. As a result, the following things became clear. The methane hydrate grain to gush out from a gush mouth is a solid at the bottom of the sea direct top. In this sea area, methane of 7.7*104m3 per unit area gushes out. In addition, the sea area where 6.3*106m3 gushed out existed.
NASA Astrophysics Data System (ADS)
Smith, M. L.; Kort, E. A.; Karion, A.; Sweeney, C.; Peischl, J.; Ryerson, T. B.
2014-12-01
The largest emissions sources of methane, a potent greenhouse gas and the primary component of natural gas, are the fossil fuel sector and microbial processes that occur in agricultural settings, landfills, and wetlands. Attribution of methane to these different source sectors has proven difficult, as evidenced by persistent disagreement between the annual emissions estimated from atmospheric observations (top-down) and from inventories (bottom-up). Given the rapidly changing natural gas infrastructure in North America, and the implications of associated rapid changes in emissions of methane for climate, it is crucial we improve our ability to quantify and understand current and future methane emissions. Here, we present evidence that continuous in-situ airborne observations of ethane, which is a tracer for fossil fuel emissions, are a new and useful tool for attribution of methane emissions to specific source sectors. Additionally, with these new airborne observations we present the first tightly constrained ethane emissions estimates of oil and gas production fields using the well-known mass balance method. The ratios of ethane-to-methane (C2H6:CH4) of specific methane emissions sources were studied over regions of high oil and gas production from the Barnett, TX and Bakken, ND shale plays, using continuous (1Hz frequency) airborne ethane measurements paired with simultaneous methane measurements. Despite the complex mixture of sources in the Barnett region, the methane emissions were well-characterized by distinct C2H6:CH4 relationships indicative of a high-ethane fossil fuel source (e.g., "wet" gas), a low-ethane fossil fuel source (e.g., "dry" gas), and an ethane-free, or microbial source. The defined set of C2H6:CH4 that characterized the emissions input to the atmosphere was used in conjunction with the total ethane and methane fluxes to place bounds on the fraction of methane emissions attributable to each source. Additionally, substantial ethane fluxes from the Barnett and Bakken regions were observed (1% to 10% of estimated national ethane emissions), and emissions of these magnitudes may significantly impact regional atmospheric chemistry and air quality by influencing production of tropospheric ozone.
Improving aerobic stability and biogas production of maize silage using silage additives.
Herrmann, Christiane; Idler, Christine; Heiermann, Monika
2015-12-01
The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mars atmosphere. Mars methane detection and variability at Gale crater.
Webster, Christopher R; Mahaffy, Paul R; Atreya, Sushil K; Flesch, Gregory J; Mischna, Michael A; Meslin, Pierre-Yves; Farley, Kenneth A; Conrad, Pamela G; Christensen, Lance E; Pavlov, Alexander A; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H; Owen, Tobias; Eigenbrode, Jennifer L; Glavin, Daniel P; Steele, Andrew; Malespin, Charles A; Archer, P Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P; Moores, John E; Schwenzer, Susanne P; Bridges, John C; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T
2015-01-23
Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. Copyright © 2015, American Association for the Advancement of Science.
Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins
Callaghan, Amy V.
2013-01-01
Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’ PMID:23717304
Bioconversion of methane to lactate by an obligate methanotrophic bacterium
Henard, Calvin A.; Smith, Holly; Dowe, Nancy; ...
2016-02-23
Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less
Bioconversion of methane to lactate by an obligate methanotrophic bacterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henard, Calvin A.; Smith, Holly; Dowe, Nancy
Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resultedmore » in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels.« less
Bioconversion of methane to lactate by an obligate methanotrophic bacterium
Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.
2016-01-01
Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345
Durmic, Zoey; Moate, Peter J; Eckard, Richard; Revell, Dean K; Williams, Richard; Vercoe, Philip E
2014-04-01
Ruminants produce large quantities of methane in their rumen as a by-product of microbial digestion of feed. Antibiotics are added to ruminant feed to reduce wasteful production of methane; however, this practice has some downsides. A search for safer and natural feed additives with anti-methanogenic properties is under way. The objective of this research was to examine selected feed additives, plant essential oils and plant extracts for their anti-methanogenic potential in the rumen using an in vitro batch fermentation system. A significant reduction (P < 0.05) in methane production was observed with nine feed additives (up to 40% reduction), all eight essential oils (up to 75% reduction) and two plant extracts (14% reduction) when compared to their respective controls. Amongst these, only an algal meal high in docosahexaenoic acid, preparations of Nannochloropsis oculata, calcareous marine algae, yeast metabolites and two tannins did not inhibit microbial gas and volatile acid production. The current study identified some potent dietary ingredients or plant compounds that can assist in developing novel feed additives for methane mitigation from the rumen. © 2013 Society of Chemical Industry.
Yalcinkaya, Sedat; Malina, Joseph F
2015-06-01
The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this relationship and allowed estimation of key performance parameters that provide additional insight into the factors affecting biochemical methane potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methane flux from coastal salt marshes
NASA Technical Reports Server (NTRS)
Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.
1985-01-01
It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.
Methane seeps along boundaries of arctic permafrost thaw and melting glaciers
NASA Astrophysics Data System (ADS)
Anthony, P.; Walter Anthony, K. M.; Grosse, G.; Chanton, J.
2014-12-01
Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs. In the Arctic, impermeable icy permafrost and glacial overburden form a 'cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. We document the release of geologic methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska. Through aerial and ground surveys we mapped >150,000 seeps identified as bubbling-induced open holes in lake ice. Subcap methane seeps had anomalously high fluxes, 14C-depletion, and stable isotope values matching known coalbed and thermogenic methane accumulations in Alaska. Additionally, we observed younger subcap methane seeps in Greenland that were associated with ice-sheet retreat since the Little Ice Age. These correlations suggest that in a warming climate, continued disintegration of permafrost, glaciers, and parts of the polar ice sheets will relax pressure on subsurface seals and further open conduits, allowing a transient expulsion of geologic methane currently trapped by the cryosphere cap.
Seasonal and inter-annual variation in ecosystem scale methane emission from a boreal fen
NASA Astrophysics Data System (ADS)
Rinne, Janne; Li, Xuefei; Raivonen, Maarit; Peltola, Olli; Sallantaus, Tapani; Haapanala, Sami; Smolander, Sampo; Alekseychik, Pavel; Aurela, Mika; Korrensalo, Aino; Mammarella, Ivan; Tuittila, Eeva-Stiina; Vesala, Timo
2016-04-01
Northern wetlands are one of the major sources of atmospheric methane. We have measured ecosystem scale methane emissions from a boreal fen continuously since 2005. The site is an oligotrophic fen in boreal vegetation zone situated in Siikaneva wetland complex in Southern Finland. The mean annual temperature in the area is 3.3°C and total annual precipitation 710 mm. We have conducted the methane emission measurements by the eddy covariance method. Additionally we have measured fluxes of carbon dioxide, water vapor, and sensible heat together with a suite of other environmental parameters. We have analyzed this data alongside with a model run with University of Helsinki methane model. The measured fluxes show generally highest methane emission in late summers coinciding with the highest temperatures in saturated peat zone. During winters the fluxes show small but detectable emission despite the snow and ice cover on the fen. More than 90% of the annual methane emission occurs in snow-free period. The methane emission and peat temperature are connected in exponential manner in seasonal scales, but methane emission does not show the expected behavior with water table. The lack of water table position dependence also contrasts with the spatial variation across microtopography. There is no systematic variation in sub-diurnal time scale. The general seasonal cycle in methane emission is captured well with the methane model. We will show how well the model reproduces the temperature and water table position dependencies observed. The annual methane emission is typically around 10 gC m-2. This is a significant part of the total carbon exchange between the fen and the atmosphere and about twice the estimated carbon loss by leaching from the fen area. The inter-annual variability in the methane emission is modest. The June-September methane emissions from different years, comprising most of the annual emission, correlates positively with peat temperature, but not with water table position.
Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.
2014-01-01
Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903
Code of Federal Regulations, 2013 CFR
2013-10-01
... carbon monoxide. DOT 3T cylinders are not authorized for hydrogen. When used in methane service, the methane must be a nonliquefied gas with a minimum purity of 98.0 percent methane and commercially free of... nonliquefied (permanent) compressed gases in specification cylinders. 173.302a Section 173.302a Transportation...
Code of Federal Regulations, 2014 CFR
2014-10-01
... carbon monoxide. DOT 3T cylinders are not authorized for hydrogen. When used in methane service, the methane must be a nonliquefied gas with a minimum purity of 98.0 percent methane and commercially free of... nonliquefied (permanent) compressed gases in specification cylinders. 173.302a Section 173.302a Transportation...
Mitigation options for methane emissions from rice fields in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantin, R.S.; Buendia, L.V.; Wassmann, R.
1996-12-31
The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of themore » total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.« less
Methane production and isotopic fingerprinting in ethanol fuel contaminated sites.
Freitas, Juliana G; Fletcher, Barbara; Aravena, Ramon; Barker, James F
2010-01-01
Biodegradation of organic compounds in groundwater can be a significant source of methane in contaminated sites. Methane might accumulate in indoor spaces posing a hazard. The increasing use of ethanol as a gasoline additive is a concern with respect to methane production since it is easily biodegraded and has a high oxygen demand, favoring the development of anaerobic conditions. This study evaluated the use of stable carbon isotopes to distinguish the methane origin between gasoline and ethanol biodegradation, and assessed the occurrence of methane in ethanol fuel contaminated sites. Two microcosm tests were performed under anaerobic conditions: one test using ethanol and the other using toluene as the sole carbon source. The isotopic tool was then applied to seven field sites known to be impacted by ethanol fuels. In the microcosm tests, it was verified that methane from ethanol (δ¹³C = -11.1‰) is more enriched in ¹³C, with δ¹³C values ranging from -20‰ to -30‰, while the methane from toluene (δ¹³C = -28.5‰) had a carbon isotopic signature of -55‰. The field samples had δ¹³C values varying over a wide range (-10‰ to -80‰), and the δ¹³C values allowed the methane source to be clearly identified in five of the seven ethanol/gasoline sites. In the other two sites, methane appears to have been produced from both sources. Both gasoline and ethanol were sources of methane in potentially hazardous concentrations and methane could be produced from organic acids originating from ethanol along the groundwater flow system even after all the ethanol has been completed biodegraded. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.
Cai, Chen; Hu, Shihu; Chen, Xueming; Ni, Bing-Jie; Pu, Jiaoyang; Yuan, Zhiguo
2018-10-15
Complete nitrogen removal has recently been demonstrated by integrating anaerobic ammonium oxidation (anammox) and denitrifying anaerobic methane oxidation (DAMO) processes. In this work, the effect of methane partial pressure on the performance of a membrane biofilm reactor (MBfR) consisting of DAMO and anammox microorganisms was evaluated. The activities of DAMO archaea and DAMO bacteria in the biofilm increased significantly with increased methane partial pressure, from 367 ± 9 and 58 ± 22 mg-N L -1 d -1 to 580 ± 12 and 222 ± 22 mg-N L -1 d -1 , respectively, while the activity of anammox bacteria only increased slightly, when the methane partial pressure was elevated from 0.24 to 1.39 atm in the short-term batch tests. The results were supported by a long-term (seven weeks) continuous test, when the methane partial pressure was dropped from 1.39 to 0.78 atm. The methane utilization efficiency was always above 96% during both short-term and long-term tests. Taken together, nitrogen removal rate (especially the nitrate reduction rate by DAMO archaea) and methane utilization efficiency could be maintained at high levels in a broad range of methane partial pressure (0.24-1.39 atm in this study). In addition, a previously established DAMO/anammox biofilm model was used to analyze the experimental data. The observed impacts of methane partial pressure on biofilm activity were well explained by the modeling results. These results suggest that methane partial pressure can potentially be used as a manipulated variable to control reaction rates, ultimately to maintain high nitrogen removal efficiency, according to nitrogen loading rate. Copyright © 2018 Elsevier B.V. All rights reserved.
Molecular dynamics study of structure H clathrate hydrates of methane and large guest molecules.
Susilo, Robin; Alavi, Saman; Ripmeester, John A; Englezos, Peter
2008-05-21
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marker, Terry; Roberts, Michael; Linck, Martin
The goal of this Bioincubator Project was to improve the pyrolysis of biomass through the use of methane. Our initial concept was to use methane as a fluidizing gas with a hydrogen transfer catalyst. The results of the experiments did show that methane as a fluidizing gas, with a hydrogen transfer catalyst, does enhance catalytic pyrolysis over that which is achieved with an inert fluidizing gas. Using methane as a fluidizing gas, with a hydrogen transfer catalyst, consistently produced better products with lower oxygen content than the products produced when an inert gas was used. These improvements were also consistentmore » with the results obtained through pure component testing as well. However, the improvement was too small to justify any significant expense. The addition of hydrogen with a hydrogen transfer catalyst consistently showed a much greater, more significant effect than methane. This indicates that hydropyrolysis is a more effective approach to improved catalytic pyrolysis than methane addition. During the course of this project, another way to significantly increase biogenic liquid yields from pyrolysis through the use of methane was discovered. We discovered a remarkably stable CO2/steam reforming catalyst which directly makes a 2:1 H2/CO synthesis gas from the CO, CO2, methane, ethane and propane product gas from integrated hydropyrolysis and hydroconversion (IH2®). The biogenic synthesis gas can then be converted to liquid hydrocarbons using Fischer Tropsch. The hydrogen for the IH2 unit would then be provided through the use of added methane. By utilizing the biogenic gas to make liquids, 40% more biogenic liquid hydrocarbons can be made from wood, thereby increasing liquid yields from IH2 from 86GPT to 126GPT. It also simplifies the hydrogen plant since no CO or CO2 removal is required.« less
Mitchell, Martha C; Gallo, Marco; Nenoff, Tina M
2004-07-22
Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.
NASA Astrophysics Data System (ADS)
Mitchell, Martha C.; Gallo, Marco; Nenoff, Tina M.
2004-07-01
Equilibrium molecular dynamics (MD) simulations of equimolar mixtures of hydrogen and methane were performed in three different titanosilicates: naturally occurring zorite and two synthetic titanosilicates, ETS-4 and ETS-10. In addition, single-component MD simulations and adsorption isotherms generated using grand canonical Monte Carlo simulations were performed to support the mixture simulations. The goal of this study was to determine the best membrane material to carry out hydrogen/methane separations. ETS-10 has a three-dimensional pore network. ETS-4 and zorite have two-dimensional pore networks. The simulations carried out in this study show that the increased porosity of ETS-10 results in self-diffusion coefficients for both hydrogen and methane that are higher in ETS-10 than in either ETS-4 or zorite. Methane only showed appreciable displacement in ETS-10. The ability of the methane molecules to move in all three directions in ETS-10 was demonstrated by the high degree of isotropy shown in the values of the x, y, and z components of the self-diffusion coefficient for methane in ETS-10. From our simulations we conclude that ETS-10 would be better suited for fast industrial separations of hydrogen and methane. However, the separation would not result in a pure hydrogen stream. In contrast, ETS-4 and zorite would act as true molecular sieves for separations of hydrogen and methane, as the methane would not move through membranes made of these materials. This was indicated by the near-zero self-diffusion coefficient of methane in ETS-4 and zorite.
NASA Astrophysics Data System (ADS)
Pum, Lisa; Reichenauer, Thomas; Germida, Jim
2015-04-01
Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that reclamation layers for oil sands mining sites in Alberta, Canada have the potential to oxidize on-site produced methane emissions to the less harmful greenhouse gas carbon dioxide. Such oxidation might mitigate impacts of methane production from these sites.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition
NASA Astrophysics Data System (ADS)
Alavi, Saman; Ripmeester, J. A.
2010-04-01
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition.
Alavi, Saman; Ripmeester, J A
2010-04-14
Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.
Lightweight mid-infrared methane sensor for unmanned aerial systems
NASA Astrophysics Data System (ADS)
Golston, Levi M.; Tao, Lei; Brosy, Caroline; Schäfer, Klaus; Wolf, Benjamin; McSpiritt, James; Buchholz, Bernhard; Caulton, Dana R.; Pan, Da; Zondlo, Mark A.; Yoel, David; Kunstmann, Harald; McGregor, Marty
2017-06-01
The design and field performance of a compact diode laser-based instrument for measuring methane on unmanned aerial systems (UAS) is described. The system is based on open-path, wavelength modulation spectroscopy with a 3.27 µm GaSb laser. We design two versions of the sensor for a long-endurance fixed wing UAS and a rotary wing hexacopter, with instrument masses of 4.6 and 1.6 kg, respectively. The long-endurance platform was used to measure vertical profiles of methane up to 600 m in altitude and showed repeatability of 13 ppbv between multiple profiles. Additionally, the hexacopter system was used to evaluate the evolution of methane in the nocturnal boundary layer during the ScaleX field campaign in Germany, where measured data is consistent with supporting ground-based methane and meteorological measurements. Testing results on both platforms demonstrated our lightweight methane sensor had an in-flight precision of 5-10 ppbv Hz-1/2.
Wide area methane emissions mapping with airborne IPDA lidar
NASA Astrophysics Data System (ADS)
Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William
2017-08-01
Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.
Discovery of a novel methanogen prevalent in thawing permafrost.
Mondav, Rhiannon; Woodcroft, Ben J; Kim, Eun-Hae; McCalley, Carmody K; Hodgkins, Suzanne B; Crill, Patrick M; Chanton, Jeffrey; Hurst, Gregory B; VerBerkmoes, Nathan C; Saleska, Scott R; Hugenholtz, Philip; Rich, Virginia I; Tyson, Gene W
2014-01-01
Thawing permafrost promotes microbial degradation of cryo-sequestered and new carbon leading to the biogenic production of methane, creating a positive feedback to climate change. Here we determine microbial community composition along a permafrost thaw gradient in northern Sweden. Partially thawed sites were frequently dominated by a single archaeal phylotype, Candidatus 'Methanoflorens stordalenmirensis' gen. nov. sp. nov., belonging to the uncultivated lineage 'Rice Cluster II' (Candidatus 'Methanoflorentaceae' fam. nov.). Metagenomic sequencing led to the recovery of its near-complete genome, revealing the genes necessary for hydrogenotrophic methanogenesis. These genes are highly expressed and methane carbon isotope data are consistent with hydrogenotrophic production of methane in the partially thawed site. In addition to permafrost wetlands, 'Methanoflorentaceae' are widespread in high methane-flux habitats suggesting that this lineage is both prevalent and a major contributor to global methane production. In thawing permafrost, Candidatus 'M. stordalenmirensis' appears to be a key mediator of methane-based positive feedback to climate warming.
Rapid, Real-time Methane Detection in Ground Water Using a New Gas-Water Equilibrator Design
NASA Astrophysics Data System (ADS)
Ruybal, C. J.; DiGiulio, D. C.; Wilkin, R. T.; Hargrove, K. D.; McCray, J. E.
2014-12-01
Recent increases in unconventional gas development have been accompanied by public concern for methane contamination in drinking water wells near production areas. Although not a regulated pollutant, methane may be a marker contaminant for others that are less mobile in groundwater and thus may be detected later, or at a location closer to the source. In addition, methane poses an explosion hazard if exsolved concentrations reach 5 - 15% volume in air. Methods for determining dissolved gases, such as methane, have evolved over 60 years. However, the response time of these methods is insufficient to monitor trends in methane concentration in real-time. To enable rapid, real-time monitoring of aqueous methane concentrations during ground water purging, a new gas-water equilibrator (GWE) was designed that increases gas-water mass exchange rates of methane for measurement. Monitoring of concentration trends allows a comparison of temporal trends between sampling events and comparison of baseline conditions with potential post-impact conditions. These trends may be a result of removal of stored casing water, pre-purge ambient borehole flow, formation physical and chemical heterogeneity, or flow outside of well casing due to inadequate seals. Real-time information in the field can help focus an investigation, aid in determining when to collect a sample, save money by limiting costs (e.g. analytical, sample transport and storage), and provide an immediate assessment of local methane concentrations. Four domestic water wells, one municipal water well, and one agricultural water well were sampled for traditional laboratory analysis and compared to the field GWE results. Aqueous concentrations measured on the GWE ranged from non-detect to 1,470 μg/L methane. Some trends in aqueous methane concentrations measured on the GWE were observed during purging. Applying a paired t-test comparing the new GWE method and traditional laboratory analysis yielded a p-value 0.383, suggesting no significant difference between the two methods for the current study. Additional field and laboratory experimentation are necessary to justify use beyond screening. However, early GWE use suggests promising results and applications.
Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12
Kappel, William M.
2013-01-01
The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to data for Pennsylvania and New York, no U.S. Geological Survey (USGS) methane analyses are presently available for northwestern New Jersey.
Mayhall, Nicholas J; Raghavachari, Krishnan
2007-08-23
The mechanisms of chemical reactions of molybdenum suboxide clusters Mo(2)O(n)- (n = 2-5) with methane are investigated using B3LYP hybrid density functional theory and polarized basis sets. In particular, we focus on the reactions of the most stable structural isomers of Mo(2)O(2,3,4,5)- that lead to single molybdenum species such as HMoO(2)CH(3)-, as seen in the recent experimental study of Jarrold and co-workers. We find that, while all experimentally observed products are unfavorable due to the high amount of energy required to cleave the metal oxide, the formation of HMoO(2)CH(3)- is least endothermic. Even in this case, the thermodynamics of these reactions is very unfavorable when a single methane is reacted with the metal oxide. However, we find that the sequential addition of two methanes produces HMoO(2)CH(3)- (and another neutral molecule whose identity depends on the number of oxygens in the metal oxide) at a much lower thermodynamic cost. Further, the overall reaction barriers are much lower when the second methane adds prior to the Mo(2)O(2,3,4,5)- cleavage. The methane addition at each metal center oxidizes the metals to produce a species that is then stable enough to afford the Mo-Mo cleavage.
The California Baseline Methane Survey
NASA Astrophysics Data System (ADS)
Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.
2017-12-01
The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.
Methane Decomposition and Carbon Growth on Y2O3, Yttria-Stabilized Zirconia, and ZrO2
2014-01-01
Carbon deposition following thermal methane decomposition under dry and steam reforming conditions has been studied on yttria-stabilized zirconia (YSZ), Y2O3, and ZrO2 by a range of different chemical, structural, and spectroscopic characterization techniques, including aberration-corrected electron microscopy, Raman spectroscopy, electric impedance spectroscopy, and volumetric adsorption techniques. Concordantly, all experimental techniques reveal the formation of a conducting layer of disordered nanocrystalline graphite covering the individual grains of the respective pure oxides after treatment in dry methane at temperatures T ≥ 1000 K. In addition, treatment under moist methane conditions causes additional formation of carbon-nanotube-like architectures by partial detachment of the graphite layers. All experiments show that during carbon growth, no substantial reduction of any of the oxides takes place. Our results, therefore, indicate that these pure oxides can act as efficient nonmetallic substrates for methane-induced growth of different carbon species with potentially important implications regarding their use in solid oxide fuel cells. Moreover, by comparing the three oxides, we could elucidate differences in the methane reactivities of the respective SOFC-relevant purely oxidic surfaces under typical SOFC operation conditions without the presence of metallic constituents. PMID:24587591
NASA Astrophysics Data System (ADS)
Zhuang, G.; Wegener, G.; Joye, S. B.
2017-12-01
The anaerobic oxidation of methane (AOM) is an important microbial metabolism in the global carbon cycle. In marine methane seeps sediment, this process is mediated by syntrophic consortium that includes anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Stoichiometrically in AOM methane oxidation should be coupled to sulfate reduction (SR) in a 1:1 ratio. However, weak coupling of AOM and SR in seep sediments was frequently observed from the ex situ rate measurements, and the metabolic dynamics of AOM and SR under in situ conditions remain poorly understood. Here we investigated the metabolic activity of AOM and SR with radiotracers by restoring in situ methane concentrations under pressure to constrain the in situ relationships between AOM and SR in the cold seep sediments of Gulf of Mexico as well as the sediment-free AOM enrichments cultivated from cold seep of Italian Island Elba or hydrothermal vent of Guaymas Basin5. Surprisingly, we found that AOM rates strongly exceeded those of SR when high pressures and methane concentrations were applied at seep sites of GC600 and GC767 in Gulf of Mexico. With the addition of molybdate, SR was inhibited but AOM was not affected, suggesting the potential coupling of AOM with other terminal processes. Amendments of nitrate, iron, manganese and AQDS to the SR-inhibited slurries did not stimulate or inhibit the AOM activity, indicating either those electron acceptors were not limiting for AOM in the sediments or AOM was coupled to other process (e.g., organic matter). In the ANME enrichments, higher AOM rates were also observed with the addition of high concentrations of methane (10mM and 50 mM). The tracer transfer of CO2 to methane, i.e., the back reaction of AOM, increased with increasing methane concentrations and accounted for 1%-5% of the AOM rates. AOM rates at 10 mM and 50 mM methane concentration were much higher than the SR rates, suggesting those two processes were not tightly coupled. Collectively, our results provided evidence for the possible decoupling of AOM and SR under in situconditions. This decoupling appears to be widespread in methane-rich marine sediment, motivating a wide variety of future research endeavors.
Haag, Nicola Leonard; Nägele, Hans-Joachim; Fritz, Thomas; Oechsner, Hans
2015-02-01
A green biorefinery enables the material and energetic use of biomass via lactic acid and methane production. Different ensiling techniques were applied to maize and amaranth with the aim to increase the amount of lactic acid in the silage. In addition the methane formation potential of the ensiled samples and the remaining solid residues after separating the organic juice were assessed. Treating maize with homofermentative lactic acid bacteria in combination with carbonated lime increased the amount of lactic acid about 91.9%. For amaranth no additional lactic acid production was obtained by treating the raw material. Specific methane yields for the solid residues of amaranth were significantly lower in comparison to the corresponding silages. The most promising treatment resulted in a production of 127.9±4.1 g kg(-1) DM lactic acid and a specific methane yield for the solid residue of 349.5±6.6 lN kg(-1) ODM. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presto, Albert A
The objectives of the project were to determine the leakage rates of methane and ozone-forming Volatile Organic Compounds (VOCs) and the emission rates of air toxics from Marcellus shale gas activities. Methane emissions in the Marcellus Shale region were differentiated between “newer” sources associated with shale gas development and “older” sources associated with coal or conventional natural gas exploration. This project conducted measurements of methane and VOC emissions from both shale and non-shale natural gas resources. The initial scope of the project was the Marcellus Shale basin, and measurements were conducted in both the western wet gas regions (southwest PAmore » and WV) and eastern dry gas region (northeast PA) of the basin. During this project, we obtained additional funding from other agencies to expand the scope of measurements to include additional basins. The data from both the Marcellus and other basins were combined to construct a national analysis of methane emissions from oil & gas production activities.« less
NASA Astrophysics Data System (ADS)
Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.
2017-12-01
Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.
Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.
2015-01-01
The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.
NASA Astrophysics Data System (ADS)
Saad, Katherine M.; Wunch, Debra; Deutscher, Nicholas M.; Griffith, David W. T.; Hase, Frank; De Mazière, Martine; Notholt, Justus; Pollard, David F.; Roehl, Coleen M.; Schneider, Matthias; Sussmann, Ralf; Warneke, Thorsten; Wennberg, Paul O.
2016-11-01
Global and regional methane budgets are markedly uncertain. Conventionally, estimates of methane sources are derived by bridging emissions inventories with atmospheric observations employing chemical transport models. The accuracy of this approach requires correctly simulating advection and chemical loss such that modeled methane concentrations scale with surface fluxes. When total column measurements are assimilated into this framework, modeled stratospheric methane introduces additional potential for error. To evaluate the impact of such errors, we compare Total Carbon Column Observing Network (TCCON) and GEOS-Chem total and tropospheric column-averaged dry-air mole fractions of methane. We find that the model's stratospheric contribution to the total column is insensitive to perturbations to the seasonality or distribution of tropospheric emissions or loss. In the Northern Hemisphere, we identify disagreement between the measured and modeled stratospheric contribution, which increases as the tropopause altitude decreases, and a temporal phase lag in the model's tropospheric seasonality driven by transport errors. Within the context of GEOS-Chem, we find that the errors in tropospheric advection partially compensate for the stratospheric methane errors, masking inconsistencies between the modeled and measured tropospheric methane. These seasonally varying errors alias into source attributions resulting from model inversions. In particular, we suggest that the tropospheric phase lag error leads to large misdiagnoses of wetland emissions in the high latitudes of the Northern Hemisphere.
Passive thermal infrared hyperspectral imaging for quantitative imaging of shale gas leaks
NASA Astrophysics Data System (ADS)
Gagnon, Marc-André; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Guyot, Éric; Lagueux, Philippe; Morton, Vince; Giroux, Jean; Chamberland, Martin
2017-10-01
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane's unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Degnan, James R.; Walsh, Gregory J.; Flanagan, Sarah M.; Burruss, Robert A.
2008-01-01
In August 2004, a commercial drill rig was destroyed by ignition of an explosive gas released during the drilling of a domestic well in granitic bedrock in Tyngsborough, MA. This accident prompted the Massachusetts Department of Environmental Protection (MassDEP) to sample the well water for dissolved methane - a possible explosive fuel. Water samples collected from the Tyngsborough domestic well in 2004 by the MassDEP contained low levels of methane gas (Pierce and others, 2007). When the U.S. Geological Survey (USGS) sampled this well in 2006, there was no measurable amount of methane remaining in the well water (Pierce and others, 2007). Other deep water wells in nearby south-central New Hampshire have been determined to have high concentrations of naturally occurring methane (David Wunsch, New Hampshire State Geologist, 2004, written commun.). Studying additional wells in New England crystalline bedrock aquifers that produce methane may help to understand the origin of methane in crystalline bedrock. Domestic well NH-WRW-37 was chosen for this study because it is a relatively deep well completed in crystalline bedrock, it is not affected by known anthropogenic sources of methane, and it had the highest known natural methane concentration (15.5 mg/L, U.S. Geological Survey, 2007) measured in a study described by Robinson and others (2004). This well has been in use since it was drilled in 1997, and it was originally selected for study in 2000 as part of a 30 well network, major-aquifer study by the USGS' New England Coastal Basins (NECB) study unit of the National Water-Quality Assessment (NAWQA) Program. Dissolved methane in drinking water is not considered an ingestion health hazard, although the occurrence in ground water is a concern because, as a gas, its buildup in confined spaces can cause asphyxiation, fire, or explosion hazards (Mathes and White, 2006). Methane occurrence in the fractured crystalline bedrock is not widely reported or well understood. Borehole-geophysical surveys, bedrock outcrop observations, and water-quality analyses were used to define the geologic and hydrologic characteristics of NH-WRW-37. Collection of additional information on the hydraulic and geologic characteristics of the fractured bedrock and on water quality was initiated in an attempt to understand the setting where methane gas occurs in the bedrock ground water. The origin of dissolved methane in this and other wells in New Hampshire is the subject of ongoing investigations by the State of New Hampshire, the New Hampshire Geological Survey and the USGS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, L.; Paudel, R.; Hess, P. G. M.
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Meng, L.; Paudel, R.; Hess, P. G. M.; ...
2015-07-03
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Ground truthing for methane hotspots at Railroad Valley, NV - application to Mars
NASA Astrophysics Data System (ADS)
Detweiler, A. M.; Kelley, C. A.; Bebout, B.; McKay, C. P.; DeMarines, J.; Yates, E. L.; Iraci, L. T.
2011-12-01
During the 2010 Greenhouse gas Observing SATellite (GOSAT) calibration and validation campaign at Railroad Valley (RRV) playa, NV, unexpected methane and carbon dioxide fluctuations were observed at the dry lakebed. Possible sources included the presence of natural gas (thermogenic methane) from oil deposits in the surrounding playa, and/or methane production from microbial activity (biogenic) in the subsurface of the playa. In the summer of 2011, measurements were undertaken to identify potential methane sources at RRV. The biogenicity of the methane was determined based on δ13C values and methane/ethane ratios. Soil gas samples and sediments were collected at different sites in the playa and surrounding areas. The soils of the playa consist of a surface crust layer (upper ~ 10 cm) grading to a dense clay below about 25 cm. Soil gas from the playa, sampled at about 20 and 80 cm depths, reflected atmospheric methane concentrations, ranging from 2 to 2.4 ppm, suggesting that no methane was produced within the playa. Natural springs on the northeast and western border of the playa, detected as methane hotspots from a flyover by the Sensor Integrated Environmental Remote Research Aircraft (SIERRA), were also sampled. Bubbles in these springs had methane concentrations that ranged from 69 to 84% by volume. In addition, ethane was detected at very low concentrations, giving methane/ethane ratios in excess of 100,000, indicating biogenic methane in the springs. Soils and sediments collected at the playa and spring sites were incubated in vials over a period of ~23 days. Methane production was observed in the spring sites (avg. 228.6 ± 49.1 nmol/g/d at Kate Springs), but was not evident for the playa sites. The incubation data, therefore, corroborated in situ methane concentration measurements. Particulate organic carbon (POC) was low for all sites samples (0.05-0.38%), with the exception of Kate Springs, which had a much higher POC concentration of 3.4 ± 0.7%. Temperature and relative humidity sensors were placed in the playa at 5, 20, and 30 cm below the surface. Since the relative humidity neared 100% (down to 20 cm below the surface), high enough to support microbial life, the observed absence of methane production in the playa itself is likely due to the low POC content, compared to other methane-producing environments. The spatial distribution of methane in combination with the spectral reflectance at the RRV dry lakebed makes it a good Mars analog. The ground truthing and satellite calibration work accomplished at RRV is a good exercise in preparation to identifying the origins of methane observed in the atmosphere of Mars during the upcoming 2012 Mars Science Laboratory and 2016 ExoMars Trace Gas Orbiter missions.
Modeling Modern Methane Emissions from Natural Wetlands. 1; Model Description and Results
NASA Technical Reports Server (NTRS)
Walter, Bernadette P.; Heimann, Martin; Matthews, Elaine
2001-01-01
Methane is an important greenhouse gas which contributes about 22 percent to the present greenhouse effect. Natural wetlands currently constitute the biggest methane source and were the major source in preindustrial times. Wetland emissions depend highly on the climate, i.e., on soil temperature and water table. To investigate the response of methane emissions from natural wetlands to climate variations, a process-based model that derives methane emissions from natural wetlands as a function of soil temperature, water table, and net primary productivity is used. For its application on the global scale, global data sets for all model parameters are generated. In addition, a simple hydrologic model is developed in order to simulate the position of the water table in wetlands. The hydrologic model is tested against data from different wetland sites, and the sensitivity of the hydrologic model to changes in precipitation is examined. The global methane hydrology model constitutes a tool to study temporal and spatial variations in methane emissions from natural wetlands. The model is applied using high-frequency atmospheric forcing fields from European Center for Medium-range Weather Forecasts (ECMWF) re-analyses of the period from 1982 to 1993. We calculate global annual methane emissions from wetlands to be 260 teragrams per year. Twenty-five percent of these methane emissions originate from wetlands north of 30 degrees North Latitude. Only 60 percent of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands the seasonality of simulated and observed methane emissions agrees well.
METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.
We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in ourmore » laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.« less
Ecosystem and physiological controls over methane production in northern wetlands
NASA Technical Reports Server (NTRS)
Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.
1994-01-01
Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.
Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo
2015-01-01
The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.
Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.
1989-01-01
The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.
Quantification of Methane Leaks from Abandoned Oil and Gas Wells in California
NASA Astrophysics Data System (ADS)
Lebel, E.; Kang, M.; Lu, H.; Jackson, R. B.
2016-12-01
Abandoned oil and gas wells can provide a pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories. While relatively little is known about abandoned wells, previous studies have shown that emissions from abandoned wells contribute approximately 4-7% of anthropogenic methane emissions in Pennsylvania (Kang et al. 2014) and <1% of regional methane emissions in oil and gas producing regions of Colorado, Utah, Ohio, and Wyoming (Townsend-Small et al. 2015). Another study (Boothroyd et al. 2016) has shown that 30% of abandoned wells in the UK have a positive surface methane flux. California has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 wells across the state. Our study uses static flux chambers to measure individual abandoned wells in California to estimate state-wide methane emissions from these wells. In addition to measuring methane concentrations, we measure ethane, propane, isobutane, n-butane, and 13-CH4 to understand whether this methane has a biogenic or thermogenic source. We hope that our research will determine whether or not abandoned oil and gas wells are a significant source of anthropogenic methane emissions in California. Our results along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.
Is the extent of glaciation limited by marine gas-hydrates?
Paull, Charles K.; Ussler, William; Dillon, William P.
1991-01-01
Methane may have been released to the atmosphere during the Quaternary from Arctic shelf gas-hydrates as a result of thermal decomposition caused by climatic warming and rising sea-level; this release of methane (a greenhouse gas) may represent a positive feedback on global warming [Revelle, 1983; Kvenvolden, 1988a; Nisbet, 1990]. We consider the response to sea-level changes by the immense amount of gas-hydrate that exists in continental rise sediments, and suggest that the reverse situation may apply—that release of methane trapped in the deep-sea sediments as gas-hydrates may provide a negative feedback to advancing glaciation. Methane is likely to be released from deep-sea gas-hydrates as sea-level falls because methane gas-hydrates decompose with pressure decrease. Methane would be released to sediment pore space at shallow sub-bottom depths (100's of meters beneath the seafloor, commonly at water depths of 500 to 4,000 m) producing zones of markedly decreased sediment strength, leading to slumping [Carpenter, 1981; Kayen, 1988] and abrupt release of the gas. Methane is likely to be released to the atmosphere in spikes that become larger and more frequent as glaciation progresses. Because addition of methane to the atmosphere warms the planet, this process provides a negative feedback to glaciation, and could trigger deglaciation.
Mountfort, Douglas O.; Kaspar, Heinrich F.; Downes, Malcolm; Asher, Rodney A.
1999-01-01
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ∼0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C. PMID:10584008
BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites
NASA Technical Reports Server (NTRS)
Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.
Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, J.; Hu, C.; Yan, X.
Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7–17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25–100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades4. There is an urgent need to establish sustainable technologies for increasing rice production whilemore » reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement5. Despite proposed strategies to increase rice productivity and reduce methane emissions4,6, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2, conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies.« less
NASA Astrophysics Data System (ADS)
Malinverno, Alberto; Goldberg, David S.
2015-07-01
Methane gas hydrates in marine sediments often concentrate in coarse-grained layers surrounded by fine-grained marine muds that are hydrate-free. Methane in these hydrate deposits is typically microbial, and must have migrated from its source as the coarse-grained sediments contain little or no organic matter. In "long-range" migration, fluid flow through permeable layers transports methane from deeper sources into the gas hydrate stability zone (GHSZ). In "short-range" migration, microbial methane is generated within the GHSZ in fine-grained sediments, where small pore sizes inhibit hydrate formation. Dissolved methane can then diffuse into adjacent sand layers, where pore size does not restrict hydrate formation and hydrates can accumulate. Short-range migration has been used to explain hydrate accumulations in sand layers observed in drill sites on the northern Cascadia margin and in the Gulf of Mexico. Here we test the feasibility of short-range migration in two additional locations, where gas hydrates have been found in coarse-grained volcanic ash layers (Site NGHP-01-17, Andaman Sea, Indian Ocean) and turbidite sand beds (Site IODP-C0002, Kumano forearc basin, Nankai Trough, western Pacific). We apply reaction-transport modeling to calculate dissolved methane concentration and gas hydrate amounts resulting from microbial methane generated within the GHSZ. Model results show that short-range migration of microbial methane can explain the overall amounts of methane hydrate observed at the two sites. Short-range migration has been shown to be feasible in diverse margin environments and is likely to be a widespread methane transport mechanism in gas hydrate systems. It only requires a small amount of organic carbon and sediment sequences consisting of thin coarse-grained layers that can concentrate microbial methane generated within thick fine-grained sediment beds; these conditions are common along continental margins around the globe.
A 3D Microphysical Model of Titan's Methane Cloud
NASA Astrophysics Data System (ADS)
Xiao, J.; Newman, C.; Inada, A.; Richardson, M.
2006-12-01
A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.
Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice
NASA Astrophysics Data System (ADS)
Su, J.; Hu, C.; Yan, X.; Jin, Y.; Chen, Z.; Guan, Q.; Wang, Y.; Zhong, D.; Jansson, C.; Wang, F.; Schnürer, A.; Sun, C.
2015-07-01
Atmospheric methane is the second most important greenhouse gas after carbon dioxide, and is responsible for about 20% of the global warming effect since pre-industrial times. Rice paddies are the largest anthropogenic methane source and produce 7-17% of atmospheric methane. Warm waterlogged soil and exuded nutrients from rice roots provide ideal conditions for methanogenesis in paddies with annual methane emissions of 25-100-million tonnes. This scenario will be exacerbated by an expansion in rice cultivation needed to meet the escalating demand for food in the coming decades. There is an urgent need to establish sustainable technologies for increasing rice production while reducing methane fluxes from rice paddies. However, ongoing efforts for methane mitigation in rice paddies are mainly based on farming practices and measures that are difficult to implement. Despite proposed strategies to increase rice productivity and reduce methane emissions, no high-starch low-methane-emission rice has been developed. Here we show that the addition of a single transcription factor gene, barley SUSIBA2 (refs 7, 8), conferred a shift of carbon flux to SUSIBA2 rice, favouring the allocation of photosynthates to aboveground biomass over allocation to roots. The altered allocation resulted in an increased biomass and starch content in the seeds and stems, and suppressed methanogenesis, possibly through a reduction in root exudates. Three-year field trials in China demonstrated that the cultivation of SUSIBA2 rice was associated with a significant reduction in methane emissions and a decrease in rhizospheric methanogen levels. SUSIBA2 rice offers a sustainable means of providing increased starch content for food production while reducing greenhouse gas emissions from rice cultivation. Approaches to increase rice productivity and reduce methane emissions as seen in SUSIBA2 rice may be particularly beneficial in a future climate with rising temperatures resulting in increased methane emissions from paddies.
NASA Astrophysics Data System (ADS)
Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric
2014-05-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region.
Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates
Steele, Joshua A.; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M.; Orphan, Victoria J.
2017-01-01
ABSTRACT Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH3D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH3D procedure and the well-established 14CH4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH3D method were directly and consistently proportional to 14C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH3D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH3D procedure with the well-established 14C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH3D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH3D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics. PMID:28861523
Monodeuterated Methane, an Isotopic Tool To Assess Biological Methane Metabolism Rates.
Marlow, Jeffrey J; Steele, Joshua A; Ziebis, Wiebke; Scheller, Silvan; Case, David; Reynard, Linda M; Orphan, Victoria J
2017-01-01
Biological methane oxidation is a globally relevant process that mediates the flux of an important greenhouse gas through both aerobic and anaerobic metabolic pathways. However, measuring these metabolic rates presents many obstacles, from logistical barriers to regulatory hurdles and poor precision. Here we present a new approach for investigating microbial methane metabolism based on hydrogen atom dynamics, which is complementary to carbon-focused assessments of methanotrophy. The method uses monodeuterated methane (CH 3 D) as a metabolic substrate, quantifying the aqueous D/H ratio over time using off-axis integrated cavity output spectroscopy. This approach represents a nontoxic, comparatively rapid, and straightforward approach that supplements existing radiotopic and stable carbon isotopic methods; by probing hydrogen atoms, it offers an additional dimension for examining rates and pathways of methane metabolism. We provide direct comparisons between the CH 3 D procedure and the well-established 14 CH 4 radiotracer method for several methanotrophic systems, including type I and II aerobic methanotroph cultures and methane-seep sediment slurries and carbonate rocks under anoxic and oxic incubation conditions. In all applications tested, methane consumption values calculated via the CH 3 D method were directly and consistently proportional to 14 C radiolabel-derived methane oxidation rates. We also employed this method in a nontraditional experimental setup, using flexible, gas-impermeable bags to investigate the role of pressure on seep sediment methane oxidation rates. Results revealed an 80% increase over atmospheric pressure in methanotrophic rates the equivalent of ~900-m water depth, highlighting the importance of this parameter on methane metabolism and exhibiting the flexibility of the newly described method. IMPORTANCE Microbial methane consumption is a critical component of the global carbon cycle, with wide-ranging implications for climate regulation and hydrocarbon exploitation. Nonetheless, quantifying methane metabolism typically involves logistically challenging methods and/or specialized equipment; these impediments have limited our understanding of methane fluxes and reservoirs in natural systems, making effective management difficult. Here, we offer an easily implementable, precise method using monodeuterated methane (CH 3 D) that advances three specific aims. First, it allows users to directly compare methane consumption rates between different experimental treatments of the same inoculum. Second, by empirically linking the CH 3 D procedure with the well-established 14 C radiocarbon approach, we determine absolute scaling factors that facilitate rate measurements for several aerobic and anaerobic systems of interest. Third, CH 3 D represents a helpful tool in evaluating the relationship between methane activation and full oxidation in methanotrophic metabolisms. The procedural advantages, consistency, and novel research questions enabled by the CH 3 D method should prove useful in a wide range of culture-based and environmental microbial systems to further elucidate methane metabolism dynamics.
