Science.gov

Sample records for additional microsatellite markers

  1. Blueberry Microsatellite Markers Identify Cranberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forty-six blueberry simple sequence repeat (SSR) markers or microsatellites were tested for the ability to amplify a polymorphic marker in eight American cranberry accessions. Sixteen SSRs resulted in informative and polymorphic SSR primer pairs and were used to fingerprint 16 economically important...

  2. New softwares for automated microsatellite marker development

    PubMed Central

    Martins, Wellington; de Sousa, Daniel; Proite, Karina; Guimarães, Patrícia; Moretzsohn, Marcio; Bertioli, David

    2006-01-01

    Microsatellites are repeated small sequence motifs that are highly polymorphic and abundant in the genomes of eukaryotes. Often they are the molecular markers of choice. To aid the development of microsatellite markers we have developed a module that integrates a program for the detection of microsatellites (TROLL), with the sequence assembly and analysis software, the Staden Package. The module has easily adjustable parameters for microsatellite lengths and base pair quality control. Starting with large datasets of unassembled sequence data in the form of chromatograms and/or text data, it enables the creation of a compact database consisting of the processed and assembled microsatellite containing sequences. For the final phase of primer design, we developed a program that accepts the multi-sequence ‘experiment file’ format as input and produces a list of primer pairs for amplification of microsatellite markers. The program can take into account the quality values of consensus bases, improving success rate of primer pairs in PCR. The software is freely available and simple to install in both Windows and Unix-based operating systems. Here we demonstrate the software by developing primer pairs for 427 new candidate markers for peanut. PMID:16493138

  3. New softwares for automated microsatellite marker development.

    PubMed

    Martins, Wellington; de Sousa, Daniel; Proite, Karina; Guimarães, Patrícia; Moretzsohn, Marcio; Bertioli, David

    2006-02-21

    Microsatellites are repeated small sequence motifs that are highly polymorphic and abundant in the genomes of eukaryotes. Often they are the molecular markers of choice. To aid the development of microsatellite markers we have developed a module that integrates a program for the detection of microsatellites (TROLL), with the sequence assembly and analysis software, the Staden Package. The module has easily adjustable parameters for microsatellite lengths and base pair quality control. Starting with large datasets of unassembled sequence data in the form of chromatograms and/or text data, it enables the creation of a compact database consisting of the processed and assembled microsatellite containing sequences. For the final phase of primer design, we developed a program that accepts the multi-sequence 'experiment file' format as input and produces a list of primer pairs for amplification of microsatellite markers. The program can take into account the quality values of consensus bases, improving success rate of primer pairs in PCR. The software is freely available and simple to install in both Windows and Unix-based operating systems. Here we demonstrate the software by developing primer pairs for 427 new candidate markers for peanut.

  4. Microsatellite markers in plant pathogenic fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the genetic diversity of plant pathogenic fungi is essential in the management of crops and disease. The genetic variability of fungal pathogens can be evaluated using molecular markers, among which, microsatellites are a relatively inexpensive source of information. We have developed an e...

  5. Isolation of nuclear microsatellite markers for Cyperus fuscus (Cyperaceae)1

    PubMed Central

    Böckelmann, Jörg; Wieser, David; Tremetsberger, Karin; Šumberová, Kateřina; Bernhardt, Karl-Georg

    2015-01-01

    Premise of the study: Microsatellite markers were characterized in the extremely specialized ephemeral wetland plant species Cyperus fuscus (Cyperaceae). The markers will be used for studying population genetics in natural vs. anthropogenic habitats, on a European scale, and the role of the soil seed bank in the life cycle of this ephemeral species. Methods and Results: Twenty-one microsatellite loci were established and scored in two populations, with mean number of alleles of 2.6 and 2.9 and mean expected heterozygosity of 0.405 and 0.470, respectively. Forty-four additional loci with the number of alleles ranging from one to four (mean = 2.1) were successfully amplified in seven individuals. Conclusions: The novel microsatellite markers will be useful for studying the genetic structure of populations of this ephemeral plant as well as their seed bank. PMID:26649269

  6. New microsatellite markers for bananas (Musa spp).

    PubMed

    Amorim, E P; Silva, P H; Ferreira, C F; Amorim, V B O; Santos, V J; Vilarinhos, A D; Santos, C M R; Souza Júnior, M T; Miller, R N G

    2012-04-27

    Thirty-four microsatellite markers (SSRs) were identified in EST and BAC clones from Musa acuminata burmannicoides var. Calcutta 4 and validated in 22 Musa genotypes from the Banana Germplasm Bank of Embrapa-CNPMF, which includes wild and improved diploids. The number of alleles per locus ranged from 2 to 14. The markers were considered highly informative based on their polymorphism information content values; more than 50% were above 0.5. These SSRs will be useful for banana breeding programs, for studies of genetic diversity, germplasm characterization and selection, development of saturated genetic linkage maps, and marker assisted selection.

  7. Perils of gene mapping with microsatellite markers

    SciTech Connect

    Knowles, J.A.; Gilliam, T.C. ); Vieland, V.J. )

    1992-10-01

    The discovery of microsatellite polymorphisms has revitalized the genetic mapping of the human genome and promises to have a dramatic effect on human disease gene mapping. The high polymorphicity, relative abundance, and amenability of these markers to assay by PCR amplification gives them a significant advantage over previous markers, which explains their general acceptance and widespread use (Litt and Luty 1989; Weber and May 1989). Preliminary chromosome maps have been constructed using microsatellites exclusively (Weber et al. 1991; Hazen et al. 1992; Kwiatkowski et al. 1992), and disease loci have been mapped by linkage to these markers (Wijmenga et al. 1991). The markers provide new optimism for the mapping of disease genes, particularly for the mapping of complex genetic disorders. The authors present evidence that the very qualities that render these markers so efficient for chromosome mapping in large reference pedigrees can lead to dramatic lod score bias when applied to the typical pedigrees used to study genetic disorders, particularly when the disorder under study is complex. 11 refs., 2 figs., 1 tab.

  8. Microsatellite markers for raspberry and blackberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    welve microsatellites were isolated from SSR-enriched genomic libraries of Rubus idaeus L.‘Meeker’ red raspberry (diploid) and R. loganobaccus L. H. Bailey ‘Marion’ blackberry-raspberry hybrid (hexaploid). These primer pairs, with the addition of one developed from a GenBank R. idaeus sequence, we...

  9. Microsatellite Markers for Raspberries and Blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Twelve microsatellites were isolated from SSR-enriched genomic libraries of Rubus idaeus L.‘Meeker’ red raspberry (diploid) and R. loganobaccus L. H. Bailey ‘Marion’ blackberry-raspberry hybrid (hexaploid). These primer pairs, with the addition of one developed from a GenBank R. idaeus sequence, w...

  10. Analysis of new microsatellite markers developed from reported sequences of Japanese flounder Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Yu, Haiyang; Jiang, Liming; Chen, Wei; Wang, Xubo; Wang, Zhigang; Zhang, Quanqi

    2010-12-01

    The expressed sequence tags (ESTs) of Japanese flounder, Paralichthys olivaceus, were selected from GenBank to identify simple sequence repeats (SSRs) or microsatellites. A bioinformatic analysis of 11111 ESTs identified 751 SSR-containing ESTs, including 440 dinucleotide, 254 trinucleotide, 53 tetranucleotide, 95 pentanucleotide and 40 hexanucleotide microsatellites respectively. The CA/TG and GA/TC repeats were the most abundant microsatellites. AT-rich types were predominant among trinucleotide and tetranucleotide microsatellites. PCR primers were designed to amplify 10 identified microsatellites loci. The PCR results from eight pairs of primers showed polymorphisms in wild populations. In 30 wild individuals, the mean observed and expected heterozygosities of these 8 polymorphic SSRs were 0.71 and 0.83 respectively and the average PIC value was 0.8. These microsatellite markers should prove to be a useful addition to the microsatellite markers that are now available for this species.

  11. Analysis of microsatellite markers in the genome of the plant pathogen Ceratocystis fimbriata.

    PubMed

    Simpson, Melissa C; Wilken, P Markus; Coetzee, Martin P A; Wingfield, Michael J; Wingfield, Brenda D

    2013-01-01

    Ceratocystis fimbriata sensu lato represents a complex of cryptic and commonly plant pathogenic species that are morphologically similar. Species in this complex have been described using morphological characteristics, intersterility tests and phylogenetics. Microsatellite markers have been useful to study the population structure and origin of some species in the complex. In this study we sequenced the genome of C. fimbriata. This provided an opportunity to mine the genome for microsatellites, to develop new microsatellite markers, and map previously developed markers onto the genome. Over 6000 microsatellites were identified in the genome and their abundance and distribution was determined. Ceratocystis fimbriata has a medium level of microsatellite density and slightly smaller genome when compared with other fungi for which similar microsatellite analyses have been performed. This is the first report of a microsatellite analysis conducted on a genome sequence of a fungal species in the order Microascales. Forty-seven microsatellite markers have been published for population genetic studies, of which 35 could be mapped onto the C. fimbriata genome sequence. We developed an additional ten microsatellite markers within putative genes to differentiate between species in the C. fimbriata s.l. complex. These markers were used to distinguish between 12 species in the complex.

  12. Individual Identifiability Predicts Population Identifiability in Forensic Microsatellite Markers.

    PubMed

    Algee-Hewitt, Bridget F B; Edge, Michael D; Kim, Jaehee; Li, Jun Z; Rosenberg, Noah A

    2016-04-04

    Highly polymorphic genetic markers with significant potential for distinguishing individual identity are used as a standard tool in forensic testing [1, 2]. At the same time, population-genetic studies have suggested that genetically diverse markers with high individual identifiability also confer information about genetic ancestry [3-6]. The dual influence of polymorphism levels on ancestry inference and forensic desirability suggests that forensically useful marker sets with high levels of individual identifiability might also possess substantial ancestry information. We study a standard forensic marker set-the 13 CODIS loci used in the United States and elsewhere [2, 7-9]-together with 779 additional microsatellites [10], using direct population structure inference to test whether markers with substantial individual identifiability also produce considerable information about ancestry. Despite having been selected for individual identification and not for ancestry inference [11], the CODIS markers generate nontrivial model-based clustering patterns similar to those of other sets of 13 tetranucleotide microsatellites. Although the CODIS markers have relatively low values of the F(ST) divergence statistic, their high heterozygosities produce greater ancestry inference potential than is possessed by less heterozygous marker sets. More generally, we observe that marker sets with greater individual identifiability also tend toward greater population identifiability. We conclude that population identifiability regularly follows as a byproduct of the use of highly polymorphic forensic markers. Our findings have implications for the design of new forensic marker sets and for evaluations of the extent to which individual characteristics beyond identification might be predicted from current and future forensic data.

  13. Enhanced cross-species utility of conserved microsatellite markers in shorebirds

    PubMed Central

    Küpper, Clemens; Burke, Terry; Székely, Tamás; Dawson, Deborah A

    2008-01-01

    Background Microsatellite markers are popular genetic markers frequently used in forensic biology. Despite their popularity, the characterisation of polymorphic microsatellite loci and development of suitable markers takes considerable effort. Newly-available genomic databases make it feasible to identify conserved genetic markers. We examined the utility and characteristics of conserved microsatellite markers in Charadriiformes (plovers, sandpipers, gulls and auks). This order harbours many species with diverse breeding systems, life histories and extraordinary migration biology whose genetics warrant investigation. However, research has been largely restrained by the limited availability of genetic markers. To examine the utility of conserved microsatellite loci as genetic markers we collated a database of Charadriiformes microsatellites, searched for homologues in the chicken genome and tested conserved markers for amplification and polymorphism in a range of charadriiform species. Results Sixty-eight (42%) of 161 charadriiform microsatellite loci were assigned to a single location in the chicken genome based on their E-value. Fifty-five primers designed from conserved microsatellite loci with an E-value of E-10 or lower amplified across a wider range of charadriiform species than a control group of primers from ten anonymous microsatellite loci. Twenty-three of 24 examined conserved markers were polymorphic, each in on average 3 of 12 species tested. Conclusion Genomic sequence databases are useful tools to identify conserved genetic markers including those located in non-coding regions. By maximising primer sequence similarity between source species and database species, markers can be further improved and provide additional markers to study the molecular ecology of populations of non-model organisms. PMID:18950482

  14. Toward fully automated genotyping: genotyping microsatellite markers by deconvolution.

    PubMed Central

    Perlin, M W; Lancia, G; Ng, S K

    1995-01-01

    Dense genetic linkage maps have been constructed for the human and mouse genomes, with average densities of 2.9 cM and 0.35 cM, respectively. These genetic maps are crucial for mapping both Mendelian and complex traits and are useful in clinical genetic diagnosis. Current maps are largely comprised of abundant, easily assayed, and highly polymorphic PCR-based microsatellite markers, primarily dinucleotide (CA)n repeats. One key limitation of these length polymorphisms is the PCR stutter (or slippage) artifact that introduces additional stutter bands. With two (or more) closely spaced alleles, the stutter bands overlap, and it is difficult to accurately determine the correct alleles; this stutter phenomenon has all but precluded full automation, since a human must visually inspect the allele data. We describe here novel deconvolution methods for accurate genotyping that mathematically remove PCR stutter artifact from microsatellite markers. These methods overcome the manual interpretation bottleneck and thereby enable full automation of genetic map construction and use. New functionalities, including the pooling of DNAs and the pooling of markers, are described that may greatly reduce the associated experimentation requirements. PMID:7485172

  15. Microsatellite markers for Russian olive (Elaeagnus angustifolia; Elaeagnaceae)1

    PubMed Central

    Gaskin, John F.; Hufbauer, Ruth A.; Bogdanowicz, Steven M.

    2013-01-01

    • Premise of the study: Microsatellite markers were developed for the plant species Elaeagnus angustifolia to assist in future investigations of genetic variability in its native and invasive ranges and the precise origins of the United States/Canada invasion. • Methods and Results: Eleven polymorphic microsatellite markers were developed. The number of alleles observed for each locus ranged from three to 11. • Conclusions: These microsatellites have sufficient potential variability to define population structure and origins of the Russian olive invasion. PMID:25202584

  16. Polymorphic microsatellite markers in Euryale ferox Salisb. (Nymphaeaceae).

    PubMed

    Quan, Zhiwu; Pan, Lei; Ke, Weidong; Ding, Yi

    2009-01-01

    Eleven polymorphic microsatellite markers were isolated and identified in the aquatic plant Euryale ferox Salisb. (Nymphaeaceae). This species, which belongs to basal Magnoliophyta, reproduces sexually. All of these 11 microsatellite markers yielded 25 alleles in a survey of a wild population of 34 individuals. Two or three alleles per locus were detected, with expected heterozygosity ranging from 0.056 to 0.634 and observed heterozygosity from 0.000 to 0.088. These simple sequence repeat markers will be useful for evaluating the genetic structure of the E. ferox population in the future.

  17. Transferability of Rubus Microsatellite Markers for use in Black Raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellites or simple sequence repeats (SSRs) are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. To date, SSR marker development in Rubus has focused on red raspberry (Rubus idaeus L., subgenu...

  18. Twenty microsatellite markers for the endangered Vatica mangachapoi (Dipterocarpaceae)1

    PubMed Central

    Guo, Jun-Jie; Shang, Shuai-Bin; Wang, Chun-Sheng; Zhao, Zhi-Gang; Zeng, Jie

    2017-01-01

    Premise of the study: Microsatellite markers were developed for Vatica mangachapoi (Dipterocarpaceae), an endangered species indigenous to Southeast Asia and southern China. Methods and Results: Twenty microsatellite markers, including 12 polymorphic markers, were identified from V. mangachapoi using high-throughput sequencing. Polymorphism at each marker was evaluated using 87 individuals from three natural populations. The number of alleles per polymorphic locus ranged from six to 15, and the observed and expected heterozygosity varied from 0.000 to 0.926 and from 0.177 to 0.864, respectively. These markers were transferred successfully to the endangered species V. guangxiensis. Conclusions: These markers may be used to investigate the genetic diversity and gene flow of V. mangachapoi and V. guangxiensis. PMID:28224060

  19. Addition of four-hundred fifty-five microsatellite marker loci to the high density Gossypium hirsutum TM-1 x G. barbadense 3-79 genetic map

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high density genetic linkage map plays important roles in understanding genome structure of tetraploid cotton, dissecting economically important traits, identifying molecular markers associated with a trait, and cloning a gene of interest through map-based cloning strategy. Four hundred fifty f...

  20. A Novel Approach for Mining Polymorphic Microsatellite Markers In Silico

    PubMed Central

    Hoffman, Joseph I.; Nichols, Hazel J.

    2011-01-01

    An important emerging application of high-throughput 454 sequencing is the isolation of molecular markers such as microsatellites from genomic DNA. However, few studies have developed microsatellites from cDNA despite the added potential for targeting candidate genes. Moreover, to develop microsatellites usually requires the evaluation of numerous primer pairs for polymorphism in the focal species. This can be time-consuming and wasteful, particularly for taxa with low genetic diversity where the majority of primers often yield monomorphic polymerase chain reaction (PCR) products. Transcriptome assemblies provide a convenient solution, functional annotation of transcripts allowing markers to be targeted towards candidate genes, while high sequence coverage in principle permits the assessment of variability in silico. Consequently, we evaluated fifty primer pairs designed to amplify microsatellites, primarily residing within transcripts related to immunity and growth, identified from an Antarctic fur seal (Arctocephalus gazella) transcriptome assembly. In silico visualization was used to classify each microsatellite as being either polymorphic or monomorphic and to quantify the number of distinct length variants, each taken to represent a different allele. The majority of loci (n = 36, 76.0%) yielded interpretable PCR products, 23 of which were polymorphic in a sample of 24 fur seal individuals. Loci that appeared variable in silico were significantly more likely to yield polymorphic PCR products, even after controlling for microsatellite length measured in silico. We also found a significant positive relationship between inferred and observed allele number. This study not only demonstrates the feasibility of generating modest panels of microsatellites targeted towards specific classes of gene, but also suggests that in silico microsatellite variability may provide a useful proxy for PCR product polymorphism. PMID:21853104

  1. Detection of Sequence Polymorphism in Rubus Occidentalis L. Monomorphic Microsatellite Markers by High Resolution Melting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. Development of microsatellite primers through the identification of appropriate repeate...

  2. Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the microsatellite (SSR) DNA markers have been extensively used in sugarcane breeding research, little is known about its inheritance mechanism. To address this problem, a high throughput molecular genotyping experiment was conducted on 964 single pollen grains and a 288-self progeny S1 map...

  3. Novel Polymorphic Multilocus Microsatellite Markers to Distinguish Candida tropicalis Isolates

    PubMed Central

    Chen, Sharon; Kong, Fanrong; Wang, He; Zhang, Li; Hou, Xin; Xu, Ying-Chun

    2016-01-01

    Candida tropicalis is an important pathogen. Here we developed and evaluated a polymorphic multilocus microsatellite scheme employing novel genetic markers for genotyping of C. tropicalis. Using 10 isolates from 10 unique (separate) patients to screen over 4000 tandem repeats from the C. tropicalis genome (strain MYA-3404), six new candidate microsatellite loci (ctm1, ctm3, ctm8, ctm18, ctm24 and ctm26) were selected according to amplification success, observed polymorphisms and stability of flanking regions by preliminary testing. Two known microsatellite loci CT14 and URA3 were also studied. The 6-locus scheme was then tested against a set of 82 different isolates from 32 patients. Microsatellite genotypes of isolates from the same patient (two to five isolates per patient) were identical. The six loci produced eight to 17 allele types and identified 11 to 24 genotypes amongst 32 patients’ isolates, achieving a discriminatory power (DP) of 0.76 to 0.97 (versus 0.78 for both CT14 and URA3 loci, respectively). Testing of a combination of only three loci, ctm1, ctm3 and ctm24, also achieved maximum typing efficiency (DP = 0.99, 29 genotypes). The microsatellite typing scheme had good correlation compared with pulsed-field gel electrophoresis, although was slightly less discriminatory. The new six-locus microsatellite typing scheme is a potentially valuable tool for genotyping and investigating microevolution of C. tropicalis. PMID:27820850

  4. Paternity identification in sugarcane polycrosses by using microsatellite markers.

    PubMed

    Xavier, M A; Pinto, L R; Fávero, T M; Perecin, D; Carlini-Garcia, L A; Landell, M G A

    2014-03-31

    Although polycrosses have been used to test the potential of cross-combination of a large number of sugarcane parents, the male parent of the half-sib progenies produced is unknown. The present study aimed to integrate the molecular marker technology to the sugarcane polycross approach by the application of microsatellite markers to identify the male parent of 41 elite clones derived from polycross families. Ten microsatellite [single sequence repeats (SSRs)] primer pairs were used to identify the most likely male parent considering markers present in the selected clone but absent in the female parent. The number of alleles generated by the 10 microsatellite primer pairs ranged from 102 (cross-pollination lantern 4) to 120 (cross-pollination lantern 2) with an average of 113.25 alleles per SSR. The average genetic similarity among the involved parents in the polycrosses was 45.9%. The results of the analysis of the SSR markers absent in the female parent and present only in the selected clone as well as the genetic similarity values allowed the identification of the most likely male parent in 73% of the total clones evaluated and also to detect probable contaminations. The obtained results highlight the importance of using molecular marker technology in the identification and confirmation of the male parent of high-performance clones derived from polycrosses in the sugarcane breeding programs.

  5. Characterization of microsatellite markers for Baccharis dracunculifolia (Asteraceae)1

    PubMed Central

    Belini, Camila M. B.; Marques, Marcia O. M.; Figueira, Glyn M.; Bajay, Miklos M.; Campos, Jaqueline B.; Viana, João P. G.; Pinheiro, José B.; Zucchi, Maria I.

    2016-01-01

    Premise of the study: Baccharis dracunculifolia (Asteraceae) is a native plant of the Atlantic Forest that is used for the production of essential oil. Microsatellite markers were developed for this species to investigate the genetic diversity of three natural populations. Methods and Results: Seventeen out of 27 microsatellite loci identified in a genomic library used for the characterization of 315 individuals derived from three natural populations of B. dracunculifolia resulted in successful amplifications. Eleven polymorphic loci, ranging from two to seven alleles per locus, were obtained with expected and observed heterozygosity values ranging between 0.068 and 0.775 and 0.046 and 0.667, respectively. Conclusions: The microsatellite loci described in this study are tools that can be used for further studies of population genetics of B. dracunculifolia with a focus on deforested areas and conservation of natural populations. PMID:27011894

  6. Microsatellite markers for Senna spectabilis var. excelsa (Caesalpinioideae, Fabaceae)1

    PubMed Central

    López-Roberts, M. Cristina; Barbosa, Ariane R.; Paganucci de Queiroz, Luciano; van den Berg, Cássio

    2016-01-01

    Premise of the study: Senna spectabilis var. excelsa (Fabaceae) is a South and Central American tree of great ecological importance and one of the most common species in several sites of seasonally dry forests. Our goal was to develop microsatellite markers to assess the genetic diversity and structure of this species. Methods and Results: We designed and assessed 53 loci obtained from a microsatellite-enriched library and an intersimple sequence repeat library. Fourteen loci were polymorphic, and they presented a total of 39 alleles in a sample of 61 individuals from six populations. The mean values of observed and expected heterozygosities were 0.355 and 0.479, respectively. Polymorphism information content was 0.390 and the Shannon index was 0.778. Conclusions: Polymorphism information content and Shannon index indicate that at least nine of the 14 microsatellite loci developed are moderate to highly informative, and potentially useful for population genetic studies in this species. PMID:26819856

  7. Microsatellite marker diversity in common bean (Phaseolus vulgaris L.).

    PubMed

    Blair, M W; Giraldo, M C; Buendía, H F; Tovar, E; Duque, M C; Beebe, S E

    2006-06-01

    A diversity survey was used to estimate allelic diversity and heterozygosity of 129 microsatellite markers in a panel of 44 common bean (Phaseolus vulgaris L.) genotypes that have been used as parents of mapping populations. Two types of microsatellites were evaluated, based respectively on gene coding and genomic sequences. Genetic diversity was evaluated by estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes. Gene-based microsatellites proved to be less polymorphic than genomic microsatellites in terms of both number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594) while greater size differences between the largest and the smallest allele were observed for the genomic microsatellites than for the gene-based microsatellites (31.4 vs. 19.1 bp). Markers that showed a high number of alleles were identified with a maximum of 28 alleles for the marker BMd1. The microsatellites were useful for distinguishing Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars. Greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool and polymorphism rate between genotypes was consistent with genepool and race identity. Comparisons between Andean genotypes had higher polymorphism (53.0%) on average than comparisons among Mesoamerican genotypes (33.4%). Within the Mesoamerican parental combinations, the intra-racial combinations between Mesoamerica and Durango or Jalisco race genotypes showed higher average rates of polymorphism (37.5%) than the within-race combinations between Mesoamerica race genotypes (31.7%). In multiple correspondance analysis we found two principal clusters of genotypes corresponding to the Mesoamerican and Andean gene pools and subgroups representing specific races especially for the Nueva Granada and Peru races of the Andean gene pool. Intra population diversity

  8. Structural assessment of backcrossing using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Backcrossing, coupled with marker or gene assisted selection, can be used to introgress a specific gene or chromosomal region from one population into another. The objective of this study was to assess the genomic structure of cattle produced by backcrossing for loci that are unlinked to a locus tha...

  9. Multiplexed microsatellite markers for seven Metarhizium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium isolates including all 54 used in a recent phylogenetic revision of the genus were characterized. Betwe...

  10. Power of exclusion of 19 microsatellite markers for parentage testing in river buffalo (Bubalus bubalis).

    PubMed

    Kathiravan, P; Kataria, R S; Mishra, B P

    2012-08-01

    In the present study, 19 microsatellite markers were assessed for their power of exclusion to test parentage in river buffalo. Microsatellite genotypes of 216 unrelated buffaloes belonging to five different breeds were utilized for the study. The probabilities of exclusion were calculated for three hypothetical situations viz. paternity testing (PE1), one parental genotype unavailable (PE2) and exclusion of both parents i.e. substituted offspring (PE3). The mean probability of exclusion across 19 investigated markers in buffalo was 0.578 (PE1), 0.405 (PE2) and 0.764 (PE3) respectively. The probability of exclusion for paternity (PE1) ranged between 0.297 and 0.814 across different markers. The exclusion probability for the cases one parent unavailable (PE2) and substituted offspring (PE3) varied from 0.143 to 0.688 and 0.465 to 0.946 respectively. Polymorphism information content and expected heterozygosity were found to have significantly high correlation with probability of exclusion of microsatellite markers. The cumulative PE1 of nine marker loci was estimated to be 0.9999 while in case of absence of one of the parental genotypes, a minimum of 11 markers were required to achieve a cumulative PE2 of 0.999. In conclusion, the present study proposes two multiplex sets with four and five markers respectively for routine parentage testing in buffalo and an additional set of four markers for doubtful cases of paternity.

  11. Nineteen polymorphic microsatellite markers developed for Trachinotus ovatus.

    PubMed

    Xie, Z Z; Huang, M W; Xu, W; Peng, C; He, J N; Meng, Z N; Zhang, Y; Li, S S; Lin, H R

    2014-12-12

    To evaluate the population genetic diversity of the ovate pompano, we isolated and characterized 19 microsatellite markers using a (CA)13-enriched genomic library. Polymorphism was assessed in 30 individuals from a single population collected from the Daya Bay Aquaculture Center, Guangdong, China. The number of alleles per locus ranged from 2 to 18 with an average of 7.8. The observed and expected heterozygosities varied from 0.2667 to 1.000 and from 0.3960 to 0.9435, respectively. Sixteen of 19 loci conformed to Hardy-Weinberg equilibrium, and no significant linkage disequilibrium was detected between any locus pairs. Our study supplies candidate microsatellite markers that can be useful for studying the population genetic structure of ovate pompano.

  12. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers

    PubMed Central

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains. PMID:27035434

  13. Polymorphic microsatellite markers isolated from the neptune whelk Neptunea arthritica.

    PubMed

    Azuma, N; Miranda, R M; Goshima, S; Abe, S

    2009-01-01

    Eight polymorphic microsatellite DNA loci were isolated from the neptune whelk Neptunea arthritica, which is an important fishery resource in northern Japan. The number of alleles at the loci ranged from two to six, with observed and expected heterozygosities of 0.192-0.807 and 0.233-0.738, respectively. The observed variations suggest that these loci can be used as markers for population and kinship analyses in this species.

  14. Population Structure in Naegleria fowleri as Revealed by Microsatellite Markers.

    PubMed

    Coupat-Goutaland, Bénédicte; Régoudis, Estelle; Besseyrias, Matthieu; Mularoni, Angélique; Binet, Marie; Herbelin, Pascaline; Pélandakis, Michel

    2016-01-01

    Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.

  15. Developing Clade-Specific Microsatellite Markers: A Case Study in the Filamentous Fungal Genus Aspergillus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite markers are highly variable and very commonly used in population genetics studies. However, microsatellite loci are typically poorly conserved and cannot be used in distant related species. Thus, development of clade-specific microsatellite markers would increase efficiency and allow ...

  16. Genetic diversity of bovine Neospora caninum determined by microsatellite markers.

    PubMed

    Salehi, N; Gottstein, B; Haddadzadeh, H R

    2015-10-01

    Neospora caninum is one of the most significant parasitic organisms causing bovine abortion worldwide. Despite the economic impact of this infection, relatively little is known about the genetic diversity of this parasite. In this study, using Nc5 and ITS1 nested PCR, N. caninum has been detected in 12 brain samples of aborted fetuses from 298 seropositive dairy cattle collected from four different regions in Tehran, Iran. These specimen (Nc-Iran) were genotyped in multilocus using 9 different microsatellite markers previously described (MS4, MS5, MS6A, MS6B, MS7, MS8, MS10, MS12 and MS21). Microsatellite amplification was completely feasible in 2 samples, semi-completely in 8 samples, and failed in 2 samples. Within the two completely performed allelic profiles of Nc-Iran strains, unique multilocus profiles were obtained for both and novel allelic patterns were found in the MS8 and MS10 microsatellite markers. The Jaccard's similarity index showed significant difference between these two strains and from other standard isolates derived from GenBank such as Nc-Liv, Nc-SweB1, Nc-GER1, KBA1, and KBA2. All samples originating from the same area showed identical allelic numbers and a correlation between the number of repeats and geographic districts was observed.

  17. An improved technique for isolating codominant compound microsatellite markers.

    PubMed

    Lian, Chunlan L; Abdul Wadud, Md; Geng, Qifang; Shimatani, Kenichiro; Hogetsu, Taizo

    2006-07-01

    An approach for developing codominant polymorphic markers (compound microsatellite (SSR) markers), with substantial time and cost savings, is introduced in this paper. In this technique, fragments flanked by a compound SSR sequence at one end were amplified from the constructed DNA library using compound SSR primer (AC)6(AG)5 or (TC)6(AC)5 and an adaptor primer for the suppression-PCR. A locus-specific primer was designed from the sequence flanking the compound SSR. The primer pairs of the locus-specific and compound SSR primers were used as a compound SSR marker. Because only one locus-specific primer was needed for design of each marker and only a common compound SSR primer was needed as the fluorescence-labeled primer for analyzing all the compound SSR markers, this approach substantially reduced the cost of developing codominant markers and analyzing their polymorphism. We have demonstrated this technique for Dendropanax trifidus and easily developed 11 codominant markers with high polymorphism for D. trifidus. Use of the technique for successful isolation of codominant compound SSR markers for several other plant species is currently in progress.

  18. Characterization and development of chloroplast microsatellite markers for Gossypium hirsutum, and cross-species amplification in other Gossypium species.

    PubMed

    Cai, X Y; Liu, F; Zhou, Z L; Wang, X X; Wang, C Y; Wang, Y H; Wang, K B

    2015-10-05

    Cotton is an important economic crop worldwide; its fiber, commonly known as cotton lint, is the main natural source for the textile industry. Sixty chloroplast microsatellites were identified and characterized from the complete sequence of the Gossypium hirsutum chloroplast genome using a bioinformatic approach. Twenty chloroplast microsatellite loci were polymorphic in the 66 Gossypium germplasm accessions. A total of 85 alleles were detected, with allele numbers varying from 2-7 per locus. Polymorphism information content varied from 0.02-0.66, with a mean of 0.48. Additionally, transferability of the 20 polymorphic chloroplast microsatellite primers was evaluated in other 31 Gossypium species. Sixteen markers were successfully amplified across all species tested, while the remaining 4 markers cross-amplified in most species tested. These polymorphic chloroplast microsatellite markers may be useful tool for studies of individual identification, genetic diversity, evolution, conservation genetics, and molecular breeding in Gossypium.

  19. [Enrichment of giant panda microsatellite markers using dynal magnet beads].

    PubMed

    Shen, Fu-Jun; Watts, Phill; Zhang, Zhi-He; Zhang, An-Ju; Sanderson, Stephanie; Kemp, Steve J; Yue, Bi-Song

    2005-05-01

    The 400 -600 bp DNA fractions of giant panda containing STR sequences were captured by hybridization with the oligonucleotide probes attached to streptavadin coated magnetic beads (Dynal). The enriched DNA were ligated into pGEM-T and then transformed into E. coil JM109 competent cells. In total 260 positive clones were identified from 2 880 transformants in the libraries which were screened by gamma-32 P radiolabelled probes. Finally, we got 54 sequences and successfully designed 37 pairs of STR primers for giant panda. The results showed that this method is very efficient to isolate microsatellite markers.

  20. Microsatellite markers isolated from the flightless cormorant (Phalacrocorax harrisi).

    PubMed

    Duffie, Caroline; Glenn, Travis C; Hagen, Cris; Parker, Patricia

    2008-05-01

    Eight polymorphic microsatellite DNA loci were isolated from the flightless cormorant (Phalacrocorax harrisi) for future population genetic studies. Genetic variability was assessed using at least 38 individuals from two populations. Allele numbers ranged from three to nine per locus. Mean observed heterozygosity varied from 0.27 to 0.78. No locus deviated from Hardy-Weinberg (HW) or linkage equilibria in either population. The high levels of detected polymorphism indicate the utility of these markers for population genetic studies of this Galápagos species.

  1. Isolation and characterization of novel microsatellite markers from the sika deer (Cervus nippon) genome.

    PubMed

    Li, Y M; Bai, C Y; Niu, W P; Yu, H; Yang, R J; Yan, S Q; Zhang, J Y; Zhang, M J; Zhao, Z H

    2015-09-28

    Microsatellite markers are widely and evenly distributed, and are highly polymorphic. Rapid and convenient detection through automated analysis means that microsatellite markers are widely used in the construction of plant and animal genetic maps, in quantitative trait loci localization, marker-assisted selection, identification of genetic relationships, and genetic diversity and phylogenetic tree construction. However, few microsatellite markers remain to be isolated. We used streptavidin magnetic beads to affinity-capture and construct a (CA)n microsatellite DNA-enriched library from sika deer. We selected sequences containing more than six repeats to design primers. Clear bands were selected, which were amplified using non-specific primers following PCR amplification to screen polymorphisms in a group of 65 unrelated sika deer. The positive clone rate reached 82.9% by constructing the enriched library, and we then selected positive clones for sequencing. There were 395 sequences with CA repeats, and the CA repeat number was 4-105. We selected sequences containing more than six repeats to design primers, of which 297 pairs were designed. We next selected clear bands and used non-specific primers to amplify following PCR amplification. In total, 245 pairs of primers were screened. We then selected 50 pairs of primers to randomly screen for polymorphisms. We detected 47 polymorphic and 3 monomorphic loci in 65 unrelated sika deer. These newly isolated and characterized microsatellite loci can be used to construct genetic maps and for lineage testing in deer. In addition, they can be used for comparative genomics between Cervidae species.

  2. Microsatellite marker development and Mendelian analysis in the Matschie's tree kangaroo (Dendrolagus matschiei).

    PubMed

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2010-01-01

    Matschie's tree kangaroo (Dendrolagus matschiei) is an endangered arboreal macropodid endemic to the Huon Peninsula, Papua New Guinea (PNG). We developed 5 microsatellite markers for D. matschiei, which are the first markers developed for Dendrolagus. We screened 17 additional markers that were developed for other marsupial taxa and identified 3 that were polymorphic in D. matschiei. We estimated allelic and genetic diversity with the set of 8 markers by analyzing 22 D. matschiei from Wasaunon on the Huon Peninsula, PNG. The number of alleles ranged from 2 to 9 and expected heterozygosity ranged from 0.440 to 0.794. We tested for null alleles and Mendelian inheritance by analyzing 19 pairs of D. matschiei parents and offspring from Association of Zoos and Aquariums institutions. Null alleles were not detected and Mendelian inheritance was followed for all 8 markers. We also evaluated the reliability of using the markers to amplify DNA extracted from D. matschiei fecal samples and the ability of the markers to amplify DNA samples from Goodfellow's tree kangaroo (Dendrolagus goodfellowi ssp.), Doria's tree kangaroo (Dendrolagus dorianus ssp.), and Grizzled tree kangaroo (Dendrolagus inustus ssp.). Microsatellite markers can be used to inform management decisions to conserve D. matschiei in captivity and the wild.

  3. Methods comparison for microsatellite marker development: Different isolation methods, different yield efficiency

    NASA Astrophysics Data System (ADS)

    Zhan, Aibin; Bao, Zhenmin; Hu, Xiaoli; Lu, Wei; Hu, Jingjie

    2009-06-01

    Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecular ecology, quantitative genetics and genomics. Therefore, it is extremely necessary to select several versatile, low-cost, efficient and time- and labor-saving methods to develop a large panel of microsatellite markers. In this study, we used Zhikong scallop ( Chlamys farreri) as the target species to compare the efficiency of the five methods derived from three strategies for microsatellite marker development. The results showed that the strategy of constructing small insert genomic DNA library resulted in poor efficiency, while the microsatellite-enriched strategy highly improved the isolation efficiency. Although the mining public database strategy is time- and cost-saving, it is difficult to obtain a large number of microsatellite markers, mainly due to the limited sequence data of non-model species deposited in public databases. Based on the results in this study, we recommend two methods, microsatellite-enriched library construction method and FIASCO-colony hybridization method, for large-scale microsatellite marker development. Both methods were derived from the microsatellite-enriched strategy. The experimental results obtained from Zhikong scallop also provide the reference for microsatellite marker development in other species with large genomes.

  4. Characterization of microsatellite DNA libraries from three mealybug species and development of microsatellite markers for Pseudococcus viburni (Hemiptera: Pseudococcidae).

    PubMed

    Correa, M C G; Zaviezo, T; Le Maguet, J; Herrbach, E; Malausa, T

    2014-04-01

    Mealybugs (Hemiptera: Pseudococcidae) are important pests for crops worldwide. Different species, cryptic taxa under the same species name or even populations within a species can differ in biological characteristics, such as phenology, resistance to insecticides, virus transmission and susceptibility to natural enemies. Therefore, their management efficacy depends on their accurate identification. Microsatellite genetic markers are efficient in revealing the fine-scale taxonomic status of insects, both at inter- and intra-specific level. Despite their potential uses, microsatellites have been developed only for one mealybug species so far. Hence, it is unclear whether microsatellites may be useful to assess mealybug population differentiation and structuring. In this work, we tested the feasibility of developing microsatellite markers in mealybugs by: (i) producing and characterizing microsatellite DNA libraries for three species: Pseudococcus viburni, Pseudococcus comstocki and Heliococcus bohemicus, and (ii) by developing and testing markers for Ps. viburni. The obtained libraries contained balanced percentages of dinucleotide (ranging from 15 to 25%) and trinucleotide (from 5 to 17%) motifs. The marker setup for Ps. viburni was successful, although 70% of the primers initially tested were discarded for a lack of polymorphism. Finally, 25 markers were combined in two multiplex polymerase chain reactions with 21 displaying no evidence of deviation from Hardy-Weinberg equilibrium. Ps. viburni markers were tested on one population from France and one from Chile. The markers revealed a significant genetic differentiation between the two populations with an Fst estimate of 0.266.

  5. Microsatellite markers for the yam bean Pachyrhizus (Fabaceae)1

    PubMed Central

    Delêtre, Marc; Soengas, Beatriz; Utge, José; Lambourdière, Josie; Sørensen, Marten

    2013-01-01

    • Premise of the study: Microsatellite loci were developed for the understudied root crop yam bean (Pachyrhizus spp.) to investigate intraspecific diversity and interspecific relationships within the genus Pachyrhizus. • Methods and Results: Seventeen nuclear simple sequence repeat (SSR) markers with perfect di- and trinucleotide repeats were developed from 454 pyrosequencing of SSR-enriched genomic libraries. Loci were characterized in P. ahipa and wild and cultivated populations of four closely related species. All loci successfully cross-amplified and showed high levels of polymorphism, with number of alleles ranging from three to 12 and expected heterozygosity ranging from 0.095 to 0.831 across the genus. • Conclusions: By enabling rapid assessment of genetic diversity in three native neotropical crops, P. ahipa, P. erosus, and P. tuberosus, and two wild relatives, P. ferrugineus and P. panamensis, these markers will allow exploration of the genetic diversity and evolutionary history of the genus Pachyrhizus. PMID:25202568

  6. Somatic microsatellite variability as a predictive marker for colorectal cancer and liver cancer progression

    PubMed Central

    Vaksman, Zalman; Garner, Harold R.

    2015-01-01

    Microsatellites (MSTs) are short tandem repeated genetic motifs that comprise ~3% of the genome. MST instability (MSI), defined as acquired/lost primary alleles at a small subset of microsatellite loci (e.g. Bethesda markers), is a clinically relevant marker for colorectal cancer. However, these markers are not applicable to other types of cancers, specifically, for liver cancer which has a high mortality rate. Here we show that somatic MST variability (SMV), defined as the presence of additional, non-primary (aka minor) alleles at MST loci, is a complementary measure of MSI, and a genetic marker for colorectal and liver cancer. Re-analysis of Illumina sequenced exomes from The Cancer Genome Atlas indicates that SMV may distinguish a subpopulation of African American patients with colorectal cancer, which represents ~33% of the population in this study. Further, for liver cancer, a higher rate of SMV may be indicative of an earlier age of onset. The work presented here suggests that classical MSI should be expanded to include SMV, going beyond alterations of the primary alleles at a small number of microsatellite loci. This measure of SMV may represent a potential new diagnostic for a variety of cancers and may provide new information for colorectal cancer patients. PMID:25691061

  7. Characterization of novel microsatellite markers for Hyphantria cunea and implications for other Lepidoptera.

    PubMed

    Cao, L J; Wen, J B; Wei, S J; Liu, J; Yang, F; Chen, M

    2015-06-01

    This is the first report of microsatellite markers (simple sequence repeats, SSR) for fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), an important quarantine pest in some European and Asian countries. Here, we developed 48 microsatellite markers for H. cunea from SSR enrichment libraries. Sequences isolated from libraries were sorted into four categories and analyzed. Our results suggest that sequences classified as Grouped should not be used for microsatellite primer design. The genetic diversity of microsatellite loci was assessed in 72 individuals from three populations. The number of alleles per locus ranged from 2 to 5 with an average of 3. The observed and expected heterozygosities of loci ranged from 0 to 0.958 and 0 to 0.773, respectively. A total of 18 out of 153 locus/population combinations deviated significantly from Hardy-Weinberg equilibrium. Moreover, significant linkage disequilibrium was detected in one pair of loci (1275 pairs in total). In the neutral test, two loci were grouped into the candidate category for positive selection and the remainder into the neutral category. In addition, a complex mutation pattern was observed for these loci, and F ST performed better than did R ST for the estimation of population differentiation in different mutation patterns. The results of the present study can be used for population genetic studies of H. cunea.

  8. Isolation and characterization of microsatellite markers for Carolina hemlock (Tsuga caroliniana).

    PubMed

    Josserand, S A; Potter, K M; Echt, C S; Nelson, C D

    2008-11-01

    We describe the isolation and characterization of 31 polymorphic di- and trinucleotide microsatellite marker loci for Carolina hemlock (Tsuga caroliniana Englem.). In addition, primer pairs for 16 loci amplified scoreable alleles in six other Tsuga species. In eastern North America, both Carolina hemlock and eastern hemlock (Tsuga canadensis [L.] Carr.) populations are declining due to infestation by hemlock woolly adelgid, Adelges tsugae. The markers described here should enhance population genetic studies of hemlocks, providing valuable information for conserving and restoring these important forest tree species.

  9. Microsatellite markers for the Amazon peacock bass (Cichla piquiti).

    PubMed

    Carvalho, D C; Oliveira, D A A; Sampaio, I; Beheregaray, L B

    2009-01-01

    A set of primers to amplify 10 microsatellite DNA loci was developed for the Neotropical fish Cichla piquiti, one of the largest sized cichlids in the Amazon Basin. These loci were used to genotype individuals from two populations, one native population from the Tocantins River, the other an introduced population in southeast Brazil, Upper Paraná River. Cross-amplification was also successful for another species of peacock bass, C. kelberi. An average of 4.4 alleles per locus (2-9 alleles) was detected. These markers will be useful for the characterization of genetic structure of native populations, and also for invasive biology studies since Cichla species have been introduced in many river basins outside their native ranges.

  10. Use of microsatellite markers to assign goats to their breeds.

    PubMed

    Aljumaah, R S; Alobre, M M; Al-Atiyat, R M

    2015-08-07

    We investigated the potential of 17 microsatellite markers for assigning Saudi goat individuals to their breeds. Three local breeds, Bishi, Jabali, and Tohami were genotyped using these markers, and Somali goats were used as a reference breed. The majority of alleles were shared between the breeds, except for some that were specific to each breed. The Garza-Williamson index was lowest in the Bishi breed, indicating that a recent bottleneck event occurred. The overall results assigned the goat individuals (based on their genotypes) to the same breeds from which they were sampled, except in a few cases. The individuals' genotypes were sufficient to provide a clear distinction between the Somali goat breed and the others. In three factorial dimensions, the results of a correspondence analysis indicated that the total variation for the first and second factors was 48.85 and 31.43%, respectively. Consequently, Jabali, Bishi, and Tohami goats were in separate groups. The Jabali goat was closely related to the Bishi goat. Somali goats were distinguished from each other and from individuals of the other three goat breeds. The markers were successful in assigning individual goats to their breeds, based on the likelihood of a given individual's genotype.

  11. PMDBase: a database for studying microsatellite DNA and marker development in plants

    PubMed Central

    Yu, Jingyin; Dossa, Komivi; Wang, Linhai; Zhang, Yanxin; Wei, Xin; Liao, Boshou; Zhang, Xiurong

    2017-01-01

    Microsatellite DNAs (or SSRs) are important genomic components involved in many important biological functions. SSRs have been extensively exploited as molecular markers for diverse applications including genetic diversity, linkage/association mapping of gene/QTL, marker-assisted selection, variety identification and evolution analysis. However, a comprehensive database or web service for studying microsatellite DNAs and marker development in plants is lacking. Here, we developed a database, PMDBase, which integrates large amounts of microsatellite DNAs from genome sequenced plant species and includes a web service for microsatellite DNAs identification. In PMDBase, 26 230 099 microsatellite DNAs were identified spanning 110 plant species. Up to three pairs of primers were supplied for every microsatellite DNA. For 81 species, genomic features of the microsatellite DNAs (genic or non-genic) were supplied with the corresponding genes or transcripts from public databases. Microsatellite DNAs can be explored through browsing and searching modules with a user-friendly web interface and customized software. Furthermore, we developed MISAweb and embedded Primer3web to help users to identify microsatellite DNAs and design corresponding primers in their own genomic sequences online. All datasets of microsatellite DNAs can be downloaded conveniently. PMDBase will be updated regularly with new available genome data and can be accessed freely via the address http://www.sesame-bioinfo.org/PMDBase. PMID:27733507

  12. Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers

    PubMed Central

    Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A

    2015-01-01

    In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624

  13. [Extension of a set of microsatellite markers for more precise identification of chum salmon (Oncorhynchus keta Walbaum)].

    PubMed

    Afanas'ev, P K; Rubtsova, G A; Shitova, M V; Shaĭkhaev, E G; Zhivotovskiĭ, L A

    2011-11-01

    A set often microsatellite loci enabling fairly accurate identification of the chum salmon individuals from geographically distant groups was designed at the Laboratory of Genetic Identification, Vavilov Institute of General Genetics, Russian Academy of Sciences. However, identification of the individuals from closely located basins performed using these loci was not sufficiently precise. The present study was focused on the improvement of the resolution of the method through increasing the number microsatellite loci used. In this study, typing of additional microsatellite loci of chum salmon and evaluation of the change of the degree of identification with the increase of the number ofmicrosatellite loci used is described. It was shown that the identification accuracy permanently increased with the increase of the number of microsatellite markers used.

  14. Development of microsatellite markers for the clonal shrub Orixa japonica (Rutaceae) using 454 sequencing1

    PubMed Central

    Tamaki, Ichiro; Setsuko, Suzuki; Sugai, Kyoko; Yanagisawa, Nao

    2016-01-01

    Premise of the study: Microsatellite markers were developed for a dioecious shrub, Orixa japonica (Rutaceae). Because O. japonica vigorously propagates by vegetative growth, microsatellite markers can be used to identify clonal relationships among its ramets. Methods and Results: Sixteen polymorphic microsatellite markers were identified by 454 next-generation sequencing. The number of alleles and expected heterozygosity for each locus among four populations ranged from two to 10 and from 0.140 to 0.875, respectively. Five of the 16 loci showed a low null allele frequency. Because Orixa is a monotypic genus, cross-amplification in a consubfamilial species, Skimmia japonica, was tested, and only one locus showed polymorphism. Conclusions: These microsatellite markers developed for O. japonica contribute to clone identification for studies examining the clonal structure and true sex ratio in the wild. Moreover, five markers that have a low null allele frequency can also be used for estimating mating systems or performing parentage analysis. PMID:27785383

  15. Pooled Genotyping of Microsatellite Markers in Parent–Offspring Trios

    PubMed Central

    Kirov, George; Williams, Nigel; Sham, Pak; Craddock, Nick; Owen, Michael J.

    2000-01-01

    We studied the extent to which genotyping of simple sequence repeat polymorphisms (SSRs) in pooled DNA samples can be used to predict differences in allele frequencies between parents and their affected offspring. We also developed a simple method of correction for the effects of stutter and differential amplification on the analysis of SSRs in pooled DNA samples based on widely available software. We genotyped individually eight polymorphic microsatellite markers in 110 parent–offspring trios affected with bipolar affective disorder (BP). Analysis of pooled DNA samples predicted very accurately the differences in individual allele frequency distributions between children and their parents. The mean error was <1% (range 0%–3.2%) when marker-specific corrections for stutter and differential amplification were performed. We show that if an individual allele is significantly preferentially transmitted from parents to affected offspring, the difference in the frequency of that allele would be sufficiently large to be detected with pooling in most situations. We propose recommendations for disequilibrium mapping with pooling in which both case-control samples and trios are used in an initial screen and markers are genotyped individually only if they satisfy very relaxed criteria for statistical significance. The use of case-control samples should reduce the false-negative rate as the differences in allele frequencies between cases and controls are twice as high in the presence of the same genetic effect. The use of trios will confirm or reject any suggested differences, thus reducing the false-positive rate that can be created by hidden population stratification. PMID:10645955

  16. Characterization of polymorphic microsatellite markers for Primula sikkimensis (Primulaceae) using a 454 sequencing approach1

    PubMed Central

    Li, Chang-Han; Liu, Yun-Jiao; Zhang, Cai-Yun; Yan, Hai-Fei; Ge, Xue-Jun; Hao, Gang

    2016-01-01

    Premise of the study: Microsatellite markers from Primula sikkimensis (Primulaceae) were developed for testing deep lineage divergence and speciation events. Methods and Results: A total of 3112 microsatellites were identified from 61,755 unique reads though 454 pyrosequencing technology. Twenty-nine microsatellite loci were selected for PCR amplification and polymorphic analyses. Among the 29 tested markers, 17 microsatellite loci were further used for genotyping in three wild P. sikkimensis populations. The number of alleles varied from one to eight, and the observed heterozygosity ranged from 0.111 to 1.000. Ten simple sequence repeat loci could be successfully cross-amplified in two Primula species. The transferability values were 76.5% in P. florindae and 58.8% in P. alpicola, respectively. Conclusions: These microsatellite markers will be valuable for testing the hypothesis of lineage divergence, genetic introgression, and cryptic speciation events between P. sikkimensis and its closely related taxa. PMID:27437171

  17. Loss of heterozygosity and microsatellite instability as predictive markers among Iranian esophageal cancer patients

    PubMed Central

    Forghanifard, Mohammad Mahdi; Vahid, Elham Emami; Dadkhah, Ezzat; Gholamin, Mehran; Noghabi, Samaneh Broumand; Ghahraman, Martha; Farzadnia, Mehdi; Abbaszadegan, Mohammad Reza

    2016-01-01

    Objective(s): Variation in microsatellite sequences that are dispersed in the genome has been linked to a deficiency in cellular mismatch repair system and defects in several genes of this system are involved in carcinogenesis. Our aim in this study was to illustrate microsatellite DNA alteration in esophageal cancer. Materials and Methods: DNA was extracted from formalin fixed paraffin embedded (FFPE) tissues from surgical and matched margin-normal samples. Microsatellite instability (MSI) and loss of heterozygosity (LOH) were studied in 50 cases of esophageal squamous cell carcinoma (ESCC) by amplifying six microsatellite markers: D13S260 (13q12.3), D13S267 (13q12.3), D9S171 (9p21), D2S123 (2p), D5S2501 (5q21) and TP53 (17p13.1) analyzed on 6% denaturing polyacrylamide gel electrophoresis. Results: Statistical analysis indicated a near significant reverse correlation between grade and LOH (P= 0.068, correlation coefficient= -0.272). Specifically, increased LOH in tumor DNA has a significant correlation with increased differentiation from poorly differentiated to well differentiated tumors (P= 0.002 and P= 0.016 respectively). In addition, higher number of chromosomal loci with LOH showed a reverse correlation with lymph node metastasis (P= 0.026, correlation coefficient= -0.485). Furthermore, there was a positive correlation between addiction and MSI (P= 0.026, correlation coefficient= 0.465). Conclusion: Microsatellite DNA alterations may be a prognostic tool for detection and the evolution of prognosis in patients with SCC of esophagus. It can be concluded that regional lymph node metastasis would be less likely with increased heterozygote loci and addiction with any of opium, cigarette, water pipe or alcohol can be a susceptibility factor(s) for MSI. PMID:27635196

  18. Genome-wide microsatellite characterization and marker development in the sequenced Brassica crop species.

    PubMed

    Shi, Jiaqin; Huang, Shunmou; Zhan, Jiepeng; Yu, Jingyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong

    2014-02-01

    Although much research has been conducted, the pattern of microsatellite distribution has remained ambiguous, and the development/utilization of microsatellite markers has still been limited/inefficient in Brassica, due to the lack of genome sequences. In view of this, we conducted genome-wide microsatellite characterization and marker development in three recently sequenced Brassica crops: Brassica rapa, Brassica oleracea and Brassica napus. The analysed microsatellite characteristics of these Brassica species were highly similar or almost identical, which suggests that the pattern of microsatellite distribution is likely conservative in Brassica. The genomic distribution of microsatellites was highly non-uniform and positively or negatively correlated with genes or transposable elements, respectively. Of the total of 115 869, 185 662 and 356 522 simple sequence repeat (SSR) markers developed with high frequencies (408.2, 343.8 and 356.2 per Mb or one every 2.45, 2.91 and 2.81 kb, respectively), most represented new SSR markers, the majority had determined physical positions, and a large number were genic or putative single-locus SSR markers. We also constructed a comprehensive database for the newly developed SSR markers, which was integrated with public Brassica SSR markers and annotated genome components. The genome-wide SSR markers developed in this study provide a useful tool to extend the annotated genome resources of sequenced Brassica species to genetic study/breeding in different Brassica species.

  19. Cross-species transferability of microsatellite markers in the genus Lippia.

    PubMed

    Santos, C P; Rocha, D S; Bajay, M M; Santos, F R C; Campos, J B; Pinheiro, J B; Zucchi, M I; Silva-Mann, R; Arrigoni-Blank, M F; Blank, A F

    2014-11-27

    The cross-species transferability of 20 microsatellite markers was tested in the genus Lippia. Eleven markers were polymorphic after screening 19 accessions of Lippia sidoides and Lippia gracilis maintained in the Active Germplasm Bank (AGB) from Universidade Federal de Sergipe. Additionally, 40 accessions of Lippia spp were collected in Sergipe to increase the germplasm bank. A total of 23, 22, and 36 alleles were identified, with an average of 2.3, 2.2, and 3.27 alleles per locus, respectively, for each group. The markers that were used were efficient tools to access genetic diversity in the germplasm bank and will be useful for further research aiming at the conservation and management of these important aromatic species.

  20. Isolation and characterisation of the first microsatellite markers for Cyperus rotundus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyperus rotundus L. (purple nutsedge), is a weed that affects crops as cotton, soybean and vegetables, mainly in the South of the United States. We have developed 191 microsatellite markers, 39% of them being polymorphic when tested on 13 accessions of this weed. The microsatellites evidenced gene...

  1. Comparison of a retrotransposon-based marker with microsatellite markers for discriminating accessions of Vitis vinifera.

    PubMed

    Sant'Ana, G C; Ferreira, J L; Rocha, H S; Borém, A; Pasqual, M; Cançado, G M A

    2012-05-21

    Identification and knowledge concerning genetic diversity are fundamental for efficient management and use of grapevine germplasm. Recently, new types of molecular markers have been developed, such as retrotransposon-based markers. Because of their multilocus pattern, retrotransposon-based markers might be able to differentiate grapevine accessions with just one pair of primers. In order to evaluate the efficiency of this type of marker, we compared retrotransposon marker Tvv1 with seven microsatellite markers frequently used for genotyping of the genus Vitis (VVMD7, VVMD25, VVMD5, VVMD27, VVMD31, VVS2, and VZAG62). The reference population that we used consisted of 26 accessions of Vitis, including seven European varieties of Vitis vinifera, four North American varieties and hybrids of Vitis labrusca, and 15 rootstock hybrids obtained from crosses of several Vitis species. Individually, the Tvv1 and the group of seven SSR markers were capable of distinguishing all accessions except 'White Niagara' compared to 'Red Niagara'. Using the Structure software, the retrotransposon marker Tvv1 generated two clusters: one with V. vinifera plus North American varieties and the other comprising rootstocks. The seven SSR markers generated five clusters: V. vinifera, the North American varieties, and three groups of rootstock hybrids. The percentages of variation explained by the first two components in the principal coordinate analysis were 65.21 (Tvv1) and 50.42 (SSR markers) while the Mantel correlation between the distance matrixes generated by the two types of markers was 42.5%. We conclude that the Tvv1 marker is useful for DNA fingerprinting, but it lacks efficiency for discrimination of structured groups.

  2. Parentage Reconstruction in Eucalyptus nitens Using SNPs and Microsatellite Markers: A Comparative Analysis of Marker Data Power and Robustness.

    PubMed

    Telfer, Emily J; Stovold, Grahame T; Li, Yongjun; Silva-Junior, Orzenil B; Grattapaglia, Dario G; Dungey, Heidi S

    2015-01-01

    Pedigree reconstruction using molecular markers enables efficient management of inbreeding in open-pollinated breeding strategies, replacing expensive and time-consuming controlled pollination. This is particularly useful in preferentially outcrossed, insect pollinated Eucalypts known to suffer considerable inbreeding depression from related matings. A single nucleotide polymorphism (SNP) marker panel consisting of 106 markers was selected for pedigree reconstruction from the recently developed high-density Eucalyptus Infinium SNP chip (EuCHIP60K). The performance of this SNP panel for pedigree reconstruction in open-pollinated progenies of two Eucalyptus nitens seed orchards was compared with that of two microsatellite panels with 13 and 16 markers respectively. The SNP marker panel out-performed one of the microsatellite panels in the resolution power to reconstruct pedigrees and out-performed both panels with respect to data quality. Parentage of all but one offspring in each clonal seed orchard was correctly matched to the expected seed parent using the SNP marker panel, whereas parentage assignment to less than a third of the expected seed parents were supported using the 13-microsatellite panel. The 16-microsatellite panel supported all but one of the recorded seed parents, one better than the SNP panel, although there was still a considerable level of missing and inconsistent data. SNP marker data was considerably superior to microsatellite data in accuracy, reproducibility and robustness. Although microsatellites and SNPs data provide equivalent resolution for pedigree reconstruction, microsatellite analysis requires more time and experience to deal with the uncertainties of allele calling and faces challenges for data transferability across labs and over time. While microsatellite analysis will continue to be useful for some breeding tasks due to the high information content, existing infrastructure and low operating costs, the multi-species SNP resource

  3. Development of novel polymorphic microsatellite markers in Siganus fuscescens.

    PubMed

    Mao, X Q; Li, Z B; Ning, Y F; Shangguan, J B; Yuan, Y; Huang, Y S; Li, B B

    2016-07-29

    Rabbitfish, Siganus fuscescens, is widely distributed in the Indo-Pacific regions and eastern Mediterranean. Its dwelling place includes reef flats, coral reef regions, and seagrass meadows in tropical area and reef areas or shallow waters in locations at high latitudes. In the present study, 10 new polymorphic microsatellite markers were screened from 30 wild S. fuscescens individuals, using a method of fast isolation protocol and amplified fragment length polymorphism of sequences containing repeats. The number of polymorphic alleles per locus was 3 to 5 with a mean of 4.3, while the value of polymorphic information content ranged from 0.283 to 0.680. The values of the observed and expected heterozygosities were in the range 0.3333-0.8462 and 0.3011-0.7424, respectively. Deviation from Hardy-Weinberg equilibrium was not observed in this study. These polymorphic loci are expected to be effective in evaluating the genetic diversity, population structure, and gene flow and in determining the paternity in S. fuscescens, as well as for conservation management.

  4. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using Illumina shotgun sequencing1

    PubMed Central

    Li, Yong; Zhang, Weirui

    2015-01-01

    Premise of the study: Microsatellite markers of Jasminum sambac (Oleaceae) were isolated to investigate wild germplasm resources and provide markers for breeding. Methods and Results: Illumina sequencing was used to isolate microsatellite markers from the transcriptome of J. sambac. A total of 1322 microsatellites were identified from 49,772 assembled unigenes. One hundred primer pairs were randomly selected to verify primer amplification efficiency. Out of these tested primer pairs, 31 were successfully amplified: 18 primer pairs yielded a single allele, seven exhibited fixed heterozygosity with two alleles, and only six displayed polymorphisms. Conclusions: This study obtained the first set of microsatellite markers for J. sambac, which will be helpful for the assessment of wild germplasm resources and the development of molecular marker–assisted breeding. PMID:26504683

  5. Microsatellite markers for the human nematode parasite Ascaris lumbricoides: development and assessment of utility.

    PubMed

    Criscione, Charles D; Anderson, Joel D; Raby, Kyle; Sudimack, Dan; Subedi, Janardan; Rai, Dev R; Upadhayay, Ram P; Jha, Bharat; Williams-Blangero, Sarah; Anderson, Timothy J C

    2007-06-01

    We describe 35 microsatellite markers from the human parasitic nematode Ascaris lumbricoides. We found 7 sex-linked markers and demonstrate that 26 autosomal loci can be scored reliably. These markers have high genetic variability and provide the tools to address multiple questions concerning the epidemiology, fine-scale genetic structure, host specificity, and mating systems of this parasite.

  6. Development of novel microsatellite markers for strain-specific identification of Chlorella vulgaris.

    PubMed

    Jo, Beom-Ho; Lee, Chang Soo; Song, Hae-Ryong; Lee, Hyung-Gwan; Oh, Hee-Mock

    2014-09-01

    A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

  7. Development of microsatellite markers for the Korean Mussel, Mytilus coruscus (Mytilidae) using next-generation sequencing.

    PubMed

    An, Hye Suck; Lee, Jang Wook

    2012-01-01

    Mytilus coruscus (family Mytilidae) is one of the most important marine shellfish species in Korea. During the past few decades, this species has become endangered due to the loss of habitats and overfishing. Despite this species' importance, information on its genetic background is scarce. In this study, we developed microsatellite markers for M. coruscus using next-generation sequencing. A total of 263,900 raw reads were obtained from a quarter-plate run on the 454 GS-FLX titanium platform, and 176,327 unique sequences were generated with an average length of 381 bp; 2569 (1.45%) sequences contained a minimum of five di- to tetra-nucleotide repeat motifs. Of the 51 loci screened, 46 were amplified successfully, and 22 were polymorphic among 30 individuals, with seven of trinucleotide repeats and three of tetranucleotide repeats. All loci exhibited high genetic variability, with an average of 17.32 alleles per locus, and the mean observed and expected heterozygosities were 0.67 and 0.90, respectively. In addition, cross-amplification was tested for all 22 loci in another congener species, M. galloprovincialis. None of the primer pairs resulted in effective amplification, which might be due to their high mutation rates. Our work demonstrated the utility of next-generation 454 sequencing as a method for the rapid and cost-effective identification of microsatellites. The high degree of polymorphism exhibited by the 22 newly developed microsatellites will be useful in future conservation genetic studies of this species.