Climate-methane cycle feedback in global climate model model simulations forced by RCP scenarios
NASA Astrophysics Data System (ADS)
Eliseev, Alexey V.; Denisov, Sergey N.; Arzhanov, Maxim M.; Mokhov, Igor I.
2013-04-01
Methane cycle module of the global climate model of intermediate complexity developed at the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM) is extended by coupling with a detailed module for thermal and hydrological processes in soil (Deep Soil Simulator, (Arzhanov et al., 2008)). This is an important improvement with respect with the earlier IAP RAS CM version (Eliseev et al., 2008) which has employed prescribed soil hydrology to simulate CH4 emissions from soil. Geographical distribution of water inundated soil in the model was also improved by replacing the older Olson's ecosystem data base by the data based on the SCIAMACHY retrievals (Bergamaschi et al., 2007). New version of the IAP RAS CM module for methane emissions from soil is validated by using the simulation protocol adopted in the WETCHIMP (Wetland and Wetland CH4 Inter-comparison of Models Project). In addition, atmospheric part of the IAP RAS CM methane cycle is extended by temperature dependence of the methane life-time in the atmosphere in order to mimic the respective dependence of the atmospheric methane chemistry (Denisov et al., 2012). The IAP RAS CM simulations are performed for the 18th-21st centuries according with the CMIP5 protocol taking into account natural and anthropogenic forcings. The new IAP RAS CM version realistically reproduces pre-industrial and present-day characteristics of the global methane cycle including CH4 concentration qCH4 in the atmosphere and CH4 emissions from soil. The latter amounts 150 - 160 TgCH4-yr for the late 20th century and increases to 170 - 230 TgCH4-yr in the late 21st century. Atmospheric methane concentration equals 3900 ppbv under the most aggressive anthropogenic scenario RCP 8.5 and 1850 - 1980 ppbv under more moderate scenarios RCP 6.0 and RCP 4.5. Under the least aggressive scenario RCP 2.6 qCH4 reaches maximum 1730 ppbv in 2020s and declines afterwards. Climate change impact on the methane emissions from soil enhances build up of the methane stock in the atmosphere by 10 - 25% depending on anthropogenic scenario and time instant. In turn, decrease of methane life-time in the atmosphere suppresses this build up by 5 - 40%. The net effect is uncertain but small in terms of resulting additional greenhouse radiative forcing. This smallness is reflected in small additional (relative to the model version with both methane emissions from soil and methane life-time in the atmosphere fixed at their preindustrial values) near-surface warming which globally is not larger than 1 K, i.e, ˜ 4% of warming exhibited by the model version neglecting climate-methane cycle interaction. References [1] M.M. Arzhanov, P.F. Demchenko, A.V. Eliseev, and I.I. Mokhov. Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(5):279-287, 2008. doi: 10.1134/S0001433808050022. [2] P. Bergamaschi, C. Frankenberg, J.F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt, J.O. Kaplan, S. Körner, M. Heimann, E.J. Dlugokencky, and A. Goede. Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J. Geophys. Res., 112(D2):D02304, 2007. doi: 10.1029/2006JD007268. [3] S.N. Denisov, A.V. Eliseev, and I.I. Mokhov. Climate change in the IAP RAS global model with interactive methane cycle under RCP anthropogenic scenarios. Rus. Meteorol. Hydrol., 2012. [submitted]. [4] A.V. Eliseev, I.I. Mokhov, M.M. Arzhanov, P.F. Demchenko, and S.N. Denisov. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izvestiya, Atmos. Ocean. Phys., 44(2):139-152, 2008. doi: 10.1134/S0001433808020011.
A Novel Study of Methane-Rich Gas Reforming to Syngas and Its Kinetics over Semicoke Catalyst
Zhang, Guojie; Su, Aiting; Qu, Jiangwen; Du, Yannian
2014-01-01
A small-size gasification unit is improved through process optimization to simulate industrial United Gas Improvement Company gasification. It finds that the reaction temperature has important impacts on semicoke catalyzed methane gas mixture. The addition of water vapor can enhance the catalytic activity of reforming, which is due to the fact that addition of water vapor not only removes carbon deposit produced in the reforming and gasification reaction processes, but also participates in gasification reaction with semicoke to generate some active oxygen-containing functional groups. The active oxygen-containing functional groups provide active sites for carbon dioxide reforming of methane, promoting the reforming reaction. It also finds that the addition of different proportions of methane-rich gas can yield synthesis gas with different H2/CO ratio. The kinetics study shows that the semicoke can reduce the activation energy of the reforming reaction and promote the occurrence of the reforming reaction. The kinetics model of methane reforming under the conditions of steam gasification over semicoke is as follows: k-=5.02×103·pCH40.71·pH20.26·exp(−74200/RT). PMID:24959620
Wuchter, Cornelia; Banning, Erin; Mincer, Tracy J.; Drenzek, Nicholas J.; Coolen, Marco J. L.
2013-01-01
The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. PMID:24367357
Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris.
Crombie, Andrew T; Murrell, J Colin
2014-06-05
The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur.
NASA Technical Reports Server (NTRS)
Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.
2011-01-01
Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.
Huiliñir, César; Montalvo, Silvio; Guerrero, Lorna
2015-01-01
The effect of fly ash on biodegradability and methane production from secondary paper and pulp sludge, including its modeling, was evaluated. Three tests with fly ash concentrations of 0, 10 and 20 mg/L were evaluated at 32 °C. Methane production was modeled using the modified Gompertz equation. The results show that the doses used produce a statistically significant increase of accumulated methane, giving values greater than 225 mL of CH4 per gram of volatile solids (VS) added, and 135% greater than that obtained in the control assay. Biodegradability of VS increased 143% with respect to the control assays, giving values around 43%. The modified Gompertz model can describe well methane generation from residual sludge of the paper industry water treatment, with parameter values between those reported in the literature. Thus, the addition of fly ash to the process causes a significant increase of accumulated methane and VS removal, improving the biodegradability of paper and pulp sludge.
Gough, Heidi L; Nelsen, Diane; Muller, Christopher; Ferguson, John
2013-02-01
Recent interest in carbon-neutral biofuels has revived interest in co-digestion for methane generation. At wastewater treatment facilities, organic wastes may be co-digested with sludge using established anaerobic digesters. However, changes to organic loadings may induce digester instability, particularly for thermophilic digesters. To examine this problem, thermophilic (55 degrees C) co-digestion was studied for two food-industry wastes in semi-continuous laboratory digesters; in addition, the wastes' biochemical methane potentials were tested. Wastes with high chemical oxygen demand (COD) content were selected as feedstocks allowing increased input of potential energy to reactors without substantially altering volumetric loadings. Methane generation increased while reactor pH and volatile solids remained stable. Lag periods observed prior to methane stimulation suggested that acclimation of the microbial community may be critical to performance during co-digestion. Chemical oxygen demand mass balances in the experimental and control reactors indicated that all of the food industry waste COD was converted to methane.
Methane production from coal by a single methanogen
NASA Astrophysics Data System (ADS)
Sakata, S.; Mayumi, D.; Mochimaru, H.; Tamaki, H.; Yamamoto, K.; Yoshioka, H.; Suzuki, Y.; Kamagata, Y.
2017-12-01
Previous geochemical studies indicate that biogenic methane greatly contributes to the formation of coalbed methane (CBM). It is unclear, however, what part of coal is used for the methane production and what types of microbes mediate the process. Here we hypothesized that methylotrophic methanogens use methoxylated aromatic compounds (MACs) derived from lignin. We incubated 11 species of methanogens belonging to order Methanosarcinales with 7 types of MACs. Two strains of methanogens, i.e., Methermicoccus shengliensis AmaM and ZC-1, produced methane from the MACs. In fact, these methanogens used over 30 types of commercially available MACs in addition to methanol and methylamines. To date, it is widely believed that methanogens use very limited number of small compounds such as hydrogen plus carbon dioxide, acetate, and methanol, and only three methanogenic pathways are recognized accordingly. Here, in contrast, two Methermicoccus strains used many types of MACs. We therefore propose this "methoxydotrophic" process as the fourth methanogenic pathway. Incubation of AmaM with 2-methoxybenzoate resulted in methanogenesis associated with the stoichiometric production of 2-hydroxybenzoate. Incubation with 2-methoxy-[7-13C] benzoate and with [13C] bicarbonate indicated that two thirds of methane carbon derived from the methoxy group and one third from CO2. Furthermore, incubation with [2-13C] acetate resulted in significant increases of 13C in both methane and CO2. These results suggest the occurrence of O-demethylation, CO2 reduction and acetyl-CoA metabolism in the methoxydotrophic methanogenesis. Furthermore, incubation of AmaM with lignite, subbituminous or bituminous coals in the bicarbonate-buffered media revealed that AmaM produced methane directly from coals via the methoxydotrophic pathway. Although 4 types of MACs were detected in the coal media in addition to methanol and methylamines, their total concentrations were too low to account for the methane production, suggesting that AmaM produced methane from MACs in the media not analyzed this time and/or MACs bound to the coal surface. In conclusion, the contribution of methoxydotrophic methanogenesis may be important not only to the formation of CBM but also to the global carbon cycle.
de la Torre, Andrea; Metivier, Aisha; Chu, Frances; Laurens, Lieve M L; Beck, David A C; Pienkos, Philip T; Lidstrom, Mary E; Kalyuzhnaya, Marina G
2015-11-25
Methane-utilizing bacteria (methanotrophs) are capable of growth on methane and are attractive systems for bio-catalysis. However, the application of natural methanotrophic strains to large-scale production of value-added chemicals/biofuels requires a number of physiological and genetic alterations. An accurate metabolic model coupled with flux balance analysis can provide a solid interpretative framework for experimental data analyses and integration. A stoichiometric flux balance model of Methylomicrobium buryatense strain 5G(B1) was constructed and used for evaluating metabolic engineering strategies for biofuels and chemical production with a methanotrophic bacterium as the catalytic platform. The initial metabolic reconstruction was based on whole-genome predictions. Each metabolic step was manually verified, gapfilled, and modified in accordance with genome-wide expression data. The final model incorporates a total of 841 reactions (in 167 metabolic pathways). Of these, up to 400 reactions were recruited to produce 118 intracellular metabolites. The flux balance simulations suggest that only the transfer of electrons from methanol oxidation to methane oxidation steps can support measured growth and methane/oxygen consumption parameters, while the scenario employing NADH as a possible source of electrons for particulate methane monooxygenase cannot. Direct coupling between methane oxidation and methanol oxidation accounts for most of the membrane-associated methane monooxygenase activity. However the best fit to experimental results is achieved only after assuming that the efficiency of direct coupling depends on growth conditions and additional NADH input (about 0.1-0.2 mol of incremental NADH per one mol of methane oxidized). The additional input is proposed to cover loss of electrons through inefficiency and to sustain methane oxidation at perturbations or support uphill electron transfer. Finally, the model was used for testing the carbon conversion efficiency of different pathways for C1-utilization, including different variants of the ribulose monophosphate pathway and the serine cycle. We demonstrate that the metabolic model can provide an effective tool for predicting metabolic parameters for different nutrients and genetic perturbations, and as such, should be valuable for metabolic engineering of the central metabolism of M. buryatense strains.
Pretreatment of Cottage Cheese to Enhance Biogas Production
Salgaonkar, Bhakti; Mutnuri, Srikanth
2014-01-01
This study evaluated the possibility of pretreating selected solid fraction of an anaerobic digester treating food waste to lower the hydraulic retention time and increase the methane production. The study investigated the effect of different pretreatments (thermal, chemical, thermochemical and enzymatic) for enhanced methane production from cottage cheese. The most effective pretreatments were thermal and enzymatic. Highest solubilisation of COD was observed in thermal pretreatment, followed by thermochemical. In single enzyme systems, lipase at low concentration gave significantly higher methane yield than for the experiments without enzyme additions. The highest lipase dosages decreased methane yield from cottage cheese. However, in case of protease enzyme an increase in concentration of the enzyme showed higher methane yield. In the case of mixed enzyme systems, pretreatment at 1 : 2 ratio of lipase : protease showed higher methane production in comparison with 1 : 1 and 2 : 1 ratios. Methane production potentials for different pretreatments were as follows: thermal 357 mL/g VS, chemical 293 mL/g VS, and thermochemical 441 mL/g VS. The average methane yield from single enzyme systems was 335 mL/g VS for lipase and 328 mL/g VS for protease. Methane potentials for mixed enzyme ratios were 330, 360, and 339 mL/g VS for 1 : 1, 1 : 2, and 2 : 1 lipase : protease, respectively. PMID:24995288
Mechanistic insights into heterogeneous methane activation
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; ...
2017-01-11
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
Mechanistic insights into heterogeneous methane activation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin
While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model tomore » aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.« less
Determination of biogas generation potential as a renewable energy source from supermarket wastes.
Alkanok, Gizem; Demirel, Burak; Onay, Turgut T
2014-01-01
Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactors were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH4/g VS(added) was obtained from anaerobic digestion of wastes (FVFW+DPW+MW+SW) at 10% TS, with 66.4% of methane (CH4) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH4/g VS(added), respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH4/g VS(added) was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul
2015-01-01
The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for use as raw material for anaerobic digestion. During this work, both hardwood and softwood species—which are representative of the forests of Sweden—were used for the production of methane. Initially, when untreated forest materials were used for the anaerobic digestion, the yields obtained were very low, even with the addition of enzymes, reaching a maximum of only 40 mL CH4/g VS when birch was used. When hydrothermal pretreatment was applied, the enzymatic digestibility improved up to 6.7 times relative to that without pretreatment, and the yield of methane reached up to 254 mL CH4/g VS. Then the effect of chemical/enzymatic detoxification was examined, where laccase treatment improved the methane yield from the more harshly pretreated materials while it had no effect on the more mildly pretreated material. Finally, addition of cellulolytic enzymes during the digestion improved the methane yields from spruce and pine, whereas for birch separate saccharification was more beneficial. To achieve high yields in spruce 30 filter paper units (FPU)/g was necessary, whereas 15 FPU/g was enough when pine and birch were used. During this work, the highest methane yields obtained from pine and birch were 179.9 mL CH4/g VS and 304.8 mL CH4/g VS, respectively. For mildly and severely pretreated spruce, the methane yields reached 259.4 mL CH4/g VS and 276.3 mL CH4/g VS, respectively. We have shown that forest material can serve as raw material for efficient production of methane. The initially low yields from the untreated materials were significantly improved by the introduction of a hydrothermal pretreatment. Moreover, enzymatic detoxification was beneficial, but mainly for severely pretreated materials. Finally, enzymatic saccharification increased the methane yields even further. PMID:26539186
NASA Astrophysics Data System (ADS)
Baker, A. K.; Rauthe-Schöch, A.; Schuck, T. J.; van Velthoven, P. F.; Slemr, F.; Brenninkmeijer, C. A.
2010-12-01
A large fraction of methane sources are anthropogenic, and include fossil fuel use, biomass/biofuel burning, agriculture and waste treatment. Recently, much attention regarding emissions of greenhouse gases has focused on large, developing nations, as their emissions are expected to rise rapidly over the coming decades. As the second most populous country in the world, and one of the fastest growing economies, India has been of particular interest. Arguably the most important feature of meteorology in India is the Asian summer monsoon. During the monsoon period there exists persistent deep convection over Southern Asia, and the composition of convected air masses is strongly influenced by emissions from India. This ultimately results in a well-mixed air parcel containing air from India being transported to the upper troposphere. Over the course of the 2008 monsoon period the CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) passenger aircraft conducted monthly measurement flights which probed this outflow. Data collected during these flights provides a unique opportunity to examine sources of atmospheric species in India. Here we use measurements of methane (CH4), carbon monoxide (CO) and ethane (C2H6) from whole air samples collected during CARIBIC flights to estimate emissions of methane and to quantify those emissions related to flooding during the monsoon. Methane data from the monsoon period show enhancements inside the monsoon plume, which increase as the monsoon progresses. Using emission data for CO and ΔCH4/ΔCO derived from CARIBIC measurements, we estimate total methane emissions to be ~40 Tg yr-1. Relationships of methane to ethane, which shares the bulk of its sources with methane but lacks a biological component, are further used to estimate the fraction of “extra” emissions from biological activity related to increased monsoon rains. This additional methane is a considerable fraction of total methane emissions. As emissions from rice paddies, which are not restricted to the monsoon season, are estimated to be 4±2 Tg yr-1, we expect that the additional methane emitted during the monsoon season is a product of anaerobic microbial activity related to persistent and widespread flooding during the monsoon, although the exact sources cannot be identified from our data.
Rainfall, Plant Communities and Methane Fluxes in the Ka`au Crater Wetland, Oahu, Hawaii
NASA Astrophysics Data System (ADS)
Grand, M.; Gaidos, E.
2003-12-01
Tropical wetlands constitute a major source of methane, an atmospheric greenhouse gas. Net methane emission in freshwater settings is the result of organic matter decomposition under anaerobic conditions modulated by aerobic methane oxidation and is thus also an indicator of wetland ecosystem processes. This study is monitoring the methane flux from the Ka`au crater wetland on the island of Oahu (Hawaii) and correlating it with environmental parameters such as precipitation and sunlight. We are obtaining precipitation, Photosynthetic Active Radiation (PAR), and water table level data with data loggers and are correlating these data with static chamber methane flux measurements and measurements of soil methane production potential. Additionally, our research is studying the effects of changes in vegetation type, i.e., of the invasive strawberry guava tree (Psidium Cattleianum) on the wetland methane emissions. Changes in soil chemistry and in the transport of gases by roots that accompany such vegetation change are a potential driver of methane flux modifications that have not been previously examined. Strawberry guava forms dense mats of surface roots that may change soil gas exchange and prolific fruiting may raise the soil organic content. We collected soil samples along a 30 meter transect that extends through two vegetation patterns; the strawberry guava canopy and the sedge meadow (Cladium Leptostachyum). Samples were incubated for 24 hours to estimate their methane generation potential. Our preliminary results show that methane generation potential is greater under the strawberry guava canopy. However, 2 of the 15 samples collected in the sedge meadow section of the transect did not match this pattern. Soil organic carbon content is slightly higher in the strawberry guava than in the sedge. We recorded a 90% decrease in methane generation potential in sedge meadow soils during a dry period relative to a wet period 2 months earlier. We propose that this change reflects a difference in the relative activity of microorganisms in the oxic and anoxic parts of the soil column. We will use environmental molecular technique to compare the microbial community component responsible for the production of methane in the different wetland soils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Cardoso, Silvana S. S.; Cartwright, Julyan H. E.
2016-01-01
High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere. PMID:27807343
Veluchamy, C; Raju, V Wilson; Kalamdhad, Ajay S
2018-03-01
A novel electrohydrolysis pretreatment enhances methane production from lignocellulose material during anaerobic digestion. A biochemical methane potential assay was carried out to determine the effect of direct current and the efficacy of electrohydrolysis pretreatment on biogas production. Methane yield was increased by 13.8%, to 301 ± 3 mL CH 4 /g VS, when lignocellulosic waste was pretreated with electrohydrolysis. A net energy gain of 13,224 kJ was realized after electrohydrolysis pretreatment, which was 1.51 times higher than reported for thermal pretreatment. In addition, two kinetic models were used, including the modified Gompertz model to reproduce the experimental data. These finding support the potential for increased methane recovery from lignocellulosic waste using electrohydrolysis as a pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liew, Lo Niee; Shi, Jian; Li, Yebo
2011-10-01
Previous studies have shown that alkali pretreatment prior to anaerobic digestion (AD) can increase the digestibility of lignocellulosic biomass and methane yield. In order to simplify the process and reduce the capital cost, simultaneous alkali treatment and anaerobic digestion was evaluated for methane production from fallen leaves. The highest methane yield of 82 L/kg volatile solids (VS) was obtained at NaOH loading of 3.5% and substrate-to-inoculum (S/I) ratio of 4.1. The greatest enhancement in methane yield was achieved at S/I ratio of 6.2 with NaOH loading of 3.5% which was 24-fold higher than that of the control (without NaOH addition). Reactors at S/I ratio of 8.2 resulted in failure of the AD process. In addition, increasing the total solid (TS) content from 20% to 26% reduced biogas yield by 35% at S/I ratio of 6.2 and NaOH loading of 3.5%. Cellulose and hemicellulose degradation and methane yields are highly related. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ayasse, A.; Thorpe, A. K.; Roberts, D. A.
2017-12-01
Atmospheric methane has increased by a factor of 2.5 since the beginning of the industrial era in response to anthropogenic emissions (Ciais et al., 2013). Although it is less abundant than carbon dioxide it is 86 time more potent on a 20 year time scale (Myhre et al., 2013) and is therefore responsible for about 20% of the total global warming induced by anthropogenic greenhouse gasses (Kirschke et al., 2013). Given the importance of methane to global climate change, monitoring and measuring methane emissions using techniques such as remote sensing is of increasing interest. Recently the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) has proven to be a valuable instrument for quantitative mapping of methane plumes (Frankenberg et al., 2016; Thorpe et al., 2016; Thompson et al., 2015). In this study, we applied the Iterative Maximum a Posterior Differential Optical Spectroscopy (IMAP-DOAS) methane retrieval algorithm to a synthetic image with variable methane concentrations, albedo, and land cover. This allowed for characterizing retrieval performance, including potential sensitivity to variable land cover, low albedo surfaces, and surfaces known to cause spurious signals. We conclude that albedo had little influence on the IMAP-DOAS results except at very low radiance levels. Water (without sun glint) was found to be the most challenging surface for methane retrievals while hydrocarbons and some green vegetation also caused error. Understanding the effect of surface properties on methane retrievals is important given the increased use of AVIRIS-NG to map gas plumes over diverse locations and methane sources. This analysis could be expanded to include additional gas species like carbon dioxide and to further investigate gas sensitivity of proposed instruments for dedicated gas mapping from airborne and spaceborne platforms.
Microbial mats in the Black Sea that anaerobically oxidise methane
NASA Astrophysics Data System (ADS)
Nauhaus, K.; Knittel, K.; Krüger, M.; Boetius, A.; Michaelis, W.; Widdel, F.
2003-04-01
Reef-forming microbial mats were recovered from methane seeps in anoxic waters of the northwestern Black Sea (BS) shelf. The microbial mats consist mainly of archaea (ANME-1 cluster) and sulfate-reducing bacteria (Desulfosarcina/Desulfococcus group). Laboratory incubations with homogenized subsamples of the mats revealed their ability for the anaerobic oxidation of methane (AOM). The phylogentic relationship of the sulfate reducing partner is the same as in the AOM consortia studied in sediment samples from a methane hydrate area (Hydrate Ridge (HR), Oregon, USA (1,2)). The archaeal partner however belongs to a different cluster than in the HR samples (ANME-2). Methane oxidation is coupled to sulfate reduction in a 1:1 stoichiometry. Elevated methane partial pressures (0.1 to 1.1 MPa) increased the sulfate reduction rates in the Black Sea samples only two-fold in contrast to 5-fold in HR samples. The optimal temperature for the BS samples is between 10 and 25^oC. In both samples AOM was not taking place if typical inhibitors for sulfate-reduction or methanogenesis were added, thus indicating a syntrophic relationship between the partner organisms. The intermediate that is exchanged between the methane oxidizing archaea and the sulfate-reducing bacterium is still unknown. Additions of the possible intermediates (Acetate, Formate, Hydrogen) did not result in higher sulfate reduction rates in the absence of methane. (1) Boetius, A. et al. (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 407: 623--626 (2) Nauhaus, K., Boetius, A., Krüger, M., Widdel, F. (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4 (5): 296--305
Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years.
Loulergue, Laetitia; Schilt, Adrian; Spahni, Renato; Masson-Delmotte, Valérie; Blunier, Thomas; Lemieux, Bénédicte; Barnola, Jean-Marc; Raynaud, Dominique; Stocker, Thomas F; Chappellaz, Jérôme
2008-05-15
Atmospheric methane is an important greenhouse gas and a sensitive indicator of climate change and millennial-scale temperature variability. Its concentrations over the past 650,000 years have varied between approximately 350 and approximately 800 parts per 10(9) by volume (p.p.b.v.) during glacial and interglacial periods, respectively. In comparison, present-day methane levels of approximately 1,770 p.p.b.v. have been reported. Insights into the external forcing factors and internal feedbacks controlling atmospheric methane are essential for predicting the methane budget in a warmer world. Here we present a detailed atmospheric methane record from the EPICA Dome C ice core that extends the history of this greenhouse gas to 800,000 yr before present. The average time resolution of the new data is approximately 380 yr and permits the identification of orbital and millennial-scale features. Spectral analyses indicate that the long-term variability in atmospheric methane levels is dominated by approximately 100,000 yr glacial-interglacial cycles up to approximately 400,000 yr ago with an increasing contribution of the precessional component during the four more recent climatic cycles. We suggest that changes in the strength of tropical methane sources and sinks (wetlands, atmospheric oxidation), possibly influenced by changes in monsoon systems and the position of the intertropical convergence zone, controlled the atmospheric methane budget, with an additional source input during major terminations as the retreat of the northern ice sheet allowed higher methane emissions from extending periglacial wetlands. Millennial-scale changes in methane levels identified in our record as being associated with Antarctic isotope maxima events are indicative of ubiquitous millennial-scale temperature variability during the past eight glacial cycles.
Calabrò, P S; Catalán, E; Folino, A; Sánchez, A; Komilis, D
2018-01-01
Opuntia ficus-indica (OFI) is an emerging biomass that has the potential to be used as substrate in anaerobic digestion. The goal of this work was to investigate the effect of three pretreatment techniques (thermal, alkaline, acidic) on the chemical composition and the methane yield of OFI biomass. A composite experimental design with three factors and two to three levels was implemented, and regression modelling was employed using a total of 10 biochemical methane potential (BMP) tests. The measured methane yields ranged from 289 to 604 NmL/gVS added ; according to the results, only the acidic pretreatment (HCl) was found to significantly increase methane generation. However, as the experimental values were quite high with regards to the theoretical methane yield of the substrate, this effect still needs to be confirmed via further research. The alkaline pretreatment (NaOH) did not noticeably affect methane yields (an average reduction of 8% was recorded), despite the fact that it did significantly reduce the lignin content. Thermal pretreatment had no effect on the methane yields or the chemical composition. Scanning electron microscopy images revealed changes in the chemical structure after the addition of NaOH and HCl. Modelling of the cumulated methane production by the Gompertz modified equation was successful and aided in understanding kinetic advantages linked to some of the pretreatments. For example, the alkaline treatment (at the 20% dosage) at room temperature resulted to a μ max (maximum specific methane production rate [NmLCH 4 /(gVS added ·d)]) equal to 36.3 against 18.6 for the control.
Assessing Methane in Shallow Groundwater in Unconventional Oil and Gas Play Areas, Eastern Kentucky.
Zhu, Junfeng; Parris, Thomas M; Taylor, Charles J; Webb, Steven E; Davidson, Bart; Smath, Richard; Richardson, Stephen D; Molofsky, Lisa J; Kromann, Jenna S; Smith, Ann P
2018-05-01
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ 13 C-CH 4 and δ 2 H-CH 4 ) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ 13 C-CH 4 and δ 2 H-CH 4 ranged from -84.0‰ to -58.3‰ and from -246.5‰ to -146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO 2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region. © 2017, National Ground Water Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-31
The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resourcesmore » (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.« less
Lee, Dae Hee; Behera, Shishir Kumar; Kim, Ji Won; Park, Hung-Suck
2009-02-01
This paper examines the applicability of food waste leachate (FWL) in bioreactor landfills or anaerobic digesters to produce methane as a sustainable solution to the persisting leachate management problem in Korea. Taking into account the climatic conditions in Korea and FWL characteristics, the effect of key parameters, viz., temperature, alkalinity and salinity on methane yield was investigated. The monthly average moisture content and the ratio of volatile solids to total solids of the FWL were found to be 84% and 91%, respectively. The biochemical methane potential experiment under standard digestion conditions showed the methane yield of FWL to be 358 and 478 ml/g VS after 10 and 28 days of digestion, respectively, with an average methane content of 70%. Elemental analysis showed the chemical composition of FWL to be C(13.02)H(23.01)O(5.93)N(1). The highest methane yield of 403 ml/g VS was obtained at 35 degrees C due to the adaptation of seed microorganisms to mesophilic atmosphere, while methane yields at 25, 45 and 55 degrees C were 370, 351 and 275 ml/g VS, respectively, at the end of 20 days. Addition of alkalinity had a favorable effect on the methane yield. Dilution of FWL with salinity of 2g/l NaCl resulted in 561 ml CH(4)/g VS at the end of 30 days. Considering its high biodegradability (82.6%) and methane production potential, anaerobic digestion of FWL in bioreactor landfills or anaerobic digesters with a preferred control of alkalinity and salinity can be considered as a sustainable solution to the present emergent problem.
Inagaki, Fumio; Tsunogai, Urumu; Suzuki, Masae; Kosaka, Ayako; Machiyama, Hideaki; Takai, Ken; Nunoura, Takuro; Nealson, Kenneth H.; Horikoshi, Koki
2004-01-01
Samples from three submerged sites (MC, a core obtained in the methane seep area; MR, a reference core obtained at a distance from the methane seep; and HC, a gas-bubbling carbonate sample) at the Kuroshima Knoll in the southern Ryuku arc were analyzed to gain insight into the organisms present and the processes involved in this oxic-anoxic methane seep environment. 16S rRNA gene analyses by quantitative real-time PCR and clone library sequencing revealed that the MC core sediments contained abundant archaea (∼34% of the total prokaryotes), including both mesophilic methanogens related to the genus Methanolobus and ANME-2 members of the Methanosarcinales, as well as members of the δ-Proteobacteria, suggesting that both anaerobic methane oxidation and methanogenesis occurred at this site. In addition, several functional genes connected with methane metabolism were analyzed by quantitative competitive-PCR, including the genes encoding particulate methane monooxygenase (pmoA), soluble methane monooxygenase (mmoX), methanol dehydrogenese (mxaF), and methyl coenzyme M reductase (mcrA). In the MC core sediments, the most abundant gene was mcrA (2.5 × 106 copies/g [wet weight]), while the pmoA gene of the type I methanotrophs (5.9 × 106 copies/g [wet weight]) was most abundant at the surface of the MC core. These results indicate that there is a very complex environment in which methane production, anaerobic methane oxidation, and aerobic methane oxidation all occur in close proximity. The HC carbonate site was rich in γ-Proteobacteria and had a high copy number of mxaF (7.1 × 106 copies/g [wet weight]) and a much lower copy number of the pmoA gene (3.2 × 102 copies/g [wet weight]). The mmoX gene was never detected. In contrast, the reference core contained familiar sequences of marine sedimentary archaeal and bacterial groups but not groups specific to C1 metabolism. Geochemical characterization of the amounts and isotopic composition of pore water methane and sulfate strongly supported the notion that in this zone both aerobic methane oxidation and anaerobic methane oxidation, as well as methanogenesis, occur. PMID:15574947
Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk
2016-08-01
Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhu, Wenjun; Jin, Jianhui; Chen, Xiao; Li, Chuang; Wang, Tonghua; Tsang, Chi-Wing; Liang, Changhai
2018-02-01
Effective utilization of coal bed methane is very significant for energy utilization and environment protection. Catalytic combustion of methane is a promising way to eliminate trace amounts of oxygen in the coal bed methane and the key to this technology is the development of high-efficiency catalysts. Herein, we report a series of Ce 1-x La x O 2-δ (x = 0-0.8) monolithic catalysts for the catalytic combustion of methane, which are prepared by citric acid method. The structural characterization shows that the substitution of La enhance the oxygen vacancy concentration and reducibility of the supports and promote the migration of the surface oxygen, as a result improve the catalytic activity of CeO 2 . M-Ce 0.8 La 0.2 O 2-δ (monolithic catalyst, Ce 0.8 La 0.2 O 2-δ coated on cordierite honeycomb) exhibits outstanding activity for methane combustion, and the temperature for 10 and 90% methane conversion are 495 and 580 °C, respectively. Additionally, Ce 0.8 La 0.2 O 2-δ monolithic catalyst presents excellent stability at high temperature. These Ce 1-x La x O 2-δ monolithic materials with a small amount of La incorporation therefore show promises as highly efficient solid solution catalysts for lean-oxygen methane combustion. Graphical abstract ᅟ.
Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane
NASA Astrophysics Data System (ADS)
Yoshinaga, Marcos Y.; Holler, Thomas; Goldhammer, Tobias; Wegener, Gunter; Pohlman, John W.; Brunner, Benjamin; Kuypers, Marcel M. M.; Hinrichs, Kai-Uwe; Elvert, Marcus
2014-03-01
Collectively, marine sediments comprise the largest reservoir of methane on Earth. The flux of methane from the sea bed to the overlying water column is mitigated by the sulphate-dependent anaerobic oxidation of methane by marine microbes within a discrete sedimentary horizon termed the sulphate-methane transition zone. According to conventional isotope systematics, the biological consumption of methane leaves a residue of methane enriched in 13C (refs , , ). However, in many instances the methane within sulphate-methane transition zones is depleted in 13C, consistent with the production of methane, and interpreted as evidence for the intertwined anaerobic oxidation and production of methane. Here, we report results from experiments in which we incubated cultures of microbial methane consumers with methane and low levels of sulphate, and monitored the stable isotope composition of the methane and dissolved inorganic carbon pools over time. Residual methane became progressively enriched in 13C at sulphate concentrations above 0.5 mM, and progressively depleted in 13C below this threshold. We attribute the shift to 13C depletion during the anaerobic oxidation of methane at low sulphate concentrations to the microbially mediated carbon isotope equilibration between methane and carbon dioxide. We suggest that this isotopic effect could help to explain the 13C-depletion of methane in subseafloor sulphate-methane transition zones.
Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan
NASA Astrophysics Data System (ADS)
Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung
2016-04-01
Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase lasted over a longer period of time for the samples collected in high tide period. It seems that aerobic methanotrophs needed a longer period of time to recovery and/or had low activities, since they had been suppressed by low oxygen concentration during high tide period. The rates of anaerobic methane oxidation ranged between 1.5 and 4.0 nmole/g/d for samples collected at high tide period, whereas lower rates ranging from 0.2 to 2.0 nmole/g/d were observed for samples at low tide period. The addition of basal salt solution apparently stimulated methane consumption significantly. Based on the field observation and laboratory incubations, our results indicated a dynamic shift of metabolic zonation in tidally influenced wetlands. Aerobic methanotrophy appears to outpace anaerobic methanotrophy by orders of magnitude regardless of tidal inundation. This together with methanogenesis regulated by the availability of sulfate and organic degradation plays a major role in controlling methane emission. While anaerobic methanotrophy is relatively minor in methane cycling, its linkage with the sulfate availability modulates the coupling of carbon and sulfur turnover under anoxic conditions.
Emissions Of Greenhouse Gases From Rice Agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Aslam K. Khalil
This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice.more » The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.« less
NASA Astrophysics Data System (ADS)
Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan
2015-04-01
We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.
Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R
2018-03-07
Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.
NASA Astrophysics Data System (ADS)
Roshandell, Melika
A significant methane storehouse is in the form of methane hydrates on the sea floor and in the arctic permafrost. Methane hydrates are ice-like structures composed of water cages housing a guest methane molecule. This caged methane represents a resource of energy and a potential source of strong greenhouse gas. Most research related to methane hydrates has been focused on their formation and dissociation because they can form solid plugs that complicate transport of oil and gas in pipelines. This dissertation explores the direct burning of these methane hydrates where heat from the combustion process dissociates the hydrate into water and methane, and the released methane fuels the methane/air diffusion flame heat source. In contrast to the pipeline applications, very little research has been done on the combustion and burning characteristics of methane hydrates. This is the first dissertation on this subject. In this study, energy release and combustion characteristics of methane hydrates were investigated both theoretically and experimentally. The experimental study involved collaboration with another research group, particularly in the creation of methane hydrate samples. The experiments were difficult because hydrates form at high pressure within a narrow temperature range. The process can be slow and the resulting hydrate can have somewhat variable properties (e.g., extent of clathration, shape, compactness). The experimental study examined broad characteristics of hydrate combustion, including flame appearance, burning time, conditions leading to flame extinguishment, the amount of hydrate water melted versus evaporated, and flame temperature. These properties were observed for samples of different physical size. Hydrate formation is a very slow process with pure water and methane. The addition of small amounts of surfactant increased substantially the hydrate formation rate. The effects of surfactant on burning characteristics were also studied. One finding from the experimental component of the research was that hydrates can burn completely, and that they burn most rapidly just after ignition and then burn steadily when some of the water in the dissociated zone is allowed to drain away. Excessive surfactant in the water creates a foam layer around the hydrate that acts as an insulator. The layer prevents sufficient heat flux from reaching the hydrate surface below the foam to release additional methane and the hydrate flame extinguishes. No self-healing or ice-freezing processes were observed in any of the combustion experiments. There is some variability, but a typical hydrate flame is receiving between one and two moles of water vapor from the liquid dissociated zone of the hydrate for each mole of methane it receives from the dissociating solid region. This limits the flame temperature to approximately 1800 K. In the theoretical portion of the study, a physical model using an energy balance from methane combustion was developed to understand the energy transfer between the three phases of gas, liquid and solid during the hydrate burn. Also this study provides an understanding of the different factors impacting the hydrate's continuous burn, such as the amount of water vapor in the flame. The theoretical study revealed how the water layer thickness on the hydrate surface, and its effect on the temperature gradient through the dissociated zone, plays a significant role in the hydrate dissociation rate and methane release rate. Motivated by the above mentioned observation from the theoretical analysis, a 1-D two-phase numerical simulation based on a moving front model for hydrate dissociation from a thermal source was developed. This model was focused on the dynamic growth of the dissociated zone and its effect on the dissociation rate. The model indicated that the rate of hydrate dissociation with a thermal source is a function of the dissociated zone thickness. It shows that in order for a continuous dissociation and methane release, some of the water from the dissociated zone needs to be drained. The results are consistent with the experimental observations. The understanding derived from the experiments and the numerical model permitted a brief exploration into the potential effects of pressure on the combustion of methane hydrates. The prediction is that combustion should improve under high pressure conditions because the evaporation of water is suppressed allowing more energy into the dissociation. Future experiments are needed to validate these initial findings.
NASA Astrophysics Data System (ADS)
Kwon, Min Jung; Beulig, Felix; Kuesel, Kirsten; Wildner, Marcus; Heimann, Martin; Zimov, Nikita; Zimov, Sergei; Goeckede, Mathias
2015-04-01
A large fraction of organic carbon stored in Arctic permafrost soil is at risk to be decomposed and released to the atmosphere under climate change. Thawing of ice-rich permafrost will re-structure the surface topography, with potentially significant effects on hydrology: water table depth (WTD) of depressed areas will increase, while that of the surrounding area will decrease. Changes in hydrology will trigger modifications in soil and vegetation, e.g. soil temperature, vegetation and microbial community structure. All of these secondary effects will alter carbon cycle processes, with the magnitude and even sign of the net effect yet unknown. The objective of this study is to investigate effects of drainage on methane fluxes in a floodplain of the Kolyma River near Cherskii, Northeast Siberia. The study site is separated into two areas, one that has been drained since 2004, and a nearby reference site. Methane flux was measured for ~16 weeks during summer and early winter of 2013, and summer of 2014. In addition, to separate different methane emission pathways, plant-mediated methane transport (through aerenchyma) as well as the proportion of ebullition were measured in 2014. Vegetation and microbial community structures were investigated and compared. After a decade of drainage history that lowered WTD by about 20cm in the drained area, Eriophorum (cotton grass) that previously dominated have to a large part been replaced by Carex (tussock-forming sedge) and shrub species. While WTD primarily influenced the methane flux rate, this vegetation change indirectly altered the flux as well in a way that sites with Eriophorum emitted more methane. Concerning the microbial community structure, the relative abundance of methanogen and ratio of methanotrophs to methanogens were well correlated with methane flux rates, implying that the methane flux is highly influenced by microorganisms. As a consequence of these changes, in the drained area less amount of methane was produced in the first place due to less anaerobic condition, and subsequently most of it was oxidized while being transported to the atmosphere through diffusion. In fall, however, methane emission was higher in the drained site, potentially originating from stored methane during growing season or freshly produced methane in deep, relatively warmer soil layers. To summarize all effects of WTD, the drainage changed vegetation and microbial community structure, which in turn altered net methane emissions in growing season with significantly less amount of methane emission in drained site.
Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane)
NASA Astrophysics Data System (ADS)
Kaiser, Sonja; Göckede, Mathias; Castro-Morales, Karel; Knoblauch, Christian; Ekici, Altug; Kleinen, Thomas; Zubrzycki, Sebastian; Sachs, Torsten; Wille, Christian; Beer, Christian
2017-01-01
A detailed process-based methane module for a global land surface scheme has been developed which is general enough to be applied in permafrost regions as well as wetlands outside permafrost areas. Methane production, oxidation and transport by ebullition, diffusion and plants are represented. In this model, oxygen has been explicitly incorporated into diffusion, transport by plants and two oxidation processes, of which one uses soil oxygen, while the other uses oxygen that is available via roots. Permafrost and wetland soils show special behaviour, such as variable soil pore space due to freezing and thawing or water table depths due to changing soil water content. This has been integrated directly into the methane-related processes. A detailed application at the Samoylov polygonal tundra site, Lena River Delta, Russia, is used for evaluation purposes. The application at Samoylov also shows differences in the importance of the several transport processes and in the methane dynamics under varying soil moisture, ice and temperature conditions during different seasons and on different microsites. These microsites are the elevated moist polygonal rim and the depressed wet polygonal centre. The evaluation shows sufficiently good agreement with field observations despite the fact that the module has not been specifically calibrated to these data. This methane module is designed such that the advanced land surface scheme is able to model recent and future methane fluxes from periglacial landscapes across scales. In addition, the methane contribution to carbon cycle-climate feedback mechanisms can be quantified when running coupled to an atmospheric model.
Tree-mediated methane emissions from tropical and temperate peatlands.
NASA Astrophysics Data System (ADS)
Pangala, S. R.; Gauci, V.; Hornibrook, E. R. C.; Gowing, D. J.
2012-04-01
Methane production and transport processes in peatlands are fairly well understood, but growing evidence for emission of methane through trees has highlighted the need to revisit methane transport processes. In wetland trees, morphological adaptations such as development of hypertrophied lenticels, aerenchyma and adventitious roots in response to soil anoxia mediates gas transport, transporting both oxygen from the atmosphere to oxygen-deprived roots and soil-produced methane from the root-zone to the atmosphere. Although, tree-mediated methane emissions from temperate tree species have been confirmed, methane emissions from tropical tree species and processes that control tree-mediated methane emissions remain unclear. This study explains the role of trees in transporting soil-produced methane to the atmosphere and uncovers the principal mechanisms of tree-mediated methane emissions. Methane emissions from eight tropical tree species and two temperate tree species were studied in situ. The mechanisms and controls on tree-mediated methane emissions were investigated using three year old common alder (Alnus glutinosa; 50 trees) grown under two artificially controlled water-table positions. Methane fluxes from whole mesocosms, the soil surface and tree stems were measured using static closed chambers. Both temperate and tropical tree species released significant quantities of methane, with tropical trees dominating ecosystem level methane fluxes. In temperate peatlands, both the methane gas transport mechanism and quantity of methane emitted from stems is tree-species dependent. In Alnus glutinosa, no correlations were observed between stomatal behaviour and tree-mediated methane emissions, however, stem methane emissions were positively correlated with both stem lenticel density and dissolved soil methane concentration. In Alnus glutinosa, no emissions were observed from leaf surfaces. The results demonstrate that exclusion of tree-mediated methane emissions from flux measurement campaigns in forested peatlands will lead to an underestimation of ecosystem-wide methane emissions.
Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P
2016-08-01
Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Facultative methanotrophs are abundant at terrestrial natural gas seeps.
Farhan Ul Haque, Muhammad; Crombie, Andrew T; Ensminger, Scott A; Baciu, Calin; Murrell, J Colin
2018-06-28
Natural gas contains methane and the gaseous alkanes ethane, propane and butane, which collectively influence atmospheric chemistry and cause global warming. Methane-oxidising bacteria, methanotrophs, are crucial in mitigating emissions of methane as they oxidise most of the methane produced in soils and the subsurface before it reaches the atmosphere. Methanotrophs are usually obligate, i.e. grow only on methane and not on longer chain alkanes. Bacteria that grow on the other gaseous alkanes in natural gas such as propane have also been characterised, but they do not grow on methane. Recently, it was shown that the facultative methanotroph Methylocella silvestris grew on ethane and propane, other components of natural gas, in addition to methane. Therefore, we hypothesised that Methylocella may be prevalent at natural gas seeps and might play a major role in consuming all components of this potent greenhouse gas mixture before it is released to the atmosphere. Environments known to be exposed to biogenic methane emissions or thermogenic natural gas seeps were surveyed for methanotrophs. 16S rRNA gene amplicon sequencing revealed that Methylocella were the most abundant methanotrophs in natural gas seep environments. New Methylocella-specific molecular tools targeting mmoX (encoding the soluble methane monooxygenase) by PCR and Illumina amplicon sequencing were designed and used to investigate various sites. Functional gene-based assays confirmed that Methylocella were present in all of the natural gas seep sites tested here. This might be due to its ability to use methane and other short chain alkane components of natural gas. We also observed the abundance of Methylocella in other environments exposed to biogenic methane, suggesting that Methylocella has been overlooked in the past as previous ecological studies of methanotrophs often used pmoA (encoding the alpha subunit of particulate methane monooxygenase) as a marker gene. New biomolecular tools designed in this study have expanded our ability to detect, and our knowledge of the environmental distribution of Methylocella, a unique facultative methanotroph. This study has revealed that Methylocella are particularly abundant at natural gas seeps and may play a significant role in biogeochemical cycling of gaseous hydrocarbons.
NASA Astrophysics Data System (ADS)
Ding, Aiju
2000-10-01
A large seasonal variation in methane emission from Texas rice fields was observed in most of the growing seasons from 1989 through 1997. In general, the pattern showed small fluxes in the early season of cultivation and reached maximum at post-heading time, then declined and stopped after fields were drained. The amount of methane emission positively relates to the aboveground biomass, the number of effective stems and tillers, and nitrogen addition. The day-to-day pattern of methane emissions was similar among all cultivars. The seasonal total methane emission shows a significant positive correlation with post-heading plant height. The total methane emission from Texas rice fields was estimated as 33.25 × 109 g in 1993, ranging from 25.85 × 109 g/yr to 40.65 × 109 g/yr. A mitigation technique was developed to obtain both high yield and less methane emission from Texas rice fields. A new approach was also developed to evaluate regional to large-scale methane emission from irrigated rice paddies. By combining modeling, ground truth information and remote sensing into a Geographic Information System (GIS)-a computer based system, the seasonal methane emission from a large area can be calculated efficiently and more accurately. The methodology was tested at the Richmond Irrigation District (RID) site in Texas. The average daily methane emission varied from field to field and even within a single field. The calculated seasonal total methane emission from RID rice fields was as low as 3.34 × 108 g CH4 in 1996 and as high as 7.80 × 108 g CH4 in 1998. To support the application of the estimation method in a worldwide study, an algorithm describing the mapping of irrigated rice paddies from Landsat TM data was demonstrated. The accuracy in 1998- supervised classification approached 95% when cloud cover was taken into account. Model uncertainty and data availability are the two major potential problems in worldwide application of the new approach. A potential alternative model is proposed which allows estimation of regional methane emission from rice plant height.
NASA Technical Reports Server (NTRS)
Johnson, R. C.
1972-01-01
Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN 4 subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to 3 million N/sq m.
Lebrero, Raquel; López, Juan Carlos; Lehtinen, Iiro; Pérez, Rebeca; Quijano, Guillermo; Muñoz, Raúl
2016-02-01
Despite several fungal strains have been retrieved from methane-containing environments, the actual capacity and role of fungi on methane abatement is still unclear. The batch biodegradation tests here performed demonstrated the capacity of Graphium sp. to co-metabolically biodegrade methane and methanol. Moreover, the performance and microbiology of a fungal-bacterial compost biofilter treating methane at concentrations of ∼2% was evaluated at empty bed residence times of 40 and 20 min under different irrigation rates. The daily addition of 200 mL of mineral medium resulted in elimination capacities of 36.6 ± 0.7 g m(-3) h(-1) and removal efficiencies of ≈90% at the lowest residence time. The indigenous fungal community of the compost was predominant in the final microbial population and outcompeted the inoculated Graphium sp. during biofilter operation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nuchdang, Sasikarn; Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn
2015-05-01
The effect of inoculum sources on the anaerobic digestion of paragrass was investigated. Two types of sludge were used as the inoculums: an anaerobic sludge obtained from a domestic wastewater treatment plant (OS) and a sludge acclimated to fibrous substrates in raw palm oil mill effluent (AMC). Microbial activity assays showed that the AMC had hydrolytic and acetogenic activities two times greater than the activities of the OS. In addition, the production of methane from acetate by the AMC occurred without a lag phase, while it took 8 days for the OS to start producing methane from the same substrate. The biochemical methane potential after 80 days digestion was 316 ml STP/g VS(added) using the AMC, and 277 ml STP/g VS(added) using the OS. The methane potential of the paragrass was estimated to be 3337 Nm(3) CH4/ha a. Copyright © 2015 Elsevier Ltd. All rights reserved.
Methane production by anaerobic digestion of Bermuda grass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klass, D.L.; Ghosh, S.
1979-01-01
Bermuda grass (Cynodon dactylon) is one of the high-yield warm-season grasses that has been suggested as a promising raw material for conversion to methane. Experimental work performed with laboratory digesters to study the anaerobic digestion of Coastal Bermuda grass harvested in Louisiana and having a C/N ratio of 24 is described. Methane yields of about 1.9 SCF/lb of volatile solids( VS) added were observed under conventional mesophilic high-rate conditions. When supplemental nitrogen additions were made, the yields increased up to 3.5 SCF/lb of VS added indicating that the nitrogen content of the grass examined was insufficient to sustain high-rate digestionmore » at the higher yield level. Thermophilic digestion with supplemental nitrogen additions afforded methane yields of about 2.7 SCF/lb VS added. Carbon and energy balances were calculated and the relative biodegradabilities of the organics were estimated.« less
Huang, Lu; Wen, Xin; Wang, Yan; Zou, Yongde; Ma, Baohua; Liao, Xindi; Liang, Juanboo; Wu, Yinbao
2014-10-01
Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester. Copyright © 2014. Published by Elsevier B.V.
Advanced Fire Detector for Space Applications
NASA Technical Reports Server (NTRS)
Kutzner, Joerg
2012-01-01
A document discusses an optical carbon monoxide sensor for early fire detection. During the sensor development, a concept was implemented to allow reliable carbon monoxide detection in the presence of interfering absorption signals. Methane interference is present in the operating wavelength range of the developed prototype sensor for carbon monoxide detection. The operating parameters of the prototype sensor have been optimized so that interference with methane is minimized. In addition, simultaneous measurement of methane is implemented, and the instrument automatically corrects the carbon monoxide signal at high methane concentrations. This is possible because VCSELs (vertical cavity surface emitting lasers) with extended current tuning capabilities are implemented in the optical device. The tuning capabilities of these new laser sources are sufficient to cover the wavelength range of several absorption lines. The delivered carbon monoxide sensor (COMA 1) reliably measures low carbon monoxide levels even in the presence of high methane signals. The signal bleed-over is determined during system calibration and is then accounted for in the system parameters. The sensor reports carbon monoxide concentrations reliably for (interfering) methane concentrations up to several thousand parts per million.
An Aerial ``Sniffer Dog'' for Methane
NASA Astrophysics Data System (ADS)
Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David
2012-10-01
The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.
The Missing Link: Early Methane ("T") Dwarfs in the Sloan Digital Sky Survey.
Leggett; Geballe; Fan; Schneider; Gunn; Lupton; Knapp; Strauss; McDaniel; Golimowski; Henry; Peng; Tsvetanov; Uomoto; Zheng; Hill; Ramsey; Anderson; Annis; Bahcall; Brinkmann; Chen; Csabai; Fukugita; Hennessy; Hindsley; Ivezic; Lamb; Munn; Pier; Schlegel; Smith; Stoughton; Thakar; York
2000-06-10
We report the discovery of three cool brown dwarfs that fall in the effective temperature gap between the latest L dwarfs currently known, with no methane absorption bands in the 1-2.5 µm range, and the previously known methane (T) dwarfs, whose spectra are dominated by methane and water. The newly discovered objects were detected as very red objects in the Sloan Digital Sky Survey imaging data and have JHK colors between the red L dwarfs and the blue Gl 229B-like T dwarfs. They show both CO and CH(4) absorption in their near-infrared spectra in addition to H(2)O, with weaker CH(4) absorption features in the H and K bands than those in all other methane dwarfs reported to date. Due to the presence of CH(4) in these bands, we propose that these objects are early T dwarfs. The three form part of the brown dwarf spectral sequence and fill in the large gap in the overall spectral sequence from the hottest main-sequence stars to the coolest methane dwarfs currently known.
Method of making improved gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN
2002-11-05
A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).
40 CFR 79.55 - Base fuel specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fuel's production or distribution and/or for the successful operation of the test vehicle/engine... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chloride), wt%, max 0.0004 Copper, mg/L, max 0.07 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (f) Methane...
40 CFR 79.55 - Base fuel specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fuel's production or distribution and/or for the successful operation of the test vehicle/engine... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chloride), wt%, max 0.0004 Copper, mg/L, max 0.07 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (f) Methane...
40 CFR 79.55 - Base fuel specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel's production or distribution and/or for the successful operation of the test vehicle/engine... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chloride), wt%, max 0.0004 Copper, mg/L, max 0.07 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (f) Methane...
40 CFR 79.55 - Base fuel specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fuel's production or distribution and/or for the successful operation of the test vehicle/engine... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chloride), wt%, max 0.0004 Copper, mg/L, max 0.07 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (f) Methane...
40 CFR 79.55 - Base fuel specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fuel's production or distribution and/or for the successful operation of the test vehicle/engine... the methanol, ethanol, methane, and propane base fuels in addition to any such additives included... chloride), wt%, max 0.0004 Copper, mg/L, max 0.07 Water, wt%, max 0.5 Sulfur, wt%, max 0.004 (f) Methane...
Pitk, Peep; Kaparaju, Prasad; Palatsi, Jordi; Affes, Rim; Vilu, Raivo
2013-04-01
The rendering product of Category 2 and 3 Animal By-Products is known as sterilized mass (SM) and it is mainly composed of fat and proteins, making it interesting substrate for anaerobic digestion. Batch and semi-continuous laboratory experiments were carried out to investigate the effect of SM addition in co-digestion with sewage sludge on methane production and possible process limitations. Results showed that SM addition in the feed mixture up to 5% (w/w), corresponding to 68.1% of the organic loading, increased methane production 5.7 times, without any indication of process inhibition. Further increase of SM addition at 7.5% (w/w) caused methane production decrease and volatile solids removal reduction, that was mainly related to remarkably increased free ammonia concentration in the digester of 596.5±68.6 gNH3 L(-1). Sterilized mass addition of 10% (w/w) caused intensive foaming, LCFA accumulation of 9172±701.2 mgCOD-LCFA g(-1) sample and termination of the experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Correlating Well-Pad Characteristics and Methane Emissions in the Marcellus Shale
NASA Astrophysics Data System (ADS)
Lu, J.; Caulton, D.; Lane, H.; Stanton, L. G.; Zondlo, M. A.
2015-12-01
Methane leaks from petrochemical activity are significant contributors to the total amount of methane in the atmosphere. While natural gas has been praised as a cleaner source of fuel than coal, methane's potent global-warming potential could pose barriers in reducing greenhouse gas footprints if significant leaks are observed from the natural gas supply chain. A field campaign spanning two and a half weeks was undertaken in July 2015 to quantify the levels of methane emitted from sites of petrochemical activity in the Marcellus Shale. Additional campaigns are expected in late 2015 and early 2016. Measurements of methane and carbon dioxide were taken downwind of known well sites using open-path laser spectroscopy mounted to the roof of the mobile platform. Approximately 250 well sites were visited, covering over 2000 miles on the road. The majority of the well pads were in southwestern Pennsylvania, but the compiled database includes wells in West Virginia and northeastern Pennsylvania. The data set consists of a variety of operators and equipment types spread over several counties. Correlating well pad characteristics with emission levels may provide useful insight into predicting which well pads are likely to be large emitters. Using the inverse Gaussian plume model and meteorology data from the NOAA Ready archive, the emissions from each transect were calculated. Preliminary results were examined with respect to two easily identifiable variables: the number of wells at each well pad and the operator. Higher emissions were not correlated with increased number of wells, despite the fact that additional infrastructure may provide additional leak pathways. In fact, the emission levels for pads with only a singular well, which accounted for nearly 70% of the wells analyzed thus far, had a range of 0 to 9 grams of methane per second. Sites with two or more wells tended to be concentrated on the lower end of the distribution. Higher emissions were also distributed roughtly equally among the 10 operators in the data subset. Continued analyses of methane emission rates will provide further insight into Marcellus Shale.
Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob
2018-05-17
Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Darzi, M.; Johnson, D.; Heltzel, R.; Clark, N.
2017-12-01
Researchers at West Virginia University's Center for Alternative Fuels, Engines, and Emissions have recently participated in a variety of studies targeted at direction quantification of methane emissions from across the natural gas supply chain. These studies included assessing methane emissions from heavy-duty vehicles and their fuel stations, active unconventional well sites - during both development and production, natural gas compression and storage facilities, natural gas engines - both large and small, two- and four-stroke, and low-throughput equipment associated with coal bed methane wells. Engine emissions were sampled using conventional instruments such as Fourier transform infrared spectrometers and heated flame ionization detection analyzers. However, to accurately quantify a wide range of other sources beyond the tailpipe (both leaks and losses), a full flow sampling system was developed, which included an integrated cavity-enhanced absorption spectrometer. Through these direct quantification efforts and analysis major sources of methane emissions were identified. Technological solutions and best practices exist or could be developed to reduce methane emissions by focusing on the "lowest-hanging fruit." For example, engine crankcases from across the supply chain should employ vent mitigation systems to reduce methane and other emissions. An overview of the direct quantification system and various campaign measurements results will be presented along with the identification of other targets for additional mitigation.
Lee, J.Y.; Yun, T.S.; Santamarina, J.C.; Ruppel, C.
2007-01-01
The interaction among water molecules, guest gas molecules, salts, and mineral particles determines the nucleation and growth behavior of gas hydrates in natural sediments. Hydrate of tetrahydrofuran (THF) has long been used for laboratory studies of gas hydrate-bearing sediments to provide close control on hydrate concentrations and to overcome the long formation history of methane hydrate from aqueous phase methane in sediments. Yet differences in the polarizability of THF (polar molecule) compared to methane (nonpolar molecule) raise questions about the suitability of THF as a proxy for methane in the study of hydrate-bearing sediments. From existing data and simple macroscale experiments, we show that despite its polar nature, THF's large molecular size results in low permittivity, prevents it from dissolving precipitated salts, and hinders the solvation of ions on dry mineral surfaces. In addition, the interfacial tension between water and THF hydrate is similar to that between water and methane hydrate. The processes that researchers choose for forming hydrate in sediments in laboratory settings (e.g., from gas, liquid, or ice) and the pore-scale distribution of the hydrate that is produced by each of these processes likely have a more pronounced effect on the measured macroscale properties of hydrate-bearing sediments than do differences between THF and methane hydrates themselves.
Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle.
Hayes, B J; Donoghue, K A; Reich, C M; Mason, B A; Bird-Gardiner, T; Herd, R M; Arthur, P F
2016-03-01
Enteric methane emissions from beef cattle are a significant component of total greenhouse gas emissions from agriculture. The variation between beef cattle in methane emissions is partly genetic, whether measured as methane production, methane yield (methane production/DMI), or residual methane production (observed methane production - expected methane production), with heritabilities ranging from 0.19 to 0.29. This suggests methane emissions could be reduced by selection. Given the high cost of measuring methane production from individual beef cattle, genomic selection is the most feasible approach to achieve this reduction in emissions. We derived genomic EBV (GEBV) for methane traits from a reference set of 747 Angus animals phenotyped for methane traits and genotyped for 630,000 SNP. The accuracy of GEBV was tested in a validation set of 273 Angus animals phenotyped for the same traits. Accuracies of GEBV ranged from 0.29 ± 0.06 for methane yield and 0.35 ± 0.06 for residual methane production. Selection on GEBV using the genomic prediction equations derived here could reduce emissions for Angus cattle by roughly 5% over 10 yr.
Global diffusive fluxes of methane in marine sediments
NASA Astrophysics Data System (ADS)
Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker
2018-06-01
Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (<200 m water depth). Using anaerobic oxidation as a nearly quantitative sink for methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.
Tondreau, Aaron M.; Scott, Brian L.; Boncella, James M.
2016-05-23
We explored ligand-induced reduction of ferrous alkyl complexes via homolytic cleavage of the alkyl fragment with simple chelating diphosphines. The reactivities of the sodium salts of diphenylmethane, phenyl(trimethylsilyl)methane, or diphenyl(trimethylsilyl)methane were explored in their reactivity with (py) 4FeCl 2. Furthermore, we prepared a series of monoalkylated salts of the type (py) 2FeRCl and characterized from the addition of 1 equiv of the corresponding alkyl sodium species. These complexes are isostructural and have similar magnetic properties. The double alkylation of (py) 4FeCl 2 resulted in the formation of tetrahedral high-spin iron complexes with the sodium salts of diphenylmethane and phenyl(trimethylsilyl)methane thatmore » readily decomposed. A bis(cyclohexadienyl) sandwich complex was formed with the addition of 2 equiv of the tertiary alkyl species sodium diphenyl(trimethylsilyl)methane. The addition of chelating phosphines to (py) 2FeRCl resulted in the overall transfer of Fe(I) chloride concurrent with loss of pyridine and alkyl radical. (dmpe) 2FeCl was synthesized via addition of 1 equiv of sodium diphenyl(trimethylsilyl)methane, whereas the addition of 2 equiv of the sodium compound to (dmpe) 2FeCl 2 gave the reduced Fe(0) nitrogen complex (dmpe) 2Fe(N 2). Our results demonstrate that iron–alkyl homolysis can be used to afford clean, low-valent iron complexes without the use of alkali metals.« less
Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin
2013-01-01
Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.
NASA Astrophysics Data System (ADS)
Seidel, A. D.; Mount, G.
2017-12-01
Studies to constrain methane budgets of Pennsylvania have sought to quantify the amount and rate of fugitive methane released during industrial natural gas development. However, contributions from other environmental systems such as artificial wetlands used to treat part of the 300 million gallons per day of acid mine drainage (AMD) are often not understated or not considered. The artificial wetlands are sources of both biogenic and thermogenic methane and are used to treat AMD which would otherwise flow untreated into Pennsylvania surface waters. Our research utilizes a combination of indirect non-invasive geophysical methods (ground penetrating radar, GPR) and the complex refractive index model, aerial imagery, and direct measurements (coring and gas traps) to estimate the contribution of biogenic methane from wetlands and legacy thermogenic methane from acid mine drainage from a flooded coal mine at an artificial wetland designed to treat these polluted waters at Tanoma, Pennsylvania. Our approach uses (3D) GPR surveys to define the thickness of the soil from the surface to the regolith-bedrock interface to create a volume model of potential biogenic gas stores. Velocity data derived from the GPR is then used to calculate the dielectric permittivity of the soil and then modeled for gas content when considering the saturation, porosity and amount of soil present. Depth-profile cores are extracted to confirm soil column interfaces and determine changes in soil carbon content. Comparisons of gas content are made with gas traps placed across the wetlands that measure the variability of gaseous methane released. In addition, methane dissolved in the waters from biogenic processes in the wetland and thermogenic processes underground are analyzed by a gas chromatograph to quantify those additions. In sum, these values can then be extrapolated to estimate carbon stocks in AMD areas such as those with similar water quality and vegetation types in the Appalachian region. This research demonstrates the ability of indirect geophysical methods and the CRIM petrophysical model to estimate methane gas fluxes and total carbon stocks within wetlands. This will be of assistance to understand the impact of methane released from naturally occurring sources and legacy coal mines, not only commercial extraction and distribution.
Adsorption of methane and CO2 onto olivine surfaces in Martian dust conditions
NASA Astrophysics Data System (ADS)
Escamilla-Roa, Elizabeth; Martin-Torres, Javier; Sainz-Díaz, C. Ignacio
2018-04-01
Methane has been detected on all planets of our Solar System, and most of the larger moons, as well as in dwarf-planets like Pluto and Eric. The presence of this molecule in rocky planets is very interesting because its presence in the Earth's atmosphere is mainly related to biotic processes. Space instrumentation in orbiters around Mars has detected olivine on the Martian soil and dust. On the other hand the measurements of methane from the Curiosity rover report detection of background levels of atmospheric methane with abundance that is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, elevated levels of methane about this background have been observed implying that Mars is episodically producing methane from an additional unknown source, making the reasons of these temporal fluctuations of methane a hot topic in planetary research. The goal of this study is to investigate at atomic level the interactions during the adsorption processes of methane and other Mars atmospheric species (CO2, H2O) on forsterite surfaces, through electronic structure calculations based on the Density Functional Theory (DFT). We propose two models to simulate the interaction of adsorbates with the surface of dust mineral, such as binary mixtures (5CH4+5H2O/5CH4+5CO2) and as a semi-clathrate adsorption. We have obtained interesting results of the adsorption process in the mixture 5CH4+5CO2. Associative and dissociative adsorptions were observed for water and CO2 molecules. The methane molecules were only trapped and held by water or CO2 molecules. In the dipolar surface, the adsorption of CO2 molecules produced new species: one CO from a CO2 dissociation, and, two CO2 molecules chemisorbed to mineral surface forming in one case a carbonate group. Our results suggest that CO2 has a strong interaction with the mineral surface when methane is present. These results could be confirmed after the analysis of the data from the upcoming remote and in-situ observations on Mars, as those to be performed by instruments on the ESA's ExoMars Trace Gas Orbiter and ExoMars rover.
Methanation assembly using multiple reactors
Jahnke, Fred C.; Parab, Sanjay C.
2007-07-24
A methanation assembly for use with a water supply and a gas supply containing gas to be methanated in which a reactor assembly has a plurality of methanation reactors each for methanating gas input to the assembly and a gas delivery and cooling assembly adapted to deliver gas from the gas supply to each of said methanation reactors and to combine water from the water supply with the output of each methanation reactor being conveyed to a next methanation reactor and carry the mixture to such next methanation reactor.
Chou, I-Ming; Anderson, Alan J.
2009-01-01
Raman analysis of the vapor phase formed after heating pure water to near critical (355–374 °C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 × 10−11 mol) of methane were produced in the HDAC at 355 °C and 30 MPa over a period of ten minutes. At temperatures of 650 °C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.
Critical Factors Driving the High Volumetric Uptake of Methane in Cu₃(btc)₂.
Hulvey, Zeric; Vlaisavljevich, Bess; Mason, Jarad A; Tsivion, Ehud; Dougherty, Timothy P; Bloch, Eric D; Head-Gordon, Martin; Smit, Berend; Long, Jeffrey R; Brown, Craig M
2015-08-26
A thorough experimental and computational study has been carried out to elucidate the mechanistic reasons for the high volumetric uptake of methane in the metal-organic framework Cu3(btc)2 (btc(3-) = 1,3,5-benzenetricarboxylate; HKUST-1). Methane adsorption data measured at several temperatures for Cu3(btc)2, and its isostructural analogue Cr3(btc)2, show that there is little difference in volumetric adsorption capacity when the metal center is changed. In situ neutron powder diffraction data obtained for both materials were used to locate four CD4 adsorption sites that fill sequentially. This data unequivocally shows that primary adsorption sites around, and within, the small octahedral cage in the structure are favored over the exposed Cu(2+) or Cr(2+) cations. These results are supported by an exhaustive parallel computational study, and contradict results recently reported using a time-resolved diffraction structure envelope (TRDSE) method. Moreover, the computational study reveals that strong methane binding at the open metal sites is largely due to methane-methane interactions with adjacent molecules adsorbed at the primary sites instead of an electronic interaction with the metal center. Simulated methane adsorption isotherms for Cu3(btc)2 are shown to exhibit excellent agreement with experimental isotherms, allowing for additional simulations that show that modifications to the metal center, ligand, or even tuning the overall binding enthalpy would not improve the working capacity for methane storage over that measured for Cu3(btc)2 itself.
Anthropogenic emissions of methane in the United States
Miller, Scot M.; Wofsy, Steven C.; Michalak, Anna M.; Kort, Eric A.; Andrews, Arlyn E.; Biraud, Sebastien C.; Dlugokencky, Edward J.; Eluszkiewicz, Janusz; Fischer, Marc L.; Janssens-Maenhout, Greet; Miller, Ben R.; Miller, John B.; Montzka, Stephen A.; Nehrkorn, Thomas; Sweeney, Colm
2013-01-01
This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane–propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25–30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories. PMID:24277804
Methane fluxes above the Hainich forest by True Eddy Accumulation and Eddy Covariance
NASA Astrophysics Data System (ADS)
Siebicke, Lukas; Gentsch, Lydia; Knohl, Alexander
2016-04-01
Understanding the role of forests for the global methane cycle requires quantifying vegetation-atmosphere exchange of methane, however observations of turbulent methane fluxes remain scarce. Here we measured turbulent fluxes of methane (CH4) above a beech-dominated old-growth forest in the Hainich National Park, Germany, and validated three different measurement approaches: True Eddy Accumulation (TEA, closed-path laser spectroscopy), and eddy covariance (EC, open-path and closed-path laser spectroscopy, respectively). The Hainich flux tower is a long-term Fluxnet and ICOS site with turbulent fluxes and ecosystem observations spanning more than 15 years. The current study is likely the first application of True Eddy Accumulation (TEA) for the measurement of turbulent exchange of methane and one of the very few studies comparing open-path and closed-path eddy covariance (EC) setups side-by-side. We observed uptake of methane by the forest during the day (a methane sink with a maximum rate of 0.03 μmol m-2 s-1 at noon) and no or small fluxes of methane from the forest to the atmosphere at night (a methane source of typically less than 0.01 μmol m-2 s-1) based on continuous True Eddy Accumulation measurements in September 2015. First results comparing TEA to EC CO2 fluxes suggest that True Eddy Accumulation is a valid option for turbulent flux quantifications using slow response gas analysers (here CRDS laser spectroscopy, other potential techniques include mass spectroscopy). The TEA system was one order of magnitude more energy efficient compared to closed-path eddy covariance. The open-path eddy covariance setup required the least amount of user interaction but is often constrained by low signal-to-noise ratios obtained when measuring methane fluxes over forests. Closed-path eddy covariance showed good signal-to-noise ratios in the lab, however in the field it required significant amounts of user intervention in addition to a high power consumption. We conclude, based on preliminary evidence, that the Hainich forest acted as a moderate net sink for methane during the investigation. This supports earlier findings from chamber measurements at the Hainich forest site and is similar to findings from other forest sites. Our observations will be continued through 2016 and beyond to provide longer-term methane flux time series spanning entire seasons. However, the current data set already provides a basis for further consolidating methods of measurements and analysis of turbulent methane fluxes using eddy covariance and true eddy accumulation.
Methanator Fueled Engines for Pollution Control
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Winkler, E. L.
1973-01-01
A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.
Advances in Estimating Methane Emissions from Enteric Fermentation
NASA Astrophysics Data System (ADS)
Kebreab, E.; Appuhamy, R.
2016-12-01
Methane from enteric fermentation of livestock is the largest contributor to the agricultural GHG emissions. The quantification of methane emissions from livestock on a global scale relies on prediction models because measurements require specialized equipment and may be expensive. Most countries use a fixed number (kg methane/year) or calculate as a proportion of energy intake to estimate enteric methane emissions in national inventories. However, diet composition significantly regulates enteric methane production in addition to total feed intake and thus the main target in formulating mitigation options. The two current methodologies are not able to assess mitigation options, therefore, new estimation methods are required that can take feed composition into account. The availability of information on livestock production systems has increased substantially enabling the development of more detailed methane prediction models. Limited number of process-based models have been developed that represent biological relationships in methane production, however, these require extensive inputs and specialized software that may not be easily available. Empirical models may provide a better alternative in practical situations due to less input requirements. Several models have been developed in the last 10 years but none of them work equally well across all regions of the world. The more successful models particularly in North America require three major inputs: feed (or energy) intake, fiber and fat concentration of the diet. Given the significant variability of emissions within regions, models that are able to capture regional variability of feed intake and diet composition perform the best in model evaluation with independent data. The utilization of such models may reduce uncertainties associated with prediction of methane emissions and allow a better examination and representation of policies regulating emissions from cattle.
Reconstructing the Aliso Canyon natural gas leak incident
NASA Astrophysics Data System (ADS)
Duren, R. M.; Yadav, V.; Verhulst, K. R.; Thorpe, A. K.; Hopkins, F. M.; Prasad, K.; Kuai, L.; Thompson, D. R.; Wong, C.; Sander, S. P.; Mueller, K. L.; Nehrkorn, T.; Lee, M.; Hulley, G. C.; Johnson, W. R.; Aubrey, A. D.; Whetstone, J. R.; Miller, C. E.
2016-12-01
Natural gas is a key energy source and presents significant policy challenges including energy reliability and the potential for fugitive methane emissions. The well blowout reported in October 2015 at the Aliso Canyon underground gas storage facility near Porter Ranch, California and subsequent uncontrolled venting was the largest single anthropogenic methane source known to date. Multiple independent estimates indicate that this super-emitter source rivaled the normal methane flux of the entire South Coast Air Basin (SoCAB) for several months until the well was plugged. The complexity of the event and logistical challenges - particularly in the initial weeks - presented significant barriers to estimating methane losses. Additionally, accounting for total gas lost is necessary but not sufficient for understanding the sequence of events and the controlling physical processes. We used a tiered system of observations to assess methane emissions from the Aliso Canyon incident. To generate a complete flux time-series, we applied tracer-transport models and tracer-tracer techniques to persistent, multi-year atmospheric methane observations from a network of surface in-situ and remote-sensing instruments. To study the fine spatio-temporal structure of methane plumes and understand the changing source morphology, we conducted intensive mobile surface campaigns, deployed airborne imaging spectrometers, requested special observations from two satellites, and employed large eddy simulations. Through a synthesis analysis we assessed methane fluxes from Aliso Canyon before, during and after the reported incident. We compared our fine scale spatial data with bottom-up data and reports of activity at the facility to better understand the controlling processes. We coordinated with California stakeholder agencies to validate and interpret these results and to consider the potential broader implications on underground gas storage and future priorities for methane monitoring.
Kim, Hyun-Sun; Yi, Seung-Muk
2009-01-01
Quantifying methane emission from landfills is important to evaluating measures for reduction of greenhouse gas (GHG) emissions. To quantify GHG emissions and identify sensitive parameters for their measurement, a new assessment approach consisting of six different scenarios was developed using Tier 1 (mass balance method) and Tier 2 (the first-order decay method) methodologies for GHG estimation from landfills, suggested by the Intergovernmental Panel on Climate Change (IPCC). Methane emissions using Tier 1 correspond to trends in disposed waste amount, whereas emissions from Tier 2 gradually increase as disposed waste decomposes over time. The results indicate that the amount of disposed waste and the decay rate for anaerobic decomposition were decisive parameters for emission estimation using Tier 1 and Tier 2. As for the different scenarios, methane emissions were highest under Scope 1 (scenarios I and II), in which all landfills in Korea were regarded as one landfill. Methane emissions under scenarios III, IV, and V, which separated the dissimilated fraction of degradable organic carbon (DOC(F)) by waste type and/or revised the methane correction factor (MCF) by waste layer, were underestimated compared with scenarios II and III. This indicates that the methodology of scenario I, which has been used in most previous studies, may lead to an overestimation of methane emissions. Additionally, separate DOC(F) and revised MCF were shown to be important parameters for methane emission estimation from landfills, and revised MCF by waste layer played an important role in emission variations. Therefore, more precise information on each landfill and careful determination of parameter values and characteristics of disposed waste in Korea should be used to accurately estimate methane emissions from landfills.
Methane emissions from different coastal wetlands in New England, US
NASA Astrophysics Data System (ADS)
Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.
2017-12-01
According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Mohanty, Kishore
We have developed a 3D methane hydrate reservoir simulator to model marine methane hydrate systems. Our simulator couples highly nonlinear heat and mass transport equations and includes heterogeneous sedimentation, in-situ microbial methanogenesis, the influence of pore size contrast on solubility gradients, and the impact of salt exclusion from the hydrate phase on dissolved methane equilibrium in pore water. Using environmental parameters from Walker Ridge in the Gulf of Mexico, we first simulate hydrate formation in and around a thin, dipping, planar sand stratum surrounded by clay lithology as it is buried to 295mbsf. We find that with sufficient methane beingmore » supplied by organic methanogenesis in the clays, a 200x pore size contrast between clays and sands allows for a strong enough concentration gradient to significantly drop the concentration of methane hydrate in clays immediately surrounding a thin sand layer, a phenomenon that is observed in well log data. Building upon previous work, our simulations account for the increase in sand-clay solubility contrast with depth from about 1.6% near the top of the sediment column to 8.6% at depth, which leads to a progressive strengthening of the diffusive flux of methane with time. By including an exponentially decaying organic methanogenesis input to the clay lithology with depth, we see a decrease in the aqueous methane supplied to the clays surrounding the sand layer with time, which works to further enhance the contrast in hydrate saturation between the sand and surrounding clays. Significant diffusive methane transport is observed in a clay interval of about 11m above the sand layer and about 4m below it, which matches well log observations. The clay-sand pore size contrast alone is not enough to completely eliminate hydrate (as observed in logs), because the diffusive flux of aqueous methane due to a contrast in pore size occurs slower than the rate at which methane is supplied via organic methanogenesis. Therefore, it is likely that additional mechanisms are at play, notably bound water activity reduction in clays. Three-dimensionality allows for inclusion of lithologic heterogeneities, which focus fluid flow and subsequently allow for heterogeneity in the methane migration mechanisms that dominate in marine sediments at a local scale. Incorporating recently acquired 3D seismic data from Walker Ridge to inform the lithologic structure of our modeled reservoir, we show that even with deep adjective sourcing of methane along highly permeable pathways, local hydrate accumulations can be sourced either by diffusive or advective methane flux; advectively-sourced hydrates accumulate evenly in highly permeable strata, while diffusively-sourced hydrates are characterized by thin strata-bound intervals with high clay-sand pore size contrasts.« less
Determination of biogas generation potential as a renewable energy source from supermarket wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alkanok, Gizem; Demirel, Burak, E-mail: burak.demirel@boun.edu.tr; Onay, Turgut T.
2014-01-15
Highlights: • Disposal of supermarket wastes in landfills may contribute to environmental pollution. • High methane yields can be obtained from supermarket wastes by anaerobic co-digestion. • Fruit and vegetable wastes or dairy products wastes could individually be handled by a two-stage anaerobic process. • Buffering capacity, trace metal and C/N ratio are essential for digestion of supermarket wastes. - Abstract: Fruit, vegetable, flower waste (FVFW), dairy products waste (DPW), meat waste (MW) and sugar waste (SW) obtained from a supermarket chain were anaerobically digested, in order to recover methane as a source of renewable energy. Batch mesophilic anaerobic reactorsmore » were run at total solids (TS) ratios of 5%, 8% and 10%. The highest methane yield of 0.44 L CH{sub 4}/g VS{sub added} was obtained from anaerobic digestion of wastes (FVFW + DPW + MW + SW) at 10% TS, with 66.4% of methane (CH{sub 4}) composition in biogas. Anaerobic digestion of mixed wastes at 5% and 8% TS provided slightly lower methane yields of 0.41 and 0.40 L CH{sub 4}/g VS{sub added}, respectively. When the wastes were digested alone without co-substrate addition, the highest methane yield of 0.40 L CH{sub 4}/g VS{sub added} was obtained from FVFW at 5% TS. Generally, although the volatile solids (VS) conversion percentages seemed low during the experiments, higher methane yields could be obtained from anaerobic digestion of supermarket wastes. A suitable carbon/nitrogen (C/N) ratio, proper adjustment of the buffering capacity and the addition of essential trace nutrients (such as Ni) could improve VS conversion and biogas production yields significantly.« less
Consumption of methane by soils.
Dueñas, C; Fernández, M C; Carretero, J; Pérez, M; Liger, E
1994-05-01
Measurements of the methane flux and methane concentration profiles in soil air are presented. The flux of methane from the soil is calculated by two methods: a) Direct by placing a static open chamber at the soil surface. b) Indirect, using the (222)Rn concentrations profile and the (222)Rn flux in the soil surface in parallel with the methane concentration ((222)Rn calibrated fluxes). The methane flux has been determined in two kinds of soils (sandy and loamy) in the surroundings of Málaga (SPAIN). The directly measured methane fluxes at all investigated sites is higher than methane fluxes derived from "Rn calibrated fluxes". Atmospheric methane is consumed by soils, mean direct flux to the atmosphere were - 0.33 g m(-2)yr-1. The direct methane flux is the same within the measuring error in sandy and loamy soils. The influence of the soil parameters on the methane flux indicates that microbial decomposition of methane is primarily controlled by the transport of methane.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hydrogen. When used in methane service, the methane must be a nonliquefied gas with a minimum purity of 98... nonliquefied (permanent) compressed gases in specification cylinders. 173.302a Section 173.302a Transportation... PACKAGINGS Gases; Preparation and Packaging § 173.302a Additional requirements for shipment of nonliquefied...
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, J.; Kang, H.
2017-12-01
Recently, extreme nitrogen(N) deposition events are observed in Arctic regions where over 90% of the annual N deposition occurred in just a few days. Since Arctic ecosystems are typically N-limited, input of extremely high amount of N could substantially affect ecosystem processes. CH4 is a potent greenhouse gas that has 25 times greater global warming potential than CO2 over a 100-year time frame. Ammonium is known as an inhibitor of methane oxidation and nitrate also shows inhibitory effect on it in temperate ecosystems. However, effects of N addition on Arctic ecosystems are still elusive. We conducted a lab-scale incubation experiment with moist acidic tundra (MAT) soil from Council, Alaska to investigate the effect of extreme N deposition events on methane oxidation. Zero point five % methane was added to the head space to determine the potential methane oxidation rate of MAT soil. Three treatments (NH4NO3-AN, (NH4)2SO4-AS, KNO3-PN) were used to compare effects of ammonium, nitrate and salts. All treatments were added in 3 levels: 10μg N gd.w-1(10), 50μg N gd.w-1(50) and 100μg N gd.w-1(100). AN10 and AN50 increased methane oxidation rate 1.7, 6% respectively. However, AN100 shows -8.5% of inhibitory effect. In AS added samples, all 3 concentrations (AN10, AN50, AN100) stimulated methane oxidation rate with 4.7, 8.9, 4%, respectively. On the contrary, PN50 (-9%) and PN100 (-59.5%) exhibited a significant inhibitory effect. We also analyzed the microbial gene abundance and community structures of methane oxidizing bacteria using a DNA-based fingerprinting method (T-RFLP) Our study results suggest that NH4+ can stimulate methane oxidation in Arctic MAT soil, while NO3- can inhibit methane oxidation significantly.
The impact of flow focusing on gas hydrate accumulations in overpressured marine sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann
This study demonstrates the potential for flow focusing due to overpressuring in marine sedimentary environments to act as a significant methane transport mechanism from which methane hydrate can precipitate in large quantities in dipping sandstone bodies. Traditionally, gas hydrate accumulations in nature are discussed as resulting from either short-range diffusive methane migration or from long-range advective fluid transport sourced from depth. However, 3D simulations performed in this study demonstrate that a third migration mechanism, short-range advective transport, can provide a significant methane source that is unencumbered by limitations of the other two end-member mechanisms. Short-range advective sourcing is advantageous overmore » diffusion because it can convey greater amounts of methane to sands over shorter timespans, yet it is not necessarily limited by down-dip pore blocking in sands as is typical of updip advection from a deep source. These results are novel because they integrate pore size impacts on spatial solubility gradients, grid block properties that evolve through time, and methane sourcing through microbial methanogenesis into a holistic characterization of environments exposed to multiple methane hydrate sourcing mechanisms. We show that flow focusing toward sand bodies transports large quantities of methane, the magnitude of which are determined by the sand-clay solubility contrast, and generates larger quantities of hydrate in sands than a solely diffusive system; after depositing methane as hydrate, fluid exiting a sand body is depleted in methane and leaves a hydrate free region in its wake above the sand. Additionally, we demonstrate that in overpressured environments, hydrate growth is initially diffusively dominated before transitioning to an advection-dominated regime. The timescale and depth at which this transition takes place depends primarily on the rate of microbial metabolism and the sedimentation rate but only depends loosely on the degree of overpressuring.« less
Methane Emissions from Upland Forests
NASA Astrophysics Data System (ADS)
Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping
2016-04-01
Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.
Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment
van Winden, Julia F.; Reichart, Gert-Jan; McNamara, Niall P.; Benthien, Albert; Damsté, Jaap S. Sinninghe.
2012-01-01
Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs. PMID:22768100
NASA Astrophysics Data System (ADS)
Schout, G.; Griffioen, J.; Hassanizadeh, S. M.; Hartog, N.
2017-12-01
Similar to the US, the Netherlands has a long history of oil & gas production, with around 2500 onshore hydrocarbon wells drilled since the late 1930s. While conventional reserves are diminishing, a governmental moratorium was put in place on shale gas exploration and production until 2023, in part due to concerns about its effects on groundwater quality. To investigate the industry's historic and potential future impact on groundwater quality in the country, a study was carried out to assess i) baseline methane concentrations and origin ii) the natural connectivity of deeper gas-bearing layers with the shallower groundwater systems. Through datamining, a dataset consisting of 12,200 groundwater analyses with methane concentrations was assembled. Furthermore, 25 additional samples were collected at targeted locations and analysed for dissolved gas molecular and isotopic composition. Methane concentrations are positively skewed with median, mean and maximum concentrations of 0.28, 2.17 and 120 mg/L, respectively. No correlation between methane concentrations and distance to hydrocarbon wells or faults is observed. In general, concentrations cannot be readily explained by factors such as the depth, geographic location, host formation and depositional environment. Thermogenic methane was first encountered at several hundred meters depth, below thick successions of marine Paleogene and Neogene clays that are present throughout the country and impede vertical flow. All methane encountered above these formations was found to be biogenic in origin, with one notable exception - a sample taken at the site of a catastrophic gas well blowout that occurred in 1965 near the village of Sleen. Combined, these findings suggest that thermogenic methane does not naturally occur in Dutch shallow groundwater and its presence can be used as an indicator of anthropogenic gas leakage. The unique Sleen blowout site was selected for a detailed investigation of the long-term effects of uncontrolled gas leakage on groundwater chemistry. Methane concentrations up to 45 mg/L were observed and the distribution pattern suggests on-going leakage, 50 years after the events. Results also show that anaerobic oxidation of methane plays a major role in controlling the spread of dissolved methane.
NASA Astrophysics Data System (ADS)
Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.
2013-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements of methane are shown in red, indicating a strong degree of source heterogeneity. (right panel) Histogram of individual isotopic source signatures, showing distinct signatures for landfills (red) and oil and gas sources (green).