  8. Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea)

    PubMed Central

    Gimenes, Marcos A; Hoshino, Andrea A; Barbosa, Andrea VG; Palmieri, Dario A; Lopes, Catalina R

    2007-01-01

    Background The genus Arachis includes Arachis hypogaea (cultivated peanut) and wild species that are used in peanut breeding or as forage. Molecular markers have been employed in several studies of this genus, but microsatellite markers have only been used in few investigations. Microsatellites are very informative and are useful to assess genetic variability, analyze mating systems and in genetic mapping. The objectives of this study were to develop A. hypogaea microsatellite loci and to evaluate the transferability of these markers to other Arachis species. Results Thirteen loci were isolated and characterized using 16 accessions of A. hypogaea. The level of variation found in A. hypogaea using microsatellites was higher than with other markers. Cross-transferability of the markers was also high. Sequencing of the fragments amplified using the primer pair Ah11 from 17 wild Arachis species showed that almost all wild species had similar repeated sequence to the one observed in A. hypogaea. Sequence data suggested that there is no correlation between taxonomic relationship of a wild species to A. hypogaea and the number of repeats found in its microsatellite loci. Conclusion These results show that microsatellite primer pairs from A. hypogaea have multiple uses. A higher level of variation among A. hypogaea accessions can be detected using microsatellite markers in comparison to other markers, such as RFLP, RAPD and AFLP. The microsatellite primers of A. hypogaea showed a very high rate of transferability to other species of the genus. These primer pairs provide important tools to evaluate the genetic variability and to assess the mating system in Arachis species. PMID:17326826

  9. Development of nuclear and chloroplast microsatellite markers for the endangered conifer Callitris sulcata (Cupressaceae)1

    PubMed Central

    Sakaguchi, Shota; Lannuzel, Guillaume; Fogliani, Bruno; Wulff, Adrien S.; L’Huillier, Laurent; Kurata, Seikan; Ueno, Saneyoshi; Isagi, Yuji; Tsumura, Yoshihiko; Ito, Motomi

    2015-01-01

    Premise of the study: Microsatellite markers were developed for Callitris sulcata (Cupressaceae), an endangered conifer species in New Caledonia. Methods and Results: Using sequencing by synthesis (SBS) of an RNA-Seq library, 15 polymorphic nuclear and chloroplast microsatellite markers were developed. When evaluated with 48 individuals, these markers showed genetic variations ranging from two to 15 alleles and expected heterozygosity ranging from 0 to 0.881. Conclusions: These markers will be useful for examining the genetic diversity and structure of remaining wild populations and improving the genetic status of ex situ populations. PMID:26312198

  10. WebSat ‐ A web software for microsatellite marker development

    PubMed Central

    Martins, Wellington Santos; Soares Lucas, Divino César; de Souza Neves, Kelligton Fabricio; Bertioli, David John

    2009-01-01

    Simple sequence repeats (SSR), also known as microsatellites, have been extensively used as molecular markers due to their abundance and high degree of polymorphism. We have developed a simple to use web software, called WebSat, for microsatellite molecular marker prediction and development. WebSat is accessible through the Internet, requiring no program installation. Although a web solution, it makes use of Ajax techniques, providing a rich, responsive user interface. WebSat allows the submission of sequences, visualization of microsatellites and the design of primers suitable for their amplification. The program allows full control of parameters and the easy export of the resulting data, thus facilitating the development of microsatellite markers. Availability The web tool may be accessed at http://purl.oclc.org/NET/websat/ PMID:19255650

  11. Development of microsatellite markers for Hancornia speciosa Gomes (Apocynaceae).

    PubMed

    Rodrigues, A J L; Yamaguishi, A T; Chaves, L J; Coelho, A S G; Lima, J S; Telles, M P C

    2015-07-03

    Herein, we describe 34 microsatellite loci developed using an enrichment genomic library for the tree species Hancornia speciosa Gomes (Apocynaceae). Thirty-five individuals were genotyped using 34 primers to analyze the polymorphisms at each locus. The number of alleles per locus ranged from 4 to 20. The average number of alleles was 8.11, and the expected heterozygosity ranged from 0.62 to 0.94. These microsatellite primers will be useful in population genetics studies for this species.

  12. Genomic sequencing and microsatellite marker development for Boswellia papyrifera, an economically important but threatened tree native to dry tropical forests

    PubMed Central

    Addisalem, A. B.; Esselink, G. Danny; Bongers, F.; Smulders, M. J. M.

    2015-01-01

    Microsatellite (or simple sequence repeat, SSR) markers are highly informative DNA markers often used in conservation genetic research. Next-generation sequencing enables efficient development of large numbers of SSR markers at lower costs. Boswellia papyrifera is an economically important tree species used for frankincense production, an aromatic resinous gum exudate from bark. It grows in dry tropical forests in Africa and is threatened by a lack of rejuvenation. To help guide conservation efforts for this endangered species, we conducted an analysis of its genomic DNA sequences using Illumina paired-end sequencing. The genome size was estimated at 705 Mb per haploid genome. The reads contained one microsatellite repeat per 5.7 kb. Based on a subset of these repeats, we developed 46 polymorphic SSR markers that amplified 2–12 alleles in 10 genotypes. This set included 30 trinucleotide repeat markers, four tetranucleotide repeat markers, six pentanucleotide markers and six hexanucleotide repeat markers. Several markers were cross-transferable to Boswellia pirrotae and B. popoviana. In addition, retrotransposons were identified, the reads were assembled and several contigs were identified with similarity to genes of the terpene and terpenoid backbone synthesis pathways, which form the major constituents of the bark resin. PMID:25573702

  13. Development of microsatellite markers for Manilkara maxima T.D. Penn. (Sapotaceae) and their use in conservation genetics.

    PubMed

    Silva-Junior, José Audenor; de Souza França, Daniele; Moraes, Ramiris César Souza; Gaiotto, Fernanda Amato

    2016-06-01

    Manilkara maxima is an endemic tree species of the Atlantic Forest in southern Bahia, Brazil. It is considered important for forest conservation due to its mutualistic interactions with endemic and endangered animals. Our aim was to develop microsatellite markers to estimate genetic diversity in order to provide information for effectiveness of future conservation programs. We used next generation sequencing technology to develop the first specific microsatellite markers for M. maxima. Seventeen new microsatellite loci were applied in 72 individuals sampled in three natural populations. On average, the number of alleles per loci was 8.8. The expected heterozygosity varied between 0.72 and 0.77, indicating that the developed set of molecular markers is useful for genetic diversity studies. Additionally, the estimated value for the combined probability of exclusion (Q) was greater than 0.999, which indicates the powerful of these molecular tools for paternity and kinship analysis. Our results demonstrate that the set of microsatellites developed in this work is a powerful tool for population genetics, molecular ecology and conservation biology purposes.

  14. The use of microsatellite markers in Neotropical studies of wild birds: a literature review.

    PubMed

    Moura, Renan F; Dawson, Deborah A; Nogueira, Denise M

    2017-02-06

    Despite extensive habitat fragmentation, the Neotropical region possesses 30% of the world´s bird species. Microsatellites have remained one of the most popular genetic markers and have been used in ecological and conservation studies since the 1990's. We conducted a literature review comparing the number of papers published from January 1990 to July 2015 that used microsatellite markers for studies of wild birds in the Neotropical region, USA and some European countries. We assigned the articles to three categories of studies: population genetics, animal behavior/kinship analysis and the development of species-specific bird microsatellite markers. We also compared the studies in the Neotropics that used heterologous versus species-specific markers and provide a list of heterologous markers of utility in multiple birds. Despite the rich bird fauna in the Neotropics, the number of articles published represents only 5.6% of that published by the USA and selected European countries. Within the Neotropical region, Brazil possessed 60.5% of the total papers published, with the remaining 39.5% shared between five countries. We conclude that the lack of specialized laboratories and resources still represents a limit to microsatellite-based genetic studies of birds within the Neotropical region. To overcome these limitations, we suggest the use of heterologous microsatellite markers as a cost-effective and time-effective tool to assist ecological studies of wild birds.

  15. Development, characterisation, and across-taxa utility of oil palm (Elaeis guineensis Jacq.) microsatellite markers.

    PubMed

    Billotte, N; Risterucci, A M; Barcelos, E; Noyer, J L; Amblard, P; Baurens, F C

    2001-06-01

    The results of the development of oil palm (Elaeis guineensis Jacq.) microsatellite markers are given step by step, from the screening of libraries enriched in (GA)n, (GT)n, and (CCG)n simple-sequence repeats (SSRs) to the final characterisation of 21 SSR loci. Also published are primer sequences, estimates of allele size range, and expected heterozygosity in E. guineensis and in the closely related species E. oleifera, in which an optimal utility of the SSR markers was observed. Multivariate data analyses showed the ability of SSR markers to efficiently reveal the genetic-diversity structure of the genus Elaeis in accordance with known geographical origins and with measured genetic relationships based on previous molecular studies. High levels of allelic variability indicated that E. guineensis SSRs will be a powerful tool for genetic studies of the genus Elaeis, including variety identification and intra- or inter-specific genetic mapping. PCR amplification tests on a subset of 16 other palm species and allele-sequence data showed that E. guineensis SSRs are putative transferable markers across palm taxa. In addition, phenetic information based on SSR flanking region sequences makes E. guineensis SSR markers a potentially useful molecular resource for any researcher studying the phylogeny of palm taxa.

  16. Development of microsatellite markers in the tetraploid fern Ceratopteris thalictroides (Parkeriaceae) using RAD tag sequencing.

    PubMed

    Yang, X Y; Long, Z C; Gichira, A W; Guo, Y H; Wang, Q F; Chen, J M

    2016-02-19

    To understand the genetic variability of the tetraploid fern Ceratopteris thalictroides (Parkeriaceae), we described 30 polymorphic microsatellite markers obtained using the restriction site-associated DNA (RAD) tag sequencing technique. A total of 26 individuals were genotyped for each marker. The number of alleles per locus ranged from 4 to 10, and the expected heterozygosity and the Shannon-Wiener index ranged from 0.264 to 0.852 and 0.676 to 2.032, respectively. Because these 30 microsatellite markers exhibit high degrees of genetic variation, they will be useful tools for studying the adaptive genetic variation and sustainable conservation of C. thalictroides.

  17. Characterization of 13 microsatellite markers for Diuris basaltica (Orchidaceae) and related species1

    PubMed Central

    Ahrens, Collin W.; James, Elizabeth A.

    2014-01-01

    • Premise of the study: Diuris basaltica (Orchidaceae) is an endangered forb on the Victorian grasslands and has many close relatives. Microsatellite markers have been developed to facilitate assessment of population structure within D. basaltica and among related taxa within the species complex. • Methods and Results: Twenty-five microsatellite markers (13 polymorphic and 12 monomorphic) were developed from D. basaltica using 454 pyrosequencing, and all primer pairs were amplified in D. gregaria and D. chryseopsis. For the set of polymorphic markers, the number of alleles per locus ranged from one to 10, two to nine, and two to 18 for D. basaltica, D. gregaria, and D. chryseopsis, respectively. The expected and observed heterozygosities ranged from 0.18 to 0.95 and 0.14 to 0.86, respectively. • Conclusions: The microsatellite markers developed in this study can be used to analyze the population genetic structure of D. basaltica and other Diuris species. PMID:25202591

  18. Development of microsatellite markers for Suriana maritima (Surianaceae) using next-generation sequencing technology.

    PubMed

    Chen, W S; Zhao, G; Jian, S G; Wang, Z F

    2015-10-30

    Our objective was to develop microsatellite markers for use in assessing genetic variation in the small shrub or tree species Suriana maritima (Surianaceae). In China, this species is found only as a few fragmented populations and individuals on the Paracel Islands. Using next-generation genome sequencing methodology, we developed 17 novel microsatellite markers for S. maritima. Fifty-four individuals from six populations of S. maritima were examined for polymorphisms; only one allele was detected for each of the markers. Microsatellite loci developed indicate a complete absence of genetic diversity for S. maritima on the Paracel Islands in China. These markers will be useful for examining genetic variation among S. maritima populations in other areas of the world.

  19. Development of microsatellite markers using Illumina MiSeq sequencing to characterize Ephedra gerardiana (Ephedraceae)1

    PubMed Central

    De, Ji; Zhu, Weidong; Liu, Tianmeng; Wang, Zhe; Zhong, Yang

    2017-01-01

    Premise of the study: Ephedra gerardiana (Ephedraceae), occurring in the Himalayan ranges, is an important plant species used in Tibetan medicine. Due to the lack of molecular markers to characterize genetic diversity, knowledge for conservation and uses of E. gerardiana resources is limited; we therefore developed microsatellite markers for use in this species. Methods and Results: Using Illumina MiSeq sequencing technology, we developed 29 polymorphic microsatellite loci suitable for E. gerardiana, of which 15 loci also showed polymorphisms in two related Ephedra species, E. saxatilis and E. monosperma. The average number of effective alleles per locus ranged from two to six. The observed and expected heterozygosity ranged from 0.23 to 0.83 and 0.44 to 0.86, respectively, in E. gerardiana populations. Conclusions: The developed 29 microsatellite markers are effective for the study of genetic structure and genetic diversity of E. gerardiana, and 15 of these markers are suitable for related Ephedra species. PMID:28337389

  20. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay.

    PubMed

    Ajzenberg, Daniel; Collinet, Frédéric; Mercier, Aurélien; Vignoles, Philippe; Dardé, Marie-Laure

    2010-12-01

    We developed an easy-to-use method for genotyping Toxoplasma gondii isolates in a single multiplex PCR assay with 15 microsatellite markers. This method was validated by testing 26 reference isolates that had been characterized with other sets of markers.

  1. De novo genome assembly of Cercospora beticola for microsatellite marker development and validation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cercospora leaf spot caused by Cercospora beticola is a significant threat to the production of sugar and table beet worldwide. A de novo genome assembly of C. beticola was used to develop eight polymorphic and reproducible microsatellite markers for population genetic analyses. These markers were u...

  2. High resolution melting detects sequence polymorphism in rubus occidentalis L. monomorphic microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsatellite, or simple sequence repeat (SSR) markers, are valuable as co-dominant genetic markers with a variety of applications such as DNA fingerprinting, linkage mapping, and population structure analysis. However, primer pairs designed from the regions that flank SSRs often generate fragment...

  3. Development and transferability of black and red raspberry microsatellite markers from short-read sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The advent of next-generation sequencing technologies has been a boon to the cost-effective development of molecular markers, particularly in non-model species. Here, we demonstrate the efficiency of microsatellite or simple sequence repeat (SSR) marker development from short-read sequences using th...

  4. Development and characterization of microsatellite markers in the African deciduous tree Terminalia superba (Combretaceae)1

    PubMed Central

    Demenou, Boris B.; Migliore, Jérémy; Tosso, Felicien; Kaymak, Esra; Hardy, Olivier J.

    2015-01-01

    Premise of the study: Microsatellites were designed and characterized in the African timber forest tree Terminalia superba (Combretaceae). Due to their high variability, these markers are suitable to investigate gene flow patterns and the structure of genetic diversity. Methods and Results: From a genomic library obtained by next-generation sequencing, seven monomorphic and 14 polymorphic microsatellite loci were developed. The polymorphic microsatellites displayed two to 27 alleles (mean 11.4; expected heterozygosity range 0.283–0.940, mean 0.736) in one population from southeastern Cameroon. Genotypes were typical of an outbreeding diploid species, although null alleles explain a significant heterozygote deficit in three loci. Cross-amplification in three congeneric species (T. ivorensis, T. avicennioides, and T. mantaly) failed, suggesting that T. superba is rather divergent. Conclusions: This set of newly developed microsatellite markers will be useful for assessing the genetic diversity, population structure, and demographic history of T. superba in tropical African forests. PMID:26697276

  5. Development of highly variable microsatellite markers for the tetraploid Silene stellata (Caryophyllaceae)1

    PubMed Central

    Zhou, Juannan; Dudash, Michele R.; Fenster, Charles B.; Zimmer, Elizabeth A.

    2016-01-01

    Premise of the study: We designed and tested microsatellite markers for the North American native species Silene stellata (Caryophyllaceae) to investigate its population genetic structure and identify selection on floral design through male reproductive success. Methods and Results: A total of 153 candidate microsatellite loci were isolated based on next-generation sequencing. We identified 18 polymorphic microsatellite loci in three populations of S. stellata, with di- or trinucleotide repeats. Genotyping results showed the number of alleles per locus ranged from six to 45 and expected heterozygosity ranged from 0.511 to 0.951. Five of these loci were successfully amplified in S. virginica and S. caroliniana and were also polymorphic. Conclusions: The microsatellite markers reported here provide a valuable tool for paternity analysis in S. stellata. They will also be useful for investigating the population genetic structures of S. stellata and related species. PMID:28101439

  6. Novel microsatellite markers suggest the mechanism of parthenogenesis in Extatosoma tiaratum is automixis with terminal fusion.

    PubMed

    Alavi, Yasaman; van Rooyen, Anthony; Elgar, Mark Adrian; Jones, Therésa Melanie; Weeks, Andrew Raymond

    2016-06-27

    Parthenogenetic reproduction is taxonomically widespread and occurs through various cytological mechanisms, which have different impact on the genetic variation of the offspring. Extatosoma tiaratum is a facultatively parthenogenetic Australian insect (Phasmatodea), in which females oviposit continuously throughout their adult lifespan irrespective of mating. Fertilized eggs produce sons and daughters through sexual reproduction and unfertilized eggs produce female offspring via parthenogenesis. Here, we developed novel microsatellite markers for E. tiaratum and characterized them by genotyping individuals from a natural population. We then used the microsatellite markers to infer the cytological mechanism of parthenogenesis in this species. We found evidence suggesting parthenogenesis in E. tiaratum occurs through automixis with terminal fusion, resulting in substantial loss of microsatellite heterozygosity in the offspring. Loss of microsatellite heterozygosity may be associated with loss of heterozygosity in fitness related loci. The mechanism of parthenogenetic reproduction can therefore affect fitness outcomes and needs to be considered when comparing costs and benefits of sex versus parthenogenesis.

  7. Microsatellite markers for the New Zealand endemic Myosotis pygmaea species group (Boraginaceae) amplify across species1

    PubMed Central

    Prebble, Jessica M.; Tate, Jennifer A.; Meudt, Heidi M.; Symonds, V. Vaughan

    2015-01-01

    Premise of the study: Microsatellite loci were developed as polymorphic markers for the New Zealand endemic Myosotis pygmaea species group (Boraginaceae) for use in species delimitation and population and conservation genetic studies. Methods and Results: Illumina MiSeq sequencing was performed on genomic DNA from seedlings of M. drucei. From trimmed paired-end sequences >400 bp, 484 microsatellite loci were identified. Twelve of 48 microsatellite loci tested were found to be polymorphic and consistently scorable when screened on 53 individuals from four populations representing the geographic range of M. drucei. They also amplify in all other species in the M. pygmaea species group, i.e., M. antarctica, M. brevis, M. glauca, and M. pygmaea, as well as 18 other Myosotis species. Conclusions: These 12 polymorphic microsatellite markers establish an important resource for research and conservation of the M. pygmaea species group and potentially other Southern Hemisphere Myosotis. PMID:26082880

  8. Characterization of microsatellite DNA markers for the alligator snapping turtle, Macrochelys temminckii: Primer note

    USGS Publications Warehouse

    Hackler, J.C.; Van Den Bussche, Ronald A.; Leslie, David M.

    2007-01-01

    Two trinucleotide and seven tetranucleotide microsatellite loci were isolated from an alligator snapping turtle Macrochelys temminckii. To assess the degree of variability in these nine microsatellite loci, we genotyped 174 individuals collected from eight river drainage basins in the southeastern USA. These markers revealed a moderate degree of allelic diversity (six to 16 alleles per locus) and observed heterozygosity (0.166-0.686). These polymorphic microsatellite loci provide powerful tools for population genetic studies for a species that is afforded some level of conservation protection in every state in which it occurs. ?? 2006 The Authors.

  9. Polymorphic microsatellite markers in the outbred CFW and ICR stocks for the generation of speed congenic mice on C57BL/6 background.

    PubMed

    Teppner, I; Aigner, B; Schreiner, E; Müller, M; Windisch, M

    2004-10-01

    Reliable definition of the phenotype of particular alleles is carried out in the genetic background of inbred strains. Appearance of mutations in outbred mice therefore requires the generation of congenic mice. The aim of this study was the establishment of a list of polymorphic microsatellite markers which can be used in a polymerase chain reaction (PCR)-based marker-assisted selection protocol (MASP) to allow the use of the two common outbred stocks, CFW and ICR, as donor animals for the fast generation of congenic C57BL/6 mice. The selection of informative microsatellite markers was carried out to provide a simple evaluation of the PCR products by conventional agarose gel electrophoresis. Outbred mice from three suppliers were examined. In total, 153 microsatellite loci were analysed. Here we present 76 and 70 microsatellite markers polymorphic for the outbred ICR and CFW stocks compared to C57BL/6. At least three microsatellite loci per chromosome were chosen as informative markers for the autosomal genome, giving rise to a maximum marker distance of 58 cM. Thus, additional individual markers have to be selected for the respective outbred mouse which is chosen as a donor animal.

  10. Chloroplast microsatellite markers for Artocarpus (Moraceae) developed from transcriptome sequences

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study: Chloroplast microsatellite loci were characterized from transcriptomes of Artocarpus (A.) altilis (breadfruit) and A. camansi (breadnut). They were tested in A. odoratissimus (terap) and A. altilis and evaluated in silico for two congeners. Methods and Results: 15 simple seque...

  11. Fourteen polymorphic microsatellite markers for the threatened Arnica montana (Asteraceae)1

    PubMed Central

    Duwe, Virginia K.; Ismail, Sascha A.; Buser, Andres; Sossai, Esther; Borsch, Thomas; Muller, Ludo A. H.

    2015-01-01

    • Premise of the study: Microsatellite markers were developed to investigate population genetic structure in the threatened species Arnica montana. • Methods and Results: Fourteen microsatellite markers with di-, tetra-, and hexanucleotide repeat motifs were developed for A. montana using 454 pyrosequencing without and with library-enrichment methods, resulting in 56,545 sequence reads and 14,467 sequence reads, respectively. All loci showed a high level of polymorphism, with allele numbers ranging from four to 11 in five individuals from five populations (25 samples) and an expected heterozygosity ranging from 0.192 to 0.648 across the loci. • Conclusions: This set of microsatellite markers is the first one described for A. montana and will facilitate conservation genetic applications as well as the understanding of phylogeographic patterns in this species. PMID:25606354

  12. Characterization and cross-species amplification of microsatellite markers in African Silverbill (Lonchura cantans).

    PubMed

    Parine, N R; Kumar, D; Pathan, A A K; Elrobh, M S; Khan, W; Alanazi, M

    2013-11-18

    We tested the cross-amplification of eight microsatellites developed for Bengalese finch in African Silverbill (Lonchura cantans). In order to develop resources for conservation genetic studies in the species L. cantans, we tested the amplification success and polymorphism in eight previously developed microsatellite loci, in L. cantans. All eight microsatellite markers were successfully amplified, of which all were polymorphic, with 3 to 9 alleles and an expected heterozygosity (HE) ranging from 0.606 to 0.718. On average, there were 5.25 alleles/locus and a mean HE of 0.6456. These eight polymorphic markers could be of potential use in studies of genetic variability, population structure, and reproductive strategy of African Silverbills. The markers tested should be useful for population and conservation genetic studies in this genus, and, in particular, for species closely related to the source species, L. cantans.

  13. Characterization of nuclear microsatellite markers for Rumex bucephalophorus (Polygonaceae) using 454 sequencing1

    PubMed Central

    Viruel, Juan; Ortiz, Pedro L.; Arista, Montserrat; Talavera, María

    2015-01-01

    Premise of the study: Nuclear microsatellite markers were developed in Rumex bucephalophorus subsp. canariensis (Polygonaceae) to investigate its genetic diversity and structure. Methods and Results: Sixteen polymorphic microsatellite markers were obtained using 454 next-generation sequencing with di-, tri-, and tetranucleotide repeats. The average number of alleles was 5.688 and 3.813 for R. bucephalophorus subsp. canariensis var. canariensis and var. fruticescens, respectively. Slightly higher levels of mean genetic diversity were found in var. canariensis (expected heterozygosity = 0.600) than in var. fruticescens (expected heterozygosity = 0.514). Cross-amplifications in related taxa within R. bucephalophorus showed good amplification and polymorphic patterns. Conclusions: These 16 novel nuclear microsatellite markers are the first in the genus Rumex and may serve as valuable tools to carry out studies on genetic diversity and structure as well as progeny studies. PMID:26697279

  14. Development of microsatellite markers using next-generation sequencing for the columnar cactus Echinopsis chiloensis (Cactaceae).

    PubMed

    Ossa, Carmen G; Larridon, Isabel; Peralta, Gioconda; Asselman, Pieter; Pérez, Fernanda

    2016-12-01

    The aim of this study was to develop microsatellite markers as a tool to study population structure, genetic diversity and effective population size of Echinopsis chiloensis, an endemic cactus from arid and semiarid regions of Central Chile. We developed 12 polymorphic microsatellite markers for E. chiloensis using next-generation sequencing and tested them in 60 individuals from six sites, covering all the latitudinal range of this species. The number of alleles per locus ranged from 3 to 8, while the observed (Ho) and expected (He) heterozygosity ranged from 0.0 to 0.80 and from 0.10 to 0.76, respectively. We also detected significant differences between sites, with FST values ranging from 0.05 to 0.29. Microsatellite markers will enable us to estimate genetic diversity and population structure of E. chiloensis in future ecological and phylogeographic studies.

  15. Development of microsatellite markers in Cratylia mollis and their transferability to C. argentea (Fabaceae)1

    PubMed Central

    López-Roberts, M. Cristina; de Queiroz, Luciano Paganucci; van den Berg, Cássio

    2013-01-01

    • Premise of the study: This work aimed to develop microsatellite markers for Cratylia mollis as tools to assess its genetic diversity and structure and to evaluate their potential cross-amplification in related species. • Methods and Results: Microsatellite markers were developed using a microsatellite-enriched library and an intersimple sequence repeat library. From a set of 19 markers, 12 microsatellite loci were polymorphic and presented considerable variation in allele number (2–11), expected heterozygosity (0.226–0.883), and polymorphism information content per locus (0.212–0.870). Cross-amplification in C. argentea was successful in 16 loci, 12 of which were polymorphic (2–10 alleles). • Conclusions: The polymorphism of this set of microsatellite markers for C. mollis, as well as their successful cross-amplification in C. intermedia and C. bahiensis and their transferability to C. argentea, supports their use in future comparative studies to understand the mechanism involved in population divergence and speciation in the genus. PMID:25202484

  16. Bulk development and stringent selection of microsatellite markers in the western flower thrips Frankliniella occidentalis

    PubMed Central

    Cao, Li-Jun; Li, Ze-Min; Wang, Ze-Hua; Zhu, Liang; Gong, Ya-Jun; Chen, Min; Wei, Shu-Jun

    2016-01-01

    Recent improvements in next-generation sequencing technologies have enabled investigation of microsatellites on a genome-wide scale. Faced with a huge amount of candidates, the use of appropriate marker selection criteria is crucial. Here, we used the western flower thrips Frankliniella occidentalis for an empirical microsatellite survey and validation; 132,251 candidate microsatellites were identified, 92,102 of which were perfect. Dinucleotides were the most abundant category, while (AG)n was the most abundant motif. Sixty primer pairs were designed and validated in two natural populations, of which 30 loci were polymorphic, stable, and repeatable, but not all in Hardy–Weinberg equilibrium (HWE) and linkage equilibrium. Four marker panels were constructed to understand effect of marker selection on population genetic analyses: (i) only accept loci with single nucleotide insertions (SNI); (ii) only accept the most polymorphic loci (MP); (iii) only accept loci that did not deviate from HWE, did not show SNIs, and had unambiguous peaks (SS) and (iv) all developed markers (ALL). Although the MP panel resulted in microsatellites of highest genetic diversity followed by the SNI, the SS performed best in individual assignment. Our study proposes stringent criteria for selection of microsatellites from a large-scale number of genomic candidates for population genetic studies. PMID:27197749

  17. Development of microsatellite markers for six Tetranychus species by transfer from Tetranychus urticae genome.

    PubMed

    Zhang, Jia; Sun, Jing-Tao; Jin, Peng-Yu; Hong, Xiao-Yue

    2016-09-01

    Microsatellite markers are frequently used to explore the population genetic structure of organisms. Spider mites (genus Tetranychus) are important agricultural pests. Several markers have been developed for T. urticae, but for other spider mites, few such markers are available, hampering studies of their population genetics. In this study, we developed and characterized microsatellite markers for six non-model spider mite species (T. truncatus, T. kanzawai, T. ludeni, T. piercei, T. phaselus and T. pueraricola) by cross-species amplification of markers in the T. urticae genome, in order to better understand the population structure of Tetranychus species. Among 228 screened loci, many were polymorphic, including 13 loci in T. urticae, 11 loci in T. truncatus, 15 loci in T. pueraricola, 23 loci in T. kanzawai, 19 loci in T. piercei, 11 loci in T. phaselus and 9 loci in T. ludeni. Sequence analysis determined that the fragment length variations of the transferred microsatellites were mainly due to the variations of the numbers of repeats. These new microsatellite markers should be useful for studying the population genetics of the seven Tetranychus species.

  18. Development of 10 microsatellite markers from Pantala flavescens and their applicability in studying genetics diversity.

    PubMed

    Cao, Lingzhen; Fu, Xiaowei; Wu, Kongming

    2015-08-01

    Pantala flavescens (Fabricius 1798) is one of the most common species among migration dragonflies. It is often encountered in large swarms during migration or directed dispersal flights. For a better understanding of its gene flow, genetic structure and migration patterns throughout the world, 10 polymorphic microsatellite markers were isolated in this study. We respectively collected 32 P. flavescens from three places (Hunan, Liaoning and Heilongjiang) and 20 P. flavescens from Beijing. Partial genomic libraries containing microsatellite sequences were constructed with magnetic-bead enrichment method. By screening, sequence analysis, PCR amplification and so on, ten 10 polymorphic microsatellite markers were isolated. In order to assess their applicability, genetic diversity of these novel markers was tested in 96 individuals from three populations in China (Hunan, Liaoning and Heilongjiang). These markers were highly polymorphic, with 3-12 alleles per markers. The observed (Ho) and expected (He) heterozygosities ranged 0.321-0.667 and from 0.531 to 0.948 respectively. The genetic difference between Hunan and Liaoning is 0.429, while the genetic difference between Liaoning and Heilongjiang is 0.0508. These microsatellite markers for P. flavescens were developed for the first time, and will be a powerful tool for studying population genetic diversity and dispersal behavior of P. flavescens in China and worldwide.

  19. Genome-Wide Identification and Transferability of Microsatellite Markers between Palmae Species

    PubMed Central

    Xiao, Yong; Xia, Wei; Ma, Jianwei; Mason, Annaliese S.; Fan, Haikuo; Shi, Peng; Lei, Xintao; Ma, Zilong; Peng, Ming

    2016-01-01

    The Palmae family contains 202 genera and approximately 2800 species. Except for Elaeis guineensis and Phoenix dactylifera, almost no genetic and genomic information is available for Palmae species. Therefore, this is an obstacle to the conservation and genetic assessment of Palmae species, especially those that are currently endangered. The study was performed to develop a large number of microsatellite markers which can be used for genetic analysis in different Palmae species. Based on the assembled genome of E. guineensis and P. dactylifera, a total of 814 383 and 371 629 microsatellites were identified. Among these microsatellites identified in E. guineensis, 734 509 primer pairs could be designed from the flanking sequences of these microsatellites. The majority (618 762) of these designed primer pairs had in silico products in the genome of E. guineensis. These 618 762 primer pairs were subsequently used to in silico amplify the genome of P. dactylifera. A total of 7 265 conserved microsatellites were identified between E. guineensis and P. dactylifera. One hundred and thirty-five primer pairs flanking the conserved SSRs were stochastically selected and validated to have high cross-genera transferability, varying from 16.7 to 93.3% with an average of 73.7%. These genome-wide conserved microsatellite markers will provide a useful tool for genetic assessment and conservation of different Palmae species in the future. PMID:27826307

  20. Characterization of microsatellite markers in Homarus (Crustacea, Decapoda).

    PubMed

    Tam, Y K; Kornfield, I

    1996-09-01

    Three variable microsatellite loci have been isolated from the American lobster, Homarus americanus. In a population sample from the Gulf of Maine, the effective numbers of alleles (Ne) for the two most variable loci were 16.33 and 13.19, respectively. Reduced variability at all three loci was seen in the European lobster, H. gammarus, for which the maximum Ne was 4.00. The reduction in variability in H. gammarus is consistent with a bottleneck event. Inheritance analysis using H. americanus demonstrated segregation of codominant alleles and the absence of linkage. Null alleles were observed at two loci in inheritance studies. This study demonstrates that microsatellite loci should be useful in studying the population structure of clawed lobsters.

  1. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys

    PubMed Central

    Zhao, Hansheng; Yang, Li; Peng, Zhenhua; Sun, Huayu; Yue, Xianghua; Lou, Yongfeng; Dong, Lili; Wang, Lili; Gao, Zhimin

    2015-01-01

    Morphology-based taxonomy via exiguously reproductive organ has severely limitation on bamboo taxonomy, mainly owing to infrequent and unpredictable flowering events of bamboo. Here, we present the first genome-wide analysis and application of microsatellites based on the genome of moso bamboo (Phyllostachys edulis) to assist bamboo taxonomy. Of identified 127,593 microsatellite repeat-motifs, the primers of 1,451 microsatellites were designed and 1,098 markers were physically mapped on the genome of moso bamboo. A total of 917 markers were successfully validated in 9 accessions with ~39.8% polymorphic potential. Retrieved from validated microsatellite markers, 23 markers were selected for polymorphic analysis among 78 accessions and 64 alleles were detected with an average of 2.78 alleles per primers. The cluster result indicated the majority of the accessions were consistent with their current taxonomic classification, confirming the suitability and effectiveness of the developed microsatellite markers. The variations of microsatellite marker in different species were confirmed by sequencing and in silico comparative genome mapping were investigated. Lastly, a bamboo microsatellites database (http://www.bamboogdb.org/ssr) was implemented to browse and search large information of bamboo microsatellites. Consequently, our results of microsatellite marker development are valuable for assisting bamboo taxonomy and investigating genomic studies in bamboo and related grass species. PMID:25620112

  2. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys.

    PubMed

    Zhao, Hansheng; Yang, Li; Peng, Zhenhua; Sun, Huayu; Yue, Xianghua; Lou, Yongfeng; Dong, Lili; Wang, Lili; Gao, Zhimin

    2015-01-26

    Morphology-based taxonomy via exiguously reproductive organ has severely limitation on bamboo taxonomy, mainly owing to infrequent and unpredictable flowering events of bamboo. Here, we present the first genome-wide analysis and application of microsatellites based on the genome of moso bamboo (Phyllostachys edulis) to assist bamboo taxonomy. Of identified 127,593 microsatellite repeat-motifs, the primers of 1,451 microsatellites were designed and 1,098 markers were physically mapped on the genome of moso bamboo. A total of 917 markers were successfully validated in 9 accessions with ~39.8% polymorphic potential. Retrieved from validated microsatellite markers, 23 markers were selected for polymorphic analysis among 78 accessions and 64 alleles were detected with an average of 2.78 alleles per primers. The cluster result indicated the majority of the accessions were consistent with their current taxonomic classification, confirming the suitability and effectiveness of the developed microsatellite markers. The variations of microsatellite marker in different species were confirmed by sequencing and in silico comparative genome mapping were investigated. Lastly, a bamboo microsatellites database (http://www.bamboogdb.org/ssr) was implemented to browse and search large information of bamboo microsatellites. Consequently, our results of microsatellite marker development are valuable for assisting bamboo taxonomy and investigating genomic studies in bamboo and related grass species.

  3. Genetic diversity in Spanish donkey breeds using microsatellite DNA markers

    PubMed Central

    Aranguren-Méndez, José; Jordana, Jordi; Gomez, Mariano

    2001-01-01

    Genetic diversity at 13 equine microsatellite loci was compared in five endangered Spanish donkey breeds: Andaluza, Catalana, Mallorquina, Encartaciones and Zamorano-Leonesa. All of the equine microsatellites used in this study were amplified and were polymorphic in the domestic donkey breeds with the exception of HMS1, which was monomorphic, and ASB2, which failed to amplify. Allele number, frequency distributions and mean heterozygosities were very similar among the Spanish donkey breeds. The unbiased expected heterozygosity (HE) over all the populations varied between 0.637 and 0.684 in this study. The low GST value showed that only 3.6% of the diversity was between breeds (P < 0.01). Significant deviations from Hardy-Weinberg equilibrium were shown for a number of locus-population combinations, except HMS5 that showed agreement in all analysed populations. The cumulative exclusion probability (PE) was 0.999 in each breed, suggesting that the loci would be suitable for donkey parentage testing. The constructed dendrogram from the DA distance matrix showed little differentiation between Spanish breeds, but great differentiation between them and the Moroccan ass and also with the horse, used as an outgroup. These results confirm the potential use of equine microsatellite loci as a tool for genetic studies in domestic donkey populations, which could also be useful for conservation plans. PMID:11559485

  4. Development of microsatellite markers for the apomictic triploid fern Myriopteris lindheimeri (Pteridaceae)1

    PubMed Central

    Grusz, Amanda L.; Pryer, Kathleen M.

    2015-01-01

    Premise of the study: Microsatellite markers were developed for investigating the population dynamics of Myriopteris lindheimeri (Pteridaceae), an apomictic triploid fern endemic to deserts of the southwestern United States and Mexico. Methods and Results: Using 454 sequencing, 21 microsatellite markers were developed. Of these, 14 were polymorphic with up to five alleles per locus and eight markers amplified in one or more congeneric close relatives (M. covillei, M. fendleri, M. aurea, and M. rufa). To demonstrate marker utility, M. lindheimeri samples from three Arizona populations were genotyped at nine loci. For each population, diversity measures including percent polymorphic loci, frequency of heterozygotes across all loci, and genotypic diversity were calculated. Across the three populations, on average, 63% of loci were polymorphic, the average frequency of heterozygotes (across all loci) was 0.32, and average genotypic diversity was 0.34. Conclusions: These markers provide a foundation for future studies exploring polyploidy and apomixis in myriopterid ferns. PMID:26649266

  5. Isolation and characterization of microsatellite markers in the Lepisorus clathratus complex (Polypodiaceae)1

    PubMed Central

    Zhao, Cun-Feng; Kwak, Myounghai; Xiang, Qiao-Ping

    2016-01-01

    Premise of the study: Microsatellites were designed and characterized in the Sino-Himalayan fern Lepisorus clathratus complex (Polypodiaceae) to further study the phylogeography and reproductive ecology of this species. Methods and Results: From a genomic library obtained by next-generation sequencing, 10 polymorphic and six monomorphic microsatellite loci were developed. In one population of L. clathratus from Taibaishan in central China, the number of alleles observed for these microsatellites ranged from seven to 29, and observed and expected heterozygosity ranged from 0.463 to 0.919 and from 0.797 to 0.947, respectively. Cross-amplification in other taxa within this complex was successful, but cross-amplification was poor for other congeneric species. Conclusions: This set of newly developed microsatellite markers will be useful for assessing genetic diversity, population structure, and mating system, and to infer polyploid origin in the L. clathratus complex. PMID:27785385

  6. An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation1

    PubMed Central

    Merritt, Benjamin J.; Culley, Theresa M.; Avanesyan, Alina; Stokes, Richard; Brzyski, Jessica

    2015-01-01

    During microsatellite marker development, researchers must choose from a pool of possible primer pairs to further test in their species of interest. In many cases, the goal is maximizing detectable levels of genetic variation. To guide researchers and determine which markers are associated with higher levels of genetic variation, we conducted a literature review based on 6782 genomic microsatellite markers published from 1997–2012. We examined relationships between heterozygosity (He or Ho) or allele number (A) with the following marker characteristics: repeat type, motif length, motif region, repeat frequency, and microsatellite size. Variation across taxonomic groups was also analyzed. There were significant differences between imperfect and perfect repeat types in A and He. Dinucleotide motifs exhibited significantly higher A, He, and Ho than most other motifs. Repeat frequency and motif region were positively correlated with A, He, and Ho, but correlations with microsatellite size were minimal. Higher taxonomic groups were disproportionately represented in the literature and showed little consistency. In conclusion, researchers should carefully consider marker characteristics so they can be tailored to the desired application. If researchers aim to target high genetic variation, dinucleotide motif lengths with large repeat frequencies may be best. PMID:26312192

  7. Physical mapping of 49 microsatellite markers on chromosome 19 and correlation with the genetic linkage map

    SciTech Connect

    Reguigne-Arnould, I.; Mollicone, R.; Candelier, J.J.

    1996-03-05

    We have regionally localized 49 microsatellite markers developed by Genethon using a panel of previously characterized somatic cell hybrids that retain fragments from chromosome 19. The tight correlation observed between the physical and the genetic orders of the microsatellites provide cytogenetic anchorages to the genetic map data. We propose a position for the centromere just above D19S415, from the study of two hybrids, each of which retains one of the two derivatives of a balanced translocation t(1;19)(q11;q11). Microsatellites, which can be identified by a standard PCR protocol, are useful tools for the localization of disease genes and for the establishment of YAC or cosmid contigs. These markers can also judiciously be used for the characterization of new hybrid cell line panels. We report such a characterization of 11 clones, 8 of which were obtained by irradiation-fusion. Using the whole hybrid panel, we were able to define the order of 12 pairs of genetically colocalized microsatellites. As examples of gene mapping by the combined use of microsatellites and hybrid cell lines, we regionally assigned the PVS locus between the 19q13.2 markers D19S417 and D19S423 and confirmed the locations of fucosyltransferase loci FUT1, FUT2, and FUT5. 13 refs., 1 fig.

  8. Novel microsatellite markers acquired from Rubus coreanus Miq. and cross-amplification in other Rubus species.

    PubMed

    Lee, Gi-An; Song, Jae Young; Choi, Heh-Ran; Chung, Jong-Wook; Jeon, Young-Ah; Lee, Jung-Ro; Ma, Kyung-Ho; Lee, Myung-Chul

    2015-04-10

    The Rubus genus consists of more than 600 species that are distributed globally. Only a few Rubus species, including raspberries and blueberries, have been domesticated. Genetic diversity within and between Rubus species is an important resource for breeding programs. We developed genomic microsatellite markers using an SSR-enriched R. coreanus library to study the diversity of the Rubus species. Microsatellite motifs were discovered in 546 of 646 unique clones, and a dinucleotide repeat was the most frequent (75.3%) type of repeat. From 97 microsatellite loci with reproducible amplicons, we acquired 29 polymorphic microsatellite markers in the Rubus coreanus collection. The transferability values ranged from 59.8% to 84% across six Rubus species, and Rubus parvifolius had the highest transferability value (84%). The average number of alleles and the polymorphism information content were 5.7 and 0.541, respectively, in the R. coreanus collection. The diversity index of R. coreanus was similar to the values reported for other Rubus species. A phylogenetic dendrogram based on SSR profiles revealed that seven Rubus species could be allocated to three groups, and that R. coreanus was genetically close to Rubus crataegifolius (mountain berry). These new microsatellite markers might prove useful in studies of the genetic diversity, population structure, and evolutionary relationships among Rubus species.

  9. Characterization of microsatellites in wild and sweet cherry (Prunus avium L.)--markers for individual identification and reproductive processes.

    PubMed

    Schueler, Silvio; Tusch, Alexandra; Schuster, Mirko; Ziegenhagen, Birgit

    2003-02-01

    Nuclear microsatellites were characterized in Prunus avium and validated as markers for individual and cultivar identification, as well as for studies of pollen- and seed-mediated gene flow. We used 20 primer pairs from a simple sequence repeat (SSR) library of Prunus persica and identified 7 loci harboring polymorphic microsatellite sequences in P. avium. In a natural population of 75 wild cherry trees, the number of alleles per locus ranged from 4 to 9 and expected heterozygosity from 0.39 to 0.77. The variability of the SSR markers allowed an unambiguous identification of individual trees and potential root suckers. Additionally, we analyzed 13 sweet cherry cultivars and differentiated 12 of them. An exclusion probability of 0.984 was calculated, which indicates that the seven loci are suitable markers for paternity analysis. The woody endocarp was successfully used for resolution of all microsatellite loci and exhibited the same multilocus genotype as the mother tree, as shown in a single seed progeny. Hence, SSR fingerprinting of the purely maternal endocarp was also successful in this Prunus species, allowing the identification of the mother tree of the dispersed seeds. The linkage of microsatellite loci with PCR-amplified alleles of the self-incompatibility locus was tested in two full-sib families of sweet cherry cultivars. From low recombination frequencies, we inferred that two loci are linked with the S locus. The present study provides markers that will significantly facilitate studies of spatial genetic variation and gene flow in wild cherry, as well as breeding programs in sweet cherry.

  10. Identification of the geographic origin of Dendrobium thyrsiflorum on Chinese herbal medicine market using trinucleotide microsatellite markers.

    PubMed

    Yuan, Ying Hui; Hou, Bei Wei; Xu, Hui Jun; Luo, Jing; Ding, Xiao Yu

    2011-01-01

    The stems of Dendrobium thyrsiflorum RCHB.F. ex ANDRÉ can be processed into an important class of Traditional Chinese Medicine named "Huangcao Shihu," which has diverse curative effects, such as nourishing yin and clearing away unhealthy heat, benefiting the stomach, and promoting the production of body fluid. The identification of the geographical origin of D. thyrsiflorum is vital for preserving its natural resource and ensuring the quality of "Huangcao Shihu." In order to identify the origin of D. thyrsiflorum on Chinese herbal medicine market, 14 D. thyrsiflorum-specific microsatellite markers were developed in this study. Assignment tests were performed by the microsatellite marker analysis coupled with three new statistical approaches (partially Bayesian, frequency-based, and fully Bayesian methods) to determine the origin populations of 12 commercial samples of "Huangcao Shihu" collected from a medicine market in Nanjing, Jiangsu Province, China. Their genotypes were compared with those of 136 individuals belonging to five wild D. thyrsiflorum populations from China, Thailand, India, Myanmar, and Laos. Comparisons of the probabilities of 12 unknown individuals originating from each candidate population indicated that most of them appeared to originate from Myanmar and Laos. This suggests that the two countries may be the predominant sources of D. thyrsiflorum on the medicine market in Nanjing. In addition, the 14 microsatellite markers developed in this study may be an effective tool for identification of the origin of commercial available "Huangcao Shihu" and play an important role in its quality control.

  11. Characterization of microsatellite markers in two exploited African trees, Entandrophragma candollei and E. utile (Meliaceae)1

    PubMed Central

    Monthe, Franck S.; Duminil, Jérôme; Tosso, Félicien; Migliore, Jérémy; Hardy, Olivier J.

    2017-01-01

    Premise of the study: Multiplexes of nuclear microsatellite primers were developed to investigate population genetic structure and diversity in two exploited African rainforest trees: Entandrophragma candollei and E. utile (Meliaceae). Methods and Results: Microsatellite isolation was performed simultaneously on two nonenriched genomic libraries after next-generation sequencing. We developed 16 and 22 polymorphic markers for E. candollei and E. utile in three and four multiplexes, respectively. The number of alleles ranged from two to 17 for E. candollei and from three to 19 for E. utile. Mean expected and observed heterozygosity ranged between 0.75 ± 0.13 and 0.55 ± 0.23 for E. candollei and between 0.73 ± 0.10 and 0.49 ± 0.2 for E. utile. Conclusions: These sets of nuclear microsatellite markers constitute useful tools for exploring gene flow patterns in these two Entandrophragma species. PMID:28224058

  12. Rapid detection of autosomal aneuploidy using microsatellite markers

    SciTech Connect

    Ray, P.N.; Teshima, I.E.; Winsor, E.J.T.

    1994-09-01

    Trisomy occurs in at least 4% of all clinically recognized pregnancies, making it the most common type of chromosome abnormality in humans. The most commonly occurring trisomies are those of chromosomes 13, 18, 21 and aneuploidy of X and Y, accounting for about 0.3% of all newborns and a much higher percentage of conceptuses. In Canada, prenatal chromosome analysis by amniocentesis is offered to those women {ge} 35 years of age at the time of delivery or equivalent risk by maternal serum screen. We are developing a rapid molecular diagnostic test to detect the most common autosomal aneuploidies in prenatal and neonatal samples. The tests makes use of highly polymorphic short tandem repeat markers labeled with fluorescent tags which allow analysis on a GENESCANNER automated fragment analyzer (ABI). Multiple polymorphic markers have been selected on each of chromosomes 13, 18 and 21. At a given locus, trisomic fetuses/neonates will have either three alleles or two alleles with one allele having twice the intensity of the other. Unaffected individuals have two equal intensity alleles. We are conducting a blind study that will compare the detection efficiencies of FISH analysis on uncultured cells and the molecular method on confirmation amniotic fluid samples collected at the time of termination of affected fetuses. Results on cultured amniocytes from one such patient confirmed that trisomy 21 can be detected. FISH was not done on this sample. In addition, detection efficiency of the molecular method in whole blood samples from affected neonates is also being studied. To date, two such samples have been tested, one with trisomy 13 and one with trisomy 18, and both samples were diagnosed correctly. Preliminary results suggest that this method may provide a valuable tool for the rapid diagnosis of aneuploidy.

  13. Development and characterisation of nine polymorphic microsatellite markers for Tephrosia calophylla Bedd. (Fabaceae).

    PubMed

    Parine, Narasimha Reddy; Lakshmi, P; Kumar, Devinder; Shaik, Jilani P; Alanazi, Mohammed; Pathan, Akbar Ali Khan

    2015-03-01

    Tephrosia calophylla Bedd. (Fabaceae) is an endangered tropical plant endemic to southwestern Ghats, India. The objective of this study was to contribute to the characterisation of the diversity of this rare species, which is necessary for its future conservation. Accordingly, microsatellite markers were designed, and their ability to detect polymorphisms was determined. Nine microsatellite markers were developed using genomic libraries, and all of the markers were successfully amplified in 42 individuals. Three to nine alleles per locus were observed, and the heterozygosity of the loci ranged from 0.381 to 0.905. The nine newly developed polymorphic markers recognise a sufficient number of varying loci to perform further studies on the conservation and breeding of this medicinal cultivar.

  14. Development and characterisation of nine polymorphic microsatellite markers for Tephrosia calophylla Bedd. (Fabaceae)

    PubMed Central

    Parine, Narasimha Reddy; Lakshmi, P.; Kumar, Devinder; Shaik, Jilani P.; Alanazi, Mohammed; Pathan, Akbar Ali Khan

    2014-01-01

    Tephrosia calophylla Bedd. (Fabaceae) is an endangered tropical plant endemic to southwestern Ghats, India. The objective of this study was to contribute to the characterisation of the diversity of this rare species, which is necessary for its future conservation. Accordingly, microsatellite markers were designed, and their ability to detect polymorphisms was determined. Nine microsatellite markers were developed using genomic libraries, and all of the markers were successfully amplified in 42 individuals. Three to nine alleles per locus were observed, and the heterozygosity of the loci ranged from 0.381 to 0.905. The nine newly developed polymorphic markers recognise a sufficient number of varying loci to perform further studies on the conservation and breeding of this medicinal cultivar. PMID:25737647

  15. Development and characterization of twelve microsatellite markers for Porphyra linearis Greville.

    PubMed

    Varela-Álvarez, Elena; Paulino, Cristina; Serrão, Ester A

    2017-02-01

    The genus Porphyra (and its sister genus Pyropia) contains important red algal species that are cultivated and/or harvested for human consumption, sustaining a billion-dollar aquaculture industry. A vast amount of research has been focused on species of this genus, including studies on genetics and genomics among other areas. Twelve novel microsatellite markers were developed here for Porphyra linearis. Markers were characterized using 32 individuals collected from four natural populations of P. linearis with total heterozygosity varying from 0.098 to 0.916. The number of alleles per locus ranged from 2 to 18. All markers showed cross amplification with Porphyra umbilicalis and/or Porphyra dioica. These polymorphic microsatellite markers are useful for investigating population genetic diversity and differentiation in P. linearis and may become useful for other genetic research on the reproductive biology of this important species.

  16. Isolation and Characterization of Polymorphic Microsatellite Markers from the Chinese Medicinal Herb Atractylodes macrocephala (Asteraceae)

    PubMed Central

    Zheng, Li; Shao, Zhong-Da; Wang, Zong-Chao; Fu, Cheng-Xin

    2012-01-01

    Atractylodes macrocephala Koidz. (Asteraceae) is an economically important Chinese medicinal herb. In this study, 15 polymorphic microsatellite markers were developed from A. macrocephala using the compound microsatellite marker technique. Levels of polymorphism within the 15 markers were assessed using 83 individuals from two wild and two cultivated populations in China. The number of alleles per locus ranged from 2 to 20, with an average of 9.9 alleles. Observed and expected heterozygosities ranged from 0.083 to 1.000 and from 0.097 to 0.938, respectively. These markers will be valuable for germplasm classification and identification, as well as for assessing the genetic diversity and spatial genetic structure among wild and cultivated populations of A. macrocephala. PMID:23443109

  17. Discrimination of American cranberry cultivars and assessment of clonal heterogeneity using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cranberries (Vaccinium macrocarpon Ait.) are an economically important fruit crop derived from a North American native species. We report the application of 12 simple sequence repeats (SSR) or microsatellite markers to assess the genetic diversity of cranberry cultivars. We studied 164 samples of 21...

  18. A standardized microsatellite marker panel for parentage and kinship analyses in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research was designed to produce a standardized set of microsatellite loci for parentage and kinship analyses in channel catfish, the leading species in U.S. aquaculture. Three panels of 5 to 6 markers each were developed that contained a total of 2 dinucleotide, 8 trinucleotide, and 7 tetranuc...

  19. Selection for Run1-Ren1 dihybrid grapevines using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inheritance of Ren1 and Run1 powdery mildew resistance genes were tracked in a grapevine hybrid family using linked microsatellite markers. Segregation of the powdery mildew resistance phenotype was evaluated under in vitro and greenhouse conditions independently of the genotype data. Combined a...

  20. Characterization of twelve microsatellite markers for the native redbud tree (Cercis canadensis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight microsatellite DNA markers were developed for studies of gene flow in the redbud tree (Cercis canadensis), which is native to North America. The loci were unlinked and polymorphic in a sample of 22 individuals collected from a single population in Oak Ridge, Tennessee. Allele number ranged fr...

  1. Molecular characterization of peach [Prunus persica (L.) Batsch] germplasm in the United States using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peach [Prunus persica (L.) Batsch] is an important medicinal fruit with immense health benefits and antioxidant activity. In this study, microsatellite markers were used as DNA fingerprinting tools for the identification and characterization of peach germplasm in the United States. Eleven microsatel...

  2. Identification of 24 polymorphic microsatellite markers for the double-crested cormorant (Phalacrocorax auritus).

    PubMed

    Fike, Jennifer A; Devault, Travis L; Rhodes, Olin E

    2009-07-01

    Twenty-four polymorphic microsatellite markers were developed for the double-crested cormorant (Phalacrocorax auritus). The number of alleles ranged from two to 13 and observed heterozygosities ranged from 0.032 to 0.871. The use of these loci should enable researchers and biologists to learn more about the population structure and ecology of this species.

  3. Genic microsatellite markers in Brassica rapa: development, characterization, mapping, and their utility in other cultivated and wild Brassica relatives.

    PubMed

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-10-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species.

  4. Characterization of 10 microsatellite markers for the understorey Amazonian herb Heliconia acuminata.

    PubMed

    Côrtes, M C; Gowda, V; Kress, W J; Bruna, E M; Uriarte, M

    2009-07-01

    We characterized 10 microsatellite loci for the plant Heliconia acuminata from the Biological Dynamics of Forest Fragments Project (Manaus, Brazil). Markers were screened in 61 individuals from one population and were found to be polymorphic with an average of eight alleles per locus. We found moderate to high levels of polymorphic information content, and observed and expected heterozygosities. All 10 markers are suitable for spatial genetic structure and parentage analyses and will be used for understanding H. acuminata dynamics across a fragmented landscape.

  5. EST-based Microsatellite Marker Data Mining and Characterizing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanut (Arachis hypogaea L.) is an important crop for oil production. In the recent years, molecular marker technologies have been widely applied to genetic diversity analysis, genetic mapping, molecular marker-assisted breeding, gene tagging and QTLs analysis. However, it is expensive, labor-intens...

  6. Development and characterization of novel microsatellite markers by Next Generation Sequencing for the blue and red shrimp Aristeus antennatus

    PubMed Central

    Heras, Sandra; Planella, Laia; Caldarazzo, Ilaria; Vera, Manuel; García-Marín, José-Luis

    2016-01-01

    The blue and red shrimp, Aristeus antennatus, is a commercially important crustacean, in the Mediterranean Sea, which has been listed as a priority species for fishery management. Hypervariable microsatellite markers could be a useful tool to identify genetic stocks among geographically close fishing grounds. Potential microsatellite markers (97) identified from next-generation sequencing of an individual shrimp using a 454 GS Junior Pyrosequencer were tested on a preliminary panel of 15 individuals representing the four worldwide genetic stocks of the species from which 35 polymorphic loci were identified and used to characterize an additional 20 individuals from the Western Mediterranean Sea. In the Western Mediterranean sample, 32 out of 35 were polymorphic loci and the number of alleles per locus ranged from 2 to 14 and expected heterozygosity ranged from 0.050 to 0.968. No linkage disequilibrium was detected, indicating the independence of the loci. These novel microsatellites provide additional tools to address questions relating to genetic diversity, parentage studies and connectivity patterns of A. antennatus populations and help develop effective strategies to ensure long-term sustainability of this resource. PMID:27547526

  7. Characterization and transferability of microsatellite markers developed for Carpinus betulus (Betulaceae)1

    PubMed Central

    Prinz, Kathleen; Finkeldey, Reiner

    2015-01-01

    Premise of the study: Carpinus betulus (Betulaceae) is an octoploid, ecologically important, common tree species in European woodlands. We established 11 nuclear microsatellite loci allowing for detailed analyses of genetic diversity and structure. Methods and Results: A microsatellite-enriched library was used to develop primers for 11 microsatellite loci that revealed high allele numbers and genetic diversity in a preliminary study. Conclusions: All of the loci developed here are informative for C. betulus. In addition, the loci are transferable to several species within the genus, and almost all loci cross-amplified in species of different genera of the Betulaceae. PMID:26504678

  8. Cross-species amplification from crop soybean Glycine max provides informative microsatellite markers for the study of inbreeding wild relatives.

    PubMed

    Hempel, K; Peakall, R

    2003-06-01

    The development of microsatellite markers through transfer of primers from related species (cross-species amplification) remains a little-explored alternative to the de novo method in plants. In this study of 100 microsatellite loci from Glycine max, we examined two aspects of primer transfer. First, we tested if source locus properties can predict primer transfer and polymorphism in Glycine cyrtoloba and Glycine clandestina. We transferred 23 primers to G. cyrtoloba and 42 to G. clandestina, with 19 loci polymorphic within G. clandestina. However, we could not predict transfer or polymorphism from the source locus properties. Second, we evaluated the subset of 11 polymorphic loci for study in G. clandestina populations representing two local morphotypes. All loci were informative within populations (population mean He +/- SE = 0.58 +/- 0.04). We directly sequenced 28 alleles at 4 representative loci. The allelic patterns and sequencing results established that 8 of 11 loci were typical microsatellites, confirming the utility of primer transfer as an alternative to de novo development. Additionally, we found that morphotypic differentiation between populations was paralleled by changes in polymorphism level at six loci and size homoplasy at one locus. We interpret these patterns as being a product of selfing in G. clandestina. Our results demonstrate the value of allele sequence knowledge for the most effective use of microsatellites.

  9. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development.

    PubMed

    Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao

    2016-01-06

    Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii.

  10. Distribution, function and evolution characterization of microsatellite in Sargassum thunbergii (Fucales, Phaeophyta) transcriptome and their application in marker development

    PubMed Central

    Liu, Fuli; Hu, Zimin; Liu, Wenhui; Li, Jingjing; Wang, Wenjun; Liang, Zhourui; Wang, Feijiu; Sun, Xiutao

    2016-01-01

    Using transcriptome data to mine microsatellite and develop markers has growingly become prevalent. However, characterizing the possible function of microsatellite is relatively rare. In this study, we explored microsatellites in the transcriptome of the brown alga Sargassum thunbergii and characterized the frequencies, distribution, function and evolution, and developed primers to validate these microsatellites. Our results showed that Tri-nucleotide is the most abundant, followed by di- and mono-nucleotide. The length of microsatellite was significantly affected by the repeat motif size. The density of microsatellite in the CDS region is significantly lower than that in the UTR region. The annotation of the transcripts containing microsatellite showed that 573 transcripts have GO terms and can be categorized into 42 groups. Pathways enrichment showed that microsatellites were significantly overrepresented in the genes involved in pathways such as Ubiquitin mediated proteolysis, RNA degradation, Spliceosome, etc. Primers flanking 961 microsatellite loci were designed, and among the 30 pairs of primer selected randomly for availability test, 23 were proved to be efficient. These findings provided new insight into the function and evolution of microsatellite in transcriptome, and the identified microsatellite loci within the annotated gene will be useful for developing functional markers in S. thunbergii. PMID:26732855

  11. Development of an affordable typing method for Meyerozyma guilliermondii using microsatellite markers.

    PubMed

    Wrent, Petra; Rivas, Eva-María; Peinado, José M; de Silóniz, María-Isabel

    2016-01-18

    Despite previously published methods, there is still a lack of rapid and affordable methods for genotyping the Meyerozyma guilliermondii yeast species. The development of microsatellite markers is a useful genotyping method in several yeast species. Using the Tandem Repeat Finder Software, a total of 19 microsatellite motifs (di-, tri-, and tetra- repetition) were found in silico in seven of the nine scaffolds published so far. Primer pairs were designed for all of them, although only four were used in this work. All microsatellite amplifications showed size polymorphism, and the results were identical when repeated. The combination of three microsatellite markers (sc15F/R, sc32 F/R and sc72 F/R) produced a different pattern for each of the Type Culture Collection strains of M. guilliermondii used to optimize the method. The three primer pairs can be used in the same PCR reaction, which reduces costs, in tandem with the fluorescent labeling of only the forward primer in each primer pair. Microsatellite typing was applied on 40 more M. guilliermondii strains. The results showed that no pattern is repeated between the different environmental niches. Four M. guilliermondii strains were only amplified with primer pair sc32 F/R, and subsequently identified as Meyerozyma caribbica by Taq I-RFLP of the 5.8S ITS rDNA. Most out-group species gave negative results even for physiologically similarly species such as Debaryomyces hansenii. The microsatellite markers used in this work were stable over time, which enables their use as a traceability tool.

  12. Microsatellite marker isolation and development for the giant Pacific Octopus (Enteroctopus dofleini)

    USGS Publications Warehouse

    Toussaint, Rebecca K.; Sage, G. Kevin; Talbot, Sandra L.; Scheel, David

    2012-01-01

    We isolated and developed 18 novel microsatellite markers for the giant Pacific octopus (Enteroctopus dofleini) and examined them for 31 individuals from Prince William Sound (PWS), Alaska. These loci displayed moderate levels of allelic diversity (averaging 11 alleles per locus) and heterozygosity (averaging 65%). Seven loci deviated from Hardy–Weinberg Equilibrium (HWE) due to heterozygote deficiency for the PWS population, although deviations were not observed for all these loci in other populations, suggesting the PWS population is not in mutation-drift equilibrium. These novel microsatellite loci yielded sufficient genetic diversity for potential use in population genetics, individual identification, and parentage studies.

  13. Development and characterization of microsatellite markers (SSR) in Sesamum (Sesamum indicum L.) species.

    PubMed

    Spandana, B; Reddy, V Prathap; Prasanna, G John; Anuradha, G; Sivaramakrishnan, S

    2012-11-01

    Microsatellites, also known as simple sequence repeats (SSRs), are the class of repetitive DNA sequences present throughout the genome of many plant and animal species. Recent advances in molecular genetics had been the introduction of microsatellite markers to investigate the genetic structuring of natural plant populations. We have employed an enrichment strategy for microsatellite isolation by using multi-enzymes digestion, microsatellite oligoprobes, and streptavidin magnetic beads in Sesamum (Sesamum indicum L.). More than 200 SSR motifs were detected (SSR motifs ≥2 repeat units or 6 bp); 80 % of the clones contained SSR motifs. When regarding SSRs with four or more repeat units and a minimum length of 10 bp, 132 of them showed repeats. Eighteen SSR markers were initially characterized for optimum annealing temperature using a gradient PCR technique. Among the 18 SSR markers characterized, five were found to be polymorphic and used to analyze 60 Sesamum germplasm accessions. The maximum number of alleles detected was four with a single primer and the least number of two alleles with three primers with an average PIC value of 0.77. SSRs are a valuable tool for estimating genetic diversity and analyzing the evolutionary and historical development of cultivars at the genomic level in sesame breeding programs.

  14. Polymorphic Microsatellite Markers for the Tetrapolar Anther-Smut Fungus Microbotryum saponariae Based on Genome Sequencing

    PubMed Central

    Fortuna, Taiadjana M.; Snirc, Alodie; Badouin, Hélène; Gouzy, Jérome; Siguenza, Sophie; Esquerre, Diane; Le Prieur, Stéphanie; Shykoff, Jacqui A.; Giraud, Tatiana

    2016-01-01

    Background Anther-smut fungi belonging to the genus Microbotryum sterilize their host plants by aborting ovaries and replacing pollen by fungal spores. Sibling Microbotryum species are highly specialized on their host plants and they have been widely used as models for studies of ecology and evolution of plant pathogenic fungi. However, most studies have focused, so far, on M. lychnidis-dioicae that parasitizes the white campion Silene latifolia. Microbotryum saponariae, parasitizing mainly Saponaria officinalis, is an interesting anther-smut fungus, since it belongs to a tetrapolar lineage (i.e., with two independently segregating mating-type loci), while most of the anther-smut Microbotryum fungi are bipolar (i.e., with a single mating-type locus). Saponaria officinalis is a widespread long-lived perennial plant species with multiple flowering stems, which makes its anther-smut pathogen a good model for studying phylogeography and within-host multiple infections. Principal Findings Here, based on a generated genome sequence of M. saponariae we developed 6 multiplexes with a total of 22 polymorphic microsatellite markers using an inexpensive and efficient method. We scored these markers in fungal individuals collected from 97 populations across Europe, and found that the number of their alleles ranged from 2 to 11, and their expected heterozygosity from 0.01 to 0.58. Cross-species amplification was examined using nine other Microbotryum species parasitizing hosts belonging to Silene, Dianthus and Knautia genera. All loci were successfully amplified in at least two other Microbotryum species. Significance These newly developed markers will provide insights into the population genetic structure and the occurrence of within-host multiple infections of M. saponariae. In addition, the draft genome of M. saponariae, as well as one of the described markers will be useful resources for studying the evolution of the breeding systems in the genus Microbotryum and the

  15. Phylogenetic and microsatellite markers for Tulasnella (Tulasnellaceae) mycorrhizal fungi associated with Australian orchids1

    PubMed Central

    Ruibal, Monica P.; Peakall, Rod; Smith, Leon M.; Linde, Celeste C.