Xin, Danhui; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Chai, Xiaoli
2016-11-01
Diel methane emission fluxes from a landfill that was covered by vegetation were investigated to reveal the methane emission mechanisms based on the interaction of vegetation characteristics and climate factors. The methane emissions showed large variation between daytime and nighttime, and the trend of methane emissions exhibited clear bimodal patterns from both Setaria viridis- and Neyraudia reynaudiana-covered areas. Plants play an important role in methane transportation as well as methane oxidation. The notable decrease in methane emissions after plants were cut suggests that methane transportation via plants is the primary way of methane emissions in the vegetated areas of landfill. Within plants, the methane emission fluxes were enhanced due to a convection mechanism. Given that the methane emission flux is highly correlated with the solar radiation during daytime, the convection mechanism could be attributed to the increase in solar radiation. Whereas the methane emission flux is affected by a combined impact of the wind speed and pedosphere characteristics during nighttime. An improved understanding of the methane emission mechanisms in vegetated landfills is expected to develop a reliable model for landfill methane emissions and to attenuate greenhouse gas emissions from landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production.
Capson-Tojo, Gabriel; Rouez, Maxime; Crest, Marion; Trably, Eric; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud
2017-11-01
Dry anaerobic digestion is a promising option for food waste treatment and valorization. However, accumulation of ammonia and volatile fatty acids often occurs, leading to inefficient processes and digestion failure. Co-digestion with cardboard may be a solution to overcome this problem. The effect of the initial substrate to inoculum ratio (0.25 to 1gVS·gVS -1 ) and the initial total solids contents (20-30%) on the kinetics and performance of dry food waste mono-digestion and co-digestion with cardboard was investigated in batch tests. All the conditions produced methane efficiently (71-93% of the biochemical methane potential). However, due to lack of methanogenic activity, volatile fatty acids accumulated at the beginning of the digestion and lag phases in the methane production were observed. At increasing substrate to inoculum ratios, the initial acid accumulation was more pronounced and lower cumulative methane yields were obtained. Higher amounts of soluble organic matter remained undegraded at higher substrate loads. Although causing slightly longer lag phases, high initial total solids contents did not jeopardize the methane yields. Cardboard addition reduced acid accumulation and the decline in the yields at increasing substrate loads. However, cardboard addition also caused higher concentrations of propionic acid, which appeared as the most last acid to be degraded. Nevertheless, dry co-digestion of food waste and cardboard in urban areas is demonstrated asan interesting feasible valorization option. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Noël, Stefan; Weigel, Katja; Bramstedt, Klaus; Rozanov, Alexei; Weber, Mark; Bovensmann, Heinrich; Burrows, John P.
2018-04-01
An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17-45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within ˜ 5 %. A significant positive linear change in water vapour for the time 2003-2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year-1 around 17 km. Between 30 and 37 km the changes become significantly negative (about -0.01 ± 0.008 ppmv year-1); all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO). Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5-6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer-Dobson circulation.
Alain, Karine; Holler, Thomas; Musat, Florin; Elvert, Marcus; Treude, Tina; Krüger, Martin
2006-04-01
Paclele Mici is a terrestrial mud volcano field located in the Carpathian Mountains (Romania), where thermal alteration of sedimentary organic compounds leads to methane, higher hydrocarbons and other petroleum compounds that are continuously released into the environment. The hydrocarbons represent potential substrates for microorganisms. We studied lipid biomarkers, stable isotope ratios, the effect of substrate (methane, other organic compounds) addition and 16S rRNA genes to gain insights into the hitherto unknown microbial community at this site. Quantitative real-time polymerase chain reaction analysis demonstrated that bacteria were much more abundant than archaea. Phylogenetic analyses of 16S rDNA clone sequences indicated the presence of bacterial and archaeal lineages generally associated with the methane cycle (methanogens, aerobic and anaerobic methanotrophs), the sulfur cycle (sulfate reducers), and groups linked to the anaerobic degradation of alkanes or aromatic hydrocarbons. The presence of sulfate reducers, methanogens and methanotrophs in this habitat was also confirmed by concurrent surveys of lipid biomarkers and their isotopic signatures. Incubation experiments with several common and complex substrates revealed the potential of the indigenous microbial community for sulfate reduction, methanogenesis and aerobic methanotrophy. Additionally, consistently to the detection of methane-oxidizing archaea (ANME) and 13C-depleted archaeal lipids, a weak but significant activity of anaerobic methane oxidation was measured by radiotracer techniques and in vitro. This survey is the first to report the presence and activity of ANME in a terrestrial environment.
Liu, Yiwen; Zhang, Yaobin; Ni, Bing-Jie
2015-05-15
Zero valent iron (ZVI) packed anaerobic granular sludge reactors have been developed for improved anaerobic wastewater treatment. In this work, a mathematical model is developed to describe the enhanced methane production and sulfate reduction in anaerobic granular sludge reactors with the addition of ZVI. The model is successfully calibrated and validated using long-term experimental data sets from two independent ZVI-enhanced anaerobic granular sludge reactors with different operational conditions. The model satisfactorily describes the chemical oxygen demand (COD) removal, sulfate reduction and methane production data from both systems. Results show ZVI directly promotes propionate degradation and methanogenesis to enhance methane production. Simultaneously, ZVI alleviates the inhibition of un-dissociated H2S on acetogens, methanogens and sulfate reducing bacteria (SRB) through buffering pH (Fe(0) + 2H(+) = Fe(2+) + H2) and iron sulfide precipitation, which improve the sulfate reduction capacity, especially under deterioration conditions. In addition, the enhancement of ZVI on methane production and sulfate reduction occurs mainly at relatively low COD/ [Formula: see text] ratio (e.g., 2-4.5) rather than high COD/ [Formula: see text] ratio (e.g., 16.7) compared to the reactor without ZVI addition. The model proposed in this work is expected to provide support for further development of a more efficient ZVI-based anaerobic granular system. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.
1993-01-01
The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.
More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets.
Paganoni, B; Rose, G; Macleay, C; Jones, C; Brown, D J; Kearney, G; Ferguson, M; Thompson, A N
2017-09-01
The Australian sheep industry aims to increase the efficiency of sheep production by decreasing the amount of feed eaten by sheep. Also, feed intake is related to methane production, and more efficient (low residual feed intake) animals eat less than expected. So we tested the hypothesis that more efficient sheep produce less methane by investigating the genetic correlations between feed intake, residual feed intake, methane, carbon dioxide, and oxygen. Feed intake, methane, oxygen, and carbon dioxide were measured on Merino ewes at postweaning (1,866 at 223 d old), hogget (1,010 sheep at 607 d old), and adult ages (444 sheep at 1,080 d old). Sheep were fed a high-energy grower pellet ad libitum for 35 d. Individual feed intake was measured using automated feeders. Methane was measured using portable accumulation chambers up to 3 times during this feed intake period. Heritabilities and phenotypic and genotypic correlations between traits were estimated using ASReml. Oxygen (range 0.10 to 0.20) and carbon dioxide (range 0.08 to 0.28) were generally more heritable than methane (range 0.11 to 0.14). Selecting to decrease feed intake or residual feed intake will decrease methane (genetic correlation [] range 0.76 to 0.90) and carbon dioxide ( range 0.65 to 0.96). Selecting to decrease intake ( range 0.64 to 0.78) and methane ( range 0.81 to 0.86) in sheep at postweaning age would also decrease intake and methane in hoggets and adults. Furthermore, selecting for lower residual feed intake ( = 0.75) and carbon dioxide ( = 0.90) in hoggets would also decrease these traits in adults. Similarly, selecting for higher oxygen ( = 0.69) in hoggets would also increase this trait in adults. Given these results, the hypothesis that making sheep more feed efficient will decrease their methane production can be accepted. In addition, carbon dioxide is a good indicator trait for feed intake because it has the highest heritability of the gas traits measured; is cheaper, faster, and easier to measure than feed intake and has strong phenotypic and genetic correlations with feed intake. Furthermore, selection for feed intake, feed efficiency, methane, and carbon dioxide can be done early in sheep at postweaning age or hoggets. This early selection reduces the generation interval for breeding, thereby increasing response to selection.
Kim, Dong-Jin; Lee, Jonghak
2012-01-01
Hydrolysis of waste activated sludge (WAS) has been regarded as the rate limiting step of anaerobic sludge digestion. Therefore, in this study, the effect of ultrasound and hydraulic residence time during sludge hydrolysis was investigated with the goal of enhancing methane production from anaerobic digestion (AD). WAS was ultrasonically disintegrated for hydrolysis, and it was semi-continuously fed to an anaerobic digesters at various hydraulic retention times (HRTs). The results of these experiments showed that the solids and chemical oxygen demand (COD) removal efficiencies when using ultrasonically disintegrated sludge were higher during AD than the control sludge. The longer the HRT, the higher the removal efficiencies of solids and COD, while methane production increased with lower HRT. Sludge with 30% hydrolysis produced 7 × more methane production than the control sludge. The highest methane yields were 0.350 m(3)/kg volatile solids (VS)(add) and 0.301 m(3)/kg COD(con) for 16 and 30% hydrolyzed sludge, respectively. In addition, we found that excess ultrasound irradiation may inhibit AD since the 50% hydrolyzed sludge produced lower methane yields than 16 and 30% hydrolyzed sludge.
Efficient 1.6 Micron Laser Source for Methane DIAL
NASA Technical Reports Server (NTRS)
Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.
2013-01-01
Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose is to develop mutagenesis, gene transfer and cloning systems in methanotrophic bacteria, and use these techniques to study the methane oxidation genes. Although we have been successful in the first part of these objectives, the study of methane oxidation genes has proven difficult. Problems arose due to the discovery that the culture, Methylobacterium ethanolicum, is in reality a stable coculture between two methylotrophs. These partners are Methylocystis POC, an obligate methanotroph and Xanthobacter H4.14, and autotrophic methanolutilizer. The Methylocystis strain contains the three plasmids we had observed previously in methane-grown cultures, while the Xanthobacter strain contains no detectiblemore » plasmids. Therefore, our original approach to studying the methane oxidation genes, that of isolating plasmid mutants, is no longer valid. However, our discovery of the nature of this culture has led to some interesting results which show promise in elucidating the genetic structure of the methane oxidation genes in obligate methanotrophs. In addition, we have been successful in developing mutagenesis, gene transfer and cloning systems that are applicable to a wide variety of methanotrophs.« less
Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments
Oremland, R.S.; Marsh, L.M.; Polcin, S.
1982-01-01
It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.
Breath Methane Levels Are Increased Among Patients with Diverticulosis.
Yazici, Cemal; Arslan, Deniz Cagil; Abraham, Rana; Cushing, Kelly; Keshavarzian, Ali; Mutlu, Ece A
2016-09-01
Diverticulosis and its complications are important healthcare problems in the USA and throughout the Western world. While mechanisms as to how diverticulosis occurs have partially been explored, few studies examined the relationship between colonic gases such as methane and diverticulosis in humans. This study aimed to demonstrate a significant relationship between methanogenic Archaea and development of diverticulosis. Subjects who consecutively underwent hydrogen breath test at Rush University Medical Center between 2003 and 2010 were identified retrospectively through a database. Medical records were reviewed for presence of a colonoscopy report. Two hundred and sixty-four subjects were identified who had both a breath methane level measurement and a colonoscopy result. Additional demographic and clinical data were obtained with chart review. Mean breath methane levels were higher in subjects with diverticulosis compared to those without diverticulosis (7.89 vs. 4.94 ppm, p = 0.04). Methane producers (defined as those with baseline fasting breath methane level >5 ppm) were more frequent among subjects with diverticulosis compared to those without diverticulosis (50.9 vs. 34 %, p = 0.0025). When adjusted for confounders, breath methane levels and age were the two independent predictors of diverticulosis on colonoscopy with logistic regression modeling. Methanogenesis is associated with the presence of diverticulosis. Further studies are needed to confirm our findings and prospectively evaluate a possible etiological role of methanogenesis and methanogenic archaea in diverticulosis.
Ordaz, Alberto; López, Juan C; Figueroa-González, Ivonne; Muñoz, Raúl; Quijano, Guillermo
2014-12-15
Biological methane biodegradation is a promising treatment alternative when the methane produced in waste management facilities cannot be used for energy generation. Two-phase partitioning bioreactors (TPPBs), provided with a non-aqueous phase (NAP) with high affinity for the target pollutant, are particularly suitable for the treatment of poorly water-soluble compounds such as methane. Nevertheless, little is known about the influence of the presence of the NAP on the resulting biodegradation kinetics in TPPBs. In this study, an experimental framework based on the in situ pulse respirometry technique was developed to assess the impact of NAP addition on the methane biodegradation kinetics using Methylosinus sporium as a model methane-degrading microorganism. A comprehensive mass transfer characterization was performed in order to avoid mass transfer limiting scenarios and ensure a correct kinetic parameter characterization. The presence of the NAP mediated significant changes in the apparent kinetic parameters of M. sporium during methane biodegradation, with variations of 60, 120, and 150% in the maximum oxygen uptake rate, half-saturation constant and maximum specific growth rate, respectively, compared with the intrinsic kinetic parameters retrieved from a control without NAP. These significant changes in the kinetic parameters mediated by the NAP must be considered for the design, operation and modeling of TPPBs devoted to air pollution control. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeremy Semrau; Sung-Woo Lee; Jeongdae Im
2010-09-30
The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although themore » contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.« less
Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus
2012-01-01
Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465
Upward revision of global fossil fuel methane emissions based on isotope database.
Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P
2016-10-06
Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.
Biologically Produced Methane as a Renewable Energy Source.
Holmes, D E; Smith, J A
2016-01-01
Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO 2 . However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chan, E. W.; Kessler, J. D.; Redmond, M. C.; Shiller, A. M.; Arrington, E. C.; Valentine, D. L.; Colombo, F.
2015-12-01
Many studies of microbially mediated aerobic methane oxidation in oceanic environments have examined the many different factors that control the rates of oxidation. However, there is debate on how quickly methane is oxidized once a microbial population is established and what factor(s) are limiting in these types of environments. These factors include the availability of CH4, O2, trace metals, nutrients, and the density of cell population. Limits to these factors can also control the temporal aspects of a methane oxidation event. In order to look at this process in its entirety and with higher temporal resolution, a mesocosm incubation system was developed with a Dissolved Gas Analyzer System (DGAS) coupled with a set of analytical tools to monitor aerobic methane oxidation in real time. With the addition of newer laser spectroscopy techniques (cavity ringdown spectroscopy), stable isotope fractionation caused by microbial processes can also be examined on a real time and automated basis. Cell counting, trace metal, nutrient, and DNA community analyses have also been carried out in conjunction with these mesocosm samples to provide a clear understanding of the biology in methane oxidation dynamics. This poster will detail the techniques involved to provide insights into the chemical and isotopic kinetics controlling aerobic methane oxidation. Proof of concept applications will be presented from seep sites in the Hudson Canyon and the Sleeping Dragon seep field, Mississippi Canyon 118 (MC 118). This system was used to conduct mesocosm experiments to examine methane consumption, O2 consumption, nutrient consumption, and biomass production.
NASA Astrophysics Data System (ADS)
Lin, H.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S.; Rappe, M. S.
2013-12-01
The ocean crust is the largest aquifer system on Earth. Within the sediment-buried 3.5 Myr basaltic crust of the eastern Juan de Fuca Ridge (JFR) flank, the circulating basement fluids have moderate temperature (~65°C) and potentially harbor a substantial subseafloor biosphere. With dissolved oxygen and nitrate exhausted, sulfate may serve as the major electron acceptor in this environment. This study aims to evaluate the availability and the biogeochemistry of two important electron donors, methane and hydrogen, for the subseafloor biosphere. Basement fluids were collected via stainless steel and ethylene-tetrafluoroethylene fluoropolymer (ETFE) fluid delivery lines associated with Integrated Ocean Drilling Program (IODP) Circulation Obviation Retrofit Kits (CORKs) that extend from basement depths to outlet ports at the seafloor. Three CORKs were visited; 1301A, 1362A and 1362B lie within 200 to 500 m of each other, and their fluid intakes lie at ~30, ~60, and ~50 m below the sediment-basement interface (mbs), respectively. In addition, CORK 1362A contains a second intake at a deep (~200 mbs) horizon. The basement fluids from the three CORKs contained significantly higher concentrations of methane (1.5-13μM) and hydrogen (0.05-1.1 μM) than in bottom seawater (0.002 and 0.0004, respectively), indicating that prevalence and availability of both methane and hydrogen as electron donors for the subseafloor biosphere. Thermodynamic calculations show that sulfate reduction coupled with either methane or hydrogen oxidation is energy yielding in the oceanic basement. The δ13C values of methane ranged from -43×1‰ to -58×0.3‰; the δ2H values of methane in CORKs 1301A, 1362A and 1362B fluids were 57×5‰, -262×2‰, -209×2‰, respectively. The isotopic compositions suggest that methane in the basement fluid is of biogenic origin. Interestingly, the δ2H value of methane in the CORK 1301A fluids is far more positive than that in other marine environments investigated so far (Martens et al., 1999; Kessler et al., 2006; Kessler et al., 2008). The positive δ2H value of methane is best explained by partial microbial oxidation of biogenic methane, which has an initial isotopic composition similar to that from CORK 1362A and 1362B borehole fluid. High-throughput sequencing of the small subunit ribosomal RNA gene indicates the presence of methanogenic Euryarchaeota (e.g. Methanobacteria) in each of the borehole fluid samples described here. On average, fluid samples from boreholes 1362A and 1362B possessed a relatively higher abundance of known methanogens compared to borehole 1301A, consistent with higher methane concentration in 1362A and 1362B relative to 1301A fluids. Methane-oxidizing bacterial lineages from the phyla Proteobacteria and Verrucomicrobia were also detected; however, these groups were less abundant relative to the putative methane-producing groups. In conclusion, our study shows that methane and hydrogen are available electron donors and that methane is produced and potentially consumed by microorganisms in the oceanic basement. The data presented will guide incubation experiments using basement fluid in order to better understand the methane production/utilization processes within the oceanic basement.
Oliveira, J V; Alves, M M; Costa, J C
2014-06-01
A design of experiments was applied to evaluate different strategies to enhance the methane yield of macroalgae Gracilaria vermiculophylla. Biochemical Methane Potential (BMP) of G. vermiculophylla after physical pre-treatment (washing and maceration) reached 481±9 L CH4 kg(-1) VS, corresponding to a methane yield of 79±2%. No significant effects were achieved in the BMP after thermochemical pre-treatment, although the seaweeds solubilisation increased up to 44%. Co-digestion with glycerol or sewage sludge has proved to be effective for increasing the methane production. Addition of 2% glycerol (w:w) increased the BMP by 18%, achieving almost complete methanation of the substrate (96±3%). Co-digestion of seaweed and secondary sludge (15:85%, TS/TS) increased the BMP by 25% (605±4 L CH4 kg(-1) VS) compared to the seaweed individual digestion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Carrillo-Reyes, Julian; Buitrón, Germán
2016-12-01
A native microalgae consortium treated under thermal-acidic hydrolysis was used to produce hydrogen and methane in a two-step sequential process. Different acid concentrations were tested, generating hydrogen and methane yields of up to 45mLH 2 gVS -1 and 432mLCH 4 gVS -1 , respectively. The hydrogen production step solubilized the particulate COD (chemical oxygen demand) up to 30%, creating considerable amounts of volatile fatty acids (up to 10gCODL -1 ). It was observed that lower acid concentration presented higher hydrogen and methane production potential. The results revealed that thermal acid hydrolysis of a native microalgae consortium is a simple but effective strategy for producing hydrogen and methane in the sequential process. In addition to COD removal (50-70%), this method resulted in an energy recovery of up to 15.9kJ per g of volatile solids of microalgae biomass, one of the highest reported. Copyright © 2016 Elsevier Ltd. All rights reserved.
Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles
2018-01-01
Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules. PMID:29401390
Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment
Mirmohamadsadeghi, Safoora; Zamani, Akram; Horváth, Ilona Sárvári
2014-01-01
Organosolv pretreatment was used to improve solid-state anaerobic digestion (SSAD) for methane production from three different lignocellulosic substrates (hardwood elm, softwood pine, and agricultural waste rice straw). Pretreatments were conducted at 150 and 180°C for 30 and 60 min using 75% ethanol solution as an organic solvent with addition of sulfuric acid as a catalyst. The statistical analyses showed that pretreatment temperature was the significant factor affecting methane production. Optimum temperature was 180°C for elmwood while it was 150°C for both pinewood and rice straw. Maximum methane production was 152.7, 93.7, and 71.4 liter per kg carbohydrates (CH), which showed up to 32, 73, and 84% enhancement for rice straw, elmwood, and pinewood, respectively, compared to those from the untreated substrates. An inverse relationship between the total methane yield and the lignin content of the substrates was observed. Kinetic analysis of the methane production showed that the process followed a first-order model for all untreated and pretreated lignocelluloses. PMID:25243134
Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René
2016-10-01
Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Methane seeps along boundaries of receding glaciers in Alaska and Greenland
NASA Astrophysics Data System (ADS)
Walter Anthony, K. M.; Anthony, P. M.; Grosse, G.; Chanton, J.
2012-12-01
Glaciers, ice sheets, and permafrost form a 'cryosphere cap' that traps methane formed in the subsurface, restricting its flow to the Earth's surface and atmosphere. Despite model predictions that glacier melt and degradation of permafrost open conduits for methane's escape, there has been a paucity of field evidence for 'subcap' methane seepage to the atmosphere as a direct result of cryosphere disintegration in the terrestrial Arctic. Here, we document for the first time the release of sub-cryosphere methane to lakes, rivers, shallow marine fjords and the atmosphere from abundant gas seeps concentrated along boundaries of receding glaciers and permafrost thaw in Alaska and Greenland. Through aerial and ground surveys of 6,700 lakes and fjords in Alaska we mapped >150,000 gas seeps identified as bubbling-induced open holes in seasonal ice. Using gas flow rates, stable isotopes, and radiocarbon dating, we distinguished recent ecological methane from subcap, geologic methane. Subcap seeps had anomalously high bubbling rates, 14C-depletion, and stable isotope values matching microbial sources associated with sedimentary deposits and coal beds as well as thermogenic methane accumulations in Alaska. Since differential ice loading can overpressurize fluid reservoirs and cause sediment fracturing beneath ice sheets, and since the loss of glacial ice reduces normal stress on ground, opens joints, and activates faults and fissures, thereby increasing permeability of the crust to fluid flow, we hypothesized that in the previously glaciated region of Southcentral Alaska, where glacial wastage continues presently, subcap seeps should be disproportionately associated with neotectonic faults. Geospatial analysis confirmed that subcap seep sites were associated with faults within a 7 km belt from the modern glacial extent. The majority of seeps were located in areas affected by seismicity from isostatic rebound associated with deglaciation following the Little Ice Age (LIA; ca. 1650-1850 C.E.). Across Alaska, we found a relationship between methane stable isotopes, radiocarbon age, and distance to faults. Faults appear to allow the escape of deeper, more 14C-depleted methane to the atmosphere, whereas seeps away from faults entrained 14C-enriched methane formed in shallower sediments from microbial decomposition of younger organic matter. Additionally, we observed younger subcap methane seeps in lakes of Greenland's Sondrestrom Fjord that were associated with ice-sheet retreat since the LIA. These correlations suggest that in a warming climate, continued disintegration of glaciers, permafrost, and parts of the polar ice sheets will weaken subsurface seals and further open conduits, allowing a transient expulsion of methane currently trapped by the cryosphere cap.
Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar
2014-07-01
Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.
NASA Astrophysics Data System (ADS)
Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph
2016-04-01
Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).
Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz
2007-11-08
Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.
Methane (CH4), a potent greenhouse gas, is known to be produced and emitted from freshwater systems. Recently, extensive efforts have been directed toward quantifyingmethane emissions fromthese ecosystems, while additional research has focused on factors that may influence emissi...
Methane Emissions from Permafrost Regions using Low-Power Eddy Covariance Stations
NASA Astrophysics Data System (ADS)
Burba, G.; Sturtevant, C.; Schreiber, P.; Peltola, O.; Zulueta, R.; Mammarella, I.; Haapanala, S.; Rinne, J.; Vesala, T.; McDermitt, D.; Oechel, W.
2012-04-01
Methane is an important greenhouse gas with a warming potential 23 times that of carbon dioxide over a 100-year cycle. The permafrost regions of the world store significant amounts of organic materials under anaerobic conditions, leading to large methane production and accumulation in the upper layers of bedrock, soil and ice. These regions are currently undergoing dramatic change in response to warming trends, and may become a significant potential source of global methane release under a warming climate over the coming decades and centuries. Presently, most measurements of methane fluxes in permafrost regions have been made with static chamber techniques, and very few were done with the eddy covariance approach using closed-path analyzers. Although chambers and closed-path analyzers have advantages, both techniques have significant limitations, especially for permafrost research. Static chamber measurements are discrete in time and space, and particularly difficult to use over polygonal tundra with highly non-uniform micro-topography and active water layer. They also may not capture the dynamics of methane fluxes on varying time scales (hours to annual estimates). In addition, placement of the chamber may disturb the surface integrity causing a significant over-estimation of the measured flux. Closed-path gas analyzers for measuring methane eddy fluxes employ advanced technologies such as TDLS (Tunable Diode Laser Spectroscopy), ICOS (Integrated Cavity Output Spectroscopy), WS-CRDS (wavelength scanned cavity ring-down spectroscopy), but require high flow rates at significantly reduced optical cell pressures to provide adequate response time and sharpen absorption features. Such methods, when used with the eddy covariance technique, require a vacuum pump and a total of 400-1500 Watts of grid power for the pump and analyzer system. The weight of such systems often exceeds 100-200 lbs, restricting practical applicability for remote or portable field studies. As a result, spatial coverage of eddy covariance methane flux measurements remains limited. Remote permafrost wetlands of Arctic tundra, northern boreal peatlands of Canada and Siberia, and other highly methanogenic ecosystems have few eddy covariance methane measurement stations. Those existing are often located near grid power sources and roads rather than in the middle of the methane-producing ecosystem, while those that are placed appropriately may require extraordinary efforts to build and maintain them, with large investments into man-power and infrastructure. Alternatively, open-path approach allows methane flux measurements at ambient pressure without the need for a pump. As a result, the measurements can be done with very low-power (e.g. 5-10 Watts), light (5 .2 kg) instruments permitting solar- and wind- powered remote deployments in hard-to-reach sites from permanent, portable or mobile stations, and cost-effective additions of a methane measurement to the present array of CO2 and H2O measurements. The low-power operation and light weight of open-path eddy covariance stations is important for a number of ecosystems (rice fields, landfills, wetlands, cattle yards), but it is especially important for permafrost regions where grid power and access roads are generally not available, and the logistics of running the experiments are particularly expensive. Emerging research on methane flux measurements using low-power stations equipped with LI-7700 open-path methane analyzer (LI-COR Biosciences) are presented from several permafrost ecosystems with contrasting setups, and weather conditions. Principles of operation, station characteristics and requirements are also discussed.
Methane-Stimulated Benthic Marine Nitrogen Fixation at Deep-Sea Methane Seeps
NASA Astrophysics Data System (ADS)
Dekas, A. E.; Orphan, V.
2011-12-01
Biological nitrogen fixation (the conversion of N2 to NH3) is a critical process in the oceans, counteracting the production of N2 gas by dissimilatory bacterial metabolisms and providing a source of bioavailable nitrogen to many nitrogen-limited ecosystems. Although current measurements of N2 production and consumption in the oceans indicate that the nitrogen cycle is not balanced, recent findings on the limits of nitrogen fixation suggest that the perceived imbalance is an artifact of an incomplete assessment of marine diazotrophy. One currently poorly studied and potentially underappreciated habitat for diazotrophic organisms is the sediments of the deep-sea. In the present study we investigate the distribution and magnitude of benthic marine diazotrophy at several active deep-sea methane seeps (Mound 12, Costa Rica; Eel River Basin, CA, USA; Hydrate Ridge, OR, USA; and Monterey Canyon, CA, USA). Using 15N2 and 15NH4 sediment incubation experiments followed by single-cell (FISH-NanoSIMS) and bulk isotopic analysis (EA-IRMS), we observed total protein synthesis (15N uptake from 15NH4) and nitrogen fixation (15N update from 15N2). The highest rates of nitrogen fixation observed in the methane seep sediment incubation experiments were over an order of magnitude greater than those previously published from non-seep deep-sea sediments (Hartwig and Stanley, Deep-Sea Research, 1978, 25:411-417). However, methane seep diazotrophy appears to be highly spatially variable, with sediments exhibiting no nitrogen fixation originating only centimeters away from sediments actively incorporating 15N from 15N2. The greatest spatial variability in diazotrophy was observed with depth in the sediment, and corresponded to steep gradients in sulfate and methane. The maximum rates of nitrogen fixation were observed within the methane-sulfate transition zone, where organisms mediating the anaerobic oxidation of methane are typically in high abundance. Additionally, incubation experiments without added methane were observed to have little to no nitrogen fixation activity. In previous work, we demonstrated the capability of uncultured methanotrophic archaea (ANME-2) to fix nitrogen when associated with sulfate reducing bacterial symbionts. These new results suggest that these microbes may be the dominant nitrogen-fixing organisms in methane seep sediment. Intriguingly, characterization of the diversity of nifH genes from our sediment incubations as well as published nifH sequences reported from other seep habitats suggest the potential for other diazotrophic microorganisms in addition to the ANME-2 archaea. To further explore this possibility, FISH-NanoSIMS analyses were conducted on two dominant free-living sulfate-reducing lineages from seep incubations demonstrating nitrogen fixation activity. Preliminary results from this analysis suggest that single cells belonging to the Desulfobulbaceae may also be involved in nitrogen fixation in methane seeps. Despite this demonstrated potential, the extent of methane-independent diazotrophy by non-ANME diazotrophs appears to be low within the methane seep environment. Further studies are necessary to assess the greater diversity and activity of diazotrophs in other deep-sea sedimentary habitats.
Reversing methanogenesis to capture methane for liquid biofuel precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti
Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less
Reversing methanogenesis to capture methane for liquid biofuel precursors
Soo, Valerie W. C.; McAnulty, Michael J.; Tripathi, Arti; ...
2016-01-14
Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) frommore » a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl 3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl 3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using 13C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. Lastly, we anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.2 Definitions. (a) Methane detector. A methane detector is a device that may be used to detect the presence of methane in a gassy mine. (b) Methane-indicating detector. A methane-indicating detector is a device that will show, within certain limits of error...
MethaneSat: Detecting Methane Emissions in the Barnett Shale Region
NASA Astrophysics Data System (ADS)
Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.
2017-12-01
In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.
Anaerobic Methane Oxidation in Soils - revealed using 13C-labelled methane tracers
NASA Astrophysics Data System (ADS)
Riekie, G. J.; Baggs, E. M.; Killham, K. S.; Smith, J. U.
2008-12-01
In marine sediments, anaerobic methane oxidation is a significant biogeochemical process limiting methane flux from ocean to atmosphere. To date, evidence for anaerobic methane oxidation in terrestrial environments has proved elusive, and its significance is uncertain. In this study, an isotope dilution method specifically designed to detect the process of anaerobic methane oxidation in methanogenic wetland soils is applied. Methane emissions of soils from three contrasting permanently waterlogged sites in Scotland are investigated in strictly anoxic microcosms to which 13C- labelled methane is added, and changes in the concentration and 12C/13C isotope ratios of methane and carbon dioxide are subsequently measured and used to calculate separate the separate components of the methane flux. The method used takes into account the 13C-methane associated with methanogenesis, and the amount of methane dissolved in the soil. The calculations make no prior assumptions about the kinetics of methane production or oxidation. The results indicate that methane oxidation can take place in anoxic soil environments. The clearest evidence for anaerobic methane oxidation is provided by soils from a minerotrophic fen site (pH 6.0) in Bin Forest underlain by ultra-basic and serpentine till. In the fresh soil anoxic microcosms, net consumption methane was observed, and the amount of headspace 13C-CO2 increased at a greater rate than the 12+13C-CO2, further proof of methane oxidation. A net increase in methane was measured in microcosms of soil from Murder Moss, an alkaline site, pH 6.5, with a strong calcareous influence. However, the 13C-CH4 data provided evidence of methane oxidation, both in the disappearance of C- CH4 and appearance of smaller quantities of 13C-CO2. The least alkaline (pH 5.5) microcosms, of Gateside Farm soil - a granitic till - exhibited net methanogenesis and the changes in 13C-CH4 and 13C-CO2 here followed the pattern expected if no methane is consumed. Overall, this study provides good evidence for anaerobic methane oxidation in certain wetland soils, and suggests that models predicting methane flux from wetland soils to the atmosphere could be improved by better understanding of this process.
Spatial distribution of CH3 and CH2 radicals in a methane rf discharge
NASA Astrophysics Data System (ADS)
Sugai, H.; Kojima, H.; Ishida, A.; Toyoda, H.
1990-06-01
Spatial distributions of neutral radicals CH3 and CH2 in a capacitively coupled rf glow discharge of methane were measured by threshold ionization mass spectrometry. A strong asymmetry of the density profile was found for the CH2 radical in the high-pressure (˜100 mTorr) discharge. In addition, comprehensive measurements of electron energy distribution, ionic composition, and radical sticking coefficient were made to use as inputs to theoretical modeling of radicals in the methane plasma. The model predictions agree substantially with the measured radical distributions.
NASA Astrophysics Data System (ADS)
Miyajima, Yusuke; Watanabe, Yumiko; Ijiri, Akira; Goto, Akiko; Jenkins, Robert; Hasegawa, Takashi; Sakai, Saburo; Matsumoto, Ryo
2017-04-01
Methane is generated mainly by microbial or thermal degradation of organic matter, and the origin of methane can be estimated based on its stable carbon isotopic signature. Seafloor seepages of methane-charged fluids have been a major source of methane to the ocean, and knowing the origin of methane at the methane seeps can provide valuable insights into the subsurface fluid circulation and biogeochemical processes. Methane seeps in the geological past are archived as authigenic methane-derived carbonate rocks, which precipitate via an alkalinity increase facilitated by microbially mediated anaerobic oxidation of methane. Here we attempted to estimate origins of methane at ancient seeps, based on several proxies preserved within the seep carbonates. We examined methane-seep carbonate rocks in the Japan Sea region, collected from lower Miocene to middle Pleistocene sediments at 11 sites on land, and also carbonate nodules collected from the seafloor off Joetsu, where thermogenic methane is seeping. Carbon isotopic compositions of the carbonates and lipid biomarkers of methane-oxidizing archaea within them were analyzed. In order to directly know original isotopic signatures of methane, we also attempted to extract adsorbed methane through acid dissolution of the powdered carbonates. Early-diagenetic carbonate phases show various δ13C values between -64.7 and -4.7‰ vs. VPDB, suggesting either biogenic or thermogenic, or both origins of methane. A lipid biomarker pentamethylicosane (PMI) extracted from the ancient carbonates has δ13C values mostly lower than -100‰ , whereas that from the modern methane-derived carbonate nodule has a higher value (-80‰ ). The δ13C values of the seeping methane (-36‰ ) and PMI in the modern Joetsu seep carbonate shows an offset of -44‰ . If this carbon isotope offset was similar at the ancient seeps, the δ13C values of PMI indicate that methane at ancient seeps in the Japan Sea region was biogenic in origin, with δ13C values lower than -50‰ . Acid dissolution of the Miocene to Pliocene carbonates released methane with δ13C values mostly around or higher than -50‰ , which conflicts with the estimation based on biomarkers. Moreover, the Pleistocene and modern samples released only trace amounts of methane. It is thus highly possible that the extracted methane was mostly adsorbed on the carbonates within zones of thermogenic generation of hydrocarbons during burial. In conclusion, we can roughly estimate origins of methane at ancient seeps based on δ13C values of carbonates and biomarkers. However, in order to directly analyze methane contained in ancient seepage fluids, exploration of gas or fluid inclusions trapped within carbonate crystals is necessary.
NASA Astrophysics Data System (ADS)
Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming
2009-06-01
Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.
In-Situ Quantification of Microbial Processes Controlling Methane Emissions From Rice Plants
NASA Astrophysics Data System (ADS)
Schroth, M. H.; Cho, R.; Zeyer, J. A.
2011-12-01
Methane is an important greenhouse gas contributing to global warming. Among other sources, rice (paddy) soils represent a major nonpoint source of biogenic methane. In flooded paddy soils methane is produced under anaerobic conditions. Conversely, methanotrophic microorganisms oxidize methane to carbon dioxide in the root zone of rice plants, thus reducing overall methane emissions to the atmosphere. We present a novel combination of methods to quantify methanogenesis and methane oxidation in paddy soils and to link methane turnover to net emissions of rice plants. To quantify methane turnover in the presence of high methane background concentrations, small-scale push-pull tests (PPTs) were conducted in paddy soils using stable isotope-labeled substrates. Deuterated acetate and 13-C bicarbonate were employed to discern and quantify acetoclastic and hydrogenotrophic methanogenesis, while 13-C methane was employed to quantify methane oxidation. During 2.5 hr-long PPTs, 140 mL of a test solution containing labeled substrates and nonreactive tracers (Ar, Br-) was injected into paddy soils of potted rice plants. After a short rest period, 480 mL of test solution/pore water mixture was extracted from the same location. Methane turnover was then computed from extraction-phase breakthrough curves of substrates and/or products, and nonreactive tracers. To link methane turnover to net emissions, methane emissions from paddy soils and rice plants were individually determined immediately preceding PPTs using static flux chambers. We will present results of a series of experiments conducted in four different potted rice plants. Preliminary results indicate substantial variability in methane turnover and net emission between different rice plants. The employed combination of methods appears to provide a robust means to quantitatively link methane turnover in paddy soils to net emissions from rice plants.
Zuo, Zhijun; Ramírez, Pedro J.; Senanayake, Sanjaya D.; ...
2016-10-10
Here, an inverse CeO 2/Cu 2O/Cu(111) catalyst is able to activate methane at room temperature producing C, CH x fragments and CO x species on the oxide surface. The addition of water to the system leads to a drastic change in the selectivity of methane activation yielding only adsorbed CH x fragments. At a temperature of 450 K, in the presence of water, a CH 4 → CH 3OH catalytic transformation occurs with a high selectivity. OH groups formed by the dissociation of water saturate the catalyst surface, removing sites that could decompose CH x fragments, and generating centers onmore » which methane can directly interact to yield methanol.« less
Liang, Yue-Gan; Li, Xiu-Juan; Zhang, Jin; Zhang, Li-Gan; Cheng, Beijiu
2017-05-01
Low methane production and high levels of heavy metal in pig slurries limit the feasibility of anaerobic digestion of pig manure. In this study, changes in the methane production and bioavailability of heavy metals in the anaerobic digestion of diluted pig manure were evaluated using single and combined action of microscale zero-valence iron (ZVI) and magnetite. After 30 days of anaerobic digestion, the methane yield ranged from 246.9 to 334.5 mL/g VS added, which increased by 20-26% in the group added with microscale ZVI and/or magnetite relative to that in the control group. Results of the first-order kinetic model revealed that addition of microscale ZVI and/or magnetite increased the biogas production potential, rather than the biogas production rate constant. These treatments also changed the distribution of chemical fractions for heavy metal. The addition of ZVI decreased the bioavailability of Cu and Zn in the solid digested residues. Moreover, a better performance was observed in the combined action of microscale ZVI and magnetite, and the ZVI anaerobic corrosion end-product, magnetite, might help enhance methane production through direct interspecies electron transfer in ZVI-anaerobic digestion process.
Mustapha, Nurul Asyifah; Sakai, Kenji; Shirai, Yoshihito; Maeda, Toshinari
2016-11-01
Anaerobic digestion is an effective method for reducing the by-product of waste-activated sludge (WAS) from wastewater treatment plants and for producing bioenergy from WAS. However, only a limited number of studies have attempted to improve anaerobic digestion by targeting the microbial interactions in WAS. In this study, we examined whether different antibiotics positively, negatively, or neutrally influence methane fermentation by evaluating changes in the microbial community and functions in WAS. Addition of azithromycin promoted the microbial communities related to the acidogenic and acetogenic stages, and a high concentration of soluble proteins and a high activity of methanogens were detected. Chloramphenicol inhibited methane production but did not affect the bacteria that contribute to the hydrolysis, acidogenesis, and acetogenesis digestion stages. The addition of kanamycin, which exhibits the same methane productivity as a control (antibiotic-free WAS), did not affect all of the microbial communities during anaerobic digestion. This study demonstrates the simultaneous functions and interactions of diverse bacteria and methanogenic Archaea in different stages of the anaerobic digestion of WAS. The ratio of Caldilinea, Methanosarcina, and Clostridium may correspond closely to the trend of methane production in each antibiotic. The changes in microbial activities and function by antibiotics facilitate a better understanding of bioenergy production.
Cryptic Methane Emissions from Upland Forest Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Megonigal, Patrick; Pitz, Scott
This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) developmore » the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.« less
Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.
2016-01-01
Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.
2016-10-01
Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.
The regulation of methane oxidation in soil
NASA Technical Reports Server (NTRS)
Mancinelli, R. L.
1995-01-01
The atmospheric concentration of methane, a greenhouse gas, has more than doubled during the past 200 years. Consequently, identifying the factors influencing the flux of methane into the atmosphere is becoming increasingly important. Methanotrophs, microaerophilic organisms widespread in aerobic soils and sediments, oxidize methane to derive energy and carbon for biomass. In so doing, they play an important role in mitigating the flux of methane into the atmosphere. Several physico-chemical factors influence rates of methane oxidation in soil, including soil diffusivity; water potential; and levels of oxygen, methane, ammonium, nitrate, nitrite, and copper. Most of these factors exert their influence through interactions with methane monooxygenase (MMO), the enzyme that catalyzes the reaction converting methane to methanol, the first step in methane oxidation. Although biological factors such as competition and predation undoubtedly play a role in regulating the methanotroph population in soils, and thereby limit the amount of methane consumed by methanotrophs, the significance of these factors is unknown. Obtaining a better understanding of the ecology of methanotrophs will help elucidate the mechanisms that regulate soil methane oxidation.
Environmental impacts on the diversity of methane-cycling microbes and their resultant function
Aronson, Emma L.; Allison, Steven D.; Helliker, Brent R.
2013-01-01
Methane is an important anthropogenic greenhouse gas that is produced and consumed in soils by microorganisms responding to micro-environmental conditions. Current estimates show that soil consumption accounts for 5–15% of methane removed from the atmosphere on an annual basis. Recent variability in atmospheric methane concentrations has called into question the reliability of estimates of methane consumption and calls for novel approaches in order to predict future atmospheric methane trends. This review synthesizes the environmental and climatic factors influencing the consumption of methane from the atmosphere by non-wetland, terrestrial soil microorganisms. In particular, we focus on published efforts to connect community composition and diversity of methane-cycling microbial communities to observed rates of methane flux. We find abundant evidence for direct connections between shifts in the methane-cycling microbial community, due to climate and environmental changes, and observed methane flux levels. These responses vary by ecosystem and associated vegetation type. This information will be useful in process-based models of ecosystem methane flux responses to shifts in environmental and climatic parameters. PMID:23966984
Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet
NASA Astrophysics Data System (ADS)
Michaud, Alexander B.; Dore, John E.; Achberger, Amanda M.; Christner, Brent C.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Priscu, John C.
2017-08-01
Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. We show that sub-ice-sheet methane is produced through the biological reduction of CO2 using H2. This methane pool is subsequently consumed by aerobic, bacterial methane oxidation at the SLW sediment-water interface. Bacterial oxidation consumes >99% of the methane and represents a significant methane sink, and source of biomass carbon and metabolic energy to the surficial SLW sediments. We conclude that aerobic methanotrophy may mitigate the release of methane to the atmosphere upon subglacial water drainage to ice sheet margins and during periods of deglaciation.
Model for estimating enteric methane emissions from United States dairy and feedlot cattle.
Kebreab, E; Johnson, K A; Archibeque, S L; Pape, D; Wirth, T
2008-10-01
Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.
Jensen, Michael P; Wick, Douglas D; Reinartz, Stefan; White, Peter S; Templeton, Joseph L; Goldberg, Karen I
2003-07-16
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.
NASA Astrophysics Data System (ADS)
Kangasaho, V. E.; Tsuruta, A.; Aalto, T.; Backman, L. B.; Houweling, S.; Krol, M. C.; Peters, W.; van der Laan-Luijkx, I. T.; Lienert, S.; Joos, F.; Dlugokencky, E. J.; Michael, S.; White, J. W. C.
2017-12-01
The atmospheric burden of CH4 has more than doubled since preindustrial time. Evaluating the contribution from anthropogenic and natural emissions to the global methane budget is of great importance to better understand the significance of different sources at the global scale, and their contribution to changes in growth rate of atmospheric CH4 before and after 2006. In addition, observations of δ13C-CH4 suggest an increase in natural sources after 2006, which matches the observed increase and variation of CH4 abudance. Methane emission sources can be identified using δ13C-CH4, because different sources produce methane with process-specific isotopic signatures. This study focuses on inversion model based estimates of global anthropogenic and natural methane emission rates to evaluate the existing methane emission estimates with a new δ13C-CH4 inversion system. In situ measurements of atmospheric methane and δ13C-CH4 isotopic signature, provided by the NOAA Global Monitoring Division and the Institute of Arctic and Alpine Research, will be assimilated into the CTDAS-13C-CH4. The system uses the TM5 atmospheric transport model as an observation operator, constrained by ECMWF ERA Interim meteorological fields, and off-line TM5 chemistry fields to account for the atmospheric methane sink. LPX-Bern DYPTOP ecosystem model is used for prior natural methane emissions from wetlands, peatlands and mineral soils, GFED v4 for prior fire emissions and EDGAR v4.2 FT2010 inventory for prior anthropogenic emissions. The EDGAR antropogenic emissions are re-divided into enteric fermentation and manure management, landfills and waste water, rice, coal, oil and gas, and residential emissions, and the trend of total emissions is scaled to match optimized anthropogenic emissions from CTE-CH4. In addition to these categories, emissions from termites and oceans are included. Process specific δ13C-CH4 isotopic signatures are assigned to each emission source to estimate 13CH4 fraction in CH4 emissions. Among the priors, anthropogenic and natural emissions are optimized and others are directly imposed from the prior. A detailed emission estimates of antropogenic and natural CH4 emissions will be constructed in order to provide a more comprehensive understanding of methane emission source divisions.
van Engelen, S; Bovenhuis, H; Dijkstra, J; van Arendonk, J A M; Visker, M H P W
2015-11-01
Dairy cows produce enteric methane, a greenhouse gas with 25 times the global warming potential of CO2. Breeding could make a permanent, cumulative, and long-term contribution to methane reduction. Due to a lack of accurate, repeatable, individual methane measurements needed for breeding, indicators of methane production based on milk fatty acids have been proposed. The aim of the present study was to quantify the genetic variation for predicted methane yields. The milk fat composition of 1,905 first-lactation Dutch Holstein-Friesian cows was used to investigate 3 different predicted methane yields (g/kg of DMI): Methane1, Methane2, and Methane3. Methane1 was based on the milk fat proportions of C17:0anteiso, C18:1 rans-10+11, C18:1 cis-11, and C18:1 cis-13 (R(2)=0.73). Methane2 was based on C4:0, C18:0, C18:1 trans-10+11, and C18:1 cis-11 (R(2)=0.70). Methane3 was based on C4:0, C6:0, and C18:1 trans-10+11 (R(2)=0.63). Predicted methane yields were demonstrated to be heritable traits, with heritabilities between 0.12 and 0.44. Breeding can, thus, be used to decrease methane production predicted based on milk fatty acids. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Temporal variation of aerobic methane oxidation over a tidal cycle in a wetland of northern Taiwan.
NASA Astrophysics Data System (ADS)
Lee, T. Y.; Wang, P. L.; Lin, L. H.
2017-12-01
Aerobic methanotrophy plays an important role in controlling methane emitted from wetlands. However, the activity of aerobic methanotrophy regulated by temporal fluctuation of oxygen and methane supply in tidal wetlands is not well known. This study aims to examine the dynamics of methane fluxes and potential aerobic methane consumption rates in a tidal wetland of northern Taiwan, where the variation of environmental characteristics, such as sulfate and methane concentration in pore water has been demonstrated during a tidal cycle. Two field campaigns were carried out in December of 2016 and March of 2017. Fluxes of methane emission, methane concentrations in surface sediments and oxygen profiles were measured at different tidal phases. Besides, batch incubations were conducted on surface sediments in order to quantify potential microbial methane consumption rates and to derive the kinetic parameters for aerobic methanotrophy. Our results demonstrated temporal changes of the surface methane concentration and the methane emission flux during a tidal cycle, while the oxygen flux into the sediment was kept at a similar magnitude. The methane flux was low when the surface was exposed for both shortest and longest periods of time. The potential aerobic methane oxidation rate was high for sample collected from the surface sediments exposed the longest. No correlation could be found between the potential aerobic methane oxidation rate and either the oxygen downward flux or methane emission flux. The decoupled relationships between these observed rates and fluxes suggest that, rather than aerobic methanotrophy, heterotrophic respirations exert a profound control on oxygen flux, and the methane emission is not only been affected by methane consumption but also methane production at depths. The maximum potential rate and the half saturation concentration determined from the batch incubations were high for the surface sediments collected in low tide, suggesting that aerobic methanotrophy could be modulated to reach peak activity once the influence of saline water is reduced to a low level.
Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo
2018-05-01
Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production
NASA Astrophysics Data System (ADS)
Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.
2014-12-01
Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.
NASA Astrophysics Data System (ADS)
Fleck, Derek; Hoffnagle, John; Yiu, John; Chong, Johnston; Tan, Sze
2017-04-01
Methane source pinpointing and attribution is ever more important because of the vast network of natural gas distribution which has led to a very large emission sources. Ethane can be used as a tracer to distinguish gas sources between biogenic and natural gas. Having this measurement sensitive enough can even distinguish between gas distributors, or maturity through gas wetness. Here we present data obtained using a portable cavity ring-down spectrometer weighing less than 11 kg and consuming less than 35W that simultaneously measures methane and ethane with a raw 1-σ precision of 50ppb and 4.5ppb, respectively at 2 Hz. These precisions allow for a C2:C1 ratio 1-σ measurement of <0.1% above 10ppm in a single measurement. Utilizing a second onboard laser allows for a high precision methane only mode used for surveying and pinpointing. This mode measures at a rate faster than 4Hz with a 1-σ precision of <3ppb. Because methane seepages are highly variable due to air turbulence and mixing right above the ground, correlations in the variations in C2H6 and CH4 are used to derive a source C2:C1. Additional hardware is needed for steady state concentration measurements to reliably measure the C2:C1 ratio instantaneously. Source discrimination data of local leaks and methane sources using this analysis method are presented. Additionally, two-dimensional plume snapshots are constructed using an integrated onboard GPS to visualize horizontal plane gas propagation.
In 't Zandt, Michiel H; Beckmann, Sabrina; Rijkers, Ruud; Jetten, Mike S M; Manefield, Mike; Welte, Cornelia U
2017-09-19
Coal mining is responsible for 11% of total anthropogenic methane emission thereby contributing considerably to climate change. Attempts to harvest coalbed methane for energy production are challenged by relatively low methane concentrations. In this study, we investigated whether nutrient and acetate amendment of a non-producing sub-bituminous coal well could transform the system to a methane source. We tracked cell counts, methane production, acetate concentration and geochemical parameters for 25 months in one amended and one unamended coal well in Australia. Additionally, the microbial community was analysed with 16S rRNA gene amplicon sequencing at 17 and 25 months after amendment and complemented by metagenome sequencing at 25 months. We found that cell numbers increased rapidly from 3.0 × 10 4 cells ml -1 to 9.9 × 10 7 in the first 7 months after amendment. However, acetate depletion with concomitant methane production started only after 12-19 months. The microbial community was dominated by complex organic compound degraders (Anaerolineaceae, Rhodocyclaceae and Geobacter spp.), acetoclastic methanogens (Methanothrix spp.) and fungi (Agaricomycetes). Even though the microbial community had the functional potential to convert coal to methane, we observed no indication that coal was actually converted within the time frame of the study. Our results suggest that even though nutrient and acetate amendment stimulated relevant microbial species, it is not a sustainable way to transform non-producing coal wells into bioenergy factories. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Astrophysics Data System (ADS)
Rhodes, Rachael H.; Faïn, Xavier; Stowasser, Christopher; Blunier, Thomas; Chappellaz, Jérôme; McConnell, Joseph R.; Romanini, Daniele; Mitchell, Logan E.; Brook, Edward J.
2013-04-01
Ancient air trapped inside bubbles in ice cores can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800 yr obtained from continuous analysis of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other ice cores and demonstrates the detailed depth resolution (5.3 cm), rapid acquisition time (30 m day-1) and good long-term reproducibility (2.6%, 2σ) of the continuous measurement technique. In addition, we report the detection of high frequency ice core methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-ice transition region and an interval of ice core dating from 1546-1560 AD (gas age) resolve apparently quasi-annual scale methane oscillations. Traditional gas chromatography measurements on discrete ice samples confirm these signals and indicate peak-to-peak amplitudes of ca. 22 parts per billion (ppb). We hypothesise that these oscillations result from staggered bubble close-off between seasonal layers of contrasting density during time periods of sustained multi-year atmospheric methane change. Secondly, we report the detection of abrupt (20-100 cm depth interval), high amplitude (35-80 ppb excess) methane spikes in the NEEM ice that are reproduced by discrete measurements. We show for the first time that methane spikes present in thin and infrequent layers in polar, glacial ice are accompanied by elevated concentrations of carbon- and nitrogen-based chemical impurities, and suggest that biological in-situ production may be responsible.
NASA Astrophysics Data System (ADS)
Martinson, Guntars; Brandt, Franziska; Conrad, Ralf
2016-04-01
Several thousands of tank bromeliads per hectare of neotropical forest create a unique wetland ecosystem that harbors diverse communities of archaea and bacteria and emit substantial amounts of methane. We studied spatial distribution of archaeal and bacterial communities, microbial methane cycling and their environmental drivers in tank bromeliad wetlands. We selected tank bromeliads of different species and functional types (terrestrial and canopy bromeliads) in a neotropical montane forest of Southern Ecuador and sampled the organic tank slurry. Archaeal and bacterial communities were characterized using terminal-restriction fragment length polymorphism (T-RFLP) and Illumina MiSeq sequencing, respectively, and linked with physico-chemical tank-slurry properties. Additionally, we performed tank-slurry incubations to measure methane production potential, stable carbon isotope fractionation and pathway of methane formation. Archaeal and bacterial community composition in bromeliad wetlands was dominated by methanogens and by Alphaproteobacteria, respectively, and did not differ between species but between functional types. Hydrogenotrophic Methanomicrobiales were the dominant methanogens among all bromeliads but the relative abundance of aceticlastic Methanosaetaceae increased in terrestrial bromeliads. Complementary, hydrogenotrophic methanogenesis was the dominant pathway of methane formation but the relative contribution of aceticlastic methanogenesis increased in terrestrial bromeliads and led to a concomitant increase in total methane production. Rhodospirillales were characteristic for canopy bromeliads, Planctomycetales and Actinomycetalis for terrestrial bromeliads. While nitrogen concentration and pH explained 32% of the archaeal community variability, 29% of the bacterial community variability was explained by nitrogen, acetate and propionate concentrations. Our study demonstrates that bromeliad functional types, associated with different forest strata, and their constrained environmental characteristics shape the spatial structure of archaeal and bacterial communities and microbial methane cycling in neotropical bromeliad wetlands.
NASA Astrophysics Data System (ADS)
Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.
2017-10-01
At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.
NASA Astrophysics Data System (ADS)
Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.
2015-12-01
Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.
X-ray Computed Tomography Observation of Methane Hydrate Dissociation
Tomutsa, L.; Freifeld, B.; Kneafsey, T.J.; Stern, L.A.
2002-01-01
Deposits of naturally occurring methane hydrate have been identified in permafrost and deep oceanic environments with global reserves estimated to be twice the total amount of energy stored in fossil fuels. The fundamental behavior of methane hydrate in natural formations, while poorly understood, is of critical importance if the economic recovery of methane from hydrates is to be accomplished. In this study, computed X-ray tomography (CT) scanning is used to image an advancing dissociation front in a heterogeneous gas hydrate/sand sample at 0.1 MPa. The cylindrical methane hydrate and sand aggregate, 2.54 cm in diameter and 6.3 cm long, was contained in a PVC sample holder that was insulated on all but one end. At the uninsulated end, the dissociated gas was captured and the volume of gas monitored. The sample was initially imaged axially using X-ray CT scanning within the methane hydrate stability zone by keeping the sample temperature at 77??K. Subsequently, as the sample warmed through the methane hydrate dissociation point at 194??K and room pressure, gas was produced and the temperature at the bottom of the sample plug was monitored while CT images were acquired. The experiment showed that CT imaging can resolve the reduction in density (as seen by a reduction in beam attenuation) of the hydrate/sand aggregate due to the dissociation of methane hydrate. In addition, a comparison of CT images with gas flow and temperature measurements reveals that the CT scanner is able to resolve accurately and spatially the advancing dissociation front. Future experiments designed to better understand the thermodynamics of hydrate dissociation are planned to take advantage of the temporal and spatial resolution that the CT scanner provides.
Dissolved methane in the Beaufort Sea and the Arctic Ocean, 1992-2009; sources and atmospheric flux
Lorenson, Thomas D.; Greinert, Jens; Coffin, Richard B.
2016-01-01
Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during eleven surveys spanning the years of 1992-1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 to 0.43 mg CH4 m-2 day-1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m-2 day-1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 to 1.01 to mg CH4 m-2 day-1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr-1 and 0.30 Tg CH4 yr-1 respectively to maximum fluxes of 0.18 Tg CH4 yr-1 and 2.2 Tg CH4 yr-1 respectively. A methane flux of 0.36 Tg CH4 yr-1from the deep Arctic Ocean was estimated using data from 1993-94. The flux can be as much as 2.35 Tg CH4 yr-1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ~560 Tg CH4 yr-1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.
Methane from shallow seep areas of the NW Svalbard Arctic margin does not reach the sea surface
NASA Astrophysics Data System (ADS)
Silyakova, Anna; Greinert, Jens; Jansson, Pär; Ferré, Bénédicte
2015-04-01
Methane, an important greenhouse gas, leaks from large areas of the Arctic Ocean floor. One overall question is how much methane passes from the seabed through the water column, potentially reaching the atmosphere. Transport of methane from the ocean floor into and through the water column depends on many factors such as distribution of gas seeps, microbial methane oxidation, and ambient oceanographic conditions, which may trigger a change in seep activity. From June-July 2014 we investigated dissolved methane in the water column emanating from the "Prins Karls Forland seeps" area offshore the NW Svalbard Arctic margin. Measurements of the spatial variability of dissolved methane in the water column included 65 CTD stations located in a grid covering an area of 30 by 15 km. We repeated an oceanographic transect twice in a week for time lapse studies, thus documenting significant temporal variability in dissolved methane above one shallow seep site (~100 m water depth). Analysis of both nutrient concentrations and dissolved methane in water samples from the same transect, reveal striking similarities in spatial patterns of both dissolved methane and nutrients indicating that microbial community is involved in methane cycling above the gas seepage. Our preliminary results suggest that although methane release can increase in a week's time, providing twice as much dissolved gas to the water column, no methane from a seep reaches the sea surface. Instead it spreads horizontally under the pycnocline. Yet microbial communities react rapidly to the methane supply above gas seepage areas and may also have an important role as an effective filter, hindering methane release from the ocean to the atmosphere during rapid methane ebullition. This study is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259.
Activity and diversity of aerobic methanotrophs in a coastal marine oxygen minimum zone
NASA Astrophysics Data System (ADS)
Padilla, C. C.; Bristow, L. A.; Sarode, N. D.; Garcia-Robledo, E.; Girguis, P. R.; Thamdrup, B.; Stewart, F. J.
2016-02-01
The pelagic ocean is a sink for the potent greenhouse gas methane, with methane consumption regulated primarily by aerobic methane-oxidizing bacteria (MOB). Marine oxygen minimum zones (OMZs) contain the largest pool of pelagic methane in the oceans but remain largely unexplored for their potential to harbor MOB communities and contribute to methane cycling. Here, we present meta-omic and geochemical evidence that aerobic MOB are present and active in a coastal OMZ, in Golfo Dulce, Costa Rica. Oxygen concentrations were < 50 nM below 85 m, and sulfide accumulated below 140 m, with methane concentrations ranging from trace levels above the oxycline to 78 nM at 180 m. The upper OMZ (90 m) was characterized by an abundant MOB and methylotroph community representing diverse lineages of the Methylophilaceae, Methylophaga, and Methylococcales. Of these, Type I methanotrophs of the Order Methylococcales dominated , representing >5% of total 16S rRNA genes and >19% of 16S rRNA transcripts. This peak in ribosomal abundance and activity was affiliated with methane oxidation rates of 2.6 ± 0.7 nM d-1, measured in seawater incubations with estimated O2 concentrations of 50 nM. Rates fell to zero with the addition of acetylene, an inhibitor of aerobic methanotrophy. In contrast, methane oxidation was below detection at lower depths in the OMZ (100 m and 120 m). Metatranscriptome sequencing indicated a peak at 90 m in the expression of pathways essential to Methylococcales, including aerobic methanotrophy and the RuMP pathway of carbon assimilation, as well as the serine pathway of Type II methanotrophs. Preliminary analysis of single-cell genomes suggests distinct adaptations by Methylococcales from the Golfo Dulce, helping explain the persistence of putative aerobic methanotrophs under very low oxygen in this OMZ. Taken together, these data suggest the boundary layers of OMZs, despite extreme oxygen depletion, are a niche for aerobic MOBs and therefore potentially important zones of pelagic methane loss.
ICE MINERALOGY ACROSS AND INTO THE SURFACES OF PLUTO, TRITON, AND ERIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegler, S. C.; Grundy, W. M.; Olkin, C. B.
We present three near-infrared spectra of Pluto taken with the Infrared Telescope Facility and SpeX, an optical spectrum of Triton taken with the MMT and the Red Channel Spectrograph, and previously published spectra of Pluto, Triton, and Eris. We combine these observations with a two-phase Hapke model and gain insight into the ice mineralogy on Pluto, Triton, and Eris. Specifically, we measure the methane-nitrogen mixing ratio across and into the surfaces of these icy dwarf planets. In addition, we present a laboratory experiment that demonstrates it is essential to model methane bands in spectra of icy dwarf planets with twomore » methane phases-one highly diluted by nitrogen and the other rich in methane. For Pluto, we find bulk, hemisphere-averaged, methane abundances of 9.1% {+-} 0.5%, 7.1% {+-} 0.4%, and 8.2% {+-} 0.3% for sub-Earth longitudes of 10 Degree-Sign , 125 Degree-Sign , and 257 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds these small differences are statistically significant. For Triton, we find bulk, hemisphere-averaged, methane abundances of 5.0% {+-} 0.1% and 5.3% {+-} 0.4% for sub-Earth longitudes of 138 Degree-Sign and 314 Degree-Sign . Application of the Wilcoxon rank sum test to our measurements finds the differences are not statistically significant. For Eris, we find a bulk, hemisphere-averaged, methane abundance of 10% {+-} 2%. Pluto, Triton, and Eris do not exhibit a trend in methane-nitrogen mixing ratio with depth into their surfaces over the few centimeter range probed by these observations. This result is contrary to the expectation that since visible light penetrates deeper into a nitrogen-rich surface than the depths from which thermal emission emerges, net radiative heating at depth would drive preferential sublimation of nitrogen leading to an increase in the methane abundance with depth.« less
NASA Astrophysics Data System (ADS)
Turner, A. J.; Jacob, D. J.; Wecht, K. J.; Maasakkers, J. D.; Biraud, S. C.; Boesch, H.; Bowman, K. W.; Deutscher, N. M.; Dubey, M. K.; Griffith, D. W. T.; Hase, F.; Kuze, A.; Notholt, J.; Ohyama, H.; Parker, R.; Payne, V. H.; Sussmann, R.; Velazco, V. A.; Warneke, T.; Wennberg, P. O.; Wunch, D.
2015-02-01
We use 2009-2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently used for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a-1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2-42.7 Tg a-1, as compared to 24.9-27.0 Tg a-1 in the EDGAR and EPA bottom-up inventories, and 30.0-44.5 Tg a-1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29-44% of US anthropogenic methane emissions to livestock, 22-31% to oil/gas, 20% to landfills/waste water, and 11-15% to coal with an additional 9.0-10.1 Tg a-1 source from wetlands.
NASA Astrophysics Data System (ADS)
Daube, C.; Conley, S.; Faloona, I. C.; Yacovitch, T. I.; Roscioli, J. R.; Morris, M.; Curry, J.; Arndt, C.; Herndon, S. C.
2017-12-01
Livestock activity, enteric fermentation of feed and anaerobic digestion of waste, contributes significantly to the methane budget of the United States (EPA, 2016). Studies question the reported magnitude of these methane sources (Miller et. al., 2013), calling for more detailed research of agricultural animals (Hristov, 2014). Tracer flux ratio is an attractive experimental method to bring to this problem because it does not rely on estimates of atmospheric dispersion. Collection of data occurred during one week at two dairy farms in central California (June, 2016). Each farm varied in size, layout, head count, and general operation. The tracer flux ratio method involves releasing ethane on-site with a known flow rate to serve as a tracer gas. Downwind mixed enhancements in ethane (from the tracer) and methane (from the dairy) were measured, and their ratio used to infer the unknown methane emission rate from the farm. An instrumented van drove transects downwind of each farm on public roads while tracer gases were released on-site, employing the tracer flux ratio methodology to assess simultaneous methane and tracer gas plumes. Flying circles around each farm, a small instrumented aircraft made measurements to perform a mass balance evaluation of methane gas. In the course of these two different methane quantification techniques, we were able to validate yet a third method: tracer flux ratio measured via aircraft. Ground-based tracer release rates were applied to the aircraft-observed methane-to-ethane ratios, yielding whole-site methane emission rates. Never before has the tracer flux ratio method been executed with aircraft measurements. Estimates from this new application closely resemble results from the standard ground-based technique to within their respective uncertainties. Incorporating this new dimension to the tracer flux ratio methodology provides additional context for local plume dynamics and validation of both ground and flight-based data.
Seasonal C-13 variations of methane from an anoxic marine sediment
NASA Technical Reports Server (NTRS)
Blair, Neal; Desmarais, David S.; Martens, Christopher S.
1985-01-01
Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.
40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide..., methane and/or methanol and/or formaldehyde. In addition, for diesel-cycle engines, particulates are... if typical of the in-use application. (5) The engine may be equipped with a production-type starter...
USDA-ARS?s Scientific Manuscript database
Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion, yet in temperate climate digesters, require a considerable amount of additional heat en...
40 CFR 86.1327-96 - Engine dynamometer test procedures; overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
... either in bags or continuously for hydrocarbons (HC), methane (CH4) carbon monoxide (CO), carbon dioxide..., methane and/or methanol and/or formaldehyde. In addition, for diesel-cycle engines, particulates are... if typical of the in-use application. (5) The engine may be equipped with a production-type starter...
Liquid methane gelled with methanol and water reduces rate of nitrogen absorption
NASA Technical Reports Server (NTRS)
Vanderwall, E. M.
1972-01-01
Dilution of gelant vapor with inert carrier gas accomplishes gelation. Mixture is injected through heated tube and orifice into liquid methane for immediate condensation within bulk of liquid. Direct dispersion of particles in liquid avoids condensation on walls of vessel and eliminates additional mixing.
Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions
Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn
2011-01-01
The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.
Arikan, Osman A; Mulbry, Walter; Lansing, Stephanie
2015-09-01
Temperature is a critical factor affecting anaerobic digestion because it influences both system heating requirements and methane production. Temperatures of 35-37°C are typically suggested for manure digestion. In temperate climates, digesters require a considerable amount of additional heat energy to maintain temperatures at these levels. In this study, the effects of lower digestion temperatures (22 and 28°C), on the methane production from dairy digesters were evaluated and compared with 35°C using duplicate replicates of field-scale (FS) digesters with a 17-day hydraulic retention time. After acclimation, the FS digesters were operated for 12weeks using solids-separated manure at an organic loading rate (OLR) of 1.4kgVSm(-3)d(-1) and then for 8weeks using separated manure amended with manure solids at an OLR of 2.6kgVSm(-3)d(-1). Methane production values of the FS digesters at 22 and 28°C were about 70% and 87%, respectively, of the values from FS digesters at 35°C. The results suggest that anaerobic digesters treating dairy manure at 28°C were nearly as efficient as digesters operated at 35°C, with 70% of total methane achievable at 22°C. These results are relevant to small farms interested in anaerobic digestion for methane reduction without heat recovery from generators or for methane recovery from covered lagoon digesters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Surface modification processes during methane decomposition on Cu-promoted Ni–ZrO2 catalysts
Wolfbeisser, Astrid; Klötzer, Bernhard; Mayr, Lukas; Rameshan, Raffael; Zemlyanov, Dmitry; Bernardi, Johannes; Rupprechter, Günther
2015-01-01
The surface chemistry of methane on Ni–ZrO2 and bimetallic CuNi–ZrO2 catalysts and the stability of the CuNi alloy under reaction conditions of methane decomposition were investigated by combining reactivity measurements and in situ synchrotron-based near-ambient pressure XPS. Cu was selected as an exemplary promoter for modifying the reactivity of Ni and enhancing the resistance against coke formation. We observed an activation process occurring in methane between 650 and 735 K with the exact temperature depending on the composition which resulted in an irreversible modification of the catalytic performance of the bimetallic catalysts towards a Ni-like behaviour. The sudden increase in catalytic activity could be explained by an increase in the concentration of reduced Ni atoms at the catalyst surface in the active state, likely as a consequence of the interaction with methane. Cu addition to Ni improved the desired resistance against carbon deposition by lowering the amount of coke formed. As a key conclusion, the CuNi alloy shows limited stability under relevant reaction conditions. This system is stable only in a limited range of temperature up to ~700 K in methane. Beyond this temperature, segregation of Ni species causes a fast increase in methane decomposition rate. In view of the applicability of this system, a detailed understanding of the stability and surface composition of the bimetallic phases present and the influence of the Cu promoter on the surface chemistry under relevant reaction conditions are essential. PMID:25815163
Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.
2010-01-01
Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.
Atmospheric Modeling of Mars Methane Plumes
NASA Astrophysics Data System (ADS)
Mischna, Michael A.; Allen, M.; Lee, S.
2010-10-01
We present two complementary methods for isolating and modeling surface source releases of methane in the martian atmosphere. From recent observations, there is strong evidence that periodic releases of methane occur from discrete surface locations, although the exact location and mechanism of release is still unknown. Numerical model simulations with the Mars Weather Research and Forecasting (MarsWRF) general circulation model (GCM) have been applied to the ground-based observations of atmospheric methane by Mumma et al., (2009). MarsWRF simulations reproduce the natural behavior of trace gas plumes in the martian atmosphere, and reveal the development of the plume over time. These results provide constraints on the timing and location of release of the methane plume. Additional detections of methane have been accumulated by the Planetary Fourier Spectrometer (PFS) on board Mars Express. For orbital observations, which generally have higher frequency and resolution, an alternate approach to source isolation has been developed. Drawing from the concept of natural selection within biology, we apply an evolutionary computational model to this problem of isolating source locations. Using genetic algorithms that `reward’ best-fit matches between observations and GCM plume simulations (also from MarsWRF) over many generations, we find that we can potentially isolate source locations to within tens of km, which is within the roving capabilities of future Mars rovers. Together, these methods present viable numerical approaches to restricting the timing, duration and size of methane release events, and can be used for other trace gas plumes on Mars as well as elsewhere in the solar system.
A new method to study simultaneous methane oxidation and methane production in soils
NASA Astrophysics Data System (ADS)
Andersen, B. L.; Bidoglio, G.; Leip, A.; Rembges, D.
1998-12-01
Results of laboratory experiments show that 14C-labeled methane added to soil was consumed faster than atmospheric 12C methane. This implies a source of methane, presumably through methanogenesis, in a soil that is a net consumer of atmospheric methane. The soil was well-drained forest soil from Ispra, Italy. An undisturbed sample was taken with a steel corer and incubated under oxic conditions in a jar. Headspace samples were taken at time intervals and analyzed for total methane by gas chromatography and analyzed for 14C methane by liquid scintillation counting. Fluxes calculated from the decreasing headspace mixing ratios were, for example, -6.5 and -7.1 μmol m-2 hr-1 for 12C methane and 14C methane, respectively. A simple model is considered which reproduces reasonably well the observed mixing ratios as function of time.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
NASA Astrophysics Data System (ADS)
Sparrow, K. J.; Kessler, J. D.
2017-12-01
In response to climate change, methane can be released to ocean sediments and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown if methane derived from these massive stores of frozen, ancient carbon reaches the atmosphere. We quantified the fraction of methane sourced from ancient carbon in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. While the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that modern sources of methane predominate in surface waters of relatively shallow mid-outer shelf stations. These results suggest that even if there is a heightened liberation of ancient methane as climate change proceeds, oceanic dispersion and oxidation processes can strongly limit its emission to the atmosphere.
NASA Astrophysics Data System (ADS)
Ettwig, K. F.
2014-12-01
Humans continue to have an enormous impact on global C and N cycles. While a clear stimulation of methane emissions through human activities is evident, the role of also increasingly released nitrogenous compounds as electron acceptors for microbial methane oxidation is not well constrained. We have developed diverse methods for environmental detection of nitrate(NO3-)- and - predominantly - nitrite(NO2-)-dependent methanotrophs, which have been applied to several freshwater environments. In contrast to most metabolically flexible heterotrophic denitrifiers, the microorganisms responsible for methane-dependent nitrate/nitrite reduction seem to be specialized to use methane only, grow slowly and employ pathways different from each other and from model organisms, which necessitate new approaches for the assessment of their environmental relevance. Nitrite-dependent methane oxidation is carried out by bacteria of the NC10 phylum, whereas nitrate-dependent methane oxidizers are close relatives of methanogenic archaea and sulfate-dependent anaerobic methanotrophs (ANME-2). Laboratory enrichment cultures of the nitrite-reducing methanotroph Methylomirabilis oxyfera (NC10 phylum) have formed the basis for its genetic and physiological characterization and the development of several independent methods for its sensitive detection. M. oxyfera differs from all known microorganisms by encoding an incomplete denitrification pathway, in which the last 2 steps, the reduction of NO via N2O to N2, apparently is replaced by the dismutation of NO to N2 and O2. The intracellularly produced O2 is used for methane oxidation via a methane monooxygenase, analogously to the phylogenetically unrelated proteobacterial methanotrophs. But unlike in proteobacteria, C is not assimilated from methane, but rather CO2, with important consequences for the interpretation of environmental isotope labelling studies. In addition, M. oxyfera is characterized by a distinct PLFA profile, including methylated lipids so far not found in any other organism. Case studies using specific primers together with lipid profiles and 13C-labelling in peatlands and other freshwater environments illustrate that the newly developed approaches and biomarkers enable the demonstration of M. oxyfera's role as a methane sink.
SPaMOB eat atmospheric methane in Antarctica
NASA Astrophysics Data System (ADS)
Lau, C. Y. M.; Edwards, C. R.; Onstott, T. C.
2016-12-01
The diverse and endemic soil microorganisms that have adapted to the hostile environments in Antarctica are facing challenges due to climate change. The seasonally thawed active layer would exhibit greater daily and/or seasonal temperature variations and different soil moisture regimes, which would cause compositional shifts in these microbial communities. Our preliminary data reveal that Antarctic cryosols from the Taylor Dry Valley are capable of oxidizing methane at atmospheric concentration ( 2 ppmv) at significantly higher rates than the acidic mineral cryosols from the Canadian High Arctic (N 79°) [The ISME J (2015) 9: 1880-1891]. Understanding of this understudied behavior for these active layer cryosols is important for determining the potential methane feedback responses in the Antarctic region. We therefore investigate the biodiversity and genome-wide adaptation of the responsible Southern Polar atmospheric methane-oxidizing bacteria (SPaMOB) in these cryosols. Methane consumption at atmospheric concentration at 4 and 10°C was monitored over a period of four weeks. Two cryosol samples that oxidized methane at both temperatures were selected for molecular analyses. PCR-cloning and sequencing of pmoA (particulate methane monooxygenase beta subunit), the marker gene of methane oxidation, revealed that the SPaMOB in alkaline Antarctic cryosols are closely related to Upland Soil Cluster γ (USCγ), whereas the high Canadian Arctic cryosols contain predominantly USCa-like phylotypes. Four metagenomic libraries were prepared from total DNA and sequenced (2x100bp, Illumina). Quality-filtered reads (avg. 20 M reads per library) were de novo assembled and annotated. A 42.8 kb-long contig containing the pmoCBAcluster was successfully assembled. The pmoA gene is closely related to our USCγ clone sequences. In addition to pmo genes, the presence of genes for conversion of methanol to formaldehyde, production of formate and eventually CO2 indicates SPaMOB's ability of complete methane oxidation. Carbon assimilation pathway is suggested by the presence of genes involved in serine synthesis, serine cycle and tricarboxylic acid cycle. This study provides the first genetic basis for a possible role of Antarctica as a current and future methane sink.
Consumption of atmospheric methane by tundra soils
NASA Technical Reports Server (NTRS)
Whalen, S. C.; Reeburgh, W. S.
1990-01-01
The results of field and laboratory experiments on methane consumption by tundra soils are reported. For methane concentrations ranging from below to well above ambient, moist soils are found to consume methane rapidly; in nonwaterlogged soils, equilibration with atmospheric methane is fast relative to microbial oxidation. It is concluded that lowering of the water table in tundra as a resulting from a warmer, drier climate will decrease methane fluxes and could cause these areas to provide negative feedback for atmospheric methane.
NASA Astrophysics Data System (ADS)
Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.
2012-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the region. The results are compared to inventories as well as other measurement techniques, and the uncertainty of the measurement is estimated.
NASA Astrophysics Data System (ADS)
Kaduk, Jörg; Pan, Gong; Cumming, Alex; Evans, Jon; Kelvin, Jon; Peacock, Mike; Gauci, Vincent; Hughes, John; Page, Susan; Balzter, Heiko
2015-04-01
Methane is the second most important greenhouse gas after carbon dioxide, although the current atmospheric concentration is only about two parts per million. This results from a radiative forcing of 0.48 +/-0.05 Wm-2, about 26 times that of carbon dioxide. Atmospheric concentrations as well as emissions to the atmosphere have been increasing strongly over the last decades. Emissions are to a large extent biogenic where the largest biogenic source, wetlands, has the largest uncertainty. This precludes the construction of a reliable global methane budget, as well as meaningful predictions, as results from wetland models are uncertain and there are insufficient data for model improvement. We measured evapotranspiration and methane flux of a near-pristine temperate lowland fen in East Anglia in the United Kingdom from July 2013 to June 2014 by eddy covariance, which represents the first annual cycle of eddy covariance measurements of methane flux in this category of wetland. Methane fluxes from vegetation and ditches were additionally measured separately with static chambers. Annual evapotranspiration was 720.4 to 732.6 mm yr-1. Annual methane release was 3.77 to 4.03 g CH4 m-2 yr-1. Water table and methane fluxes were very different in the two half years: an average of -0.63 nmol CH4 m-2s-1 (a net uptake) for July-December 2013 and 16.2 nmol CH4 m-2s-1 (a net release) for January-June 2014 with a data range of -99 to 410 nmol CH4 m-2s-1 over the full year. Water table has the dominant role in determining methane flux and, under a very low water table, methane uptake was observed. Temperature has a clear impact on fluxes at high water tables. Eddy covariance and chamber measurements show the same annual pattern flux magnitude throughout the year. The fen can switch from being a source to a sink if the water table changes over a small critical depth range. Our measurements have implications for large scale wetland restoration plans in the eastern UK and potential options for the management of methane emissions from wetlands.
Root-Associated Methane Oxidation and Methanogenesis: Key Determinants of Wetland Methane Emissions
NASA Technical Reports Server (NTRS)
King, G. M.
1997-01-01
During the award period, we have assessed the extent and controls of methane oxidation in north temperate wetlands. It is evident that wetlands have been a major global source of atmospheric methane in the past, and are so at present. It is also evident that microbial methane oxidation consumes a variable fraction of total wetland methane production, perhaps 10%-90%. Methane oxidation is thus a potentially important control of wetland methane emission. Our efforts have been designed to determine the extent of the process, its controls, and possible relationships to changes that might be expected in wetlands as a consequence of anthropogenic or climate-related disturbances. Current work, has emphasized controls of methane oxidation associated with rooted aquatic plants. As for the sediment-water interface, we have observed that oxygen availability is a primary limiting factor. Our conclusion is based on several different lines of evidence obtained from in vitro and in situ analyses. First, we have measured the kinetics of methane oxidation by intact plant roots harboring methane-oxidizing bacteria, as well as the kinetics of the methanotrophs themselves. Values for the half-saturation constant (apparent K(sub m)) are approximately 5 microns. These values are roughly equivalent to, or much less than porewater methane concentrations, indicating that uptake is likely saturated with respect to methane, and that some other parameter must limit activity. Methane concentrations in the lacunar spaces at the base of plant stems are also comparable to the half-saturation constants (when expressed as equivalent dissolved concentrations), providing further support for limitation of uptake by parameters other than methane.
Methane fluxes and inventories in the accretionary prism of southwestern Taiwan
NASA Astrophysics Data System (ADS)
Lin, L. H.; Chen, N. C.; Yang, T. F.; Hong, W. L.; Chen, H. W.; Chen, H. C.; Hu, C. Y.; Huang, Y. C.; Lin, S.; Su, C. C.; Liao, W. Z.; Sun, C. H.; Wang, P. L.; Yang, T.; Jiang, S. Y.; Liu, C. S.; Wang, Y.; Chung, S. H.
2017-12-01
Sediments distributed across marine and terrestrial realms represent the largest methane reservoir on Earth. The degassing of methane facilitated through either geological structures or perturbation would contribute significantly to global climatic fluctuation and elemental cycling. The exact fluxes and processes governing methane production, consumption and transport in a geological system remain largely unknown in part due to the limited coverage and access of samples. In this study, more than 200 sediment cores were collected from offshore and onshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data combined with published data and existing parameters of subduction system were used to calculate methane fluxes across different geochemical transitions and to develop scenarios of mass balance to constrain deep microbial and thermogenic methane production rates within the Taiwanese accretionary prism. The results showed that high methane fluxes tend to be associated with structural features, suggesting a strong structural control on methane transport. A significant portion of ascending methane (>50%) was consumed by anaerobic oxidation of methane at most sites. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater or the atmosphere. The flux imbalance arose primarily from the deep microbial and thermogenic production and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.
Pretreatment of paper tube residuals for improved biogas production.
Teghammar, Anna; Yngvesson, Johan; Lundin, Magnus; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári
2010-02-01
Paper tube residuals, which are lignocellulosic wastes, have been studied as substrate for biogas (methane) production. Steam explosion and nonexplosive hydrothermal pretreatment, in combination with sodium hydroxide and/or hydrogen peroxide, have been used to improve the biogas production. The treatment conditions of temperature, time and addition of NaOH and H(2)O(2) were statistically evaluated for methane production. Explosive pretreatment was more successful than the nonexplosive method, and gave the best results at 220 degrees C, 10 min, with addition of both 2% NaOH and 2% H(2)O(2). Digestion of the pretreated materials at these conditions yielded 493 N ml/g VS methane which was 107% more than the untreated materials. In addition, the initial digestion rate was improved by 132% compared to the untreated samples. The addition of NaOH was, besides the explosion effect, the most important factor to improve the biogas production.
Methane hydrates in nature - Current knowledge and challenges
Collett, Timothy S.
2014-01-01
Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance our understanding of methane hydrates in nature. COL assembled a Methane Hydrate Project Science Team with members from academia, industry, and government. This Science Team worked with COL and DOE to develop and host the Methane Hydrate Community Workshop, which surveyed a substantial cross section of the methane hydrate research community for input on the most important research developments in our understanding of methane hydrates in nature and their potential role as an energy resource, a geohazard, and/or as an agent of global climate change. Our understanding of how methane hydrates occur in nature is still growing and evolving, and it is known with certainty that field, laboratory, and modeling studies have contributed greatly to our understanding of hydrates in nature and will continue to be a critical source of the information needed to advance our understanding of methane hydrates.
Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process
Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan
2012-01-01
Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by “Candidatus Methylomirabilis oxyfera.” M. oxyfera is affiliated with the “NC10” phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process. PMID:22905032
Rice cultivation and methane emission: Documentation of distributed geographic data sets
NASA Technical Reports Server (NTRS)
Matthews, Elaine; John, Jasmin; Fung, Inez
1994-01-01
High-resolution global data bases on the geographic and seasonal distribution of rice cultivation and associated methane emission, compiled by Matthews et al., were archived for public use. In addition to the primary data sets identifying location, seasonality, and methane emission from rice cultivation, a series of supporting data sets is included, allowing users not only to replicate the work of Matthews et al. but to investigate alternative cultivation and emission scenarios. The suite of databases provided, at 1 latitude by 1 longitude resolution for the globe, includes (1) locations of rice cultivation, (2) monthly arrays of actively growing rice areas, (3) countries and political subdivisions, and (4) monthly arrays of methane emission from rice cultivation. Ancillary data include (1) a listing, by country, of harvested rice areas and seasonal distribution of crop cycles and (2) country names and codes. Summary tables of zonal/monthly distributions of actively growing rice areas and of methane emissions are presented. Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document formats of the distributed information and briefly describe the contents of the data sets and their initial application to evaluating the role of rice cultivation in the methane budget.
The Role of Surface Water Flow in Gas Fluxes from a Subtropical Rice Field
NASA Astrophysics Data System (ADS)
Huynh, K. T.; Suvocarev, K.; Reavis, C.; Runkle, B.; Variano, E. A.
2016-12-01
Wetlands are the single largest source of methane emissions, but the underlying processes behind this flux are not yet fully understood. Typically, methane fluxes from wetlands have been attributed to ebullition (bubbling) and to transport through vegetation. However, a third major pathway-hydrodynamic transport-has been seen in a temperate wetland in the Sacramento-San Joaquin Delta. We wish to explore whether this additional pathway is also important to a subtropical rice paddy site where the diel thermal cycle is less pronounced than in the temperate site. Measurements in the surface water of a rice field were collected over two weeks. Specific measurements collected included dissolved and atmospheric methane concentration, surface water velocity, and air and water temperature. These were used to augment a long-term dataset of micrometeorology and gas fluxes. Together, these data demonstrate the role that surface water motions play in the fluxes between soil and atmosphere. Data are analyzed to reveal the fraction of total methane flux that is governed by advective/diffusive transport through surface water, and daily cycles in this behavior. Results will be used to advance predictions of atmospheric methane gas concentrations and could be foundational for developing methane management solutions. Closing this gap in knowledge is key to improving calculations of current global greenhouse gas emissions.
Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.
Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan
2016-12-15
This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cepeda-Rizo, Juan; Krylo, Robert; Fisher, Melanie; Bugby, David C.
2011-01-01
Camera cooling for SIM presents three thermal control challenges; stable operation at 163K (110 C), decontamination heating to +20 C, and a long span from the cameras to the radiator. A novel cryogenic cooling system based on a methane heat pipe meets these challenges. The SIM thermal team, with the help of heat pipe vendor ATK, designed and tested a complete, low temperature, cooling system. The system accommodates the two SIM cameras with a double-ended conduction bar, a single methane heat pipe, independent turn-off devices, and a flight-like radiator. The turn ]off devices consist of a liquid trap, for removing the methane from the pipe, and an electrical heater to raise the methane temperature above the critical point thus preventing two-phase operation. This is the first time a cryogenic heat pipe has been tested at JPL and is also the first heat pipe to incorporate the turn-off features. Operation at 163K with a methane heat pipe is an important new thermal control capability for the lab. In addition, the two turn-off technologies enhance the "bag of tricks" available to the JPL thermal community. The successful test program brings this heat pipe to a high level of technology readiness.
Biogeochemical Cycling of Methane in the Proterozoic and Its Role in the Carbon Isotope Budget
NASA Astrophysics Data System (ADS)
Schrag, D. P.; Laakso, T.