    2013-01-01

    • Premise of the study: Phylogenetic and microsatellite markers were developed for Tulasnella mycorrhizal fungi to investigate fungal species identity and diversity. These markers will be useful in future studies investigating the phylogenetic relationship of the fungal symbionts, specificity of orchid–mycorrhizal associations, and the role of mycorrhizae in orchid speciation within several orchid genera. • Methods and Results: We generated partial genome sequences of two Tulasnella symbionts originating from Chiloglottis and Drakaea orchid species with 454 genome sequencing. Cross-genus transferability across mycorrhizal symbionts associated with multiple genera of Australian orchids (Arthrochilus, Chiloglottis, Drakaea, and Paracaleana) was found for seven phylogenetic loci. Five loci showed cross-transferability to Tulasnella from other orchid genera, and two to Sebacina. Furthermore, 11 polymorphic microsatellite loci were developed for Tulasnella from Chiloglottis. • Conclusions: Highly informative markers were obtained, allowing investigation of mycorrhizal diversity of Tulasnellaceae associated with a wide variety of terrestrial orchids in Australia and potentially worldwide. PMID:25202528

  16. Microsatellite markers for the critically endangered elm species Ulmus gaussenii (Ulmaceae).

    PubMed

    Geng, Qi-Fang; Yang, Jie; He, Jia; Wang, Dan-Bi; Shi, En; Xu, Wei-Xiang; Jeelani, Nasreen; Wang, Zhong-Sheng; Liu, Hong

    2016-07-20

    The Anhui elm Ulmus gaussenii is listed as a critically endangered species by the International Union for Conservation of Nature and is endemic to China, where its only population is restricted to Langya Mountain in Chuzhou, Anhui Province. To better understand the population genetics of U. gaussenii, we developed 12 microsatellite markers using an improved technique. The 12 markers were polymorphic, with the number of alleles per locus ranging from two to nine. Observed and expected heterozygosities ranged from 0.021 to 0.750 and 0.225 to 0.744, respectively. The inbreeding coefficient ranged from -0.157 to 0.960. Significant linkage disequilibrium was detected for two pairs of loci, and significant deviations from Hardy-Weinberg equilibrium were found in nine loci. These microsatellite markers will contribute to the studies of population genetics in U. gaussenii, which in turn will contribute to species conservation and protection.

  17. Characterization and multiplexing of 21 microsatellite markers for the herb Noccaea caerulescens (Brassicaceae)1

    PubMed Central

    Mousset, Mathilde; Flaven, Elodie; Justy, Fabienne; Pouzadoux, Juliette; Gode, Cécile; Pauwels, Maxime; Gonneau, Cédric

    2015-01-01

    Premise of the study: Multiplexed microsatellite markers were developed for population genetic studies in the pseudometallophyte Noccaea caerulescens (Brassicaceae), a model species to investigate metal tolerance and hyperaccumulation in higher plants. Methods and Results: Microsatellite loci were isolated through pyrosequencing of an enriched DNA library. Three multiplexes combining four previously published and 17 newly designed markers were developed. The new markers were screened in metallicolous and nonmetallicolous populations from southern France. The total number of alleles per locus ranged from five to 18. The observed heterozygosity per locus and per population ranged from 0 to 0.83, and expected heterozygosity ranged from 0 to 0.89. Conclusions: The investigated loci showed reasonable to high levels of polymorphism at the regional scale. The multiplex set should be helpful in investigating genetic diversity, population structure, and demographic history in N. caerulescens at various spatial scales. PMID:26697274

  18. Profile of candidate microsatellite markers in Sebastiscus marmoratus using 454 pyrosequencing

    NASA Astrophysics Data System (ADS)

    Song, Na; Chen, Muyan; Gao, Tianxiang; Yanagimoto, Takashi

    2017-01-01

    Sebastiscus marmoratus is an important sedentary ovoviparous fish distributed in near-shore coastal waters from the coast of China to Japan. Candidate S. marmoratus microsatellite markers were developed in the present study using 454 pyrosequencing, and the marker profile was analyzed. A total of 2 000 000 raw sequence reads were assembled to reduce redundancy. Among them, 1 043 dinucleotide, 925 trinucleotide, 692 tetranucleotide, and 315 pentanucleotide repeats were detected. AC repeats were the most frequent motifs among the dinucleotide repeats, and AAT was the most abundant among the trinucleotide repeats. AAAT, ATAG, and ATCC were the three most common tetranucleotide motifs, and AAGAT and AATAT were the most dominant pentanucleotide motifs. The greatest numbers of loci and potentially amplifiable loci were found in dinucleotide repeats, whereas trinucleotide repeats had the fewest. In summary, a wide range of candidate microsatellite markers were identified in the present study using a rapid and efficient 454 pyrosequencing approach.

  19. Paternity testing using microsatellite DNA markers in captive Adélie penguins (Pygoscelis adeliae).

    PubMed

    Sakaoka, Ken; Suzuki, Isao; Kasugai, Naeko; Fukumoto, Yohei

    2014-01-01

    We investigated the paternity of 39 Adélie penguins (Pygoscelis adeliae) hatched at the Port of Nagoya Public Aquarium between 1995 and 2005 breeding seasons using microsatellite DNA markers. Among the 13 microsatellite marker loci tested in this study, eight markers amplified and were found to be polymorphic in the colony's founders of the captive population (n = 26). Multiple marker analysis confirmed that all the hatchlings shared alleles with their social fathers and that none of them were sired by any male (all males ≥4 years old in the exhibit tank during each reproductive season; n = 9-15) other than the one carrying out parental duties, except in the case of two inbred hatchlings whose half-sibling parents shared the same father. These results demonstrated that extra-pair paternity (EPP) did not occur in this captive population and that even if EPP has been detected among them, the probability of excluding all other possible fathers in the exhibit tank is extremely high based on paternity exclusion probabilities across the investigated loci. The paternity exclusion probabilities were almost the same between 1994 and 2005. The probability of identity across the investigated loci declined between the two time points, but was still high. These results are reflected in a very short history of breeding in this captive population. In other words, the parentage analyses using a suite of microsatellite markers will be less effective as generations change in small closed populations, such as zoo and aquarium populations.

  20. Development of 16 microsatellite markers within the Camassia (Agavaceae) species complex and amplification in related taxa1

    PubMed Central

    Culley, Theresa M.; Leng, Ju-Fang; Kephart, Susan R.; Cartieri, Francis J.; Theiss, Kathryn E.

    2013-01-01

    • Premise of the study: The North American genus Camassia is an ecologically important group whose variability and evolution are little understood, being influenced by hybridization and geographic isolation. We developed microsatellite markers to investigate patterns of gene flow, population structure, and taxonomic relationships within this group. • Methods and Results: Using a traditional approach with biotin-labeled probes, we developed 16 microsatellite primers in three species of Camassia: C. howellii, C. leichtlinii, and C. quamash. The number of alleles per locus averaged 3.94 per species, and levels of heterozygosity ranged from 0.000 to 1.00 and 0.033 to 0.917 for observed and expected heterozygosities, respectively. All primers amplified to varying extents in additional species (C. angusta, C. cusickii, C. scilloides) and in putative species in a related genus (Hastingsia alba, H. atropurpurea, H. bracteosa, H. serpentinicola). • Conclusions: These microsatellite markers exhibit variation and are useful for ongoing studies of integrative taxonomy and population differentiation within this species complex. PMID:25202572

  1. Ultraconserved Elements Sequencing as a Low-Cost Source of Complete Mitochondrial Genomes and Microsatellite Markers in Non-Model Amniotes

    PubMed Central

    Raposo do Amaral, Fábio; Neves, Leandro G.; Resende, Márcio F. R.; Mobili, Flávia; Miyaki, Cristina Y.; Pellegrino, Katia C. M.; Biondo, Cibele

    2015-01-01

    Sequence capture of ultraconserved elements (UCEs) associated with massively parallel sequencing has become a common source of nuclear data for studies of animal systematics and phylogeography. However, mitochondrial and microsatellite variation are still commonly used in various kinds of molecular studies, and probably will complement genomic data in years to come. Here we show that besides providing abundant genomic data, UCE sequencing is an excellent source of both sequences for microsatellite loci design and complete mitochondrial genomes with high sequencing depth. Identification of dozens of microsatellite loci and assembly of complete mitogenomes is exemplified here using three species of Poospiza warbling finches from southern and southeastern Brazil. This strategy opens exciting opportunities to simultaneously analyze genome-wide nuclear datasets and traditionally used mtDNA and microsatellite markers in non-model amniotes at no additional cost. PMID:26379155

  2. GENETIC VARIATION AND IDENTIFICATION OF PROMISING SOUR CHERRIES INFERRED FROM MICROSATELLITE MARKERS.

    PubMed

    Najafzadeh, R; Arzani, K; Bouzari, N; Saei, A

    2016-01-01

    The aim of this study was to identify the group of highly polymorphic microsatellite markers for identification of promising sour cherries. From among 30 tested microsatellite (SSR) markers, 19 were selected to profile genetic variation in sour cherries due to high polymorphisms. Results indicated a high level of polymorphism of the accessions based on these markers. Totally 148 alleles were generated at 19 SSR loci which 122 alleles were polymorphic. The number of total alleles per locus ranged from 2 to 15 with an average of 7.78 and polymorphism percentage varied from 50 to 100% with an average of 78.76%. Also, PIC varied from 0.47 to 0.89 with an average of 0.79 and heterozygosity ranged from 0.35 to 0.55 with a mean of 0.45. According to these results, these markers specially PMS3, PS12A02, PceGA34, BPPCT021, EMPA004, EMPA018, and Pchgms3 produced good and various levels of amplifications and showed high heterozygosity levels. By the way, the genetic similarity showed a high diversity among the sour cherries. Cluster analysis separated improved cultivars from promising sour cherries, and the PCoA supported the cluster analysis results. Since the studied sour cherries were superior to the improved cultivars and were separated from them in most groups, these sour cherries can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that the set of microsatellite markers employed in this study demonstrated usefulness of microsatellite markers for the identification of sour cherry genotypes.

  3. Characterization of polymorphic microsatellite markers in Pinus armandii (Pinaceae), an endemic conifer species to China1

    PubMed Central

    Dong, Wan-Lin; Wang, Ruo-Nan; Yan, Xiao-Hao; Niu, Chuan; Gong, Lin-Lin; Li, Zhong-Hu

    2016-01-01

    Premise of the study: Pinus armandii (Pinaceae) is an important conifer tree species in central and southwestern China, and it plays a key role in the local forest ecosystems. To investigate its population genetics and design effective conservation strategies, we characterized 18 polymorphic microsatellite markers for this species. Methods and Results: Eighteen novel polymorphic and 16 monomorphic microsatellite loci of P. armandii were isolated using Illumina MiSeq technology. The number of alleles per locus ranged from two to five. The expected heterozygosity ranged from 0.061 to 0.609 with an average of 0.384, and the observed heterozygosity ranged from 0.063 to 0.947 with an average of 0.436. Seventeen loci could be successfully transferred to five related Pinus species (P. koraiensis, P. griffithii, P. sibirica, P. pumila, and P. bungeana). Conclusions: These novel microsatellites could potentially be used to investigate the population genetics of P. armandii and related species. PMID:27785387

  4. Male homosexuality: absence of linkage to microsatellite markers at Xq28.

    PubMed

    Rice, G; Anderson, C; Risch, N; Ebers, G

    1999-04-23

    Several lines of evidence have implicated genetic factors in homosexuality. The most compelling observation has been the report of genetic linkage of male homosexuality to microsatellite markers on the X chromosome. This observation warranted further study and confirmation. Sharing of alleles at position Xq28 was studied in 52 gay male sibling pairs from Canadian families. Four markers at Xq28 were analyzed (DXS1113, BGN, Factor 8, and DXS1108). Allele and haplotype sharing for these markers was not increased over expectation. These results do not support an X-linked gene underlying male homosexuality.

  5. Isolation and characterization of microsatellite markers for an endemic tree in East Asia, Quercus variabilis (Fagaceae)1

    PubMed Central

    Wang, Xian; Li, Jing; Li, Yong

    2015-01-01

    Premise of the study: Microsatellite markers of Quercus variabilis (Fagaceae) were isolated for population genetic and landscape genetic studies. Methods and Results: Roche 454 pyrosequencing combined with the magnetic bead enrichment protocol were used to isolate microsatellite markers for Q. variabilis. A total of 2121 microsatellites were identified from 63,851 individual sequence reads. One hundred microsatellite loci were selected to test primer amplification efficiency among 24 individuals from two wild populations. Among the 100 tested markers, 34 primer pairs were successfully amplified. Of these, 14 yielded polymorphic amplification products, whereas the remaining 20 loci were monomorphic. The number of alleles for polymorphic loci ranged from two to six, and the observed heterozygosity ranged from 0.042 to 0.750. Conclusions: These microsatellite loci will provide useful tools for further population genetic and landscape genetic studies on Q. variabilis. PMID:26082882

  6. Microsatellite markers for population studies of the salt marsh species Juncus roemerianus (Juncaceae)1

    PubMed Central

    Tumas, Hayley R.; Shamblin, Brian M.; Woodrey, Mark S.; Nairn, Campbell J.

    2017-01-01

    Premise of the study: Juncus roemerianus (Juncaceae) is a foundational species and ecosystem engineer of salt marshes in the Gulf of Mexico. These ecosystems provide coastal flood attenuation, nurseries for important species, and other ecosystem services, but are experiencing significant decline. Nuclear microsatellite markers were developed for J. roemerianus to study genetic diversity and population structure for conservation and restoration efforts. Methods and Results: Illumina NextSeq high-throughput sequencing was used to develop a panel of 19 polymorphic microsatellite markers that were tested across individuals from three populations on the Gulf Coast. All markers were polymorphic, with observed and expected heterozygosities ranging from 0.212 to 0.828 and from 0.362 to 0.873, respectively. Allelic richness ranged from two to 13 alleles per locus with an average of 5.737. Conclusions: The 19 microsatellite markers are useful for population studies throughout the range of J. roemerianus. Three loci cross-amplified in the related taxon J. effusus. PMID:28337392

  7. Segregation and genetic linkage analyses of river catfish, Mystus nemurus, based on microsatellite markers.

    PubMed

    Hoh, B P; Siraj, S S; Tan, S G; Yusoff, K

    2013-02-28

    The river catfish Mystus nemurus is an important fresh water species for aquaculture in Malaysia. We report the first genetic linkage map of M. nemurus based on segregation analysis and a linkage map using newly developed microsatellite markers of M. nemurus. A total of 70 of the newly developed polymorphic DNA microsatellite markers were analyzed on pedigrees generated using a pseudo-testcross strategy from 2 mapping families. In the first mapping family, 100 offspring were produced from randomly selected dams of the same populations; dams of the second family were selected from 2 different populations, and this family had 50 offspring. Thirty-one of the 70 markers segregated according to the Mendelian segregation ratio. Linkage analysis revealed that 17 microsatellite markers belonging to 7 linkage groups were obtained at a logarithm of the odds score of 1.2 spanning 584 cM by the Kosambi mapping function, whereas the other 14 remained unlinked. The results from this study will act as primer to a more extensive genetic mapping study aimed towards identifying genetic loci involved in determining economically important traits.

  8. Development of polymorphic microsatellite markers issued from pyrosequencing technology for the medicinal mushroom Agaricus subrufescens.

    PubMed

    Foulongne-Oriol, Marie; Spataro, Cathy; Moinard, Magalie; Cabannes, Delphine; Callac, Philippe; Savoie, Jean-Michel

    2012-09-01

    The recently described procedure of microsatellite-enriched library pyrosequencing was used to isolate microsatellite loci in the gourmet and medicinal mushroom Agaricus subrufescens. Three hundred and five candidate loci containing at least one simple sequence repeats (SSR) locus and for which primers design was successful, were obtained. From a subset of 95 loci, 35 operational and polymorphic SSR markers were developed and characterized on a sample of 14 A. subrufescens genotypes from diverse origins. These SubSSR markers each displayed from two to 10 alleles with an average of 4.66 alleles per locus. The observed heterozygosity ranged from 0 to 0.71. Several multiplex combinations can be set up, making it possible to genotype up to six markers easily and simultaneously. Cross-amplification in some closely congeneric species was successful for a subset of loci. The 35 microsatellite markers developed here provide a highly valuable molecular tool to study genetic diversity and reproductive biology of A. subrufescens.

  9. Development of novel tetra- and trinucleotide microsatellite markers for giant grouper Epinephelus lanceolatus using 454 pyrosequencing.

    PubMed

    Kim, Keun-Sik; Noh, Choong Hwan; Moon, Shin-Joo; Han, Seung-Hee; Bang, In-Chul

    2016-06-01

    Giant grouper (Epinephelus lanceolatus) is a commercially important species, but its wild population has recently been classified as vulnerable. This species has significant potential for use in aquaculture, though a greater understanding of population genetics is necessary for selective breeding programs to minimize kinship for genetically healthy individuals. High-throughput pyrosequencing of genomic DNA was used to identify and characterize novel tetra- and trinucleotide microsatellite markers in giant grouper from Sabah, Malaysia. In total, of 62,763 sequences containing simple sequence repeats (SSRs) were obtained, and 78 SSR loci were selected to possibly contain tetra- and trinucleotide repeats. Of these loci, 16 had tetra- and 8 had trinucleotide repeats, all of which exhibited polymorphisms within easily genotyped regions. A total of 143 alleles were identified with an average of 5.94 alleles per locus, with mean observed and expected heterozygosities of 0.648 and 0.620, respectively. Among of them, 15 microsatellite markers were identified without null alleles and with Hardy-Weinberg equilibrium. These alleles showed a combined non-exclusion probability of 0.01138. The probability of individual identification (PID) value combined with in descending order 12 microsatellite markers was 0.00008, which strongly suggests that the use of the microsatellite markers developed in this study in various combinations would result in a high resolution method for parentage analysis and individual identification. These markers could be used to establish a broodstock management program for giant grouper and to provide a foundation for genetic studies such as population structure, parentage analysis, and kinship selection.

  10. Genomewide gene-associated microsatellite markers for the model invasive ascidian, Ciona intestinalis species complex.

    PubMed

    Lin, Yaping; Chen, Yiyong; Xiong, Wei; Zhan, Aibin

    2016-05-01

    The vase tunicate, Ciona intestinalis species complex, has become a good model for ecological and evolutionary studies, especially those focusing on microevolution associated with rapidly changing environments. However, genomewide genetic markers are still lacking. Here, we characterized a large set of genomewide gene-associated microsatellite markers for C. intestinalis spA (=C. robusta). Bioinformatic analysis identified 4654 microsatellites from expressed sequence tags (ESTs), 2126 of which successfully assigned to chromosomes were selected for further analysis. Based on the distribution evenness on chromosomes, function annotation and suitability for primer design, we chose 545 candidate microsatellites for further characterization. After amplification validation and variation assessment, 218 loci were polymorphic in at least one of the two populations collected from the coast of Arenys de Mar, Spain (N = 24-48), and Cape Town, South Africa (N = 24-33). The number of alleles, observed heterozygosity and expected heterozygosity ranged from 2 to 11, 0 to 0.833 and 0.021 to 0.818, and from 2 to 10, 0 to 0.879 and 0.031 to 0.845 for the Spanish and African populations, respectively. When all microsatellites were tested for cross-species utility, only 60 loci (25.8%) could be successfully amplified and all loci were polymorphic in C. intestinalis spB. A high level of genomewide polymorphism is likely responsible for the low transferability. The large set of microsatellite markers characterized here is expected to provide a useful genomewide resource for ecological and evolutionary studies using C. intestinalis as a model.

  11. Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations.

    PubMed

    Kirst, M; Cordeiro, C M; Rezende, G D S P; Grattapaglia, D

    2005-01-01

    We report the genetic analysis of 192 unrelated individuals of an elite breeding population of Eucalyptus grandis (Hill ex Maiden) with a selected set of six highly polymorphic microsatellite markers developed for species of the genus Eucalyptus. A full characterization of this set of six loci was carried out generating allele frequency distributions that were used to estimate parameters of genetic information content of these loci, including expected heterozygosity, polymorphism information content (PIC), power of exclusion, and probability of identity. The number of detected alleles per locus ranged from 6 to 33, with an average of 19.8 +/- 9.2. The average expected heterozygosity was 0.86 +/- 0.11 and the average PIC was 0.83 +/- 0.16. Using only three loci, it was possible to discriminate all 192 individuals. The overall probability of identity considering all six EMBRA microsatellite markers combined was lower than 1 in 2 billion. An analysis of the sample size necessary to estimate expected heterozygosity with minimum variance indicated that at least 64 individuals have to be genotyped to characterize this parameter with adequate accuracy for most microsatellites in Eucalyptus. The high degree of multiallelism and the clear and simple codominant Mendelian inheritance of the set of microsatellites used provide an extremely powerful system for the unique identification of Eucalyptus individuals for fingerprinting purposes and parentage testing.

  12. Development and characterization of 14 microsatellite markers for Buergeria japonica (Amphibia, Anura, Rhacophoridae).

    PubMed

    Komaki, Shohei; Igawa, Takeshi; Nozawa, Masafumi; Lin, Si-Min; Oumi, Shohei; Sumida, Masayuki

    2014-01-01

    Buergeria japonica is a common frog species distributed throughout almost all islands in Ryukyu Archipelago. Because of their exceptionally wide distribution and higher physiological tolerance comparing to the other anurans, their demographic history and formation of distribution are intrinsic topics in the herpetological fauna of Ryukyu. Microsatellite marker is ideal genetic marker for such studies at inter- and intra-population level. We therefore developed microsatellite markers of B. japonica utilizing Ion PGM™ sequencing. As a result of the screening, we developed a total of 14 polymorphic markers. To test availabilities of these markers, we genotyped four island populations. The total number of alleles and expected hetelozygosities per locus ranged from 4 to 21 and 0.00 to 0.864, respectively. The phylogenetic relationship among the four populations based on the genetic distances of these markers was congruent with general divergence pattern of amphibians and reptiles in Ryukyu area. These markers developed in this study are considered to be useful for future studies about phylogeography and demography of this species.

  13. Development of novel chloroplast microsatellite markers for Ginkgo biloba.

    PubMed

    Xu, M; Xu, L A; Cao, F L; Zhang, H J; Yu, F X

    2015-07-13

    Ginkgo biloba is considered to be a living fossil that can be used to understand the ancient evolutionary history of gymnosperms, but little attention has been given to the study of its population genetics, molecular phylogeography, and genetic resources assessment. Chloroplast simple sequence repeat (cpSSR) markers are powerful tools for genetic studies of plants. In this study, a total of 30 perfect cpSSRs of Ginkgo were identified and characterized, including di-, tri, tetra-, penta-, and hexanucleotide repeats. Fifteen of 21 designed primer pairs were successfully amplified to yield specific polymerase chain reaction products from 16 Ginkgo cultivars. Polymorphic cpSSRs were further applied to determine the genetic variation of 116 individuals in 5 populations of G. biloba. The results showed that 24 and 76% genetic variation existed within and among populations of this species, respectively. These polymorphic and monomorphic cpSSR markers can be used to trace the origin and evolutionary history of Ginkgo.

  14. Identification and Characterization of Microsatellite Markers Derived from the Whole Genome Analysis of Taenia solium

    PubMed Central

    Pajuelo, Mónica J.; Eguiluz, María; Dahlstrom, Eric; Requena, David; Guzmán, Frank; Ramirez, Manuel; Sheen, Patricia; Frace, Michael; Sammons, Scott; Cama, Vitaliano; Anzick, Sarah; Bruno, Dan; Mahanty, Siddhartha; Wilkins, Patricia; Nash, Theodore; Gonzalez, Armando; García, Héctor H.; Gilman, Robert H.; Porcella, Steve; Zimic, Mirko

    2015-01-01

    Background Infections with Taenia solium are the most common cause of adult acquired seizures worldwide, and are the leading cause of epilepsy in developing countries. A better understanding of the genetic diversity of T. solium will improve parasite diagnostics and transmission pathways in endemic areas thereby facilitating the design of future control measures and interventions. Microsatellite markers are useful genome features, which enable strain typing and identification in complex pathogen genomes. Here we describe microsatellite identification and characterization in T. solium, providing information that will assist in global efforts to control this important pathogen. Methods For genome sequencing, T. solium cysts and proglottids were collected from Huancayo and Puno in Peru, respectively. Using next generation sequencing (NGS) and de novo assembly, we assembled two draft genomes and one hybrid genome. Microsatellite sequences were identified and 36 of them were selected for further analysis. Twenty T. solium isolates were collected from Tumbes in the northern region, and twenty from Puno in the southern region of Peru. The size-polymorphism of the selected microsatellites was determined with multi-capillary electrophoresis. We analyzed the association between microsatellite polymorphism and the geographic origin of the samples. Results The predicted size of the hybrid (proglottid genome combined with cyst genome) T. solium genome was 111 MB with a GC content of 42.54%. A total of 7,979 contigs (>1,000 nt) were obtained. We identified 9,129 microsatellites in the Puno-proglottid genome and 9,936 in the Huancayo-cyst genome, with 5 or more repeats, ranging from mono- to hexa-nucleotide. Seven microsatellites were polymorphic and 29 were monomorphic within the analyzed isolates. T. solium tapeworms were classified into two genetic groups that correlated with the North/South geographic origin of the parasites. Conclusions/Significance The availability of draft

  15. Development and characterization of 27 microsatellite markers for the mangrove fern, Acrostichum aureum (Pteridaceae)1

    PubMed Central

    Yamamoto, Takashi; Tsuda, Yoshiaki; Mori, Gustavo Maruyama; Cruz, Mariana Vargas; Shinmura, Yoshimi; Wee, Alison K. S.; Takayama, Koji; Asakawa, Takeshi; Yamakawa, Takeru; Suleiman, Monica; Núñez-Farfán, Juan; Webb, Edward L.; Watano, Yasuyuki; Kajita, Tadashi

    2016-01-01

    Premise of the study: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant. Methods and Results: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively. Conclusions: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants. PMID:27672519

  16. Microsatellite markers for Nuphar japonica (Nymphaeaceae), an aquatic plant in the agricultural ecosystem of Japan1

    PubMed Central

    Kondo, Toshiaki; Watanabe, Sonoko; Shiga, Takashi; Isagi, Yuji

    2016-01-01

    Premise of the study: Nuphar species (Nymphaeaceae) are representative aquatic plants in irrigation ponds in Japanese agricultural ecosystems. We developed 15 polymorphic microsatellite markers for N. japonica and confirmed their utility for its close relatives N. oguraensis var. akiensis and N. ×saijoensis, which originated from natural hybridization between N. japonica and N. oguraensis. Methods and Results: Genetic variation was characterized in 15 polymorphic loci in three populations of N. japonica. The average number of alleles per locus was 3.47 (range = 2−9; n = 32), and the average expected heterozygosity per locus was 0.84 (range = 0.5–1.0); 11 loci were amplified in N. oguraensis var. akiensis and 15 in N. ×saijoensis. Conclusions: The polymorphic microsatellite markers developed in this study will be useful for investigating the levels of genetic diversity within remnant populations of Nuphar taxa and could provide a valuable tool for conservation genetics of these taxa. PMID:28101435

  17. Transferability and characterization of microsatellite markers in two Neotropical Ficus species

    PubMed Central

    2009-01-01

    Microsatellite markers were transferred and characterized for two Neotropical fig tree species, Ficus citrifolia and Ficus eximia. Our study demonstrated that microsatellite markers developed from different subgenera of Ficus can be transferred to related species. In the present case, 12 of the 15 primer pairs tested (80%) were successfully transferred to both of the above species. Eleven loci were polymorphic when tested across 60 F. citrifolia and 60 F. eximia individuals. For F. citrifolia, there were 4 to 15 alleles per locus, whereas expected heterozygosities ranged from 0.31 to 0.91. In the case of F. eximia, this was 2 to 12 alleles per locus and expected heterozygosities from 0.42 to 0.87. PMID:21637521

  18. Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers

    PubMed Central

    2010-01-01

    Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections. PMID:21637613

  19. Genetic diversity analysis in the section Caulorrhizae (genus Arachis) using microsatellite markers.

    PubMed

    Palmieri, Darío A; Bechara, Marcelo D; Curi, Rogério A; Monteiro, Jomar P; Valente, Sérgio E S; Gimenes, Marcos A; Lopes, Catalina R

    2010-01-01

    Diversity in 26 microsatellite loci from section Caulorrhizae germplasm was evaluated by using 33 accessions of A. pintoi Krapov. & W.C. Gregory and ten accessions of Arachis repens Handro. Twenty loci proved to be polymorphic and a total of 196 alleles were detected with an average of 9.8 alleles per locus. The variability found in those loci was greater than the variability found using morphological characters, seed storage proteins and RAPD markers previously used in this germplasm. The high potential of these markers to detect species-specific alleles and discriminate among accessions was demonstrated. The set of microsatellite primer pairs developed by our group for A. pintoi are useful molecular tools for evaluating Section Caulorrhizae germplasm, as well as that of species belonging to other Arachis sections.

  20. Development and characterization of microsatellite markers for Central American Begonia sect. Gireoudia (Begoniaceae)1

    PubMed Central

    Twyford, Alex D.; Ennos, Richard A.; Kidner, Catherine A.

    2013-01-01

    • Premise of the study: Transcriptome sequence data were used to design microsatellite primers for two widespread Central American Begonia species, B. heracleifolia and B. nelumbiifolia, to investigate population structure and hybridization. • Methods and Results: The transcriptome from vegetative meristem tissue from the related B. plebeja was mined for microsatellite loci, and 31 primer pairs amplified in the target species. Fifteen primer pairs were combined in two multiplex PCR reactions, which amplified an average of four alleles per locus. • Conclusions: The markers developed will be a valuable genetic resource for medium-throughput genotyping of Central American species of Begonia sect. Gireoudia. A subset of these markers have perfect sequence matches to Asian B. venusta, and are promising for studies in other Begonia sections. PMID:25202548

  1. Isolation and Characterization of 11 Polymorphic Microsatellite Markers Developed for Orthops palus (Heteroptera: Miridae)

    PubMed Central

    Atiama, M.; Delatte, H.; Deguine, J.-P.

    2016-01-01

    Miridae (Hemiptera: Heteroptera: Cimicomorpha), or plant bugs, are one of the most diverse and species-rich families of insects. Most of them are phytophagous, but some are insect predators and used for biocontrol. Among this family, the mango bug, Orthops palus (Taylor 1947), is one of the most important pest of mango in Reunion Island. We developed 11 polymorphic microsatellite loci to study the population genetics of this pest species. The microsatellite markers were characterized by genotyping 78 field-collected insects sampled at different localities in Reunion Island. The number of alleles per locus ranged from 1 to 13 and heterozygosity levels ranged between 0.40 and 0.94. Several loci were not at Hardy–Weinberg equilibrium for the tested populations. These markers are the first to be developed for a species of the genus Orthops. PMID:26922804

  2. Development of novel polymorphic microsatellite markers for the silver fox (Vulpes vulpes).

    PubMed

    Yan, S Q; Bai, C Y; Qi, S M; Li, Y M; Li, W J; Sun, J H

    2015-06-01

    The silver fox (Vulpes vulpes), a coat color variant of the red fox, is one of the most important fur-bearing animals. To date, development of microsatellite loci for the silver fox has been limited and mainly based on cross-amplification by using canine SSR primers. In this study, 28 polymorphic microsatellite markers were isolated and identified for silver fox through the construction and screening of an (AC)n-enriched library. The number of alleles per locus ranged from 2 to 8 based on 48 individuals tested. The expected and observed hetero- zygosity and polymorphism information content per locus ranged from 0.2544 to 0.859, 0.2083 to 0.7917, and 0.2181 to 0.821, respectively. The polymorphic markers presented in this study may be useful for future analysis of the genetic diversity and population structure of farmed silver fox and wild red fox.

  3. Development and characterization of 15 microsatellite markers for Cephalotaxus fortunei (Cephalotaxaceae)1

    PubMed Central

    Wang, Chunbo; Guo, Zhiyou; Huang, Xilian; Huang, Lu

    2016-01-01

    Premise of the study: To survey population variation and the adaptive evolution of Cephalotaxus fortunei (Cephalotaxaceae), an endemic and endangered conifer in China, microsatellite markers were developed and characterized for this species. Methods and Results: Based on the Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO) protocol, 15 microsatellite markers were developed for C. fortunei, 13 of which were polymorphic within a sample of 75 individuals representing five natural populations. The number of alleles per locus ranged from one to seven. The expected and observed heterozygosities were 0.108–0.738 and 0.000–1.000, respectively. Ten polymorphic loci were also successfully amplified in C. oliveri. Conclusions: These polymorphic loci provide a valuable tool for population genetic analysis of C. fortunei, which will contribute to its management and conservation. PMID:27213121

  4. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions.

    PubMed

    Bonnet, D; Cormier-Daire, V; Kachaner, J; Szezepanski, I; Souillard, P; Sidi, D; Munnich, A; Lyonnet, S

    1997-01-20

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19) within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion.

  5. Characterization of 10 new nuclear microsatellite markers in Acca sellowiana (Myrtaceae)1

    PubMed Central

    Klabunde, Gustavo H. F.; Olkoski, Denise; Vilperte, Vinicius; Zucchi, Maria I.; Nodari, Rubens O.

    2014-01-01

    • Premise of the study: Microsatellite primers were identified and characterized in Acca sellowiana in order to expand the limited number of pre-existing polymorphic markers for use in population genetic studies for conservation, phylogeography, breeding, and domestication. • Methods and Results: A total of 10 polymorphic microsatellite primers were designed from clones obtained from a simple sequence repeat (SSR)–enriched genomic library. The primers amplified di- and trinucleotide repeats with four to 27 alleles per locus. In all tested populations, the observed heterozygosity ranged from 0.269 to 1.0. • Conclusions: These new polymorphic SSR markers will allow future genetic studies to be denser, either for genetic structure characterization of natural populations or for studies involving genetic breeding and domestication process in A. sellowiana. PMID:25202632

  6. Development of polymorphic microsatellite markers for Dioscorea zingiberensis and cross-amplification in other Dioscorea species.

    PubMed

    Yan, Q-Q; Sun, X-Q; Guo, J-L; Hang, Y-Y; Li, M-M

    2013-09-19

    Dioscorea zingiberensis C.H. Wright (Dioscoreaceae) is an endemic species in central and southwestern China. In order to study the genetic diversity and population structure of this species, 19 novel polymorphic microsatellite loci were developed using a dual-suppression PCR technique. The number of alleles per locus ranged from 3 to 21, with an average of 9.53. All the markers showed high transferability in cross-species amplification in other species of sect. Stenophora.

  7. CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research.

    PubMed

    Bhawna; Chaduvula, Pavan K; Bonthala, Venkata S; Manjusha, Verma; Siddiq, Ebrahimali A; Polumetla, Ananda K; Prasad, Gajula M N V

    2015-01-01

    Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.

  8. CmMDb: A Versatile Database for Cucumis melo Microsatellite Markers and Other Horticulture Crop Research

    PubMed Central

    Bhawna; Chaduvula, Pavan K.; Bonthala, Venkata S.; Manjusha, Verma; Siddiq, Ebrahimali A.; Polumetla, Ananda K.; Prasad, Gajula M. N. V.

    2015-01-01

    Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies. PMID:25885062

  9. Isolation and characterization of microsatellite markers for Axonopus compressus (Sw.) Beauv. (Poaceae) using 454 sequencing technology.

    PubMed

    Wang, X-L; Li, Y; Liao, L; Bai, C-J; Wang, Z-Y

    2015-05-11

    Axonopus compressus (Sw.) Beauv. is a perennial herb widely used as a garden lawn grass. In this study, we used Roche 454 pyrosequencing, combined with the magnetic bead enrichment method FIASCO, to isolate simple sequence repeat markers from the A. compressus genome. A total of 1942 microsatellite loci were identified, with 53,193 raw sequencing reads. One hundred micro-satellite loci were selected to test the primer amplification efficiency in 24 individuals; 14 primer pairs yielded polymorphic amplification products. The number of observed alleles ranged from two to six, with an average of 3.5. Shannon's Information index values ranged from 0.169 to 0.650, with an average of 0.393. Nei's genetic diversity values ranged from 0.108 to 0.457, with an average of 0.271. This first set of microsatellite markers developed for Axonopus will assist in the development of molecular marker-assisted breeding and the assessment of genetic diversity in A. compressus.

  10. [Analysis of genetic variations in different goose breeds using microsatellite markers].

    PubMed

    Liu, Shuang; Li, Peng; Song, Yi; Li, Shi-Ze; Wei, Chun-Bo; Yang, Huan-Min

    2006-11-01

    The genetic diversity of six goose breeds (White Goose, Zi Goose, Huoyan Goose, Wanxi Goose, Rhin, Landoise) was analyzed using microsatellite markers. Heterozygosity(H), polymorphism information content (PIC) and genetic distances were calculated for each breed based on the allele frequency. Results showed that 7 microsatellite sites were highly polymorphic, and could be used as effective markers for analysis of genetic relationship among different goose breeds. The mean heterozygosityies of were between 0.6617 (Rhin) and 0.8814 (Zi goose), among six goose breeds, the lowest was Rhin goose (0.6617) and the highest was Zi goose (0.8814). The range of mean PIC was between 0.6145 and 0.7814, which was in the similar range as the mean heterozygosities. Based on the UPGMA cluster analysis results, six goose breeds were grouped into classes, White, Zi, Huoyan and Wanxi Goose in one class, and the foreign breeds of Rhin and Landoise goose in another class. These results indicated that the dendrogram obtain from genetic distance could be used to correctly reflect the phylogenetic relationship among the six goose breeds, suggesting that microsatellite DNA marker is a useful tool to determine the genetic diversity in closely related breeds.

  11. Linkage of morbid obesity with polymorphic microsatellite markers on chromosome 1q31 in a three-generation Canadian kindred

    SciTech Connect

    Murray, J.D.; Bulman, D.E.; Ebers, G.C. |

    1994-09-01

    Obesity is the most common nutritional disorder affecting Western societies. An estimated 3.7 million Canadians are considered to be overweight, a condition associated with hypertension, accelerated atherosclerosis, diabetes and a host of other medical problems. We have identified a 3 generation kindred in which morbid obesity appears to segregate in an autosomal dominant manner. All individuals were examined. Mass (kg) and heights (m) were measured in order to determine a body mass index (BMI) for each individual. Those individuals with BMI of greater than or equal to 30.0 were designated as affected. In the pedigree studied 25 individuals met this criteria and 12 of these were morbidly obese (BMI greater or equal to 40.0). A search of candidate genes proved unfruitful. A linkage study was initiated. All individuals in the pedigree were genotyped for microsatellite markers which were spaced every 20 centimorgans (cM). Positive evidence of linkage was detected with markers which map to 1q31-32 (lod score of 3.6 at {theta} = 0.05). Notably, strong effects for fatness in pigs have been found on pig chromosome 4 which has synteny with human chromosome 1q21-32. We are currently attempting to refine the position of this gene using linkage analysis with other microsatellite markers from this region of the genome. In addition we are screening other families in which obesity segregates for linkage to 1q31.

  12. Characterization of new microsatellite markers derived from sequence databases for the emu (Dromaius novaehollandiae).

    PubMed

    Yáñez, José M; González, Ruth; Angulo, Jenniffer; Vidal, Rodrigo; Santos, José L; Martínez, Victor

    2008-11-01

    The emu (Dromaius novaehollandiae), a member of ratite family, is native to Australia and has been introduced to other countries worldwide. In this work, 10 polymorphic microsatellite loci were isolated and characterized for emu from public sequences. Polymorphism was surveyed in 22 individuals from two different populations kept in captivity. Between two and 11 alleles were found per locus, and the observed heterozygosity ranged from 0.05 to 0.85, in accordance with expectations. These markers will be useful as tools for detecting levels of genetic variation, reconstructing pedigrees (for quantitative genetic analysis) and identifying markers associated to fitness traits in emu populations.

  13. Development and characterization of novel microsatellite markers in Hyptis pectinata (Lamiaceae).

    PubMed

    Blank, A F; Jesus, A S; Santos, C P; Grando, C; Pinheiro, J B; Zucchi, M I; Arrigoni-Blank, M F

    2014-12-04

    A microsatellite-enriched library was constructed and a set of 19 SSR markers were developed to characterize a germplasm collection of Hyptis pectinata (L.) Poit., maintained at the Universidade Federal de Sergipe (UFS). Fifteen markers of 19 ranged from moderately to highly polymorphic. A total of 113 alleles were identified, with a mean of 7.52 alleles per locus. The mean HO and HE were 0.582 and 0.657, respectively. The primers developed were efficient tools for accessing the genetic diversity of the germplasm collection analyzed and may also be useful for other studies involving this species and other species in the genus Hyptis.

  14. Genetic diversity of turmeric germplasm (Curcuma longa; Zingiberaceae) identified by microsatellite markers.

    PubMed

    Sigrist, M S; Pinheiro, J B; Filho, J A Azevedo; Zucchi, M I

    2011-03-09

    Turmeric (Curcuma longa) is a triploid, vegetatively propagated crop introduced early during the colonization of Brazil. Turmeric rhizomes are ground into a powder used as a natural dye in the food industry, although recent research suggests a greater potential for the development of drugs and cosmetics. In Brazil, little is known about the genetic variability available for crop improvement. We examined the genetic diversity among turmeric accessions from a Brazilian germplasm collection comprising 39 accessions collected from the States of Goiás, Mato Grosso do Sul, Minas Gerais, São Paulo, and Pará. For comparison, 18 additional genotypes were analyzed, including samples from India and Puerto Rico. Total DNA was extracted from lyophilized leaf tissue and genetic analysis was performed using 17 microsatellite markers (single-sequence repeats). Shannon-Weiner indexes ranged from 0.017 (Minas Gerais) to 0.316 (São Paulo). Analyses of molecular variance (AMOVA) demonstrated major differences between countries (63.4%) and that most of the genetic diversity in Brazil is found within states (75.3%). Genotypes from São Paulo State were the most divergent and potentially useful for crop improvement. Structure analysis indicated two main groups of accessions. These results can help target future collecting efforts for introduction of new materials needed to develop more productive and better adapted cultivars.

  15. Genetic variability of ten Chinese indigenous goats using MHC-linked microsatellite markers.

    PubMed

    E, Guang-Xin; Huang, Yong-Fu; Zhao, Yong-Ju; Ma, Yue-Hui; Na, Ri-Su; Zhang, Jia-Hua; Gao, Hui-Jiang; Wu, Xin

    2015-10-15

    In this study, the genetic variability of Chinese indigenous goat breeds (Capra hircus) was analyzed using the MHC-associated microsatellite markers BF1, BM1818, BM1258, and DYMS1. To examine genetic variability, the levels of heterozigosity, degrees of inbreeding, and genetic differences among the breeds were analyzed. The mean number of alleles ranged from 5.50±3.70 in Enshi black goats (EB) to 11.50±3.70 in the Jianyang big ear (JE) breed. The mean observed heterozygosity and mean expected heterozygosity varied from 0.25±0.04 in Jining Qing goats (JQ) to 0.54±0.05 in Chuannan black goats (CN) and from 0.49±0.18 in Hechuan white goats (HW) to 0.78±0.05 in JE, respectively. The mean FIS values ranged from 0.23 in HW to 0.51 in JQ. In addition, the genetic variation among populations and geographic location did indicate a correlation of genetic differences with geographic distance, which was revealed by the phylogenetic network. In conclusion, the high variability and population structure among Chinese native goats in the Major Histocompatibility Complex would be caused by co-evolution between MHC alleles and the epidemic history or pathogens in different agro-ecological zones.

  16. Genetic diversity of Forest and Savannah chicken populations of Ghana as estimated by microsatellite markers.

    PubMed

    Osei-Amponsah, Richard; Kayang, Boniface B; Naazie, Augustine; Osei, Yaa D; Youssao, Issaka A K; Yapi-Gnaore, Valentine C; Tixier-Boichard, Michèle; Rognon, Xavier

    2010-06-01

    The characterization of indigenous animal genetic resources is a requisite step in providing needed information for the conservation of useful genotypes against future needs. Thus, in this study, 22 microsatellite markers were used to genotype 114 local chickens from the Forest (n = 59) and Savannah (n = 55) eco-zones of Ghana and the results compared to those of the ancestral red junglefowl (n = 15) and two European commercial chicken populations--a broiler (n = 25) and white leghorn (n = 25). A total of 171 alleles were observed, with an average of 7.8 alleles per locus. The local Ghanaian chickens showed higher diversity in terms of the observed number of alleles per locus (6.6) and observed heterozygosity (0.568) compared with the combined control populations (6.0 and 0.458, respectively). However, Wright's F-statistics revealed negligible genetic differentiation (F(ST)) in local Ghanaian chicken populations. In addition, 65% of the Savannah chickens were inferred to be more likely from the Forest, suggesting a south-north dispersal of chickens from their probable original location in the Forest zone to the Savannah areas. It is concluded that the Forest and Savannah chickens of Ghana are a single, randomly mating unselected population, characterized by high genetic diversity and constitute a valuable resource for conservation and improvement.

  17. A Genome-Wide Scan of Selective Sweeps and Association Mapping of Fruit Traits Using Microsatellite Markers in Watermelon

    PubMed Central

    Reddy, Umesh K.; Abburi, Lavanya; Abburi, Venkata Lakshmi; Saminathan, Thangasamy; Cantrell, Robert; Vajja, Venkata Gopinath; Reddy, Rishi; Tomason, Yan R.; Levi, Amnon; Wehner, Todd C.; Nimmakayala, Padma

    2015-01-01

    Our genetic diversity study uses microsatellites of known map position to estimate genome level population structure and linkage disequilibrium, and to identify genomic regions that have undergone selection during watermelon domestication and improvement. Thirty regions that showed evidence of selective sweep were scanned for the presence of candidate genes using the watermelon genome browser (www.icugi.org). We localized selective sweeps in intergenic regions, close to the promoters, and within the exons and introns of various genes. This study provided an evidence of convergent evolution for the presence of diverse ecotypes with special reference to American and European ecotypes. Our search for location of linked markers in the whole-genome draft sequence revealed that BVWS00358, a GA repeat microsatellite, is the GAGA type transcription factor located in the 5′ untranslated regions of a structure and insertion element that expresses a Cys2His2 Zinc finger motif, with presumed biological processes related to chitin response and transcriptional regulation. In addition, BVWS01708, an ATT repeat microsatellite, located in the promoter of a DTW domain-containing protein (Cla002761); and 2 other simple sequence repeats that association mapping link to fruit length and rind thickness. PMID:25425675

  18. Genetic linkage analysis of familial amyotrophic lateral sclerosis using human chromosome 21 microsatellite DNA markers

    SciTech Connect

    Rosen, D.R.; Sapp, P.; O`Regan, J.; McKenna-Yasek, D.; Schlumpf, K.S.; Haines, J.L.; Gusella, J.F.; Horvitz, H.R.; Brown, R.H. Jr.

    1994-05-15

    Amyotrophic lateral sclerosis (ALS; Lou Gehrig`s Disease) is a lethal neurodegenerative disease of upper and lower motorneurons in the brain and spinal cord. We previously reported linkage of a gene for familial ALS (FALS) to human chromosome 21 using 4 restriction fragment length polymorphism DNA markers and identified disease-associated mutations in the superoxide dismutase (SOD)-1 gene in some ALS families. We report here the genetic linkage data that led us to examine the SOD-1 gene for mutations. We also report a new microsatellite DNA marker for D21S63, derived from the cosmid PW517. Ten microsatellite DNA markers, including the new marker D21S63, were used to reinvestigate linkage of FALS to chromosome 21. Genetic linkage analysis performed with 13 ALS familes for these 10 DNA markers confirmed the presence of a FALS gene on chromosome 21. The highest total 2-point LOD score for all families was 4.33, obtained at a distance of 10 cM from the marker D21S223. For 5 ALS families linked to chromosome 21, a peak 2-point LOD score of 5.94 was obtained at the DNA marker D21S223. A multipoint score of 6.50 was obtained with the markers D21S213, D21S223, D21S167, and FALS for 5 chromosome 21-linked ALS families. The haplotypes of these families for the 10 DNA markers reveal recombination events that further refined the location of the FALS gene to a segment of approximately 5 megabases (Mb) between D21S213 and D21S219. The only characterized gene within this segment was SOD-1, the structural gene for Cu, Zn SOD. 30 refs., 4 figs., 4 tabs.

  19. cpDNA microsatellite markers for Lemna minor (Araceae): Phylogeographic implications1

    PubMed Central

    Wani, Gowher A.; Shah, Manzoor A.; Reshi, Zafar A.; Atangana, Alain R.; Khasa, Damase P.

    2014-01-01

    • Premise of the study: A lack of genetic markers impedes our understanding of the population biology of Lemna minor. Thus, the development of appropriate genetic markers for L. minor promises to be highly useful for population genetic studies and for addressing other life history questions regarding the species. • Methods and Results: For the first time, we characterized nine polymorphic and 24 monomorphic chloroplast microsatellite markers in L. minor using DNA samples of 26 individuals sampled from five populations in Kashmir and of 17 individuals from three populations in Quebec. Initially, we designed 33 primer pairs, which were tested on genomic DNA from natural populations. Nine loci provided markers with two alleles. Based on genotyping of the chloroplast DNA fragments from 43 sampled individuals, we identified one haplotype in Quebec and 11 haplotypes in Kashmir, of which one occurs in 56% of the genotypes, one in 8%, and nine in 4%, respectively. There was a maximum of two alleles per locus. • Conclusions: These new chloroplast microsatellite markers for L. minor and haplotype distribution patterns indicate a complex phylogeographic history that merits further investigation. PMID:25202636

  20. Fluorescence-based resource for semiautomated genomic analyses using microsatellite markers

    SciTech Connect

    Levitt, R.C.; Kiser, M.B.; Dragwa, C.

    1994-11-15

    To facilitate the practical application of highly-efficient semiautomated methods for general application in genomic analyses, the authors have developed a fluorescence-based microsatellite marker resource. Ninety highly polymorphic microsatellite markers were combined to provide a rapid, accurate, and highly efficient initial genome-wide screening system. These markers are spaced on average every 33 cM, with a mean heterozygosity of 81% (range 65-94%), covering 22 autosomes and the X and Y chromosomes. Less than 10% of the genome lies beyond 20 cM of the nearest marker. Since this genomic analysis system is fully compatible with automated fragment analyzers using simultaneous four-color fluorescence-based detection systems, the 5 groups of 18 markers can be detected concurrently. This multiplex detection provides a throughput of 1944 genotypes daily per instrument. This system will be highly beneficial in a number of clinical and research applications including linkage, cancer genetics, forensics, and cytogenetics. 16 refs., 1 fig., 2 tabs.

  1. Isolation, characterization, and multiplexing of novel microsatellite markers for the tropical scalloped spiny lobster (Panulirus homarus).

    PubMed

    Delghandi, M; Goddard, S; Jerry, D R; Dao, H T; Afzal, H; Al-Jardani, S S

    2015-12-29

    Of the various spiny lobster species in the tropical and subtropical Indo-West Pacific region, the tropical scalloped spiny lobster (Panulirus homarus) supports one of the most commercially valuable fishery resources in many coastal African and Asian countries. The last decade has witnessed a serious decline in the wild populations of this species. Knowledge of the genetic basis of spiny lobster population structure is a prerequisite to achieve a sustainable fisheries management for this species. Here, we describe 13 novel polymorphic microsatellite markers developed for P. homarus, using a cross-species primer design strategy based on P. ornatus Roche 454 shot-gun generated sequencing. Microsatellite polymorphisms were assessed in 96 unrelated P. homarus individuals of a natural population, with the number of alleles per locus varying from 2 to 14, the observed and expected heterozygosity from 0.00 to 0.78 and from 0.03 to 0.79, respectively, and with only four loci (Pho-G27, Pho-G32, Pho-G36, and Pho-G58) deviating from Hardy- Weinberg equilibrium. Genetic linkage disequilibrium analysis between all pairs of the loci showed significant departure from the null hypothesis between loci Pho-G22 - Pho-G30, and Pho-G30 - Pho-G35. The successful cross amplification of these microsatellites highlights the potential of the developed microsatellites for future population genetic research within the different Panulirus species.

  2. STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design

    PubMed Central

    Kraemer, Lars; Beszteri, Bánk; Gäbler-Schwarz, Steffi; Held, Christoph; Leese, Florian; Mayer, Christoph; Pöhlmann, Kevin; Frickenhaus, Stephan

    2009-01-01

    Background Microsatellites (MSs) are DNA markers with high analytical power, which are widely used in population genetics, genetic mapping, and forensic studies. Currently available software solutions for high-throughput MS design (i) have shortcomings in detecting and distinguishing imperfect and perfect MSs, (ii) lack often necessary interactive design steps, and (iii) do not allow for the development of primers for multiplex amplifications. We present a set of new tools implemented as extensions to the STADEN package, which provides the backbone functionality for flexible sequence analysis workflows. The possibility to assemble overlapping reads into unique contigs (provided by the base functionality of the STADEN package) is important to avoid developing redundant markers, a feature missing from most other similar tools. Results Our extensions to the STADEN package provide the following functionality to facilitate microsatellite (and also minisatellite) marker design: The new modules (i) integrate the state-of-the-art tandem repeat detection and analysis software PHOBOS into workflows, (ii) provide two separate repeat detection steps – with different search criteria – one for masking repetitive regions during assembly of sequencing reads and the other for designing repeat-flanking primers for MS candidate loci, (iii) incorporate the widely used primer design program PRIMER3 into STADEN workflows, enabling the interactive design and visualization of flanking primers for microsatellites, and (iv) provide the functionality to find optimal locus- and primer pair combinations for multiplex primer design. Furthermore, our extensions include a module for storing analysis results in an SQLite database, providing a transparent solution for data access from within as well as from outside of the STADEN Package. Conclusion The STADEN package is enhanced by our modules into a highly flexible, high-throughput, interactive tool for conventional and multiplex

  3. Microsatellite markers reveal multiple origins for Italian weedy rice

    PubMed Central

    Grimm, Annabelle; Fogliatto, Silvia; Nick, Peter; Ferrero, Aldo; Vidotto, Francesco

    2013-01-01

    Weedy rice (Oryza sativa L.) is one of the major issues of rice cultivation worldwide. In Italy, it infests about 70% of the total rice area. Different Weedy Rice populations can be distinguished based on variable morphological and physiological traits; however, little is known about genetic differentiation and origin of Italian weedy rice populations. The objective of this study was to genetically and morphologically characterize and compare different Italian weedy rice populations selected on the basis of different phenotypes. The main Italian rice territory was divided into 10 geographical areas in which 40 weedy rice populations were collected and grouped according to the awn traits. All the individuals of the populations were morphologically characterized according to plant and seed traits. Genetic characterization was performed using 19 SSR markers on all the collected accessions, and several rice cultivars, including some very old (late 19th century), nowadays are no longer cultivated. ANOVA showed that morphological plant and seed traits were significantly affected by the collection area and awnedness group. The importance of the awn morphology was also reflected in the Bayesian clustering where, despite a relatively low genetic diversity, the clusters displayed different awn types. An UPGMA dendrogram confirmed the clusters detected in STRUCTURE analysis and also revealed a grouping of certain old cultivars with the weedy rice, suggesting a common origin. PMID:24363904

  4. Microsatellite DNA markers for delineating population structure and kinship among the endangered Kirtland's warbler (Dendroica kirtlandii)

    USGS Publications Warehouse

    King, T.L.; Eackles, M.S.; Henderson, A.P.; Bocetti, C.I.; Currie, D.; Wunderle, J.M.

    2005-01-01

    We document the isolation and characterization of 23 microsatellite DNA markers for the endangered Kirtland's warbler (Dendroica kirtlandii), a Nearctic/Neotropical migrant passerine. This suite of markers revealed moderate to high levels of allelic diversity (averaging 7.7 alleles per locus) and heterozygosity (averaging 72%). Genotypic frequencies at 22 of 23 (95%) markers conformed to Hardy-Weinberg equilibrium expectations, and no linkage disequilibrium was observed in blood samples taken from 14 warblers found on the wintering grounds in the Bahamas archipelago. Multilocus genotypes resulting from this suite of markers should reduce the amount of resources required for initiating new genetic studies assessing breeding structure, parentage, demographics, and individual-level ecological interactions for D. kirtlandii. ?? 2005 Blackwell Publishing Ltd.

  5. Increased homozygosity at four microsatellite marker loci in Pima Indian DNA

    SciTech Connect

    Sell, S.M.; Knowler, W.C.; Bogardus, C.

    1994-09-01

    Using 100 Marshfield-derived (MFD) microsatellite markers (screening set v.2) and DNA from 13 Pima Indians, none of whom were first degree relatives, we observed 4 marker loci on 3 different chromosomes which showed marked deviation from the reported heterozygosities for the Caucasian CEPH families. These 4 markers were also tested in 60 individuals from 8 different multigenerational pedigrees. For the marker MFD77, only a single allele was observed for all individuals tested. Our results indicate that a high degree of genetic homogeneity occurs in limited regions of the genome in the Pima Indian population. We are investigating the possibility that these regions of homogeneity might be associated with disease susceptibility in this population with a high prevalence of obesity, gallstones and diabetes mellitus.

  6. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers.

    PubMed

    Francisco, Flávio O; Santiago, Leandro R; Mizusawa, Yuri M; Oldroyd, Benjamin P; Arias, Maria C

    2016-06-23

    Tetragonisca angustula is one of the most widespread stingless bees in the Neotropics. This species swarms frequently and is extremely successful in urban environments. In addition, it is one of the most popular stingless bee species for beekeeping in Latin America, so nest transportation and trading is common. Nest transportation can change the genetic structure of the host population, reducing inbreeding and increasing homogenization. Here, we evaluate the genetic structure of 17 geographic populations of T. angustula in southern Brazil to quantify the level of genetic differentiation between populations. Analyses were conducted on partially sequenced mitochondrial genes and 11 microsatellite loci of 1002 workers from 457 sites distributed on the mainland and on 3 islands. Our results show that T. angustula populations are highly differentiated as demonstrated by mitochondrial DNA (mtDNA) and microsatellite markers. Of 73 haplotypes, 67 were population-specific. MtDNA diversity was low in 9 populations but microsatellite diversity was moderate to high in all populations. Microsatellite data suggest 10 genetic clusters and low level of gene flow throughout the studied area. However, physical barriers, such as rivers and mountain ranges, or the presence or absence of forest appear to be unrelated to population clusters. Factors such as low dispersal, different ecological conditions, and isolation by distance are most likely shaping the population structure of this species. Thus far, nest transportation has not influenced the general population structure in the studied area. However, due to the genetic structure we found, we recommend that nest transportation should only occur within and between populations that are genetically similar.

  7. Genetic relationships in the peregrine falcon (Falco peregrinus) analysed by microsatellite DNA markers.

    PubMed

    Nesje, M; Røed, K H; Lifjeld, J T; Lindberg, P; Steen, O F

    2000-01-01

    Microsatellite DNA markers were developed from a peregrine falcon (Falco peregrinus) and genetic relationships among peregrine falcons in southern Norway were analysed using the markers. The genomic DNA library was screened for the presence of dinucleotide microsatellite repeats. Twelve loci revealed polymorphism through the initial analysis of 24 unrelated peregrine falcons, and Mendelian inheritance was confirmed in two peregrine falcon families bred in captivity. The estimated mean probability of identical genotypes in two unrelated individuals was 3 x 10-8, and the combined exclusion probability for parentage testing was 0.99 and 0.94 for one or both parents unknown, respectively. The markers were used to investigate the parentage of peregrine broods from the same nest site from different breeding seasons, and subsequently the nest-site fidelity of the breeding peregrines. High nest-site fidelity was found by studying pairwise comparisons of relatedness (rxy) estimates among chicks at six nest sites from three different breeding seasons. Cross-species amplifications showed that most loci also appeared to amplify polymorphic products in the gyrfalcon (F. rusticolus), merlin (F. columbarius), hobby (F. subbuteo) and kestrel (F. tinnunculus), demonstrating that the loci will provide powerful genetic markers in these falcons too.

  8. Development and characterization of microsatellite markers for Piptadenia gonoacantha (Fabaceae)1

    PubMed Central

    Grando, Carolina; Bajay, Miklos M.; Bajay, Stephanie K.; Schwarcz, Kaiser D.; Campos, Jaqueline B.; Brancalion, Pedro H. S.; Pinheiro, José B.; Rodrigues, Ricardo R.; Souza, Anete P.; Zucchi, Maria I.

    2015-01-01

    • Premise of the study: Microsatellite primers were designed for Piptadenia gonoacantha (Fabaceae) and characterized to estimate genetic diversity parameters. The species is a native tree from the Atlantic Forest biome commonly used in forest restoration; it has medicinal potential and the wood is economically useful. • Methods and Results: Twenty-eight microsatellite loci were identified from an enriched genomic library. Fifteen loci resulted in successful amplifications and were characterized in a natural population of 94 individuals. Twelve loci were polymorphic, with allele numbers ranging from three to 15 per locus, and expected and observed heterozygosities ranging from 0.2142 to 0.8325 and 0.190 to 0.769, respectively. • Conclusions: The developed markers will be used in further studies of population genetics of P. gonoacantha, aimed at conservation and management of the species in natural populations and in forest restoration projects. PMID:25699220

  9. Development of microsatellite markers for Viscum coloratum (Santalaceae) and their application to wild populations1

    PubMed Central

    Kim, Bo-Yun; Park, Han-Sol; Kim, Soonok; Kim, Young-Dong

    2017-01-01

    Premise of the study: Microsatellite primers were developed for Viscum coloratum (Santalaceae), a semiparasitic medicinal plant that is known for its anticancer properties. Due to excessive human harvesting and loss of suitable habitat of its populations, it has become a potentially threatened species requiring immediate conservation efforts. Methods and Results: Based on transcriptome data for V. coloratum, 124 primer pairs were randomly selected for initial validation, of which 19 yielded polymorphic microsatellite loci, with two to six alleles per locus. The usefulness of these markers was assessed for 60 individuals representing three populations of V. coloratum. Observed and expected heterozygosity values ranged from 0.033 to 0.833 and 0.032 to 0.672, respectively. Cross-species amplification for 19 loci in the related species V. album was conducted. Conclusions: The 19 newly developed loci are expected to be useful for studying the population genetics and ecological conservation of V. coloratum. PMID:28090408

  10. Characterization and Transferable Utility of Microsatellite Markers in the Wild and Cultivated Arachis Species

    PubMed Central

    Huang, Li; Wu, Bei; Zhao, Jiaojiao; Li, Haitao; Chen, Weigang; Zheng, Yanli; Ren, Xiaoping; Chen, Yuning; Zhou, Xiaojing; Lei, Yong; Liao, Boshou; Jiang, Huifang

    2016-01-01

    Microsatellite or simple sequence repeat (SSR) is one of the most widely distributed molecular markers that have been widely utilized to assess genetic diversity and genetic mapping for important traits in plants. However, the understanding of microsatellite characteristics in Arachis species and the currently available amount of high-quality SSR markers remain limited. In this study, we identified 16,435 genome survey sequences SSRs (GSS-SSRs) and 40,199 expressed sequence tag SSRs (EST-SSRs) in Arachis hypogaea and its wild relative species using the publicly available sequence data. The GSS-SSRs had a density of 159.9–239.8 SSRs/Mb for wild Arachis and 1,015.8 SSR/Mb for cultivated Arachis, whereas the EST-SSRs had the density of 173.5–384.4 SSR/Mb and 250.9 SSRs/Mb for wild and cultivated Arachis, respectively. The trinucleotide SSRs were predominant across Arachis species, except that the dinucleotide accounted for most in A. hypogaea GSSs. From Arachis GSS-SSR and EST-SSR sequences, we developed 2,589 novel SSR markers that showed a high polymorphism in six diverse A. hypogaea accessions. A genetic linkage map that contained 540 novel SSR loci and 105 anchor SSR loci was constructed by case of a recombinant inbred lines F6 population. A subset of 82 randomly selected SSR markers were used to screen 39 wild and 22 cultivated Arachis accessions, which revealed a high transferability of the novel SSRs across Arachis species. Our results provided informative clues to investigate microsatellite patterns across A. hypogaea and its wild relative species and potentially facilitate the germplasm evaluation and gene mapping in Arachis species. PMID:27243460

  11. Development and characterization of polymorphic microsatellite markers in taro (Colocasia esculenta).

    PubMed

    Mace, Emma S; Godwin, Ian D

    2002-10-01

    Microsatellite-containing sequences were isolated from enriched genomic libraries of taro (Colocasia esculenta (L.) Schott). The sequencing of 269 clones yielded 77 inserts containing repeat motifs. The majority of these (81.7%) were dinucleotide or trinucleotide repeats. The GT/CA repeat motif was the most common, accounting for 42% of all repeat types. From a total of 43 primer pairs designed, 41 produced markers within the expected size range. Sixteen (39%) were polymorphic when screened against a restricted set of taro genotypes from Southeast Asia and Oceania, with an average of 3.2 alleles detected on each locus. These markers represent a useful resource for taro germplasm management, genome mapping, and marker-assisted selection.

  12. Identification of DNA-microsatellite markers for the characterization of somatic embryos in Quercus suber.

    PubMed

    Gómez-Garay, Arancha; Bueno, Angeles; Pintos, Beatriz

    2013-01-01

    Nuclear DNA-microsatellite markers led the possibility to characterize individually both Quercus suber trees and somatic embryos. The genotype inferred by SSR markers opens the possibility to obtain a fingerprint for clonal lines identification. Furthermore, allow to infer the origin of somatic embryos from haploid cells (microspores) or from diploid tissues. Using few SSR markers from other Quercus species and an automatic system based in fluorescence, it is possible to obtain a high discrimination power between genotypes. This method is sufficient to assign tissues to an individual tree with high statistical certainty. Nevertheless, it is necessary to take care to select the adequate DNA extraction method to avoid PCR inhibitors present in diverse Q. suber tissues.

  13. Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads

    PubMed Central

    2013-01-01

    Background Brachiaria ruziziensis is one of the most important forage species planted in the tropics. The application of genomic tools to aid the selection of superior genotypes can provide support to B. ruziziensis breeding programs. However, there is a complete lack of information about the B. ruziziensis genome. Also, the availability of genomic tools, such as molecular markers, to support B. ruziziensis breeding programs is rather limited. Recently, next-generation sequencing technologies have been applied to generate sequence data for the identification of microsatellite regions and primer design. In this study, we present a first validated set of SSR markers for Brachiaria ruziziensis, selected from a de novo partial genome assembly of single-end Illumina reads. Results A total of 85,567 perfect microsatellite loci were detected in contigs with a minimum 10X coverage. We selected a set of 500 microsatellite loci identified in contigs with minimum 100X coverage for primer design and synthesis, and tested a subset of 269 primer pairs, 198 of which were polymorphic on 11 representative B. ruziziensis accessions. Descriptive statistics for these primer pairs are presented, as well as estimates of marker transferability to other relevant brachiaria species. Finally, a set of 11 multiplex panels containing the 30 most informative markers was validated and proposed for B. ruziziensis genetic analysis. Conclusions We show that the detection and development of microsatellite markers from genome assembled Illumina single-end DNA sequences is highly efficient. The developed markers are readily suitable for genetic analysis and marker assisted selection of Brachiaria ruziziensis. The use of this approach for microsatellite marker development is promising for species with limited genomic information, whose breeding programs would benefit from the use of genomic tools. To our knowledge, this is the first set of microsatellite markers developed for this important species

  14. Microsatellite Markers of Willow Species and Characterization of 11 Polymorphic Microsatellites for Salix eriocephala (Salicaceae), a Potential Native Species for Biomass Production in Canada.