2016-12-01
Various studies have proposed that the biogeochemical cycle of methane has played an important role throughout Earth history, both in contributing to greenhouse stability of climate in the Archean and producing carbon isotope variations and climate fluctuations in the Proterozoic and Phanerozoic. Using a simple box model that couples the geochemical cycles on carbon, oxygen, hydrogen, iron, and sulfur, combined with recent studies of methane cycling in anoxic environments, we reexamine the role of methane in both the Archean and Proterozoic, focusing on methane's role in the carbon isotope budget. We find that methane plays a much more modest role at all times of relative anoxia in the deep ocean, which requires an alternative explanation for the carbon isotope record, in particular the "boring billion" during the Mesoproterozoic. In particular, the high burial efficiency driven by lower oxygen levels drives primary production to much lower levels than has been previously described, resulting in relatively little organic matter available for methanogenesis. In addition, the anoxia in deep water results in a reduced role for methanotrophy at these times, and therefore a change in the mechanisms for production of authigenic carbonate, which may have played a significant role in the carbon isotope budget.
NASA Astrophysics Data System (ADS)
Yamazaki, T.; Nakano, Y.; Monoe, D.; Oomi, T.; Doi, T.; Nakata, K.; Fukushima, T.
2005-05-01
Natural methane hydrate has been scientifically studied as a carbon reservoir globally. However, in Japan, the potential for energy resource has been industrially highlighted. There is less domestic oil and natural gas resources in Japan, but many potential deposition areas for methane hydrate in ocean around Japan are the reasons. Less CO2 discharge from methane compared with coal, oil and conventional natural gas when the same calorie value we get is considered as the advantage for energy resource. However, because methane hydrate distributes in shallower sediment layer in ocean floor, accidental leakage of methane may occur while we utilize methane hydrate. Methane itself has 21-times impact on the greenhouse effect, if it reaches the atmosphere. Therefore, it is necessary to estimate the behavior in the environment after the leakage, if we want to use methane hydrate as energy resource. The mass balance after leakage of methane on seafloor and in water column is numerically studied through the analyses of methane emissions from natural cold seepages and hydrothermal activities in this research. The outline structure of mass balance ecosystem model creating is introduced and some preliminary examination results from the test calculation are discussed.
Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1
Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki
1990-01-01
To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719
Oremland, R.S.; Culbertson, C.W.
1992-01-01
METHANE is a greenhouse gas whose concentration in the atmosphere is increasing1-3 Much of this methane is derived from the metabolism of methane-generating (methanogenic) bacteria4,5, and over the past two decades much has been learned about the ecology of methanogens; specific inhibitors of methanogenesis, such as 2-bromoethanesulphonic acid, have proved useful in this regard6. In contrast, although much is known about the biochemistry of methane-oxidizing (methanotrophic) bacteria7, ecological investigations have been hampered by the lack of an analogous specific inhibitor6. Methanotrophs limit the flux of methane to the atmosphere from sediments8,9 and consume atmospheric methane10, but the quantitative importance of methanotrophy in the global methane budget is not well known5. Methylfluoride (CH3F) is known to inhibit oxygen consumption by Methylococcus capsulatus11, and to inhibit the oxidation of 14CH4 to 14CO2 by endosymbionts in mussel gill tissues12. Here we report that methylfluoride (MF) inhibits the oxidation of methane by methane monooxygenase, and by using methylfluoride in field investigations, we find that methanotrophic bacteria can consume more than 90% of the methane potentially available.
NASA Astrophysics Data System (ADS)
Mendonca, P.; Shemella, P.; Nayak, S.; Sharma, A.
2006-12-01
Hydrate structures of hydrocarbon (commonly methane hydrates) within the continental shelf regions are considered a huge energy resource since they are a significant reservoir for terrestrial carbon. Any changes, abrupt or continual, will have an impact on the carbon (as well as water) cycle. However, tapping into this reservoir for energy resource has been challenging from both technical and scientific fronts primarily because any rapid release of methane (CH4) will likely have serious impact on the global climate of Earth as well as the stability of the continental shelf. While fossil fuel combustion derived CO2 in the atmosphere is considered a major contributor to global warming, the massive amounts of methane release from the gas hydrates has been a point of debate for its impact on the global climate. Due to the lack of a clear physical mechanism for such structural destabilization, environmental changes within the ocean setting (viz. temperature, salinity or biology) are typically assigned as possible causes. A good kinetic model that ties into structural instability of these essentially non-stoichiometric compounds at both the macromolecular (thermodynamic) and nanometric scale is essential. Preliminary experiments on single crystal methane hydrate high pressure phase (~1.0GPa) indicate a measurable kinetics of methane diffusion upon bringing structural disorder to the single crystal. Although there have been several kinetic studies of gas-hydrate nucleation and dissociation, systematic study of kinetics (and dynamics) of diffusion based changes within the gas hydrates has been lacking. In addition to experimental data on single crystal methane hydrates, we will present a first principle study on the structure, energetic, and dynamics of sI phase methane hydrate. We use density functional theory to study the energetic effect of the occupancy of neighboring cages in a cluster model system consisting of two sI gas hydrates. In this situation there can be two, one, or no methane, and we find that the binding for the first methane is exothermic. The second methane binding is endothermic, suggesting that the stability of a methane molecule is determined by the occupancy of adjacent cages. Using these results, we will present the calculated binding energies of a periodic system based on crystal structure data and compare them to the cluster method. This combined experimental and theoretical investigation is aimed at generating fundamental dataset that can be tested for the broader impact of such processes on the global carbon cycle.
Methane emissions from MBT landfills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.
2013-09-15
Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance atmore » MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD) model of the IPCC Guidelines for National Greenhouse Gas Inventories, 2006, was used to estimate the methane emissions from MBT landfills. Due to the calculation made by the authors emissions in the range of 60,000–135,000 t CO{sub 2-eq.}/a for all German MBT landfills can be expected. This wide range shows the uncertainties when the here used procedure and the limited available data are applied. It is therefore necessary to generate more data in the future in order to calculate more precise methane emission rates from MBT landfills. This is important for the overall calculation of the climate gas production in Germany which is required once a year by the German Government.« less
Methane source identification in Boston, Massachusetts using isotopic and ethane measurements
NASA Astrophysics Data System (ADS)
Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.
2012-12-01
Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.
Paulo, Gustavo Andrade de; Martins, Fernanda Prata Borges; Macedo, Erika Pereira de; Gonçalves, Manoel Ernesto Peçanha; Ferrari, Angelo Paulo
2016-01-01
- Adequate bowel preparation is critical for the quality of colonoscopy. Despite reported occurrence of colonic explosion due to methane and hydrogen production by bacterial fermentation during colonoscopy, gas exchange during the procedure is believed to be effective in lowering existing methane concentration, allowing for safe utilization of mannitol for bowel preparation. Thus, mannitol is widely used for bowel cleansing prior to colonoscopy, considering its low cost and effectiveness for bowel preparation. - The aim of this study was to assess the safety of mannitol for bowel preparation, when compared to sodium phosphate (NaP). - We conducted a prospective observational study in which 250 patients undergoing colonoscopy at Universidade Federal de São Paulo and Hospital Albert Einstein (São Paulo, Brazil) were approached for inclusion in the study. Patients received either mannitol (n=50) or NaP (n=200) for bowel preparation, based on physician indication. Study was conducted from August 2009 to December 2009. The main outcome of interest was presence of detectable levels of methane (CH4) during colonoscopy and reduction in such levels after gas exchange during the procedure. Methane concentrations were measured in three intestinal segments during scope introduction and withdrawal. Safety was assessed as the absence of high levels of methane, defined as 5%. Measurements were made using a multi-gas monitor (X-am 7000, Dräger Safety AG & Co. KGaA, Lübeck, Germany) connected to a plastic catheter introduced into the working channel of the colonoscope. Additional outcomes of interest included levels of O2. Methane and O2 levels are reported as ppm. Mean, difference and standard deviation of levels of gas measured in both moments were calculated and compared in both groups. Proportions of patients with detectable or high levels of methane in both groups were compared. Continuous variables were analyzed using t test and categorical variables using qui-square tests. The Ethics Committee in both study sites approved the study protocol. - Patients in both groups were similar regarding demographics, colonoscopy indication, ASA status and quality of bowel preparation. Seven (3.5%) patients in the NaP group had methane detected during introduction of the endoscope. Methane levels became undetectable during withdrawal of the scope. None of the patients in the mannitol group had detectable levels of methane. O2 levels did not differ in the groups. - This is the largest study to assess the safety of mannitol for bowel preparation, considering methane measurements. Our results indicate that mannitol use is as safe as NaP, and gas exchange was efficient in reducing methane concentrations.
NASA Technical Reports Server (NTRS)
Wahlen, Martin
1994-01-01
The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.
Archaebacterial Fuel Production: Methane from Biomass.
ERIC Educational Resources Information Center
Lennox, John E.; And Others
1983-01-01
Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…
Oceanic Methane Concentrations in Three Mexican Regions
The atmospheric concentration of methane has increased significantly over the last several decades. Methane is an important greenhouse gas, and it is important to better quantify methane sources and sinks. Dissolved methane in the ocean is produced by biological and hydrothermal ...
Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs
Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...
2016-08-31
Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less
Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nole, Michael; Daigle, Hugh; Cook, Ann E.
Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less
Ebrahimi-Nik, Mohammadali; Heidari, Ava; Ramezani Azghandi, Shamim; Asadi Mohammadi, Fatemeh; Younesi, Habibollah
2018-07-01
The effect of drinking water treatment sludge (DWTS) as a mixture additive, on biogas and methane production from food waste was studied. Mesophilic anaerobic digestion of food waste with 5 concentrations of DWTS (0, 2, 6, 12, and 18 ppm) was carried out. It was found that DWTS can significantly enhance biogas and methane yield. The highest biogas (671 Nml/g VS) as well as methane yield (522 Nml/g VS) was observed when 6 mg/kg DWTS was added. This is equal to 65 and 58 percent increase in comparison with the control digester. The calculated lag time for methane was found to be in between 3.3 and 4.7 days. The DWTS also reduced the lag phase and retention time. The biogas experimental data was fitted with the modified Gompertz and the first-order kinetic models with R 2 higher than 0.994 and 0.949, respectively. The ratio of the experimental biogas production to the theoretical biogas production (ɛ) for control sample was 0.53 while for other samples containing additive were higher than 0.78. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.
2014-12-01
This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.
Reactivation of Deep Subsurface Microbial Community in Response to Methane or Methanol Amendment
Rajala, Pauliina; Bomberg, Malin
2017-01-01
Microbial communities in deep subsurface environments comprise a large portion of Earth’s biomass, but the microbial activity in these habitats is largely unknown. Here, we studied how microorganisms from two isolated groundwater fractures at 180 and 500 m depths of the Outokumpu Deep Drillhole (Finland) responded to methane or methanol amendment, in the presence or absence of sulfate as an additional electron acceptor. Methane is a plausible intermediate in the deep subsurface carbon cycle, and electron acceptors such as sulfate are critical components for oxidation processes. In fact, the majority of the available carbon in the Outokumpu deep biosphere is present as methane. Methanol is an intermediate of methane oxidation, but may also be produced through degradation of organic matter. The fracture fluid samples were incubated in vitro with methane or methanol in the presence or absence of sulfate as electron acceptor. The metabolic response of microbial communities was measured by staining the microbial cells with fluorescent redox sensitive dye combined with flow cytometry, and DNA or cDNA-derived amplicon sequencing. The microbial community of the fracture zone at the 180 m depth was originally considerably more respiratory active and 10-fold more numerous (105 cells ml-1 at 180 m depth and 104 cells ml-1 at 500 m depth) than the community of the fracture zone at the 500 m. However, the dormant microbial community at the 500 m depth rapidly reactivated their transcription and respiration systems in the presence of methane or methanol, whereas in the shallower fracture zone only a small sub-population was able to utilize the newly available carbon source. In addition, the composition of substrate activated microbial communities differed at both depths from original microbial communities. The results demonstrate that OTUs representing minor groups of the total microbial communities play an important role when microbial communities face changes in environmental conditions. PMID:28367144
Freshwater bacteria release methane as a byproduct of phosphorus acquisition.
Yao, Mengyin; Henny, Cynthia; Maresca, Julia A
2016-09-30
Freshwater lakes emit large amounts of methane, some of which is produced in oxic surface waters. Two potential pathways for aerobic methane production exist: methanogenesis in oxygenated water, which has been observed in some lakes, or demethylation of small organic molecules. Although methane is produced via demethylation in oxic marine environments, this mechanism of methane release has not yet been demonstrated in freshwater systems. Genes related to the C-P lyase pathway, which cleaves C-P bonds in phosphonate compounds, were found in a metagenomic survey of the surface water of Lake Matano, which is chronically P-starved and methane-rich. We demonstrate that four bacterial isolates from Lake Matano obtain P from methylphosphonate and release methane, and that this activity is repressed by phosphate. We further demonstrate that expression of phnJ, which encodes the enzyme that releases methane, is higher in the presence of methylphosphonate and lower when both methylphosphonate and phosphate are added. This gene is also found in most of the metagenomic data sets from freshwater environments. These experiments link methylphosphonate degradation and methane production with gene expression and phosphate availability in freshwater organisms, and suggest that some of the excess methane in the Lake Matano surface water, and in other methane-rich lakes, may be produced by P-starved bacteria. Methane is an important greenhouse gas, and contributes substantially to global warming. Although freshwater environments are known to release methane into the atmosphere, estimates of the amount of methane emitted by freshwater lakes vary from 8 to 73 Tg per year. Methane emissions are difficult to predict in part because the source of the methane can vary: it is the end product of the energy-conserving pathway in methanogenic archaea, which predominantly live in anoxic sediments or waters, but have also been identified in some oxic freshwater environments. More recently, methane release from small organic molecules has been observed in oxic marine environments. Here we show that demethylation of methylphosphonate may also contribute to methane release from lakes, and that phosphate can repress this activity. Since lakes are typically phosphorus-limited, some methane release in these environments may be a byproduct of phosphorus metabolism, rather than carbon or energy metabolism. Methane emissions from lakes are currently predicted using primary production, eutrophication status, extent of anoxia, and the shape and size of the lake; to improve prediction of methane emissions, phosphorus availability and sources may also need to be included in these models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A conduit dilation model of methane venting from lake sediments
Scandella, B.P.; Varadharajan, C.; Hemond, Harold F.; Ruppel, C.; Juanes, R.
2011-01-01
Methane is a potent greenhouse gas, but its effects on Earth's climate remain poorly constrained, in part due to uncertainties in global methane fluxes to the atmosphere. An important source of atmospheric methane is the methane generated in organic-rich sediments underlying surface water bodies, including lakes, wetlands, and the ocean. The fraction of the methane that reaches the atmosphere depends critically on the mode and spatiotemporal characteristics of free-gas venting from the underlying sediments. Here we propose that methane transport in lake sediments is controlled by dynamic conduits, which dilate and release gas as the falling hydrostatic pressure reduces the effective stress below the tensile strength of the sediments. We test our model against a four-month record of hydrostatic load and methane flux in Upper Mystic Lake, Mass., USA, and show that it captures the complex episodicity of methane ebullition. Our quantitative conceptualization opens the door to integrated modeling of methane transport to constrain global methane release from lakes and other shallow-water, organic-rich sediment systems, and to assess its climate feedbacks.
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere. PMID:29349299
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf
Sparrow, Katy J.; Kessler, John D.; Southon, John R.; Garcia-Tigreros, Fenix; Schreiner, Kathryn M.; Ruppel, Carolyn D.; Miller, John B.; Lehman, Scott J.; Xu, Xiaomei
2018-01-01
In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon–sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.
Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter
2015-06-07
Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.
Effect of process design and operating parameters on aerobic methane oxidation in municipal WWTPs.
Daelman, Matthijs R J; Van Eynde, Tamara; van Loosdrecht, Mark C M; Volcke, Eveline I P
2014-12-01
Methane is a potent greenhouse gas and its emission from municipal wastewater treatment plants (WWTPs) should be prevented. One way to do this is to promote the biological conversion of dissolved methane over stripping in aeration tanks. In this study, the well-established Activated Sludge Model n°1 (ASM1) and Benchmark Simulation Model n°1 (BSM1) were extended to study the influence of process design and operating parameters on biological methane oxidation. The aeration function used in BSM 1 was upgraded to more accurately describe gas-liquid transfer of oxygen and methane in aeration tanks equipped with subsurface aeration. Dissolved methane could be effectively removed in an aeration tank at an aeration rate that is in agreement with optimal effluent quality. Subsurface bubble aeration proved to be better than surface aeration, while a CSTR configuration was superior to plug flow conditions in avoiding methane emissions. The conversion of methane in the activated sludge tank benefits from higher methane concentrations in the WWTP's influent. Finally, if an activated sludge tank is aerated with methane containing off-gas, a limited amount of methane is absorbed and converted in the mixed liquor. This knowledge helps to stimulate the methane oxidizing capacity of activated sludge in order to abate methane emissions from wastewater treatment to the atmosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.
High temperature infrared absorption cross sections of methane near 3.4 µm in Ar and CO 2 mixtures
Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; ...
2017-11-04
In this study, the absorption cross-sections of CH 4 at two wavelengths in the mid-IR region: λ peak = 3403.4 nm and λ valley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH 4/Ar/CO 2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the linemore » shapes in various bath gasses (Ar, CO 2, and N 2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO 2, O 2, and Ar. Lastly, current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.« less
NASA Astrophysics Data System (ADS)
Theresia, Martha; Priadi, Cindy Rianti
2017-03-01
The anaerobic digestion (AD) process from organic waste is often unstable due to the high concentration of Volatile Fatty Acids (VFAs). The purpose of this research was to determine/evaluate the production of methane using biochemical methane potential (BMP) test with two substrate combinations, consisted of organic waste and cow manure as buffer. BMP test conducted for 35 days at a temperature of ± 35°C by measuring the volume and concentration of biogas every week and testing the sample characteristics before and after the test. The result of the sample variation showed there was no significantly difference of methane volume in the 5th week except the variation of organic waste/cow manure: 12/1 to 3/1, but the sample with a ratio of 3/1 yielded the highest methane potential of 0,58 ± 0.015 (n = 3) LCH4/gr Volatile Solid. The addition of cow manure stabilized the condition of all variations during BMP test with VFAs/alkalinity <0.3 although Carbon/Nitogen ratio of each variation is <20.
Lisboa, Maria Sol; Lansing, Stephanie
2013-12-01
Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhancement of methane production from co-digestion of chicken manure with agricultural wastes.
Abouelenien, Fatma; Namba, Yuzaburo; Kosseva, Maria R; Nishio, Naomichi; Nakashimada, Yutaka
2014-05-01
The potential for methane production from semi-solid chicken manure (CM) and mixture of agricultural wastes (AWS) in a co-digestion process has been experimentally evaluated at thermophilic and mesophilic temperatures. To the best of author(')s knowledge, it is the first time that CM is co-digested with mixture of AWS consisting of coconut waste, cassava waste, and coffee grounds. Two types of anaerobic digestion processes (AD process) were used, process 1 (P1) using fresh CM (FCM) and process 2 (P2) using treated CM (TCM), ammonia stripped CM, were conducted. Methane production in P1 was increased by 93% and 50% compared to control (no AWS added) with maximum methane production of 502 and 506 mL g(-1)VS obtained at 55°C and 35°C, respectively. Additionally, 42% increase in methane production was observed with maximum volume of 695 mL g(-1)VS comparing P2 test with P2 control under 55°C. Ammonia accumulation was reduced by 39% and 32% in P1 and P2 tests. Copyright © 2014 Elsevier Ltd. All rights reserved.
High temperature infrared absorption cross sections of methane near 3.4 µm in Ar and CO 2 mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koroglu, Batikan; Neupane, Sneha; Pryor, Owen
In this study, the absorption cross-sections of CH 4 at two wavelengths in the mid-IR region: λ peak = 3403.4 nm and λ valley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH 4/Ar/CO 2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the linemore » shapes in various bath gasses (Ar, CO 2, and N 2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO 2, O 2, and Ar. Lastly, current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.« less
Lee, Eun-Hee; Choi, Sun-Ah; Yi, Taewoo; Kim, Tae Gwan; Lee, Sang-Don; Cho, Kyung-Suk
2015-01-01
Two identical lab-scale bioreactor systems were operated to examine the effects of granular activated carbon (GAC) on methane removal performance and methanotrophic community. Both bioreactor systems removed methane completely at a CH4 loading rate of 71.2 g-CH4·d(-1) for 17 days. However, the methane removal efficiency declined to 88% in the bioreactor without GAC, while the bioreactor amended with GAC showed greater methane removal efficiency of 97% at a CH4 loading rate of 107.5 g-CH4·d(-1). Although quantitative real-time PCR showed that methanotrophic populations were similar levels of 5-10 × 10(8) pmoA gene copy number·VSS(-1) in both systems, GAC addition changed the methanotrophic community composition of the bioreactor systems. Microarray assay revealed that GAC enhanced the type I methanotrophic genera including Methylobacter, Methylomicrobium, and Methylomonas of the system, which suggests that GAC probably provided a favorable environment for type I methanotrophs. These results indicated that GAC is a promising support material in bioreactor systems for CH4 mitigation.
Xie, Ting; Yang, Qi; Winkler, Mari K H; Wang, Dongbo; Zhong, Yu; An, Hongxue; Chen, Fei; Yao, Fubin; Wang, Xiaolin; Wu, Jiawei; Li, Xiaoming
2018-06-05
Perchlorate bioreduction coupled to methane oxidation was successfully achieved without the addition of nitrate or nitrite in a membrane biofilm reactor (MBfR) inoculated with a mixture of freshwater sediments and anaerobic digester sludge as well as return activated sludge. The reactor was operated at different methane pressures (60, 40 and 20 Kpa) and influent perchlorate concentrations (1, 5 and 10 mg/L) to evaluate the biochemical process of perchlorate bioreduction coupled to methane oxidation. Perchlorate was completely reduced with a higher removal flux of 92.75 mg/m 2 ·d using methane as the sole carbon source and electron donor, other than hydrogen or other limiting organics. Quantitative real-time PCR showed that bacteria prevailed over archaea and the abundances of mcrA, pMMO, pcrA, and nirS genes were correlated with the influent perchlorate flux. High-throughput sequencing of 16S rRNA genes demonstrated that the functional community consisted of methanotrophs, methylotrophs, perchlorate-reducing bacteria, as well as various denitrifiers. Copyright © 2018 Elsevier B.V. All rights reserved.
Duda, Rose Maria; da Silva Vantini, Juliana; Martins, Larissa Scattolin; de Mello Varani, Alessandro; Lemos, Manoel Victor Franco; Ferro, Maria Inês Tiraboschi; de Oliveira, Roberto Alves
2015-12-01
A novel combination of structurally simple, high-rate horizontal anaerobic reactors installed in series was used to treat swine wastewater. The reactors maintained stable pH, alkalinity, and volatile acid levels. Removed chemical oxygen demand (COD) represented 68% of the total, and the average specific methane production was 0.30L CH4 (g removed CODtot)(-1). In addition, next-generation sequencing and quantitative real-time PCR analyses were used to explore the methane-producing Archaea and microbial diversity. At least 94% of the sludge diversity belong to the Bacteria and Archaea, indicating a good balance of microorganisms. Among the Bacteria the Proteobacteria, Bacteroidetes and Firmicutes were the most prevalent phyla. Interestingly, up to 12% of the sludge diversity belongs to methane-producing orders, such as Methanosarcinales, Methanobacteriales and Methanomicrobiales. In summary, this system can efficiently produce methane and this is the first time that horizontal anaerobic reactors have been evaluated for the treatment of swine wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.
High temperature infrared absorption cross sections of methane near 3.4 μm in Ar and CO2 mixtures
NASA Astrophysics Data System (ADS)
Koroglu, Batikan; Neupane, Sneha; Pryor, Owen; Peale, Robert E.; Vasu, Subith S.
2018-02-01
The absorption cross-sections of CH4 at two wavelengths in the mid-IR region: λpeak = 3403.4 nm and λvalley = 3403.7 nm were measured. Data were taken using three different compositions of non-reactive gas mixtures comprising CH4/Ar/CO2 between 700 < T < 2000 K and 0.1 < P < 1.5 atm in a shock tube utilizing a continuous-wave distributed-feedback quantum cascade laser. Also, broadband room temperature methane cross section measurements were performed using a Fourier transform infrared spectrometer and the cascade laser to gain a better insight into the changes of the line shapes in various bath gasses (Ar, CO2, and N2). An application of the high-temperature cross-section data was demonstrated to determine the concentration of methane during oxy-methane combustion in a mixture of CO2, O2, and Ar. Current measurements will be valuable addition to the spectroscopy database for methane- an important fuel used for power generation and heating around the world.
77 FR 40032 - Methane Hydrate Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Office of Fossil Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... of the Methane Hydrate Advisory Committee is to provide advice on potential applications of methane...
Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.
Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini
2012-04-01
The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Copyright © 2011 Wiley Periodicals, Inc.
Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †
King, Gary M.; Roslev, Peter; Skovgaard, Henrik
1990-01-01
Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299
NASA Astrophysics Data System (ADS)
Xu, L.; Chanton, J.; McDermitt, D. K.; Li, J.; Green, R. B.
2015-12-01
Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate methane oxidation fraction when the anaerobic CO2 / CH4 production ratio is known, or can be estimated. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2 / CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested using carbon dioxide emission rates (fluxes) and methane emission rates (fluxes) measured using the eddy covariance method over a one year period at the Turkey Run landfill in Georgia, USA. The CO2 / CH4 production ratio was estimated by measuring CO2 and CH4 concentrations in air sampled under anaerobic conditions deep inside the landfill. We also used a mass balance approach to independently estimate fractional oxidation based on stable isotope measurements (δ13C of methane) of gas samples taken from deep inside the landfill and just above the landfill surface. Results from the two independent methods agree well. The model will be described and methane oxidation will be discussed in relation to wind direction, location at the landfill, and age of the deposited refuse.
Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation
Iversen, Niels; Oremland, Ronald S.; Klug, Michael J.
1987-01-01
In situ rates of methanogenesis and methane oxidation were measured in meromictic Big Soda Lake. Methane production was measured by the accumulation of methane in the headspaces of anaerobically sealed water samples; radiotracer was used to follow methane oxidation. Nearly all the methane oxidation occurred in the anoxic zones of the lake. Rates of anaerobic oxidation exceeded production at all depths studied in both the mixolimnion (2–6 vs. 0.1–1 nmol liter−1 d−1) and monimolimnion (49–85 vs. 1.6–12 nmol liter−1 d−1) of the lake. Thus, a net consumption of methane equivalent to 1.36 mmol m−2 d−1 occurred in the anoxic water column. Anaerobic methane oxidation had a first-order rate constant of 8.1±0.5 × 10−4 d−1, and activity was eliminated by filter sterilization. However, in situ methane oxidation was of insufficient magnitude to cause a noticeable decrease of ambient dissolved methane levels over an incubation period of 97 h.
Methane storage in nanoporous material at supercritical temperature over a wide range of pressures
Wu, Keliu; Chen, Zhangxin; Li, Xiangfang; Dong, Xiaohu
2016-01-01
The methane storage behavior in nanoporous material is significantly different from that of a bulk phase, and has a fundamental role in methane extraction from shale and its storage for vehicular applications. Here we show that the behavior and mechanisms of the methane storage are mainly dominated by the ratio of the interaction between methane molecules and nanopores walls to the methane intermolecular interaction, and a geometric constraint. By linking the macroscopic properties of the methane storage to the microscopic properties of a system of methane molecules-nanopores walls, we develop an equation of state for methane at supercritical temperature over a wide range of pressures. Molecular dynamic simulation data demonstrates that this equation is able to relate very well the methane storage behavior with each of the key physical parameters, including a pore size and shape and wall chemistry and roughness. Moreover, this equation only requires one fitted parameter, and is simple, reliable and powerful in application. PMID:27628747
Solubility of aqueous methane under metastable conditions: implications for gas hydrate nucleation.
Guo, Guang-Jun; Rodger, P Mark
2013-05-30
To understand the prenucleation stage of methane hydrate formation, we measured methane solubility under metastable conditions using molecular dynamics simulations. Three factors that influence solubility are considered: temperature, pressure, and the strength of the modeled van der Waals attraction between methane and water. Moreover, the naturally formed water cages and methane clusters in the methane solutions are analyzed. We find that both lowering the temperature and increasing the pressure increase methane solubility, but lowering the temperature is more effective than increasing the pressure in promoting hydrate nucleation because the former induces more water cages to form while the latter makes them less prevalent. With an increase in methane solubility, the chance of forming large methane clusters increases, with the distribution of cluster sizes being exponential. The critical solubility, beyond which the metastable solutions spontaneously form hydrate, is estimated to be ~0.05 mole fraction in this work, corresponding to the concentration of 1.7 methane molecules/nm(3). This value agrees well with the cage adsorption hypothesis of hydrate nucleation.
NASA Astrophysics Data System (ADS)
Szlązak, Nikodem; Korzec, Marek
2016-06-01
Methane has a bad influence on safety in underground mines as it is emitted to the air during mining works. Appropriate identification of methane hazard is essential to determining methane hazard prevention methods, ventilation systems and methane drainage systems. Methane hazard is identified while roadways are driven and boreholes are drilled. Coalbed methane content is one of the parameters which is used to assess this threat. This is a requirement according to the Decree of the Minister of Economy dated 28 June 2002 on work safety and hygiene, operation and special firefighting protection in underground mines. For this purpose a new method for determining coalbed methane content in underground coal mines has been developed. This method consists of two stages - collecting samples in a mine and testing the sample in the laboratory. The stage of determining methane content in a coal sample in a laboratory is essential. This article presents the estimation of measurement uncertainty of determining methane content in a coal sample according to this methodology.
Zhao, Hong-Bao
2014-01-01
Taking the standard size coal block samples defined by ISRM as research objects, both properties of methane diffusion of coal block under triaxial compressive stress and characteristic influences caused by methane pressure were systematically studied with thermo-fluid-solid coupling with triaxial servocontrolled seepage equipment of methane-containing coal. The result shows the methane diffusion property of coal block under triaxial compressive stress was shown in four-stage as follow, first is sharply reduce stage, second is hyperbolic reduce stage, third is close to a fixed value stage, fourth stage is 0. There is a special point making the reduced rate of characteristic curve of methane diffusion speed become sharply small; the influences of shape of methane diffusion speed characteristic curve caused by methane pressure are not obvious, which only is shown in numerical size of methane diffusion speed. Test time was extended required by appear of the special point makes the reduce rate of methane diffusion speed become sharply small. The fitting four-phase relation of methane diffusion of coal block under triaxial compressive stress was obtained, and the idea is proposed that influences of the fitting four-phase relation caused by methane pressure were only shown in value of fitting parameters. PMID:25531000
Methane distribution and transportation in Lake Chaohu: a shallow eutrophic lake in Eastern China
NASA Astrophysics Data System (ADS)
Zhang, L.; Shen, Q.
2016-12-01
Global warming and eutrophication are two world widely concerned environmental problems. Methane is the second important greenhouse gas, and lake has been proven as a quite important natural source of methane emission. More methane may emit from eutrophic lake due to the higher organic matter deposition in the lake sediment. Lake Chaohu is a large and shallow eutrophic lake in eastern China (N31°25' 31°43', E117°16' 117°05'), with an area of 770 km2 and a mean depth of 2.7 m. To examine methane distribution and transportation in this eutrophic lake, field study across different seasons was carried out with 20 study sites in the lake. Samples from the different water and sediment depth was collected using headspace bottle, and methane content was measured by gas chromatography using a flame ionization detector. The potential methane production in the sediment was examined by an indoor incubation experiment. Methane flux from sediment to the overlying water was calculated by Fick's law, and methane emission from surface to the air was calculated at the same time. The results indicates that more methane accumulated in the water of northwestern bay in this lake, and higher methane release rates was also found at this area. Methane increases gradually with depth in the top 10 cm in sediment cores, then it almost keeps at constant state in the deeper sediment. In the sediment from northwestern bay, more methane content and the higher potential methane production was found compared to the sediment from the east area of this lake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William
This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supplymore » chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.« less
Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system.
Fu, Shan-Fei; Ding, Jian-Nan; Zhang, Yun; Li, Yi-Fei; Zhu, Rong; Yuan, Xian-Zheng; Zou, Hua
2018-06-01
In this study, impacts of nanoplastic on the pure and mixed anaerobic digestion systems were investigated. Results showed the growth and metabolism of Acetobacteroides hydrogenigenes were partly inhibited by nanoplastic existed in the pure anaerobic digestion system. The anaerobic digestion of sewage sludge was also obviously inhibited by nanoplastic existed in the mixed anaerobic digestion system. Both the methane yield and methane production rate of the mixed anaerobic digestion system showed negative correlation with the nanoplastic concentration. Compared with anaerobic digestion system without nanoplastic, methane yield and maximum daily methane yield at the nanoplastic concentration of 0.2g/L decreased for 14.4% and 40.7%, respectively. In addition, the start-up of mixed anaerobic digestion system was prolonged by addition of nanoplastic. Microbial community structure analysis indicated the microbial community structures were also affected by nanoplastic existed in the system. At the nanoplastic concentration of 0.2g/L, the relative abundances of family Cloacamonaceae, Porphyromonadaceae, Anaerolinaceae and Gracilibacteraceae decreased partly. Conversely, the relative abundances of family Anaerolinaceae, Clostridiaceae, Geobacteraceae, Dethiosulfovibrionaceae and Desulfobulbaceae improved partly. Copyright © 2017 Elsevier B.V. All rights reserved.
Ho, Adrian; Reim, Andreas; Kim, Sang Yoon; Meima-Franke, Marion; Termorshuizen, Aad; de Boer, Wietse; van der Putten, Wim H; Bodelier, Paul L E
2015-10-01
Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tang, M.; Tsai, J.; Tsuang, B.; Feng, P.; Kuo, P.
2012-12-01
In the past decades, more and more attention was given to the increase of atmospheric methane concentration from the scientific community. Methane is one of greenhouse gases with a global warming potential 21 times greater than carbon dioxide on a 100-year horizon. Rice paddy fields were considered as a major source for methane and so far there are few studies where the eddy covariance (EC) technique has been used to measure methane fluxes from rice paddy fields, especially in Asia. Therefore, in this study we used EC technique and relaxed eddy accumulation (REA) method simultaneously to observe the methane fluxes over rice paddy, fertilized with pig manure, in Taiwan from 22th February to 5th June in 2012. A suit of Micrometeorologial variables and water table depth were measured in conjunction with the fluxes. The results showed that the rice paddy field was source of methane during most of the study period and the observed methane fluxes ranged between - 0.5 and 13 μg m-2 s-1. and the maximum values usually occurred in the afternoon. A significant methane emission was observed in the first one and a half month after transplanting. Comparison of daily methane fluxes measured by EC and REA showed generally good agreement between both methods with a coefficient of determination of 0.81, although the magnitude of methane fluxes measured by REA were slightly lower than those by EC. During the continuous flooded period, the methane fluxes can be depicted well by a function of soil temperature with an exponential form. Sudden pulses of methane fluxes were observed when drained for the removal of obstruction which hindered the methane diffuse from the soil to the atmosphere. During fallow period between growth periods, the paddy fields was a sink of methane where the methane uptake was about 0.5μg m-2 s-1 around noon.
Shakeri, Pirouz; Durmic, Zoey; Vadhanabhuti, Joy; Vercoe, Philip E
2017-03-01
The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw.
Wang, Yanzi; Ren, Guangxin; Zhang, Tong; Zou, Shuzhen; Mao, Chunlan; Wang, Xiaojiao
2017-08-01
This study investigated the effects of different amounts of magnetite powder (i.e., 0g, 1.5g, 3g, 4.5g, 6g) on the anaerobic co-digestion of pig manure (PM) and wheat straw (WS). The variations in pH, alkalinity, cellulase activity (CEA), dehydrogenase activity (DHA) and methane production, were analyzed by phases. Correlation of the activities of the two enzymes with methane production was also analyzed, and the Gompertz model was used to evaluate the efficiency of anaerobic digestion (AD) with the addition of magnetite powder. The results showed that magnetite powder had significant effects on the anaerobic co-digestion of PM and WS. The maximum total methane production with the addition of 3g of magnetite powder was 195mL/g total solids (TS), an increase of 72.1%. The CEA and DHA increased with magnetite powder in the ranges of 1.5-4.5g, 1.5-6g, respectively, while the methane production showed a better correlation with DHA than with CEA. Using the Gompertz model, the efficiency of AD was optimal when adding 3g magnetite powder, with higher methane production potential (206mL/g TS), shorter lag-phase time (14.9d) and shorter AD period (44d). Copyright © 2017 Elsevier Ltd. All rights reserved.
Using a Novel Optical Sensor to Characterize Methane Ebullition Processes
NASA Astrophysics Data System (ADS)
Delwiche, K.; Hemond, H.; Senft-Grupp, S.
2015-12-01
We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.
NASA Astrophysics Data System (ADS)
Lyon, D. R.; Alvarez, R.; Zavala Araiza, D.; Hamburg, S.
2017-12-01
We develop a county-level inventory of U.S. anthropogenic methane emissions by integrating multiple data sources including the Drillinginfo oil and gas (O&G) production database, Environmental Protection Agency (EPA) Greenhouse Gas Reporting Program, a previously published gridded EPA Greenhouse Gas Inventory (Maasakkers et al 2016), and recent measurements studies of O&G pneumatic devices, equipment leaks, abandoned wells, and midstream facilities. Our bottom-up estimates of total and O&G methane emissions are consistently lower than top-down, aerial mass balance estimates in ten O&G production areas. We evaluate several hypotheses for the top-down/bottom-up discrepancy including potential bias of the aerial mass balance method, temporal mismatch of top-down and bottom-up emission estimates, and source attribution errors. In most basins, the top-down/bottom-up gap cannot be explained fully without additional O&G emissions from sources not included in traditional inventories, such as super-emitters caused by malfunctions or abnormal process conditions. Top-down/bottom-up differences across multiple basins are analyzed to estimate the magnitude of these additional emissions and constrain total methane emissions from the U.S. O&G supply chain. We discuss the implications for mitigating O&G methane emissions and suggest research priorities for increasing the accuracy of future emission inventories.
Nikolaeva, S; Sánchez, E; Borja, R; Raposo, F; Colmenarejo, M F; Montalvo, S; Jiménez-Rodríguez, A M
2009-02-01
The effect of the hydraulic retention time (HRT) on the performance of two up-flow anaerobic fixed bed digesters (UFAFBDs) packed with waste tire rubber (D1) and waste tire rubber and zeolite (D2) as micro-organism immobilization supports was studied. It was found that a first-order kinetic model described well the experimental results obtained. The kinetic constants for COD, BOD5, total solids (TS) and volatile solids (VS) removal were determined to be higher in digester D2 than in digester D1 or control. Specifically, they were 0.28 +/- 0.01, 0.32 +/- 0.02, 0.16 +/- 0.01 and 0.24 +/- 0.01 d(- 1) respectively for D1 and 0.33 +/- 0.02, 0.40 +/- 0.02, 0.21 +/- 0.01 and 0.28 +/- 0.01 d(- 1) respectively for D2. This was significant at the 95% confidence level. In addition, the first-order model was also adequate for assessing the effect of the HRT on the removal efficiency and methane production. Maximum methane yield and the first-order constant for methane production were determined and the results obtained were comparable with those obtained by other authors but operating at higher HRTs. Maximum methane yields and the kinetic constant for methane production were 11.1% and 29.4% higher in digester D2 than in D1.
NASA Astrophysics Data System (ADS)
Marushchak, Maija; Liimatainen, Maarit; Lind, Saara; Biasi, Christina; Martikainen, Pertti
2017-04-01
The rising methane concentration in the atmosphere during the past years has been associated with a concurrent change in the carbon isotopic signature: The atmospheric methane is getting more and more depleted in the heavy carbon isotope. The decreasing 13C/12C ratio indicates an increasing contribution of methane from biogenic sources, most importantly wetlands and inland waters, whose global emissions are still poorly constrained. From the climate change perspective, arctic and subarctic wetlands are particularly interesting due to the strong warming and permafrost thaw predicted for these regions that will cause changes in the methane dynamics. Coupling methane flux inventories with determination of the stable isotopic signature can provide useful information about the pathways of methane production, consumption and transport in these ecosystems. Here, we present data on the emissions and carbon isotopic composition of methane from subarctic tundra wetlands at the Seida study site, Northeast European Russia. In this landscape, underlain by discontinuous permafrost, waterlogged fens represent sites of high carbon turnover and high methane release. Despite they cover less than 15% of the region, their methane emissions comprise 98% of the regional mean (± SD) release of 6.7 (± 1.8) g CH4 m-2 y-1 (Marushchak et al. 2016). The methane emission from the studied fens was clearly depleted in 13C compared to the pore water methane. The bulk mean δ13CH4 (± SD) over the growing season was -68.2 (± 2.0) ‰ which is similar to the relatively few values previously reported from tundra wetlands. We explain the depleted methane emissions by the high importance of passive transport via aerenchymous plants, a process that discriminates against the heavier isotopes. This idea is supported by the strong positive correlation observed between the methane emission and the vascular leaf area index (LAI), and the inverse relationship between the δ13CH4 of emitted methane and LAI. The latter cannot be explained by greater dominance of acetoclastic methanogenesis on densely vegetated sites, since this would lead to the opposite: more enriched methane with higher LAI. While the spatial variability of methane emission was related to the differences in the vascular plant cover, the seasonal dynamics followed closely the local temperatures. Height of the water table level was an unimportant regulator of methane emissions in these fens, where floating peat surface follows the water table fluctuations. This implies that these fens have high potential for increased methane release in the future warmer climate, due to enhanced microbial methane production and vascular plant growth.
Spatial variability in nitrous oxide and methane emissions from beef cattle feedyard pen surfaces
USDA-ARS?s Scientific Manuscript database
Greenhouse gas emissions from beef cattle feedlots include enteric carbon dioxide and methane, and manure-derived methane, nitrous oxide and carbon dioxide. Enteric methane comprises the largest portion of the greenhouse gas footprint of beef cattle feedyards. For the manure component, methane is th...
30 CFR 57.22308 - Methane monitors (III mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...
30 CFR 27.22 - Methane detector component.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane detector component. 27.22 Section 27.22... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.22 Methane detector component. (a) A methane detector component shall be suitably constructed for incorporation in or...
30 CFR 27.21 - Methane-monitoring system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...
30 CFR 27.21 - Methane-monitoring system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...
30 CFR 27.21 - Methane-monitoring system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...
30 CFR 27.21 - Methane-monitoring system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...
30 CFR 27.21 - Methane-monitoring system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Methane-monitoring system. 27.21 Section 27.21... APPROVAL OF MINING PRODUCTS METHANE-MONITORING SYSTEMS Construction and Design Requirements § 27.21 Methane-monitoring system. (a) A methane-monitoring system shall be so designed that any machine or equipment, which...
30 CFR 57.22308 - Methane monitors (III mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (III mines). 57.22308 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22308 Methane monitors (III mines). (a) Methane monitors shall be installed on continuous mining machines and longwall mining systems. (b) The...
Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?
NASA Technical Reports Server (NTRS)
Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.
1985-01-01
Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.
Future methane emissions from animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastasi, C.; Simpson, V.J.
1993-04-20
The authors project future methane emissions from animals to the year 2025. They review the present estimated sources of methane from enteric fermentation in animals. Ruminant animals produce the highest concentrations of methane. Methane is a byproduct of anaerobic breakdown of carbohydrates by microbes in the digestive tract of herbatious animals. In general the methane production depends on the variety of animal, the quality of the feed, and the feeding level. Since cattle, sheep, and buffalo account for roughly 91% of all animal methane emission, they only study these animals in detail. Results suggest a rise in methane production ofmore » roughly 1% per year averaged through 2025. Increasing levels are found to originate from developed countries even though the feedstock levels are lower.« less
Electricity from methane by reversing methanogenesis
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-01-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency. PMID:28513579
Electricity from methane by reversing methanogenesis
NASA Astrophysics Data System (ADS)
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-05-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.
Methane drainage with horizontal boreholes in advance of longwall mining: an analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabello, D.P.; Felts, L.L.; Hayoz, F.P.
1981-05-01
The US Department of Energy (DOE) Morgantown Energy Technology Center has implemented a comprehensive program to demonstrate the technical and economic viability of coalbed methane as an energy resource. The program is directed toward solution of technical and institutional problems impeding the recovery and use of large quantities of methane contained in the nation's minable and unminable coalbeds. Conducted in direct support of the DOE Methane Recovery from Coalbeds Project, this study analyzes the economic aspects of a horizontal borehole methane recovery system integrated as part of a longwall mine operation. It establishes relationships between methane selling price and annualmore » mine production, methane production rate, and the methane drainage system capital investment. Results are encouraging, indicating that an annual coal production increase of approximately eight percent would offset all associated drainage costs over the range of methane production rates and capital investments considered.« less
Demonstration of an ethane spectrometer for methane source identification.
Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E
2014-07-15
Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.
Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo
2015-08-15
Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of the applicability of using the triple redundant hydrogen sensor for methane sensing
NASA Technical Reports Server (NTRS)
Lantz, J. B.; Wynveen, R. A.
1983-01-01
Application specifications for the methane sensor were assembled and design guidelines, development goals and evaluation criteria were formulated. This was done to provide a framework to evaluate sensor performance and any design adjustments to the preprototype sensor that could be required to provide methane sensitivity. Good response to hydrogen was experimentally established for four hydrogen sensor elements to be later evaluated for methane response. Prior results were assembled and analyzed for other prototype hydrogen sensor performance parameters to form a comparison base. The four sensor elements previously shown to have good hydrogen response were experimentally evaluated for methane response in 2.5% methane-in-air. No response was obtained for any of the elements, despite the high methane concentration used (50% of the Lower Flammability Limit). It was concluded that the preprototype sensing elements were insensitive to methane and were hydrogen specific. Alternative sensor operating conditions and hardware design changes were considered to provide methane sensitivity to the preprototype sensor, including a variety of different methane sensing techniques. Minor changes to the existing sensor elements, sensor geometry and operating conditions will not make the preprototype hydrogen sensor respond to methane. New sensor elements that will provide methane and hydrogen sensitivity require replacement of the existing thermistor type elements. Some hydrogen sensing characteristics of the modified sensor will be compromised (larger in situ calibration gas volume and H2 nonspecificity). The preprototype hydrogen sensor should be retained for hydrogen monitoring and a separate methane sensor should be developed.
Generation of methane from paddy fields and cattle in India, and its reduction at source
NASA Astrophysics Data System (ADS)
Bandyopadhyay, T. K.; Goyal, P.; Singh, M. P.
Methane (CH4) is a saturated organic gas. About 500 Tg yr -1 methane is generated globally. It is evident that 70% of the total emission have anthropogenic sources. The paddy fields contribute a significant portion of the total methane generated. About 20% of the total methane is generated from the paddy fields. In India, methane efflux rate is negative to 49 mg m -2 hr -1. The mean CH4 flux from Indian paddy fields is calculated to be 4.0 Tgyr -1. Livestock, and in particular ruminants are one of the important sources of methane emission on a global scale. There are two sources of methane emission from live stock: (1) from digestive process of ruminants, (2) from animal wastes. The estimated value of methane emission from digestive process of ruminants in India accounts for 6.47 Tgyr -1, and animal wastes accounts for 1.60 Tgyr -1. Total generation of methane from animals in India is about 8.0 Tg yr -1 . In paddy fields the key of controlling methane emission lies in the control of irrigation water. The methane emission can be decreased drastically if the field is under dry conditions for a few days at the end of tillering. In the case of livestock, reduction of methane emission can be done by (1) increasing the intake of the animal, (2) modifying the composition of the diet, (3) eliminating protozoa in rumen, (4) improving fibre digestion efficiency and (5) inhibiting activity of methanogenic bacteria.
[The processes of methane formation and oxidation in the soils of the Russian arctic tundra].
Berestovskaia, Iu Iu; Rusanov, I I; Vasil'eva, L V; Pimenov, N V
2005-01-01
Methane emission from the following types of tundra soils was studied: coarse humic gleyey loamy cryo soil, peaty gley soil, and peaty gleyey midloamy cryo soil of the arctic tundra. All the soils studied were found to be potential sources of atmospheric methane. The highest values of methane emission were recorded in August at a soil temperature of 8-10 degrees C. Flooded parcels were the sources of atmospheric methane throughout the observation period. The rates of methane production and oxidation in tundra soils of various types at 5 and 15 degrees C were studied by the radioisotope method. Methane oxidation was found to occur in bog water, in the green part of peat moss, and in all the soil horizons studied. Methane formation was recorded in the horizons of peat, in clay with plant roots, and in peaty moss dust of the bogey parcels. At both temperatures, the methane oxidation rate exceeded the rate of methane formation in all the horizons of the mossy-lichen tundra and of the bumpy sinkhole complex. Methanogenesis prevailed only in a sedge-peat moss bog at 15 degrees C. Enrichment bacterial cultures oxidizing methane at 5 and 15 degrees C were obtained. Different types of methanotrophic bacteria were shown to be responsible for methane oxidation under these conditions. A representative of type I methylotrophs oxidized methane at 5 degrees C, and Methylocella tundrae, a psychroactive representative of an acidophilic methanotrophic genus Methylocella, at 15 degrees C.
NASA Astrophysics Data System (ADS)
Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.
2015-12-01
Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and/or abundance of key microbial populations. Together, the data provide an explanation for the seasonal decrease in methane oxidation: rates of oxygen consumption increase over the season, which decreases the amount of oxygen dissolved in porewater at the peatland surface and reduces rates of methane oxidation.
NASA Astrophysics Data System (ADS)
Graves, Carolyn; Steinle, Lea; Niemann, Helge; Rehder, Gregor; Fisher, Rebecca; Lowry, Dave; Connelly, Doug; James, Rachael
2015-04-01
Seepage of methane from seafloor sediments offshore Svalbard may partly be driven by destabilization of gas hydrates as a result of bottom water warming. As the world's oceans are expected to continue to warm, in particular in the Arctic, destabilization of hydrate may become an important source of methane to ocean bottom waters and potentially to the overlying atmosphere where it contributes to further warming. In order to quantify the fate of methane from seafloor seeps, we have determined the distribution of dissolved methane in the water column on the upper slope and shelf offshore western Svalbard during three research cruises with RRS James Clark Ross (JR253) in 2011 and R/V Maria S. Merian (MSM21/4) and Heincke (HE387) in 2012. Combining discrete depth profile methane concentration data and surface seawater concentrations from an equilibrator-online system with oxidation rate measurements and atmospheric methane observations allows insight into the fate of methane input from the seafloor, and evaluation of the potential contributions of other methane sources. A simple box model considering oxidation and horizontal and vertical mixing indicates that the majority of seep methane is oxidized at depth. A plume of high methane concentrations is expected to persist more than 100 km downstream of the seepage area in the rapid barotropic West Spitsbergen Current, which flows northward towards the Arctic Ocean. We calculate that the diffusive sea-air flux of methane is largest on the shallow shelf, reaching 36 μmol m-2 day-1. Over the entire western Svalbard region there is a persistent, but small, source of methane from surface seawater to the overlying atmosphere. Measurements of the atmospheric methane carbon isotope signature indicate that the seafloor seeps do not make a significant contribution to atmospheric methane in this region, which is consistent with earlier studies. Observations downstream of the seepage region are necessary to further constrain potential for transport of previously hydrate-bound methane to the atmosphere, which would require a mechanism for enhanced vertical mixing of dissolved methane from bottom waters into the surface mixed layer.
[Sources of Methane in the Boreal Region
NASA Technical Reports Server (NTRS)
1998-01-01
In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition is important in both understanding the bio-geochemistry of the system and also in determining the regional and global inputs for the methane isotope budget. In determining the destruction of methane for balancing the atmospheric methane budget soil oxidation must be considered.
NASA Astrophysics Data System (ADS)
Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod
2015-04-01
Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.
Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.
2015-01-01
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835
Veneman, Jolien B; Muetzel, Stefan; Hart, Kenton J; Faulkner, Catherine L; Moorby, Jon M; Perdok, Hink B; Newbold, Charles J
2015-01-01
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.
NASA Astrophysics Data System (ADS)
Viscardy, Sébastien; Daerden, Frank; Neary, Lori; García Muñoz, Antonio; Carine Vandaele, Ann
2017-04-01
Several detections of atmospheric methane on Mars have been reported over the last years (Krasnopolsky et al., Icarus, 2004, Formisano et al., Science, 2004, Mumma et al., Science, 2009, Fonti and Marzo, A&A, 2010 , Webster et al., Science, 2015). However those results have been disputed (Zahnle et al., Icarus, 2011) given that the observed lifetime of methane is apparently several orders of magnitude shorter than expected by the known photochemistry (Lefèvre and Forget, Nature, 2009). Until now it remains unclear whether a sink process has still to be discovered or the photochemistry itself is not fully well described. The NOMAD instrument onboard the ExoMars Trace Gas Orbiter (Vandaele et al., PSS, 2015, Robert et al., PSS, 2016) is thus expected to provide key information and make one able to better understand the fate of methane on Mars. Furthermore it has been recently shown that, instead of spreading uniformly in the atmosphere, the methane may form transient layers at 40-50 km in height during the first weeks after surface release (Viscardy et al., GRL, 2016). In this context, we aim to reinvestigate the organic photochemistry using a 3D Global Circulation Model (GCM) in the light of this result. In addition, it has been suggested that there could be a simultaneous release of methane and water vapor (Mumma et al., Science, 2009), e.g. resulting from the destabilization of methane clathrate hydrates. We will thus study how much this can affect the evolution of the atmospheric methane.
Dalsøren, Stig B; Eide, Magnus S; Myhre, Gunnar; Endresen, Oyvind; Isaksen, Ivar S A; Fuglestvedt, Jan S
2010-04-01
The increase in civil world fleet ship emissions during the period 2000-2007 and the effects on key tropospheric oxidants are quantified using a global Chemical Transport Model (CTM). We estimate a substantial increase of 33% in global ship emissions over this period. The impact of ship emissions on tropospheric oxidants is mainly caused by the relatively large fraction of NOx in ship exhaust. Typical increases in yearly average surface ozone concentrations in the most impacted areas are 0.5-2.5 ppbv. The global annual mean radiative forcing due to ozone increases in the troposphere is 10 mWm(-2) over the period 2000-2007. We find global average tropospheric OH increase of 1.03% over the same period. As a result of this the global average tropospheric methane concentration is reduced by approximately 2.2% over a period corresponding to the turnover time. The resulting methane radiative forcing is -14 mWm(-2) with an additional contribution of -6 mWm(-2) from methane induced reduction in ozone. The net forcing of the ozone and methane changes due to ship emissions changes between 2000 and 2007 is -10 mWm(-2). This is significant compared to the net forcing of these components in 2000. Our findings support earlier observational studies indicating that ship traffic may be a major contributor to recent enhancement of background ozone at some coastal stations. Furthermore, by reducing global mean tropospheric methane by 40 ppbv over its turnover time it is likely to contribute to the recent observed leveling off in global mean methane concentration.
Biomass-derived carbon composites for enrichment of dilute methane from underground coal mines.
Bae, Jun-Seok; Jin, Yonggang; Huynh, Chi; Su, Shi
2018-07-01
Ventilation air methane (VAM), which is the main source of greenhouse gas emissions from coal mines, has been a great challenge to deal with due to its huge flow rates and dilute methane levels (typically 0.3-1.0 vol%) with almost 100% humidity. As part of our continuous endeavor to further improve the methane adsorption capacity of carbon composites, this paper presents new carbon composites derived from macadamia nut shells (MNSs) and incorporated with carbon nanotubes (CNTs). These new carbon composites were fabricated in a honeycomb monolithic structure to tolerate dusty environment and to minimize pressure drop. This paper demonstrates the importance of biomass particle size distributions when formed in a composite and methane adsorption capacities at low pressures relevant to VAM levels. The selectivity of methane over nitrogen was about 10.4 at each relevant partial pressure, which was much greater than that (6.5) obtained conventionally (at very low pressures), suggesting that capturing methane in the presence of pre-adsorbed nitrogen would be a practical option. The equilibrium and dynamic performance of biomass-derived carbon composites were enhanced by 30 and 84%, respectively, compared to those of our previous carbon fiber composites. In addition, the presence of moisture in ventilation air resulted in a negligible effect on the dynamic VAM capture performance of the carbon composites, suggesting that our carbon composites have a great potential for site applications at coal mines because the cost and performance of solid adsorbents are critical factors to consider. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amha, Yamrot M; Sinha, Pooja; Lagman, Jewls; Gregori, Matt; Smith, Adam L
2017-10-15
Despite growing interest in co-digestion and demonstrated process improvements (e.g., enhanced stability and biogas production), few studies have evaluated how co-digestion impacts the anaerobic digestion (AD) microbiome. Three sequential bench-scale respirometry experiments were conducted at thermophilic temperature (50 °C) with various combinations of primary sludge (PS); thickened waste activated sludge (TWAS); fats, oils, and grease (FOG); and food waste (FW). Two additional runs were then performed to evaluate microbial inhibition at higher organic fractions of FOG (30-60% volatile solids loading (VSL; v/v)). Co-digestion of PS, TWAS, FOG, and FW resulted in a 26% increase in methane production relative to digestion of PS and TWAS. A substantial lag time was observed in biogas production for vessels with FOG addition that decreased by more than half in later runs, likely due to adaptation of the microbial community. 30% FOG with 10% FW showed the highest increase in methane production, increasing 53% compared to digestion of PS and TWAS. FOG addition above 50% VSL was found to be inhibitory with and without FW addition and resulted in volatile fatty acid (VFA) accumulation. Methane production was linked with high relative activity and abundance of syntrophic fatty-acid oxidizers alongside hydrogenotrophic methanogens, signaling the importance of interspecies interactions in AD. Specifically, relative activity of Syntrophomonas was significantly correlated with methane production. Further, methane production increased over subsequent runs along with methyl coenzyme M reductase (mcrA) gene expression, a functional gene in methanogens, suggesting temporal adaptation of the microbial community to co-digestion substrate mixtures. The study demonstrated the benefits of co-digestion in terms of performance enhancement and enrichment of key active microbial populations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Methods for Finding Legacy Wells in Residential and Commercial Areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammack, Richard W.; Veloski, Garret A.
In 1919, the enthusiasm surrounding a short-lived gas play in Versailles Borough, Pennsylvania resulted in the drilling of many needless wells. The legacy of this activity exists today in the form of abandoned, unplugged gas wells that are a continuing source of fugitive methane in the midst of a residential and commercial area. Flammable concentrations of methane have been detected near building foundations, which have forced people from their homes and businesses until methane concentrations decreased. Despite mitigation efforts, methane problems persist and have caused some buildings to be permanently abandoned and demolished. This paper describes the use of magneticmore » and methane sensing methods by the National Energy Technology Laboratory (NETL) to locate abandoned gas wells in Versailles Borough where site access is limited and existing infrastructure can interfere. Here, wells are located between closely spaced houses and beneath buildings and parking lots. Wells are seldom visible, often because wellheads and internal casing strings have been removed, and external casing has been cut off below ground level. The magnetic survey of Versailles Borough identified 53 strong, monopole magnetic anomalies that are presumed to indicate the locations of steel-cased wells. This hypothesis was tested by excavating the location of one strong, monopole magnetic anomaly that was within an area of anomalous methane concentrations. The excavation uncovered an unplugged gas well that was within 0.2 m of the location of the maximum magnetic signal. Truck-mounted methane surveys of Versailles Borough detected numerous methane anomalies that were useful for narrowing search areas. Methane sources identified during truck-mounted surveys included strong methane sources such as sewers and methane mitigation vents. However, inconsistent wind direction and speed, especially between buildings, made locating weaker methane sources (such as leaking wells) difficult. Walking surveys with the methane detector mounted on a cart or wagon were more effective for detecting leaking wells because the instrument’s air inlet was near the ground where: 1) the methane concentration from subsurface sources (including wells) was a maximum, and 2) there was less displacement of methane anomalies from methane sources by air currents. The Versailles Borough survey found 15 methane anomalies that coincided with the location of well-type magnetic anomalies; the methane sources for these anomalies were assumed to be leaking wells. For abandoned well locations where the wellhead and all casing strings have been removed and there is no magnetic anomaly, leaking wellbores can sometimes be detected by methane surveys. Unlike magnetic anomalies, methane anomalies can be: 1) ephemeral, 2) significantly displaced from the well location, and 3) from non-well sources that cannot be discriminated without isotopic analysis. If methane surveys are used for well location, the air inlet to the instrument should be kept as close to the ground as possible to minimize the likelihood of detecting methane from distant, wind-blown sources.« less
Pashin, J.C.; McIntyre, M.R.
2003-01-01
Sorption of gas onto coal is sensitive to pressure and temperature, and carbon dioxide can be a potentially volatile supercritical fluid in coalbed methane reservoirs. More than 5000 wells have been drilled in the coalbed methane fields of the Black Warrior basin in west-central Alabama, and the hydrologic and geothermic information from geophysical well logs provides a robust database that can be used to assess the potential for carbon sequestration in coal-bearing strata.Reservoir temperature within the coalbed methane target zone generally ranges from 80 to 125 ??F (27-52 ??C), and geothermal gradient ranges from 6.0 to 19.9 ??F/1000 ft (10.9-36.2 ??C/km). Geothermal gradient data have a strong central tendency about a mean of 9.0 ??F/1000 ft (16.4 ??C/km). Hydrostatic pressure gradients in the coalbed methane fields range from normal (0.43 psi/ft) to extremely underpressured (<0.05 psi/ft). Pressure-depth plots establish a bimodal regime in which 70% of the wells have pressure gradients greater than 0.30 psi/ft, and 20% have pressure gradients lower than 0.10 psi/ft. Pockets of underpressure are developed around deep longwall coal mines and in areas distal to the main hydrologic recharge zone, which is developed in structurally upturned strata along the southeastern margin of the basin.Geothermal gradients within the coalbed methane fields are high enough that reservoirs never cross the gas-liquid condensation line for carbon dioxide. However, reservoirs have potential for supercritical fluid conditions beyond a depth of 2480 ft (756 m) under normally pressured conditions. All target coal beds are subcritically pressured in the northeastern half of the coalbed methane exploration fairway, whereas those same beds were in the supercritical phase window prior to gas production in the southwestern half of the fairway. Although mature reservoirs are dewatered and thus are in the carbon dioxide gas window, supercritical conditions may develop as reservoirs equilibrate toward a normal hydrostatic pressure gradient after abandonment. Coal can hold large quantities of carbon dioxide under supercritical conditions, and supercritical isotherms indicate non-Langmiur conditions under which some carbon dioxide may remain mobile in coal or may react with formation fluids or minerals. Hence, carbon sequestration and enhanced coalbed methane recovery show great promise in subcritical reservoirs, and additional research is required to assess the behavior of carbon dioxide in coal under supercritical conditions where additional sequestration capacity may exist. ?? 2003 Elsevier Science B.V. All rights reserved.
Methane Trace-Gas Sensing Enabled by Silicon Photonic Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Fugitive methane leaks occurring during extraction at typical natural gas wells have an adverse environmental impact due to the methane’s large radiative forcing, in addition to reducing the producer’s overall efficiency and cost. Mitigation of these concerns can benefit from cost-effective sensor nodes, performing reliable, rapid and continuous tracking of methane emissions. The efficacy of laser spectroscopy has been widely demonstrated in both environmental and medical applications due to its sensitivity and specificity to the target analyte. However, the present cost and lack of manufacturing scalability of traditional free-space optical systems can limit their viability for deployment in economical wide-areamore » sensor networks. This presentation will review the development and performance of a cost-effective silicon photonic trace gas sensing platform that leverages silicon photonic waveguide and packaging technologies to perform on-chip evanescent field spectroscopy of methane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikuno, Takaaki; Zheng, Jian; Vjunov, Aleksei
The catalyzed conversion of shale gas-derived light hydrocarbons, e.g. methane to methanol, for further application as automotive fuels and/or bulk chemicals is especially attractive in light of improved methods of hydrocarbon extraction. MOF based catalysts have previously been demonstrated to be active for a range of catalytic reactions. In this work we used Cu-NU1000 as a methane-to-methanol oxidation catalyst. In addition to product studies, in-situ X-ray Absorption Spectroscopic (XAS) experiments are performed under catalytic conditions in order to follow the modification of the Cu-species and directly probe the structure/activity properties of the Cu-NU1000 system. The insights reported herein serve asmore » a first look at metal-organic framework materials as catalysts for methane oxidation and be the basis for development of the subsequent generations of materials.« less
Evaluation of Methane Sources in Groundwater in Northeastern Pennsylvania
Molofsky, Lisa J; Connor, John A; Wylie, Albert S; Wagner, Tom; Farhat, Shahla K
2013-01-01
Testing of 1701 water wells in northeastern Pennsylvania shows that methane is ubiquitous in groundwater, with higher concentrations observed in valleys vs. upland areas and in association with calcium-sodium-bicarbonate, sodium-bicarbonate, and sodium-chloride rich waters—indicating that, on a regional scale, methane concentrations are best correlated to topographic and hydrogeologic features, rather than shale-gas extraction. In addition, our assessment of isotopic and molecular analyses of hydrocarbon gases in the Dimock Township suggest that gases present in local water wells are most consistent with Middle and Upper Devonian gases sampled in the annular spaces of local gas wells, as opposed to Marcellus Production gas. Combined, these findings suggest that the methane concentrations in Susquehanna County water wells can be explained without the migration of Marcellus shale gas through fractures, an observation that has important implications for understanding the nature of risks associated with shale-gas extraction. PMID:23560830
Diffusion of gas mixtures in the sI hydrate structure
NASA Astrophysics Data System (ADS)
Waage, Magnus H.; Trinh, Thuat T.; van Erp, Titus S.
2018-06-01
Replacing methane with carbon dioxide in gas hydrates has been suggested as a way of harvesting methane, while at the same time storing carbon dioxide. Experimental evidence suggests that this process is facilitated if gas mixtures are used instead of pure carbon dioxide. We studied the free energy barriers for diffusion of methane, carbon dioxide, nitrogen, and hydrogen in the sI hydrate structure using molecular simulation techniques. Cage hops between neighboring cages were considered with and without a water vacancy and with a potential inclusion of an additional gas molecule in either the initial or final cage. Our results give little evidence for enhanced methane and carbon dioxide diffusion if nitrogen is present as well. However, the inclusion of hydrogen seems to have a substantial effect as it diffuses rapidly and can easily enter occupied cages, which reduces the barriers of diffusion for the gas molecules that co-occupy a cage with hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackstein, J.H.P.; Stumm, C.K.
The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the thirdmore » type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The plasmids present in M. ethanolicum have been characterized as to size, relatedness, and curing rate. Auxotrophs have been isolated and are being tested for the ability of several plasmids to promote mobilization of these markers. A cloning vector has been identified which can be used not only to clone the genes of interest but to isolate mutants in these genes and place a selectable marker on each of the plasmids. Isolation of a series of methane and methanol mutants, determination of which of the plasmids carries the mtn gene(s), and identification of methane-specific proteins on two-dimensonal O'Farrell gels shouldmore » all be completed shortly. In addition, the cloning of the methane genes and development of a genetic system should be well underway. A more detailed appraisal of future experiments is presented in the accompanying renewal proposal. (ERB)« less
Methane emission from flooded soils - from microorganisms to the atmosphere
NASA Astrophysics Data System (ADS)
Conrad, Ralf
2016-04-01
Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.
NASA Astrophysics Data System (ADS)
Chanton, Jeffrey P.; Rutkowski, Christine M.; Schwartz, Candace C.; Ward, Darold E.; Boring, Lindsay
2000-01-01
Factors controlling the δ13C of methane released by combustion include the combustion efficiency of the fire and the δ13C of the fuel. Smoldering fires produced 13C-depleted methane relative to hot, flaming fires in controlled forest and grassland burns and within a wood stove. Pine forest burns in the southeastern United States produced methane which ranged from -21 to -30‰, while African grassland burns varied from -17 to -26‰, depending upon combustion phase. African woodland burns produced methane at -30‰. In forest burns in the southeastern United States, the δ13C of methane released with smoldering was significantly 13C depleted relative to methane released under hot flaming conditions. Methane released with smoldering was depleted by 2-3‰ relative to the fuel δ13C, but this difference was not significant. The δ13C of methane produced in a variety of wood stove conditions varied from -9 to -25‰ and also depended upon combustion efficiency. Similar results were found for methane produced by gasoline automobile engines, where the δ13C of methane varied from -9 to -22‰. For combustion occurring within the confining chamber of a wood stove or engine the δ13C of methane was clearly 13C enriched relative to the δ13C of the fuel, possibly because of preferential combustion of 12CH4 in the gas phase. Significant quantities of ethylene (up to 25 to 50% of methane concentrations) were produced in southeastern U.S. forest fires, which may have consequences for physiological and reproductive responses of plants in the ecosystem. Methane production in these fires varied from 0.2 to 8.5% of the carbon dioxide production.
NASA Astrophysics Data System (ADS)
Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.
2016-09-01
Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.
Methane-oxidizing seawater microbial communities from an Arctic shelf
NASA Astrophysics Data System (ADS)
Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice
2018-06-01
Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.
NASA Astrophysics Data System (ADS)
Mogollón, José M.; Dale, Andrew W.; Jensen, Jørn B.; Schlüter, Michael; Regnier, Pierre
2013-08-01
Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean-atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea-Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year-1) than previous estimates (4.6 Tmol year-1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeer, P.; Durbin, E.
1982-01-01
The 20 invited papers presented at the world conference on alternative fuel entitled 'Methane - fuel for the future' form the basis of this book. Papers discuss: the availability of alternative fuels (natural gas, biomass conversion to methane, methane from coal conversion); technological adaptions for alternative fuels (e.g. natural gas fueled engines, methane and diesel engines); commercial experience with alternative fuel programs. (e.g. retailing of methane); and some national programs for alternative fuels. One paper has been abstracted separately.
Controls on tree species stem transport and emission of methane from tropical peatlands
NASA Astrophysics Data System (ADS)
Van Haren, J. L. M.; Cadillo-Quiroz, H.
2016-12-01
Methane emissions from wetlands dominate the global budget and are most likely responsible for the annual variability in emissions. Methane is produced and consumed by microbial activity and then transported to the atmosphere. Plants have been shown to facilitate the transport of methane to significant amounts, but broad surveys across multiple sites have been lacking. We present data collected from multiple peatland and wetland sites south of Iquitos Peru and varzea sites from Santarem Brazil and compare our results to the limited literature of tree stem fluxes. The survey suggests that methane stem emissions might be conserved at the genera level, but not the family level. Large emitters exist in the Aracaceae, Euphorbiaceae, and Sapotaceae, however, other genera within the same families do not emit any methane. Certain genera are consistent pan-tropical methane emitters. The methane emission from the stems decreases generally with height, suggesting a diffusion constrained stem flux. Further constraints on the methane emissions from tree stems involve soil methane concentration and wood density, which is likely an indicator for stem conductivity. Diurnal cycles, flooding level and tree leaves appear to have less of an influence on the tree methane emissions though flooding can lead to a translocation of emissions up the stem to above the flooding level. Methane emissions and the plant transport pathways appear to be constrained at the genera level within wetlands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.A.; Brasseur, G.P.; Zimmerman, P.R.
Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). With the average hydroxyl radical concentration fixed, the methane source term was computed as {approximately}623 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.3 years. The second model identified source regions for methane frommore » rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. This methane source distribution resulted in an estimate of the global total methane source of {approximately}611 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.5 years. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies. Using a recent measurement of the reaction rate of hydroxyl radical and methane leads to estimates of the global total methane source for SF1 of {approximately}524 Tg CH{sub 4} giving an atmospheric lifetime of {approximately}10.0 years and for SF2{approximately}514 Tg CH{sub 4} yielding a lifetime of {approximately}10.2 years.« less
NASA Technical Reports Server (NTRS)
King, Gary M.
1996-01-01
Methane oxidation associated with the belowground tissues of a common aquatic macrophyte, the burweed Sparganium euryearpum, was assayed in situ by a chamber technique with acetylene or methyl fluoride as a methanotrophic inhibitor at a headspace concentration of 3 to 4%. Acetylene and methyl fluoride inhibited both methane oxidation and peat methanogenesis. However, inhibition of methanogenesis resulted in no obvious short-term effect on methane fluxes. Since neither inhibitor adversely affected plant metabolism and both inhibited methanotrophy equally well, acetylene was employed for routine assays because of its low cost and ease of use. Root-associated methanotrophy consumed a variable but significant fraction of the total potential methane flux; values varied between 1 and 58% (mean +/- standard deviation, 27.0% +/- 6.0%), with no consistent temporal or spatial pattern during late summer. The absolute amount of methane oxidized was not correlated with the total potential methane flux; this suggested that parameters other than methane availability (e.g., oxygen availability) controlled the rates of methane oxidation. Estimates of diffusive methane flux and oxidation at the peat surface indicated that methane emission occurred primarily through aboveground plant tissues; the absolute magnitude of methane oxidation was also greater in association with roots than at the peat surface. However, the relative extent of oxidation was greater at the latter locus.
Marine methane paradox explained by bacterial degradation of dissolved organic matter
NASA Astrophysics Data System (ADS)
Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.
2016-12-01
Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.
30 CFR 75.323 - Actions for excessive methane.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...
30 CFR 75.323 - Actions for excessive methane.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...
30 CFR 75.323 - Actions for excessive methane.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...
30 CFR 75.323 - Actions for excessive methane.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...
30 CFR 57.22226 - Testing for methane (IV mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Testing for methane (IV mines). 57.22226... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22226 Testing for methane (IV mines). Tests for methane shall be conducted in the mine atmosphere by a competent person— (a) At least once...
30 CFR 75.1324 - Methane concentration and tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane concentration and tests. 75.1324... Methane concentration and tests. (a) No shot shall be fired in an area that contains 1.0 volume percent or more of methane. (b) Immediately before shots are fired, the methane concentration in a working place...
30 CFR 57.22306 - Methane monitors (I-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...
30 CFR 57.22307 - Methane monitors (II-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...
30 CFR 57.22309 - Methane monitors (V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane monitors (V-A mines). 57.22309 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22309 Methane monitors (V-A mines). (a) Methane monitors shall be installed on continuous mining machines used in or beyond the last open crosscut...
30 CFR 75.323 - Actions for excessive methane.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...
30 CFR 57.22306 - Methane monitors (I-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (I-A mines). 57.22306 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22306 Methane monitors (I-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, and on loading...
30 CFR 75.1324 - Methane concentration and tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane concentration and tests. 75.1324... Methane concentration and tests. (a) No shot shall be fired in an area that contains 1.0 volume percent or more of methane. (b) Immediately before shots are fired, the methane concentration in a working place...
30 CFR 57.22226 - Testing for methane (IV mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Testing for methane (IV mines). 57.22226... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22226 Testing for methane (IV mines). Tests for methane shall be conducted in the mine atmosphere by a competent person— (a) At least once...
30 CFR 57.22307 - Methane monitors (II-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (II-A mines). 57.22307 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22307 Methane monitors (II-A mines). (a) Methane monitors shall be installed on continuous mining machines, longwall mining systems, bench and face...
30 CFR 57.22309 - Methane monitors (V-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Methane monitors (V-A mines). 57.22309 Section... Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22309 Methane monitors (V-A mines). (a) Methane monitors shall be installed on continuous mining machines used in or beyond the last open crosscut...
Methane oxidation in Saanich Inlet during summer stratification
NASA Technical Reports Server (NTRS)
Ward, B. B.; Kilpatrick, K. A.; Wopat, A. E.; Minnich, E. C.; Lidstrom, M. E.
1989-01-01
Saanich Inlet, British Columbia, an fjord on the southeast coast of Vancouver Island, typically stratifies in summer, leading to the formation of an oxic-anoxic interface in the water column and accumulation of methane in the deep water. The results of methane concentration measurements in the water column of the inlet at various times throughout the summer months in 1983 are presented. Methane gradients and calculated diffusive fluxes across the oxic-anoxic interface increased as the summer progressed. Methane distribution and consumption in Saanich Inlet were studied in more detail during August 1986. At this time, a typical summer stratification with an oxic-anoxic interface around 140 m was present. At the interface, steep gradients in nutrient concentrations, bacterial abundance and methane concentration were observed. Methane oxidation was detected in the aerobic surface waters and in the anaerobic deep layer, but highest rates occurred in a narrow layer at the oxic-anoxic interface. Estimated methane oxidation rates were suffcient to consume 100 percent of the methane provided by diffusive flux from the anoxic layer. Methane oxidation is thus a mechanism whereby atmospheric flux from anoxic waters is minimized.
Engineering of Methane Metabolism in Pichia Pastoris Through Methane Monooxygenase Expression
NASA Technical Reports Server (NTRS)
Fleury, Samantha T.; Neff, Lily S.; Galazka, Jonathan M.
2017-01-01
Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
High-Frequency Measurements of Tree Methane Fluxes Indicate a Primary Souce Inside Tree Tissue
NASA Astrophysics Data System (ADS)
Brewer, P.; Megonigal, P.
2017-12-01
Methane emissions from the boles and shoots of living upland trees is a recent discovery with significant implications for methane budgets. Forest soil methane uptake is the greatest terrestrial methane sink, but studies have shown this may be partially for fully offset by tree methane sources. However, our ability to quantify the tree source has been hampered because the ultimate biological source(s) of methane is unclear. We measured methane fluxes from two species of living tree boles in an Eastern North American deciduous forest over 100 consecutive days. Our two hour sampling intervals allowed us to characterize diurnal patterns and seasonal dynamics. We observed wide intraspecific differences in average flux rates and diurnal dynamics, even between adjacent individuals. This and other properties of the fluxes indicates the primary methane source is likely within the tree tissues, not in soil or groundwater. Emissions of methane from trees offset approximately 10% of soil uptake on average, but at times tree fluxes were much higher. Preliminary analyses indicate the highest rates are related to tree life history, tree growth, temperature, ground-water depth, and soil moisture.
Anaerobic methane oxidation in low-organic content methane seep sediments
Pohlman, John W.; Riedel, Michael; Bauer, James E.; Canuel, Elizabeth A.; Paull, Charles K.; Lapham, Laura; Grabowski, Kenneth S.; Coffin, Richard B.; Spence, George D.
2013-01-01
Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.
Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.
Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico
2014-04-01
Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.
NASA Astrophysics Data System (ADS)
Biddle, J. F.; Turich, C.; Brantley, S.; Bruns, M.
2002-12-01
Wetlands produce between 55 and 150 Tg of methane per year, or ~70% of all natural methane, and 20% of total methane (natural and anthropogenic). Understanding inputs to the global methane cycle depends on integrated in situ study of the sources and sinks of methane, as well as the rate and magnitude of methane production and consumption. Bear Meadows Natural Area in central Pennsylvania (N 40° 43.796' W 077° 45.310; 554 m elevation) contains an acidic, methane-producing, peaty bog with vegetation that is typical of wetlands at higher latitudes. In this four year study conducted within a cross-disciplinary training course offered by the NSF-IGERT Biogeochemical Research Initiative in Education (BRIE) program at Penn State University, graduate students applied a combination of geochemical and microbiological techniques to explore microbial diversity and activity in Bear Meadows sediments. The methane flux at the peat:water interface was highly variable, from 0.01 to over 3000 umol/m2/min in both sphagnum and sedge vegetation. The methane released from the bog had a carbon isotopic composition of -60 %o, typical of biogenic methane. Analysis of peat pore waters showed that the most methane was produced 30 cm below the peat:water interface, with a broad peak of methane in pore waters from 20-40 cm. At 21 cm below the peat:water interface, profiles of Archaeal 16S-23S ribosomal RNA spacer regions revealed the presence of populations having 92% similarity to 16S rRNA sequences of Methanoculleus marisnigri. Phospholipid fatty acids (PLFA) and compound specific isotope analysis revealed other biological controls on the methane cycle. PLFAs typical of methanotrophic bacteria were also present within peat cores from 20-30 cm below the water interface. The depleted carbon isotopic composition of these biomarkers (C16:1 and C18:1 fatty acids) was - 31.4 %o and - 33.8%o, indicative of methane oxidation. The presence of biomarkers of methane oxidizing bacteria within the zone of methane production may indicate that there is temporal or spatial heterogeneity in oxygen concentration within the peat. This interdisciplinary approach helped define specific ecological niches where novel methanogens and methane oxidizers may be active in a typical northern wetland. Through BRIE, on-going studies of the Bear Meadows wetland will focus on detecting other potentially novel aerobic and anaerobic microbes, and determining the biological influence on methane release to the atmosphere.
Quantification of Methane Source Locations and Emissions in AN Urban Setting
NASA Astrophysics Data System (ADS)
Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.
2011-12-01
The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.
Tandem Gravimetric and Volumetric Apparatus for Methane Sorption Measurements
NASA Astrophysics Data System (ADS)
Burress, Jacob; Bethea, Donald
Concerns about global climate change have driven the search for alternative fuels. Natural gas (NG, methane) is a cleaner fuel than gasoline and abundantly available due to hydraulic fracturing. One hurdle to the adoption of NG vehicles is the bulky cylindrical storage vessels needed to store the NG at high pressures (3600 psi, 250 bar). The adsorption of methane in microporous materials can store large amounts of methane at low enough pressures for the allowance of conformable, ``flat'' pressure vessels. The measurement of the amount of gas stored in sorbent materials is typically done by measuring pressure differences (volumetric, manometric) or masses (gravimetric). Volumetric instruments of the Sievert type have uncertainties that compound with each additional measurement. Therefore, the highest-pressure measurement has the largest uncertainty. Gravimetric instruments don't have that drawback, but can have issues with buoyancy corrections. An instrument will be presented with which methane adsorption measurements can be performed using both volumetric and gravimetric methods in tandem. The gravimetric method presented has no buoyancy corrections and low uncertainty. Therefore, the gravimetric measurements can be performed throughout an entire isotherm or just at the extrema to verify the results from the volumetric measurements. Results from methane sorption measurements on an activated carbon (MSC-30) and a metal-organic framework (Cu-BTC, HKUST-1, MOF-199) will be shown. New recommendations for calculations of gas uptake and uncertainty measurements will be discussed.
NASA Astrophysics Data System (ADS)
Allen, Grant; Pitt, Joseph; Lee, James; Hopkins, James; Young, Stuart; Bauguitte, Stéphane; Gallagher, Martin; Fisher, Rebecca; Lowry, David; Nisbet, Euan
2017-04-01
Global methane concentrations continue to rise due to an imbalance between sources and sinks. There remains little consensus on the relative components of the manifold source types and their geographical origin. The Global Methane Budget and Yearly Assessments (MOYA) project is tasked with better characterising the global methane budget through an augmented global measurement and modelling programme. As part of MOYA, the UK's Facility for Airborne Atmospheric Measurement (FAAM), will fly four campaigns based out of West Africa and Ascension Island in the period 2017-2019, to focus on the important role of tropical sources. The first of these, to be conducted in late February 2017, will focus on the biomass burning season in West Africa. This paper will present the plan for future FAAM MOYA campaigns and report on our first aircraft data gathered in the West African region. The new addition of an interband cascade laser spectrometer to the FAAM aircraft, flown in this campaign for the first time, promises to provide the first real-time, continuous, and simultaneous, airborne measurements of methane, ethane and methane C-13 isotopologues. Together, these measurements, when interpreted in combination with other trace gases and aerosol measured on the aircraft, will serve as case studies to inform modelling of regional and global fluxes through their isotopic fingerprints.
Monocopper active site for partial methane oxidation in Cu-exchanged 8MR zeolites
Kulkarni, Ambarish R.; Zhao, Zhi -Jian; Siahrostami, Samira; ...
2016-08-17
Direct conversion of methane to methanol using oxygen is experiencing renewed interest owing to the availability of new natural gas resources. Copper-exchanged zeolites such as mordenite and ZSM-5 have shown encouraging results, and di- and tri-copper species have been suggested as active sites. Recently, small eight-membered ring (8MR) zeolites including SSZ-13, -16, and -39 have been shown to be active for methane oxidation, but the active sites and reaction mechanisms in these 8MR zeolites are not known. In this work, we use density functional theory (DFT) calculations to systematically evaluate monocopper species as active sites for the partial methane oxidationmore » reaction in Cu-exchanged SSZ-13. On the basis of kinetic and thermodynamic arguments, we suggest that [Cu IIOH] + species in the 8MR are responsible for the experimentally observed activity. Furthermore, our results successfully explain the available spectroscopic data and experimental observations including (i) the necessity of water for methanol extraction and (ii) the effect of Si/Al ratio on the catalyst activity. Monocopper species have not yet been suggested as an active site for the partial methane oxidation reaction, and our results suggest that [Cu IIOH] + active site may provide complementary routes for methane activation in zeolites in addition to the known [Cu–O–Cu] 2+ and Cu 3O 3 motifs.« less
Wen, Tao; Castro, M Clara; Nicot, Jean-Philippe; Hall, Chris M; Larson, Toti; Mickler, Patrick; Darvari, Roxana
2016-11-01
This study places constraints on the source and transport mechanisms of methane found in groundwater within the Barnett Shale footprint in Texas using dissolved noble gases, with particular emphasis on 84 Kr and 132 Xe. Dissolved methane concentrations are positively correlated with crustal 4 He, 21 Ne, and 40 Ar and suggest that noble gases and methane originate from common sedimentary strata, likely the Strawn Group. In contrast to most samples, four water wells with the highest dissolved methane concentrations unequivocally show strong depletion of all atmospheric noble gases ( 20 Ne, 36 Ar, 84 Kr, 132 Xe) with respect to air-saturated water (ASW). This is consistent with predicted noble gas concentrations in a water phase in contact with a gas phase with initial ASW composition at 18 °C-25 °C and it suggests an in situ, highly localized gas source. All of these four water wells tap into the Strawn Group and it is likely that small gas accumulations known to be present in the shallow subsurface were reached. Additionally, lack of correlation of 84 Kr/ 36 Ar and 132 Xe/ 36 Ar fractionation levels along with 4 He/ 20 Ne with distance to the nearest gas production wells does not support the notion that methane present in these groundwaters migrated from nearby production wells either conventional or using hydraulic fracturing techniques.
Fugitive greenhouse gas emissions from shale gas activities - a case study of Dish, TX
NASA Astrophysics Data System (ADS)
Khan, A.; Roscoe, B.; Lary, D.; Schaefer, D.; Tao, L.; Sun, K.; Brian, A.; DiGangi, J.; Miller, D. J.; Zondlo, M. A.
2012-12-01
We evaluate new findings on aerial (horizontal and vertical) mapping of methane emissions in the atmospheric boundary layer region to help study fugitive methane emissions from extraction, transmission, and storage of natural gas and oil in Dish, Texas. Dish is located in the Barnett Shale which has seen explosive development of hydraulic fracking activities in recent years. The aerial measurements were performed with a new laser-based methane sensor developed specifically for an unmanned aerial vehicle (UAV). The vertical cavity surface emitting laser (VCSEL) methane sensor, with a mass of 2.5 kg and a precision of < 20 ppbv methane at 1 Hz, was flown on the UT-Dallas ARC Payload Master electronic aircraft at two sites in Texas: one representative of urban emissions of the Dallas-Fort Worth area in Richardson, Texas and another in Dish, Texas, closer to gas and oil activities. Methane mixing ratios at Dish were ubiquitously in the 3.5 - 4 ppmv range which was 1.5 - 2 ppmv higher than methane levels immediately downwind of Dallas. During the flight measurements at Dish, narrow methane plumes exceeding 20 ppmv were frequently observed at altitudes from the surface to 130 m above the ground. Based on the wind speed at the sampling location, the horizontal widths of large methane plumes were of the order of 100 m. The locations of the large methane plumes were variable in space and time over a ~ 1 km2 area sampled from the UAV. Spatial mapping over larger scales (10 km) by ground-based measurements showed similar methane levels as the UAV measurements. To corroborate our measurements, alkane and other hydrocarbon mixing ratios from an on-site TCEQ environmental monitoring station were analyzed and correlated with methane measurements to fingerprint the methane source. We show that fugitive methane emissions at Dish are a significant cause of the large and ubiquitous methane levels on the 1-10 km scale.
Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event.
Petrenko, Vasilii V; Smith, Andrew M; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F; Severinghaus, Jeffrey P
2017-08-23
Methane (CH 4 ) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane ( 14 CH 4 ) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today's natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.