    PubMed

    Lauron-Moreau, Aurélien; Pitre, Frédéric E; Brouillet, Luc; Labrecque, Michel

    2013-03-27

    Biomass produced from dedicated plantations constitutes a source of renewable energy and is expected to play an important role in several countries in the coming decades. The cultivation of woody crops such as willows therefore raises several environmental issues. In North America, several native willows are potentially interesting for biomass producers. Willow trees are diverse but few species used for environmental applications have been the object of molecular genetic studies. Based on the sequenced poplar genome, 24 microsatellite markers were assayed on five native North American willow species: Salix amygdaloides, S. discolor, S. eriocephala, S. interior and S. nigra. Polymorphic microsatellite markers were used to characterize the allele data on the shrub Salix eriocephala, a North American species with economic potential. Eleven markers amplified and confirmed the potential of this species. Analysis of samples from six populations in eastern Canada showed that all markers were variable as well as polymorphic in at least one population. The number of alleles per locus ranged from 1 to 9 (mean 2.95) and showed that these microsatellite markers can be used to assess genetic diversity of North American willow species.

  15. New microsatellite markers developed from Urochloa humidicola (Poaceae) and cross amplification in different Urochloa species

    PubMed Central

    2011-01-01

    Background Urochloa humidicola is a forage grass that grows in tropical regions and is recognized for its tolerance to seasonal flooding. It is a polyploid and apomictic species with high phenotypic plasticity. As molecular tools are important in facilitating the development of new cultivars and in the classification of related species, the objectives of this study were to develop new polymorphic microsatellite markers from an enriched library constructed from U. humidicola and to evaluate their transferability to other Urochloa species. Findings Microsatellite sequences were identified from a previously constructed enriched library, and specific primers were designed for 40 loci. Isolated di-nucleotide repeat motifs were the most abundant followed by tetra-nucleotide repeats. Of the tested loci, 38 displayed polymorphism when screened across 34 polyploid Urochloa sp. genotypes, including 20 accessions and six hybrids of U. humidicola and two accessions each from U. brizantha, U. dictyoneura, U. decumbens and U. ruziziensis. The number of bands per Simple Sequence Repeat (SSR) locus ranged from one to 29 with a mean of 11.5 bands per locus. The mean Polymorphism Information Content (PIC) of all loci was 0.7136, and the mean Discrimination Power (DP) was 0.7873. Six loci amplified in all species tested. STRUCTURE analysis revealed six different allelic pools, and the genetic similarity values analyzed using Jaccard's coefficient ranged from 0.000 to 0.913. Conclusions This work reports new polymorphic microsatellite markers that will be useful for breeding programs for Urochloa humidicola and other Urochloa species as well as for genetic map development, germplasm characterization, evolutionary and taxonomic studies and marker-assisted trait selection. PMID:22142493

  16. Genome-wide survey and analysis of microsatellites in the Pacific oyster genome: abundance, distribution, and potential for marker development

    NASA Astrophysics Data System (ADS)

    Wang, Jiafeng; Qi, Haigang; Li, Li; Zhang, Guofan

    2014-01-01

    Microsatellites are a ubiquitous component of the eukaryote genome and constitute one of the most popular sources of molecular markers for genetic studies. However, no data are currently available regarding microsatellites across the entire genome in oysters, despite their importance to the aquaculture industry. We present the first genome-wide investigation of microsatellites in the Pacific oyster Crassostrea gigas by analysis of the complete genome, resequencing, and expression data. The Pacific oyster genome is rich in microsatellites. A total of 604 653 repeats were identified, in average of one locus per 815 base pairs (bp). A total of 12 836 genes had coding repeats, and 7 332 were expressed normally, including genes with a wide range of molecular functions. Compared with 20 different species of animals, microsatellites in the oyster genome typically exhibited 1) an intermediate overall frequency; 2) relatively uniform contents of (A)n and (C)n repeats and abundant long (C)n repeats (≥24 bp); 3) large average length of (AG)n repeats; and 4) scarcity of trinucleotide repeats. The microsatellite-flanking regions exhibited a high degree of polymorphism with a heterozygosity rate of around 2.0%, but there was no correlation between heterozygosity and microsatellite abundance. A total of 19 462 polymorphic microsatellites were discovered, and dinucleotide repeats were the most active, with over 26% of loci found to harbor allelic variations. In all, 7 451 loci with high potential for marker development were identified. Better knowledge of the microsatellites in the oyster genome will provide information for the future design of a wide range of molecular markers and contribute to further advancements in the field of oyster genetics, particularly for molecular-based selection and breeding.

  17. Polymorphic microsatellite markers in Anthoxanthum (Poaceae) and cross-amplification in the Eurasian complex of the genus1

    PubMed Central

    Lema-Suárez, Irene; Sahuquillo, Elvira; Marí-Mena, Neus; Pimentel, Manuel

    2016-01-01

    Premise of the study: Nonplastid microsatellite primers were developed for the first time in the Euro-Siberian complex of Anthoxanthum (Poaceae), a genus of temperate grasses in which reticulate evolution is common. Methods and Results: A microsatellite-enriched genomic DNA library allowed the detection of 500 fragments containing a microsatellite motif. Fifteen primer pairs were selected for an extended primer test. A preliminary analysis was conducted on the Eurasian diploid lineages of Anthoxanthum, with special emphasis on three populations of the Mediterranean A. aristatum–A. ovatum complex. Thirteen out of 15 markers tested were polymorphic in the complex, with successful cross-amplification in A. odoratum (93% polymorphic loci), A. amarum (73% polymorphic), A. alpinum (73% polymorphic), and A. maderense (60% polymorphic). Conclusions: These microsatellite markers will enable the analysis of evolution and phylogeography in diploid and polyploid lineages of this important genus. PMID:27785386

  18. Rapid microsatellite marker development using next generation pyrosequencing to inform invasive Burmese python -- Python molurus bivittatus -- management

    USGS Publications Warehouse

    Hunter, Margaret E.; Hart, Kristen M.

    2013-01-01

    Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae.

  19. Rapid Microsatellite Marker Development Using Next Generation Pyrosequencing to Inform Invasive Burmese Python—Python molurus bivittatus—Management

    PubMed Central

    Hunter, Margaret E.; Hart, Kristen M.

    2013-01-01

    Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae. PMID:23449030

  20. Rapid Microsatellite Marker Development Using Next Generation Pyrosequencing to Inform Invasive Burmese Python-Python molurus bivittatus-Management.

    PubMed

    Hunter, Margaret E; Hart, Kristen M

    2013-02-28

    Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%-77%) heterozygosity and 3.7 (2-6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae.

  1. Isolation and characterization of microsatellite markers from the acacia-ant Crematogaster mimosae.

    PubMed

    Rubin, B E; Makarewich, C A; Talaba, A L; Stenzler, L; Bogdanowicz, S M; Lovette, I J

    2009-07-01

    We describe 10 microsatellite loci developed from Crematogaster mimosae, an ant species that nests mutualistically in Acacia drepanolobium trees in east Africa. Polymorphism ranged from 4 to 16 alleles per locus (mean = 7.3). Observed and expected heterozygosities ranged from 0.485 to 0.813 (mean 0.626), and from 0.502 to 0.894 (mean 0.674), respectively. These markers will foster studies of the population structure, colony structure, and reproductive strategies of these ants.

  2. Isolation and characterization of microsatellite markers from the white-ruffed manakin Corapipo altera (Aves, Pipridae).

    PubMed

    Barnett, Jacob R; Stenzler, Laura M; Ruiz-Gutierrez, Viviana; Bogdanowicz, Steven M; Lovette, Irby J

    2008-01-01

    We describe 15 polymorphic microsatellite loci from the white-ruffed manakin Corapipo altera, a common understory bird of Neotropical lowland and montane evergreen forests from eastern Honduras to northwestern Colombia. These markers were developed in order to assess population structure and genetic diversity in a fragmented landscape, and to study gene flow between forest fragments. Primers were tested on a population of 159 individuals from the Coto Brus region of southwestern Costa Rica. We found between four and 23 alleles per locus, and observed heterozygosities ranging from 0.23 to 0.93.

  3. Microsatellite markers for the Chameleon grasshopper (Kosciuscola tristis) (Orthoptera: Acrididae), an Australian Alpine Specialist.

    PubMed

    Umbers, Kate D L; Dennison, Siobhan; Manahan, Czarina A; Blondin, Laurence; Pagés, Christine; Risterucci, Ange-Marie; Chapuis, Marie-Pierre

    2012-01-01

    A set of polymorphic loci was characterised using an enrichment library for the Australian alpine specialist, the chameleon grasshopper (Kosciuscola tristis), an atypical grasshopper known for its remarkable temperature-controlled colour change. The number of alleles per locus ranged from three to 20 and observed heterozygosity from 0.16 to 0.76. These are the first microsatellite markers for a non-endangered Australian alpine animal and will inform questions of gene flow across the sky islands of this unique and threatened region.

  4. [Interregional differentiation of chum salmon from Sakhalin and South Kurils infered from microsatellite markers].

    PubMed

    Afanas'ev, K I; Rubtsova, G A; Shitova, M V; Malinina, T V; Zhivotovskiĭ, L A

    2008-07-01

    Variability at ten microsatellite loci was examined in wild and hatchery populations of chum salmon from the Sakhalin Island and Southern Kuril Islands, Iturup and Kunashir. Substantial genetic differences between Sakhalin and South Kurils chum salmon (the differentiation theta reached 6.0%) were revealed. Statistically significant differences between chum salmon from Iturup and that from Kunashir were demonstrated, as well as between the chum salmon populations from different rivers within the islands. It was shown that in different types of population comparisons, required different marker sets most informative were.

  5. Development and characterization of polymorphic microsatellite markers for Castanopsis hystrix (Fagaceae).

    PubMed

    Jiang, Y; Li, Z H; Zhu, J Y; Liu, H L

    2015-03-30

    Castanopsis hystrix is one of the most important and dominant species in evergreen broad-leaved forests in subtropical China. However, the population of this species undergone severe decline because of deforestation over the past 2 decades. For both conservation and forestry management, it is essential to develop molecular markers for C. hystrix. We identified 11 microsatellite loci in 2 wild populations. The number of alleles ranged from 3-11, with an average of 6.45 alleles per locus. The observed and expected heterozygosities ranged from 0.640-0.960 and from 0.676-0.910, respectively.

  6. Isolation and multiplex genotyping of polymorphic microsatellite DNA markers in the snakehead murrel, Channa striata

    PubMed Central

    Jamsari, Amirul Firdaus Jamaluddin; Min-Pau, Tan; Siti-Azizah, Mohd Nor

    2011-01-01

    Seven polymorphic microsatellite loci were isolated and characterized for the snakehead murrel, Channa striata (Channidae), a valuable tropical freshwater fish species. Among 25 specimens collected from Kedah state in Malaysia, the number of alleles per locus ranged from 2 to 7. Observed and expected heterozygosities ranged from 0.120 to 0.880 and 0.117 to 0.698, respectively. A single locus (CS1-C07) was significantly deviated from Hardy-Weinberg equilibrium after Bonferroni correction. These novel markers would be useful for population genetic studies of the C. striata. PMID:21734840

  7. Characterization of 42 microsatellite markers from poison ivy, Toxicodendron radicans (Anacardiaceae).

    PubMed

    Hsu, Tsai-Wen; Shih, Huei-Chuan; Kuo, Chia-Chi; Chiang, Tzen-Yuh; Chiang, Yu-Chung

    2013-10-14

    Poison ivy, Toxicodendron radicans, and poison oaks, T. diversilobum and T. pubescens, are perennial woody species of the Anacardiaceae and are poisonous, containing strong allergens named urushiols that cause allergic contact dermatitis. Poison ivy is a species distributed from North America to East Asia, while T. diversilobum and T. pubescens are distributed in western and eastern North America, respectively. Phylogreography and population structure of these species remain unclear. Here, we developed microsatellite markers, via constructing a magnetic enriched microsatellite library, from poison ivy. We designed 51 primer pairs, 42 of which successfully yielded products that were subsequently tested for polymorphism in poison oak, and three subspecies of poison ivy. Among the 42 loci, 38 are polymorphic, while 4 are monomorphic. The number of alleles and the expected heterozygosity ranged from 1 to 12 and from 0.10 to 0.87, respectively, in poison ivy, while varied from 2 to 8 and, from 0.26 to 0.83, respectively in poison oak. Genetic analysis revealed distinct differentiation between poison ivy and poison oak, whereas slight genetic differentiation was detected among three subspecies of poison ivy. These highly polymorphic microsatellite fingerprints enable biologists to explore the population genetics, phylogeography, and speciation in Toxicodendron.

  8. Microsatellite markers for an endemic Atlantic Forest tree, Manilkara multifida (Sapotaceae)

    PubMed Central

    Moraes, Ramiris C. S.; Vivas, Caio V.; Oliveira, Fernanda A.; Menezes, Ivandilson P. P.; van den Berg, Cassio; Gaiotto, Fernanda A.

    2013-01-01

    Manilkara multifida is a tropical tree that is endemic to the Atlantic forests of southern Bahia, Brazil. Currently, populations of this species are restricted to fragmented landscapes that are susceptible to anthropogenic disturbances. Considering this issue, and that there is no genetic information available for this endangered species, we developed microsatellite markers for M. multifida to provide resources for future conservation genetics studies. Using an enriched genomic library, we isolated eight polymorphic microsatellite loci and optimized the amplification conditions for M. multifida. For each locus, we estimated the number of alleles, HE and HO, paternity exclusion Q, individual identity I and fixation index F, and examined the presence of null alleles. The mean number of alleles was 11.9, and the heterozygosity was high at all loci (average HE = 0.809 and HO = 0.777). The combined values for both paternity exclusion and individual identity were Q = 0.9959 and I = 5.45 × 10–11, respectively. No evidence of null alleles was detected. The results of our analysis indicated that all eight microsatellites are promising for assessing questions involving inbreeding, gene flow, co-ancestry and mating patterns in M. multifida. PMID:23487575

  9. Y chromosome haplotyping in Scandinavian wolves (Canis lupus) based on microsatellite markers.

    PubMed

    Sundqvist, A K; Ellegren, H; Olivier, M; Vilà, C

    2001-08-01

    The analysis of mitochondrial DNA sequences has for a long time been the most extensively used genetic tool for phylogenetic, phylogeographic and population genetic studies. Since this approach only considers female lineages, it tends to give a biased picture of the population history. The use of protein polymorphisms and microsatellites has helped to obtain a more unbiased view, but complementing population genetic studies with Y chromosome markers could clarify the role of each sex in natural processes. In this study we analysed genetic variability at four microsatellite loci on the canid Y chromosome. With these four microsatellites we constructed haplotypes and used them to study the genetic status of the Scandinavian wolf population, a population that now contains 60-70 animals but was thought to have been extinct in the 1970s. In a sample of 100 male wolves from northern Europe we found 17 different Y chromosome haplotypes. Only two of these were found in the current Scandinavian population. This indicates that there should have been at least two males involved in the founding of the Scandinavian wolf population after the bottleneck in the 1970s. The two Scandinavian Y chromosome haplotypes were not found elsewhere in northern Europe, which indicates low male gene flow between Scandinavia and the neighbouring countries.

  10. Microsatellite markers for an endemic Atlantic Forest tree, Manilkara multifida (Sapotaceae).

    PubMed

    Moraes, Ramiris C S; Vivas, Caio V; Oliveira, Fernanda A; Menezes, Ivandilson P P; van den Berg, Cassio; Gaiotto, Fernanda A

    2013-01-01

    Manilkara multifida is a tropical tree that is endemic to the Atlantic forests of southern Bahia, Brazil. Currently, populations of this species are restricted to fragmented landscapes that are susceptible to anthropogenic disturbances. Considering this issue, and that there is no genetic information available for this endangered species, we developed microsatellite markers for M. multifida to provide resources for future conservation genetics studies. Using an enriched genomic library, we isolated eight polymorphic microsatellite loci and optimized the amplification conditions for M. multifida. For each locus, we estimated the number of alleles, H E and H O, paternity exclusion Q, individual identity I and fixation index F, and examined the presence of null alleles. The mean number of alleles was 11.9, and the heterozygosity was high at all loci (average H E = 0.809 and H O = 0.777). The combined values for both paternity exclusion and individual identity were Q = 0.9959 and I = 5.45 × 10(-11), respectively. No evidence of null alleles was detected. The results of our analysis indicated that all eight microsatellites are promising for assessing questions involving inbreeding, gene flow, co-ancestry and mating patterns in M. multifida.

  11. Transcriptome-derived microsatellite markers for Dioon (Zamiaceae) cycad species1

    PubMed Central

    Prado, Alberto; Cervantes-Díaz, Fret; Perez-Zavala, Francisco G.; González-Astorga, Jorge; Bede, Jacqueline C.; Cibrián-Jaramillo, Angélica

    2016-01-01

    Premise of the study: Dioon (Zamiaceae) is an endangered North American cycad genus of evolutionary and ornamental value. We designed and validated a set of microsatellite markers from D. edule that can be used for population-level and conservation studies, and that transferred successfully to D. angustifolium, D. spinulosum, and D. holmgrenii. Methods and Results: We tested 50 primers from 80 microsatellite candidate loci in the OneKP D. edule transcriptome. Genotypes from 21 loci in 20 D. edule individuals revealed up to 14 alleles per locus and observed heterozygosity from 0.15 to 0.92; one locus was monomorphic. Seven of those 21 loci were polymorphic in D. angustifolium, D. spinulosum, and D. holmgrenii, with up to seven alleles, and an observed heterozygosity up to 0.89. Conclusions: The transcriptome-derived microsatellites generated here will serve as tools to advance population genetic studies and inform conservation strategies of Dioon, including the identification and origin of illegal plants in the cycad trade. PMID:26949574

  12. Evolutionary factors affecting the cross-species utility of newly developed microsatellite markers in seabirds.

    PubMed

    Moodley, Yoshan; Masello, Juan F; Cole, Theresa L; Calderon, Luciano; Munimanda, Gopi K; Thali, Marco R; Alderman, Rachael; Cuthbert, Richard J; Marin, Manuel; Massaro, Melanie; Navarro, Joan; Phillips, Richard A; Ryan, Peter G; Suazo, Cristián G; Cherel, Yves; Weimerskirch, Henri; Quillfeldt, Petra

    2015-09-01

    Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio-temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased nonamplification, or disruptions that may result in decreased polymorphism in nontarget species. Furthermore, high mutation rates and constraints on allele size may also with evolutionary time, promote an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next-generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub-Antarctic seabird, the thin-billed prion (Pachyptila belcheri), that we tested for cross-species amplification in other Pachyptila and related sub-Antarctic species. We found that heterozygosity decreased and the proportion of nonamplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC , even though FST was more affected by null alleles. We observed a significantly nonlinear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross-species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa.

  13. Application of Microsatellite Markers in Conservation Genetics and Fisheries Management: Recent Advances in Population Structure Analysis and Conservation Strategies

    PubMed Central

    Abdul-Muneer, P. M.

    2014-01-01

    Microsatellites are the most popular and versatile genetic marker with myriads of applications in population genetics, conservation biology, and evolutionary biology. These are the arrays of DNA sequences, consisting of tandemly repeating mono-, di-, tri-, and tetranucleotide units, which are distributed throughout the genomes of most eukaryotic species. Microsatellites are codominant in nature, highly polymorphic, easily typed, and Mendelian inherited, all properties which make them very suitable for the study of population structure and pedigree analysis and capable of detecting differences among closely related species. PCR for microsatellites can be automated for identifying simple sequence repeat polymorphism. Small amount of blood samples or alcohol preserved tissue is adequate for analyzing them. Most of the microsatellites are noncoding, and therefore variations are independent of natural selection. These properties make microsatellites ideal genetic markers for conservation genetics and fisheries management. This review addresses the applications of microsatellite markers in conservation genetics and recent advances in population structure analysis in the context of fisheries management. PMID:24808959

  14. A comparison of single nucleotide polymorphism and microsatellite markers for analysis of parentage and kinship in a cooperatively breeding bird.

    PubMed

    Weinman, Lucia R; Solomon, Joseph W; Rubenstein, Dustin R

    2015-05-01

    The development of genetic markers has revolutionized molecular studies within and among populations. Although poly-allelic microsatellites are the most commonly used genetic marker for within-population studies of free-living animals, biallelic single nucleotide polymorphisms, or SNPs, have also emerged as a viable option for use in nonmodel systems. We describe a robust method of SNP discovery from the transcriptome of a nonmodel organism that resulted in more than 99% of the markers working successfully during genotyping. We then compare the use of 102 novel SNPs with 15 previously developed microsatellites for studies of parentage and kinship in cooperatively breeding superb starlings (Lamprotornis superbus) that live in highly kin-structured groups. For 95% of the offspring surveyed, SNPs and microsatellites identified the same genetic father, but only when behavioural information about the likely parents at a nest was included to aid in assignment. Moreover, when such behavioural information was available, the number of SNPs necessary for successful parentage assignment was reduced by half. However, in a few cases where candidate fathers were highly related, SNPs did a better job at assigning fathers than microsatellites. Despite high variation between individual pairwise relatedness values, microsatellites and SNPs performed equally well in kinship analyses. This study is the first to compare SNPs and microsatellites for analyses of parentage and relatedness in a species that lives in groups with a complex social and kin structure. It should also prove informative for those interested in developing SNP loci from transcriptome data when published genomes are unavailable.

  15. Development of microsatellite markers in Robinsonia (Asteraceae) an endemic genus of the Juan Fernández Archipelago, Chile.

    PubMed

    Takayama, Koji; López Sepúlveda, Patricio; Kohl, Gudrun; Novak, Johannes; Stuessy, Tod F

    2013-03-01

    Ten microsatellite markers were developed for Robinsonia (Asteraceae), a genus endemic to the Juan Fernández Archipelago, Chile. Polymorphisms of these markers were tested using one population each of R. evenia, R. gayana, and R. gracilis. The number of alleles for these markers ranged from 2 to 17 per locus, and expected heterozygosity ranged from 0 to 0.847 by population. A significant deviation from Hardy-Weinberg equilibrium was observed in zero to two markers in each population, and no significant linkage disequilibrium between markers was detected. The markers reported here would be useful for evolutionary studies and conservation strategies in Robinsonia.

  16. Comparative study of microsatellite and cytogenetic markers for detecting the origin of the nondisjoined chromosome 21 in down syndrome

    SciTech Connect

    Petersen, M.B.; Frantzen, M.; Lund, C.; Olsen, B.; Poulsen, H.; Sand, A.; Tommerup, N.; Mikkelsen, M. ); Antonarakis, S.E.; Warren, A.C. ); Van Broeckhoven, C. ); Chakravarti, A.; Cox, T.K. )

    1992-09-01

    Nondisjunction in trisomy 21 has traditionally been studied by cytogenetic heteromorphisms. Those studies assumed no crossing-over on the short arm of chromosome 21. Recently, increased accuracy of detection of the origin of nondisjunction has been demonstrated by DNA polymorphism analysis. The authors describe a comparative study of cytogenetic heteromorphisms and seven PCR-based DNA polymorphism analysis. They describe a comparative study of cytogenetic heteromorphisms and seven PCR-based DNA polymorphisms for detecting the origin of the additional chromosome 21 in 68 cases of Down syndrome. The polymorphisms studied were the highly informative microsatellites at loci D21S120, D21S192, IFNAR, D21S156, HMG14, and D21S171. The meiotic stage of nondisjunction was assigned on the basis of the pericentromeric markers D21S215, D21S120, and D21S192. Only unequivocal cytogenetic results were compared with the results of the DNA analysis. The parental and meiotic division origin could be determined in 51% of the cases by using the cytogenetic markers and in 88% of the cases by using the DNA markers. Although there were no discrepancies between the two scoring systems regarding parental origin, there were eight discrepancies regarding meiotic stage of nondisjunction. The results raise the possibility of recombination between the two marker systems, particularly on the short arm. 46 refs., 2 figs., 3 tabs.

  17. A genomic approach for isolating chloroplast microsatellite markers for Pachyptera kerere (Bignoniaceae)1

    PubMed Central

    Francisco, Jessica N. C.; Nazareno, Alison G.; Lohmann, Lúcia G.

    2016-01-01

    Premise of the study: In this study, we developed chloroplast microsatellite markers (cpSSRs) for Pachyptera kerere (Bignoniaceae) to investigate the population structure and genetic diversity of this species. Methods and Results: We used Illumina HiSeq data to reconstruct the chloroplast genome of P. kerere by a combination of de novo and reference-guided assembly. We then used the chloroplast genome to develop a set of cpSSRs from intergenic regions. Overall, 24 primer pairs were designed, 21 of which amplified successfully and were polymorphic, presenting three to nine alleles per locus. The unbiased haploid diversity per locus varied from 0.207 (Pac28) to 0.817 (Pac04). All but one locus amplified for all other taxa of Pachyptera. Conclusions: The markers reported here will serve as a basis for studies to assess the genetic structure and phylogeographic history of Pachyptera. PMID:27672522

  18. Development of 15 polymorphic microsatellite markers for Ficus virens (Moraceae)1

    PubMed Central

    Fu, Rong-Hua; Li, Yun-Xiang; Liu, Mei; Quan, Qiu-Mei

    2017-01-01

    Premise of the study: Ficus virens (Moraceae) is distributed widely in South and Southeast Asia, Melanesia, and northern Australia, and it is also cultivated outside its original northern range limit in southwestern China. Therefore, the species is well suited to explore the mechanism of range limits of Ficus species. However, little is known about its genetic background. Methods and Results: Fifteen polymorphic microsatellite markers were developed using the biotin-streptavidin capture method. Polymorphism was tested in 85 F. virens individuals sampled from three populations. The number of alleles ranged from three to 17. The observed and expected heterozygosity of each population varied from 0.0667 to 0.9286 and 0.0650 to 0.8890, respectively. Cross-species amplification was also carried out in eight other Ficus species. Conclusions: These 15 markers will be valuable for studying the genetic variation and population structure of F. virens and related Ficus species. PMID:28090407

  19. Microsatellite markers: what they mean and why they are so useful

    PubMed Central

    Vieira, Maria Lucia Carneiro; Santini, Luciane; Diniz, Augusto Lima; Munhoz, Carla de Freitas

    2016-01-01

    Abstract Microsatellites or Single Sequence Repeats (SSRs) are extensively employed in plant genetics studies, using both low and high throughput genotyping approaches. Motivated by the importance of these sequences over the last decades this review aims to address some theoretical aspects of SSRs, including definition, characterization and biological function. The methodologies for the development of SSR loci, genotyping and their applications as molecular markers are also reviewed. Finally, two data surveys are presented. The first was conducted using the main database of Web of Science, prospecting for articles published over the period from 2010 to 2015, resulting in approximately 930 records. The second survey was focused on papers that aimed at SSR marker development, published in the American Journal of Botany's Primer Notes and Protocols in Plant Sciences (over 2013 up to 2015), resulting in a total of 87 publications. This scenario confirms the current relevance of SSRs and indicates their continuous utilization in plant science. PMID:27561112

  20. Identification and characterization of microsatellite markers in Pinus kesiya var. langbianensis (Pinaceae)1

    PubMed Central

    Cai, Nian-Hui; Xu, Yu-Lan; Wang, Da-Wei; Chen, Shi; Li, Gen-Qian

    2017-01-01

    Premise of the study: Microsatellite primers were developed in Pinus kesiya var. langbianensis (Pinaceae), a species native to southwestern China, to investigate its genetic diversity and population structure in order to provide information for the conservation and management of this species. Methods and Results: Using next-generation sequencing, a total of 2349 putative simple sequence repeat primer pairs were designed. Eighteen polymorphic markers in 60 individuals belonging to four populations of P. kesiya var. langbianensis were identified and characterized with two to 11 alleles per locus. The observed and expected heterozygosity ranged from 0.000 to 0.800 and 0.000 to 0.840, respectively. Each of these loci cross-amplified in the closely related species P. massoniana, P. densata, P. tabuliformis, and P. yunnanensis, with one to seven alleles per locus. Conclusions: The new markers are promising tools to study the population genetics of P. kesiya var. langbianensis and related species. PMID:28224057

  1. Microsatellite markers isolated from Cabomba aquatica s.l. (Cabombaceae) from an enriched genomic library1

    PubMed Central

    Barbosa, Tiago D. M.; Trad, Rafaela J.; Bajay, Miklos M.; Amaral, Maria C. E.

    2015-01-01

    Premise of the study: Microsatellite primers were designed for the submersed aquatic plant Cabomba aquatica s.l. (Cabombaceae) and characterized to estimate genetic diversity parameters. Methods and Results: Using a selective hybridization method, we designed and tested 30 simple sequence repeat loci using two natural populations of C. aquatica s.l., resulting in 13 amplifiable loci. Twelve loci were polymorphic, and alleles per locus ranged from two to four across the 49 C. aquatica s.l. individuals. Observed heterozygosity, expected heterozygosity, and fixation index varied from 0.0 to 1.0, 0.0 to 0.5, and −1.0 to −0.0667, respectively, for the Manaus population and from 0.0 to 1.0, 0.0 to 0.6, and −1.0 to 0.4643 for the Viruá population. Conclusions: The developed markers will be used in further taxonomic and population studies within Cabomba. This set of microsatellite primers represents the first report on rapid molecular markers in the genus. PMID:26649271

  2. A novel microsatellite (STR) marker for forensic identification of big cats in India.

    PubMed

    Singh, Anju; Gaur, Ajay; Shailaja, K; Satyare Bala, B; Singh, Lalji

    2004-05-10

    India is the home to five of the eight majestic big cats of the world. The three major big cats namely, lion, tiger, and leopard are listed in the Schedule I of the Indian Wildlife Protection Act, 1972. Apart from the severe loss of the habitat, these are continuously facing the danger of extinction mainly due to poaching and hunting for their body parts, which are being greatly valued by apothecaries marketing traditional Chinese medicines. With the advent of polymerase chain reaction (PCR), DNA-based markers have emerged as major tools in the arena of wildlife forensics. Microsatellites (short tandem repeats, STRs) are markers of choice because of their polymorphic and co-dominant nature. These strictly follow the Mendelian inheritance and are highly reproducible. We have identified a new microsatellite (STR) locus Ple 46, which shows amplification in a species-specific manner (size of STR) in all the members of the family felidae studied here. This PCR-based, non-invasive method opens a new avenue to forensic identification of big cats.

  3. Characterization of 13 microsatellite markers for Calochortus gunnisonii (Liliaceae) from Illumina MiSeq sequencing1

    PubMed Central

    Fuller, Ryan S.; Frietze, Seth; McGlaughlin, Mitchell E.

    2015-01-01

    Premise of the study: Microsatellite primers were designed for Calochortus gunnisonii (Liliaceae), a montane lily species of the central and southern Rocky Mountains, using next-generation DNA sequencing. The markers will be used to investigate population structure, genetic diversity, and demographic history. Methods and Results: Thirteen polymorphic microsatellite loci were isolated from C. gunnisonii using Illumina MiSeq next-generation DNA sequencing and bioinformatic screening. The mean number of alleles per locus ranged from 4.15 to 5.92 (avg. = 4.97). Observed and expected heterozygosity ranged from 0.077 to 0.871 and 0.213 to 0.782, respectively. The primers were also tested for cross-species amplification value with C. flexuosus, C. nuttallii, C. kennedyi var. kennedyi, and C. subalpinus. Conclusions: These primers will be useful for genetic and evolutionary studies across C. gunnisonii’s range within the southern and central Rocky Mountains. Furthermore, these markers have proven valuable for cross-species amplifications within Calochortus. PMID:26312200

  4. Microsatellite markers derived from Quercus mongolica var. crispula (Fagaceae) inner bark expressed sequence tags.

    PubMed

    Ueno, Saneyoshi; Taguchi, Yuriko; Tsumura, Yoshihiko

    2008-04-01

    In reforestation programs the genetic composition and diversity of populations that could be used as sources of planting material needs to be carefully considered to maximize the chances of successful establishment. For such purposes genetic analyses that include the identification of functional genes are required. In this study, we constructed a cDNA library from inner bark of Quercus mongolica (which is widely distributed in Japan) and collected 3385 ESTs. After constructing 2140 unigenes, 274 microsatellites were found within them. The most frequent microsatellite had AG motif (48%) and the next most common was AAG motif (12%). There were no CG repeats in the unigenes. In total, 20 EST-SSR markers were developed, polymorphisms of which were described by using eight individuals from eight populations over the species' distributional range. The number of alleles per locus (Na) and observed heterozygosity (H(o)) ranged from 2 to 12, and from 0.25 to 1.00, respectively. Cross-species amplification was successful for 19 loci in eight individuals of Q. serrata and for 20 loci in eight individuals of Q. dentata, with values of Na and H(o) comparable to those of Q. mongolica. The EST-SSR markers characterized in this study should facilitate the analysis of genetic diversity in future studies.

  5. Development of microsatellite markers in Garcinia paucinervis (Clusiaceae), an endangered species of karst habitats1

    PubMed Central

    Hu, Gang; Zhang, Zhong-Hua; Yang, Ping; Zhang, Qi-Wei; Yuan, Chang-An

    2017-01-01

    Premise of the study: Microsatellite markers were developed for Garcinia paucinervis (Clusiaceae), an endangered and endemic tree species of karst habitats, to analyze its genetic diversity and genetic structure. Methods and Results: Using shotgun sequencing on an Illumina MiSeq platform, a total of 22 microsatellite primer sets were characterized, of which 17 were identified as polymorphic. For these polymorphic loci, the total number of alleles per locus ranged from two to 12 across 54 individuals from three populations. The observed and expected heterozygosities ranged from 0.000 to 1.000 and from 0.000 to 0.850, respectively. No pair of loci showed significant linkage disequilibrium. Three loci in one population deviated significantly from Hardy–Weinberg equilibrium (P < 0.05). Seven loci (JSL3, JSL5, JSL22, JSL29, JSL32, JSL39, and JSL43) were successfully amplified in G. bracteata. Conclusions: These markers will be useful in studies on genetic diversity and population structure of G. paucinervis. PMID:28090413

  6. Microsatellite DNA markers detects 95% of chromosome 22q11 deletions

    SciTech Connect

    Bonnet, D.; Cormier-Daire, V.; Munnich, A.; Lyonnet, S.

    1997-01-20

    Cono-truncal cardiac malformations account for some 50% of congenital heart defects in newborn infants. Recently, hemizygosity for chromosome 22q11.2 was reported in patients with the DiGeorge/Velo-cardio-facial syndromes (DGS/VCFS) and causally related disorders. We have explored the potential use of microsatellite DNA markers for rapid detection of 22q11 deletions in 19 newborn infants referred for cono-truncal heart malformations with associated DGS/VCFS anomalies. A failure of parental inheritance was documented in 84.2% of cases (16/19). PCR-based genotyping using microsatellite DNA markers located within the commonly deleted region allowed us either to confirm or reject a 22q11 microdeletion in 94.3% of cases (18/19) within 24 hours. This test is now currently performed in the infants referred to us for a cono-truncal heart malformation as a first intention screening for 22q11 microdeletion. 10 refs., 1 fig., 1 tab.

  7. Identification of earl millet cultivars using both microsatellites and enzymatic markers.

    PubMed

    Mendonça Neto, R P; Von Pinho, E V R; Carvalho, B L; Pereira, G S

    2013-01-07

    The increasing number of protected and registered cultivars and problems involving seed commercialization make distinction and identification of cultivars imperative. Millet (Pennisetum glaucum), a crop species with protected cultivars in Brazil, has been the target of seed piracy. Thus, with the objective of identifying different lots with regard to origin, we characterized six cultivars of commercialized millet of proven origin by means of the electrophoretic patterns of the isoenzymes alcohol dehydrogenase, esterase and glutamate oxaloacetate transaminase and by microsatellite markers, using primers specific for millet. The six cultivars were separated with four microsatellite loci. Based on this characterization, certification of genetic purity was undertaken for public domain commercialized seed lots. The isoenzymatic markers were also tested for stability of the patterns. Esterase patterns were altered in seeds with different physiological quality and health conditions, but this alteration did not hinder identification of the cultivars. It was observed that most of the millet seed lots commercialized in Brazil as being in public domain belong to other cultivars.

  8. Cosegregation of a factor VIII microsatellite marker with mild hemophilia A in Golden Retriever dogs.

    PubMed

    Brooks, Marjory B; Barnas, Jennifer L; Fremont, Jacqueline; Ray, Jharna

    2005-01-01

    Mild hemophilia A (factor VIII deficiency) was diagnosed in Golden Retrievers and pedigree studies were undertaken to test the cosegregation of an intragenic factor VIII marker with the disease phenotype. The study population consisted of 30 client-owned dogs (22 males and 8 females). Hemophilic males (n = 12) typically demonstrated prolonged bleeding after trauma or surgery rather than spontaneous hemorrhagic events. The affected males had a proportionate reduction in factor VIII coagulant activity (mean FVIII:C = 4%) and factor VIII protein concentration (mean FVIII:Ag = 3%). Twenty-five dogs (10 affected males, 8 clear males, 2 obligate carrier dams, and 5 suspect carrier daughters) were genotyped for a factor VIII microsatellite marker, with allele size assigned by an automated capillary electrophoresis system. Five distinct marker alleles were present in the study pedigree and a 300-base pair allele was found to segregate with the hemophilia A phenotype. The inheritance of the hemophilia-associated allele defined carrier status for 5 suspect daughters of obligate carrier dams. The limitations inherent to linkage analyses (i.e., lack of access to key family members and homozygosity at the marker locus) did not preclude carrier detection in this pedigree. We conclude that genotype analysis for the intragenic factor VIII marker can aid in control of canine hemophilia A through enhanced carrier detection.

  9. Isolation and characterization of genomic microsatellite markers for small cardamom (Elettaria cardamomum Maton) for utility in genetic diversity analysis.

    PubMed

    Cyriac, Anu; Paul, Ritto; Anupama, K; Senthil Kumar, R; Sheeja, T E; Nirmal Babu, K; Parthasarathy, V A

    2016-04-01

    Microsatellite markers in small cardamom (Elettaria cardamomum Maton) were developed using the selective hybridization enrichment method. A total of 140 microsatellite repeats were identified from 270 clones. Primers were designed for 58 microsatellites and 44 primer pairs amplified products of expected size in cardamom. These markers were used for studying the diversity of 20 important small cardamom genotypes, and six markers were found to be polymorphic. The number of alleles ranged from 2 to 7 with an average of 3.6 per locus. Polymorphic information content values ranged from 0.14 to 0.38 based on dominant scoring. The two markers ECM 47a and ECMG 28 generated specific banding patterns for the genotypes MCC7 (Pink tiller) and APG434 (MA18) respectively. Dendrogram illustrated the genetic similarity between different genotypes of Kerala and Karnataka regions. It differentiated the closely related genotypes and released varieties into separate groups. Principal coordinate analysis revealed PV1 and ICRI 1 as the most divergent genotypes. The study demonstrated that these markers are informative and can be further utilized for generating reliable molecular data for assisting the crop improvement of small cardamom. Cross generic transferability (71.4 %) of the developed primers proved that they are useful for phylogenetic studies in the family Zingiberaceae. This is the first report of de novo isolation, characterisation and utilization of microsatellite markers for the genetic diversity analysis of small cardamom.

  10. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    PubMed

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  11. A second-generation genetic linkage map for bighead carp (Aristichthys nobilis) based on microsatellite markers.

    PubMed

    Zhu, C; Tong, J; Yu, X; Guo, W; Wang, X; Liu, H; Feng, X; Sun, Y; Liu, L; Fu, B

    2014-10-01

    Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second-generation genetic linkage map was constructed for bighead carp through a pseudo-testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non-normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two-tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well-defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker-assisted breeding in bighead carp.

  12. Development and multiplexing of microsatellite markers using pyrosequencing in the clonal plant Comarum palustre (Rosaceae).

    PubMed

    Somme, L; Raabová, J; Jacquemart, A L; Raspé, O

    2012-01-01

    Microsatellites represent one of the most commonly used genetic markers for population genetic studies. Traditionally, their development is quite time consuming, requiring construction of a genomic library enriched for repeated motifs. Using pyrosequencing, a fast and cost-effective new generation sequencing technique, we produced 24,340,862 bases in 63,860 short fragment reads, including 1170 dinucleotide motifs with a minimum of six repeats and 1383 trinucleotide motifs with a minimum of four repeats for the Marsh Cinquefoil, Comarum palustre L., an endangered marsh pioneer species. We selected 58 loci with SSR (Short Sequence Repeat) segments (at least 10 repeats) for a preliminary screening. Out of them, we screened 29 loci on a capillary sequencer after ligation in a vector and PCR using T7 forward primer labelled with FAM fluorescent dye and the specific unlabeled reverse primers. This procedure allowed us to screen large number of candidate loci with the same labelled primer and unlabelled specific primers. Finally, we characterized 20 polymorphic microsatellite markers, nine dinucleotides and 11 trinucleotides. We used these markers to assess genetic diversity and clonal structure in two Belgian populations. All loci showed a maximum of two alleles per individual, suggesting that they are from a diploid genome. One genet was detected in a newly extending population while 53 different genets in a long-term ecologically managed population. The number of alleles per locus ranged from 6 to 14 in this old population with an expected heterozygosity, ranging from 0.5964 to 0.8278. These preliminary results show a genet size up to 7.2 m.

  13. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    PubMed Central

    2011-01-01

    Background Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi) across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs) and 149 were from non-transcribed genomic sequences (genomic-SSRs). Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO) terms. Duplicate (i.e., redundant accessory) and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped genes with Uni

  14. Repetitive flanking sequences challenge microsatellite marker development: a case study in the lepidopteran Melanargia galathea.

    PubMed

    Schmid, Max; Csencsics, Daniela; Gugerli, Felix

    2016-11-01

    Microsatellite DNA families (MDF) are stretches of DNA that share similar or identical sequences beside nuclear simple-sequence repeat (nSSR) motifs, potentially causing problems during nSSR marker development. Primers positioned within MDFs can bind several times within the genome and might result in multiple banding patterns. It is therefore common practice to exclude MDF loci in the course of marker development. Here, we propose an approach to deal with multiple primer-binding sites by purposefully positioning primers within the detected repetitive element. We developed a new protocol to determine the family type and the primer position in relation to MDFs using the software packages repark and repeatmasker together with an in-house R script. We re-evaluated newly developed nSSR markers for the lepidopteran Marbled White (Melanargia galathea) and explored the implications of our results with regard to published data sets of the butterfly Euphydryas aurinia, the grasshopper Stethophyma grossum, the conifer Pinus cembra and the crucifer Arabis alpina. For M. galathea, we show that it is not only possible to develop reliable nSSR markers for MDF loci, but even to benefit from their presence in some cases: We used one unlabelled primer, successfully binding within an MDF, for two different loci in a multiplex PCR, combining this family primer with uniquely binding and fluorescently labelled primers outside of MDFs, respectively. As MDFs are abundant in many taxa, we propose to consider these during nSSR marker development in taxa concerned. Our new approach might help in reducing the number of tested primers during nSSR marker development.

  15. Genetic Structure of Earthworm Populations at a Regional Scale: Inferences from Mitochondrial and Microsatellite Molecular Markers in Aporrectodea icterica (Savigny 1826)

    PubMed Central

    Torres-Leguizamon, Magally; Mathieu, Jérôme; Decaëns, Thibaud; Dupont, Lise

    2014-01-01

    Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations. PMID:25003795

  16. Genetic structure of earthworm populations at a regional scale: inferences from mitochondrial and microsatellite molecular markers in Aporrectodea icterica (Savigny 1826).

    PubMed

    Torres-Leguizamon, Magally; Mathieu, Jérôme; Decaëns, Thibaud; Dupont, Lise

    2014-01-01

    Despite the fundamental role that soil invertebrates (e.g. earthworms) play in soil ecosystems, the magnitude of their spatial genetic variation is still largely unknown and only a few studies have investigated the population genetic structure of these organisms. Here, we investigated the genetic structure of seven populations of a common endogeic earthworm (Aporrectodea icterica) sampled in northern France to explore how historical species range changes, microevolutionary processes and human activities interact in shaping genetic variation at a regional scale. Because combining markers with distinct modes of inheritance can provide extra, complementary information on gene flow, we compared the patterns of genetic structure revealed using nuclear (7 microsatellite loci) and mitochondrial markers (COI). Both types of markers indicated low genetic polymorphism compared to other earthworm species, a result that can be attributed to ancient bottlenecks, for instance due to species isolation in southern refugia during the ice ages with subsequent expansion toward northern Europe. Historical events can also be responsible for the existence of two divergent, but randomly interbreeding mitochondrial lineages within all study populations. In addition, the comparison of observed heterozygosity among microsatellite loci and heterozygosity expected under mutation-drift equilibrium suggested a recent decrease in effective size in some populations that could be due to contemporary events such as habitat fragmentation. The absence of relationship between geographic and genetic distances estimated from microsatellite allele frequency data also suggested that dispersal is haphazard and that human activities favour passive dispersal among geographically distant populations.

  17. Development, characterization and cross species amplification of polymorphic microsatellite markers from expressed sequence tags of turmeric (Curcuma longa L.).

    PubMed

    Siju, S; Dhanya, K; Syamkumar, S; Sasikumar, B; Sheeja, T E; Bhat, A I; Parthasarathy, V A

    2010-02-01

    Expressed sequence tags (ESTs) from turmeric (Curcuma longa L.) were used for the screening of type and frequency of Class I (hypervariable) simple sequence repeats (SSRs). A total of 231 microsatellite repeats were detected from 12,593 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs accounts to one SSR per 17.96 kb of EST. Mononucleotides were the most abundant class of microsatellite repeat in turmeric ESTs followed by trinucleotides. A robust set of 17 polymorphic EST-SSRs were developed and used for evaluating 20 turmeric accessions. The number of alleles detected ranged from 3 to 8 per loci. The developed markers were also evaluated in 13 related species of C. longa confirming high rate (100%) of cross species transferability. The polymorphic microsatellite markers generated from this study could be used for genetic diversity analysis and resolving the taxonomic confusion prevailing in the genus.

  18. Cross-species transferability of eastern white pine (Pinus strobus) nuclear microsatellite markers to five Mexican white pines.

    PubMed

    Villalobos-Arámbula, A R; Pérez de la Rosa, J A; Arias, A; Rajora, O P

    2014-09-12

    We examined cross-species transferability and usefulness of six nuclear microsatellite markers developed in consubgeneric eastern white pine (Pinus strobus) with regard to ecologically and commercially important Mexican white pine species of conservation genetics concern: Pinus chiapensis (Mart.) Andresen, P. flexilis James, P. strobiformis Engelm., P. ayacahuite Ehrenb. Ex Schltdl, and P. ayacahuite var. veitchii (Roezl) G.R. Shaw. Four to six microsatellite loci were found to be polymorphic in different species, with moderate to high informativeness in a relatively small number of samples (PIC/HE=0.25-0.93). This successful transfer sidesteps the time- and resource-consuming development of species-specific microsatellite markers, and will facilitate population and conservation genetic studies and genetic resource management of the less studied Mexican white pines.

  19. Microsatellite markers for the Cabreúva tree, Myroxylon peruiferum (Fabaceae), an endangered medicinal species from the Brazilian Atlantic Forest.

    PubMed

    Schwarcz, K D; Bajay, M M; Macrini, C M T; Salazar, V L P; Souza, A P; Pinheiro, J B; Brancalion, P H S; Rodrigues, R R; Zucchi, M I

    2014-03-26

    The Cabreúva tree, Myroxylon peruiferum, is an endangered tropical species from Brazil used in forest restoration projects. It is known for its medicinal properties. Eleven microsatellite markers were developed for this species, from a microsatellite-enriched library. Nine of these markers, characterized in 30 individuals from a semideciduous forest remnant population in southeast Brazil, were polymorphic, with allele numbers ranging from 2 to 8 per locus; expected and observed heterozygosities ranged from 0.103 to 0.757 and 0.107 to 0.704, respectively. One locus (Mpe-C04) showed significant deviation from Hardy-Weinberg equilibrium, probably due to null alleles. Two other loci (Mpe-E09 and Mpe-H07) were monomorphic in this population. These microsatellite loci should be useful for future population genetic studies of this species.

  20. Measuring the genetic diversity of Arabian Oryx using microsatellite markers: implication for captive breeding.

    PubMed

    Arif, Ibrahim A; Khan, Haseeb A; Shobrak, Mohammad; Homaidan, Ali A Al; Sadoon, Mohammad Al; Farhan, Ahmad H Al

    2010-04-01

    Arabian oryx (Oryx leucoryx) is an endangered antelope that is being protected by captive breeding programs. However, the long term success of these programs mainly depends on the prudent use of molecular information for conservation management. We have used an array of seven microsatellite loci to examine the molecular diversity in a representative population of 24 captive-bred and reintroduced Arabian oryx. The locus-wise mean observed heterozygosity (0.601) was found to be comparatively higher than the mean expected heterozygosity (0.565). The specimen-wise observed heterozygosity ranged from 0.143 to 1.00 with an average of 0.60 whereas the mean d(2) varied from 0.57 to 1023.428 with an average value of 223.357. The results of Shannon information index (I = 0.898) also indicated a high level of within population genetic diversity. The average gene flow was 0.298, ranging between 0.204 and 0.424 for different loci. In conclusion, the information about the extent of heterozygosity, allelic diversity and inbreeding/outbreeding depression using microsatellite markers could be of potential relevance for the management of captive breeding programs for the conservation of Arabian oryx.

  1. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  2. Population genetic structure of the tropical moss Acanthorrhynchium papillatum as measured with microsatellite markers.

    PubMed

    Leonardía, A A P; Tan, B C; Kumar, P P

    2013-03-01

    Mosses and other bryophytes are vital components of forests, because they sustain a tremendous diversity of invertebrates and influence significant ecological functions. There have been few studies on moss population diversity in Southeast Asia, despite the escalating deforestation in this region of rich biodiversity. The genetic diversity of the tropical moss Acanthorrhynchium papillatum (Harv.) Fleisch., collected from forested areas in Singapore and Peninsular Malaysia, was elucidated using eight microsatellite markers developed for this species. Significant levels of allelic and haplotypic diversity were observed among clumps of the moss. Differences in allelic richness and genotypic diversity among the populations were higher in less disturbed forests compared to the more disturbed areas, suggesting that genetic diversity is affected by habitat quality. Genetic diversity levels within the clumps studied were low, indicating that vegetative reproduction was more important within clumps than sexual reproduction. However, multilocus genotypes of samples within the clumps studied were not all alike, providing evidence of microsatellite mutation or of occasional sexuality. Despite the isolation of populations, A. papillatum can introduce genetic variability by mutation among vegetatively propagated individuals. This study provides baseline information on the genetic diversity of A. papillatum tropical rain forests.

  3. Molecular characterization and differentiation of five horse breeds raised in Algeria using polymorphic microsatellite markers.

    PubMed

    Berber, N; Gaouar, S; Leroy, G; Kdidi, S; Tabet Aouel, N; Saïdi Mehtar, N

    2014-10-01

    In this study, genetic analyses of diversity and differentiation were performed on five horse breeds raised in Algeria (Barb, Arab-Barb, Arabian, Thoroughbred and French Trotter). All microsatellite markers were highly polymorphic in all the breeds. A total of 123 alleles from 14 microsatellite loci were detected in 201 horses. The average number of alleles per locus was the highest in the Arab-Barb horses (7.86) and lowest in the thoroughbred breed (5.71), whereas the observed and expected heterozygosities per breed ranged from 0.71 (Thoroughbred) to 0.752 (Barb) and 0.71 (Thoroughbred) to 0.77 (Arab-Barb), respectively. The genetic differentiation between the breeds was significant (p < 0.01) based on the infinitesimal model (FST ). Three different approaches for evaluating the genetic relationships were applied. Genetic distances, the factorial correspondence analysis and structure analysis showed that a significant amount of genetic variation is maintained in the native horse populations and the other breeds. The Barb and Arab-Barb breeds seem to be the most genetically related and support the decision to consider the breeds as same population.

  4. Paternity analysis of the olive variety "Istrska belica" and identification of pollen donors by microsatellite markers.

    PubMed

    Baruca Arbeiter, Alenka; Jakše, Jernej; Bandelj, Dunja

    2014-01-01

    The leading olive variety in Slovenia is "Istrska belica" (Olea europaea L.), which currently represents 70% of all olive trees in productive orchards. Paternity analysis based on microsatellite markers was used for genotyping and identification of the potential pollen donors of "Istrska belica" and for assessing the proportion of self-fertilization in monovarietal olive orchards in the Slovene Istria. Seven microsatellite loci were used for genotyping thirty-one olive embryos from "Istrska belica" trees and for all potential pollen donor varieties, which are grown in the region and could participate as pollinators. Genotyping results and allele identification were performed using the FaMoz software. The most probable pollen donor was assigned to 39% of all analyzed embryos. Among all analyzed embryos no single case of self-fertilization was confirmed. According to the present results, the variety "Istrska belica" was in all cases fertilized by foreign pollen. The results will contribute to defining the new guidelines for farmers regarding the proper management and growing practice in monovarietal olive groves.

  5. Microsatellite markers in avocado (Persea americana Mill.): genealogical relationships among cultivated avocado genotypes.

    PubMed

    Ashworth, V E T M; Clegg, M T

    2003-01-01

    Twenty-five microsatellite markers uniquely differentiated 35 avocado cultivars and two wild relatives. Average heterozygosity was high (60.7%), ranging from 32% in P. steyermarkii to 84% in Fuerte and Bacon. In a subset of 15 cultivars, heterozygosity averaged 63.5% for microsatellites, compared to 41.8% for restriction fragment length polymorphisms (RFLPs). A neighbor-joining tree, according to average shared allele distances, consisted of three clusters likely corresponding to the botanical races of avocado and intermediate clusters uniting genotypes of presumably racially hybrid origin. Several results were at odds with existing botanical assignments that are sometimes rendered difficult by incomplete pedigree information, the complexity of the hybrid status (multiple backcrossing), or both. For example, cv. Harvest clustered with the Guatemalan race cultivars, yet it is derived from the Guatemalan x Mexican hybrid cv. Gwen. Persea schiedeana grouped with cv. Bacon. The rootstock G875 emerged as the most divergent genotype in our data set. Considerable diversity was found particularly among accessions from Guatemala, including G810 (West Indian race), G6 (Mexican race), G755A (hybrid Guatemalan x P. schiedeana), and G875 (probably not P. americana). Low bootstrap support, even upon exclusion of (known) hybrid genotypes from the data matrix, suggests the existence of ancient hybridization or that the botanical races originated more recently than previously thought.

  6. Transcriptome-based investigation of cirrus development and identifying microsatellite markers in rattan (Daemonorops jenkinsiana)

    PubMed Central

    Zhao, Hansheng; Sun, Huayu; Li, Lichao; Lou, Yongfeng; Li, Rongsheng; Qi, Lianghua; Gao, Zhimin

    2017-01-01

    Rattan is an important group of regenerating non-wood climbing palm in tropical forests. The cirrus is an essential climbing organ and provides morphological evidence for evolutionary and taxonomic studies. However, limited data are available on the molecular mechanisms underlying the development of the cirrus. Thus, we performed in-depth transcriptomic sequencing analyses to characterize the cirrus development at different developmental stages of Daemonorops jenkinsiana. The result showed 404,875 transcripts were assembled, including 61,569 high-quality unigenes were identified, of which approximately 76.16% were annotated and classified by seven authorized databases. Moreover, a comprehensive analysis of the gene expression profiles identified differentially expressed genes (DEGs) concentrated in developmental pathways, cell wall metabolism, and hook formation between the different stages of the cirri. Among them, 37 DEGs were validated by qRT-PCR. Furthermore, 14,693 transcriptome-based microsatellites were identified. Of the 168 designed SSR primer pairs, 153 were validated and 16 pairs were utilized for the polymorphic analysis of 25 rattan accessions. These findings can be used to interpret the molecular mechanisms of cirrus development, and the developed microsatellites markers provide valuable data for assisting rattan taxonomy and expanding the understanding of genomic study in rattan. PMID:28383053

  7. Colonization of Ireland: revisiting 'the pygmy shrew syndrome' using mitochondrial, Y chromosomal and microsatellite markers.

    PubMed

    McDevitt, A D; Vega, R; Rambau, R V; Yannic, G; Herman, J S; Hayden, T J; Searle, J B

    2011-12-01

    There is great uncertainty about how Ireland attained its current fauna and flora. Long-distance human-mediated colonization from southwestern Europe has been seen as a possible way that Ireland obtained many of its species; however, Britain has (surprisingly) been neglected as a source area for Ireland. The pygmy shrew has long been considered an illustrative model species, such that the uncertainty of the Irish colonization process has been dubbed 'the pygmy shrew syndrome'. Here, we used new genetic data consisting of 218 cytochrome (cyt) b sequences, 153 control region sequences, 17 Y-intron sequences and 335 microsatellite multilocus genotypes to distinguish between four possible hypotheses for the colonization of the British Isles, formulated in the context of previously published data. Cyt b sequences from western Europe were basal to those found in Ireland, but also to those found in the periphery of Britain and several offshore islands. Although the central cyt b haplotype in Ireland was found in northern Spain, we argue that it most likely occurred in Britain also, from where the pygmy shrew colonized Ireland as a human introduction during the Holocene. Y-intron and microsatellite data are consistent with this hypothesis, and the biological traits and distributional data of pygmy shrews argue against long-distance colonization from Spain. The compact starburst of the Irish cyt b expansion and the low genetic diversity across all markers strongly suggests a recent colonization. This detailed molecular study of the pygmy shrew provides a new perspective on an old colonization question.

  8. Genetic diversity of the Dwarf honeybee (Apis florea Fabricius, 1787) populations based on microsatellite markers.

    PubMed

    Asadi, N; Rahimi, A; Ghaheri, M; Kahrizi, D; Bagheri Dehbaghi, M; Khederzadeh, S; Banabazi, M H; Esmaeilkhanian, S; Veisi, B; Geravandi, M; Karim, H; Vaziri, S; Daneshgar, F; Zargooshi, J

    2016-10-31

    Apis florea is one of two species of small, wild honeybee. The present study was conducted to evaluate the genetic diversity of Apis florea honeybee from 48 nests (colonies) using microsatellite markers in the South of Iran. All honeybee samples were analyzed for six microsatellite loci (A88, A107, A7, B124, A113 and A35). The six loci had different numbers of alleles in the sampled colonies ranging from 7 (loci A107) to 3 (loci A7, A35). Gene diversity in Apis florea ranged from 0.491 to 0.595. This range probably reflects the spreading of nests in a large region with a varied climate. Phylogenetic tree showed two distinct clusters including a) Minab region samples and b) Bandar Abbas, Bandar Khamir and Qeshm Island regions. All of these regions are geographically rich, having varied vegetation and climate conditions. Our findings are an important contribution to the methods of studying distribution and conservation of Apis florea.

  9. Genetic divergence of rubber tree estimated by multivariate techniques and microsatellite markers

    PubMed Central

    2010-01-01

    Genetic diversity of 60 Hevea genotypes, consisting of Asiatic, Amazonian, African and IAC clones, and pertaining to the genetic breeding program of the Agronomic Institute (IAC), Brazil, was estimated. Analyses were based on phenotypic multivariate parameters and microsatellites. Five agronomic descriptors were employed in multivariate procedures, such as Standard Euclidian Distance, Tocher clustering and principal component analysis. Genetic variability among the genotypes was estimated with 68 selected polymorphic SSRs, by way of Modified Rogers Genetic Distance and UPGMA clustering. Structure software in a Bayesian approach was used in discriminating among groups. Genetic diversity was estimated through Nei's statistics. The genotypes were clustered into 12 groups according to the Tocher method, while the molecular analysis identified six groups. In the phenotypic and microsatellite analyses, the Amazonian and IAC genotypes were distributed in several groups, whereas the Asiatic were in only a few. Observed heterozygosity ranged from 0.05 to 0.96. Both high total diversity (HT' = 0.58) and high gene differentiation (G st' = 0.61) were observed, and indicated high genetic variation among the 60 genotypes, which may be useful for breeding programs. The analyzed agronomic parameters and SSRs markers were effective in assessing genetic diversity among Hevea genotypes, besides proving to be useful for characterizing genetic variability. PMID:21637487

  10. A Review of Microsatellite Markers and Their Applications in Rice Breeding Programs to Improve Blast Disease Resistance

    PubMed Central

    Miah, Gous; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam B.; Rahim, Harun A.; Islam, Kh. Nurul; Latif, Mohammad Abdul

    2013-01-01

    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1–6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding

  11. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers.

    PubMed

    Lu, Xu; Xu, Haiyan; Li, Zhonghu; Shang, Huiying; Adams, Robert P; Mao, Kangshan

    2014-04-01

    Understanding the extent and distribution of genetic diversity is crucial for the conservation and management of endangered species. Cupressus chengiana, C. duclouxiana, C. gigantea, and C. funebris are four ecologically and economically important species in China. We investigated their genetic diversity, population structure, and extant effective population size (35 populations, 484 individuals) employing six pairs of nuclear microsatellite markers (selected from 53). Their genetic diversity is moderate among conifers, and genetic differentiation among populations is much lower in C. gigantea than in the other three species; the estimated effective population size was largest for C. chengiana, at 1.70, 2.91, and 3.91 times the estimates for C. duclouxiana, C. funebris, and C. gigantea, respectively. According to Bayesian clustering analysis, the most plausible population subdivision scheme within species is two groups in C. chengiana, three groups in C. duclouxiana, and a single group for both C. funebris and C. gigantea. We propose a conservation strategy for these cypress species.

  12. Development and characterization of microsatellite markers of the eastern keelback mullet (Liza affinis).

    PubMed

    Liu, L; Gao, T X; Han, Z Q; Li, C H; Sun, D R; Song, N

    2016-06-17

    Twenty-four polymorphic microsatellite loci were isolated and characterized for Liza affinis using a (GT)13-enriched genomic library. The number of alleles per locus ranged from 3 to 9, with a mean number of 6.250. The observed and expected heterozygosities ranged from 0.417 to 1.000 and from 0.550 to 0.861, with an average of 0.859 and 0.779, respectively. Deviation from Hardy-Weinberg proportions was detected at three loci. Evidence of null alleles was found at two loci. These markers will be useful in further studies investigating the genetic variation and population structure of this species, and may provide insights into the maintenance and efficient management of eastern keelback mullet resources.

  13. Genetic diversity of red-bellied Titis (Callicebus moloch) from Eastern Amazonia based on microsatellite markers.

    PubMed

    Menescal, Luciana Alcantarino; Gonçalves, Evonnildo Costa; Silva, Artur; Ferrari, Stephen Francis; Schneider, Maria Paula Cruz

    2009-04-01

    The titi monkeys (Callicebus spp.) are a large, diverse genus of platyrrhines, widely distributed in tropical South America. The genetic variability of these monkeys is still relatively poorly known, especially at the population level. In the present study, four heterologous microsatellite markers were used to investigate genetic diversity in 23 individuals from a wild population of red-bellied titis (Callicebus moloch) in eastern Amazonia. An unexpectedly low level of diversity was found. The average number of alleles was 8.75 (range: 5-15), and the average heterozygosity was 0.33 (range: 0.09-0.65). This preliminary information suggests a reduction of the potential for long-term survival of the population and indicates the putative necessity of implementation of a species conservation program.

  14. Isolation and characterization of microsatellite markers for Bertholletia excelsa (Lecythidaceae) population genetic analysis.

    PubMed

    Sujii, P S; Inglis, P W; Ciampi, A Y; Solferini, V N; Azevedo, V C R

    2013-11-07

    Seven polymorphic microsatellite markers were developed and validated for Bertholletia excelsa (Brazil nut tree) population genetic studies. This species is a widespread monotypic Amazonian tree with high non-timber economic value. Unfortunately, Brazil nut production is currently less than 25% of historical production levels, because of extensive deforestation. All pairs of primers produced clearly interpretable and polymorphic bands. No linkage disequilibrium was observed in an analysis of 46 individuals from one population, three to seven alleles per locus were observed; the expected heterozygosity ranged from 0.378 to 0.978, with significant heterozygote excess for four loci. An analysis of individuals from two populations showed private alleles at all loci. These primer pairs will be useful for population studies, especially for comparing samples from different parts of the Amazon forest.

  15. Development and characterization of microsatellite markers for the Brazil nut tree Bertholletia excelsa Humb. & Bonpl. (Lecythidaceae).

    PubMed

    Reis, Alessandra M M; Braga, Aline C; Lemes, Maristerra R; Gribel, Rogério; Collevatti, Rosane G

    2009-05-01

    Twelve polymorphic microsatellite markers were developed for the Brazil nut (Bertholletia excelsa), one of the most valuable non-timber forest products from the Amazon, based on enrichment protocol. Six to 18 (mean 10.4) alleles per locus were identified and the expected heterozygosity ranged from 0.663 to 0.923 based on a screen of 40 individuals from one population of B. excelsa. The combined probabilities of genetic identity (8.39 × 10(-17) ) and paternity exclusion (0.999999) indicated that multilocus genotypes are likely to be unique allowing precise analyses of genetic structure, gene flow, and mating system of this economically important species.

  16. Identification of the rate of chimerism of different tissues with microsatellite markers in chicken chimeras.

    PubMed

    Siwek, Maria; Sławińska, Anna; Łakota, Paweł; Grajewski, Bartosz; Wawrzyńska, Magdalena; Wiśniewska, Ewa; Pławski, Andrzej; Słomski, Ryszard; Bednarczyk, Marek

    2010-01-01

    The goal of our study was to evaluate whether private alleles can be defined in microsatellite markers for the breeds under investigation; to evaluate if these private alleles distinguish chicken chimera when using different tissues; to trace them back to the donor: Green-Legged Partridgelike and recipient: White Leghorn chicken breeds, and further on, to estimate the level of chimerism in each tissue. Private and common alleles were defined for donor and recipient chicken breeds in 3 loci. The rate of chimerism was defined based on private alleles present in liver, heart, breast muscle, femoral muscle and gonads. The highest rate of chimerism was observed in liver. A lower rate of chimersim was observed in gonads, and femoral muscle, and finally the lowest rate of chimerism was observed in breast muscle and heart.

  17. Genetic diversity and population differentiation in the cockle Cerastoderma edule estimated by microsatellite markers

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Méndez, J.; Insua, A.; Arias-Pérez, A.; Freire, R.

    2013-03-01

    The edible cockle Cerastoderma edule is a marine bivalve commercially fished in several European countries that have lately suffered a significant decrease in production. Despite its commercial importance, genetic studies in this species are scarce. In this work, genetic diversity and population differentiation of C. edule has been assessed using 11 microsatellite markers in eight locations from the European Atlantic coast. All localities showed similar observed and expected heterozygosity values, but displayed differences in allelic richness, with lowest values obtained for localities situated farther north. Global Fst value revealed the existence of significant genetic structure; all but one locality from the Iberian Peninsula were genetically homogeneous, while more remote localities from France, The Netherlands, and Scotland were significantly different from all other localities. A combined effect of isolation by distance and the existence of barriers that limit gene flow may explain the differentiation observed.

  18. Isolation and characteristics of 10 microsatellite markers from the endangered coconut crab (Birgus latro).

    PubMed

    Gan, Chai-Hsia; Tee, See-Min; Tang, Pei-Ciao; Yang, Jay Ming-Che; Freire, Francis; McGowan, Andrew; Narriman, Jiddawi; Mohammed, Mohammed Suleiman; Hsieh, Hwey-Lian; Chen, Chang-Po; Sheppard, Charles; Chen, Chaolun Allen

    2008-11-01

    The coconut crab (Birgus latro), an endangered marine-dispersed crustacean, is facing severe and probably accelerating population extinction worldwide, but biological information on its conservation remains deficient. In order to reveal the genetic structure of B. latro, 10 microsatellite loci were developed. A high degree of polymorphism was observed with a mean number of alleles per locus of 16.9. The mean expected heterozygosities were also high, ranging from 0.742 to 0.965. The observed heterozygosities ranged from 0.210 to 0.925. Departures from Hardy-Weinberg equilibrium were observed at five loci after the Bonferroni correction. These hypervariable markers will be utilized to study the genetic diversity and conservation of B. latro throughout its distribution range in the Pacific and Indian Oceans.

  19. Using microsatellite DNA markers to determine the genetic identity of parental clones used in the Louisiana sugarcane breeding program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane propagates asexually through vegetative cuttings. To validate the genetic identity of sugarcane clones during shipping and handling, we produced molecular fingerprints based on 21 microsatellite (SSR) DNA markers for 116 Louisiana parental clones that were included in the crossing program...

  20. Development of novel chloroplast microsatellite markers to identify species in the Agrostis complex (Poaceae) and related genera.

    PubMed

    Zapiola, Maria L; Cronn, Richard C; Mallory-Smith, Carol A

    2010-07-01

    We needed a reliable way to identify species and confirm potential interspecific and intergeneric hybrids in a landscape level study of gene flow from transgenic glyphosate-resistant Agrostis stolonifera (Poaceae) to compatible relatives. We developed 12 new polymorphic chloroplast microsatellite markers to aid in identifying species recipient of transgenic pollen both within the Agrostis complex and the related genera Polypogon.

  1. Development of microsatellite markers from the transcriptome of Erysiphe necator for analyzing population structure in North America and Europe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used transcriptome sequences of the grape powdery mildew fungus, Erysiphe necator, to develop microsatellite markers (EST-SSRs) to study its relatively unexplored population structure in its center of diversity in eastern North America. Screening the transcriptome sequences revealed 116 contigs w...

  2. Development of microsatellite markers for Fargesia denudata (Poaceae), the staple-food bamboo of the giant panda1

    PubMed Central

    Lv, Yan; Yu, Tao; Lu, Sihai; Tian, Cheng; Li, Junqing; Du, Fang K.

    2016-01-01

    Premise of the study: There is a need for microsatellite primers to analyze genetic parameters of Fargesia denudata (Poaceae), the staple-food bamboo of the giant panda (Ailuropoda melanoleuca). Methods and Results: Using next-generation sequencing technology, we obtained a 75-Mb assembled sequence of F. denudata and identified 182 microsatellites. Primer pairs for 70 candidate microsatellite markers were selected and validated in four individuals, and 42 primer pairs generated reliable amplicons. Fourteen of 16 tested markers were found to be polymorphic in 72 individuals from four F. denudata populations. The number of alleles ranged from two to 19 per locus; the observed and expected heterozygosities ranged from 0 to 1 and from 0 to 0.87, respectively. The transferability of these 16 novel microsatellite markers was validated in five related species. Conclusions: These markers will be useful for examining the genetic diversity, genetic structure, and cloning of F. denudata, the staple-food bamboo of the giant panda, and related bamboo species. PMID:27347452

  3. Comparison of accessions from the UK and US national pear germplasm collections with a standardized set of microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A standardized set of 12 microsatellite markers, previously agreed upon following an ECP/GR workshop in 2006, was used to screen accessions from the UK National Pear Collection at Brogdale and from the US National Pear Germplasm Repository (NCGR), Corvallis. Eight standard varieties were chosen from...

  4. Development of microsatellite markers of vandaceous orchids for species and variety identification.

    PubMed

    Peyachoknagul, S; Nettuwakul, C; Phuekvilai, P; Wannapinpong, S; Srikulnath, K

    2014-07-24

    Vandaceous orchids are a group of orchid genera in the subfamily Vandoideae. Among this group, Mokara, Phalaenopsis, and Vanda are the most popular and commercially important orchids in Thailand. Novel microsatellite markers were developed from Mokara, the intergeneric hybrid from 3 genera Vanda, Ascocentrum, and Arachnis by using enriched method. Six primers from this study plus one primer previously developed from Vanda genome, a total of 7 markers, were selected to characterize 4 orchid genera (Mokara, Vanda, Rhynchostylis, and Ascocenda). The observed and expected heterozygosities varied in the 4 genera from 0.0000-1.0000 and 0.0000-0.8765, respectively. The transferability of these primers was also investigated in 76 vandaceous orchids from 12 genera. Three primer pairs, MOK26, MOK29, and MOK62, could successfully amplify the DNA of all samples, while MOK103 could be used with most of the samples. The total number of alleles from 76 samples ranged from 3 to 19 alleles per locus, with an average of 8.5714. Therefore, these markers could be used for variety/ species identification, certification and protection, genetic diversity, and evolutionary studies.

  5. Microsatellite DNA markers and their correlation with growth traits in mandarin fish (Siniperca chuatsi).

    PubMed

    Sun, L F; Li, J; Liang, X F; Yi, T L; Fang, L; Sun, J; He, Y H; Luo, X N; Dou, Y Q; Yang, M

    2015-12-29

    The mandarin fish (Siniperca chuatsi) is a traditionally cultured freshwater fish with high commercial value in China. To facilitate marker-assisted selection in genetic improvement of this species, 120 microsatellite markers from the literature were characterized in the 25 largest and 25 smallest individuals. Eighteen polymorphic loci were then used to genotype 200 individuals, and the associations between their genotypes and growth traits were examined. We found that eight genotypes of six loci (AP 37-06, AP 37-11, AP 37-16, AP 37-48, AP 38-32, and AP 39-05) were positively correlated with growth traits (body weight, length, and height) in the mandarin fish population. The average observed and expected heterozygosities were 0.68 and 0.59, respectively, and the average PIC value was 0.50, indicating a population with high genetic diversity. Therefore, these markers could be useful for assisted selection in genetic breeding of this species and its related species.

  6. Characterization of microsatellite markers and their correlations with growth traits in Mandarin fish (Siniperca chuatsi).

    PubMed

    Yi, T L; Fang, L; Liang, X F; Sun, L F; Li, J; Luo, X N; Guo, W J; Dou, Y Q; Sun, J

    2015-08-07

    Mandarin fish (Siniperca chuatsi) is a traditionally cultured freshwater fish with high commercial value in China. To facilitate marker-assisted selection for genetic improvement of this species, 100 microsatellite markers identified in previous studies were characterized in the 25 largest and 25 smallest individuals. Twenty polymorphic loci were used to genotype 200 individuals, and the associations between their genotypes and growth traits were examined. We found that 9 genotypes at 8 loci (SC-10, Sin 135, Sin 166, AP 34-23, AP 38-11, AP 37-22, AP 37-08, and AP 37-37) were positively correlated with growth traits (body weight, body length, body height) in the mandarin fish population. The average of observed and expected heterozygosities were 0.71 and 0.59, respectively, and the average polymorphism information content value was 0.54, indicating that the population had high genetic diversity. The markers developed in this study are useful for selection of genetic breeding in this species and its related species.

  7. Evaluation of genetic diversity in fig accessions by using microsatellite markers.

    PubMed

    do Val, A D B; Souza, C S; Ferreira, E A; Salgado, S M L; Pasqual, M; Cançado, G M A

    2013-04-25

    Fig (Ficus carica L.) is a fruit of great importance worldwide. Its propagation is carried out with stem cuttings, a procedure that favors the occurrence of synonymy among specimens. Thus, molecular markers have become an important tool for studies of DNA fingerprinting, germplasm characterization, and genetic diversity evaluation in this plant species. The aim of this study was the analysis of genetic diversity among accessions of fig and the detection of synonyms among samples using molecular markers. Five microsatellite markers previously reported as polymorphic to fig were used to characterize 11 fig cultivars maintained in the germplasm bank located in Lavras, Minas Gerais. A total of 21 polymorphic DNA fragments were amplified, with an average of 4.2 alleles per locus. The average allelic diversity and polymorphic information content were 0.6300 and 0.5644, respectively, whereas the total value for the probability of identity was 1.45 x 10(-4). The study allowed the identification of 10 genotypes and 2 synonymous individuals. The principal coordinate analysis showed no defined clusters despite the formation of groups according to geographical origin. However, neighbor-joining analysis identified the same case of synonymy detected using principal coordinate analysis. The data also indicated that the fig cultivars analyzed constitute a population of individuals with high genetic diversity and a broad range of genetic variation.

  8. Development and characterization of microsatellite markers for Lychnophora pinaster: a study for the conservation of a native medicinal plant.

    PubMed

    Haber, L H; Cavallari, M M; Santos, F R C; Marques, M O M; Gimenes, M A; Zucchi, M I

    2009-05-01

    Lychnophora pinaster Mart. (Asteraceae) is a Brazilian medicinal plant, extensively employed in popular medicine as an anti-inflammatory, analgesic and healing agent. Thirteen polymorphic microsatellite markers were developed and optimized for L. pinaster from an enriched genomic library. The markers were used to analyse 37 plants from two native populations, generating an average number of 6.6 alleles per polymorphic locus. These loci are important tools for future studies of population genetics.

  9. Microsatellite markers for the endangered Roanoke logperch, Percina rex (Percidae) and their potential utility for other darter species

    USGS Publications Warehouse

    Dutton, D.J.; Roberts, J.H.; Angermeier, P.L.; Hallerman, E.M.

    2008-01-01

    The Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P. rex. Markers were also screened in seven other darter species of the genus Percina. Most markers exhibited successful amplification and polymorphism in several species. These markers may therefore prove useful for population genetic studies in other darters, a diverse but highly imperiled group. ?? 2008 The Authors.

  10. [The genetic variation of two microsatellite markers of Escherichia coli F4(K88) receptor in different swine breeds].

    PubMed

    Jiang, Juan; Shi, Qi-Shun; Liu, Xiao-Chun; Huang, Sheng-Qiang; He, Chang-Qing

    2004-03-01

    The genetic variation of ETEC F4 receptor in Shaziling and Yorkshire breeds were studied using two micro-satellite markers(S0223 and S0068). The results showed that there were polymorphisms in the two markers, and there were great variations of the gene heterozygosity and Shannon information index in the two breeds. It was also reported that there were differences in K88ab and K88ac receptors in Chinese native breeds and foreign breeds, so the two markers might be the genetic markers of F4 receptor gene.

  11. Cross-species amplification of microsatellite markers in Mycteria leucocephala Pennant 1769: molted feathers as successful DNA source.

    PubMed

    Sharma, Bharat Bhushan; Mustafa, Mohd; Sharma, Tusha; Banerjee, Basu Dev; Urfi, Abdul Jamil

    2014-10-01

    DNA from molted feathers is being increasingly used for genetic studies on birds. However, the DNA obtained from such non-invasive sources is often not of enough quantity and quality for isolation of new microsatellite markers. The present study examined the potential of shed feathers of near threatened Painted Stork as a source of its DNA for cross-species amplification of microsatellites. Thirty-one shed feathers of varying conditions ('good' and 'deteriorated') and sizes ('large', 'intermediate' and 'small') collected in a north Indian population were used to isolate DNA by a standard isopropanol method and 11 microsatellite markers already developed in the Wood Stork were screened for amplification. Nine plucked feathers from two dead Painted Storks were also used to compare the DNA yield and amplification success. The DNA yield of feathers varied significantly in relation to the calamus size and condition. Among molted feathers, 'good' and 'large' samples provided more DNA than 'deteriorated' and 'small' ones, respectively. 'Large' plucked feathers yielded more DNA than 'large' molted feathers. DNA was almost degraded in all the samples and ratio of absorbance at 260/280 nm varied from 1.0 to 1.8, indicating impurity in many samples. Independent of DNA yields, all microsatellites were cross-amplified in all kinds of feathers, with > 80% success in different feather categories. It is concluded that the shed feathers can be successfully used to isolate DNA in the Painted Stork and for cross-species amplification of microsatellites.

  12. Characterization of 35 novel microsatellite DNA markers from the duck (Anas platyrhynchos) genome and cross-amplification in other birds

    PubMed Central

    Huang, Yinhua; Tu, Jianfeng; Cheng, Xuebo; Tang, Bo; Hu, Xiaoxiang; Liu, Zhaoliang; Feng, Jidong; Lou, Yankun; Lin, Li; Xu, Ke; Zhao, Yulong; Li, Ning

    2005-01-01

    In order to study duck microsatellites, we constructed a library enriched for (CA)n, (CAG)n, (GCC)n and (TTTC)n. A total of 35 pairs of primers from these microsatellites were developed and used to detect polymorphisms in 31 unrelated Peking ducks. Twenty-eight loci were polymorphic and seven loci were monomorphic. A total of 117 alleles were observed from these polymorphic microsatellite markers, which ranged from 2 to 14 with an average of 4.18 per locus. The frequencies of the 117 alleles ranged from 0.02 to 0.98. The highest heterozygosity (0.97) was observed at the CAUD019 microsatellite locus and the lowest heterozygosity (0.04) at the CAUD008 locus, and 11 loci had heterozygosities greater than 0.50 (46.43%). The polymorphism information content (PIC) of 28 loci ranged from 0.04 to 0.88 with an average of 0.42. All the above markers were used to screen the polymorphism in other bird species. Two markers produced specific monomorphic products with the chicken DNA. Fourteen markers generated specific fragments with the goose DNA: 5 were polymorphic and 9 were monomorphic. But no specific product was detected with the peacock DNA. Based on sequence comparisons of the flanking sequence and repeat, we conclude that 2 chicken loci and 14 goose loci were true homologous loci of the duck loci. The microsatellite markers identified and characterized in the present study will contribute to the genetic map, quantitative traits mapping, and phylogenetic analysis in the duck and goose. PMID:15943922

  13. Isolation and characterization of microsatellite markers in the Serra Spanish mackerel, Scomberomorus brasiliensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirteen nuclear-encoded microsatellites from a genomic DNA library of Serra Spanish mackerel, Scomberomorus brasiliensis, were isolated and characterized. The microsatellites include 10 perfect repeats (8 tetranucleotide and 2 dinucleotide) and 3 imperfect repeats (2 tetranucleotide and 1 dinucleo...

  14. Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae)

    PubMed Central

    2013-01-01

    Background Amorphophallus is a genus of perennial plants widely distributed in the tropics or subtropics of West Africa and South Asia. Its corms contain a high level of water-soluble glucomannan; therefore, it has long been used as a medicinal herb and food source. Genetic studies of Amorphophallus have been hindered by a lack of genetic markers. A large number of molecular markers are required for genetic diversity study and improving disease resistance in Amorphophallus. Here, we report large scale of transcriptome sequencing of two species: Amorphophallus konjac and Amorphophallus bulbifer using deep sequencing technology, and microsatellite (SSR) markers were identified based on these transcriptome sequences. Results cDNAs of A. konjac and A. bulbifer were sequenced using Illumina HiSeq™ 2000 sequencing technology. A total of 135,822 non-redundant unigenes were assembled from about 9.66 gigabases, and 19,596 SSRs were identified in 16,027 non-redundant unigenes. Di-nucleotide SSRs were the most abundant motif (61.6%), followed by tri- (30.3%), tetra- (5.6%), penta- (1.5%), and hexa-nucleotides (1%) repeats. The top di- and tri-nucleotide repeat motifs included AG/CT (45.2%) and AGG/CCT (7.1%), respectively. A total of 10,754 primer pairs were designed for marker development. Of these, 320 primers were synthesized and used for validation of amplification and assessment of polymorphisms in 25 individual plants. The total of 275 primer pairs yielded PCR amplification products, of which 205 were polymorphic. The number of alleles ranged from 2 to 14 and the polymorphism information content valued ranged from 0.10 to 0.90. Genetic diversity analysis was done using 177 highly polymorphic SSR markers. A phenogram based on Jaccard’s similarity coefficients was constructed, which showed a distinct cluster of 25 Amorphophallus individuals. Conclusion A total of 10,754 SSR markers have been identified in Amorphophallus using transcriptome sequencing. One hundred and

  15. Mining online genomic resources in Anolis carolinensis facilitates rapid and inexpensive development of cross-species microsatellite markers for the Anolis lizard genus.

    PubMed

    Wordley, Claire; Slate, Jon; Stapley, Jessica

    2011-01-01

    Online sequence databases can provide valuable resources for the development of cross-species genetic markers. In particular, mining expressed tag sequences (EST) for microsatellites and developing conserved cross-species microsatellite markers can provide a rapid and relatively inexpensive method to develop new markers for a range of species. Here, we adopt this approach to develop cross-species microsatellite markers in Anolis lizards, which is a model genus in evolutionary biology and ecology. Using EST sequences from Anolis carolinensis, we identified 127 microsatellites that satisfied our criteria, and tested 49 of these in five species of Anolis (carolinensis, distichus, apletophallus, porcatus and sagrei). We identified between 8 and 25 new variable genetic markers for five Anolis species. These markers will be a valuable resource for studies of population genetics, comparative mapping, mating systems, behavioural ecology and adaptive radiations in this diverse lineage.

  16. [Differentiation of chum salmon Oncorhynchus keta Walbaum populations as revealed with microsatellite and allozyme markers: a comparison].

    PubMed

    Rubtsoba, G A; Afanas'ev, K I; Malinina, T V; Shitova, M V; Rakitskaia, T A; Prokhorovskaia, V D; Zhivotovskiĭ, L A

    2008-07-01

    The character and extent of population differentiation in chum salmon Oncorhynchus keta from Sakhalin and Iturup were comparatively studied with 10 microsatellite and 12 allozyme markers. It was demonstrated with the example of allozyme polymorphism at the EstD locus that the effect of an individual locus with one major allele is capable of distorting the total picture of population differentiation. Multiallelic microsatellites were more efficient in revealing the genetic structure of chum salmon populations at the levels of differences between regional populations and between the stocks of individual rivers of the same region.

  17. Isolation and characterization of microsatellite markers for the tree-root endophytes Phialocephala subalpina and Phialocephala fortinii s.s.

    PubMed

    Queloz, Valentin; Duò, Angelo; Grünig, Christoph R

    2008-11-01

    Species of the Phialocephala fortinii s.l.-Acephala applanata complex are the dominant dark septate endophytes (DSE) in roots of species belonging to the Pinaceae. The two species Phialocephala subalpina and P. fortinii s.s. belong to the most widely distributed species within this complex. In the present study, 15 polymorphic microsatellite loci were developed for these two closely related species. Strains of a community which were analysed previously using single-copy restriction fragment length polymorphism were screened with the new markers. Microsatellites were suitable to classify the two species and to recognize individuals within species.

  18. Genetic diversity and relatedness between Canindé and British Alpine goat breeds in Northeastern Brazil accessed by microsatellite markers.

    PubMed

    Câmara, T S; Nunes, J F; Diniz, F M; Silva, G R; Araújo, A M

    2017-03-30

    The aim of this study was to access the genetic diversity and relatedness between Canindé and British Alpine goat breeds in the States of Piauí and Ceará using microsatellite markers. Genomic DNA was isolated from hair samples of 99 goats belonging to six different flocks. A panel of polymorphic heterologous microsatellite loci was used to genotype individuals. The microsatellite markers resulted in a total number of 145 alleles, with an average of 8.5 alleles per locus. The observed and expected heterozygosities were ≥0.687 and ≥0.627, respectively, for all loci. The polymorphic information content showed that all loci were highly informative with an overall mean of 0.757. Overall FST across all populations and loci was 18%, which was consistent with the coefficient of gene differentiation (GST = 0.104). AMOVA revealed that 12.8% of the variation was captured between breeds. The Bayesian STRUCTURE clustering detected the maximum likelihood for a model of two genetically distinct groups, in agreement with the number of predefined studied breeds and the two-dimensional plot from the PCoA analysis. The exotic British Alpine breed and the naturalized Brazilian Canindé breed were clearly differentiated by the microsatellite markers, indicating that these two breeds have distant genetic identities, despite the phenotypic similarity.

  19. Microsatellite marker development by multiplex ion torrent PGM sequencing: a case study of the endangered Odorrana narina complex of frogs.

    PubMed

    Igawa, Takeshi; Nozawa, Masafumi; Nagaoka, Mai; Komaki, Shohei; Oumi, Shohei; Fujii, Tamotsu; Sumida, Masayuki

    2015-01-01

    The endangered Ryukyu tip-nosed frog Odorrana narina and its related species, Odorrana amamiensis, Odorrana supranarina, and Odorrana utsunomiyaorum, belong to the family Ranidae and are endemically distributed in Okinawa (O. narina), Amami and Tokunoshima (O. amamiensis), and Ishigaki and Iriomote (O. supranarina and O. utsunomiyaorum) Islands. Because of varying distribution patterns, this species complex is an intrinsic model for speciation and adaptation. For effective conservation and molecular ecological studies, further genetic information is needed. For rapid, cost-effective development of several microsatellite markers for these and 2 other species, we used next-generation sequencing technology of Ion Torrent PGM™. Distribution patterns of repeat motifs of microsatellite loci in these modern frog species (Neobatrachia) were similarly skewed. We isolated and characterized 20 new microsatellite loci of O. narina and validated cross-amplification in the three-related species. Seventeen, 16, and 13 loci were cross-amplified in O. amamiensis, O. supranarina, and O. utsunomiyaorum, respectively, reflecting close genetic relationships between them. Mean number of alleles and expected heterozygosity of newly isolated loci varied depending on the size of each inhabited island. Our findings suggested the suitability of Ion Torrent PGM™ for microsatellite marker development. The new markers developed for the O. narina complex will be applicable in conservation genetics and molecular ecological studies.

  20. Development of Microsatellite Markers and Detection of Genetic Variation between Goniozus Wasp Populations

    PubMed Central

    Khidr, Sahand K.; Hardy, Ian C.W.; Zaviezo, Tania; Mayes, Sean

    2014-01-01

    Molecular genetic markers reveal differences between genotypes according to the presence of alleles (the same or different) at target loci. Microsatellite markers are especially useful codominant markers that have been used in a wide range of studies to elucidate the population structure and dynamics of a range of organisms, including agriculturally beneficial insects such as parasitic wasps (parasitoids). In the present study, twelve primer pairs were designed for the south Asian , Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae), and 24 for its New World congener, Goniozus legneri Gordh, parasitoids of the larvae of the lepidopteran coconut pest Opisina arenosella Walker (Lepidoptera: Crytophasidae) and other lepidopteran pests, respectively, in order to investigate polymorphism within and between populations. The wasps fingerprinted were a total of 85 G. nephantidis and G. legneri, including individuals belonging to three putatively different strains of G. legneri. Annealing gradient tests (50–65°C) were conducted to study the quality of the PCR amplification across an annealing temperature gradient using a mixed genotype DNA template from each species separately. Seven primer pairs, which amplified clear products of approximately the expected size of G. nephantidis and 18 of G. legneri, were then selected for capillary analysis for fragment size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legneri were polymorphic within populations. However, there were six primer pairs that did show polymorphism between G. legneri populations that originated from different geographical areas within South America (Uruguay and Chile). Furthermore, one primer pair revealed diversity between the two strains collected within Chile. One of the markers was subsequently used to provide unbiased assessment of primary sex ratio in G. legneri. PMID:25373190

  1. Development of microsatellite markers and detection of genetic variation between Goniozus wasp populations.

    PubMed

    Khidr, Sahand K; Hardy, Ian C W; Zaviezo, Tania; Mayes, Sean

    2014-03-20

    Molecular genetic markers reveal differences between genotypes according to the presence of alleles (the same or different) at target loci. Microsatellite markers are especially useful co-dominant markers that have been used in a wide range of studies to elucidate the population structure and dynamics of a range of organisms, including agriculturally beneficial insects such as parasitic wasps (parasitoids). In the present study, twelve primer pairs were designed for the south Asian , Goniozus nephantidis (Muesebeck) (Hymenoptera: Bethylidae), and 24 for its New World congener, Goniozus legneri Gordh, parasitoids of the larvae of the lepidopteran coconut pest Opisina arenosella Walker (Lepidoptera: Crytophasidae) and other lepidopteran pests, respectively, in order to investigate polymorphism within and between populations. The wasps fingerprinted were a total of 85 G. nephantidis and G. legneri, including individuals belonging to three putatively different strains of G. legneri. Annealing gradient tests (50-65°C) were conducted to study the quality of the PCR amplification across an annealing temperature gradient using a mixed genotype DNA template from each species separately. Seven primer pairs, which amplified clear products of approximately the expected size of G. nephantidis and 18 of G. legneri, were then selected for capillary analysis for fragment size determination on a Beckmann CEQ 8000. Neither G. nephantidis nor G. legneri were polymorphic within populations. However, there were six primer pairs that did show polymorphism between G. legneri populations that originated from different geographical areas within South America (Uruguay and Chile). Furthermore, one primer pair revealed diversity between the two strains collected within Chile. One of the markers was subsequently used to provide unbiased assessment of primary sex ratio in G. legneri.

  2. Development and Characterization of 15 Polymorphic Dinucleotide Microsatellite Markers for Tule Elk Using HiSeq3000.

    PubMed

    Sacks, Benjamin N; Lounsberry, Zachary T; Kalani, Tatyana; Meredith, Erin P; Langner, Cristen

    2016-01-01

    The tule elk (Cervus elaphus nannodes) experienced a severe bottleneck in the 1800s, resulting in low genetic diversity. There is a need for high-resolution genetic assays that can be used to differentiate individual elk, including close relatives, with high confidence. An efficient assay requires multiple markers both polymorphic and that can be amplified in concert with other markers in multiplex reactions. To develop such markers, we employed 150-bp paired-end whole genome shotgun sequencing on an Illumina HiSeq3000 platform to discover dinucleotide microsatellite markers. After preliminary screening of these markers, we selected and screened 15 candidate loci and 5 existing tetra nucleotide markers in 56 tule elk. We combined these markers in 2 multiplex reactions and report primer concentrations and PCR conditions enabling their efficient amplification.

  3. De Novo Transcriptome Assembly and Development of Novel Microsatellite Markers for the Traditional Chinese Medicinal Herb, Veratrilla baillonii Franch (Gentianaceae)

    PubMed Central

    Wang, Lei; Wang, Zhengkun; Chen, Jianbing; Liu, Chunyan; Zhu, Wanlong; Wang, Liuyang; Meng, Lihua

    2015-01-01

    Veratrilla baillonii Franch is an important Chinese medicinal herb for treating liver-related diseases, which has been over-collected in the recent decades. However, the effective conservation and related population genetic study has been hindered because of the lack of genome sequences and genetic markers in the natural population. We have conducted RNA-seq on V. baillonii. We performed de novo assembly of these data to characterize the V. baillonii transcriptome, resulting in 133,019 contigs with size >200 bp. These contigs were annotated using the NCBI nonredundant database and Gene Ontology (GO) terms. From these contigs, we developed novel microsatellite simple sequence repeat (SSR) markers, identifying a total of 40,885 SSRs. SSRs with repeat motifs of 1–4 bp (mono-, di-, tri-, and tetranucleotides) accounted for 99.8% of all SSRs, with mononucleotide repeats most common, followed by dinucleotide (16.2%) and trinucleotide repeats (14.7%). We selected 151 SSRs for experimental validation, of which 74 were confirmed by polymerase chain reaction. Fourteen SSRs were determined to be polymorphic by screening 40 individuals from six distant populations. The number of alleles per locus ranged from two to four, and the expected heterozygosity varied from 0.2637 to 0.8571, suggesting that these SSR markers are highly polymorphic and effective for further genetic analysis in the nature population. In addition, we explored the genetic structure of V. baillonii using five SSRs in four geographic populations and found that the identified genotypes were clustered into two phylogenetic clades: the Mekong River clade and Jinsha River clade. This result indicates that these two regions may harbor highly divergent genetic lineages and enriched genetic diversity. The de novo transcriptome sequences and new SSR markers discovered by this study provide an initial step for understanding the population genetics of V. baillonii, and a valuable resource for effective conservation

  4. Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers.

    PubMed

    Bendhifi Zarroug, M; Baraket, G; Zourgui, L; Souid, S; Salhi Hannachi, A

    2015-02-13

    Opuntia ficus indica is one of the most economically important species in the Cactaceae family. Increased interest in this crop stems from its potential contribution to agricultural diversification, application in the exploitation of marginal lands, and utility as additional income sources for farmers. In Tunisia, O. ficus indica has been affected by drastic genetic erosion resulting from biotic and abiotic stresses. Thus, it is imperative to identify and preserve this germplasm. In this study, we focused on the use of random amplified microsatellite polymorphisms to assess genetic diversity among 25 representatives of Tunisian Opuntia species maintained in the collection of the National Institute of Agronomic Research of Tunisia. Seventy-two DNA markers were screened to discriminate accessions using 16 successful primer combinations. The high percentage of polymorphic band (100%), the resolving power value (5.68), the polymorphic information content (0.94), and the marker index (7.2) demonstrated the efficiency of the primers tested. Therefore, appropriate cluster analysis used in this study illustrated a divergence among the cultivars studied and exhibited continuous variation that occurred independently of geographic origin. O. ficus indica accessions did not cluster separately from the other cactus pear species, indicating that their current taxonomical classifications are not well aligned with their genetic variability or locality of origin.

  5. Sympatric cryptic species in the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) delineated by sequence and microsatellite markers.

    PubMed

    Naughton, K M; O'Hara, T D; Appleton, B; Gardner, M G

    2014-09-01

    The marine species of the southern coast of Australia have not been well studied with regard to molecular connectivity. Cryptic species are expected to be prevalent on this coastline. Here, we investigate the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) using molecular methods to elucidate cryptic species and phylogenetic relationships. The genus Cenolia dominates the southern Australian crinoid fauna in shallow waters. Few studies have examined crinoids for cryptic species at a molecular level and these have been predominantly based on mitochondrial data. We employ the nuclear markers 28S rRNA and ITS-2 in addition to the mitochondrial COI. Six divergent mitochondrial clades were identified. Gene flow between confirmed clades was subsequently examined by the use of six novel microsatellite markers, showing that sympatric taxa with low mtDNA divergences (1.7% K2P) were not interbreeding in the wild. The type specimens of Cenolia benhami and C. spanoschistum were examined, as well as all six divergent clades. Morphological characters dividing taxa were refined. Due to comb pinnule morphology, the New Zealand species benhami was determined to belong to the genus Oxycomanthus (nov. comb.). Three new species of Cenolia (including the Australian "benhami") require description.

  6. Analysis of genetic relationships among Rosa damascena plants grown in Turkey by using AFLP and microsatellite markers.

    PubMed

    Baydar, Nilgün Göktürk; Baydar, Hasan; Debener, Thomas

    2004-08-05

    Rosa damascena Mill. is the most important rose species for rose oil production. The main rose oil producers in the world are Turkey and Bulgaria and they obtain the rose oil almost exclusively from R. damascena. In spite of coming from the same original populations, R. damascena plants grown in Turkey show some morphological differences. In this study, it was aimed to investigate the genetic relationships among R. damascena plants grown in Turkey by using microsatellite and AFLP markers. Twenty three AFLP and nine microsatellite primer pairs were used for this aim. No polymorphism could be detected among the plants, as the marker patterns obtained from different plants are identical. The conclusion from these data is that all R. damascena plants under study are derived from the same original genotype by vegetative propagation. Furthermore, the observed morphological differences originate from point mutations not detectable by molecular markers. Therefore, they are equivalent to sport mutations frequently observed in cut and garden rose varieties.

  7. Development and characterization of microsatellite markers for Brazilian four-eyed frogs (genus Pleurodema) endemic to the Caatinga biome.

    PubMed

    Thomé, M T C; Alexandrino, J; Lopes, S; Haddad, C F B; Sequeira, F

    2014-03-12

    We used pyrosequencing to develop microsatellite markers for the Brazilian four-eyed frog Pleurodema diplolister and tested the microsatellite markers for cross-amplification in its sister Pleurodema alium, which are both endemic species of the Caatinga biome in northeastern Brazil. We used multiplex sets to amplify and genotype 30 individuals of P. diplolister from three different populations and 10 individuals of P. alium from a single population. We successfully amplified 24 loci for P. diplolister, 13 of which we were able to amplify in P. alium. All loci were polymorphic. Significant deviations from the Hardy-Weinberg equilibrium and the presence of null alleles were only consistently detected at one locus (Pleu9). These markers will enable the study of geographic genetic diversity and evolutionary processes in these two Caatinga endemics, and the inclusion of genetic data for conservation planning of the Caatinga biome.

  8. Characterization and application of newly developed polymorphic microsatellite markers in the Ezo red fox (Vulpes vulpes schrencki).

    PubMed

    Tada, T; Seki, Y; Kameyama, Y; Kikkawa, Y; Wada, K

    2016-12-19

    The Ezo red fox (Vulpes vulpes schrencki), a subspecies endemic to Hokkaido island, Japan, is a known host species for the tapeworm Echinococcus multilocularis. To develop tools for molecular ecological studies, we isolated 28 microsatellite regions from the genome of Ezo red fox, and developed 18 polymorphic microsatellite markers. These markers were characterized using 7 individuals and 22 fecal samples of the Ezo red fox. The number of alleles for these markers ranged from 1 to 7, and the observed heterozygosity, estimated on the basis of the genotypes of 7 individuals, ranged from 0.29 to 1.00. All markers, except DvNok5, were in Hardy-Weinberg equilibrium (P > 0.05), and no linkage disequilibrium was detected among these loci, except between DvNok14 and DvNok28 (P = 0.01). Moreover, six microsatellite loci were successfully genotyped using feces-derived DNA from the Ezo red fox. The markers developed in our study might serve as a useful tool for molecular ecological studies of the Ezo red fox.

  9. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers.

    PubMed

    Betto-Colliard, C; Sermier, R; Litvinchuk, S; Perrin, N; Stöck, M

    2015-03-01

    Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.

  10. Identification and characterization of microsatellite markers in Penstemon scariosus (Plantaginaceae)1

    PubMed Central

    Anderson, Chris D.; Ricks, Nathan J.; Farley, Kevin M.; Maughan, Peter J.; Stevens, Mikel R.

    2016-01-01

    Premise of the study: Penstemon scariosus var. albifluvis (Plantaginaceae) has been proposed to be federally listed as threatened due to its unique, geologically oil-rich habitat. Developing simple sequence repeat (SSR) markers to study its genetic diversity would be most useful. Methods and Results: Using genomic reduction in combination with next-generation sequencing, we identified SSR motifs with five to 15 perfect repeats in 1067 P. scariosus contigs. After multiple qualifying tests, 16 SSRs were selected for their robust polymorphic reliability across 12 taxa with as high as 21 alleles in a given taxon. With the exception of two monomorphic loci, the observed and expected heterozygosity values ranged from 0.083 to 1.000 and 0.398 to 0.920, respectively. Conclusions: These microsatellite markers will directly aid in studies of the genetic diversity and relatedness of P. scariosus, P. comarrhenus, P. compactus, P. cyananthus var. cyananthus, P. fremontii var. fremontii, P. fremontii var. glabrescens, P. gibbensii, P. strictus, and P. subglaber. PMID:27011896

  11. De novo assembly and characterization of foot transcriptome and microsatellite marker development for Paphia textile.

    PubMed

    Chen, Xiaoming; Li, Jiakai; Xiao, Shijun; Liu, Xiande

    2016-01-15

    Paphia textile is an important, aquaculture bivalve clam species distributed mainly in China, Philippines, and Malaysia. Recent studies of P. textile have focused mainly on artificial breeding and nutrition analysis, and the transcriptome and genome of P. textile have rarely been reported. In this work, the transcriptome of P. textile foot tissue was sequenced on an Illumina HiSeq™ 2000 platform. A total of 20,219,795 reads were generated, resulting in 4.08 Gb of raw data. The raw reads were cleaned and assembled into 54,852 unigenes with an N50 length of 829 bp. Of these unigenes, 38.92% were successfully annotated based on their matches to sequences in seven public databases. Among the annotated unigenes, 14,571 were assigned Gene Ontology terms, 5448 were classified to Clusters of Orthologous Groups categories, and 6738 were mapped to 228 pathways in the Kyoto Encyclopedia of Genes and Genomes database. For functional marker development, 5605 candidate simple sequence repeats were identified in the transcriptome and 80 primer pairs were selected randomly and amplified in a wild population of P. textile. A total of 36 loci that exhibited obvious repeat length polymorphisms were detected. The transcriptomic data and microsatellite markers will provide valuable resources for future functional gene analyses, genetic map construction, and quantitative trait loci mapping in P. textile.

  12. Genetic diversity of grapevine accessions from Iran, Russia and USA using microsatellite markers.

    PubMed

    Ramezani, A; Haddad, R; Dorostkar, M

    2009-01-15

    To discover marker information content and differentiation among grapevine accessions from Iran, USA and Russia, nine microsatellite markers were used. A total of 75 alleles were detected, giving a mean of 8.3 alleles per 9 loci. The total number of alleles per locus varied between 6 to 11 and the polymorphism information content ranged from 0.65 to 0.88, indicating that these loci were highly informative. A positive correlation (r = 0.870) was observed between the number of alleles and the level of polymorphism. Two SSRs loci including SSrVrZAG47 and VVMD27 were found to be probably synonymous. Gene diversities were high in all populations with values ranging from 0.709 to 0.784. In all populations, the mean number (averaged over loci) of heterozygous individuals was higher than expected. PCO analysis could not be so clearly differentiated accessions from Iran and Russia. The pattern of clustering of the Vitis vinifera populations was according to their geographic distribution. It is suggested that accessions could possibly be assigned to their regions of origin according to their genotypes.

  13. Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina.

    PubMed

    Amavet, Patricia; Rosso, Esteban; Markariani, Rosa; Piña, Carlos Ignacio

    2008-12-01

    Detecting multiple paternity in wild populations of the broad-snouted caiman (Caiman latirostris) has important implications for conservation efforts. We have applied microsatellite markers to examine genetic variation in C. latirostris and also have provided the first data concerning detection of multiple paternity in wild populations of this species. Blood samples from four nest-guarding C. latirostris females and their hatchlings were obtained from Santa Fe Province, Argentina. Amplified products were analyzed by electrophoresis on 10% polyacrylamide gels and visualized with silver staining. Four out of the eight markers tested reliably amplified and yielded useful data. Using polyacrylamide gels with silver staining provides high enough resolution to obtain individual genotypes. In order to assess the presence or absence of more than two parents in each nest, we used the single locus Minimum Method, and applied Cervus 3.0 and Gerud 2.0 software in parentage analyses. Our results indicate more than one father in at least two families. This behavior could be the consequence of high habitat variability in the area where our population was sampled. The ability to understand mating systems is important for maintaining viable populations of exploited taxa like C. latirostris.

  14. Validation of microsatellite markers for cytotype discrimination in the model grass Brachypodium distachyon.

    PubMed

    Giraldo, Patricia; Rodríguez-Quijano, Marta; Vázquez, José F; Carrillo, José M; Benavente, Elena

    2012-07-01

    Brachypodium distachyon (L.) P. Beauv. (2n = 2x = 10) is a small annual grass species where the existence of three different cytotypes (10, 20, and 30 chromosomes) has long been regarded as a case of autopolyploid series with x = 5. However, it has been demonstrated that the cytotypes assumed to be polyploids represent two separate Brachypodium species recently named as Brachypodium stacei (2n = 2x = 20) and Brachypodium hybridum (2n = 4x = 30). The aim of this study was to find a PCR-based alternative approach that could replace standard cytotyping methods (i.e., chromosome counting and flow cytometry) to characterize each of the three Brachypodium species. We have analyzed with four microsatellite (SSR) markers 83 B. distachyon-type lines from varied locations in Spain, including the Balearic and Canary Islands. Within this set of lines, 64, 4, and 15 had 10, 20, and 30 chromosomes, respectively. The surveyed markers produced cytotype-specific SSR profiles. So, a single amplification product was generated in the diploid samples, with nonoverlapping allelic ranges between the 2n = 10 and 2n = 20 cytotypes, whereas two bands, one in the size range of each of the diploid cytotypes, were amplified in the 2n = 30 lines. Furthermore, the remarkable size difference obtained with the SSR ALB165 allowed the identification of the Brachypodium species by simple agarose gel electrophoresis.

  15. Genetic Structure of Lutzomyia longipalpis Populations in Mato Grosso Do Sul, Brazil, Based on Microsatellite Markers

    PubMed Central

    Santos, Mirella F. C.; Ribolla, Paulo E. M.; Alonso, Diego P.; Andrade-Filho, José D.; Casaril, Aline E.; Ferreira, Alda M. T.; Fernandes, Carlos E. S.; Brazil, Reginaldo P.; Oliveira, Alessandra G.

    2013-01-01

    Background Lutzomyialongipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil. Methodology/Principal Findings We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. Conclusions/Significance Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. PMID:24066129

  16. Development of 14 microsatellite markers in Odontites vernus s.l. (Orobanchaceae) and cross-amplification in related taxa1

    PubMed Central

    Pinto-Carrasco, Daniel; Košnar, Jiří; López-González, Noemí; Koutecký, Petr; Těšitel, Jakub; Rico, Enrique; Martínez-Ortega, M. Montserrat

    2016-01-01

    Premise of the study: Microsatellite primers were developed for the first time in the root hemiparasite herb Odontites vernus (Orobanchaceae). These markers will be useful to investigate the role of polyploidization in the evolution of this diploid-tetraploid complex, as well as the extent of gene flow between different ploidy levels. Methods and Results: Fourteen polymorphic and reproducible loci were identified and optimized from O. vernus using a microsatellite-enriched library and 454 Junior sequencing. The set of primers amplified di- to pentanucleotide repeats and showed two to 13 alleles per locus. Transferability was tested in 30 taxa (19 belonging to Odontites and 11 from eight other genera of Orobanchaceae tribe Rhinantheae). Conclusions: The results indicate the utility of the newly developed microsatellites in O. vernus and several other species, which will be useful for taxon delimitation and conservation genetics studies. PMID:27011897

  17. Use of microsatellite markers in molecular analysis of segregating populations of papaya (Carica papaya L.) derived from backcrossing.

    PubMed

    Pinto, F O; Pereira, M G; Luz, L N; Cardozo, D L; Ramos, H C C; Macedo, C M P

    2013-07-08

    Brazil is the world leader in papaya production. However, only a small number of cultivars are registered for commercial planting, mainly owing to delays in obtaining cultivars and the high costs of the field phase of breeding programs. These costs can be reduced when molecular tools are combined with conventional breeding methods. In the present study, we conducted a molecular analysis of a self-fertilized population of a first backcrossing generation of BC1S1 papaya plants via microsatellite markers both to monitor the level of homozygosity and the gene/allele transfer that confers the Golden trait (fruit color) and to assess the parental genomic proportion in the genotypes studied. Based on the analysis of 20 polymorphic microsatellite loci, 19 genotypes with the Golden trait belonging to BC1S1 were evaluated in addition to the parental genotypes. Genetic distance was estimated through weighted index. The genotypes were then grouped using the hierarchical nearest neighbor method, and the analysis of principal coordinates was used to measure the proportion of parental genomes in the segregating genotypes. The mean value of the inbreeding coefficient was 0.36. The analysis of the principal coordinates revealed that on average, 64% of the recurrent parent genome was present in the population. Together, the analyses allowed the selection of 3 individuals for the next backcross cycle (33BC1S1-18, 34BC1S1-16, and 37BC1S1-10). These individuals had a higher proportion of the recurrent parent and were grouped close to the recurrent parent in the cluster analysis.

  18. Development of microsatellite markers in Gonystylus bancanus (Ramin) useful for tracing and tracking of wood of this protected species.

    PubMed

    Smulders, M J M; VAN 't Westende, W P C; Diway, B; Esselink, G D; VAN DER Meer, P J; Koopman, W J M

    2008-01-01

    Ten polymorphic microsatellite markers have been developed for Gonystylus bancanus (Ramin), a protected tree species of peat swamp forests in Malaysia and Indonesia. Eight markers were also shown to be polymorphic in other Gonystylus species. The markers will enable assessing the amount of genetic variation within and among populations and the degree of population differentiation, such that donor populations can be selected for reforestation projects. They may be used for tracing and tracking of wood in the production chain, so that legal trade in this Convention on International Trade in Endangered Species of Wild Fauna and Flora-protected timber species, derived from specifically described origins, can be distinguished from illegally logged timber.

  19. Transferability and utility of white oat (Avena sativa) microsatellite markers for genetic studies in black oat (Avena strigosa).

    PubMed

    Da-Silva, P R; Milach, S C K; Tisian, L M

    2011-11-29

    Preservation and use of wild oat species germplasm are essential for further improvement of cultivated oats. We analyzed the transferability and utility of cultivated (white) oat Avena sativa (AACCDD genome) microsatellite markers for genetic studies of black oat A. strigosa (A(s)A(s) genome) genotypes. The DNA of each black oat genotype was extracted from young leaves and amplified by PCR using 24 microsatellite primers developed from white oat. The PCR products were separated on 3% agarose gel. Eighteen microsatellite primer pairs amplified consistent products and 15 of these were polymorphic in A. strigosa, demonstrating a high degree of transferability. Microsatellite primer pairs AM3, AM4, AM21, AM23, AM30, and AM35 consistently amplified alleles only in A. sativa, which indicates that they are putative loci for either the C or D genomes of Avena. Using the data generated by the 15 polymorphic primer pairs, it was possible to separate 40 genotypes of the 44 that we studied. The four genotypes that could not be separated are probably replicates. We conclude that A. sativa microsatellites have a high transferability index and are a valuable resource for genetic studies and characterization of A. strigosa genotypes.

  20. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species

    PubMed Central

    2013-01-01

    Background Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient “off-the-shelf” markers that are suitable for genotyping a wide range of species would not only save resources but also uniquely enable new comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avian microsatellite markers with enhanced cross-species utility. Results We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utility by genotyping individuals belonging to eight passerine and four non-passerine species. The majority of the new Conserved Avian Microsatellite (CAM) markers amplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with a mean 68% of loci polymorphic per species, compared with 42% in non-passerine species. Conclusions When combined with previously described conserved loci, this new set of conserved markers will not only

  1. Genetic Divergence in Domestic Japanese Quail Inferred from Mitochondrial DNA D-Loop and Microsatellite Markers.

    PubMed

    Nunome, Mitsuo; Nakano, Mikiharu; Tadano, Ryo; Kawahara-Miki, Ryoka; Kono, Tomohiro; Takahashi, Shinji; Kawashima, Takaharu; Fujiwara, Akira; Nirasawa, Keijiro; Mizutani, Makoto; Matsuda, Yoichi

    2017-01-01

    To assess the genetic diversity of domestic Japanese quail (Coturnix japonica) populations, and their genetic relationships, we examined mitochondrial DNA (mtDNA) D-loop sequences and microsatellite markers for 19 Japanese quail populations. The populations included nine laboratory lines established in Japan (LWC, Quv, RWN, WE, AWE, AMRP, rb-TKP, NIES-L, and W), six meat-type quail lines reimported from Western countries (JD, JW, Estonia, NIES-Br, NIES-Fr, and NIES-Hn), one commercial population in Japan, and three wild quail populations collected from three Asian areas. The phylogenetic tree of mtDNA D-loop sequences revealed two distinct haplotype groups, Dloop-Group1 and Dloop-Group2. Dloop-Group1 included a dominant haplotype representing most of the quail populations, including wild quail. Dloop-Group2 was composed of minor haplotypes found in several laboratory lines, two meat-type lines, and a few individuals in commercial and wild quail populations. Taking the breeding histories of domestic populations into consideration, these results suggest that domestic quail populations may have derived from two sources, i.e., domestic populations established before and after World War II in Japan. A discriminant analysis of principal components and a Bayesian clustering analysis with microsatellite markers indicated that the domestic populations are clustered into four genetic groups. The two major groups were Microsat-Group1, which contained WE, and four WE-derived laboratory lines (LWC, Quv, RWN, and AWE), and Microsat-Group2 consisting of NIES-L, JD, JW, Estonia, NIES-Br, NIES-Fr, NIES-Hn, W, and commercial and wild populations. The remaining two lines (AMRP and rb-TKP) were each clustered into a separate clade. This hierarchical genetic difference between domestic quail populations is attributed to the genetic background derived from two different genetic sources-the pre-war and post-war populations-which is well supported by their breeding histories.

  2. Genetic Divergence in Domestic Japanese Quail Inferred from Mitochondrial DNA D-Loop and Microsatellite Markers

    PubMed Central

    Nakano, Mikiharu; Tadano, Ryo; Kawahara-Miki, Ryoka; Kono, Tomohiro; Takahashi, Shinji; Kawashima, Takaharu; Fujiwara, Akira; Nirasawa, Keijiro; Mizutani, Makoto; Matsuda, Yoichi

    2017-01-01

    To assess the genetic diversity of domestic Japanese quail (Coturnix japonica) populations, and their genetic relationships, we examined mitochondrial DNA (mtDNA) D-loop sequences and microsatellite markers for 19 Japanese quail populations. The populations included nine laboratory lines established in Japan (LWC, Quv, RWN, WE, AWE, AMRP, rb-TKP, NIES-L, and W), six meat-type quail lines reimported from Western countries (JD, JW, Estonia, NIES-Br, NIES-Fr, and NIES-Hn), one commercial population in Japan, and three wild quail populations collected from three Asian areas. The phylogenetic tree of mtDNA D-loop sequences revealed two distinct haplotype groups, Dloop-Group1 and Dloop-Group2. Dloop-Group1 included a dominant haplotype representing most of the quail populations, including wild quail. Dloop-Group2 was composed of minor haplotypes found in several laboratory lines, two meat-type lines, and a few individuals in commercial and wild quail populations. Taking the breeding histories of domestic populations into consideration, these results suggest that domestic quail populations may have derived from two sources, i.e., domestic populations established before and after World War II in Japan. A discriminant analysis of principal components and a Bayesian clustering analysis with microsatellite markers indicated that the domestic populations are clustered into four genetic groups. The two major groups were Microsat-Group1, which contained WE, and four WE-derived laboratory lines (LWC, Quv, RWN, and AWE), and Microsat-Group2 consisting of NIES-L, JD, JW, Estonia, NIES-Br, NIES-Fr, NIES-Hn, W, and commercial and wild populations. The remaining two lines (AMRP and rb-TKP) were each clustered into a separate clade. This hierarchical genetic difference between domestic quail populations is attributed to the genetic background derived from two different genetic sources—the pre-war and post-war populations—which is well supported by their breeding histories. PMID

  3. Development of novel microsatellite DNA markers by cross-amplification and analysis of genetic variation in gerbils.

    PubMed

    Du, Xiaoyan; Chen, Zhenwen; Li, Wei; Tan, Yuanqing; Lu, Jing; Zhu, Xiangdong; Zhao, Taiyun; Dong, Gang; Zeng, Lin

    2010-01-01

    The objectives of this study are to establish microsatellite loci for the Mongolian gerbil based on mouse microsatellite DNA sequences and to investigate genetic variation in the laboratory gerbil (Capital Medical University, CMU) and 2 wild gerbil populations (from Yin Chuan city [YIN] and the Hohehot Municipality [HOH]). In total, 536 mouse microsatellite markers were chosen to identify polymorphic dinucleotide repeat loci in the gerbil by cross-amplification. Of these markers, 313 (58.39%) have been discretely amplified from the CMU laboratory gerbil and been sequenced. Of the 313 sequenced markers, 130 were confirmed as simple sequence repeat (SSR) loci in the gerbil. In total, 6 of those newly identified loci plus 6 identified in previous reports were used to estimate the genetic polymorphism for 30 laboratory gerbils and 54 wild gerbils (27 each of the HOH and YIN groups). A total of 29 alleles were observed in the 3 populations, and 11 of 12 loci (91.67%) are polymorphic markers. Nei's standard genetic distances of 0.0592 (CMU vs. HOH) and 0.1033 (CMU vs. YIN) were observed. The averages of observed versus expected heterozygosity are 0.5231/0.4008, 0.5051/0.3882, and 0.4825/0.3665 for the YIN, HOH, and CMU populations, respectively. These results show that cross-amplification using mouse microsatellite primers is an efficient way to identify gerbil SSR loci. By using these 12 selected markers, we have demonstrated that genetic variation level within the CMU population is higher than that has been reported previously and are comparable with the levels found in 2 wild populations.

  4. Characterization of 12 Novel Microsatellite Markers of Sogatella furcifera (Hemiptera: Delphacidae) Identified From Next-Generation Sequence Data

    PubMed Central

    Nam, Hwa Yeun; Coates, Brad; Kim, Kyung Seok; Park, Marana; Lee, Joon-Ho

    2015-01-01

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats) have been widely used to determine the origins and genetic diversity of insect pests. We identified novel microsatellite loci for S. furcifera samples collected from Laos, Vietnam, and three localities in Bangladesh from next-generation Roche 454 pyrosequencing data. Size polymorphism at 12 microsatellite loci was verified for 40 adult individuals collected from Shinan, South Korea. The average number of alleles per locus was 7.92. The mean values of observed (Ho) and expected heterozygosities (HE) were 0.615 and 0.757, respectively. These new microsatellite markers will be a resource for future ecological genetic studies of S. furcifera samples across more broad geographic regions in Asia and may assist in estimations of genetic differentiation and gene flow among populations for implementation of more effective management strategies to control this serious rice pest. PMID:26163593

  5. Characterization of 12 Novel Microsatellite Markers of Sogatella furcifera (Hemiptera: Delphacidae) Identified From Next-Generation Sequence Data.

    PubMed

    Nam, Hwa Yeun; Coates, Brad; Kim, Kyung Seok; Park, Marana; Lee, Joon-Ho

    2015-01-01

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats) have been widely used to determine the origins and genetic diversity of insect pests. We identified novel microsatellite loci for S. furcifera samples collected from Laos, Vietnam, and three localities in Bangladesh from next-generation Roche 454 pyrosequencing data. Size polymorphism at 12 microsatellite loci was verified for 40 adult individuals collected from Shinan, South Korea. The average number of alleles per locus was 7.92. The mean values of observed (H(o)) and expected heterozygosities (H(E)) were 0.615 and 0.757, respectively. These new microsatellite markers will be a resource for future ecological genetic studies of S. furcifera samples across more broad geographic regions in Asia and may assist in estimations of genetic differentiation and gene flow among populations for implementation of more effective management strategies to control this serious rice pest.

  6. Development of pedigree classification using microsatellite and mitochondrial markers for Giant grouper broodstock (Epinephelus lanceolatus) management in Taiwan.

    PubMed

    Kuo, Hsiao-Che; Hsu, Hao-Hsuan; Chua, Chee Shin; Wang, Ting-Yu; Chen, Young-Mao; Chen, Tzong-Yueh

    2014-04-30

    Most giant groupers in the market are derived from inbred stock. Inbreeding can cause trait depression, compromising the animals' fitness and disease resistance, obligating farmers to apply increased amounts of drugs. In order to solve this problem, a pedigree classification method is needed. Here, microsatellite and mitochondrial DNA were used as genetic markers to analyze the genetic relationships among giant grouper broodstocks. The 776-bp fragment of high polymorphic mitochondrial D-loop sequence was selected for measuring sibling relatedness. In a sample of 118 giant groupers, 42 haplotypes were categorized, with nucleotide diversity (π) of 0.00773 and haplotype diversity (HD) of 0.983. Furthermore, microsatellites were used for investigation of parentage. Six out of 33 microsatellite loci were selected as markers based on having a high number of alleles and compliance with Hardy-Weinberg equilibrium. Microsatellite profiles based on these loci provide high variability with low combined non-exclusion probability, permitting practical use in aquaculture. The method described here could be used to improve grouper broodstock management and lower the chances of inbreeding. This approach is expected to lead to production of higher quality groupers with higher disease resistance, thereby reducing the need for drug application.

  7. Microsatellite markers from the 'South American fruit fly' Anastrepha fraterculus: a valuable tool for population genetic analysis and SIT applications

    PubMed Central

    2014-01-01

    Background Anastrepha fraterculus Wiedemann is a horticultural pest which causes significant economic losses in the fruit-producing areas of the American continent and limits the access of products to international markets. The use of environmentally friendly control strategies against this pest is constrained due to the limited knowledge of its population structure. Results We developed microsatellite markers for A. fraterculus from four genomic libraries, which were enriched in CA, CAA, GA and CAT microsatellite motifs. Fifty microsatellite regions were evaluated and 14 loci were selected for population genetics studies. Genotypes of 122 individuals sampled from four A. fraterculus populations were analyzed. The level of polymorphism ranged from three to 13 alleles per locus and the mean expected heterozygosity ranged from 0.60 to 0.64. Comparison between allelic and genotypic frequencies showed significant differences among all pairs of populations. Conclusions This novel set of microsatellite markers provides valuable information for the description of genetic variability and population structure of wild populations and laboratory strains of A. fraterculus. This information will be used to identify and characterize candidate strains suitable to implement effective pest control strategies and might represent a first step towards having a more comprehensive knowledge about the genetics of this pest. PMID:25471285

  8. Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals.

    PubMed

    Vukosavljev, M; Esselink, G D; van 't Westende, W P C; Cox, P; Visser, R G F; Arens, P; Smulders, M J M

    2015-01-01

    The first hurdle in developing microsatellite markers, cloning, has been overcome by next-generation sequencing. The second hurdle is testing to differentiate polymorphic from nonpolymorphic loci. The third hurdle, somewhat hidden, is that only polymorphic markers with a large effective number of alleles are sufficiently informative to be deployed in multiple studies. Both steps are laborious and still performed manually. We have developed a strategy in which we first screen reads from multiple genotypes for repeats that show the most length variants, and only these are subsequently developed into markers. We validated our strategy in tetraploid garden rose using Illumina paired-end transcriptome sequences of 11 roses. Of 48 tested two markers failed to amplify, but all others were polymorphic. Ten loci amplified more than one locus, indicating duplicated genes or gene families. Completely avoiding duplicated loci will be difficult because the range of numbers of predicted alleles of highly polymorphic single- and multilocus markers largely overlapped. Of the remainder, half were replicate markers (i.e. multiple primer pairs for one locus), indicating the difficulty of correctly filtering short reads containing repeat sequences. We subsequently refined the approach to eliminate multiple primer sets to the same loci. The remaining 18 markers were all highly polymorphic, amplifying on average 11.7 alleles per marker (range = 6-20) in 11 tetraploid roses, exceeding the 8.2 alleles per marker of the 24 most polymorphic markers genotyped previously. This strategy therefore represents a major step forward in the development of highly polymorphic microsatellite markers.

  9. Assignment of 112 microsatellite markers to 23 chromosome 11 subregions delineated by somatic hybrids: Comparison with the genetic map

    SciTech Connect

    Couillin, Ph.; Reguigne, I. ); Le Guern, E.; Ravise, N. ); Vignal, A.; Fizames, C.; Delportes, D. ); Rosier, M.F. ); Junien, C. ); Heyningen, V. van )

    1994-05-15

    Using a panel of 25 somatic cell hybrids, the authors have regionally localized 112 microsatellite markers generated by Genethon and assigned to chromosome 11. A genetic map of 74 of them was produced using linkage analysis of the eight largest CEPH (Centre d'Etude du Polymorphisme Humain) families. They could be ordered on chromosome 11 with an average distance of 2.1 cM. The tight correlation observed between the genetic order and the physical assignment of these microsatellites reinforces the genetic map data. These newly localized markers identified by the PCR method using a standardized protocol represent useful tools for mapping YAC clones and establishing YAC contigs and for studying genetic diseases or cancers associated with specific genes and/or germinal/somatic rearrangements of chromosome 11. 60 refs., 2 figs., 2 tabs.

  10. Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species1

    PubMed Central

    Martins, Aline R.; Abreu, Aluana G.; Bajay, Miklos M.; Villela, Priscilla M. S.; Batista, Carlos E. A.; Monteiro, Mariza; Alves-Pereira, Alessandro; Figueira, Glyn M.; Pinheiro, José B.; Appezzato-da-Glória, Beatriz; Zucchi, Maria I.

    2013-01-01

    • Premise of the study: A new set of microsatellite or simple sequence repeat (SSR) markers were developed for Smilax brasiliensis, which is popularly known as sarsaparilla and used in folk medicine as a tonic, antirheumatic, and antisyphilitic. Smilax brasiliensis is sold in Brazilian pharmacies, and its origin and effectiveness are not subject to quality control. • Methods and Results: Using a protocol for genomic library enrichment, primer pairs were developed for 26 microsatellite loci and validated in 17 accessions of S. brasiliensis. Thirteen loci were polymorphic and four were monomorphic. The primers successfully amplified alleles in the congeners S. campestris, S. cissoides, S. fluminensis, S. goyazana, S. polyantha, S. quinquenervia, S. rufescens, S. subsessiliflora, and S. syphilitica. • Conclusions: The new SSR markers described herein are informative tools for genetic diversity and gene flow studies in S. brasiliensis and several congeners. PMID:25202555

  11. A suite of microsatellite markers for genetic management of captive cracids (Aves, Galliformes).

    PubMed

    Costa, M C; Camargo, C; Laganaro, N M; Oliveira, P R R; Davanço, P V; Azeredo, R M A; Simpson, J G P; Silveira, L F; Francisco, M R

    2014-11-27

    Cracids are medium to large frugivorous birds that are endemic to the Neotropics. Because of deforestation and overhunting, many species are threatened. The conservation of several species has relied on captive breeding and reintroduction in the wild, but captive populations may be inbred. Microsatellite tools can permit the construction of genetic pedigrees to reduce inbreeding, but only a few loci are available for this group of birds. Here, we present 10 novel polymorphic microsatellite loci and the cross-amplification of these and of 10 additional loci available in the literature in a panel of 5 cracid species, including 3 species with high conservation concern. We provide the first polymorphic loci for the jacutinga, Aburria jacutinga (N = 8), and red-billed curassow, Crax blumenbachii (N = 9), and additional loci for bare-faced curassow, C. fasciolata (N = 8), Alagoas curassow, Pauxi mitu (N = 5), and razor-billed curassow, P. tuberosa (N = 5). The average number of alleles was 2.9 for A. jacutinga, 2.7 for C. blumenbachii, 3.5 for C. fasciolata, 2.6 for P. mitu, and 5.7 for P. tuberosa. The mean expected heterozygosities were 0.42, 0.40, 0.48, 0.37, and 0.59, respectively. The average probabilities that the set of loci would not exclude a pair of parents of an arbitrary offspring were 2.9% in A. jacutinga, 1% in C. blumenbachii, 0.5% in C. fasciolata, 0.4% in P. mitu, and 0.002% in P. tuberosa suggesting that these loci may be adequate for parentage analysis and to implement ex situ genetic management plans.

  12. Mining of expressed sequence tag libraries of cacao for microsatellite markers using five computational tools.

    PubMed

    Riju, Aikkal; Rajesh, M K; Sherin, P T P Fasila; Chandrasekar, A; Apshara, S Elain; Arunachalam, Vadivel

    2009-08-01

    Expressed sequence tags (ESTs) provide researchers with a quick and inexpensive route for discovering new genes, data on gene expression and regulation, and also provide genic markers that help in constructing genome maps. Cacao is an important perennial crop of humid tropics. Cacao EST sequences, as available in the public domain, were downloaded and made into contigs. Microsatellites were located in these ESTs and contigs using five softwares (MISA, TRA, TROLL, SSRIT and SSR primer). MISA gave maximum coverage of SSRs in cacao ESTs and contigs, although TRA was able to detect higher order (5-mer) repeats. The frequency of SSRs was one per 26.9 kb in the known set of ESTs. One-third of the repeats in EST-contigs were found to be trimeric. A few rare repeats like 21-mer repeat were also located. A/T repeats were most abundant among the mononucleotide repeats and the AG/GA/TC/CT type was the most frequent among dimerics. Flanking primers were designed using Primer3 program and verified experimentally for PCR amplification. The results of the study are made available freely online database (http://riju.byethost31.com/cocoa/). Seven primer pairs amplified genomic DNA isolated from leaves were used to screen a representative set of 12 accessions of cacao.

  13. Phylogeography of the white-clawed crayfish (Austropotamobius italicus) in Spain: inferences from microsatellite markers.

    PubMed

    Matallanas, B; Ochando, M D; Alonso, F; Callejas, C

    2013-09-01

    The white-clawed crayfish (Austropotamobius italicus), a cornerstone of Spain's aquatic ecosystems, was once widely distributed throughout much of the country. Unfortunately, its populations have suffered very strong declines over the last 40 years due to the spread of introduced species (red swamp and signal crayfishes), diseases, habitat loss and other anthropogenic impacts. The present work examines the genetic variation in 23 Spanish and four Italian populations of white-clawed crayfish via the analysis of microsatellite loci. The data show genetic variation in the Spanish populations to be affected by drastic and successive bottlenecks. Notwithstanding, the diversity of these Spanish populations in terms of observed heterozygosity is similar to or even higher than that recorded for other European populations studied using these same markers. North-central Spanish populations are clearly differentiated from the country's remaining populations; they should be considered distinct management units. Processes occurred in historical and recent times, such as genetic drift and translocations, contribute greatly to this genetic structure. These data provide useful information for conservation of this species, since the preservation of its population structure and genetic variability should be goals for management decisions.