Controls on Methane Occurrences in Aquifers Overlying the Eagle Ford Shale Play, South Texas.
Nicot, Jean-Philippe; Larson, Toti; Darvari, Roxana; Mickler, Patrick; Uhlman, Kristine; Costley, Ruth
2017-07-01
Assessing natural vs. anthropogenic sources of methane in drinking water aquifers is a critical issue in areas of shale oil and gas production. The objective of this study was to determine controls on methane occurrences in aquifers in the Eagle Ford Shale play footprint. A total of 110 water wells were tested for dissolved light alkanes, isotopes of methane, and major ions, mostly in the eastern section of the play. Multiple aquifers were sampled with approximately 47 samples from the Carrizo-Wilcox Aquifer (250-1200 m depth range) and Queen City-Sparta Aquifer (150-900 m depth range) and 63 samples from other shallow aquifers but mostly from the Catahoula Formation (depth <150 m). Besides three shallow wells with unambiguously microbial methane, only deeper wells show significant dissolved methane (22 samples >1 mg/L, 10 samples >10 mg/L). No dissolved methane samples exhibit thermogenic characteristics that would link them unequivocally to oil and gas sourced from the Eagle Ford Shale. In particular, the well water samples contain very little or no ethane and propane (C1/C2+C3 molar ratio >453), unlike what would be expected in an oil province, but they also display relatively heavier δ 13 C methane (>-55‰) and δD methane (>-180‰). Samples from the deeper Carrizo and Queen City aquifers are consistent with microbial methane sourced from syndepositional organic matter mixed with thermogenic methane input, most likely originating from deeper oil reservoirs and migrating through fault zones. Active oxidation of methane pushes δ 13 C methane and δD methane toward heavier values, whereas the thermogenic gas component is enriched with methane owing to a long migration path resulting in a higher C1/C2+C3 ratio than in the local reservoirs. © 2017, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Leifer, I.; Culling, D.; Schneising, O.; Bovensmann, H.; Buchwitz, M.; Burrows, J. P.
2012-12-01
A ground-based, transcontinental (Florida to California - i.e., satellite-scale) survey was conducted to understand better the role of fossil fuel industrial (FFI) fugitive emissions of the potent greenhouse gas, methane. Data were collected by flame ion detection gas chromatography (Fall 2010) and by a cavity ring-down sensor (Winter 2012) from a nearly continuously moving recreational vehicle, allowing 24/7 data collection. Nocturnal methane measurements for similar sources tended to be higher compared to daytime values, sometime significantly, due to day/night meteorological differences. Data revealed strong and persistent FFI methane sources associated with refining, a presumed major pipeline leak, and several minor pipeline leaks, a coal loading plant, and areas of active petroleum production. Data showed FFI source emissions were highly transient and heterogeneous; however, integrated over these large-scale facilities, methane signatures overwhelmed that of other sources, creating clearly identifiable plumes that were well elevated above ambient. The highest methane concentration recorded was 39 ppm at an active central valley California production field, while desert values were as low as 1.80 ppm. Surface methane data show similar trends with strong emissions correlated with FFI on large (4° bin) scales and positive methane anomalies centered on the Gulf Coast area of Houston, home to most of US refining capacity. Comparison with SCIAMACHY and GOSAT satellite data show agreement with surface data in the large-scale methane spatial patterns. Positive satellite methane anomalies in the southeast and Mexico largely correlated with methane anthropogenic and wetland inventory models suggests most strong ground methane anomalies in the Gulf of Mexico region were related to dominant FFI input for most seasons. Wind advection played a role, in some cases confounding a clear relationship. Results are consistent with a non-negligible underestimation of the FFI contribution to global methane budgets.; In situ methane concentrations during transcontinental survey Fall 2010.
Methane clathrates in the solar system.
Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe
2015-04-01
We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate layers may exist on Pluto as well. Key Words: Methane clathrate-Protosolar nebula-Terrestrial planets-Outer Solar System. Astrobiology 15, 308-326.
Minimal geological methane emissions during the Younger Dryas-Preboreal abrupt warming event
NASA Astrophysics Data System (ADS)
Petrenko, Vasilii V.; Smith, Andrew M.; Schaefer, Hinrich; Riedel, Katja; Brook, Edward; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais; Weiss, Ray F.; Severinghaus, Jeffrey P.
2017-08-01
Methane (CH4) is a powerful greenhouse gas and plays a key part in global atmospheric chemistry. Natural geological emissions (fossil methane vented naturally from marine and terrestrial seeps and mud volcanoes) are thought to contribute around 52 teragrams of methane per year to the global methane source, about 10 per cent of the total, but both bottom-up methods (measuring emissions) and top-down approaches (measuring atmospheric mole fractions and isotopes) for constraining these geological emissions have been associated with large uncertainties. Here we use ice core measurements to quantify the absolute amount of radiocarbon-containing methane (14CH4) in the past atmosphere and show that geological methane emissions were no higher than 15.4 teragrams per year (95 per cent confidence), averaged over the abrupt warming event that occurred between the Younger Dryas and Preboreal intervals, approximately 11,600 years ago. Assuming that past geological methane emissions were no lower than today, our results indicate that current estimates of today’s natural geological methane emissions (about 52 teragrams per year) are too high and, by extension, that current estimates of anthropogenic fossil methane emissions are too low. Our results also improve on and confirm earlier findings that the rapid increase of about 50 per cent in mole fraction of atmospheric methane at the Younger Dryas-Preboreal event was driven by contemporaneous methane from sources such as wetlands; our findings constrain the contribution from old carbon reservoirs (marine methane hydrates, permafrost and methane trapped under ice) to 19 per cent or less (95 per cent confidence). To the extent that the characteristics of the most recent deglaciation and the Younger Dryas-Preboreal warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future atmospheric releases of methane from old carbon sources are unlikely to occur.
Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.
Lefèvre, Franck; Forget, François
2009-08-06
The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.
NASA Astrophysics Data System (ADS)
Xu, L.; McDermitt, D. K.; Li, J.; Green, R. B.
2016-12-01
Methane plays a critical role in the radiation balance and chemistry of the atmosphere. Globally, landfill methane emission contributes about 10-19% of the anthropogenic methane burden into the atmosphere. In the United States, 18% of annual anthropogenic methane emissions come from landfills, which represent the third largest source of anthropogenic methane emissions, behind enteric fermentation and natural gas and oil production. One uncertainty in estimating landfill methane emissions is the fraction of methane oxidized when methane produced under anaerobic conditions passes through the cover soil. We developed a simple stoichiometric model to estimate the landfill methane oxidation fraction when the anaerobic CO2/CH4 production ratio is known. The model predicts a linear relationship between CO2 emission rates and CH4 emission rates, where the slope depends on anaerobic CO2/CH4 production ratio and the fraction of methane oxidized, and the intercept depends on non-methane-dependent oxidation processes. The model was tested with eddy covariance CO2 and CH4 emission rates at Bluff Road Landfill in Lincoln Nebraska. It predicted zero oxidation rate in the northern portion of this landfill where a membrane and vents were present. The zero oxidation rate was expected because there would be little opportunity for methane to encounter oxidizing conditions before leaving the vents. We also applied the model at the Turkey Run Landfill in Georgia to estimate the CH4 oxidation rate over a one year period. In contrast to Bluff Road Landfill, the Turkey Run Landfill did not have a membrane or vents. Instead, methane produced in the landfill had to diffuse through a 0.5 m soil cap before release to the atmosphere. We observed evidence for methane oxidation ranging from about 18% to above 60% depending upon the age of deposited waste material. The model will be briefly described, and results from the two contrasting landfills will be discussed in this presentation.
Anaerobic oxidation of methane in the Concepción Methane Seep Area, Chilean continental margin
NASA Astrophysics Data System (ADS)
Steeb, P.; Linke, P.; Scholz, F.; Schmidt, M.; Liebetrau, V.; Treude, T.
2012-04-01
Within subduction zones of active continental margins, large amounts of methane can be mobilized by dewatering processes and transported to the seafloor along migration pathways. A recently discovered seep area located off Concepción (Chile) at water depth between 600 to 1100 mbsl is characterized by active methane vent sites as well as massive carbonates boulders and plates which probably are related to methane seepage in the past. During the SO210 research expedition "Chiflux" (Sept-Oct 2010), sediment from the Concepción Methane Seep Area (CSMA) at the fore arc of the Chilean margin was sampled to study microbial activity related to methane seepage. We sampled surface sediments (0-30cm) from sulfur bacteria mats, as well as clam, pogonophoran, and tubeworm fields with push cores and a TV-guided multicorer system. Anaerobic oxidation of methane (AOM) and sulfate reduction rates were determined using ex-situ radioisotope tracer techniques. Additionally, porewater chemistry of retrieved cores as well as isotopic composition and age record of surrounding authigenic carbonates were analyzed. The shallowest sulfate-methane-transition zone (SMTZ) was identified at 4 cm sediment depth hinting to locally strong fluid fluxes. However, a lack of Cl- anomalies in porewater profiles indicates a shallow source of these fluids, which is supported by the biogenic origin of the methane (δ13C -70‰ PDB). Sulfide and alkalinity was relatively high (up to 20 mM and 40 mEq, respectively). Rates of AOM and sulfate reduction within this area reached magnitudes typical for seeps with variation between different habitat types, indicating a diverse methane supply, which is affecting the depths of the SMTZ. Rates were highest at sulfur a bacteria mats (20 mmol m-2 d-1) followed by a large field of dead clams, a pogonophoran field, a black sediment spot, and a carbonate rich clam field. Lowest rates (0.2 mmol m-2 d-1) were measured in close vicinity to these hot spots. Abundant massive carbonate blocks and plates hint to a very old seep system with a probably much higher activity in the past. The U-Th age record of these authigenic carbonates reach back to periods of venting activity with more than 150 ka ago. Carbon isotopic signatures of authigenic carbonates (δ13C -50 to -40‰ PDB) suggest a biogenic carbon source (i.e. methane), also in the past. We found several indications for the impact of recent earthquakes within the seep area (cracks, shifted seafloor), which could be an important mechanism for the triggering of new seepage activity, change in fluid expulsion rates and colonization patterns of the cold seep fauna.
Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean
NASA Astrophysics Data System (ADS)
Stepanenko, Victor; Iakovlev, Nikolai
2013-04-01
The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to available in situ measurements. The components of methane budget in water column are calculated, and the ratio of bubble flux to turbulent one inter alia. A number of additional experiments are performed to assess the sensitivity of methane budget components to variation of uncertain parameters of the model (such as initial bubble radius). References 1) Shakhova, N., I.Semiletov, A.Salyuk, V.Yusupov, D.Kosmach, and Ö.Gustafsson. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 5 March 2010: Vol. 327 no. 5970 pp. 1246-1250 DOI: 10.1126/science.1182221. 2) Biastoch, A., T. Treude, L. H. Rüpke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Büning, G. Madec, and K. Wallmann. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, Vol. 38, L08602, doi:10.1029/2011GL047222,2011.
Fast Identification of Methane and Other Atmospheric Contaminant Sources in Complex Urban Settings
NASA Astrophysics Data System (ADS)
Jacobson, G. A.; Crosson, E.; Tan, S. M.
2012-12-01
The identification and quantification of greenhouse gas emissions (fluxes) from urban centers have become of increasing interest over the last few years. This interest is driven by recent measurements indicating that urban emissions are a significant source of methane (CH4) and in fact may be substantially higher than current inventory estimates(1). Urban CH4 emissions could contribute 7-15% to the global anthropogenic budget of methane. Although it is known that the per capita carbon footprint of compact cities, such as New York City, Boston, and San Francisco, are smaller than sprawling cities, such as Houston, the strengths of individual sources within these cities are not well known. Such information is of use to policy makers because it can be used to incentivize changes in transportation and land use patterns. The work discussed here will highlight a vehicle-based methodology for characterizing urban emissions that enables extremely fast identification of methane sources in complex urban settings. Measurements were taken while driving at speeds from 20 to 40 miles per hour in stop and go traffic and were able to not only identify methane plumes but in addition, provide information about the location of the sources generating these methane plumes. Results showed that a large number of highly localized methane sources were found in Boston and San Francisco. For example, leaks from natural gas production, transmission and distribution lines were found in both cities. Flux chamber measurements of these leaks indicate that the methane flux ranged from 40 to 300 standard cubic feet of natural gas per day. For reference, the average American home uses approximately 200-300 cubic feet of natural gas per day. These leaks increase cost to natural gas suppliers, add to greenhouse gas concentrations, and in extreme cases pose a safety hazard. In this work, results showing the identification, location, and quantifying methane sources in urban settings will be presented. We will also present how these techniques could be extended for use in further identification of urban emissions, for example, by measuring H2S produced by sewage, landfills or industrial processes. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.; Mobile methane survey results showing how plume signatures can be used to identify natural gas leaks as a source of methane.
NASA Astrophysics Data System (ADS)
Kelly, Bryce F. J.; Iverach, Charlotte P.; Lowry, Dave; Fisher, Rebecca E.; France, James L.; Nisbet, Euan G.
2015-04-01
Modern cavity ringdown spectroscopy systems (CRDS) enable the continuous measurement of methane concentration. This allows for improved quantification of greenhouse gas emissions associated with various natural and human landscapes. We present a subset of over 4000 km of continuous methane surveying along the east coast of Australia, made using a Picarro G2301 CRDS, deployed in a utility vehicle with an air inlet above the roof at 2.2 mAGL. Measurements were made every 5 seconds to a precision of <0.5 ppb for CH4. These surveys were undertaken during dry daytime hours and all measurements were moisture corrected. We compare the concentration of methane in the near surface atmosphere adjacent to open-cut coal mines, unconventional gas developments (coal seam gas; CSG), and leaks detected in cities and country towns. In areas of dryland crops the median methane concentration was 1.78 ppm, while in the irrigation districts located on vertisol soils the concentration was as low as 1.76 ppm, which may indicate that these soils are a sink for methane. In the Hunter Valley, New South Wales, open-cut coal mining district we mapped a continuous 50 km interval where the concentration of methane exceeded 1.80 ppm. The median concentration in this interval was 2.02 ppm. Peak readings were beyond the range of the reliable measurement (in excess of 3.00 ppm). This extended plume is an amalgamation of plumes from 17 major pits 1 to 10 km in length. Adjacent to CSG developments in the Surat Basin, southeast Queensland, only small anomalies were detected near the well-heads. Throughout the vast majority of the gas fields the concentration of methane was below 1.80 ppm. The largest source of fugitive methane associated with CSG was off-gassing methane from the co-produced water holding ponds. At one location the down wind plume had a cross section of approximately 1 km where the concentration of methane was above 1.80 ppm. The median concentration within this section was 1.82 ppm, with a peak reading of 2.11 ppm. The ambient air methane concentration was always higher in urban environments compared to the surrounding countryside. Along one major road in Sydney we mapped an interval that extended for 6 km where the concentration was greater than 1.80 ppm. The median concentration in this interval was 1.90 ppm, with a peak reading of 1.97 ppm. This high reading in an urban setting is most likely due to leaks from the domestic gas distribution system. Methane leaks were detected in all country towns. Our measurements show that at the point of resource extraction the methane emission footprint of CSG is smaller than that of open-cut coal mining. However, leaking gas from urban centers must be added to the fugitive emissions of CSG to calculate the total fugitive emission footprint of CSG, which may therefore not be as low as claimed in the national greenhouse gas accounts. Our results highlight the need for additional continuous monitoring of methane emissions from all sectors, and for the full life-cycle of energy resources to be considered.
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.2 Definitions. (a) Methane detector. A methane detector...-indicating detector. A methane-indicating detector is a device that will show, within certain limits of error...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.2 Definitions. (a) Methane detector. A methane detector...-indicating detector. A methane-indicating detector is a device that will show, within certain limits of error...
Code of Federal Regulations, 2014 CFR
2014-07-01
... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.2 Definitions. (a) Methane detector. A methane detector...-indicating detector. A methane-indicating detector is a device that will show, within certain limits of error...
Code of Federal Regulations, 2013 CFR
2013-07-01
... MINING PRODUCTS PORTABLE METHANE DETECTORS § 22.2 Definitions. (a) Methane detector. A methane detector...-indicating detector. A methane-indicating detector is a device that will show, within certain limits of error...
Vigneron, Adrien; Bishop, Andrew; Alsop, Eric B.; Hull, Kellie; Rhodes, Ileana; Hendricks, Robert; Head, Ian M.; Tsesmetzis, Nicolas
2017-01-01
The Pennsylvania region hosts numerous oil and gas reservoirs and the presence of hydrocarbons in groundwater has been locally observed. However, these methane-containing freshwater ecosystems remain poorly explored despite their potential importance in the carbon cycle. Methane isotope analysis and analysis of low molecular weight hydrocarbon gases from 18 water wells indicated that active methane cycling may be occurring in methane-containing groundwater from the Pennsylvania region. Consistent with this observation, multigenic qPCR and gene sequencing (16S rRNA genes, mcrA, and pmoA genes) indicated abundant populations of methanogens, ANME-2d (average of 1.54 × 104 mcrA gene per milliliter of water) and bacteria associated with methane oxidation (NC10, aerobic methanotrophs, methylotrophs; average of 2.52 × 103 pmoA gene per milliliter of water). Methane cycling therefore likely represents an important process in these hydrocarbon-containing aquifers. The microbial taxa and functional genes identified and geochemical data suggested that (i) methane present is at least in part due to methanogens identified in situ; (ii) Potential for aerobic and anaerobic methane oxidation is important in groundwater with the presence of lineages associated with both anaerobic an aerobic methanotrophy; (iii) the dominant methane oxidation process (aerobic or anaerobic) can vary according to prevailing conditions (oxic or anoxic) in the aquifers; (iv) the methane cycle is closely associated with the nitrogen cycle in groundwater methane seeps with methane and/or methanol oxidation coupled to denitrification or nitrate and nitrite reduction. PMID:28424678
Methane sources in gas hydrate-bearing cold seeps: Evidence from radiocarbon and stable isotopes
Pohlman, J.W.; Bauer, J.E.; Canuel, E.A.; Grabowski, K.S.; Knies, D.L.; Mitchell, C.S.; Whiticar, Michael J.; Coffin, R.B.
2009-01-01
Fossil methane from the large and dynamic marine gas hydrate reservoir has the potential to influence oceanic and atmospheric carbon pools. However, natural radiocarbon (14C) measurements of gas hydrate methane have been extremely limited, and their use as a source and process indicator has not yet been systematically established. In this study, gas hydrate-bound and dissolved methane recovered from six geologically and geographically distinct high-gas-flux cold seeps was found to be 98 to 100% fossil based on its 14C content. Given this prevalence of fossil methane and the small contribution of gas hydrate (??? 1%) to the present-day atmospheric methane flux, non-fossil contributions of gas hydrate methane to the atmosphere are not likely to be quantitatively significant. This conclusion is consistent with contemporary atmospheric methane budget calculations. In combination with ??13C- and ??D-methane measurements, we also determine the extent to which the low, but detectable, amounts of 14C (~ 1-2% modern carbon, pMC) in methane from two cold seeps might reflect in situ production from near-seafloor sediment organic carbon (SOC). A 14C mass balance approach using fossil methane and 14C-enriched SOC suggests that as much as 8 to 29% of hydrate-associated methane carbon may originate from SOC contained within the upper 6??m of sediment. These findings validate the assumption of a predominantly fossil carbon source for marine gas hydrate, but also indicate that structural gas hydrate from at least certain cold seeps contains a component of methane produced during decomposition of non-fossil organic matter in near-surface sediment.
Methodology of Estimation of Methane Emissions from Coal Mines in Poland
NASA Astrophysics Data System (ADS)
Patyńska, Renata
2014-03-01
Based on a literature review concerning methane emissions in Poland, it was stated in 2009 that the National Greenhouse Inventory 2007 [13] was published. It was prepared firstly to meet Poland's obligations resulting from point 3.1 Decision no. 280/2004/WE of the European Parliament and of the Council of 11 February 2004, concerning a mechanism for monitoring community greenhouse gas emissions and for implementing the Kyoto Protocol and secondly, for the United Nations Framework Convention on Climate Change (UNFCCC) and Kyoto Protocol. The National Greenhouse Inventory states that there are no detailed data concerning methane emissions in collieries in the Polish mining industry. That is why the methane emission in the methane coal mines of Górnośląskie Zagłębie Węglowe - GZW (Upper Silesian Coal Basin - USCB) in Poland was meticulously studied and evaluated. The applied methodology for estimating methane emission from the GZW coal mining system was used for the four basic sources of its emission. Methane emission during the mining and post-mining process. Such an approach resulted from the IPCC guidelines of 2006 [10]. Updating the proposed methods (IPCC2006) of estimating the methane emissions of hard coal mines (active and abandoned ones) in Poland, assumes that the methane emission factor (EF) is calculated based on methane coal mine output and actual values of absolute methane content. The result of verifying the method of estimating methane emission during the mining process for Polish coal mines is the equation of methane emission factor EF.
Wischer, G; Boguhn, J; Steingaß, H; Schollenberger, M; Rodehutscord, M
2013-11-01
Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.
USDA-ARS?s Scientific Manuscript database
Addition of oilseeds to pasture-based ruminant diets has been shown to decrease enteric CH4 emissions. However, little research has directly compared the effect of oilseed source on ruminal fermentation and Methane (CH4) production. A 4-unit continuous culture fermentor system was used to test 4 oil...
METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF
Frazer, J.W.
1959-08-18
A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.
Thinking Like a Wildcatter: Prospecting for Methane in Arabia Terra, Mars
NASA Technical Reports Server (NTRS)
Allen, C. C.; Oehler, D. Z.
2005-01-01
Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.
Quantum rotations in natural methane-clathrates from the Pacific sea-floor
NASA Astrophysics Data System (ADS)
Gutt, C.; Asmussen, B.; Press, W.; Merkl, C.; Casalta, H.; Greinert, J.; Bohrmann, G.; Tse, J. S.; Hüller, A.
1999-11-01
We report inelastic neutron scattering experiments from natural methane hydrates sampled from the Pacific sea-floor during an expedition of the research ship SONNE. The experiments verify directly the content of methane by measuring the rotational spectrum of the CH4 molecules. The existence of almost free rotational levels excludes off-center positions of the molecules in the cages. In addition we could assign the observed peaks in the energy regime up to 5 meV to rotational excitations only. The observed relative sharp excitations prove a surprisingly good crystallinity of the geological sample. The finite width is attributed to frozen-in hydrogen disorder of the ice cages.
Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms.
Meyer, Kyle M; Klein, Ann M; Rodrigues, Jorge L M; Nüsslein, Klaus; Tringe, Susannah G; Mirza, Babur S; Tiedje, James M; Bohannan, Brendan J M
2017-03-01
Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils. © 2017 John Wiley & Sons Ltd.
Matsuura, Norihisa; Hatamoto, Masashi; Sumino, Haruhiko; Syutsubo, Kazuaki; Yamaguchi, Takashi; Ohashi, Akiyoshi
2015-03-15
A two-stage closed downflow hanging sponge (DHS) reactor was used as a post-treatment to prevent methane being emitted from upflow anaerobic sludge blanket (UASB) effluents containing unrecovered dissolved methane. The performance of the closed DHS reactor was evaluated using real municipal sewage at ambient temperatures (10-28 °C) for one year. The first stage of the closed DHS reactor was intended to recover dissolved methane from the UASB effluent and produce a burnable gas with a methane concentration greater than 30%, and its recovery efficiency was 57-88%, although the amount of dissolved methane in the UASB effluent fluctuated in the range of 46-68 % of methane production greatly depending on the temperature. The residual methane was oxidized and the remaining organic carbon was removed in the second closed DHS reactor, and this reactor performed very well, removing more than 99% of the dissolved methane during the experimental period. The rate at which air was supplied to the DHS reactor was found to be one of the most important operating parameters. Microbial community analysis revealed that seasonal changes in the methane-oxidizing bacteria were key to preventing methane emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.
Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D
2009-07-01
Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-28
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
NASA Astrophysics Data System (ADS)
Kadobayashi, Hirokazu; Hirai, Hisako; Ohfuji, Hiroaki; Ohtake, Michika; Yamamoto, Yoshitaka
2018-04-01
High-temperature and high-pressure experiments were performed under 2-55 GPa and 298-653 K using in situ Raman spectroscopy and X-ray diffraction combined with externally heated diamond anvil cells to investigate the stability of methane hydrate. Prior to in situ experiments, the typical C-H vibration modes of methane hydrate and their pressure dependence were measured at room temperature using Raman spectroscopy to make a clear discrimination between methane hydrate and solid methane which forms through the decomposition of methane hydrate at high temperature. The sequential in situ Raman spectroscopy and X-ray diffraction revealed that methane hydrate survives up to 633 K and 40.3 GPa and then decomposes into solid methane and ice VII above the conditions. The decomposition curve of methane hydrate estimated by the present experiments is >200 K lower than the melting curves of solid methane and ice VII, and moderately increases with increasing pressure. Our result suggests that although methane hydrate may be an important candidate for major constituents of cool exoplanets and other icy bodies, it is unlikely to be present in the ice mantle of Neptune and Uranus, where the temperature is expected to be far beyond the decomposition temperatures.
Rain increases methane production and methane oxidation in a boreal thermokarst bog
NASA Astrophysics Data System (ADS)
Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.
2017-12-01
Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in thermokarst bogs to energy and oxygen inputs from rain, and have implications for how boreal wetland methane emissions may respond in the future to altered precipitation patterns. Advective delivery of energy and oxygen to wetland subsoils via rainwater is not currently a mechanism included in bottom-up wetland methane models.
Variability of methane fluxes over high latitude permafrost wetlands
NASA Astrophysics Data System (ADS)
Serafimovich, Andrei; Hartmann, Jörg; Larmanou, Eric; Sachs, Torsten
2013-04-01
Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmospheric methane concentrations. However, direct measurements of methane fluxes in permafrost regions are sparse, very localized, inhomogeneously distributed in space, and thus difficult to use for accurate model representation of regional to global methane contributions from the Arctic. We aim to contribute to reducing uncertainty and improve spatial coverage and spatial representativeness of flux estimates by using airborne eddy covariance measurements across large areas. The research aircraft POLAR 5 was equipped with a turbulence nose boom and a fast response methane analyzer and served as the platform for measurements of methane emissions. The measuring campaign was carried out from 28 June to 10 July 2012 across the entire North Slope of Alaska and the Mackenzie Delta in Canada. The supplemented simulations from the Weather Research and Forecasting (WRF) model exploring the dynamics of the atmospheric boundary layer were used to analyze high methane concentrations occasionally observed within the boundary layer with a distinct drop to background level above. Strong regional differences were detected over both investigated areas showing the non-uniform distribution of methane sources. In order to cover the whole turbulent spectrum and at the same time to resolve methane fluxes on a regional scale, different integration paths were analyzed and validated through spectral analysis. Methane emissions measured over the Mackenzie Delta were higher and generally more variable in space, especially in the outer Delta with known geogenic methane seepage. On the North Slope, methane fluxes were larger in the western part than in the central and eastern parts. The obtained results are essential for the advanced, scale dependent quantification of methane emissions. Our contribution will present an overview of the experiment as well as preliminary results from more than 52 flight hours over high latitude permafrost wetlands.
Methane emissions from termites - landscape level estimates and methods of measurement
NASA Astrophysics Data System (ADS)
Jamali, Hizbullah; Livesley, Stephen J.; Hutley, Lindsay B.; Arndt, Stefan K.
2013-04-01
Termites contribute between <5 and 19% of the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species investgated, as well as issues of diurnal and seasonal variations. We measured methane fluxes from four common mound-building termite species diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of methane emissions from termite mounds and we observed large species-specific differences. On a diurnal basis, methane fluxes were least at the coolest time of the day and greatest at the warmest for all species for both wet and dry seasons. We observed a strong and significant positive correlation between methane flux and mound temperature for all species. Fluxes in the wet season were 5-26-fold greater than those in the dry season and this was related to population dynamics of the termites. We observed significant relationships between mound methane flux and mound carbon dioxide flux, enabling the prediction of methane flux from measured carbon dioxide flux. However, these relationships were clearly termite species specific. We also determined significant relationships between mound flux and gas concentration inside mound, for both gases, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Consequently, there was no generic relationship that would enable an easier prediction of methane flux from termite mounds. On a landscape scale we estimated that termites were a methane source of +0.24 kg methane-C ha-1 year-1 whilst savanna soils were a methane sink of 1.14 kg methane-C ha-1 year-1. Termites therefore only offset 21% of methane consumed by savanna soil resulting in net sink strength of -0.90 kg methane-C ha-1 year-1 for these savannas. Assuming a similar contribution of termites in the savannas and tropical rain forests worldwide, termites would globally produce around 27 Tg CO2-e year-1, which is 0.2% of the global methane source budget or an order of magnitude smaller than many of the previous estimates.
NASA Astrophysics Data System (ADS)
Banda, N.; Krol, M. C.; van Weele, M.; van Noije, T.; Dlugokencky, E. J.; Röckmann, T.
2015-12-01
The eruption of Pinatubo in 1991 caused global scale changes in climate and radiation. Large perturbations in the methane growth rate were observed after the eruption, caused by variations in either methane sources or methane sinks. Natural methane emissions from wetlands are influenced by changes in temperature and precipitation, having a significant contribution to methane variability. The main removal of methane from the atmosphere is the reaction with the hydroxyl radical (OH). OH concentrations are in turn sensitive to temperature, humidity and the amount of UV radiation. In Bândă et al. (2015), we quantified the variability in methane sources and sinks in the 5 years following the eruption, using the 3D chemistry and transport model TM5. We derived an OH inter-annual variability of 1.6% during this period. A 4.5% increase in OH levels from 1992 to 1993, caused by enhanced stratospheric ozone depletion, a recovery of stratospheric aerosols and decreased NMVOC emissions, was found to contribute to the observed drop in methane growth rate. However, using bottom-up inventories of methane emissions, the exact timing and magnitude of the observed methane growth rate variations could not be matched by our simulations. The variability in natural wetland emissions and in biomass burning emissions is quite uncertain in this period. Emission reductions in the Former Soviet Union were also proposed as a reason for the observed decrease in methane growth rate. Based on the OH variability from our previous chemistry forward model simulations, we infer methane emissions after the Pinatubo eruption using a linearized inverse modeling setup. We can therefore quantify the variability in the methane emissions needed to match the methane variations observed in weekly air samples collected in NOAA's Cooperative Global Air Sampling Network and to identify the emission categories that contributed to these variations. Reference: Bândă, N., Krol, M., van Weele, M., van Noije, T., Le Sager, P., and Röckmann, T.: Can we explain the observed methane variability after the Mount Pinatubo eruption?, Atmos. Chem. Phys. Discuss., 15, 19111-19160, doi:10.5194/acpd-15-19111-2015, 2015.
2011-01-01
Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present work show that ensiling and alkaline preservation of fresh crop materials are useful pretreatment methods for methane production. Improvements in enzymatic hydrolysis were also promising. While all three crops still require a more powerful pretreatment to release the maximum amount of carbohydrates, anaerobic preservation is clearly a suitable storage and pretreatment method prior to production of platform sugars from fresh crops. PMID:21771298
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, A. J.; Jacob, D. J.; Wecht, K. J.
2015-02-18
We use 2009–2011 space-borne methane observations from the Greenhouse Gases Observing SATellite (GOSAT) to constrain global and North American inversions of methane emissions with 4° × 5° and up to 50 km × 50 km spatial resolution, respectively. The GOSAT data are first evaluated with atmospheric methane observations from surface networks (NOAA, TCCON) and aircraft (NOAA/DOE, HIPPO), using the GEOS-Chem chemical transport model as a platform to facilitate comparison of GOSAT with in situ data. This identifies a high-latitude bias between the GOSAT data and GEOS-Chem that we correct via quadratic regression. The surface and aircraft data are subsequently usedmore » for independent evaluation of the methane source inversions. Our global adjoint-based inversion yields a total methane source of 539 Tg a −1 and points to a large East Asian overestimate in the EDGARv4.2 inventory used as a prior. Results serve as dynamic boundary conditions for an analytical inversion of North American methane emissions using radial basis functions to achieve high resolution of large sources and provide full error characterization. We infer a US anthropogenic methane source of 40.2–42.7 Tg a −1, as compared to 24.9–27.0 Tg a −1 in the EDGAR and EPA bottom-up inventories, and 30.0–44.5 Tg a −1 in recent inverse studies. Our estimate is supported by independent surface and aircraft data and by previous inverse studies for California. We find that the emissions are highest in the South-Central US, the Central Valley of California, and Florida wetlands, large isolated point sources such as the US Four Corners also contribute. We attribute 29–44% of US anthropogenic methane emissions to livestock, 22–31% to oil/gas, 20% to landfills/waste water, and 11–15% to coal with an additional 9.0–10.1 Tg a −1 source from wetlands.« less
Lontoh, Sonny; Semrau, Jeremy D.
1998-01-01
Whole-cell assays of methane and trichloroethylene (TCE) consumption have been performed on Methylosinus trichosporium OB3b expressing particulate methane monooxygenase (pMMO). From these assays it is apparent that varying the growth concentration of copper causes a change in the kinetics of methane and TCE degradation. For M. trichosporium OB3b, increasing the copper growth concentration from 2.5 to 20 μM caused the maximal degradation rate of methane (Vmax) to decrease from 300 to 82 nmol of methane/min/mg of protein. The methane concentration at half the maximal degradation rate (Ks) also decreased from 62 to 8.3 μM. The pseudo-first-order rate constant for methane, Vmax/Ks, doubled from 4.9 × 10−3 to 9.9 × 10−3 liters/min/mg of protein, however, as the growth concentration of copper increased from 2.5 to 20 μM. TCE degradation by M. trichosporium OB3b was also examined with varying copper and formate concentrations. M. trichosporium OB3b grown with 2.5 μM copper was unable to degrade TCE in both the absence and presence of an exogenous source of reducing equivalents in the form of formate. Cells grown with 20 μM copper, however, were able to degrade TCE regardless of whether formate was provided. Without formate the Vmax for TCE was 2.5 nmol/min/mg of protein, while providing formate increased the Vmax to 4.1 nmol/min/mg of protein. The affinity for TCE also increased with increasing copper, as seen by a change in Ks from 36 to 7.9 μM. Vmax/Ks for TCE degradation by pMMO also increased from 6.9 × 10−5 to 5.2 × 10−4 liters/min/mg of protein with the addition of formate. From these whole-cell studies it is apparent that the amount of copper available is critical in determining the oxidation of substrates in methanotrophs that are expressing only pMMO. PMID:16349516
NASA Astrophysics Data System (ADS)
Chanton, J.; Hodgkins, S. B.; Cooper, W. T.; Glaser, P. H.; Corbett, J. E.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Holmes, B.; Hines, M. E.; Tfaily, M.; Kostka, J. E.
2014-12-01
Peatland organic matter is cellulose-like with an oxidation state of approximately zero. When this material decomposes by fermentation, stoichiometry dictates that CH4 and CO2 should be produced in a ratio approaching one. While this is generally the case in temperate zones, this production ratio is often departed from in boreal peatlands, where the ratio of belowground CH4/CO2 production varies between 0.1 and 1, indicating CO2 production by a mechanism in addition to fermentation. The in situ CO2/CH4 production ratio may be ascertained by analysis of the 13C isotopic composition of these products, because CO2 production unaccompanied by methane production produces CO2 with an isotopic composition similar to the parent organic matter while methanogenesis produces 13C depleted methane and 13C enriched CO2. The 13C enrichment in the subsurface CO2 pool is directly related to the amount of if formed from methane production and the isotopic composition of the methane itself. Excess CO2 production is associated with more acidic conditions, Sphagnum vegetation, high and low latitudes, methane production dominated by hydrogenotrophic methane production, 13C depleted methane, and generally, more nutrient depleted conditions. Three theories have been offered to explain these observations— 1) inhibition of acetate utilization, acetate build-up and diffusion to the surface and eventual aerobic oxidation, 2) the use of humic acids as electron acceptors, and the 3) utilization of organic oxygen to produce CO2. In support of #3, we find that 13C-NMR, Fourier transform infrared (FT IR) spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) clearly show the evolution of polysaccharides and cellulose towards more decomposed humified alkyl compounds stripped of organic oxygen utilized to form CO2. Such decomposition results in more negative carbon oxidation states varying from -1 to -2. Coincident with this reduction in oxidation state, is the greater production of methane. Changing climatic conditions may alter the balance of the factors which affect the CO2/CH4 ratio by changing the water balance of the peatland, nutrient status, or temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, Steven B.; Miller, David J.; Jin, Lu
Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less
Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...
2016-07-10
Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less
Yao, Yiqing; Luo, Yang; Li, Tian; Yang, Yingxue; Sheng, Hongmei; Virgo, Nolan; Xiang, Yun; Song, Yuan; Zhang, Hua; An, Lizhe
2014-01-01
Solid-state anaerobic digestion (SS-AD) was initially adopted for the treatment of municipal solid waste. Recently, SS-AD has been increasingly applied to treat lignocellulosic biomass, such as agricultural and forestry residues. However, studies on the SS-AD process are few. In this study, the process performance and methane yield from SS-AD of alkaline-pretreated poplar processing residues (PPRs) were investigated using the properties of soil, such as buffering capacity and nutritional requirements. The results showed that the lignocellulosic structures of the poplar sample were effectively changed by NaOH pretreatment, as indicated by scanning electron microscopy and Fourier transform infrared spectra analysis. The start-up was markedly hastened, and the process stability was enhanced. After NaOH pretreatment, the maximum methane yield (96.1 L/kg volatile solids (VS)) was obtained under a poplar processing residues-to-soil sample (P-to-S) ratio of 2.5:1, which was 29.9% and 36.1% higher than that of PPRs (74.0 L/kg VS) and that of experiments without NaOH pretreatment (70.6 L/kg VS), respectively. During steady state, the increase in the methane content of the experiment with a P-to-S ratio of 2.5:1 was 4.4 to 50.9% higher than that of the PPRs. Degradation of total solids and volatile solids ranged from 19.3 to 33.0% and from 34.9 to 45.9%, respectively. The maximum reductions of cellulose and hemicellulose were 52.6% and 42.9%, respectively, which were in accordance with the maximal methane yield. T 80 for the maximum methane yield for the experiments with NaOH pretreatment was 11.1% shorter than that for the PPRs. Pretreatment with NaOH and addition of soil led to a significant improvement in the process performance and the methane yield of SS-AD of PPRs. The changes in lignocellulosic structures induced by NaOH pretreatment led to an increase in methane yield. For the purpose of practical applications, SS-AD with soil addition is a convenient, economical, and practical technique.
Methane oxidation in anoxic lake waters
NASA Astrophysics Data System (ADS)
Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz
2017-04-01
Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the presence of members of the Methylomirabiliaceae family (NC10 phylum), known to perform AOM with nitrite as terminal electron acceptor. Interestingly, albeit the similarly favorable conditions in both basins, the South Basin showed nearly two-fold higher CH4 oxidation rates, but the Methylomirabiliaceae abundance appeared to be much higher in the meromictic North Basin. Ongoing work will attempt to verify whether the apparent difference in the abundance of Methylomirabiliaceae is a permanent feature. We will further seek to determine the relative contribution of bacterial nitrite-dependent AOM to total methane oxidation, as well as the environmental controls that may explain the differential importance of Methylomirabiliaceae in the two connected lake basins.
76 FR 37838 - Petitions for Modification of Application of Existing Mandatory Safety Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... may include periodic tests of methane levels and limits on the minimum methane concentrations that may...) Methane monitor(s) will be calibrated on the longwall, continuous mining machine, or cutting machine and... petitioner will test for methane with a hand-held methane detector at least every 10 minutes from the time...
30 CFR 77.1901-1 - Methane and oxygen deficiency tests; approved devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Methane and oxygen deficiency tests; approved... AREAS OF UNDERGROUND COAL MINES Slope and Shaft Sinking § 77.1901-1 Methane and oxygen deficiency tests... means approved by the Secretary, and tests for methane shall be made with a methane detector approved by...
A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...
The Late Holocene Atmospheric Methane Budget Reconstructed from Ice Cores
NASA Astrophysics Data System (ADS)
Mitchell, Logan E.
In this thesis I used a newly developed methane measurement line to make high-resolution, high-precision measurements of methane during the late Holocene (2800 years BP to present). This new measurement line is capable of an analytical precision of < 3 ppb using ˜120 g samples. The reduced sample size requirements as well as automation of a significant portion of the analysis process have enabled me to make >1500 discrete ice core methane measurements and construct the highest resolution records of methane available over the late Holocene. I first used a shallow ice core from WAIS Divide (WDC05A) to produce a 1000 year long methane record with a ˜9 year temporal resolution. This record confirmed the existence of multidecadal scale variations that were first observed in the Law Dome, Antarctica ice core. I then explored a range of paleoclimate archives for possible mechanistic connections with methane concentrations on multidecadal timescales. In addition, I present a detailed description of the analytical methods used to obtain high-precision measurements of methane including the effects of solubility and a new chronology for the WDC05A ice core. I found that, in general, the correlations with paleoclimate proxies for temperature and precipitation were low over a range of geographic regions. Of these, the highest correlations were found from 1400-1600 C.E. during the onset of the Little Ice Age and with a drought index in the headwater region of the major East Asian rivers. Large population losses in Asia and the Americas are also coincident with methane concentration decreases indicating that anthropogenic activities may have been impacting multidecadal scale methane variability. In the second component I extended the WAIS Divide record back to 2800 years B.P. and also measured methane from GISP2D over this time interval. These records allowed me to examine the methane Inter-Polar Difference (IPD) which is created by greater northern hemispheric sources. The IPD provides an important constraint on changes in the latitudinal distribution of sources. We used this constraint and an 8-box global methane chemical transport model to examine the Early Anthropogenic Hypothesis which posits that humans began influencing climate thousands of years ago by increasing greenhouse gas emissions and preventing the onset of the next ice age. I found that most of the increase in methane sources over this time came from tropical regions with a smaller contribution coming from the extratropical northern hemisphere. Based on previous modeling estimates of natural methane source changes, I found that the increase in the southern hemisphere tropical methane emissions was likely natural and that the northern hemispheric increase in methane emissions was likely due to anthropogenic activities. These results also provide new constraints on the total magnitude of pre-industrial anthropogenic methane emissions, which I found to be between the high and low estimates that have been previously published in the literature. For the final component of my thesis I assembled a coalition of scientists to investigate the effects of layering on the process of air enclosure in ice at WAIS Divide. Air bubbles are trapped in ice 60-100m below the surface of an ice sheet as snow compacts into solid ice in a region that is known as the Lock-In Zone (LIZ). The details of this process are not known and in the absence of direct measurements previous researchers have assumed it to be a smooth process. This project utilized high-resolution methane and air content measurements as well as density of ice, delta15N of N2, and bubble number density measurements to show that air entrapment is affected by high frequency (mm scale) layering in the density of ice within the LIZ. I show that previous parameterizations of the bubble closure process in firn models have not accounted for this variability and present a new parameterization which does. This has implications for interpreting rapid changes in trace gases measured in ice cores since variable bubble closure will impact the smoothing of those records. In particular it is essential to understand the details of this process as new high resolution ice core records from Antarctica and Greenland examine the relative timing between greenhouse gases and rapid climate changes. (Abstract shortened by UMI.)
Methane Emissions from Small Lakes: Dynamics and Distribution Patterns
NASA Astrophysics Data System (ADS)
Encinas Fernández, J. M.; Peeters, F.; Hofmann, H.
2014-12-01
The dynamics of dissolved methane were measured during three years in five small lakes with different surface areas and maximum water depth. We analyze and compare the horizontal and vertical distribution of dissolved methane within these lakes during different time periods: the stratified period in summer, the autumn overturn, the winter mixing period, and the period from spring to summer stratification. The horizontal distributions of dissolved methane within the lakes suggest that the relation between surface area and maximum water-depth is a key factor determining the heterogeneity of methane concentrations in the surface water. During most of the year littoral zones are the main source of the methane that is emitted to the atmosphere except for the overturn periods. The vertical distributions of temperature and dissolved oxygen within the different seasons affect the vertical distribution of dissolved methane and thus the methane budget within lakes. Anoxic conditions in the hypolimnion and the intense mixing during overturn periods are key factors for the overall annual methane emissions from lakes.