  14. Genetic variability in spotted seatrout (Cynoscion nebulosus), determined with microsatellite DNA markers

    USGS Publications Warehouse

    Ward, R.; Bowers, K.; Hensley, R.; Mobley, B.; Belouski, E.

    2007-01-01

    Variation in the allele frequencies of five microsatellite loci was surveyed in 1256 individual spotted seatrout (Cynoscion nebulosus) obtained from 12 bays and estuaries from Laguna Madre, Texas, to Charlotte Harbor, Florida, to St. John's River on the Florida Atlantic Coast. Texas and Louisiana collection sites were resampled each year for two to four years (1998-2001). Genetic differentiation was observed. Spotted seatrout from Florida waters were strongly differentiated from spotted seatrout collected in Louisiana and Texas. The greatest genetic discontinuity was observed between Tampa Bay and Charlotte Harbor, and Charlotte Harbor seatrout were most similar to Atlantic Coast spotted seatrout. Texas and Louisiana samples were not strongly structured within the northwestern Gulf of Mexico and there was little evidence of temporal differentiation within bays. These findings are contrary to those of earlier analyses with allozymes and mitochondrial DNA (mtDNA) where evidence of spatial differentiation was found for spotted seatrout resident on the Texas coast. The differences in genetic structure observed among these markers may reflect differences in response to selective pressure, or may be due to differences in underlying genetic processes.

  15. Development of Multiple Polymorphic Microsatellite Markers for Ceratina calcarata (Hymenoptera: Apidae) Using Genome-Wide Analysis

    PubMed Central

    Shell, Wyatt A.; Rehan, Sandra M.

    2016-01-01

    The small carpenter bee, Ceratina calcarata (Robertson), is a widespread native pollinator across eastern North America. The behavioral ecology and nesting biology of C. calcarata has been relatively well-studied and the species is emerging as a model organism for both native pollinator and social evolution research. C. calcarata is subsocial: reproductively mature females provide extended maternal care to their brood. As such, studies of C. calcarata may also reveal patterns of relatedness and demography unique to primitively social Hymenoptera. Here, we present 21 microsatellite loci, isolated from the recently completed C. calcarata genome. Screening in 39 individuals across their distribution revealed that no loci were in linkage disequilibrium, nor did any deviate significantly from Hardy-Weinberg following sequential Bonferroni correction. Allele count ranged from 2 to 14, and observed and expected heterozygosities ranged from 0.08 to 0.82 (mean 0.47) and 0.26 to 0.88 (mean 0.56), respectively. These markers will enable studies of population-wide genetic structuring across C. calcarata’s distribution. Such tools will also allow for exploration of between and within-colony relatedness in this subsocial native pollinator. PMID:27324584

  16. Development of Multiple Polymorphic Microsatellite Markers for Ceratina calcarata (Hymenoptera: Apidae) Using Genome-Wide Analysis.

    PubMed

    Shell, Wyatt A; Rehan, Sandra M

    2016-01-01

    The small carpenter bee, Ceratina calcarata (Robertson), is a widespread native pollinator across eastern North America. The behavioral ecology and nesting biology of C. calcarata has been relatively well-studied and the species is emerging as a model organism for both native pollinator and social evolution research. C. calcarata is subsocial: reproductively mature females provide extended maternal care to their brood. As such, studies of C. calcarata may also reveal patterns of relatedness and demography unique to primitively social Hymenoptera. Here, we present 21 microsatellite loci, isolated from the recently completed C. calcarata genome. Screening in 39 individuals across their distribution revealed that no loci were in linkage disequilibrium, nor did any deviate significantly from Hardy-Weinberg following sequential Bonferroni correction. Allele count ranged from 2 to 14, and observed and expected heterozygosities ranged from 0.08 to 0.82 (mean 0.47) and 0.26 to 0.88 (mean 0.56), respectively. These markers will enable studies of population-wide genetic structuring across C. calcarata's distribution. Such tools will also allow for exploration of between and within-colony relatedness in this subsocial native pollinator.

  17. High genetic diversity and connectivity in Colossoma macropomum in the Amazon basin revealed by microsatellite markers.

    PubMed

    Fazzi-Gomes, Paola; Guerreiro, Sávio; Palheta, Glauber David Almeida; Melo, Nuno Filipe Alves Correa de; Santos, Sidney; Hamoy, Igor

    2017-02-06

    Colossoma macropomum is the second largest scaled fish of the Amazon. It is economically important for commercial fisheries and for aquaculture, but few studies have examined the diversity and genetic structure of natural populations of this species. The aim of this study was to investigate the levels of genetic variability and connectivity that exist between three natural populations of C. macropomum from the Amazon basin. In total, 247 samples were collected from the municipalities of Tefé, Manaus, and Santarém. The populations were genotyped using a panel of 12 multiplex microsatellite markers. The genetic diversity found in these populations was high and similar to other populations described in the literature. These populations showed a pattern of high gene flow associated with the lack of a genetic structure pattern, indicating that the number of migrants per generation and recent migration rates are high. The values of the FST, RST, and exact test of differentiation were not significant for pairwise comparisons between populations. The Bayesian population clustering analysis indicated a single population. Thus, the data provide evidence for high genetic diversity and high gene flow among C. macropomum populations in the investigated region of the Amazon basin. This information is important for programs aiming at the conservation of natural populations.

  18. Genetic characterization of Mytilus coruscus and M. galloprovincialis using microsatellite markers.

    PubMed

    Kang, J H; Lee, J M; Noh, E S; Park, J Y; An, C M

    2013-11-13

    Korean (hard-shelled) mussels (Mytilus coruscus) are an economically important endemic marine bivalve mollusk of Korea; yet, the population has rapidly declined because of overharvesting and habitat competition from the invasive Mytilus galloprovincialis species. The population structures of M. coruscus and M. galloprovincialis were analyzed by next-generation sequencing using 5 microsatellite markers specifically developed for M. coruscus. M. galloprovincialis had an average of 5.4 alleles per locus (range = 2-10), with an average allelic richness of 4.9 per locus (range = 2.0-9.3). M. coruscus had an average of 5.7 alleles per locus (range = 2-13), with an average allelic richness of 5.2 per locus (range = 2.0-11.9). Excessive homozygosity was observed at 3 loci, which was assumed to be due to the presence of null alleles at these loci. Pairwise multilocus FST estimates showed that the M. coruscus and M. galloprovincialis populations were clearly separated. Six populations of M. galloprovincialis from the western, eastern, and southern coast of Korea formed 2 separate clusters, indicating that more than 2 populations of M. galloprovincialis have been introduced to the Korean Peninsula. Hybrids between M. coruscus and M. galloprovincialis were not identified, probably because of genetic differences or different habitat preferences. Further genetic information is required to perform selective breeding, population management, and restoration of M. coruscus.

  19. Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers

    PubMed Central

    Arnau, Gemma; MN, Sheela; Chair, Hana; Lebot, Vincent; K, Abraham; Perrier, Xavier; Petro, Dalila; Penet, Laurent; Pavis, Claudie

    2017-01-01

    Yams (Dioscorea sp.) are staple food crops for millions of people in tropical and subtropical regions. Dioscorea alata, also known as greater yam, is one of the major cultivated species and most widely distributed throughout the tropics. Despite its economic and cultural importance, very little is known about its origin, diversity and genetics. As a consequence, breeding efforts for resistance to its main disease, anthracnose, have been fairly limited. The objective of this study was to contribute to the understanding of D. alata genetic diversity by genotyping 384 accessions from different geographical regions (South Pacific, Asia, Africa and the Caribbean), using 24 microsatellite markers. Diversity structuration was assessed via Principal Coordinate Analysis, UPGMA analysis and the Bayesian approach implemented in STRUCTURE. Our results revealed the existence of a wide genetic diversity and a significant structuring associated with geographic origin, ploidy levels and morpho-agronomic characteristics. Seventeen major groups of genetically close cultivars have been identified, including eleven groups of diploid cultivars, four groups of triploids and two groups of tetraploids. STRUCTURE revealed the existence of six populations in the diploid genetic pool and a few admixed cultivars. These results will be very useful for rationalizing D. alata genetic resources in breeding programs across different regions and for improving germplasm conservation methods. PMID:28355293

  20. Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers

    USGS Publications Warehouse

    Boersen, Mark R.; Clark, Joseph D.; King, Tim L.

    2003-01-01

    The Recovery Plan for the federally threatened Louisiana black bear (Ursus americanus luteolus) mandates that remnant populations be estimated and monitored. In 1999 we obtained genetic material with barbed-wire hair traps to estimate bear population size and genetic diversity at the 329-km2 Tensas River Tract, Louisiana. We constructed and monitored 122 hair traps, which produced 1,939 hair samples. Of those, we randomly selected 116 subsamples for genetic analysis and used up to 12 microsatellite DNA markers to obtain multilocus genotypes for 58 individuals. We used Program CAPTURE to compute estimates of population size using multiple mark-recapture models. The area of study was almost entirely circumscribed by agricultural land, thus the population was geographically closed. Also, study-area boundaries were biologically discreet, enabling us to accurately estimate population density. Using model Chao Mh to account for possible effects of individual heterogeneity in capture probabilities, we estimated the population size to be 119 (SE=29.4) bears, or 0.36 bears/km2. We were forced to examine a substantial number of loci to differentiate between some individuals because of low genetic variation. Despite the probable introduction of genes from Minnesota bears in the 1960s, the isolated population at Tensas exhibited characteristics consistent with inbreeding and genetic drift. Consequently, the effective population size at Tensas may be as few as 32, which warrants continued monitoring or possibly genetic augmentation.

  1. Development and characterization of 47 novel microsatellite markers for Vellozia squamata (Velloziaceae)1

    PubMed Central

    Duarte-Barbosa, Marcia; Bajay, Miklos M.; Zucchi, Maria I.; Pivello, Vânia R.

    2015-01-01

    • Premise of the study: We developed and validated microsatellite primers for Vellozia squamata (Velloziaceae), an endemic species of the cerrado (Brazilian savannas), to investigate the influence of different fire regimes on its genetic diversity and population structure. • Methods and Results: Using a selective hybridization method, we tested 51 SSR loci using a natural population of V. squamata and obtained 47 amplifiable loci. Among these, 26 loci were polymorphic and the average values of genetic diversity were: average number of alleles per locus (A¯) = 6.54, average number of alleles per polymorphic locus (A¯p) = 7.13, average observed heterozygosity (H¯o) = 0.22, average expected heterozygosity (H¯e) = 0.49, and average fixation index (F¯) = 0.55. • Conclusions: These 26 loci allowed us to assess the effects of distinct fire regimes on the genetic structure of V. squamata populations with the aim of establishing strategies for the conservation of this endemic species. The markers can also be useful for future pharmaceutical studies, as the species has great potential for medicinal and cosmetic applications. PMID:25699216

  2. Development of microsatellite markers to genetically differentiate populations of Octopus minor from Korea and China.

    PubMed

    Kang, Jung-Ha; Kim, Yi-Kyung; Park, Jung-Youn; An, Chel-Min; Jun, Je-Chun

    2012-08-01

    Of the more than 300 octopus species, Octopus minor is one of the most popular and economically important species in Eastern Asia, including Korea, along with O. vulgaris, O. ocellatus, and O. aegina. We developed 19 microsatellite markers from Octopus minor and eight polymorphic markers were developed to analyze the genetic diversity and relationships among four octopus populations from Korea and three from China. The number of alleles per locus varied from 10 to 49, and allelic richness per locus ranged from 2 to 16.4 across all populations. The average allele number among the populations was 11.1, with a minimum of 8.3 and a maximum of 13.6. The mean allelic richness was 8.7 in all populations. The Hardy-Weinberg equilibrium (HWE) test revealed significant deviation in 19 of the 56 single-locus sites, and null alleles were presumed in five of eight loci. The pairwise F ( ST ) values between populations from Korea and China differed significantly in all pairwise comparisons. The genetic distances between the China and Korea samples ranged from 0.161 to 0.454. The genetic distances among the populations from Korea ranged from 0.033 to 0.090, with an average of 0.062; those among populations from China ranged from 0.191 to 0.316, with an average of 0.254. The populations from Korea and China formed clearly separated into clusters via an unweighted pair group method with arithmetic mean dendrogram. Furthermore, a population from muddy flats on the western coast of the Korean Peninsula and one from a rocky area on Jeju Island formed clearly separated subclusters. An assignment test based on the allele distribution discriminated between the Korean and Chinese origins with 96.9 % accuracy.

  3. GENETIC DIVERSITY OF SOME IRANIAN SWEET CHERRY (PRUNUS AVIUM) CULTIVARS USING MICROSATELLITE MARKERS AND MORPHOLOGICAL TRAITS.

    PubMed

    Farsad, A; Esna-Ashari, M

    2016-01-01

    The aim of this study was to characterize 23 important Iranian sweet cherry (Prunus avium) cultivars collected from different provinces of Iran and 1 foreign cultivar, which was used as control, considered for breeding programs by using 21 microsatellite markers and 27 morphological traits. In sweet cherry (Prunus avium) accessions, leaf, fruit, and stone morphological characters were evaluated during two consecutive years. The study revealed a high variability in the set of evaluated sweet cherry accessions. The majority of important correlations were determined among variables representing fruit and leaf size and variables related to color. Cluster analysis distinguished sweet cherry accessions into two distinct groups. Principal component analysis (PCA) of qualitative and quantitative morphological parameters explained over 86.59% of total variability in the first seven axes. In PCA, leaf traits such as leaf length and width, and fruit traits such as length, width, and weight, and fruit flesh and juice color were predominant in the first two components, indicating that they were useful for the assessment of sweet cherry germplasm characterization. Out of 21 SSR markers, 16 were polymorphic, producing 177 alleles that varied from 4 to 16 alleles (9.35 on average) with a mean heterozygosity value of 0.82 that produced successful amplifications and revealed DNA polymorphisms. Allele size varied from 95 to 290 bp. Cluster analyses showed that the studied sweet cherry genotypes were classified intofive main groups based mainly on their species characteristics and SSR data. In general, our results did not show a clear structuring of genetic variability within the Iranian diffusion area of sweet cherry, so it was not possible to draw any indications on regions of provenance delimitation. The results of this study contribute to a better understanding of sweet cherry genetic variations in Iran, thus making for more efficient programs aimed at preserving biodiversity and

  4. Genetic structure of the Korean black scraper Thamnaconus modestus inferred from microsatellite marker analysis.

    PubMed

    An, Hye Suck; Lee, Jang Wook; Park, Jung Yeon; Jung, Hyung Taek

    2013-05-01

    The Korean black scraper, Thamnaconus modestus, is one of the most economically important maricultural fish species in Korea. However, the annual catch of this fish has been continuously declining over the past several decades. In this study, the genetic diversity and relationships among four wild populations and two hatchery stocks of Korean black scraper were assessed based on 16 microsatellite (MS) markers. A total of 319 different alleles were detected over all loci with an average of 19.94 alleles per locus. The hatchery stocks [mean number of alleles (N(A)) = 12, allelic richness (A(R)) = 12, expected heterozygosity (He) = 0.834] showed a slight reduction (P > 0.05) in genetic variability in comparison with wild populations (mean N(A) = 13.86, A(R) = 12.35, He = 0.844), suggesting a sufficient level of genetic variation in the hatchery populations. Similarly low levels of inbreeding and significant Hardy-Weinberg equilibrium deviations were detected in both wild and hatchery populations. The genetic subdivision among all six populations was low but significant (overall F(ST) = 0.008, P < 0.01). Pairwise F(ST), a phylogenetic tree, and multidimensional scaling analysis suggested the existence of three geographically structured populations based on different sea basin origins, although the isolation-by-distance model was rejected. This result was corroborated by an analysis of molecular variance. This genetic differentiation may result from the co-effects of various factors, such as historical dispersal, local environment and ocean currents. These three geographical groups can be considered as independent management units. Our results show that MS markers may be suitable not only for the genetic monitoring of hatchery stocks but also for revealing the population structure of Korean black scraper populations. These results will provide critical information for breeding programs, the management of cultured stocks and the conservation of this species.

  5. Population genetic analysis and origin discrimination of snow crab (Chionoecetes opilio) using microsatellite markers.

    PubMed

    Kang, Jung-Ha; Park, Jung-Youn; Kim, Eun-Mi; Ko, Hyun-Sook

    2013-10-01

    Major habitats for the snow crab Chionoecetes opilio are mostly found within the northwest Atlantic and North Pacific Oceans. However, the East Sea populations of C. opilio, along with its relative the red snow crab (C. japonicas), are two of the most important commercial crustacean species for fisheries on the east coast of the Korean Peninsula. The East Sea populations of C. opilio are facing declining resources due to overfishing and global climate change. Thus, an analysis of population structure is necessary for future management. Five Korean and one Russian group of C. opilio were analyzed using nine microsatellite markers that were recently developed using next-generation sequencing. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The number of alleles per locus varied from 4 to 18 with a mean of 12, and allelic richness per locus ranged from 4.0 to 17.1 across all populations with a mean of 9.7. The Hardy-Weinberg equilibrium test revealed significant deviation in three out of nine loci in some populations after sequential Bonferroni correction and all of them had higher expected heterozygosity than observed heterozygosity. Null alleles were presumed in four loci, which explained the homozygosity in three loci. The pairwise fixation index (F ST ) values among the five Korean snow crab populations did not differ significantly, but all of the pairwise F ST values between each of the Korean snow crab populations and the Russian snow crab population differed significantly. An UPGMA dendrogram revealed clear separation of the Russian snow crab population from the Korean snow crab populations. Assignment tests based on the allele distribution discriminated between Korean and Russian origins with 93 % accuracy. Therefore, the snow crab populations around the Korean Peninsula need to be managed separately from the populations in Bering Sea in global scale resource management. Also, this information can be

  6. Assessment of genetic diversity and relationships among wild and cultivated Tunisian plums (Prunus spp) using random amplified microsatellite polymorphism markers.

    PubMed

    Ben Tamarzizt, H; Ben Mustapha, S; Baraket, G; Abdallah, D; Salhi-Hannachi, A

    2015-03-20

    The usefulness of random amplified microsatellite polymorphism markers to study the genetic diversity and relationships among cultivars belonging to Prunus salicina and P. domestica and their wild relatives (P. insititia and P. spinosa) was investigated. A total of 226 of 234 bands were polymorphic (96.58%). The 226 random amplified microsatellite polymorphism markers were screened using 15 random amplified polymorphic DNA and inter-simple sequence repeat primers combinations for 54 Tunisian plum accessions. The percentage of polymorphic bands (96.58%), the resolving power of primers values (135.70), and the polymorphic information content demonstrated the efficiency of the primers used in this study. The genetic distances between accessions ranged from 0.18 to 0.79 with a mean of 0.24, suggesting a high level of genetic diversity at the intra- and interspecific levels. The unweighted pair group with arithmetic mean dendrogram and principal component analysis discriminated cultivars efficiently and illustrated relationships and divergence between spontaneous, locally cultivated, and introduced plum types. These procedures showed continuous variation that occurs independently of the status of the species and geographical origin of the plums. In this study, random amplified microsatellite polymorphism was found to be as a reliable molecular marker for fingerprinting and for examining the diversity study of the plum and its relatives.

  7. Development, characterization, and cross-amplification of microsatellite markers in the understudied African genus Anthonotha (Fabaceae)1

    PubMed Central

    Demenou, Boris B.; Hardy, Olivier J.

    2017-01-01

    Premise of the study: Anthonotha macrophylla (Fabaceae) is a common tree species throughout the Guineo-Congolian forest that is sometimes confounded with other congeneric species; it is expected to be an interesting phylogeographical model to infer the history of the African dense forests. We developed 18 microsatellite markers from this species and tested their transferability in 15 congeneric species. Methods and Results: A genomic library was obtained using the Illumina platform, and 18 polymorphic microsatellite loci were developed. The polymorphic microsatellites displayed two to 24 alleles (average: 11.9 alleles per locus, expected heterozygosity range: 0.18–0.91, mean: 0.64) in three populations of A. macrophylla from Benin, Liberia, and Cameroon. Cross-amplification in one to nine individuals of 15 congeneric Anthonotha species (A. acuminata, A. brieyi, A. cladantha, A. crassifolia, A. ferruginea, A. fragrans, A. gilletii, A. lamprophylla, A. mouandzae, A. noldeae, A. pellegrinii, A. pynaertii, A. stipulacea, A. wijmacampensis, and A. xanderi) showed successful amplification in six to 17 loci, making most of these markers useful at the generic level. Conclusions: This set of markers will be useful to study species delimitation and the genetic structure of Anthonotha species, and thus to better understand the history of tropical African rainforests. PMID:28090412

  8. Development of Microsatellite Markers and Analysis of Genetic Diversity and Population Structure of Colletotrichum gloeosporioides from Ethiopia

    PubMed Central

    Moges, Asmare D.; Admassu, Belayneh; Belew, Derbew; Yesuf, Mohammed; Njuguna, Joyce; Kyalo, Martina; Ghimire, Sita R.

    2016-01-01

    Twenty three polymorphic microsatellite markers were developed for citrus plant pathogenic fungus, Colletotrichum gloeosporioides, and were used to analyze genetic diversity and population structure of 163 isolates from four different geographical regions of Ethiopia. These loci produced a total of 118 alleles with an average of 5.13 alleles per microsatellite marker. The polymorphic information content values ranged from 0.104 to 0.597 with an average of 0.371. The average observed heterozygosity across all loci varied from 0.046 to 0.058. The gene diversity among the loci ranged from 0.106 to 0.664. Unweighted Neighbor-joining and population structure analysis grouped these 163 isolates into three major groups. The clusters were not according to the geographic origin of the isolates. Analysis of molecular variance showed 85% of the total variation within populations and only 5% among populations. There was low genetic differentiation in the total populations (FST = 0.049) as evidenced by high level of gene flow estimate (Nm = 4.8 per generation) among populations. The results show that Ethiopian C. gloeosporioides populations are generally characterized by a low level of genetic diversity. The newly developed microsatellite markers were useful in analyzing the genetic diversity and population structure of the C. gloeosporioides populations. Information obtained from this study could be useful as a base to design strategies for better management of leaf and fruit spot disease of citrus in Ethiopia. PMID:26978654

  9. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae)

    PubMed Central

    Jan, Catherine

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species. PMID:27688959

  10. Polymorphic DNA microsatellite markers for forensic individual identification and parentage analyses of seven threatened species of parrots (family Psittacidae).

    PubMed

    Jan, Catherine; Fumagalli, Luca

    2016-01-01

    The parrot family represents one of the bird group with the largest number of endangered species, as a result of habitat destruction and illegal trade. This illicit traffic involves the smuggling of eggs and animals, and the laundering through captive breeding facilities of wild-caught animals. Despite the huge potential of wildlife DNA forensics to determine with conclusive evidence illegal trade, current usage of DNA profiling approaches in parrots has been limited by the lack of suitable molecular markers specifically developed for the focal species and by low cross-species polymorphism. In this study, we isolated DNA microsatellite markers in seven parrot species threatened with extinction (Amazona brasiliensis, A. oratrix, A. pretrei, A. rhodocorytha, Anodorhynchus leari, Ara rubrogenys and Primolius couloni). From an enriched genomic library followed by 454 pyrosequencing, we characterized a total of 106 polymorphic microsatellite markers (mostly tetranucleotides) in the seven species and tested them across an average number of 19 individuals per species. The mean number of alleles per species and across loci varied from 6.4 to 8.3, with the mean observed heterozygosities ranging from 0.65 to 0.84. Identity and parentage exclusion probabilities were highly discriminatory. The high variability displayed by these microsatellite loci demonstrates their potential utility to perform individual genotyping and parentage analyses, in order to develop a DNA testing framework to determine illegal traffic in these threatened species.

  11. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species.

    PubMed

    Cleary, Katherine A; Waits, Lisette P; Hohenlohe, Paul A

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2-11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell's short-tailed bat (Carollia sowelli), Seba's short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively.

  12. Development and characterization of fourteen novel microsatellite markers for the chestnut short-tailed fruit bat (Carollia castanea), and cross-amplification to related species

    PubMed Central

    Waits, Lisette P.; Hohenlohe, Paul A.

    2016-01-01

    Rapid anthropogenic land use change threatens the primary habitat of the Chestnut short-tailed bat (Carollia castanea) throughout much of its range. Information on population genetic structure can inform management strategies for this widespread frugivorous bat, and effective protection of C. castanea will also benefit the more than 20 mutualistic plant species of which this bat is the primary seed disperser. To facilitate understanding of population genetic structure in this species, fourteen novel microsatellite markers were developed using restriction-site-associated DNA libraries and Illumina sequencing and tested on 28 individuals from 13 locations in Costa Rica. These are the first microsatellite markers developed for C. castanea. All loci were polymorphic, with number of alleles ranging from 2–11 and average observed heterozygosity of 0.631. Markers were also cross-amplified in three additional frugivorous bat species threatened by habitat loss and fragmentation: Sowell’s short-tailed bat (Carollia sowelli), Seba’s short-tailed bat (Carollia perspicillata), and the Jamaican fruit bat (Artibeus jamaicensis), and 10, 11, and 8 were polymorphic, respectively. PMID:27688969

  13. Microsatellite markers for the tetraploid halophyte Suaeda maritima (L.) Dumort. (Chenopodiaceae) and cross-species amplification in related taxa.

    PubMed

    Prinz, Kathleen; Hensen, Isabell; Schie, Stephan; Debener, Thomas; Weising, Kurt

    2009-07-01

    We developed 12 polymorphic microsatellite markers for the tetraploid halophyte Suaeda maritima (Chenopodiaceae). Population genetic parameters were estimated for three populations from different habitats (coastal and inland), using the program Tetrasat. Between two and 15 alleles per locus were observed. Mean expected heterozygosities (H(E) ) and Shannon-Wiener Diversity Indices (H') per locus and population ranged from zero to 0.852, and from zero to 2.990, respectively. The two inland populations were less diverse than the coastal one at most of the loci. All markers cross-amplified in the closely related Suaeda salsa, and all but one were transferable to Suaeda spicata and Suaeda salinaria.

  14. Development of 10 highly-polymorphic microsatellite markers in the vulnerable Galápagos land iguanas (genus Conolophus).

    PubMed

    Rosa, Sabrina F P; Monteyne, Daniel; Milinkovitch, Michel C

    2009-01-01

    The two species of Galápagos land iguanas (Conolophus subcristatus and C. pallidus) are listed as 'vulnerable' species by the International Union for the Conservation of Nature (IUCN Red List; http://www.iucnredlist.org). Here, we report on the isolation and characterization of 10 microsatellite markers using 562 individuals sampled on all Galápagos islands where Conolophus species occur today. We show that these 10 loci are highly polymorphic and display diagnostic alleles for five out of the six island populations. These markers will be useful for Conolophus population genetic analyses as well as for guiding ongoing captive breeding programmes.

  15. Polymorphic microsatellite markers for the endangered fish, the slender shiner Pseudopungtungia tenuicorpa and cross-species amplification across five related species.

    PubMed

    Kim, K S; Moon, S J; Han, S H; Kim, K Y; Bang, I C

    2016-09-02

    The slender shiner Pseudopungtungia tenuicorpa (Cypriniformes; Cyprinidae; Gobioninae) is an endangered freshwater fish species endemic to Korea. The current strategies for its conservation involve the study of population genetic characters and identification of management units. These strategies require suitable molecular markers to study genetic diversity and genetic structure. Here, we developed nine polymorphic microsatellite markers for P. tenuicorpa for the first time by applying an enrichment method from a size-selected genomic library. The developed microsatellite markers produced a total of 101 alleles (average 11.2). The observed and expected heterozygosities averaged 0.805 and 0.835, respectively. Among the nine identified markers, five markers showed successful amplification across five related Korean Gobioninae species. Thus, the microsatellite markers developed in this study will be useful to establish conservation strategies for both P. tenuicorpa and other related species.

  16. Microsatellite Marker Content Mapping of 12 Candidate Genes for Obesity: Assembly of Seven Obesity Screening Panels for Automated Genotyping

    PubMed Central

    Winick, Jeffrey D.; Friedman, Jeffrey M.

    1998-01-01

    Twin studies, adoption studies, and studies of familial aggregation indicate that obesity has a genetic component. Whereas, the genetic factors predisposing to obesity have been elucidated for several rare syndromes, the factors responsible for obesity in the general population have remained elusive. Genetic studies of complex traits are often accelerated by the use of candidate genes. To facilitate genetic studies of human obesity, seven multiplex panels of candidate genes for obesity that are suitable for fluorescent genotyping have been assembled. The multiplex panels are composed of 66 microsatellite markers linked tightly to 16 human gene products that are of potential importance in the control of body weight or linked to syndromic forms of obesity. As part of these efforts 12 previously cloned genes have been placed on the human physical map. In addition the chromosomal location of three of these genes, ART, NYP Y6R, and PPARγ, are reported for the first time. These resources will be of use in studies to identify the genetic factors responsible for human obesity. [Figures are available at http://www.genome.org.] PMID:9750197

  17. Development of 12 Microsatellite Markers in Dorcus titanus castanicolor (Motschulsky, 1861) (Lucanidae, Coleoptera) from Korea Using Next-Generation Sequencing

    PubMed Central

    Kang, Tae Hwa; Han, Sang Hoon; Park, Sun Jae

    2016-01-01

    In the present study, we used next-generation sequencing to develop 12 novel microsatellite markers for genetic structural analysis of Dorcus titanus castanicolor (Lucanidae; Coleoptera), a popular pet insect in China, Korea, and Japan. We identified 52,357 microsatellite loci in 339,287,381 bp of genomic sequence and selected 19 of the loci based on their PCR amplification efficiency and polymorphism. The 19 selected markers were then tested for the presence of null alleles and linkage disequilibrium. We did not detect any evidence of null alleles; however, four pairs of loci (DT03 and DT11, DT05 and DT26, DT08 and DT26, DT26 and DT35) exhibited linkage disequilibrium. Thus, we assessed the genetic diversity of a D. titanus castanicolor population from the Daejeon region of Korea (n = 22) using 13 markers. Among them, one marker (DT17) deviated from Hardy-Weinberg equilibrium. Therefore, 12 markers may be useful for further analyzing the genetic diversity of D. titanus castanicolor. PMID:27669231

  18. Development of 12 Microsatellite Markers in Dorcus titanus castanicolor (Motschulsky, 1861) (Lucanidae, Coleoptera) from Korea Using Next-Generation Sequencing.

    PubMed

    Kang, Tae Hwa; Han, Sang Hoon; Park, Sun Jae

    2016-09-23

    In the present study, we used next-generation sequencing to develop 12 novel microsatellite markers for genetic structural analysis of Dorcus titanus castanicolor (Lucanidae; Coleoptera), a popular pet insect in China, Korea, and Japan. We identified 52,357 microsatellite loci in 339,287,381 bp of genomic sequence and selected 19 of the loci based on their PCR amplification efficiency and polymorphism. The 19 selected markers were then tested for the presence of null alleles and linkage disequilibrium. We did not detect any evidence of null alleles; however, four pairs of loci (DT03 and DT11, DT05 and DT26, DT08 and DT26, DT26 and DT35) exhibited linkage disequilibrium. Thus, we assessed the genetic diversity of a D. titanus castanicolor population from the Daejeon region of Korea (n = 22) using 13 markers. Among them, one marker (DT17) deviated from Hardy-Weinberg equilibrium. Therefore, 12 markers may be useful for further analyzing the genetic diversity of D. titanus castanicolor.

  19. Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers.

    PubMed

    Verma, Priyanka; Sharma, Tilak R; Srivastava, Prem S; Abdin, M Z; Bhatia, Sabhyata

    2014-09-01

    Lentil (Lens culinaris Medik.) is an economically important grain legume, yet the genetic and genomic resources remain largely uncharacterized and unexploited in this crop. Microsatellites have become markers of choice for crop improvement applications. Hence, simple sequence repeat (SSR) markers were developed for lentil through the construction of genomic library enriched for GA/CT motifs. As a result 122 functional SSR primer pairs were developed from 151 microsatellite loci and validated in L. culinaris cv. Precoz. Thirty three SSR markers were utilized for the analysis of genetic relationships between cultivated and wild species of Lens and related legumes. A total of 123 alleles were amplified at 33 loci ranging from 2-5 alleles with an average of 3.73 alleles per locus. Polymorphic information content (PIC) for all the loci ranged from 0.13 to 0.99 with an average of 0.66 per locus. Varied levels of cross genera transferability were obtained ranging from 69.70 % across Pisum sativum to 12.12 % across Vigna radiata. The UPGMA based dendrogram was able to establish the uniqueness of each genotype and grouped them into two major clusters clearly resolving the genetic relationships within lentil and related species. The new set of SSR markers reported here were efficient and highly polymorphic and would add to the existing repertoire of lentil SSR markers to be utilized in molecular breeding. Moreover, the improved knowledge about intra- and inter-specific genetic relationships would facilitate germplasm utilization for lentil improvement.

  20. Sequence-tagged microsatellite sites as markers in chicken reference and resource populations.

    PubMed

    Khatib, H; Genislav, E; Crittenden, L B; Bumstead, N; Soller, M

    1993-10-01

    Two chicken genomic libraries were screened for the presence of poly(TG/AC) microsatellite tracts. The number of positive clones was low, confirming the low frequency of such microsatellites in the chicken genome relative to mammalian genomes. Polymorphism of 29 microsatellite tracts, comprising 11 from the library screening and 18 obtained from GenBank, was examined in the East Lansing and Compton reference families, in a resource population formed by a cross between a single White Rock broiler and inbred Leghorn females, and in a panel of birds from five layer stocks. Twenty microsatellites, primarily of the poly(TG/AC) type, were polymorphic in at least one of the populations. Thirteen of the microsatellites were polymorphic in the East Lansing reference family and 13 were also polymorphic in the resource population, confirming that the genetic distance between White Rock and White Leghorn is about as great as between Jungle fowl and White Leghorn. Only six microsatellites were polymorphic in the Compton reference family, formed by a cross between two White Leghorn strains. Twelve of the microsatellites were mapped in the East Lansing and/or Compton reference families. These were well dispersed among the various linkage groups and did not show any indications of terminal clustering.

  1. Microsatellite markers characterized in the mosquito Aedes taeniorhynchus (Diptera, Culicidae), a disease vector and major pest on the American coast and the Galápagos Islands.

    PubMed

    Bataille, Arnaud; Horsburgh, Gavin J; Dawson, Deborah A; Cunningham, Andrew A; Goodman, Simon J

    2009-09-01

    The black salt-marsh mosquito, Aedes taeniorhynchus, plays an important role in the transmission of arboviruses such as West Nile virus and other pathogens of concern for human and animal health in North and Latin America. This mosquito is notably the only widely distributed mosquito species found in the Galápagos Islands, where its impact as disease vector has not yet been studied. The use of microsatellite markers can significantly improve our understanding of the population structure and dynamics of A. taeniorhynchus and its role in the transmission of diseases. Here we report the isolation of 12 unique microsatellite loci using an enrichment protocol. We also identified other multi-locus microsatellites linked to transposable elements. The presence of such elements may explain why the isolation of useful scorable microsatellite markers in the Aedes genus is often difficult. Four of the markers isolated amplified polymorphic products in Aedes aegypti, Aedes albopictus and/or Aedes japonicus.

  2. Development of novel microsatellite markers for the BBCC Oryza genome (Poaceae) using high-throughput sequencing technology.

    PubMed

    Wang, Caihong; Liu, Xiaojiao; Peng, Suotang; Xu, Qun; Yuan, Xiaoping; Feng, Yue; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2014-01-01

    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa.

  3. Microsatellite Marker Analysis Reveals the Complex Phylogeographic History of Rhododendron ferrugineum (Ericaceae) in the Pyrenees

    PubMed Central

    Charrier, Olivia; Dupont, Pierre; Pornon, André; Escaravage, Nathalie

    2014-01-01

    Genetic variation within plant species is determined by a number of factors such as reproductive mode, breeding system, life history traits and climatic events. In alpine regions, plants experience heterogenic abiotic conditions that influence the population's genetic structure. The aim of this study was to investigate the genetic structure and phylogeographic history of the subalpine shrub Rhododendron ferrugineum across the Pyrenees and the links between the populations in the Pyrenees, the Alps and Jura Mountains. We used 27 microsatellite markers to genotype 645 samples from 29 Pyrenean populations, three from the Alps and one from the Jura Mountains. These data were used to estimate population genetics statistics such as allelic richness, observed heterozygosity, expected heterozygosity, fixation index, inbreeding coefficient and number of migrants. Genetic diversity was found to be higher in the Alps than in the Pyrenees suggesting colonization waves from the Alps to the Pyrenees. Two separate genetic lineages were found in both the Alps and Pyrenees, with a substructure of five genetic clusters in the Pyrenees where a loss of genetic diversity was noted. The strong differentiation among clusters is maintained by low gene flow across populations. Moreover, some populations showed higher genetic diversity than others and presented rare alleles that may indicate the presence of alpine refugia. Two lineages of R. ferrugineum have colonized the Pyrenees from the Alps. Then, during glaciation events R. ferrugineum survived in the Pyrenees in different refugia such as lowland refugia at the eastern part of the chain and nunataks at high elevations leading to a clustered genetic pattern. PMID:24667824

  4. Genetic diversity in South African Nguni cattle ecotypes based on microsatellite markers.

    PubMed

    Sanarana, Yandisiwe; Visser, Carina; Bosman, Lydia; Nephawe, Khathutshelo; Maiwashe, Azwihangwisi; van Marle-Köster, Este

    2016-02-01

    The Nguni cattle breed is a landrace breed adapted to different ecological regions of South Africa. A number of ecotypes are recognised based on phenotype within the breed, but it is not known if they are genetically distinct. In this study, molecular characterisation was performed on Makhathini (MAK), Pedi (PED), Shangaan (SHA) and Venda (VEN) Nguni cattle ecotypes. Two Nguni cattle populations, not kept as separate ecotypes, from the University of Fort Hare (UFH) and Agricultural Research Council Loskop South farm (LOS) were also included. Genotypic data was generated for 189 unrelated Nguni cattle selected based on pedigree records using 22 microsatellite markers. The expected heterozygosity values varied from 69 % (UFH) to 72 % (PED) with a mean number of alleles ranging from 6.0 to 6.9. The F ST estimate demonstrated that 4.8 % of the total genetic variation was due to the genetic differentiation between the populations and 92.2 % accounted for differences within the populations. The genetic distances and structure analysis revealed the closest relationship between MAK, PEDI and SHA ecotypes, followed by SHA and VEN. The UFH population clustered with the MAK ecotype, indicating that they are more genetically similar, while the LOS cattle grouped as a distinct cluster. Results suggest that the genetic differentiation between the PED and SHA ecotypes is low and can be regarded as one ecotype based on limited genetic differences. The results of this study can be applied as a point of reference for further genetic studies towards conservation of Nguni cattle ecotypes.

  5. Population genetic structure and phylogeography of cyprinid fish, Labeo dero (Hamilton, 1822) inferred from allozyme and microsatellite DNA marker analysis.

    PubMed

    Chaturvedi, Anshumala; Mohindra, Vindhya; Singh, Rajeev K; Lal, Kuldeep K; Punia, Peyush; Bhaskar, Ranjana; Mandal, Anup; Narain, Lalit; Lakra, W S

    2011-06-01

    We examined population structure of Labeo dero (Hamilton, 1822) from different riverine locations in India using 10 polymorphic allozyme and eight microsatellite loci. For analysis, 591 different tissue samples were obtained from commercial catches covering a wide geographic range. Allozyme variability (An = 1.28-1.43, Ho = 0.029-0.071) was much lower than for microsatellites (An = 4.625-6.125, Ho = 0.538-0.633). Existence of rare alleles was found at three allozyme (MDH-2, GPI and PGDH) and at two microsatellite loci (R-3 and MFW-15). Deviation from Hardy-Weinberg equilibrium (P < 0.05, after the critical probability levels were adjusted for sequential Bonferroni adjustment) could be detected at three loci (EST-1, -2 and XDH) whereas, after correction for null alleles, two microsatellite loci (MFW-1,-15) deviated from HWE in the river Yamuna. Fst for all the samples combined over all allozyme loci was found to be 0.059 suggesting that 5.9% of the total variation was due to genetic differentiation while microsatellite analysis yielded 0.019 which was concordant to mean Rst (0.02). Hierarchical partition of genetic diversity (AMOVA) showed that greater variability (approx. 95%) was due to within population component than between geographical regions. Based on distribution of genetic differentiation detected by both markers, at least five different genetic stocks of L. dero across its natural distribution could be identified. These results are useful for the evaluation and conservation of L. dero in natural water bodies.

  6. Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers.

    PubMed

    Lopes, Tina; Pinto, Glória; Loureiro, João; Costa, Armando; Santos, Conceição

    2006-09-01

    Microsatellites were used to test genetic stability in somatic embryos (SE) of Quercus suber L. The SE were obtained by a simple somatic embryogenesis protocol: leaf explants from two adult plants (QsG0, QsG5) and from two juvenile plants (QsGM1, QsGM2) were inoculated on Murashige and Skoog (MS) medium with 2,4-dichlorophenoxyacetic acid and zeatin. Calluses with primary embryogenic structures were transferred to MSWH (MS medium without growth regulators) and SE proliferated by secondary somatic embryogenesis. High morphological heterogeneity was found among cotyledonary SE. However, converted plants looked morphologically normal with well-developed rooting systems and shoots. The genetic stability of the plant material during the somatic embryogenesis process was evaluated by using six to eight nuclear microsatellites transferred from Q. myrsinifolia Blume, Q. petraea (Matts.) Liebl. and Q. robur L. Five of eight microsatellites distinguished among the genotypes analyzed, and for QsG0, QsGM1 and QsGM2, uniform microsatellite patterns were generally observed within and between SE and the respective donor genotypes. For genotype QsG5, the same pattern was observed in all samples analyzed except one, where the mutation percentage was 2.5%. We conclude that microsatellite markers can be used to assess genetic stability of clonal materials and to determine genetic stability throughout the process of somatic embryogenesis. The simple somatic embryogenesis protocol described has potential for the commercial propagation of Q. suber because it results in a low percentage of mutations.

  7. Development of novel microsatellite markers for the Northern Goshawk (Accipiter gentilis) and their utility in cross-species amplification

    USGS Publications Warehouse

    Haughey, Christy; Sage, George K.; Degange, Gabriel; Sonsthagen, Sarah A.; Talbot, Sandra

    2016-01-01

    The Northern Goshawk (Accipiter gentilis) is a large forest raptor with a Holarctic distribution and, in some portions of its range, a species of conservation concern. To augment previously reported genetic markers, 13 novel polymorphic microsatellite markers were developed to establish individual identification and familial relationships, to assess levels of genetic diversity, and to identify diagnostic markers. Of the 22 loci tested, 13 were polymorphic, seven were monomorphic, and two failed to amplify. This suite of microsatellite loci yielded a combined probability of parental exclusion of 98%; a single individual sampled from a North American population can be reliably identified using a combination of seven of the 13 polymorphic loci. Cross-species screening in Cooper's Hawks (A. cooperii) and Sharp-shinned Hawks (A. striatus) of the 20 loci that successfully amplified in Northern Goshawks identified 13 loci as polymorphic in each species. Six of these loci (Age1303, Age1308, Age1309, Age1312, and Age1314) appeared to be useful in distinguishing between Accipiter species. These markers will be useful to researchers investigating populations of North American accipiters.

  8. Development of microsatellite markers in Caryophyllaeus laticeps (Cestoda: Caryophyllidea), monozoic fish tapeworm, using next-generation sequencing approach.

    PubMed

    Králová-Hromadová, Ivica; Minárik, Gabriel; Bazsalovicsová, Eva; Mikulíček, Peter; Oravcová, Alexandra; Pálková, Lenka; Hanzelová, Vladimíra

    2015-02-01

    Caryophyllaeus laticeps (Pallas 1781) (Cestoda: Caryophyllidea) is a monozoic tapeworm of cyprinid fishes with a distribution area that includes Europe, most of the Palaearctic Asia and northern Africa. Broad geographic distribution, wide range of definitive fish hosts and recently revealed high morphological plasticity of the parasite, which is not in an agreement with molecular findings, make this species to be an interesting model for population biology studies. Microsatellites (short tandem repeat (STR) markers), as predominant markers for population genetics, were designed for C. laticeps using a next-generation sequencing (NGS) approach. Out of 165 marker candidates, 61 yielded PCR products of the expected size and in 25 of the candidates a declared repetitive motif was confirmed by Sanger sequencing. After the fragment analysis, six loci were proved to be polymorphic and tested for heterozygosity, Hardy-Weinberg equilibrium and the presence of null alleles on 59 individuals coming from three geographically widely separated populations (Slovakia, Russia and UK). The number of alleles in particular loci and populations ranged from two to five. Significant deficit of heterozygotes and the presence of null alleles were found in one locus in all three populations. Other loci showed deviations from Hardy-Weinberg equilibrium and the presence of null alleles only in some populations. In spite of relatively low polymorphism and the potential presence of null alleles, newly developed microsatellites may be applied as suitable markers in population genetic studies of C. laticeps.

  9. Restricted Gene Flow for Gadus macrocephalus from Yellow Sea Based on Microsatellite Markers: Geographic Block of Tsushima Current

    PubMed Central

    Song, Na; Liu, Ming; Yanagimoto, Takashi; Sakurai, Yasunori; Han, Zhi-Qiang; Gao, Tian-Xiang

    2016-01-01

    The Pacific cod Gadus macrocephalus is a demersal, economically important fish in the family Gadidae. Population genetic differentiation of Pacific cod was examined across its northwestern Pacific range by screening variation of eight microsatellite loci in the present study. All four populations exhibited high genetic diversity. Pairwise fixation index (Fst) suggested a moderate to high level of genetic differentiation among populations. Population of the Yellow Sea (YS) showed higher genetic difference compared to the other three populations based on the results of pairwise Fst, three-dimensional factorial correspondence analysis (3D-FCA) and STRUCTURE, which implied restricted gene flow among them. Wilcoxon signed rank tests suggested no significant heterozygosity excess and no recent genetic bottleneck events were detected. Microsatellite DNA is an effective molecular marker for detecting the phylogeographic pattern of Pacific cod, and these Pacific cod populations should be three management units. PMID:27043534

  10. Rapid development of polymorphic microsatellite markers for the Amur sturgeon (Acipenser schrenckii) using next-generation sequencing technology.

    PubMed

    Li, L M; Wei, L; Jiang, H Y; Zhang, Y; Zhang, X J; Yuan, L H; Chen, J P

    2015-07-14

    Anthropogenic activities have seriously impacted wild resources of the Amur sturgeon, Acipenser schrenckii, and more information on local and regional population genetic structure is required to aid the conservation of this species. In this study, we report the development of 12 novel polymorphic microsatellite loci using next-generation sequencing technology, and the genotyping of 24 individuals collected from a sturgeon farm. The results show that the mean number of ob-served alleles per locus is 6.6 (ranging from 2 to 17). Observed and expected heterozygosity values ranged from 0 to 0.958 and from 0.508 to 0.940, respectively. Not a single locus showed significant departure from Hardy-Weinberg equilibrium and no linkage disequilibrium was observed among any pairwise loci. These highly informative microsatellite markers will be useful for genetic diversity and population structure analyses of A. schrenckii and other species of this genus.

  11. Isolation and characterization of the first microsatellite markers for the endangered relict mussel Hypanis colorata (Mollusca: Bivalvia: Cardiidae).

    PubMed

    Popa, Oana Paula; Iorgu, Elena Iulia; Krapal, Ana Maria; Kelemen, Beatrice Simona; Murariu, Dumitru; Popa, Luis Ovidiu

    2011-01-17

    Hypanis colorata (Eichwald, 1829) (Cardiidae: Lymnocardiinae) is a bivalve relict species with a Ponto-Caspian distribution and is under strict protection in Romania, according to national regulations. While the species is depressed in the western Black Sea lagoons from Romania and Ukraine, it is also a successful invader in the middle Dniepr and Volga regions. Establishing a conservation strategy for this species or studying its invasion process requires knowledge about the genetic structure of the species populations. We have isolated and characterized nine polymorphic microsatellite markers in H. colorata. The number of alleles per locus ranged from 4 to 28 and the observed heterozygosity ranged from 0.613 to 1.000. The microsatellites developed in the present study are highly polymorphic and they should be useful for the assessment of genetic variation within this species.

  12. Development, inheritance, and linkage-group assignment of 60 novel microsatellite markers for the gray, short-tailed opossum Monodelphis domestica.

    PubMed

    Gouin, Nicolas; Westenberger, Scott J; Mahaney, Susan M; Lindley, Peter; VandeBerg, John L; Samollow, Paul B

    2005-12-01

    Short-tandem-repeat (SSR) or microsatellite polymorphisms are some of the most extensively employed genetic markers in contemporary linkage mapping studies. To date, only a limited number of microsatellites have been isolated in the gray, short-tailed opossum Monodelphis domestica, a South American marsupial widely used for comparative biological and biomedical research. To increase the number of potentially useful mapping markers, we screened 2 microsatellite-enriched genomic libraries containing alternatively (CA)n or (GA)n repeats. A total of 184 clones were sequenced, from which 60 polymorphic microsatellite markers were successfully optimized. The efficiency of this enrichment protocol for M. domestica microsatellite isolation is discussed, and suggestions to improve the outcome are made. All 60 loci showed high allelic diversity, with allele numbers ranging from 2 to 10 in a subset of 33 unrelated animals. Normal Mendelian inheritance was confirmed for all loci by analyzing allelic segregation in 5 two-generation families. One microsatellite appeared to be X linked, and null alleles were found in 5 others. Two-point linkage analyses were implemented using the data on the 5 families, leading to the assignment of 59 of these loci to the existing linkage groups. The 60 novel microsatellites developed in this study will contribute significantly to the M. domestica linkage map, and further QTL mapping studies.

  13. [Correlation analysis of microsatellite DNA markers with wool traits in Liangshan semi-fine wool sheep].

    PubMed

    Wang, Gao-Fu; Wu, Deng-Jun

    2006-12-01

    Eighteen microsatellites on chromosomes 1, 2, 3, 9 were studied to detect their genotypes in 206 individuals in a Liangshan Semi-fine Wool Sheep nucleus breeding population. A GLM procedure was used to analyze the effects of these 18 microsatellites on wool traits. Results uncovered 7 loci that had a significant impact on wool traits. Genotypes of that favorably affect wool traits were determined.

  14. Development of a novel set of microsatellite markers for Lippia alba (Verbenaceae).

    PubMed

    Rocha, D S; Santos, C P; Bajay, M M; Campos, J B; Blank, A F; Pinheiro, J B; Zucchi, M I

    2015-02-03

    Microsatellite primers were developed and optimized for Lippia alba to characterize the L. alba germplasm bank of Universidade de São Paulo. A genomic library enabled the design of 9 microsatellite primers. Six of the 9 primers yielded polymorphic products, which defined 2 groups in the bank. The data provide support to characterize germplasm banks, genetic breeding programs for L. alba, and other genetic diversity studies and classifications of species in the genus Lippia.

  15. Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers.

    PubMed

    Díaz, L M; Blair, M W

    2006-12-01

    Common bean (Phaseolus vulgaris L.) cultivars are distinguished morphologically, agronomically and ecologically into specific races within each of the two gene pools found for the species (Andean and Mesoamerican). The objective of this study was to describe the race structure of the Mesoamerican gene pool using microsatellite markers. A total of 60 genotypes previously described as pertaining to specific Mesoamerican races as well as two Andean control genotypes were analyzed with 52 markers. A total of 267 bands were generated with an average of 5.1 alleles per marker and 0.297 heterozygosity across all microsatellites. Correspondence analysis identified two major groups equivalent to the Mesoamerica race and a group containing both Durango and Jalisco race genotypes. Two outlying individuals were classified as potentially of the Guatemala race although this race does not have a defined structure and previously classified members of this race were classified with other races. Population structure analysis with K = 1-4 agreed with this classification. The genetic diversity based on Nei's index for the entire set of genotypes was 0.468 while this was highest for the Durango-Jalisco group (0.414), intermediate for race Mesoamerica (0.340) and low for race Guatemala (0.262). Genetic differentiation (G (ST)) between the Mesoamerican races was 0.27 while genetic distance and identity showed race Durango and Jalisco individuals to be closely related with high gene flow (N (m)) both between these two races (1.67) and between races Durango and Mesoamerica (1.58). Observed heterozygosity was low in all the races as would be expected for an inbreeding species. The analysis with microsatellite markers identified subgroups, which agreed well with commercial class divisions, and seed size was the main distinguishing factor between the two major groups identified.

  16. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    PubMed

    Khajuria, Yash Paul; Saxena, Maneesha S; Gaur, Rashmi; Chattopadhyay, Debasis; Jain, Mukesh; Parida, Swarup K; Bhatia, Sabhyata

    2015-01-01

    The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777) of an inter-specific reference mapping population. High amplification efficiency (87%), experimental validation success rate (81%) and polymorphic potential (55%) of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48%) detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%). An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777) having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs) of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM) longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped highest

  17. Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea)

    PubMed Central

    Cuc, Luu M; Mace, Emma S; Crouch, Jonathan H; Quang, Vu D; Long, Tran D; Varshney, Rajeev K

    2008-01-01

    Background Cultivated peanut or groundnut (Arachis hypogaea L.) is the fourth most important oilseed crop in the world, grown mainly in tropical, subtropical and warm temperate climates. Due to its origin through a single and recent polyploidization event, followed by successive selection during breeding efforts, cultivated groundnut has a limited genetic background. In such species, microsatellite or simple sequence repeat (SSR) markers are very informative and useful for breeding applications. The low level of polymorphism in cultivated germplasm, however, warrants a need of larger number of polymorphic microsatellite markers for cultivated groundnut. Results A microsatellite-enriched library was constructed from the genotype TMV2. Sequencing of 720 putative SSR-positive clones from a total of 3,072 provided 490 SSRs. 71.2% of these SSRs were perfect type, 13.1% were imperfect and 15.7% were compound. Among these SSRs, the GT/CA repeat motifs were the most common (37.6%) followed by GA/CT repeat motifs (25.9%). The primer pairs could be designed for a total of 170 SSRs and were optimized initially on two genotypes. 104 (61.2%) primer pairs yielded scorable amplicon and 46 (44.2%) primers showed polymorphism among 32 cultivated groundnut genotypes. The polymorphic SSR markers detected 2 to 5 alleles with an average of 2.44 per locus. The polymorphic information content (PIC) value for these markers varied from 0.12 to 0.75 with an average of 0.46. Based on 112 alleles obtained by 46 markers, a phenogram was constructed to understand the relationships among the 32 genotypes. Majority of the genotypes representing subspecies hypogaea were grouped together in one cluster, while the genotypes belonging to subspecies fastigiata were grouped mainly under two clusters. Conclusion Newly developed set of 104 markers extends the repertoire of SSR markers for cultivated groundnut. These markers showed a good level of PIC value in cultivated germplasm and therefore would be

  18. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    PubMed Central

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-01-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome. PMID:11404342

  19. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers (SSR).

    PubMed

    Hasnaoui, Nejib; Buonamici, Anna; Sebastiani, Federico; Mars, Messaoud; Zhang, Dapeng; Vendramin, Giovanni G

    2012-02-01

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In the present study, we report the development of 4 new polymorphic SSR markers. They have been used in addition to 11 SSRs previously published to investigate molecular diversity of 33 P. granatum ecotypes. Based on the multi-locus profiles, twenty-two distinctive genotypes were identified. Globally, quite low genetic diversity has been revealed, as measured by allele richness (2.83 per locus) and heterozygosity (He=0.245; Ho=0.243), reflecting the narrow genetic background of the plant material. Four synonymous groups could be detected involving 15 accessions. Results of ordination and cluster analysis suggested that almost all the Tunisian cultivars share similar genetic background, and are likely derived from a small number of introductions in ancient times. Results issued from this study provide essential information to project a pomegranate core-collection without plant material duplication and for sustainable management of pomegranate landraces at national and international level. Furthermore, these SSR markers are powerful tool for marker assisted selection (MAS) program and for QTL studies.

  20. A novel set of microsatellite markers for the European Grapevine Moth Lobesia botrana isolated using next-generation sequencing and their utility for genetic characterization of populations from Europe and the Middle East.

    PubMed

    Reineke, A; Assaf, H A; Kulanek, D; Mori, N; Pozzebon, A; Duso, C

    2015-08-01

    Using a high-throughput 454 pyrosequencing approach a novel set of microsatellite markers was developed for one of the key grapevine insect pests, the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae). 20 primer pairs flanking a microsatellite motif were designed based on the sequences obtained and were subsequently evaluated in a sample of 14 L. botrana populations from Europe and the Middle East. 11 markers showed stable and reproducible amplification patterns; however, one of the 11 markers was monomorphic in all L. botrana populations analysed. Estimated frequencies of null alleles of more than 20% were evident for two of the markers tested, but varied substantially depending on the respective L. botrana population. In 12 of the 14 L. botrana populations observed heterozygosities were lower to those expected under Hardy-Weinberg equilibrium, indicating a deficiency of heterozygotes in the respective populations. The overall F ST value of 0.075 suggested a moderate but significant genetic differentiation between the L. botrana populations included in this study. In addition, a clear geographic structure was detected in the set of samples, evident through a significant isolation by distance and through results from structure analysis. In structure analysis, L. botrana populations were grouped in two clearly separated clusters according to their European (Spain, Italy, Germany) or Middle Eastern (Israel, Syria, Turkey) origin. This novel set of microsatellite markers can now be applied to study the evolutionary ecology of this species including host shifts and host adaptation as well as spread of individuals across worldwide viticulture.

  1. Isolation and characterization of microsatellite markers useful for exploring introgression among species in the diverse New Zealand cicada genus Kikihia.

    PubMed

    Wade, Elizabeth J; Simon, Chris

    2015-01-01

    The New Zealand cicada genus Kikihia Dugdale 1971 exhibits more than 20 contact zones between species pairs that vary widely in their divergence times (between 20,000 and 2 million years) in which some level of hybridization is evident. Mitochondrial phylogenies suggest some movement of genes across species boundaries. Biparentally inherited and quickly evolving molecular markers like microsatellites are useful for assessing gene flow levels. Here, we present six polymorphic microsatellite loci that amplify DNA from seven species across the genus Kikihia; Kikihia "northwestlandica," Kikihia "southwestlandica," Kikihia muta, Kikihia angusta, Kikihia "tuta," Kikihia "nelsonensis," and Kikihia "murihikua." The markers were developed using whole-genome shotgun sequencing on the 454 pyrosequencing platform. Moderate to high levels of polymorphisms were observed with 14-47 alleles for 213 individuals from 15 populations. Observed and expected heterozygosity range from 0 to 1 and 0.129 to 0.945, respectively. These new markers will be instrumental for the assessment of gene flow across multiple contact zones in Kikihia.

  2. CHARACTERIZATION OF 17 NEW MICROSATELLITE MARKERS FOR THE DINOFLAGELLATE ALEXANDRIUM FUNDYENSE (DINOPHYCEAE), A HARMFUL ALGAL BLOOM SPECIES

    PubMed Central

    Sehein, Taylor; Richlen, Mindy L.; Nagai, Satoshi; Yasuike, Motoshige; Nakamura, Yoji; Anderson, Donald M.

    2016-01-01

    Alexandrium fundyense is the toxic marine dinoflagellate responsible for “red tide” events in temperate and sub-arctic waters worldwide. In the Gulf of Maine (GOM) and Bay of Fundy in the Northwest Atlantic, blooms of A. fundyense recur annually, and are associated with major health and ecosystem impacts. In this region, microsatellite markers have been used to investigate genetic structure and gene flow; however, the loci currently available for this species were isolated from populations from Japan and the North Sea, and only a subset are suitable for the analysis of A. fundyense populations in the Northwest Atlantic. To facilitate future studies of A. fundyense blooms, both in this region and globally, we isolated and characterized 17 polymorphic microsatellite loci from 31 isolates collected from the GOM and from the Nauset Marsh System, an estuary on Cape Cod, MA, USA. These loci yielded between two and 15 alleles per locus, with an average of 7.1. Gene diversities ranged from 0.297 to 0.952. We then analyzed these same 31 isolates using previously published markers for comparison. We determined the new markers are sufficiently variable and better suited for the investigation of genetic structure, bloom dynamics, and diversity in the Northwest Atlantic. PMID:27274617

  3. Assessment of microsatellite and SNP markers for parentage assignment in ex situ African Penguin (Spheniscus demersus) populations.

    PubMed

    Labuschagne, Christiaan; Nupen, Lisa; Kotzé, Antoinette; Grobler, Paul J; Dalton, Desiré L

    2015-10-01

    Captive management of ex situ populations of endangered species is traditionally based on pedigree information derived from studbook data. However, molecular methods could provide a powerful set of complementary tools to verify studbook records and also contribute to improving the understanding of the genetic status of captive populations. Here, we compare the utility of single nucleotide polymorphisms (SNPs) and microsatellites (MS) and two analytical methods for assigning parentage in ten families of captive African penguins held in South African facilities. We found that SNPs performed better than microsatellites under both analytical frameworks, but a combination of all markers was most informative. A subset of combined SNP (n = 14) and MS loci (n = 10) provided robust assessments of parentage. Captive or supportive breeding programs will play an important role in future African penguin conservation efforts as a source of individuals for reintroduction. Cooperation among these captive facilities is essential to facilitate this process and improve management. This study provided us with a useful set of SNP and MS markers for parentage and relatedness testing among these captive populations. Further assessment of the utility of these markers over multiple (>3) generations and the incorporation of a larger variety of relationships among individuals (e.g., half-siblings or cousins) is strongly suggested.

  4. Inbreeding and genetic diversity analysis in a hatchery release population and clones of Rhopilema esculentum based on microsatellite markers

    NASA Astrophysics Data System (ADS)

    Tian, Tao; Chen, Zaizhong; Wang, Mosang; Hu, Yulong; Wang, Weiji

    2016-07-01

    Ten microsatellite markers were used to analyze the levels of genetic diversity and inbreeding in a hatchery release population of Rhopilema esculentum Kishinouye (Scyphozoa: Rhizostomatidae). A total of 85 alleles were detected in 600 individuals. Within-population levels of observed (H o) and expected (H e) heterozygosity ranged from 0.152 to 0.839 (mean=0.464) and from 0.235 to 0.821 (mean=0.618), respectively. The polymorphism information content (PIC) of each marker ranged from 0.207 to 0.795 with an average of 0.580, indicating that the hatchery population maintained a high level of genetic diversity. Inbreeding levels were estimated in the hatchery population and the inbreeding coefficient was 0.203. This result revealed that a certain level of inbreeding occurred within the population. Meanwhile, we also determined genetic diversity at the clone level. Several polyps from the same scyphistomae were genotyped at the ten microsatellite loci and there was virtually no difference in their genotypes. Furthermore, we calculated the probabilities of exclusion. When both parents were known, the average exclusion probability of ten loci was 99.99%. Our data suggest that the ten microsatellite markers can not only be used to analyze the identity of individuals but they can also be applied to parentage identification. Our research provides a theoretical basis and technical support for genetic diversity detection and reasonable selection of R. esculentum hatchery populations. These findings support the use of releasing studies and conservation of R. esculentum germplasm resources.

  5. Isolation and characterization of polymorphic microsatellite markers in the endangered species Bretschneidera sinensis Hemsl.

    PubMed

    Li, M; Chen, H F; Wang, Z F; Zhang, S

    2016-08-19

    Bretschneidera sinensis is an endangered species that is mainly distributed in South China. As a tertiary relict and the single species in the Bretschneideraceae family, it has a high conservation value. To investigate the influence of human disturbance on its mating system, 63 new microsatellites were developed using restriction-site-associated DNA sequencing and their polymorphisms were tested on 30 samples from one population. Among the 63 microsatellites, the number of alleles per locus ranged from 2 to 16. The observed and expected heterozygosities ranged from 0.133 to 0.967 and from 0.127 to 0.912, respectively. These microsatellites may be used for studying the mating system of B. sinensis as well as the within-population hereditary structure.

  6. Isolation and characterization of new polymorphic microsatellite markers from the cuttlefish Sepiella maindroni (Cephalopoda; Sepiidae).

    PubMed

    Guo, B-Y; Qi, P Z; Zhu, A Y; Lv, Z M; Wang, W C; Wu, C W

    2013-07-11

    Fifteen new polymorphic microsatellite loci were developed for the cuttlefish Sepiella maindroni. In 32 individuals from a wild population of coastal Ningde, Fujian Province, China, the number of alleles at these loci varied between 2 and 12, with an average of 5.86. The mean observed and expected heterozygosities were 0.6917 and 0.5993, respectively. Among these polymorphic microsatellite loci, 4 (SM2, SM19, SM40, and SM81) significantly deviated from Hardy-Weinberg equilibrium after sequential Bonferroni's correction. All of them were in linkage equilibrium. These microsatellite loci would be useful for evaluating the effect of releasing on extant S. maindroni populations as well as for investigating genetic diversity and population structure of this species.

  7. Evidence of multiple paternity in Morelet's Crocodile (Crocodylus moreletii) in Belize, CA, inferred from microsatellite markers.

    PubMed

    McVay, John D; Rodriguez, David; Rainwater, Thomas R; Dever, Jennifer A; Platt, Steven G; McMurry, Scott T; Forstner, Michael R J; Densmore, Llewellyn D

    2008-12-01

    Microsatellite data were generated from hatchlings collected from ten nests of Morelet's Crocodile (Crocodylus moreletii) from New River Lagoon and Gold Button Lagoon in Belize to test for evidence of multiple paternity. Nine microsatellite loci were genotyped for 188 individuals from the 10 nests, alongside 42 nonhatchlings from Gold Button Lagoon. Then mitochondrial control region sequences were generated for the nonhatchlings and for one individual from each nest to test for presence of C. acutus-like haplotypes. Analyses of five of the nine microsatellite loci revealed evidence that progeny from five of the ten nests were sired by at least two males. These data suggest the presence of multiple paternity as a mating strategy in the true crocodiles. This information may be useful in the application of conservation and management techniques to the 12 species in this genus, most of which are threatened or endangered.

  8. Microsatellite markers in the western prairie fringed orchid, Platanthera praeclara (Orchidaceae)1

    PubMed Central

    Ross, Andrew A.; Aldrich-Wolfe, Laura; Lance, Stacey; Glenn, Travis; Travers, Steven E.

    2013-01-01

    • Premise of the study: Primers for 31 microsatellite-containing loci were developed for the threatened orchid Platanthera praeclara to enable characterization of the population genetics of this tallgrass prairie native. • Methods and Results: Sixteen polymorphic microsatellite loci were identified from four populations. Six of these loci were not in linkage disequilibrium. The average number of alleles per locus per population ranged from 6.4 to 8.9. • Conclusions: The results indicate that six of the polymorphic loci will be useful in future studies of population structure, gene flow, and genetic diversity. PMID:25202536

  9. Population Genetic Structure and Demographic History of Atrina pectinata Based on Mitochondrial DNA and Microsatellite Markers

    PubMed Central

    Xue, Dong-Xiu; Wang, Hai-Yan; Zhang, Tao; Liu, Jin-Xian

    2014-01-01

    The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure). Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI) gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene) and current gene flow (through larval dispersal) were responsible for the weak level of genetic structure detected in A. pectinata. PMID:24789175

  10. Characterization of 16 microsatellite markers for the Oreinotinus clade of Viburnum (Adoxaceae)1

    PubMed Central

    Barish, Syndi; Arakaki, Mónica; Edwards, Erika J.; Donoghue, Michael J.; Clement, Wendy L.

    2016-01-01

    Premise of the study: Microsatellite loci were isolated from four species of Viburnum (Adoxaceae) to study population structure and assess species boundaries among morphologically similar South American Viburnum species of the Oreinotinus clade. Methods and Results: Using a microsatellite-enriched library and mining next-generation sequence data, 16 microsatellites were developed. Each locus was tested on two populations of V. triphyllum and one population of V. pichinchense. For nuclear loci, one to 13 alleles were recovered, expected heterozygosity ranged from 0 to 0.8975, Simpson diversity index ranged from 0.0167 to 1.000, and Shannon diversity index ranged from 0 to 2.3670 in a given population. For the mitochondrial locus, three to six alleles were recovered and unbiased haploid diversity values ranged from 0.756 to 0.853 in a given population. Conclusions: The 16 microsatellite loci developed for the Oreinotinus clade (Viburnum, Adoxaceae) will inform investigations of population structure and species boundaries within this group. PMID:28101437

  11. Characterization of 14 microsatellite markers for genetic analysis and cultivar identification of walnut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One hundred and forty-seven primer pairs originally designed to amplify microsatellites, also known as simple sequence repeats (SSR), in black walnut (Juglans nigra L.) were screened for utility in persian walnut (J. regia L.). Based on scorability and number of informative polymorphisms, the best 1...

  12. Characterization of polymorphic microsatellite markers and genetic diversity in wild bronze featherback, Notopterus notopterus (Pallas, 1769).

    PubMed

    Gupta, Arti; Lal, Kuldeep K; Punia, Peyush; Singh, Rajeev K; Mohindra, Vindhya; Sah, Rama S; Kumar, Rajesh; Luhariya, Rupesh K; Dwivedi, Arvind K; Masih, Prachi; Mishra, R M; Jena, J K

    2013-12-01

    Six polymorphic microsatellite DNA loci were identified in the primitive fish, bronze featherback, Notopterus notopterus for the first time and demonstrated significant population genetic structure. Out of the six primers, one primer (NN90) was specific to N. notopterus (microsatellite sequence within the RAG1 gene) and five primers were product of successful cross-species amplification. Sixty-four primers available from 3 fish species of order Osteoglossiformes and families Notopteridae and Osteoglossidae were tested to amplify homologous microsatellite loci in N. notopterus. Fifteen primer pairs exhibited successful cross-priming PCR product. However, polymorphism was detected only at five loci. To assess the significance of these six loci (including NN90) in population genetic study, 215 samples of N. notopterus from five rivers, viz Satluj, Gomti, Yamuna, Brahmaputra and Mahanadi were analyzed. The five sample sets displayed different diversity levels and observed heterozygosity ranged from 0.6036 to 0.7373. Significant genotype heterogeneity (P < 0.0001) and high FST (0.2205) over all loci indicated that the samples are not drawn from the same genepool. The identified microsatellite loci are promising for use in fine-scale population structure analysis of N. notopterus.

  13. Multicenter collaborative study for standardization of Candida albicans genotyping using a polymorphic microsatellite marker.

    PubMed

    Garcia-Hermoso, Dea; MacCallum, Donna M; Lott, Timothy J; Sampaio, Paula; Serna, Maria-José Buitrago; Grenouillet, Fréderic; Klaassen, Corné H W; Bretagne, Stéphane

    2010-07-01

    Microsatellite-based genotyping for Candida albicans can give discrepant results between laboratories when expressed in fragment sizes, because their determination depends on electrophoretic conditions. The interlaboratory reproducibility was assessed in six laboratories provided with an allelic ladder. Despite variations in size determinations, alleles were correctly assigned, making data transportable between laboratories.

  14. Development of microsatellite markers for Fusicladium effusum, the causal agent of pecan scab

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pecan scab (caused by F. effusum) is the most important diseases of pecan in the southeastern U.S. Microsatellite (simple sequence repeat, SSR) motifs were mined from the genome of Fusicladium effusum assembled from 454 pyrosequencing and Illumina Miseq reads. A total of 278 SSR primers were designe...

  15. Application of plant DNA markers in forensic botany: genetic comparison of Quercus evidence leaves to crime scene trees using microsatellites.

    PubMed

    Craft, Kathleen J; Owens, Jeffrey D; Ashley, Mary V

    2007-01-05

    As highly polymorphic DNA markers become increasingly available for a wide range of plant and animal species, there will be increasing opportunities for applications to forensic investigations. To date, however, relatively few studies have reported using DNA profiles of non-human species to place suspects at or near crime scenes. Here we describe an investigation of a double homicide of a female and her near-term fetus. Leaf material taken from a suspect's vehicle was identified to be that of sand live oak, Quercus geminata, the same tree species that occurred near a shallow grave where the victims were found. Quercus-specific DNA microsatellites were used to genotype both dried and fresh material from trees located near the burial site and from the material taken from the suspect's car. Samples from the local population of Q. geminata were also collected and genotyped in order to demonstrate that genetic variation at four microsatellite loci was sufficient to assign leaves to an individual tree with high statistical certainty. The cumulative average probability of identity for these four loci was 2.06x10(-6). DNA was successfully obtained from the dried leaf material although PCR amplification was more difficult than amplification of DNA from fresh leaves. The DNA profiles of the dried leaves from the suspect's car did not match those of the trees near the crime scene. Although this investigation did not provide evidence that could be used against the suspect, it does demonstrate the potential for plant microsatellite markers providing physical evidence that links plant materials to live plants at or near crime scenes.

  16. Genetic maps for Pinus elliottii var. elliottii and P. caribaea var. hondurensis using AFLP and microsatellite markers.

    PubMed

    Shepherd, M; Cross, M; Dieters, M J; Henry, R

    2003-05-01

    Genetic maps for individual Pinus elliottii var. elliottii and P. caribaea var. hondurensis trees were generated using a pseudo-testcross mapping strategy. A total of 329 amplified fragment length polymorphic (AFLP) and 12 microsatellite markers were found to segregate in a sample of 93 interspecfic F(1) progeny. The male P. caribaea var. hondurensis parent was more heterozygous than the female P. elliottii var. elliottii parent with 19% more markers segregating on the male side. Framework maps were constructed using a LOD 5 threshold for grouping and interval support threshold of LOD 2. The framework map length for the P. elliottii var. elliottii megagametophyte parent (1,170 cM Kosambi; 23 linkage groups) was notably smaller than the P. caribaea var. hondurensis pollen parent (1,658 cM Kosambi; 27 linkage groups). The difference in map lengths was assumed to be due to sex-related recombination variation, which has been previously reported for pines, as the difference in map lengths not be accounted for by the larger number of markers mapping to the P. caribaea var. hondurensis parent - 109 compared with 78 in P. elliottii var. elliottii parent. Based on estimated genome sizes for these species, the framework maps for P. elliottii var. elliottii and P. caribaea var. hondurensis covered 82% and 88% of their respective genomes. The pseudo-testcross strategy was extended to include AFLP and microsatellite markers in an intercross configuration. These comprehensive maps provided further genome coverage, 1,548 and 1,828 cM Kosambi for P. elliottii var. elliottii and P. caribaea var. hondurensis, respectively, and enabled homologous linkage groups to be identified in the two parental maps. Homologous linkage groups were identified for 11 out of 24 P. elliottii var. elliottii and 10 out of 25 P. caribaea var. hondurensis groups. A higher than expected level of segregation distortion was found for both AFLP and microsatellite markers. An explanation for this segregation

  17. Development and characterization of polymorphic microsatellite markers (SSRs) for an endemic plant, Pseudolarix amabilis (Nelson) Rehd. (Pinaceae).

    PubMed

    Geng, Qi-Fang; Liu, Jun; Sun, Lin; Liu, Hong; Ou-Yang, Yan; Cai, Ying; Tang, Xin-Sheng; Zhang, Hong-Wei; Wang, Zhong-Sheng; An, Shu-Qing

    2015-02-04

    Pseudolarix (Pinaceae) is a vulnerable (sensu IUCN) monotypic genus restricted to southeastern China. To better understand levels of genetic diversity, population structure and gene flow among populations of P. amabilis, we developed five compound SSR markers and ten novel polymorphic expressed sequence tags (EST) derived microsatellites. The results showed that all 15 loci were polymorphic with the number of alleles per locus ranging from two to seven. The expected and observed heterozygosities varied from 0.169 to 0.752, and 0.000 to 1.000, respectively. The inbreeding coefficient ranged from -0.833 to 1.000. These markers will contribute to research on genetic diversity and population genetic structure of P. amabilis, which in turn will contribute to the species conservation.

  18. Rapid Development of Microsatellite Markers with 454 Pyrosequencing in a Vulnerable Fish, the Mottled Skate, Raja pulchra

    PubMed Central

    Kang, Jung-Ha; Park, Jung-Youn; Jo, Hyun-Su

    2012-01-01

    The mottled skate, Raja pulchra, is an economically valuable fish. However, due to a severe population decline, it is listed as a vulnerable species by the International Union for Conservation of Nature. To analyze its genetic structure and diversity, microsatellite markers were developed using 454 pyrosequencing. A total of 17,033 reads containing dinucleotide microsatellite repeat units (mean, 487 base pairs) were identified from 453,549 reads. Among 32 loci containing more than nine repeat units, 20 primer sets (62%) produced strong PCR products, of which 14 were polymorphic. In an analysis of 60 individuals from two R. pulchra populations, the number of alleles per locus ranged from 1–10, and the mean allelic richness was 4.7. No linkage disequilibrium was found between any pair of loci, indicating that the markers were independent. The Hardy–Weinberg equilibrium test showed significant deviation in two of the 28 single-loci after sequential Bonferroni’s correction. Using 11 primer sets, cross-species amplification was demonstrated in nine related species from four families within two classes. Among the 11 loci amplified from three other Rajidae family species; three loci were polymorphic. A monomorphic locus was amplified in all three Rajidae family species and the Dasyatidae family. Two Rajidae polymorphic loci amplified monomorphic target DNAs in four species belonging to the Carcharhiniformes class, and another was polymorphic in two Carcharhiniformes species. PMID:22837688

  19. Population genetics of invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species in the United States based on microsatellite markers.

    PubMed

    Dickey, Aaron M; Osborne, Lance S; Shatters, Robert G; Hall, Paula A M; Mckenzie, Cindy L

    2013-06-01

    The Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) cryptic species complex of whiteflies contains two species, MEAM1 and MED, that are highly invasive in supportive climates the world over. In the United States, MEAM1 occurs both in the field and in the greenhouse, but MED is only found in the greenhouse. To make inferences about the population structure of both species, and the origin and recent spread of MED within the United States, 987 MEAM1 whiteflies and 340 MED whiteflies were genotyped at six and seven microsatellite loci, respectively, for population genetic analyses. Major results of the study are 1) MED exhibits more population structure and genetic differentiation than MEAM1, 2) nuclear microsatellite markers exhibit a high degree of concordance with mitochondrial markers recovering a major east-west phylogeographic break within MED, 3) both eastern and western MED are found throughout the continental United States and eastern MED is present in Hawaii, and 4) MEAM1 contains two greenhouse U.S. populations significantly differentiated from other U.S. MEAM1. The results suggest that MED was introduced into the United States on at least three occasions and rapidly spread throughout the United States, showing no discernible differentiation across 7,000 km. The results further suggest that there is an enhanced role of the protected agricultural environment in promoting genetic differentiation in both invasive B. tabaci cryptic species.

  20. Genetic diversity and association mapping of bacterial blight and other horticulturally important traits with microsatellite markers in pomegranate from India.

    PubMed

    Singh, Nripendra Vikram; Abburi, Venkata Lakshmi; Ramajayam, D; Kumar, Ravinder; Chandra, Ram; Sharma, Kuldeep Kumar; Sharma, Jyotsana; Babu, K Dhinesh; Pal, Ram Krishna; Mundewadikar, Dhananjay M; Saminathan, Thangasamy; Cantrell, Robert; Nimmakayala, Padma; Reddy, Umesh K

    2015-08-01

    This genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies.

  1. Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers

    PubMed Central

    Todokoro, Yasuhiro; Higaki, Tomomi

    2010-01-01

    The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control. PMID:20625919

  2. Intra-population genetic diversity of cultivated carrot (Daucus carota L.) assessed by analysis of microsatellite markers.

    PubMed

    Maksylewicz, Anna; Baranski, Rafal

    2013-01-01

    Intra-population variation of 18 cultivated carrot (Daucus carota L. ssp. sativus) populations of diverse origins was evaluated using codominant microsatellite (SSR) markers. Using 27 genomic and EST-derived SSR markers, 253 alleles were identified with a mean 9.4 alleles per marker. Most of the alleles (60.5%) were rare i.e., with the frequency ≤ 0.05 while only 3.95% of alleles occurred with frequency > 0.6. EST-derived SSR markers were less polymorphic than genomic SSR markers. Differences in allele occurrence allowed 16 out of 18 populations to be assigned to either the Western or Asian carrot gene pools with high probability. Populations could be also discriminated due to the presence of private alleles (25.3% of all alleles). Most populations had excess of alleles in the homozygous state indicating their inbreeding, although heterozygous loci were common in F1 hybrids. Genetic diversity was due to allelic variation among plants within populations (62% of total variation) and between populations (38%). Accessions originating from continental Asia and Europe had more allelic variants and higher diversity than those from Japan and USA. Also, allelic richness and variability in landraces was higher than in F1 hybrids and open-pollinated cultivars.

  3. Development of silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) genetic maps using microsatellite and AFLP markers and a pseudo-testcross strategy.

    PubMed

    Liao, M; Zhang, L; Yang, G; Zhu, M; Wang, D; Wei, Q; Zou, G; Chen, D

    2007-08-01

    Silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are two of the four most important pond-cultured fish species inhabiting the major river basins of China. In the present study, genetic maps of silver carp and bighead carp were constructed using microsatellite and AFLP markers and a two-way pseudo-testcross strategy. To create the maps, 60 individuals were obtained from a cross of a single bighead carp (female) and a single silver carp (male). The silver carp map consisted of 271 markers (48 microsatellites and 223 AFLPs) that were assembled into 27 linkage groups, of which 22 contained at least four markers. The total length of the silver carp map was 952.2 cM, covering 82.8% of the estimated genome size. The bighead carp map consisted of 153 markers (27 microsatellites and 126 AFLPs) which were organized into 30 linkage groups, of which 19 contained at least four markers. The total length of the bighead carp map was 852.0 cM, covering 70.5% of the estimated genome size. Eighteen microsatellite markers were common to both maps. These maps will contribute to discovery of genes and genetic regions controlling traits in the two species of carp.

  4. Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to the HLA-C gene.

    PubMed

    Oka, A; Tamiya, G; Tomizawa, M; Ota, M; Katsuyama, Y; Makino, S; Shiina, T; Yoshitome, M; Iizuka, M; Sasao, Y; Iwashita, K; Kawakubo, Y; Sugai, J; Ozawa, A; Ohkido, M; Kimura, M; Bahram, S; Inoko, H

    1999-11-01

    The HLA-Cw6 antigen has been associated with psoriasis vulgaris despite racial and ethnic differences. However, it remains unclear whether it is the HLA-Cw6 antigen itself or a closely linked, hitherto unidentified, locus that predisposes to the disease. Here, in order to map the susceptibility locus for psoriasis vulgaris precisely within the HLA class I region, 11 polymorphic microsatellite markers distributed throughout a 1060 kb segment surrounding the HLA-C locus were subjected to association analysis in Japanese psoriasis vulgaris patients. Statistical analyses of the distribution and deviation from Hardy-Weinberg equilibrium of the allelic frequency at each micro-satellite locus revealed that the pathogenic gene for psoriasis vulgaris is located within a reduced interval of 111 kb spanning 89-200 kb telomeric of the HLA-C gene. In addition to three known genes, POU5F1, TCF19 and S, this 111 kb fragment contains four new, expressed genes identified in the course of our genomic sequencing of the entire HLA class I region. Therefore, these seven genes are the potential candidates for susceptibility to psoriasis vulgaris.

  5. Development and characterization of microsatellite markers for the Chinese endangered medicinal plant Tetrastigma hemsleyanum.

    PubMed

    Wang, Y H; Chen, N; Zhang, Y C; Fu, C X

    2014-10-31

    Tetrastigma hemsleyanum (Vitaceae) is an endangered medicinal plant endemic to China. Because of its widely known efficacy for treating many health problems, wild resources of this species are currently undergoing a rapid decline. Few studies have been conducted examining the population genetics or development of microsatellite loci for this plant. In this study, 14 microsatellite loci were isolated and characterized for T. hemsleyanum using a double-suppression PCR method. Polymorphisms were tested with a total of 50 individuals from 2 natural populations. The number of alleles per locus ranged from 3-9, with an average of 7 alleles per locus. The observed and expected heterozygosity per locus ranged from 0-1 and from 0.068-0.803, respectively. The polymorphism information content value varied from 0.215-0.760. These loci may facilitate further genetic studies of populations of T. hemsleyanum and provide guidance for their conservation.

  6. Development and Characterization of Microsatellite Markers for the Cape Gooseberry Physalis peruviana

    PubMed Central

    Simbaqueba, Jaime; Sánchez, Pilar; Sanchez, Erika; Núñez Zarantes, Victor Manuel; Chacon, Maria Isabel; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2011-01-01

    Physalis peruviana, commonly known as Cape gooseberry, is an Andean Solanaceae fruit with high nutritional value and interesting medicinal properties. In the present study we report the development and characterization of microsatellite loci from a P. peruviana commercial Colombian genotype. We identified 932 imperfect and 201 perfect Simple Sequence Repeats (SSR) loci in untranslated regions (UTRs) and 304 imperfect and 83 perfect SSR loci in coding regions from the assembled Physalis peruviana leaf transcriptome. The UTR SSR loci were used for the development of 162 primers for amplification. The efficiency of these primers was tested via PCR in a panel of seven P. peruviana accessions including Colombia, Kenya and Ecuador ecotypes and one closely related species Physalis floridana. We obtained an amplification rate of 83% and a polymorphic rate of 22%. Here we report the first P. peruviana specific microsatellite set, a valuable tool for a wide variety of applications, including functional diversity, conservation and improvement of the species. PMID:22039540

  7. Microsatellite marker development for the coastal dune shrub Prunus maritima (Rosaceae)1

    PubMed Central

    Badgley, Emily M.; Grubisha, Lisa C.; Roland, Anna K.; Connolly, Bryan A.; Klooster, Matthew R.

    2015-01-01

    • Premise of the study: Microsatellite primers were developed in the beach plum, Prunus maritima, to investigate the genetic composition of remaining populations in need of conservation and, in future studies, to determine its relation to P. maritima var. gravesii. • Methods and Results: Fourteen primer pairs were identified and tested in four populations throughout the species’ geographic range. Of these 14 loci, 12 were shown to be polymorphic among a total of 60 P. maritima individuals sampled (15 individuals sampled from four populations). Among the polymorphic loci, the number of alleles ranged from two to 10 and observed heterozygosity of loci ranged from 0.07 to 0.93 among specimens tested. • Conclusions: These microsatellites will be useful in evaluating the population genetic composition of P. maritima and in developing approaches for further conservation and management of this species within the endangered coastal dune ecosystem of the northeastern United States. PMID:25699222

  8. Isolation and characterization of 28 new microsatellite markers for European flounder (Platichthys flesus L.).

    PubMed

    Tysklind, Niklas; Neuparth, Teresa; Ashcroft, Gregg R; Taylor, Martin I; Lyons, Brett P; McCarthy, Ian D; Carvalho, Gary R

    2009-05-01

    The European flounder (Platichthys flesus L.) is used in ecotoxicological studies to provide detailed information on the effects of pollution on individual fish. Data on population and evolutionary level effects are, however, limited. Here, the isolation and characterization of 28 novel species specific microsatellite loci are presented. The number of alleles ranged from 8 to 38, and observed heterozygosity from 0.542 to 1.

  9. Polymorphic microsatellite markers for the striped skunk, Mephitis mephitis, and other mephitids.

    PubMed

    Dragoo, Jerry W; Coan, Kathryn E; Moore, Kristin A; Henke, Scott E; Fleischer, Robert C; Wisely, Samantha M

    2009-01-01

    We report 10 polymorphic microsatellite loci primers developed for striped skunks (Mephitis mephitis), a widespread mesocarnivore in North America. Numbers of alleles in these loci ranged from seven to 14 and the observed heterozygosity ranged from 0.76 to 1.0. These primers will be useful for studying population dynamics of skunks where rabies is endemic and will be useful to estimate genetic relatedness among females sharing winter dens. Most of these primers amplify across species within the Mephitidae.

  10. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    PubMed Central

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species

  11. Identification and Evaluation of 21 Novel Microsatellite Markers from the Autumnal Moth (Epirrita autumnata) (Lepidoptera: Geometridae)

    PubMed Central

    Aarnes, Siv Grethe; Fløystad, Ida; Schregel, Julia; Vindstad, Ole Petter Laksforsmo; Jepsen, Jane Uhd; Eiken, Hans Geir; Ims, Rolf A.; Hagen, Snorre B.

    2015-01-01

    The autumnal moth (Epirrita autumnata) is a cyclically outbreaking forest Lepidoptera with circumpolar distribution and substantial impact on Northern ecosystems. We have isolated 21 microsatellites from the species to facilitate population genetic studies of population cycles, outbreaks, and crashes. First, PCR primers and PCR conditions were developed to amplify 19 trinucleotide loci and two tetranucleotide loci in six multiplex PCR approaches and then analyzed for species specificity, sensitivity and precision. Twelve of the loci showed simple tandem repeat array structures while nine loci showed imperfect repeat structures, and repeat numbers varied in our material between six and 15. The application in population genetics for all the 21 microsatellites were further validated in 48 autumnal moths sampled from Northern Norway, and allelic variation was detected in 19 loci. The detected numbers of alleles per locus ranged from two to 13, and the observed and expected heterozygosities varied from 0.04 to 0.69 and 0.04 to 0.79, respectively. Evidence for linkage disequilibrium was found for six loci as well as indication of one null allele. We find that these novel microsatellites and their multiplex-PCR assays are suitable for further research on fine- and large-scale population-genetic studies of Epirrita autumnata. PMID:26393576

  12. Identification and Evaluation of 21 Novel Microsatellite Markers from the Autumnal Moth (Epirrita autumnata) (Lepidoptera: Geometridae).

    PubMed

    Aarnes, Siv Grethe; Fløystad, Ida; Schregel, Julia; Vindstad, Ole Petter Laksforsmo; Jepsen, Jane Uhd; Eiken, Hans Geir; Ims, Rolf A; Hagen, Snorre B

    2015-09-17

    The autumnal moth (Epirrita autumnata) is a cyclically outbreaking forest Lepidoptera with circumpolar distribution and substantial impact on Northern ecosystems. We have isolated 21 microsatellites from the species to facilitate population genetic studies of population cycles, outbreaks, and crashes. First, PCR primers and PCR conditions were developed to amplify 19 trinucleotide loci and two tetranucleotide loci in six multiplex PCR approaches and then analyzed for species specificity, sensitivity and precision. Twelve of the loci showed simple tandem repeat array structures while nine loci showed imperfect repeat structures, and repeat numbers varied in our material between six and 15. The application in population genetics for all the 21 microsatellites were further validated in 48 autumnal moths sampled from Northern Norway, and allelic variation was detected in 19 loci. The detected numbers of alleles per locus ranged from two to 13, and the observed and expected heterozygosities varied from 0.04 to 0.69 and 0.04 to 0.79, respectively. Evidence for linkage disequilibrium was found for six loci as well as indication of one null allele. We find that these novel microsatellites and their multiplex-PCR assays are suitable for further research on fine- and large-scale population-genetic studies of Epirrita autumnata.

  13. Genetic Variability and Geographic Diversity of the Common Bed Bug (Hemiptera: Cimicidae) Populations from the Midwest Using Microsatellite Markers.

    PubMed

    Narain, Ralph B; Lalithambika, Sreedevi; Kamble, Shripat T

    2015-07-01

    With the recent global resurgence of the bed bugs (Cimex lectularius L.), there is a need to better understand its biology, ecology, and ability to establish populations. Bed bugs are domestic pests that feed mainly on mammalian blood. Although bed bugs have not been implicated as vectors of pathogens, their biting activity inflicts severe insomnia and allergic reactions. Moreover, they have recently developed resistance to various insecticides, which requires further molecular research to determine genetic variation and appropriate interventions. Population dynamics, including genetic differentiation and genetic distance of 10 populations from the Midwest were analyzed in this study. The bed bug samples collected by pest control companies were genotyped using eight species-specific microsatellite markers. Results showed all eight markers were polymorphic, with 8-16 alleles per locus, suggesting high genetic diversity. The FST values were >0.25, signifying pronounced genetic differentiation. The G-test results also indicated high genetic differentiation among populations. The frequency of the most common allele across all eight loci was 0.42. The coefficient of relatedness between each of the populations was >0.5, indicative of sibling or parent-offspring relationships, while the FIS and its confidence interval values were statistically insignificant within the populations tested. The populations departed from Hardy-Weinberg equilibrium, possibly because of high heterozygosity. The genetic distance analysis using a neighbor-joining tree showed that the populations from Kansas City, MO, were genetically separate from most of those from Nebraska, indicating a geographic pattern of genetic structure. Our study demonstrated the effectiveness of using microsatellite markers to study bed bugs population structure, thereby improving our understanding of bed bug population dynamics in the Midwest. Overall, this study showed a high genetic diversity and identified several

  14. Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups

    PubMed Central

    Parida, Swarup Kumar; Dalal, Vivek; Singh, Ashok Kumar; Singh, Nagendra Kumar; Mohapatra, Trilochan

    2009-01-01

    Background Completely sequenced plant genomes provide scope for designing a large number of microsatellite markers, which are useful in various aspects of crop breeding and genetic analysis. With the objective of developing genic but non-coding microsatellite (GNMS) markers for the rice (Oryza sativa L.) genome, we characterized the frequency and relative distribution of microsatellite repeat-motifs in 18,935 predicted protein coding genes including 14,308 putative promoter sequences. Results We identified 19,555 perfect GNMS repeats with densities ranging from 306.7/Mb in chromosome 1 to 450/Mb in chromosome 12 with an average of 357.5 GNMS per Mb. The average microsatellite density was maximum in the 5' untranslated regions (UTRs) followed by those in introns, promoters, 3'UTRs and minimum in the coding sequences (CDS). Primers were designed for 17,966 (92%) GNMS repeats, including 4,288 (94%) hypervariable class I types, which were bin-mapped on the rice genome. The GNMS markers were most polymorphic in the intronic region (73.3%) followed by markers in the promoter region (53.3%) and least in the CDS (26.6%). The robust polymerase chain reaction (PCR) amplification efficiency and high polymorphic potential of GNMS markers over genic coding and random genomic microsatellite markers suggest their immediate use in efficient genotyping applications in rice. A set of these markers could assess genetic diversity and establish phylogenetic relationships among domesticated rice cultivar groups. We also demonstrated the usefulness of orthologous and paralogous conserved non-coding microsatellite (CNMS) markers, identified in the putative rice promoter sequences, for comparative physical mapping and understanding of evolutionary and gene regulatory complexities among rice and other members of the grass family. The divergence between long-grained aromatics and subspecies japonica was estimated to be more recent (0.004 Mya) compared to short-grained aromatics from japonica

  15. A genetic linkage map of the sea cucumber, Apostichopus japonicus (Selenka), based on AFLP and microsatellite markers.

    PubMed

    Li, Q; Chen, L; Kong, L

    2009-10-01

    We present the first genetic maps of the sea cucumber (Apostichopus japonicus), constructed with an F(1) pseudo-testcross strategy. The 37 amplified fragment length polymorphism (AFLP) primer combinations chosen identified 484 polymorphic markers. Of the 21 microsatellite primer pairs tested, 16 identified heterozygous loci in one or other parent, and six were fully informative, as they segregated in both parents. The female map comprised 163 loci, spread over 20 linkage groups (which equals the haploid chromosome number), and spanned 1522.0 cM, with a mean marker density of 9.3 cM. The equivalent figures for the male map were 162 loci, 21 linkage groups, 1276.9 and 7.9 cM. About 2.5% of the AFLP markers displayed segregation distortion and were not used for map construction. The estimated coverage of the genome was 84.8% for the female map and 83.4% for the male map. The maps generated will serve as a basis for the construction of a high-resolution genetic map and mapping of the functional genes and quantitative trait loci, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.

  16. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions

    PubMed Central

    Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2014-01-01

    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003

  17. Development of novel DNA markers for genetic analysis of grey hamsters by cross-species amplification of microsatellites.

    PubMed

    Wang, C; Zhang, S J; Du, X Y; Xu, Y M; Huo, X Y; Liao, L F; Chen, Z W

    2015-11-13

    The grey hamster has been used in biomedical research for decades. However, effective molecular methods for evaluating the genetic structure of this species are lacking, which hinders its wider usage. In this study, we employed cross-amplification of microsatellite loci of species within the same genus by polymerase chain reaction. Loci screened included 107 from the Mongolian gerbil (MG) and 60 from the Chinese hamster (CH); of these, 15 polymorphic loci were identified for the grey hamster. Of the 167 loci screened, 95 (56.9%) with clear bands on agarose gel were initially identified. After sequencing, 74 (77.9%) of these matched the criteria for microsatellite characteristics, including 41 from MG and 33 from CH. Lastly, 15 (20.3%) loci with more than two alleles for each locus were identified through capillary electrophoresis scanning. To justify the applicability of the 15 grey hamster loci, genetic indexes of grey hamsters were evaluated using 46 generations of outbred stock, established 20 years ago, from Xinjiang, China. Mean effective allele numbers and expected heterozygosity of stock were as low as, respectively, 1.2 and 0.14; these were 2.8 and 4.0 times inferior, respectively, to wild grey hamsters. This finding suggests that the genetic structure of the stock-bred population is too weak to resist artificial and natural selection, mutation and genetic drifting. In conclusion, we have developed de novo microsatellite markers for genetic analysis of the grey hamster, providing data and methodology for the enrichment of a genetic library for this species.

  18. Development of diagnostic microsatellite markers from whole-genome sequences of Ammodramus sparrows for assessing admixture in a hybrid zone

    PubMed Central

    Kovach, Adrienne I; Walsh, Jennifer; Ramsdell, Jordan; Kelley Thomas, W

    2015-01-01

    Studies of hybridization and introgression and, in particular, the identification of admixed individuals in natural populations benefit from the use of diagnostic genetic markers that reliably differentiate pure species from each other and their hybrid forms. Such diagnostic markers are often infrequent in the genomes of closely related species, and genomewide data facilitate their discovery. We used whole-genome data from Illumina HiSeqS2000 sequencing of two recently diverged (600,000 years) and hybridizing, avian, sister species, the Saltmarsh (Ammodramus caudacutus) and Nelson's (A. nelsoni) Sparrow, to develop a suite of diagnostic markers for high-resolution identification of pure and admixed individuals. We compared the microsatellite repeat regions identified in the genomes of the two species and selected a subset of 37 loci that differed between the species in repeat number. We screened these loci on 12 pure individuals of each species and report on the 34 that successfully amplified. From these, we developed a panel of the 12 most diagnostic loci, which we evaluated on 96 individuals, including individuals from both allopatric populations and sympatric individuals from the hybrid zone. Using simulations, we evaluated the power of the marker panel for accurate assignments of individuals to their appropriate pure species and hybrid genotypic classes (F1, F2, and backcrosses). The markers proved highly informative for species discrimination and had high accuracy for classifying admixed individuals into their genotypic classes. These markers will aid future investigations of introgressive hybridization in this system and aid conservation efforts aimed at monitoring and preserving pure species. Our approach is transferable to other study systems consisting of closely related and incipient species. PMID:26078861

  19. Identification and characterization of 43 microsatellite markers derived from expressed sequence tags of the sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Jiang, Qun; Li, Qi; Yu, Hong; Kong, Lingfeng

    2011-06-01

    The sea cucumber Apostichopus japonicus is a commercially and ecologically important species in China. A total of 3056 potential unigenes were generated after assembling 7597 A. japonicus expressed sequence tags (ESTs) downloaded from Gen-Bank. Two hundred and fifty microsatellite-containing ESTs (8.18%) and 299 simple sequence repeats (SSRs) were detected. The average density of SSRs was 1 per 7.403 kb of EST after redundancy elimination. Di-nucleotide repeat motifs appeared to be the most abundant type with a percentage of 69.90%. Of the 126 primer pairs designed, 90 amplified the expected products and 43 showed polymorphism in 30 individuals tested. The number of alleles per locus ranged from 2 to 26 with an average of 7.0 alleles, and the observed and expected heterozygosities varied from 0.067 to 1.000 and from 0.066 to 0.959, respectively. These new EST-derived microsatellite markers would provide sufficient polymorphism for population genetic studies and genome mapping of this sea cucumber species.

  20. Microsatellite DNA markers: evaluating their potential for estimating the proportion of hatchery-reared offspring in a stock enhancement programme.

    PubMed

    Bravington, M V; Ward, R D

    2004-05-01

    We describe a statistical method for estimating the effectiveness of a stock enhancement programme using nuclear DNA loci. It is based on knowing the population allele frequencies and the genotypes of the hatchery parents (mother only, or mother and father), and on determining the probability that a wild-born animal will by chance have a genotype consistent with hatchery origin. We show how to estimate the proportion of released animals in the wild population, and its standard error. The method is applied to a data set of eight microsatellite loci in brown tiger prawns (Penaeus esculentus), prior to the start of a possible enhancement programme. We conclude that, for this particular data set, the effectiveness of such an enhancement programme could be quantified accurately if both maternal and paternal genotypes are known, but not if maternal genotypes only are known. Full paternal genotyping would require offspring genotyping and thus would be expensive, but a partly typed paternal genotype from a mass homogenate of offspring would be almost as effective and much cheaper. The experiment would become feasible based on maternal genotypes alone, if a further three typical microsatellite loci could be found to add to the existing panel of eight. The methods detailed should be of interest to any enhancement project that relies on nuclear DNA markers to provide tags.

  1. New polymorphic microsatellite markers for the Korean manila clam (Ruditapes philippinarum) and their application to wild populations.

    PubMed

    Kim, E M; An, H S; Kang, J H; An, C M; Dong, C M; Hong, Y K; Park, J Y

    2014-10-07

    Manila clam (Ruditapes philippinarum) is a valuable and intensively exploited shellfish species in Korea. Despite its importance, information on its genetic background is scarce. For the genetic characterization of R. philippinarum, expressed sequence tag-derived microsatellite markers were developed using next-generation sequencing. A total of 5879 tandem repeats containing di- to hexanucleotide repeat motifs were obtained from 236,746 reads (mean = 413 bp). Of the 62 loci screened, 24 (38.7%) were successfully amplified, and 10 were polymorphic in 144 individuals from 2 manila clam populations (Incheon and Geoje, Korea). The number of alleles ranged from 2 to 17 in the Incheon population and from 3 to 13 in the Geoje population (overall AR = 7.21). The mean observed and expected heterozygosities were estimated to be 0.402 and 0.555, respectively. Hence, there is less genetic variability in the Geoje population than in the Incheon population, although no significant reductions of genetic diversity were found between the populations (P > 0.05). However, significant genetic differentiation was detected between the populations (FST = 0.064, P < 0.001). Significant deviations from Hardy-Weinberg equilibrium and high inbreeding coefficients (mean FIS = 0.22-0.26) were detected in both populations. The 10 novel polymorphic microsatellite loci used in this study will be useful for future genetic mapping studies and for characterizing population structures, monitoring genetic diversity for successful aquaculture management, and developing conservation strategies for manila clam populations in Korea.

  2. Development and characterization of microsatellite markers in Sarracenia L. (pitcher plant) species.

    PubMed

    Rogers, Willie L; Cruse-Sanders, Jennifer M; Determann, Ron; Malmberg, Russell L

    2010-12-01

    Sarracenia species (pitcher plants) are carnivorous plants which obtain a portion of their nutrients from insects captured in the pitchers. Sarracenia species naturally hybridize with each other, and hybrid swarms have been identified. A number of the taxa within the genus are considered endangered. In order to facilitate evolutionary, ecological and conservation genetic analyses within the genus, we developed 25 microsatellite loci which show variability either within species or between species. Three S. purpurea populations were examined with 10 primer sets which showed within population variability.

  3. [Microsatellite markers for paternity testing of Liangshan semi-fine wool sheep].

    PubMed

    Gao, Ai-Bao; Wu, Deng-Jun

    2005-01-01

    The usefulness of multiplex polymerase chain reaction was evaluated and fluorescent detection with 20 microsatellites was used for paternity testing of Liangshan semi-fine wool sheep. The results in Cervus 2.0 indicated that the combined exclusion probability was 0.998666 when parents were both unknown. If father was known, combined exclusion probability was 0.999994, with confidence level of 95%. Finally, the biological parents of 215 individuals in offspring were found from 8 candidate fathers and 147 candidate mothers, and a mixed pedigree was constructed. It is useful for linkage analysis of sheep chromosomes and QTL location, also for the study of population structure, history, and diversity.

  4. Cross-species amplification and optimization of microsatellite markers for use in six Neotropical parrots.

    PubMed

    Gebhardt, Kara J; Waits, Lisette P

    2008-07-01

    Short amplicon primers were redesigned for 17 microsatellite loci developed in St. Vincent's Amazon and six loci developed in blue-and-yellow macaw and tested using six species of Neotropical parrot. Polymorphism was observed at 12 loci in blue-and-yellow macaw, 10 in red-and-green macaw, 11 in scarlet macaw, 10 in chestnut-fronted macaw, 11 in red-bellied macaw and 16 in mealy parrot. Number of alleles per locus ranged from two to 23 and expected heterozygosity ranged from 0.05 to 0.95. The resulting multiplexed loci will be useful in evaluating genetic diversity, genetic structure and mating system in Neotropical parrots.

  5. Polymorphic microsatellite DNA markers for the Florida manatee (Trichechus manatus latirostris)

    USGS Publications Warehouse

    Pause, K.C.; Nourisson, C.; Clark, A.; Kellogg, M.E.; Bonde, R.K.; McGuire, P.M.

    2007-01-01

    Florida manatees (Trichechus manatus latirostris) are marine mammals that inhabit the coastal waters and rivers of the southeastern USA, primarily Florida. Previous studies have shown that Florida manatees have low mitochondrial DNA variability, suggesting that nuclear DNA loci are necessary for discriminatory analyses. Here we report 10 polymorphic microsatellite loci with an average of 4.2 alleles per locus, and average heterozygosity of 50.1%. These loci have been developed for use in population studies, parentage assignment, and individual identification. ?? 2007 Blackwell Publishing Ltd.

  6. Isolation, characterization and PCR multiplexing of polymorphic microsatellite markers in the edible dormouse, Glis glis.

    PubMed

    Hürner, H; Martin, J F; Ribas, A; Arrizabalaga, A; Michaux, J R

    2009-05-01

    We isolated and characterized 10 dinucleotide microsatellite loci in the edible dormouse, Glis glis (Linnaeus). Four multiplex panels were developed. Loci were amplified in samples from two geographically distant populations (Torgny in Belgium and Montseny in Spain). All loci were polymorphic in Spain but four were monomorphic in Belgium. Individuals from Belgium and Spain exhibited an average allelic diversity of 1.9 and 3.3 and an observed heterozygosity ranging from 0.08 to 0.47 and from 0.04 to 0.72, respectively.

  7. SBMDb: first whole genome putative microsatellite DNA marker database of sugarbeet for bioenergy and industrial applications

    PubMed Central

    Iquebal, Mir Asif; Jaiswal, Sarika; Angadi, U.B.; Sablok, Gaurav; Arora, Vasu; Kumar, Sunil; Rai, Anil; Kumar, Dinesh

    2015-01-01

    DNA marker plays important role as valuable tools to increase crop productivity by finding plausible answers to genetic variations and linking the Quantitative Trait Loci (QTL) of beneficial trait. Prior approaches in development of Short Tandem Repeats (STR) markers were time consuming and inefficient. Recent methods invoking the development of STR markers using whole genomic or transcriptomics data has gained wide importance with immense potential in developing breeding and cultivator improvement approaches. Availability of whole genome sequences and in silico approaches has revolutionized bulk marker discovery. We report world’s first sugarbeet whole genome marker discovery having 145 K markers along with 5 K functional domain markers unified in common platform using MySQL, Apache and PHP in SBMDb. Embedded markers and corresponding location information can be selected for desired chromosome, location/interval and primers can be generated using Primer3 core, integrated at backend. Our analyses revealed abundance of ‘mono’ repeat (76.82%) over ‘di’ repeats (13.68%). Highest density (671.05 markers/Mb) was found in chromosome 1 and lowest density (341.27 markers/Mb) in chromosome 6. Current investigation of sugarbeet genome marker density has direct implications in increasing mapping marker density. This will enable present linkage map having marker distance of ∼2 cM, i.e. from 200 to 2.6 Kb, thus facilitating QTL/gene mapping. We also report e-PCR-based detection of 2027 polymorphic markers in panel of five genotypes. These markers can be used for DUS test of variety identification and MAS/GAS in variety improvement program. The present database presents wide source of potential markers for developing and implementing new approaches for molecular breeding required to accelerate industrious use of this crop, especially for sugar, health care products, medicines and color dye. Identified markers will also help in improvement of bioenergy trait

  8. Development of Chloroplast Microsatellite Markers and Analysis of Chloroplast Diversity in Chinese Jujube (Ziziphus jujuba Mill.) and Wild Jujube (Ziziphus acidojujuba Mill.)

    PubMed Central

    Huang, Jian; Yang, Xiaoting; Zhang, Chunmei; Yin, Xiao; Liu, Shipeng; Li, Xingang

    2015-01-01

    Ziziphus is an important genus within the family Rhamnaceae. This genus includes several important fruit tree species that are widely planted in China and India, such as the Chinese jujube (Ziziphus jujuba Mill.), the wild jujube (Z. acidojujuba), and the Indian jujube (Z. mauritiana). However, information about their domestication based on the chlorotype diversity of Chinese jujube population is lacking. In this study, chloroplast microsatellite (cpSSR) markers were developed and used to investigate the genetic relationships between and domestication of jujube cultivars and wild jujube populations. Primer sets flanking each of the 46 cpSSR loci in non-coding regions of the chloroplast genome sequence of Z. jujuba Mill. cv. ‘Junzao’ were designed. In total, 10 markers showed polymorphisms from 15 samples (9 jujube cultivars and 6 wild jujube individuals), of which 8 loci were due to variations in the number of mononucleotide (A/T) repeats and 2 were due to indels. Six cpSSR markers were used in further analyses of 81 additional samples (63 jujube cultivars, 17 wild jujube samples, and 1 Indian jujube). Using these cpSSR markers, the number of alleles per locus ranged from two to four. In general, the Shannon Index (I) for each cpSSR ranged from 0.159 to 0.1747, and the diversity indices (h) and uh were 0.061 to 0.435 and 0.062 to 0.439, respectively. Seven chlorotypes were found; the Indian jujube showed distinct chlorotypes, and both the Chinese and wild jujube had four chlorotypes and shared two chlorotypes. A dominant chlorotype (G) accounted for 53 of 72 jujube cultivars and 13 of 23 wild jujube individuals. All chlorotypes were highly localized along the Yellow River, from the mid- to the lower reaches, suggesting a wide origin of jujube. These cpSSR markers can be applied to population and evolution studies of Chinese jujube and wild jujube. PMID:26406601

  9. Construction of High Density Sweet Cherry (Prunus avium L.) Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS).

    PubMed

    Guajardo, Verónica; Solís, Simón; Sagredo, Boris; Gainza, Felipe; Muñoz, Carlos; Gasic, Ksenija; Hinrichsen, Patricio

    2015-01-01

    Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs) and, recently, using single nucleotide polymorphism markers (SNPs) from a cherry 6K SNP array. Genotyping-by-sequencing (GBS), a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri) cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.

  10. Chloroplast microsatellite markers for Pseudotaxus chienii developed from the whole chloroplast genome of Taxus chinensis var. mairei (Taxaceae)1

    PubMed Central

    Deng, Qi; Zhang, Hanrui; He, Yipeng; Wang, Ting; Su, Yingjuan

    2017-01-01

    Premise of the study: Pseudotaxus chienii (Taxaceae) is an old rare species endemic to China that has adapted well to ecological heterogeneity with high genetic diversity in its nuclear genome. However, the genetic variation in its chloroplast genome is unknown. Methods and Results: Eighteen chloroplast microsatellite markers (cpSSRs) were developed from the whole chloroplast genome of Taxus chinensis var. mairei and successfully amplified in four P. chienii populations and one T. chinensis var. mairei population. Of these loci, 10 were polymorphic in P. chienii, whereas six were polymorphic in T. chinensis var. mairei. The unbiased haploid diversity per locus ranged from 0.000 to 0.641 and 0.000 to 0.545 for P. chienii and T. chinensis var. mairei, respectively. Conclusions: The 18 cpSSRs will be used to further investigate the chloroplast genetic structure and adaptive evolution in P. chienii populations. PMID:28337394

  11. Characterization of twelve novel microsatellite markers of Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) identified from next generation sequence data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae), is a major pest of rice and has long-range migratory behavior in Asia. Microsatellite markers (simple sequence repeats, SSRs) have been widely used to determine the origins and genetic diversity of insect pests. ...

  12. Novel microsatellite markers for the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) and effects of null alleles on population genetics analyses.

    PubMed

    Song, W; Cao, L-J; Wang, Y-Z; Li, B-Y; Wei, S-J

    2016-11-07

    The oriental fruit moth (OFM) Grapholita molesta (Lepidoptera: Tortricidae) is an important economic pest of stone and pome fruits worldwide. We sequenced the OFM genome using next-generation sequencing and characterized the microsatellite distribution. In total, 56,674 microsatellites were identified, with 11,584 loci suitable for primer design. Twenty-seven polymorphic microsatellites, including 24 loci with trinucleotide repeat and three with pentanucleotide repeat, were validated in 95 individuals from four natural populations. The allele numbers ranged from 4 to 40, with an average value of 13.7 per locus. A high frequency of null alleles was observed in most loci developed for the OFM. Three marker panels, all of the loci, nine loci with the lowest null allele frequencies, and nine loci with the highest null allele frequencies, were established for population genetics analyses. The null allele influenced estimations of genetic diversity parameters but not the OFM's genetic structure. Both a STRUCTURE analysis and a discriminant analysis of principal components, using the three marker panels, divided the four natural populations into three groups. However, more individuals were incorrectly assigned by the STRUCTURE analysis when the marker panel with the highest null allele frequency was used compared with the other two panels. Our study provides empirical research on the effects of null alleles on population genetics analyses. The microsatellites developed will be valuable markers for genetic studies of the OFM.

  13. Population genetic structure of clinical and environmental isolates of Blastomyces dermatitidis, Based on 27 Polymorphic Microsatellite Markers

    USGS Publications Warehouse

    Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, Brian L.; Reed, K.D.

    2011-01-01

    Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n = 112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and ??-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species. ?? 2011, American Society for Microbiology.

  14. Population genetic structure of clinical and environmental isolates of Blastomyces dermatitidis based on 27 polymorphic microsatellite markers

    USGS Publications Warehouse

    Meece, Jennifer K.; Anderson, Jennifer L.; Fisher, Matthew C.; Henk, Daniel A.; Sloss, Brian L.; Reed, Kurt D.

    2011-01-01

    Blastomyces dermatitidis, a thermally dimorphic fungus, is the etiologic agent of North American blastomycosis. Clinical presentation is varied, ranging from silent infections to fulminant respiratory disease and dissemination to skin and other sites. Exploration of the population genetic structure of B. dermatitidis would improve our knowledge regarding variation in virulence phenotypes, geographic distribution, and difference in host specificity. The objective of this study was to develop and test a panel of microsatellite markers to delineate the population genetic structure within a group of clinical and environmental isolates of B. dermatitidis. We developed 27 microsatellite markers and genotyped B. dermatitidis isolates from various hosts and environmental sources (n=112). Assembly of a neighbor-joining tree of allele-sharing distance revealed two genetically distinct groups, separated by a deep node. Bayesian admixture analysis showed that two populations were statistically supported. Principal coordinate analysis also reinforced support for two genetic groups, with the primary axis explaining 61.41% of the genetic variability. Group 1 isolates average 1.8 alleles/locus, whereas group 2 isolates are highly polymorphic, averaging 8.2 alleles/locus. In this data set, alleles at three loci are unshared between the two groups and appear diagnostic. The mating type of individual isolates was determined by PCR. Both mating type-specific genes, the HMG and α-box domains, were represented in each of the genetic groups, with slightly more isolates having the HMG allele. One interpretation of this study is that the species currently designated B. dermatitidis includes a cryptic subspecies or perhaps a separate species.

  15. Genetic Structure and Inferences on Potential Source Areas for Bactrocera dorsalis (Hendel) Based on Mitochondrial and Microsatellite Markers

    PubMed Central

    Shi, Wei; Kerdelhué, Carole; Ye, Hui

    2012-01-01

    Bactrocera dorsalis (Diptera: Tephritidae) is mainly distributed in tropical and subtropical Asia and in the Pacific region. Despite its economic importance, very few studies have addressed the question of the wide genetic structure and potential source area of this species. This pilot study attempts to infer the native region of this pest and its colonization pathways in Asia. Combining mitochondrial and microsatellite markers, we evaluated the level of genetic diversity, genetic structure, and the gene flow among fly populations collected across Southeast Asia and China. A complex and significant genetic structure corresponding to the geographic pattern was found with both types of molecular markers. However, the genetic structure found was rather weak in both cases, and no pattern of isolation by distance was identified. Multiple long-distance dispersal events and miscellaneous host selection by this species may explain the results. These complex patterns may have been influenced by human-mediated transportation of the pest from one area to another and the complex topography of the study region. For both mitochondrial and microsatellite data, no signs of bottleneck or founder events could be identified. Nonetheless, maximal genetic diversity was observed in Myanmar, Vietnam and Guangdong (China) and asymmetric migration patterns were found. These results provide indirect evidence that the tropical regions of Southeast Asia and southern coast of China may be considered as the native range of the species and the population expansion is northward. Yunnan (China) is a contact zone that has been colonized from different sources. Regions along the southern coast of Vietnam and China probably served to colonize mainly the southern region of China. Southern coastal regions of China may also have colonized central parts of China and of central Yunnan. PMID:22615898

  16. Novel microsatellite DNA markers indicate strict parthenogenesis and few genotypes in the invasive willow sawfly Nematus oligospilus.

    PubMed

    Caron, V; Norgate, M; Ede, F J; Nyman, T; Sunnucks, P

    2013-02-01

    Invasive organisms can have major impacts on the environment. Some invasive organisms are parthenogenetic in their invasive range and, therefore, exist as a number of asexual lineages (=clones). Determining the reproductive mode of invasive species has important implications for understanding the evolutionary genetics of such species, more especially, for management-relevant traits. The willow sawfly Nematus oligospilus Förster (Hymenoptera: Tenthredinidae) has been introduced unintentionally into several countries in the Southern Hemisphere where it has subsequently become invasive. To assess the population expansion, reproductive mode and host-plant relationships of this insect, microsatellite markers were developed and applied to natural populations sampled from the native and expanded range, along with sequencing of the cytochrome-oxidase I mitochondrial DNA (mtDNA) region. Other tenthredinids across a spectrum of taxonomic similarity to N. oligospilus and having a range of life strategies were also tested. Strict parthenogenesis was apparent within invasive N. oligospilus populations throughout the Southern Hemisphere, which comprised only a small number of genotypes. Sequences of mtDNA were identical for all individuals tested in the invasive range. The microsatellite markers were used successfully in several sawfly species, especially Nematus spp. and other genera of the Nematini tribe, with the degree of success inversely related to genetic divergence as estimated from COI sequences. The confirmation of parthenogenetic reproduction in N. oligospilus and the fact that it has a very limited pool of genotypes have important implications for understanding and managing this species and its biology, including in terms of phenotypic diversity, host relationships, implications for spread and future adaptive change. It would appear to be an excellent model study system for understanding evolution of invasive parthenogens that diverge without sexual reproduction and

  17. Genome-wide association study of IgA nephropathy using 23 465 microsatellite markers in a Japanese population.

    PubMed

    Saka, Sanae; Hirawa, Nobuhito; Oka, Akira; Yatsu, Keisuke; Hirukawa, Takeshi; Yamamoto, Ryohei; Matsusaka, Taiji; Imai, Enyu; Narita, Ichiei; Endoh, Masayuki; Ichikawa, Iekuni; Umemura, Satoshi; Inoko, Hidetoshi

    2015-10-01

    Immunoglobulin A nephropathy (IgAN) is the most common form of primary glomerulonephritis in many parts of the world. Although previous genome-wide association studies (GWAS) identified the major susceptibility loci for IgAN, the causal genes currently remain unknown. We performed a GWAS using 23 465 microsatellite (MS) markers to identify genes related to IgAN in a Japanese population. A pooled sample analysis was conducted in three-stage screenings of three independent case-control populations, and after the final step of individual typing, 11 markers survived. Of these, we focused on two regions on 6p21 and 12q21 because they (i) showed the strongest relationship with IgAN, and (ii) appeared to be highly relevant to IgAN in view of several previous studies. These regions contained the HLA, TSPAN8 and PTPRR genes. This study on GWAS, using >20 000 MS markers, provides a new approach regarding susceptible genes for IgAN for investigators seeking new tools for the prevention and treatment of IgAN.

  18. Use of microsatellite markers for the assessment of bambara groundnut breeding system and varietal purity before genome sequencing.

    PubMed

    Ho, Wai Kuan; Muchugi, Alice; Muthemba, Samuel; Kariba, Robert; Mavenkeni, Busiso Olga; Hendre, Prasad; Song, Bo; Van Deynze, Allen; Massawe, Festo; Mayes, Sean

    2016-06-01

    Maximizing the research output from a limited investment is often the major challenge for minor and underutilized crops. However, such crops may be tolerant to biotic and abiotic stresses and are adapted to local, marginal, and low-input environments. Their development through breeding will provide an important resource for future agricultural system resilience and diversification in the context of changing climates and the need to achieve food security. The African Orphan Crops Consortium recognizes the values of genomic resources in facilitating the improvement of such crops. Prior to beginning genome sequencing there is a need for an assessment of line varietal purity and to estimate any residual heterozygosity. Here we present an example from bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized drought tolerant African legume. Two released varieties from Zimbabwe, identified as potential genotypes for whole genome sequencing (WGS), were genotyped with 20 species-specific SSR markers. The results indicate that the cultivars are actually a mix of related inbred genotypes, and the analysis allowed a strategy of single plant selection to be used to generate non-heterogeneous DNA for WGS. The markers also confirmed very low levels of heterozygosity within individual plants. The application of a pre-screen using co-dominant microsatellite markers is expected to substantially improve the genome assembly, compared to a cultivar bulking approach that could have been adopted.

  19. Tightly linked flanking microsatellite markers for the Usher syndrome type I locus on the short arm of chromosome 11

    SciTech Connect

    Keats, B.J.B.; Nouri, N.; Pelias, M.Z.; Deininger, P.L. ); Litt, M. )

    1994-04-01

    Usher syndrome type I is an autosomal recessive disease characterized by profound congenital hearing impairment and vestibular dysfunction followed by the onset of progressive pigmentary retinopathy in childhood or early adolescence. A locus (USH1C) for one form of this disease was previously assigned to the short arm of chromosome 11 through linkage studies in the Acadian population of southwestern Louisiana. Linkage analyses of a set of microsatellite markers in 27 Acadian families provide evidence that USH1C lies between D11S861 and D11S928. Three markers (D11S419, D11S921, and D11S899) that lie between the flanking markers show no recombination with USH1C, and all 54 chromosomes with the abnormal allele at the disease locus have identical alleles for D11S419 and D11S921. This haplotype was found on only 10 of 50 chromosomes with the normal allele at the disease locus, suggesting a strong founder effect. Of the 54 chromosomes with the abnormal allele, 12 had a divergent allele at D11S899. These results suggest that USH1C is in the 2-3-cM interval between D11S861 and D11S899. 16 refs., 2 figs., 3 tabs.

  20. Tightly linked flanking microsatellite markers for the Usher syndrome type I locus on the short arm of chromosome 11.

    PubMed Central

    Keats, B. J.; Nouri, N.; Pelias, M. Z.; Deininger, P. L.; Litt, M.

    1994-01-01

    Usher syndrome type I is an autosomal recessive disease characterized by profound congenital hearing impairment and vestibular dysfunction followed by the onset of progressive pigmentary retinopathy in childhood or early adolescence. A locus (USH1C) for one form of this disease was previously assigned to the short arm of chromosome 11 through linkage studies in the Acadian population of southwestern Louisiana. Linkage analyses of a set of microsatellite markers in 27 Acadian families provide evidence that USH1C lies between D11S861 and D11S928. Three markers (D11S419, D11S921, and D11S899) that lie between the flanking markers show no recombination with USH1C, and all 54 chromosomes with the abnormal allele at the disease locus have identical alleles for D11S419 and D11S921. This haplotype was found on only 10 of 50 chromosomes with the normal allele at the disease locus, suggesting a strong founder effect. Of the 54 chromosomes with the abnormal allele, 12 had a divergent allele at D11S899. These results suggest that USH1C is in the 2-3-cM interval between D11S861 and D11S899. PMID:8128966

  1. Development of microsatellite markers and estimation of inbreeding frequency in the parasitoid wasp Melittobia

    PubMed Central

    Abe, Jun; Pannebakker, Bart A.

    2017-01-01

    The parasitoid wasp Melittobia is an important insect for basic and applied biology. Specifically, their extremely female-biased sex ratios, which contrast to the prediction of pre-existing theories, are needed to be explained from the aspect of evolutionary biology. In this study, using next-generation sequencing, 20 microsatellite loci were developed and characterized for M. australica. The developed loci were used to analyze two populations, one from a mainland Japan and one from the Okinawa island region. Both populations showed a smaller observed heterozygosity than expected, and a high inbreeding coefficient. Deviations from Hardy-Weinberg equilibrium were recorded for the majority of the 20 loci, suggesting that both the populations are subdivided due to inbreeding as is expected by the reproductive biology in Melittobia. The sib-mating frequency in the two populations was calculated as 0.873 and 0.996, which is higher than the values estimated by the number of females observed in a host cocoon or cell, implying that closely related females lay eggs on a host. The microsatellite loci developed in this study can be used for more comprehensive analyses to identify genetic structure in natural populations for understanding their sex allocation behavior and for more generally evolutionary and population genetic studies. PMID:28074919

  2. Evaluation of microsatellite markers for populations studies and forensic identification of African lions (Panthera leo).

    PubMed

    Miller, Susan M; Harper, Cindy K; Bloomer, Paulette; Hofmeyr, Jennifer; Funston, Paul J

    2014-01-01

    The South African lion (Panthera leo) population is highly fragmented. One-third of its wild lions occur in small (<1000 km(2)) reserves. These lions were reintroduced from other areas of the species' historical range. Management practices on these reserves have not prioritized genetic provenance or heterozygosity. These trends potentially constrain the conservation value of these lions. To ensure the best management and long-term survival of these subpopulations as a viable collective population, the provenance and current genetic diversity must be described. Concurrently, poaching of lions to supply a growing market for lion bones in Asia may become a serious conservation challenge in the future. Having a standardized, validated method for matching confiscated lion parts with carcasses will be a key tool in investigating these crimes. We evaluated 28 microsatellites in the African lion using samples from 18 small reserves and 1 captive facility in South Africa, two conservancies in Zimbabwe, and Kruger National and Kgalagadi Transfrontier Parks to determine the loci most suited for population management and forensic genetic applications. Twelve microsatellite loci with a match probability of 1.1×10(-5) between siblings were identified for forensics. A further 10 could be added for population genetics studies.

  3. Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers.

    PubMed

    Matsumoto, Asako; Uchida, Kohji; Taguchi, Yuriko; Tani, Naoki; Tsumura, Yoshihiko

    2010-09-01

    The genetic diversity and population structure of hinoki (Chamaecyparis obtusa) in Japan were investigated by examining the distribution of alleles at 13 microsatellite loci in 25 natural populations from Iwaki in northern Japan to Yakushima Island in southern Japan. On average, 26.9 alleles per locus were identified across all populations and 4.0% of the genetic variation was retained among populations (G(ST) = 0.040). According to linkage disequilibrium analysis, estimates of effective population size and detected evidence of bottleneck events, the genetic diversity of some populations may have declined as a result of fragmentation and/or over-exploitation. The central populations located in the Chubu district appear to have relatively large effective population sizes, while marginal populations, such as the Yakushima, Kobayashi and Iwaki populations, have smaller effective population sizes and are isolated from the other populations. Microsatellite analysis revealed the genetic uniqueness of the Yakushima population. Although genetic differentiation between populations was low, we detected a gradual cline in the genetic structure and found that locus Cos2619 may be non-neutral with respect to natural selection.

  4. Isolation and characterisation of 11 polymorphic microsatellite markers in Papaver rhoeas L. (Corn Poppy), a major annual plant species from cultivated areas.

    PubMed

    Kati, Vaya; Corre, Valérie Le; Michel, Séverine; Jaffrelo, Lydia; Poncet, Charles; Délye, Christophe

    2012-12-24

    Papaver rhoeas, an annual plant species in the Papaveraceae family, is part of the biodiversity of agricultural ecosystems and also a noxious agronomic weed. We developed microsatellite markers to study the genetic diversity of P. rhoeas, using an enriched microsatellite library coupled with 454 next-generation sequencing. A total of 13,825 sequences were obtained that yielded 1795 microsatellite loci. After discarding loci with less than six repeats of the microsatellite motif, automated primer design was successful for 598 loci. We tested 74 of these loci for amplification with a total of 97 primer pairs. Thirty loci passed our tests and were subsequently tested for polymorphism using 384 P. rhoeas plants originating from 12 populations from France. Of the 30 loci, 11 showed reliable polymorphism not affected by the presence of null alleles. The number of alleles and the expected heterozygosity ranged from 3 to 7.4 and from 0.27 to 0.73, respectively. A low but significant genetic differentiation among populations was observed (F(ST) = 0.04; p < 0.001). The 11 validated polymorphic microsatellite markers developed in this work will be useful in studies of genetic diversity and population structure of P. rhoeas, assisting in designing management strategies for the control or the conservation of this species.

  5. De novo development and characterization of polymorphic microsatellite markers in a schilbid catfish, Silonia silondia (Hamilton, 1822) and their validation for population genetic studies.

    PubMed

    Mandal, Sangeeta; Jena, J K; Singh, Rajeev K; Mohindra, Vindhya; Lakra, W S; Deshmukhe, Geetanjali; Pathak, Abhinav; Lal, Kuldeep K

    2016-02-01

    The stock characterization of wild populations of Silonia silondia is important for its scientific management. At present, the information on genetic parameters of S. silondia is very limited. The species-specific microsatellite markers were developed in current study. The validated markers were used to genotype individuals from four distant rivers. To develop de novo microsatellite loci, an enriched genomic library was constructed for S. silondia using affinity-capture approach. The markers were validated for utility in population genetics. A total number of 76 individuals from four natural riverine populations were used to generate data for population analysis. The screening of isolated repeat sequences yielded eleven novel polymorphic microsatellite loci. The microsatellite loci exhibited high level of polymorphism, with 6-24 alleles per locus and the PIC value ranged from 0.604 to 0.927. The observed (Ho) and expected (He) heterozygosities ranged from 0.081 to 0.84 and 0.66 to 0.938, respectively. The AMOVA analysis indicated significant genetic differentiation among riverine populations (overall FST = 0.075; P < 0.0001) with maximum variation (92.5%) within populations. Cross-priming assessment revealed successful amplification (35-38 %) of heterologous loci in four related species viz. Clupisoma garua, C. taakree, Ailia coila and Eutropiichthys vacha. The results demonstrated that these de novo polymorphic microsatellite loci are promising for population genetic variation and diversity studies in S. silondia. Cross-priming results indicated that these primers can help to get polymorphic microsatellite loci in the related catfish species of family Schilbidae.

  6. Sixteen EST-linked microsatellite markers in Günther's walking catfish, Clarias macrocephalus.

    PubMed

    Sukkorntong, Chantapim; Panprommin, Dutrudi; Poompuang, Supawadee

    2008-11-01

    Twenty-seven new microsatellite sequences were identified by screening 2029 expressed sequence tags from Günther's walking catfish, Clarias macrocephalus. Sixteen loci were polymorphic with the number of alleles ranging from two to 16 per locus and the observed and expected heterozygosities ranging from 0.4667 to 0.9333 and from 0.427 to 0.8819 per locus, respectively. Cross-species amplifications of all 16 primer pairs were tested in four other species of catfish including Clarias gariepinus, Pangasius hypophthalmus, Pangasius larnaudii and Pangasianodon gigas. Eleven loci were found to amplify in other species, with the number of polymorphic loci ranging from one in P. larnaudii to nine in C. gariepinus.

  7. Allelic database and divergence among Psidium accessions by using microsatellite markers.

    PubMed

    da Costa, S R; Santos, C A F

    2013-12-16

    This study aimed to investigate the genetic variability among guava accessions and wild Psidium species of the Embrapa Semiárido germplasm collection by using microsatellite loci to guide genetic resources and breeding programs, emphasizing crosses between guava and other Psidium species. DNA was extracted using the 2X CTAB method, and polymerase chain reaction products were analyzed on 6% denatured polyacrylamide gels stained with silver nitrate. The unweighted pair-group method using arithmetic average dendrogram generated from the distance matrix of the Jaccard coefficient for 183 alleles of 13 microsatellite loci was used for visualization of genetic similarity. The number of base pairs was estimated using inverse mobility method based on the regression of known-size products. Analysis of molecular variance was performed using total decomposition between and within guava accessions. The accessions showed similarity from 0.75 to 1.00, with the dendrogram presenting cophenetic value of 0.85. Five groups were observed: the first included guava accessions; the second, P. guineense accessions; the third, one accession of P. friedrichsthalianum; and the last 2 groups, P. cattleianum. The genetic similarity among P. guineense and some guava accessions were above 80%, suggesting greater possibility to obtain interspecies hybrids between these 2 species. The genetic variability between the accessions was considered to be high (ΦST = 0.238), indicating that guava genetic variability is not uniformly distributed among the 9 Brazilian states from where the accession were obtained. Obtaining a greater number of accessions by Brazilian states is recommended in order to have greater diversity among the species.

  8. Three novel polymorphic microsatellite markers for the glaucoma locus GLC1B by datamining tetranucleotide repeats on chromosome 2p12-q12

    PubMed Central

    2009-01-01

    In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers. PMID:21637444

  9. Next-generation sequencing identification and characterization of microsatellite markers in Aconitum austrokoreense Koidz., an endemic and endangered medicinal plant of Korea.

    PubMed

    Yun, Y-E; Yu, J-N; Nam, G H; Ryu, S-A; Kim, S; Oh, K; Lim, C E

    2015-05-11

    We used next-generation sequencing to develop 9 novel microsatellite markers in Aconitum austrokoreense, an endemic and endangered medicinal plant in Korea. Owing to its very limited distribution, over-harvesting for traditional medicinal purposes, and habitat loss, the natural populations are dramatically declining in Korea. All novel microsatellite markers were successfully genotyped using 64 samples from two populations (Mt. Choejeong, Gyeongsangbuk-do and Ungseokbong, Gyeongsangnam-do) of Gyeongsang Province. The number of alleles ranged from 2 to 7 per locus in each population. Observed and expected heterozygosities ranged from 0.031 to 0.938 and from 0.031 to 0.697, respectively. The novel markers will be valuable tools for assessing the genetic diversity of A. austrokoreense and for germplasm conservation of this endangered species.

  10. Three novel polymorphic microsatellite markers for the glaucoma locus GLC1B by datamining tetranucleotide repeats on chromosome 2p12-q12.

    PubMed

    Murga-Zamalloa, Carlos; Guevara-Fujita, Maria Luisa; Estrada-Cuzcano, Alejandro; Fujita, Ricardo

    2009-10-01

    In order to identify new markers around the glaucoma locus GLC1B as a tool to refine its critical region at 2p11.2-2q11.2, we searched the critical region sequence obtained from the UCSC database for tetranucleotide (GATA)n and (GTCT)n repeats of at least 10 units in length. Three out of four potential microsatellite loci were found to be polymorphic, heterozygosity ranging from 64.56% to 79.59%. The identified markers are useful not only for GLC1B locus but also for the study of other disease loci at 2p11.2-2q11.2, a region with scarcity of microsatellite markers.

  11. A comparative analysis of distribution and conservation of microsatellites in the transcripts of sequenced Fusarium species and development of genic-SSR markers for polymorphism analysis.

    PubMed

    Mahfooz, Sahil; Srivastava, Arpita; Srivastava, Alok K; Arora, Dilip K

    2015-09-01

    We used an in silico approach to survey and compare microsatellites in transcript sequences of four sequenced members of genus Fusarium. G + C content of transcripts was found to be positively correlated with the frequency of SSRs. Our analysis revealed that, in all the four transcript sequences studied, the occurrence, relative abundance and density of microsatellites varied and was not influenced by transcript sizes. No correlation between relative abundance and transcript sizes was observed. The relative abundance and density of microsatellites were highest in the transcripts of Fusarium solani when compared with F. graminearum, F. verticillioides and F. oxysporum. The maximum frequency of SSRs among all four sequence sets was of trinucleotide repeats (67.8%), whereas the dinucleotide repeat represents <1%. Among all classes of repeats, 36.5% motifs were found conserved within Fusarium species. In order to study polymorphism within Fusarium isolates, 11 polymorphic genic-SSR markers were developed. Of the 11 markers, 5 were from F. oxysporum and remaining 6 belongs to F. solani. SSR markers from F. oxysporum were found to be more polymorphic (38%) as compared to F. solani (26%). Eleven polymorphic markers obtained in this study clearly demonstrate the utility of newly developed SSR markers in establishing genetic relationships among different isolates of Fusarium.

  12. Cross-amplification of nonspecific microsatellites markers: a useful tool to study endangered/vulnerable species of southern Andes deer.

    PubMed

    Marín, J C; Orozco-terWengel, P; Romero, K; Vásquez, J P; Varas, V; Vianna, J A

    2014-04-25

    Thirty-nine microsatellite loci that are highly conserved in red deer, sika deer, reindeer, Soay sheep, and other artiodactyls were tested in two vulnerable and endangered Neotropical deer (pudu: Pudu puda and huemul: Hippocamelus bisulcus) with the aim of producing a standardized set of markers that can be used successfully in noninvasive samples from these species. We also compared these nonspecific loci against eight polymorphic loci that were recently developed for huemul to determine whether the nonspecific markers could reflect the huemul's genetic variation that was observed with the specific loci. We identified 10 suitable loci, six of which constitute a standardized set for the two species and can be used to identify them in the absence of phenotypic data. The expected heterozygosity per locus for the panel of six loci ranged from 0.461 to 0.889 (average 0.665), and the maximum probability of identity value was 6.9x10(-6) and 3.2x10(-4) in pudu and huemul, respectively. This set of loci has potential applications in evolutionary, ecological, forensic, and conservation studies in pudu and huemul.

  13. Genetic Map of Triticale Integrating Microsatellite, DArT and SNP Markers

    PubMed Central

    Tyrka, Mirosław; Tyrka, Dorota; Wędzony, Maria

    2015-01-01

    Triticale (×Triticosecale Wittm) is an economically important crop for fodder and biomass production. To facilitate the identification of markers for agronomically important traits and for genetic and genomic characteristics of this species, a new high-density genetic linkage map of triticale was constructed using doubled haploid (DH) population derived from a cross between cultivars ‘Hewo’ and ‘Magnat’. The map consists of 1615 bin markers, that represent 50 simple sequence repeat (SSR), 842 diversity array technology (DArT), and 16888 DArTseq markers mapped onto 20 linkage groups assigned to the A, B, and R genomes of triticale. No markers specific to chromosome 7R were found, instead mosaic linkage group composed of 1880 highly distorted markers (116 bins) from 10 wheat chromosomes was identified. The genetic map covers 4907 cM with a mean distance between two bins of 3.0 cM. Comparative analysis in respect to published maps of wheat, rye and triticale revealed possible deletions in chromosomes 4B, 5A, and 6A, as well as inversion in chromosome 7B. The number of bin markers in each chromosome varied from 24 in chromosome 3R to 147 in chromosome 6R. The length of individual chromosomes ranged between 50.7 cM for chromosome 2R and 386.2 cM for chromosome 7B. A total of 512 (31.7%) bin markers showed significant (P < 0.05) segregation distortion across all chromosomes. The number of 8 the segregation distorted regions (SDRs) were identified on 1A, 7A, 1B, 2B, 7B (2 SDRs), 5R and 6R chromosomes. The high-density genetic map of triticale will facilitate fine mapping of quantitative trait loci, the identification of candidate genes and map-based cloning. PMID:26717308

  14. Towards the Development of a Molecular Map in Switchgrass: I. Microsatellite Marker Development

    SciTech Connect

    Gunter, L.E.

    2001-08-23

    The long-term goal of the switchgrass breeding program is to improve regionally adapted varieties and increase biomass yield and feedstock quality. Although, to some extent, biomass yields are dependent on environmental constraints, increased yield can be achieved through the development of genotypes with improved seasonal adaptation, tolerance to unfavorable environmental conditions, and improved resistance to pest and disease. To date, improvement in switchgrass has relied on recurrent breeding strategies based on phenotypic or genotypic selection. Yield improvements have been modest by this method. If we expect to make significant increase in yields, we need tools that will allow us to map complex traits and uncover the genes that influence them. A genetic linkage map could be a powerful tool for accelerating switchgrass development through marker-assisted selection, breeding and recombination. This type of mapping requires the development of markers that can be associated with phenotypic traits in a population of known pedigree. The most commonly used markers for mapping include restriction fragment length polymorphisms (RFLP) and simple sequence repeats (SSR). At ORNL, we have been concentrating on the development of SSR markers, while our colleagues at the University of Georgia are developing RFLP markers in order to select parents to produce a mapping population and from there to create a framework map from {approx}100 F1 progeny.

  15. Polymorphic microsatellite markers for the rare and endangered cactus Uebelmannia pectinifera (Cactaceae) and its congeneric species.

    PubMed

    Moraes, E M; Cidade, F W; Silva, G A R; Machado, M C

    2014-12-04

    The cactus genus Uebelmannia includes 3 narrow endemic species associated with rocky savanna habitats in eastern South America. Because of their rarity and illegal over-collection, all of these species are endangered. Taxonomic uncertainties resulting from dramatic local variation in morphology within Uebelmannia species preclude effective conservation efforts, such as the reintroduction or translocation of plants, to restore declining populations. In this study, we developed and characterized 18 perfect, dinucleotide simple-sequence repeat markers for U. pectinifera, the most widely distributed species in the genus, and tested the cross-amplification of these markers in the remaining congeneric species and subspecies. All markers were polymorphic in a sample from 2 U. pectinifera populations. The effective number of alleles ranged from 1.6 to 8.7, with an average per population of 3.3 (SE ± 0.30) and 4.5 (SE ± 0.50). Expected heterozygosity ranged from 0.375 to 0.847 and 8-10 loci showed departures from Hardy- Weinberg equilibrium in the analyzed populations. Based on the observed polymorphism level of each marker, as well as the analysis of null allele presence and evidence of amplification of duplicate loci, a subset of 12 loci can be used as reliable markers to investigate the genetic structure, diversity, and species limits of the Uebelmannia genus.

  16. Cross-Species, Amplifiable Microsatellite Markers for Neoverrucid Barnacles from Deep-Sea Hydrothermal Vents Developed Using Next-Generation Sequencing

    PubMed Central

    Nakajima, Yuichi; Shinzato, Chuya; Khalturina, Mariia; Watanabe, Hiromi; Inagaki, Fumio; Satoh, Nori; Mitarai, Satoshi

    2014-01-01

    Barnacles of the genus Neoverruca are abundant near deep-sea hydrothermal vents of the northwestern Pacific Ocean, and are useful for understanding processes of population formation and maintenance of deep-sea vent faunas. Using next-generation sequencing, we isolated 12 polymorphic microsatellite loci from Neoverruca sp., collected in the Okinawa Trough. These microsatellite loci revealed 2–19 alleles per locus. The expected and observed heterozygosities ranged from 0.286 to 1.000 and 0.349 to 0.935, respectively. Cross-species amplification showed that 9 of the 12 loci were successfully amplified for Neoverruca brachylepadoformis in the Mariana Trough. A pairwise FST value calculated using nine loci showed significant genetic differentiation between the two species. Consequently, the microsatellite markers we developed will be useful for further population genetic studies to elucidate genetic diversity, differentiation, classification, and evolutionary processes in the genus Neoverruca. PMID:25196437

  17. Cross-species, amplifiable microsatellite markers for neoverrucid barnacles from deep-sea hydrothermal vents developed using next-generation sequencing.

    PubMed

    Nakajima, Yuichi; Shinzato, Chuya; Khalturina, Mariia; Watanabe, Hiromi; Inagaki, Fumio; Satoh, Nori; Mitarai, Satoshi

    2014-08-18

    Barnacles of the genus Neoverruca are abundant near deep-sea hydrothermal vents of the northwestern Pacific Ocean, and are useful for understanding processes of population formation and maintenance of deep-sea vent faunas. Using next-generation sequencing, we isolated 12 polymorphic microsatellite loci from Neoverruca sp., collected in the Okinawa Trough. These microsatellite loci revealed 2-19 alleles per locus. The expected and observed heterozygosities ranged from 0.286 to 1.000 and 0.349 to 0.935, respectively. Cross-species amplification showed that 9 of the 12 loci were successfully amplified for Neoverruca brachylepadoformis in the Mariana Trough. A pairwise FST value calculated using nine loci showed significant genetic differentiation between the two species. Consequently, the microsatellite markers we developed will be useful for further population genetic studies to elucidate genetic diversity, differentiation, classification, and evolutionary processes in the genus Neoverruca.

  18. Thirty-four Musa (Musaceae) expressed sequence tag-derived microsatellite markers transferred to Musella lasiocarpa.

    PubMed

    Li, W J; Ma, H; Li, Z H; Wan, Y M; Liu, X X; Zhou, C L

    2012-08-06

    We assembled 31,308 publicly available Musa EST sequences into 21,129 unigenes; 4944 of them contained 5416 SSR motifs. In all, 238 unigenes flanking SSRs were randomly selected for primer design and then tested for amplification in Musella lasiocarpa. Seventy-eight primer pairs were found to be transferable to this species, and 49 displayed polymorphism. A set of 34 polymorphic SSR markers was analyzed in 24 individuals from four wild M. lasiocarpa populations. The mean number of alleles per locus was 3.0, ranging from 2 to 7. The observed and expected heterozygosities per marker ranged from 0.087 to 0.875 (mean 0.503) and from 0.294 to 0.788 (mean 0.544), respectively. These markers will be of practical use for genetic diversity and quantitative trait loci analysis of M. lasiocarpa.

  19. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems.

    PubMed

    Sharma, Vishakha; Nandineni, Madhusudan R

    2014-04-01

    Potato (Solanum tuberosum) is an important non-cereal crop throughout the world and is highly recommended for ensuring global food security. Owing to the complexities in genetics and inheritance pattern of potato, the conventional method of cross breeding for developing improved varieties has been difficult. Identification and tagging of desirable traits with informative molecular markers would aid in the development of improved varieties. Insertional polymorphism of copia-like and gypsy-like long terminal repeat retrotransposons (RTN) were investigated among 47 potato varieties from India using Inter-Retrotransposon Amplified Polymorphism (IRAP) and Retrotransposon Microsatellite Amplified Polymorphism (REMAP) marker techniques and were compared with the DNA profiles obtained with simple sequence repeats (SSRs). The genetic polymorphism, efficiency of polymorphism and effectiveness of marker systems were evaluated to assess the extent of genetic diversity among Indian potato varieties. A total of 139 polymorphic SSR alleles, 270 IRAP and 98 REMAP polymorphic bands, showing polymorphism of 100%, 87.9% and 68.5%, respectively, were used for detailed characterization of the genetic relationships among potato varieties by using cluster analysis and principal coordinate analysis (PCoA). IRAP analysis resulted in the highest number of polymorphic bands with an average of 15 polymorphic bands per assay unit when compared to the other two marker systems. Based on pair-wise comparison, the genetic similarity was calculated using Dice similarity coefficient. The SSRs showed a wide range in genetic similarity values (0.485-0.971) as compared to IRAP (0.69-0.911) and REMAP (0.713-0.947). A Mantel's matrix correspondence test showed a high positive correlation (r=0.6) between IRAP and REMAP, an intermediate value (r=0.58) for IRAP and SSR and the lowest value (r=0.17) for SSR and REMAP. Statistically significant cophenetic correlation coefficient values, of 0.961, 0.941 and 0

  20. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae)

    PubMed Central

    Marcet, P.L.; Lehmann, T.; Groner, G.; Gürtler, R.E.; Kitron, U.; Dotson, E.M.

    2005-01-01

    Triatoma infestans, the main vector of Chagas disease in the southern cone countries, is the principal target of a regional elimination program. A better understanding of its dispersal, sources of reinfestation, and insecticide resistance is key to an effective control program. To address such problems, we identified and characterized 13 microsatellite loci of T. infestans. For each locus, primer sequences and PCR conditions are presented. Allele variability and frequency were analyzed in 59 T. infestans specimens from different rural communities in northwestern Argentina; nine loci were considered suitable for population genetic studies. Departure from Hardy–Weinberg equilibrium was detected in 10/13 loci with FIS values ranging from 0.04 to 0.91, indicating heterozygote deficit and a possible grade of sub-structure in the sample analyzed. Presence of null alleles in some loci cannot be discarded. The present work provides a promising tool to develop a population genetic study of natural populations of T. infestans in tandem with field studies and analyses of bug dispersal and the reinfestation process. PMID:16376838

  1. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae).

    PubMed

    Marcet, P L; Lehmann, T; Groner, G; Gürtler, R E; Kitron, U; Dotson, E M

    2006-01-01

    Triatoma infestans, the main vector of Chagas disease in the southern cone countries, is the principal target of a regional elimination program. A better understanding of its dispersal, sources of reinfestation, and insecticide resistance is key to an effective control program. To address such problems, we identified and characterized 13 microsatellite loci of T. infestans. For each locus, primer sequences and PCR conditions are presented. Allele variability and frequency were analyzed in 59 T. infestans specimens from different rural communities in northwestern Argentina; nine loci were considered suitable for population genetic studies. Departure from Hardy-Weinberg equilibrium was detected in 10/13 loci with F(IS) values ranging from 0.04 to 0.91, indicating heterozygote deficit and a possible grade of sub-structure in the sample analyzed. Presence of null alleles in some loci cannot be discarded. The present work provides a promising tool to develop a population genetic study of natural populations of T. infestans in tandem with field studies and analyses of bug dispersal and the reinfestation process.

  2. The legacy of Columbus in American horse populations assessed by microsatellite markers.

    PubMed

    Cortés, O; Dunner, S; Gama, L T; Martínez, A M; Delgado, J V; Ginja, C; Jiménez, L M; Jordana, J; Luis, C; Oom, M M; Sponenberg, D P; Zaragoza, P; Vega-Pla, J L

    2017-02-14

    Criollo horse populations descend from horses brought from the Iberian Peninsula over the period of colonization (15th to 17th century). They are spread throughout the Americas and have potentially undergone genetic hybridization with other breeds in the recent past. In this study, 25 autosomal microsatellites were genotyped in 50 horse breeds representing Criollo populations from 12 American countries (27 breeds), breeds from the Iberian Peninsula (19), one breed each from France and Morocco and two cosmopolitan horse breeds (Thoroughbred and Arabian). The genetic relationships among breeds identified five clusters: Celtic; Iberian; North American with Thoroughbred influence; most Colombian breeds; and nearly all other Criollo breeds. The group of "all other Criollo breeds" had the closest genetic relationship with breeds originating from the Iberian Peninsula, specifically with the Celtic group. For the whole set of Criollo breeds analysed, the estimated genetic contribution from other breeds was approximately 50%, 30% and 20% for the Celtic, Iberian and Arab-Thoroughbred groups, respectively. The spatial distribution of genetic diversity indicates that hotspots of genetic diversity are observed in populations from Colombia, Ecuador, Brazil, Paraguay and western United States, possibly indicating points of arrival and dispersion of Criollo horses in the American continent. These results indicate that Criollo breeds share a common ancestry, but that each breed has its own identity.

  3. Microsatellite markers reveal the potential for kin selection on black grouse leks

    PubMed Central

    glund, J. H; Alatalo, R. V.; Lundberg, A.; ki, P. T. Rintam; Lindell, J.

    1999-01-01

    The evolution of social behaviour has puzzled biologists since Darwin. Since Hamilton's theoretical work in the 1960s it has been realized that social behaviour may evolve through the effects of kinship. By helping relatives, an individual may pass on its genes despite negative effects on its own reproduction. Leks are groups of males that females visit primarily to mate. The selective advantage for males to join such social groups has been given much recent attention, but no clear picture has yet emerged. Here we show, using microsatellite analysis, that males but not females of a lekking bird (the black grouse, Tetrao tetrix) are genetically structured at the lek level. We interpret this structuring to be the effects of strong natal philopatry in males. This has the consequence that males on any specific lek should be more related than expected by chance as indicated by our genetic data. Our results thus suggest that kin selection is a factor that needs to be considered in the evolution and maintenance of the lek mating system in black grouse and sheds new light on models of lek evolution.

  4. Local genetic structure in red grouse (Lagopus lagopus scoticus): evidence from microsatellite DNA markers.

    PubMed

    Piertney, S B; MacColl, A D; Bacon, P J; Dallas, J F

    1998-12-01

    Allelic variation at seven hypervariable tri- and tetranucleotide microsatellite loci was used to determine levels of population differentiation between 14 populations of red grouse (Lagopus lagopus scoticus) in northeast Scotland, UK. Despite the potential for long-distance dispersal in grouse, and a semicontinuous habitat, significant population divergence was observed (mean RST = 0.153; P < 0.01) and an isolation-by-distance effect detected (Mantel test: P < 0.001). Examination of the spatial trend in principal component scores derived from allele frequencies among populations highlighted a barrier to gene flow that was confounding a simple isolation-by-distance effect. This barrier corresponded to an area of unsuitable habitat for grouse associated with a river system that bisected the study area. Mean genetic relatedness was higher for males than for females in all but one of the study populations, suggesting that the territorial behaviour and natal philopatry displayed by cocks have a manifold effect in generating the observed spatial genetic structure. Lower female relatedness values suggest a higher level of female-mediated gene flow, which is sufficient to prevent the loss of genetic variation from within populations and the onset of inbreeding effects. The potential consequences of local subdivision for red grouse populations are discussed.

  5. Population genetic analysis among five Indian population groups using six microsatellite markers.

    PubMed

    Ghosh, Anu; Das, Birajalaxmi; Seshadri, M

    2003-04-01

    Genetic variation at six tetranucleotide microsatellites (HUMTHO1, HUMVWA, F13A01, D3S1359, D12S66, and D12S67) has heen determined in five endogamous ethnic population groups of India belonging to two major linguistic families. The populations analyzed were Konkanastha Brahmins and Marathas (Maharashtra state) from the Indo-Aryan linguistic family and Nairs, Ezhavas, and Muslims (Kerala state) from the Dravidian family. All six loci show high gene diversity, ranging from 0.63 +/- 0.04 to 0.84 +/- 0.02. The average GST value observed was 1.7%, indicating that the differences between the populations account for less than 2% of the diversity, while the genetic variation is high within the five population groups studied (>98%). The phylogenetic tree fails to show any clear cluster. The absence of any cluster along with low average GST is suggestive of substantial genetic similarity among the studied populations, in spite of clear geographical, linguistic, and cultural barriers. This similarity indicates either a greater gene flow between these groups or, alternatively, may reflect a recent evolution for them, considering that the Indian caste system evolved only about 3000 years ago.

  6. Food Fingerprinting: Characterization of the Ecuadorean Type CCN-51 of Theobroma cacao L. Using Microsatellite Markers.

    PubMed

    Herrmann, Luise; Felbinger, Christine; Haase, Ilka; Rudolph, Barbara; Biermann, Bernhard; Fischer, Markus

    2015-05-13

    The cocoa type "Colección Castro Naranjal 51" (CCN-51) is known for its resistance to specific climate conditions and its high yield, but it shows a weaker flavor profile and therefore is marketed as bulk cocoa. In a previous study, the two cocoa types Arriba and CCN-51 could easily be distinguished, but differences among the CCN-51 samples were observed. This was unexpected, as CCN-51 is reported to be a clone. To confirm whether CCN-51 is a pure clone, 10 simple sequence repeats (SSR) located on the nuclear genome were used to analyze various CCN-51 samples in comparison to the cocoa varieties Arriba and Criollo. As expected, there are differences in the SSR pattern among CCN-51, Arriba, and Criollo, but a variability within the CCN-51 sample set was detected as well. The previously described sequence variation in the chloroplast genome was confirmed by a variability in the microsatellite loci of the nuclear genome for a comprehensive cultivar collection of CCN-51 of both bean and leaf samples. In summary, beneath somaclonal variation, misidentification of plant collections and also sexual reproduction of CCN-51 can be suggested.

  7. [Genetic variability in captive populations of Crocodylus moreletii (Crocodylia: Crocodylidae) using microsatellites markers].

    PubMed

    Serna-Lagunes, Ricardo; González, Dolores; Díaz-Rivera, Pablo

    2012-03-01

    Crocodylus moreletii, an extinction threatened species, represents an emblem for tropical ecosystems in Mexico. Surprisingly, there is a lack of information about their genetic constitution, which should be evaluated for a proper management ex situ and for making decisions on the release of crocodiles into natural habitats. The aim of this study was to characterize and compare the genetic variability of four populations of C. moreletii (two wild versus two born ex situ). Through PCR were amplified seven microsatellite polymorphic loci, however a heterozygote deficit, diminished by the presence of null alleles, was found in the populations (average Ho=0.02). The AMOVA indicated that the highest proportion of genetic variability is within populations, and a limited genetic differentiation among populations (average F(ST)=0.03), probably due to high inbreeding index (average F(IS)=0.97). When comparing the genetic variability between and within other crocodilian species, we found that in C. moreletii is well below those reported. We concluded that the limited genetic variability in ex situ born populations is probably due to a founder effect derived from the social structure of their progenitors, and by the bottleneck effect, inferred by the limited effective population size, that historically characterizes their natural distribution in wild populations.

  8. Genetic variation in black bears in Arkansas and Louisiana using microsatellite DNA markers

    USGS Publications Warehouse

    Csiki, Ildiki; Lam, Cynthia; Key, Audie; Coulter, Erica; Clark, Joseph D.; Pace, Richard M.; Smith, Kimberly G.; Rhoads, Douglas D.

    2003-01-01

    In the 1950s and 1960s, translocation projects reintroduced black bears (Ursus americanus) from Minnesota and Manitoba to Arkansas and Louisiana. Today, several geographically disconnected populations exist in Arkansas and Louisiana, but their origins are unclear. Some populations may represent a separate subspecies, U. a. luteolus, which is federally protected. We characterized 5 microsatellite loci in 5 isolated populations in Arkansas and Louisiana and compared them with genotypes from Minnesota. Our data indicate that bears of the Ozark and Ouachita mountains of Arkansas, an inland area of Louisiana, and those of Minnesota are similar in overall genetic diversity and allele frequencies, consistent with these populations being wholly or mostly descended from bears from the reintroduction programs. In contrast, bears from southeastern Arkansas and the coastal region of Louisiana genetically are more restricted and homogeneous. Because they exhibit a limited set of genotypes found in the other black bear populations, they represent isolated fragments of a single North American black bear population. Furthermore, genetic distance estimates indicate that the bears in southeastern Arkansas are more genetically distinct from bears in Louisiana, which are currently federally protected.

  9. Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers.

    PubMed

    Abdul Muneer, P M; Gopalakrishnan, A; Musammilu, K K; Mohindra, Vindhya; Lal, K K; Basheer, V S; Lakra, W S

    2009-09-01

    Random amplified polymorphic DNA (RAPD) and microsatellite markers were applied to evaluate the genetic variation in endemic and endangered yellow catfish, Horabagrus brachysoma sampled from three geographic locations of Western Ghat, South India river systems. In RAPD, of 32 10-mer RAPD primers screened initially, 10 were chosen and used in a comparative analysis of H. brachysoma collected from Meenachil, Chalakkudy and Nethravathi River systems. Of the 124 total RAPD fragments amplified, 49 (39.51%) were found to be shared by individuals of all 3 populations. The remaining 75 fragments were found to be polymorphic (60.48%). In microsatellites, six polymorphic microsatellite loci were identified by using primers developed for Pangasius hypophthalmus, Clarias macrocephalus and Clarias gariepinus. The identified loci were confirmed as microsatellite by sequencing after making a clone. The nucleotide sequences of 6 loci were published in NCBI genbank. The number of alleles across the six loci ranged from 4 to 7 and heterozygosities ranged from 0.07 to 0.93. The mean number of alleles and effective number of alleles per locus were 5.00 and 3.314, respectively. The average heterozygosity across all investigated samples was 0.72, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods reported a high degree of gene diversity and genetic distances depicted by UPGMA dendrograms among the populations of H. brachysoma.

  10. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers.

    PubMed

    Murat, C; Riccioni, C; Belfiori, B; Cichocki, N; Labbé, J; Morin, E; Tisserant, E; Paolocci, F; Rubini, A; Martin, F

    2011-06-01

    The level of genetic diversity and genetic structure in the Perigord black truffle (Tuber melanosporum Vittad.) has been debated for several years, mainly due to the lack of appropriate genetic markers. Microsatellites or simple sequence repeats (SSRs) are important for the genome organisation, phenotypic diversity and are one of the most popular molecular markers. In this study, we surveyed the T. melanosporum genome (1) to characterise its SSR pattern; (2) to compare it with SSR patterns found in 48 other fungal and three oomycetes genomes and (3) to identify new polymorphic SSR markers for population genetics. The T. melanosporum genome is rich in SSRs with 22,425 SSRs with mono-nucleotides being the most frequent motifs. SSRs were found in all genomic regions although they are more frequent in non-coding regions (introns and intergenic regions). Sixty out of 135 PCR-amplified mono-, di-, tri-, tetra, penta, and hexa-nucleotides were polymorphic (44%) within black truffle populations and 27 were randomly selected and analysed on 139 T. melanosporum isolates from France, Italy and Spain. The number of alleles varied from 2 to 18 and the expected heterozygosity from 0.124 to 0.815. One hundred and thirty-two different multilocus genotypes out of the 139 T. melanosporum isolates were identified and the genotypic diversity was high (0.999). Polymorphic SSRs were found in UTR regulatory regions of fruiting bodies and ectomycorrhiza regulated genes, suggesting that they may play a role in phenotypic variation. In conclusion, SSRs developed in this study were highly polymorphic and our results showed that T. melanosporum is a species with an important genetic diversity, which is in agreement with its recently uncovered heterothallic mating system.

  11. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    SciTech Connect

    Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle; Le Tacon, F; Martin, Francis

    2011-01-01

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in the L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.

  12. Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family

    PubMed Central

    Augustinos, Antonios A; Stratikopoulos, Elias E; Drosopoulou, Eleni; Kakani, Evdoxia G; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone; Mathiopoulos, Kostas D

    2008-01-01

    Background The Tephritidae family of insects includes the most important agricultural pests of fruits and vegetables, belonging mainly to four genera (Bactrocera, Ceratitis, Anastrepha and Rhagoletis). The olive fruit fly, Bactrocera oleae, is the major pest of the olive fruit. Currently, its control is based on chemical insecticides. Environmentally friendlier methods have been attempted in the past (Sterile Insect Technique), albeit with limited success. This was mainly attributed to the lack of knowledge on the insect's behaviour, ecology and genetic structure of natural populations. The development of molecular markers could facilitate the access in the genome and contribute to the solution of the aforementioned problems. We chose to focus on microsatellite markers due to their abundance in the genome, high degree of polymorphism and easiness of isolation. Results Fifty-eight microsatellite-containing clones were isolated from the olive fly, Bactrocera oleae, bearing a total of sixty-two discrete microsatellite motifs. Forty-two primer pairs were designed on the unique sequences flanking the microsatellite motif and thirty-one of them amplified a PCR product of the expected size. The level of polymorphism was evaluated against wild and laboratory flies and the majority of the markers (93.5%) proved highly polymorphic. Thirteen of them presented a unique position on the olive fly polytene chromosomes by in situ hybridization, which can serve as anchors to correlate future genetic and cytological maps of the species, as well as entry points to the genome. Cross-species amplification of these markers to eleven Tephritidae species and sequencing of thirty-one of the amplified products revealed a varying degree of conservation that declines outside the Bactrocera genus. Conclusion Microsatellite markers are very powerful tools for genetic and population analyses, particularly in species deprived of any other means of genetic analysis. The presented set of

  13. Genetic characterization of guava (psidium guajava l.) Germplasm in the United States using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity of thirty five Psidium guajava accessions maintained at the USDA, National Plants Germplasm System, Hilo, HI, was characterized using 20 simple sequence repeat (SSR) markers. Diversity analysis detected a total of 178 alleles ranging from four to 16. The observed mean heterozygosit...

  14. Microsatellite markers in plants and insects part II: Databases and in silico tools for microsatellite mining and analyzing population genetic stratification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nucleotide sequence information available in searchable sequence databases and the free in silico software with which to extract and analyze microsatellite data continues to grow at a rapid rate across eukaryote taxa. The sheer amount of information available means that a comprehensive or exhaustive...

  15. Development and Characterization of Novel Microsatellite Markers for the Peach Fruit Moth Carposina sasakii (Lepidoptera: Carposinidae) Using Next-Generation Sequencing

    PubMed Central

    Wang, You-Zhu; Cao, Li-Jun; Zhu, Jia-Ying; Wei, Shu-Jun

    2016-01-01

    The peach fruit moth Carposina sasakii is an economically important pest on dozens of fruits from Rosaceae and Rhamnaceae in Northeast Asia. We developed novel microsatellite markers for C. sasakii from randomly sequenced regions of the genome using next-generation sequencing. In total, 95,153 microsatellite markers were isolated from 4.70 GB genomic sequences. Thirty-five polymorphic markers were developed by assessing in 63 individuals from two geographical populations. The allele numbers ranged from 2 to 9 with an average value of 4.60 per locus, while the polymorphism information content ranged from 0.075 to 0.696 with an average value of 0.407. Furthermore, the observed and expected heterozygosity varied from 0.000 to 0.677 and 0.062 to 0.771, respectively. The microsatellites developed provide abundant molecular markers for investigating genetic structure, genetic diversity, and existence of host-plant associated biotypes of C. sasakii. PMID:26999103

  16. Development of 12 novel polymorphic microsatellite markers using a next generation sequencing approach for Spiculopteragia spiculoptera, a nematode parasite of deer.

    PubMed

    Patrelle, Cécile; Jouet, Damien; Lehrter, Véronique; Ferté, Hubert

    2014-09-01

    Twelve novel polymorphic microsatellite markers were produced and characterized for Spiculopteragia spiculoptera (Nematoda, Trichostrongyloidae) a common parasite of abomasum of Roe and Red deer, using next generation sequencing approach, and two multiplexes PCR were developed with these markers. Polymorphism of each locus was tested in 40 individuals of this species from diverse wild populations of cervids, and was tested for crossed-amplification on four other species of nematodes, close to S. spiculoptera among the Trichostrongyloidea: 20 Spiculopteragia houdemeri, 34 Ostertagia leptospicularis, 16 Ashworthius sidemi, and 25 Trichostrongylus spp. Our new microsatellite markers seem to be specific to Spiculopteragia spiculoptera since no amplifications were obtained for the four other species. The number of alleles per locus ranged from 2 to 12, the average observed and expected heterozygosity per locus ranged from 0.025 to 0.641 and from 0.049 to 0.664, respectively. Four of the 12 microsatellite loci showed significant deviations from Hardy-Weinberg equilibrium (which two slightly significant). One locus pair showed significant linkage disequilibrium (Sspi4 vs. Sspi8). Neither evidence of scoring error due to stuttering nor evidence of large allele dropout was found at all of the 12 loci, but evidence of null alleles was indicated at three loci because of general excess of homozygotes for most allele size classes. These polymorphic loci will be useful markers to study population genetics structure of Spiculopteragia spiculoptera in order to understand transfer and to explain the relationships between deer populations.

  17. Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic Salvia brachyodon Vandas.

    PubMed

    Radosavljević, Ivan; Satovic, Zlatko; Jakse, Jernej; Javornik, Branka; Greguraš, Danijela; Jug-Dujaković, Marija; Liber, Zlatko

    2012-01-01

    Nine new microsatellite markers (SSR) were isolated from Salvia officinalis L. A total of 125 alleles, with 8 to 21 alleles per locus, were detected in a natural population from the east Adriatic coast. The observed heterozygosity, expected heterozygosity, and polymorphic information content ranged from 0.46 to 0.83, 0.73 to 0.93 and 0.70 to 0.92, respectively. New microsatellite markers, as well as previously published markers, were tested for cross-amplification in Salvia brachyodon Vandas, a narrow endemic species known to be present in only two localities on the Balkan Peninsula. Out of 30 microsatellite markers tested on the natural S. brachyodon population, 15 were successfully amplified. To obtain evidence of recent bottleneck events in the populations of both species, observed genetic diversity (H(E)) was compared to the expected genetic diversity at mutation-drift equilibrium (H(EQ)) and calculated from the observed number of alleles using a two-phased mutation model (TPM). Recent bottleneck events were detected only in the S. brachyodon population. This result suggests the need to reconsider the current threat category of this endemic species.

  18. Development and Characterization of Transcription Factor Gene-Derived Microsatellite (TFGM) Markers in Medicago truncatula and Their Transferability in Leguminous and Non-Leguminous Species.

    PubMed

    Liu, Wenxian; Jia, Xitao; Liu, Zhimin; Zhang, Zhengshe; Wang, Yanrong; Liu, Zhipeng; Xie, Wengang

    2015-05-15

    Transcription factors (TFs) are critical adaptor molecules that regulate many plant processes by controlling gene expression. The recent increase in the availability of TF data has made TFs a valuable resource for genic functional microsatellite marker development. In the present study, we developed TF gene-derived microsatellite (TFGM) markers for Medicago truncatula and assessed their cross-species transferability. A total of 203 SSRs were identified from 1467 M. truncatula TF coding sequences, 87.68% of which were trinucleotide repeats, followed by mono- (4.93%) and hexanucleotide repeats (1.48%). Further, 142 TFGM markers showed a high level of transferability to the leguminous (55.63%-85.21%) and non-leguminous (28.17%-50.00%) species. Polymorphisms of 27 TFGM markers were evaluated in 44 alfalfa accessions. The allele number per marker ranged from two to eight with an average of 4.41, and the PIC values ranged from 0.08 to 0.84 with an average of 0.60. Considering the high polymorphism, these TFGM markers developed in our study will be valuable for genetic relationship assessments, marker-assisted selection and comparative genomic studies in leguminous and non-leguminous species.

  19. Microsatellite markers reveal strong genetic structure in the endemic Chilean dolphin.

    PubMed

    Pérez-Alvarez, María José; Olavarría, Carlos; Moraga, Rodrigo; Baker, C Scott; Hamner, Rebecca M; Poulin, Elie

    2015-01-01

    Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02'S) to Chiloé (42°00'S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14'S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.

  20. Microsatellite Markers Reveal Strong Genetic Structure in the Endemic Chilean Dolphin

    PubMed Central

    Pérez-Alvarez, María José; Olavarría, Carlos; Moraga, Rodrigo; Baker, C. Scott; Hamner, Rebecca M.; Poulin, Elie

    2015-01-01

    Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies. PMID:25898340

  1. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers

    PubMed Central

    2014-01-01

    Background Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues. Results Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places. Conclusions This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique

  2. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method.

    PubMed

    Lee, Gi-An; Sung, Jung-Sook; Lee, Sok-Young; Chung, Jong-Wook; Yi, Jung-Yoon; Kim, Yeon-Gyu; Lee, Myung-Chul

    2014-01-01

    A genetic evaluation of safflower germplasm collections derived from different geographical regions and countries will provide useful information for sustainable conservation and the utilization of genetic diversity. However, the molecular marker information is limited for evaluation of genetic diversity of safflower germplasm. In this study, we acquired 509 putative genomic SSR markers for sufficient genome coverage using next-generation sequencing methods and characterized thirty polymorphic SSRs in safflower collection composed of 100 diverse accessions. The average allele number and expected heterozygosity were 2.8 and 0.386, respectively. Analysis of population structure and phylogeny based on thirty SSR profiles revealed genetic admixture between geographical regions contrary to genetic clustering. However, the accessions from Korea were genetically conserved in distinctive groups in contrast to other safflower gene pool. In conclusion, these new genomic SSRs will facilitate valuable studies to clarify genetic relationships as well as conduct population structure analyses, genetic map construction and association analysis for safflower.

  3. The development of 10 novel polymorphic microsatellite markers through next generation sequencing and a preliminary population genetic analysis for the endangered Glenelg spiny crayfish, Euastacus bispinosus.

    PubMed

    Miller, Adam D; Van Rooyen, Anthony; Sweeney, Oisín F; Whiterod, Nick S; Weeks, Andrew R

    2013-07-01

    The Glenelg spiny crayfish, Euastacus bispinosus, is an iconic freshwater invertebrate of south eastern Australia and listed as 'endangered' under the Environment Protection and Biodiversity Conservation Act 1999, and 'vulnerable' under the International Union for Conservation of Nature's Red List. The species has suffered major population declines as a result of over-fishing, low environmental flows, the introduction of invasive fish species and habitat degradation. In order to develop an effective conservation strategy, patterns of gene flow, genetic structure and genetic diversity across the species distribution need to be clearly understood. In this study we develop a suite of polymorphic microsatellite markers by next generation sequencing. A total of 15 polymorphic loci were identified and 10 characterized using 22 individuals from the lower Glenelg River. We observed low to moderate genetic variation across most loci (mean number of alleles per locus = 2.80; mean expected heterozygosity = 0.36) with no evidence of individual loci deviating significantly from Hardy-Weinberg equilibrium. Marker independence was confirmed with tests for linkage disequilibrium, and analyses indicated no evidence of null alleles across loci. Individuals from two additional sites (Crawford River, Victoria; Ewens Ponds Conservation Park, South Australia) were genotyped at all 10 loci and a preliminary investigation of genetic diversity and population structure was undertaken. Analyses indicate high levels of genetic differentiation among sample locations (F ST = 0.49), while the Ewens Ponds population is genetically homogeneous, indicating a likely small founder group and ongoing inbreeding. Management actions will be needed to restore genetic diversity in this and possibly other at risk populations. These markers will provide a valuable resource for future population genetic assessments so that an effective framework can be developed for implementing conservation strategies for E

  4. Development of microsatellite markers in Hagenia abyssinica (Bruce) J.F. Gmel, an endangered tropical tree of eastern Africa, using next-generation sequencing.

    PubMed

    Gichira, A W; Long, Z C; Hu, G W; Gituru, R W; Wang, Q F; Chen, J M

    2016-06-20

    Hagenia abyssinica (Bruce) J.F. Gmel is an endangered tree species endemic to the high mountains of tropical Africa. We used Illumina paired-end technology to sequence its nuclear genome, aiming at creating the first genomic data library and developing the first set of genomic microsatellites. Seventeen microsatellite markers were validated in 24 individuals. The average number of alleles per locus was 7.6, while the observed and expected heterozygosities ranged from 0.000 to 0.958 and from 0.354 to 0.883, respectively. These polymorphic markers will be used as tools for further molecular studies to facilitate formulation of appropriate conservation strategies for this species.

  5. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers

    PubMed Central

    Ndiaye, Ndèye Penda; Sow, Adama; Dayo, Guiguigbaza-Kossigan; Ndiaye, Saliou; Sawadogo, Germain Jerôme; Sembène, Mbacké

    2015-01-01

    Aim: In Senegal, uncontrolled cross-breeding of cattle breeds and changes in production systems are assumed to lead to an increase of gene flow between populations. This might constitute a relevant threat to livestock improvement. Therewith, this study was carried out to assess the current genetic diversity and the phylogenetic relationships of the four native Senegalese cattle breeds (Gobra zebu, Maure zebu, Djakoré, and N’Dama). Methods: Genomic DNA was isolated from blood samples of 120 unrelated animals collected from three agro-ecological areas of Senegal according to their phenotypic traits. Genotyping was done using 11 specific highly polymorphic microsatellite makers recommended by Food and Agriculture Organization. The basic measures of genetic variation and phylogenetic trees were computed using bioinformatics’ software. Results: A total of 115 alleles were identified with a number of alleles (Na) at one locus ranging from 6 to 16. All loci were polymorphic with a mean polymorphic information content of 0.76. The mean allelic richness (Rs) lay within the narrow range of 5.14 in N’Dama taurine to 6.10 in Gobra zebu. While, the expected heterozygosity (HE) per breed was high in general with an overall mean of 0.76±0.04. Generally, the heterozygote deficiency (FIS) of 0.073±0.026 was relatively due to inbreeding among these cattle breeds or the occurrence of population substructure. The high values of allelic and gene diversity showed that Senegalese native cattle breeds represented an important reservoir of genetic variation. The genetic distances and clustering trees concluded that the N’Dama cattle were most distinct among the investigated cattle populations. So, the principal component analyses showed qualitatively that there was an intensive genetic admixture between the Gobra zebu and Maure zebu breeds. Conclusions: The broad genetic diversity in Senegalese cattle breeds will allow for greater opportunities for improvement of productivity

  6. Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers

    PubMed Central

    2013-01-01

    Background Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions Conservation priorities differed significantly according to the

  7. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species.

    PubMed

    Turchetto, Caroline; Segatto, Ana Lúcia A; Beduschi, Júlia; Bonatto, Sandro L; Freitas, Loreta B

    2015-07-17

    Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids

  8. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species

    PubMed Central

    Turchetto, Caroline; Segatto, Ana Lúcia A.; Beduschi, Júlia; Bonatto, Sandro L.; Freitas, Loreta B.

    2015-01-01

    Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids

  9. Identification of Ensis siliqua samples and establishment of the catch area using a species-specific microsatellite marker.

    PubMed

    Fernández-Tajes, Juan; Arias-Pérez, Alberto; Gaspar, Miguel B; Méndez, Josefina

    2012-01-01

    European Council Regulation 104/2000 states that fishery products must be labeled to indicate commercial designation of species, the production method, and the catch area. Therefore, traceability of seafood implies knowledge of the species offered to retail and their origin. Ensis siliqua is a bivalve intensively fished in Europe and sold in fresh and canned forms. Although several published methods clearly differentiate Ensis genus species, none of those assess the origin of the commercial samples. In the present study, a microsatellite marker (Esi-UDC3055F) was developed to establish the catch area of E. siliqua samples. Amplification yielded a fragment of 275 or 302 base pairs, depending on whether they were Iberian or Irish populations. The usefulness of this method was also assessed in commercial samples. The results of this study provide a reliable methodology for the identification of catch area in European E. siliqua commercial samples. The coupling of this methodology with existing techniques for razor clam species identification provides a powerful tool for traceability and labeling enforcement.

  10. Genetic variation and population genetic structure of Rhizophora apiculata (Rhizophoraceae) in the Greater Sunda Islands, Indonesia using microsatellite markers.

    PubMed

    Yahya, Andi Fadly; Hyun, Jung Oh; Lee, Jae Ho; Kim, Yong Yul; Lee, Kyung Mi; Hong, Kyung Nak; Kim, Seung-Chul

    2014-03-01

    Genetic variations within and among Rhizophora apiculata populations in the Greater Sunda Islands of Indonesia were studied using microsatellite markers. The study found 38 alleles on five loci in 15 populations. The observed (H(o)) and expected (H(e)) heterozygosity values are 0.338 and 0.378, respectively. Inbreeding effect from self-pollination might explain its heterozygote deficiency. Population genetic differentiation (F(ST) = 0.381) was similar to other mangrove species. The genetic diversity of R. apiculata populations along the coastline inside the archipelago (e.g., Buleleng, Donggala, Mamuju, and Takalar) was higher than those of population along the coastline outside the archipelago, especially northern Sumatra populations (i.e., Langkat, Tapanuli Tengah, Dumai, and Padang). The isolation by distances and sea currents directions as well as their connectivity might affect the gene flow and genetic exchange. The more isolated with fewer connections by sea currents, the smaller gene flow and genetic exchange observed between populations. The higher genetic exchange, on the contrary, occurred when population location was closer to the meeting point of the sea currents. The study also showed that the patterns of sea current movement seemed to have influence genetic clustering of populations which fell into three main groups (Sunda Shelf Mangroves) and one isolated population (New Guinea Mangroves).

  11. [Evaluation of Molecular Genetic Diversity of Wild Apple Malus sieversii Populations from Zailiysky Alatau by Microsatellite Markers].

    PubMed

    Omasheva, M E; Chekalin, S V; Galiakparov, N N

    2015-07-01

    The territory of Kazakhstan is part of the distribution range of Malus sieversii, which is one of the ancestors of cultivated apple tree varieties. The collected samples of Sievers apple leaves from five populations growing in the Zailiysky Alatau region served as a source not only for the creation of a bank of genomic DNA but also for determination ofthe wild apple genetic polymorphism. The seven microsatellite markers used in this study revealed 86 alleles with different frequencies, as well as the characteristic pools of rare alleles for each of the populations. Molecular genetic analysis showed a high level of genetic diversity (H(o) = 0.704; PIC = 0.752; I = 1.617). Moreover, interpopulation variability accounted only for 7.5% of total variability, confirming the genetic closeness of the populations examined. Based on phylogenetic analysis, it was demonstrated that the Bel'bulak and Almaty Reserve populations were closest to each other, while the most distant were the Ketmen and Great Almaty gorge populations, which suggests the dependence of genetic distance on the geographical.

  12. Genetic connectivity of the broadcast spawning reef coral Platygyra sinensis on impacted reefs, and the description of new microsatellite markers

    NASA Astrophysics Data System (ADS)

    Tay, Y. C.; Noreen, A. M. E.; Suharsono; Chou, L. M.; Todd, P. A.

    2015-03-01

    As tropical coral reef habitats continue to be lost or degraded, understanding the genetic diversity and connectivity among populations is essential for making informed management decisions. This is particularly important in rapidly developing, land-scarce nations (such as Singapore) that require targeted conservation efforts. Sixty percentage of Singapore's coral cover has been lost over the past five decades, and with further coastal reclamation underway, it is imperative to understand the effects of development on coral connectivity. In this study, we used seven microsatellite markers, of which six are newly described here, to investigate the genetic diversity and connectivity of the massive hard coral Platygyra sinensis at nine sites in Singapore and three in the nearby Indonesian island of Bintan. Our results show that P. sinensis currently retains large effective population sizes, high genetic diversity, as well as high connectivity among sites within each locality, which suggest that these populations have good potential for continued survival provided that there are no island-wide disturbances. However, the Singapore Strait appears to be a mild barrier to gene flow, which may lead to an increased reliance on self-seeding at either location. We suggest some directions for their management based on these potential population boundaries, which can help pave the path for marine conservation planning in Singapore.

  13. Genetic diversity and parentage in farmer selections of cacao from Southern Sulawesi, Indonesia revealed by microsatellite markers

    PubMed Central

    Dinarti, Diny; Susilo, Agung W.; Meinhardt, Lyndel W.; Ji, Kun; Motilal, Lambert A.; Mischke, Sue; Zhang, Dapeng

    2015-01-01

    Indonesia is the third largest cocoa-producing country in the world. Knowledge of genetic diversity and parentage of farmer selections is important for effective selection and rational deployment of superior cacao clones in farmers’ fields. We assessed genetic diversity and parentage of 53 farmer selections of cacao in Sulawesi, Indonesia, using 152 international clones as references. Cluster analysis, based on 15 microsatellite markers, showed that these Sulawesi farmer selections are mainly comprised of hybrids derived from Trinitario and two Upper Amazon Forastero groups. Bayesian assignment and likelihood-based parentage analysis further demonstrated that only a small number of germplasm groups, dominantly Trinitario and Parinari, contributed to these farmer selections, in spite of diverse parental clones having been used in the breeding program and seed gardens in Indonesia since the 1950s. The narrow parentage predicts a less durable host resistance to cacao diseases. Limited access of the farmers to diverse planting materials or the strong preference for large pods and large bean size by local farmers, may have affected the selection outcome. Diverse sources of resistance, harbored in different cacao germplasm groups, need to be effectively incorporated to broaden the on-farm diversity and ensure sustainable cacao production in Sulawesi. PMID:26719747

  14. Microsatellite markers in Paulownia kawakamii (Scrophulariaceae) and cross-amplification in other Paulownia species.

    PubMed

    Wang, H W; Duan, J M; Zhang, P; Cheng, Y Q; Wu, J W; Wang, G Z

    2013-09-19

    Paulownia kawakamii is a fast-growing timber tree. In this study, 21 primer sets were developed using an enriched genomic library. The genetic diversity was measured in one P. kawakamii population. The number of alleles per locus ranged from 2 to 19. The observed and expected heterozygosities varied from 0.158 to 0.842 (mean = 0.421) and from 0.376 to 0.952 (mean = 0.771), respectively. All 21 loci were also polymorphic in closely related species (P. tomentosa, P. elongata, and P. fortunei). The described markers will be useful in future population genetic studies and molecular breeding of these Paulownia species.

  15. Low abundance of microsatellite repeats in the genome of the Brown-headed Cowbird (Molothrus ater)

    USGS Publications Warehouse

    Longmire, J.L.; Hahn, D.C.; Roach, J.L.

    1999-01-01

    A cosmid library made from brown-headed cowbird (Molothrus ater) DNA was examined for representation of 17 distinct microsatellite motifs including all possible mono-, di-, and trinucleotide microsatellites, and the tetranucleotide repeat (GATA)n. The overall density of microsatellites within cowbird DNA was found to be one repeat per 89 kb and the frequency of the most abundant motif, (AGC)n, was once every 382 kb. The abundance of microsatellites within the cowbird genome is estimated to be reduced approximately 15-fold compared to humans. The reduced frequency of microsatellites seen in this study is consistent with previous observations indicating reduced numbers of microsatellites and other interspersed repeats in avian DNA. In addition to providing new information concerning the abundance of microsatellites within an avian genome, these results provide useful insights for selecting cloning strategies that might be used in the development of locus-specific microsatellite markers for avian studies.

  16. Estimation of the time of divergence between Japanese Mishima Island cattle and other cattle populations using microsatellite DNA markers.

    PubMed

    Nagamine, Yoshitaka; Nirasawa, Keijiro; Takahashi, Hideaki; Sasaki, Osamu; Ishii, Kazuo; Minezawa, Mitsuru; Oda, Senichi; Visscher, Peter M; Furukawa, Tsutomu

    2008-01-01

    We applied the theory of random genetic drift to determine the divergence history of a closed cattle population over the relatively short timescale of several hundred years. The divergence history of the closed population of Mishima Island cattle, a national natural treasure of Japan, was examined, and the results were compared with historical documents. Inbreeding depression in the isolated population was investigated for body size and fertility. Twenty-one DNA microsatellite markers in Mishima Island cattle and 3 major breeds from the mainland were genotyped. For the mainland breeds, all 21 or 20 markers were segregating. However, nearly half the number of loci (9 of 21) was fixed in the Island cattle. The average number of alleles per locus of Island cattle was markedly lower than that in the mainland breeds. These results support the theory that Island cattle have been isolated for a considerable period of time. The number of generations of isolation was estimated as 14.1-22.6, and the year of divergence was calculated as 1778-1846. In view of these findings, we propose that Island cattle diverged from the mainland population at around 1800 and were isolated for about 200 years. These estimates are in agreement with historical documents showing that divergence occurred between 1672 and 1880. The total inbreeding coefficient of the present population was predicted to be in the range of 0.51-0.60. However, historical reports dated over 100 years do not support changes in fertility, so that there is no evidence for inbreeding depression.

  17. Analysis of simple sequence repeats in the Gaeumannomyces graminis var. tritici genome and the development of microsatellite markers.

    PubMed

    Li, Wei; Feng, Yanxia; Sun, Haiyan; Deng, Yuanyu; Yu, Hanshou; Chen, Huaigu

    2014-11-01

    Understanding the genetic structure of Gaeumannomyces graminis var. tritici is essential for the establishment of efficient disease control strategies. It is becoming clear that microsatellites, or simple sequence repeats (SSRs), play an important role in genome organization and phenotypic diversity, and are a large source of genetic markers for population genetics and meiotic maps. In this study, we examined the G. graminis var. tritici genome (1) to analyze its pattern of SSRs, (2) to compare it with other plant pathogenic filamentous fungi, such as Magnaporthe oryzae and M. poae, and (3) to identify new polymorphic SSR markers for genetic diversity. The G. graminis var. tritici genome was rich in SSRs; a total 13,650 SSRs have been identified with mononucleotides being the most common motifs. In coding regions, the densities of tri- and hexanucleotides were significantly higher than in noncoding regions. The di-, tri-, tetra, penta, and hexanucleotide repeats in the G. graminis var. tritici genome were more abundant than the same repeats in M. oryzae and M. poae. From 115 devised primers, 39 SSRs are polymorphic with G. graminis var. tritici isolates, and 8 primers were randomly selected to analyze 116 isolates from China. The number of alleles varied from 2 to 7 and the expected heterozygosity (He) from 0.499 to 0.837. In conclusion, SSRs developed in this study were highly polymorphic, and our analysis indicated that G. graminis var. tritici is a species with high genetic diversity. The results provide a pioneering report for several applications, such as the assessment of population structure and genetic diversity of G. graminis var. tritici.

  18. Microsatellite markers for direct genotyping of the crayfish plague pathogen Aphanomyces astaci (Oomycetes) from infected host tissues.

    PubMed

    Grandjean, Frédéric; Vrålstad, Trude; Diéguez-Uribeondo, Javier; Jelić, Mišel; Mangombi, Joa; Delaunay, Carine; Filipová, Lenka; Rezinciuc, Svetlana; Kozubíková-Balcarová, Eva; Guyonnet, Daniel; Viljamaa-Dirks, Satu; Petrusek, Adam

    2014-06-04

    Aphanomyces astaci is an invasive pathogenic oomycete responsible for the crayfish plague, a disease that has devastated European freshwater crayfish. So far, five genotype groups of this pathogen have been identified by applying random amplified polymorphic DNA analysis on axenic cultures. To allow genotyping of A. astaci in host tissue samples, we have developed co-dominant microsatellite markers for this pathogen, tested them on pure cultures of all genotype groups, and subsequently evaluated their use on tissues of (1) natural A. astaci carriers, i.e., North American crayfish species, and (2) A. astaci-infected indigenous European species from crayfish plague outbreaks. Out of over 200 potential loci containing simple sequence repeat (SSR) motifs identified by 454 pyrosequencing of SSR-enriched library, we tested 25 loci with highest number of repeats, and finally selected nine that allow unambiguous separation of all known RAPD-defined genotype groups of A. astaci from axenic cultures. Using these markers, we were able to characterize A. astaci strains from DNA isolates from infected crayfish tissues when crayfish had a moderate to high agent level according to quantitative PCR analyses. The results support the hypothesis that different North American crayfish hosts carry different genotype groups of the pathogen, and confirm that multiple genotype groups, including the one originally introduced to Europe in the 19th century, cause crayfish plague outbreaks in Central Europe. So far undocumented A. astaci genotype seems to have caused one of the analysed outbreaks from the Czech Republic. The newly developed culture-independent approach allowing direct genotyping of this pathogen in both axenic cultures and mixed genome samples opens new possibilities in studies of crayfish plague pathogen distribution, diversity and epidemiology.

  19. Development of ten microsatellite markers from the keystone mistletoe Tristerix corymbosus (Loranthaceae) using 454 next generation sequencing and their applicability to population genetic structure studies.

    PubMed

    Fontúrbel, Francisco E; Murúa, Maureen M; Vega-Retter, Caren

    2016-05-01

    Tristerix corymbosus (Loranthaceae) is a keystone mistletoe from the South American temperate rainforests. As most mistletoes, T. corymbosus relies on biotic pollination and seed dispersal, which may cause population structure. For a better understanding of its ecology, we isolated and characterized ten polymorphic microsatellite loci for this species. We used 454 Next Generation Sequencing to build a microsatellite library from a high quality DNA sample. We tested 90 sequences from which we obtained ten polymorphic markers. In order to assess their variability, the novel markers were tested in 48 individuals from three locations of the Valdivian Coastal Reserve in Chile. We also estimated genetic differences between pairs of populations using the FST statistic. The mean number of alleles per locus in the 48 individuals studied was 7.1 (2-17 alleles per locus). The observed and expected heterozygosity ranged from 0.298 to 0.634 and from 0.310 to 0.881, respectively. There were genetic differences among the three populations assessed, according to the FST values (ranging from 0.048 to 0.100, all significant) and, the number of alleles per locus ranged from 3.9 to 5.1. These are the first microsatellite markers developed for T. corymbosus, and they arise as a powerful tool for studying population structure, genetic diversity and gene flow at the landscape scale, along its distribution.

  20. Applicability of anatid and galliform microsatellite markers to the genetic diversity studies of domestic geese (Anser anser domesticus) through the genotyping of the endangered zatorska breed

    PubMed Central

    2011-01-01

    Background The lack of a sufficient number of molecular markers seriously limits the cognition of genetic relationships within and between populations of many species. Likewise, the genetic diversity of domestic goose (Anser anser domesticus), with a great number of breeds throughout the world, remains poorly understood at the molecular level. Findings Thirty-five goose, seventeen duck and eight chicken microsatellite primer pairs were screened for their utility in the cross-species amplification on DNA from 96 individuals of Zatorska breed of domestic geese. Twenty-seven of 42 amplifying primer pairs revealed length-polymorphic products, but three of them were difficult to score. Fifteen primer pairs amplifying the same length product across all individuals. One polymorphic microsatellite locus was assigned by genotyping of known sex individuals to the Z-chromosome. Conclusions We present a set of 24 polymorphic microsatellite markers useful for population genetic studies of the domestic goose. Another 15 markers were classified as monomorphic, but they might also be suitable for the assessment of genetic diversity in geese. PMID:21410974

  1. Development of three X-linked tetrameric microsatellite markers for forensic purposes.

    PubMed

    Dong, Chunnan; Fu, Lihong; Zhang, Xiaojing; Ma, Chunling; Yu, Feng; Li, Shujin; Cong, Bin

    2014-10-01

    In this study, we obtained sequence and population genetic data for three X-linked short tandem repeat markers (X-STRs; DXS7129, DXS2500, G10583). We investigated their population genetics and estimated their forensic parameters in 214 healthy unrelated individuals from the Han population of Northern China (105 males and 109 females). We showed that DXS2500 and G10583 were highly polymorphic and thus have potential for application in forensic medicine. We also estimated the overall linkage disequilibrium between pairs of loci, specific multiallelic or interallelic associations, and haplotype frequencies in males. We showed that the three X-STR loci segregate as stable haplotype blocks; this could be a powerful tool for haplotype analysis in kinship testing.

  2. Population Genetics of Overwintering Monarch Butterflies, Danaus plexippus (Linnaeus), from Central Mexico Inferred from Mitochondrial DNA and Microsatellite Markers.

    PubMed

    Pfeiler, Edward; Nazario-Yepiz, Nestor O; Pérez-Gálvez, Fernan; Chávez-Mora, Cristina Alejandra; Laclette, Mariana Ramírez Loustalot; Rendón-Salinas, Eduardo; Markow, Therese Ann

    2017-03-01

    Population genetic variation and demographic history in Danaus plexippus (L.), from Mexico were assessed based on analyses of mitochondrial cytochrome c oxidase subunit I (COI; 658 bp) and subunit II (COII; 503 bp) gene segments and 7 microsatellite loci. The sample of 133 individuals included both migratory monarchs, mainly from 4 overwintering sites within the Monarch Butterfly Biosphere Reserve (MBBR) in central Mexico (states of Michoacán and México), and a nonmigratory population from Irapuato, Guanajuato. Haplotype (h) and nucleotide (π) diversities were relatively low, averaging 0.466 and 0.00073, respectively, for COI, and 0.629 and 0.00245 for COII. Analysis of molecular variance of the COI data set, which included additional GenBank sequences from a nonmigratory Costa Rican population, showed significant population structure between Mexican migratory monarchs and nonmigratory monarchs from both Mexico and Costa Rica, suggesting limited gene flow between the 2 behaviorally distinct groups. Interestingly, while the COI haplotype frequencies of the nonmigratory populations differed from the migratory, they were similar to each other, despite the great physical distance between them. Microsatellite analyses, however, suggested a lack of structure between the 2 groups, possibly owing to the number of significant deviations from Hardy-Weinberg equilibrium resulting from heterzoygote deficiencies found for most of the loci. Estimates of demographic history of the combined migratory MBBR monarch population, based on the mismatch distribution and Bayesian skyline analyses of the concatenated COI and COII data set (n = 89) suggested a population expansion dating to the late Pleistocene (~35000-40000 years before present) followed by a stable effective female population size (Nef) of about 6 million over the last 10000 years.

  3. Development of single-locus DNA microsatellite markers using 5'anchored ISSR-PCR method for the mangrove horseshoe crab, Carcinoscorpius rotundicauda (Latreille, 1802) in Peninsular Malaysia.

    PubMed

    Adibah, A B; Ling, L Pui; Tan, S G; Faridah, Q Z; Christianus, A

    2012-04-01

    Horseshoe crabs are said to be declining worldwide. However, there is still no published report on the status of horseshoe crabs in Malaysia. Thus, we report here eight informative microsatellite markers that were developed using the 5'-anchored ISSR-PCR enrichment procedure to diagnose the population genetic structure of the mangrove horseshoe crab, Carcinoscorpius rotundicauda from Peninsular Malaysia. This set of markers was tested on 127 samples and showed polymorphism in this species. Hence they should be useful in future essential population genetic studies of these living fossils in the Southeast Asian region.

  4. Isolation and characterization of microsatellite markers from Teretrius nigrescens Lewis (Coleoptera: Histeridae), predator of the storage pest Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae).

    PubMed

    Omondi, A B; Orantes, L C; VAN DEN Berg, J; Masiga, D; Schulthess, F

    2009-07-01

    Teretrius nigrescens is a predator of the larger grain borer (LGB) Prostephanus truncatus, an invasive post-harvest pest in Africa. We describe the isolation and characterization of 24 novel polymorphic microsatellite markers and their testing on a population from Honduras. Alleles per locus ranged between 2 and 12, and observed heterozygosity between 0.037 and 0.646. Six loci deviated significantly from Hardy-Weinberg equilibrium and showed evidence of null alleles. These markers will be useful for studies of the predator's population structure and characterizing populations for control of LGB.

  5. Analysis of four microsatellite markers on the long arm of chromosome 9 by meiotic recombination in flow-sorted single sperm

    SciTech Connect

    Furlong, R.A.; Goudie, D.R.; Carter, N.P.; Lyall, J.E.W.; Affara, N.A.; Ferguson-Smith, M.A. )

    1993-06-01

    Meiotic recombination in flow-sorted single sperm was used to analyze four highly polymorphic microsatellite markers on the long arm of chromosome 9. The microsatellites comprised three tightly linked markers: 9CMP1 (D9S109), 9CMP2 (D9S127), and D9S53, which map to 9q31, and a reference marker, ASS, which is located in 9q34.1. Haplotypes of single sperm were assessed by using PCR in a single-step multiplex reaction to amplify each locus. Recombinant haplotypes were identified by their relative infrequency and were analyzed using THREELOC, a maximum-likelihood-analysis program, and an adaptation of CRI-MAP. The most likely order of these markers was cen-D9S109-D9S127-D9S53-ASS-tel with D9S109, D9S127, and D9S53 being separated by a genetic distance of approximately 3%. The order of the latter three markers did not however achieve statistical significance using the THREELOC program. 21 refs., 2 figs., 4 tabs.