Sample records for additional molecular mechanisms

  1. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  2. Does anesthetic additivity imply a similar molecular mechanism of anesthetic action at N-methyl-D-aspartate receptors?

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2011-03-01

    Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.

  3. Quantum mechanics/molecular mechanics modeling of covalent addition between EGFR-cysteine 797 and N-(4-anilinoquinazolin-6-yl) acrylamide.

    PubMed

    Capoferri, Luigi; Lodola, Alessio; Rivara, Silvia; Mor, Marco

    2015-03-23

    Irreversible epidermal growth factor receptor (EGFR) inhibitors can circumvent resistance to first-generation ATP-competitive inhibitors in the treatment of nonsmall-cell lung cancer. They covalently bind a noncatalytic cysteine (Cys797) at the surface of EGFR active site by an acrylamide warhead. Herein, we used a hybrid quantum mechanics/molecular mechanics (QM/MM) potential in combination with umbrella sampling in the path-collective variable space to investigate the mechanism of alkylation of Cys797 by the prototypical covalent inhibitor N-(4-anilinoquinazolin-6-yl) acrylamide. Calculations show that Cys797 reacts with the acrylamide group of the inhibitor through a direct addition mechanism, with Asp800 acting as a general base/general acid in distinct steps of the reaction. The obtained reaction free energy is negative (ΔA = -12 kcal/mol) consistent with the spontaneous and irreversible alkylation of Cys797 by N-(4-anilinoquinazolin-6-yl) acrylamide. Our calculations identify desolvation of Cys797 thiolate anion as a key step of the alkylation process, indicating that changes in the intrinsic reactivity of the acrylamide would have only a minor impact on the inhibitor potency.

  4. Exploring the molecular mechanism of karrikins and strigolactones.

    PubMed

    Scaffidi, Adrian; Waters, Mark T; Bond, Charles S; Dixon, Kingsley W; Smith, Steven M; Ghisalberti, Emilio L; Flematti, Gavin R

    2012-06-01

    Karrikins and strigolactones are novel plant growth regulators that contain similar molecular features, but very little is known about how they elicit responses in plants. A tentative molecular mechanism has previously been proposed involving a Michael-type addition for both compounds. Through structure-activity studies with karrikins, we now propose an alternative mechanism for karrikin and strigolactone mode of action that involves hydrolysis of the butenolide ring. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Understanding molecular structure from molecular mechanics.

    PubMed

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  6. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    PubMed

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  7. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    PubMed

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  8. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-10-01

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  9. Simulation with quantum mechanics/molecular mechanics for drug discovery.

    PubMed

    Barbault, Florent; Maurel, François

    2015-08-08

    Biological macromolecules, such as proteins or nucleic acids, are (still) molecules and thus they follow the same chemical rules that any simple molecule follows, even if their size generally renders accurate studies unhelpful. However, in the context of drug discovery, a detailed analysis of ligand association is required for understanding or predicting their interactions and hybrid quantum mechanics/molecular mechanics (QM/MM) computations are relevant tools to help elucidate this process. Areas covered: In this review, the authors explore the use of QM/MM for drug discovery. After a brief description of the molecular mechanics (MM) technique, the authors describe the subtractive and additive techniques for QM/MM computations. The authors then present several application cases in topics involved in drug discovery. Expert opinion: QM/MM have been widely employed during the last decades to study chemical processes such as enzyme-inhibitor interactions. However, despite the enthusiasm around this area, plain MM simulations may be more meaningful than QM/MM. To obtain reliable results, the authors suggest fixing several keystone parameters according to the underlying chemistry of each studied system.

  10. Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations.

    PubMed

    Lin, Hai; Zhao, Yan; Tishchenko, Oksana; Truhlar, Donald G

    2006-09-01

    The multiconfiguration molecular mechanics (MCMM) method is a general algorithm for generating potential energy surfaces for chemical reactions by fitting high-level electronic structure data with the help of molecular mechanical (MM) potentials. It was previously developed as an extension of standard MM to reactive systems by inclusion of multidimensional resonance interactions between MM configurations corresponding to specific valence bonding patterns, with the resonance matrix element obtained from quantum mechanical (QM) electronic structure calculations. In particular, the resonance matrix element is obtained by multidimensional interpolation employing a finite number of geometries at which electronic-structure calculations of the energy, gradient, and Hessian are carried out. In this paper, we present a strategy for combining MCMM with hybrid quantum mechanical molecular mechanical (QM/MM) methods. In the new scheme, electronic-structure information for obtaining the resonance integral is obtained by means of hybrid QM/MM calculations instead of fully QM calculations. As such, the new strategy can be applied to the studies of very large reactive systems. The new MCMM scheme is tested for two hydrogen-transfer reactions. Very encouraging convergence is obtained for rate constants including tunneling, suggesting that the new MCMM method, called QM/MM-MCMM, is a very general, stable, and efficient procedure for generating potential energy surfaces for large reactive systems. The results are found to converge well with respect to the number of Hessians. The results are also compared to calculations in which the resonance integral data are obtained by pure QM, and this illustrates the sensitivity of reaction rate calculations to the treatment of the QM-MM border. For the smaller of the two systems, comparison is also made to direct dynamics calculations in which the potential energies are computed quantum mechanically on the fly.

  11. Molecular mechanisms of floral mimicry in orchids.

    PubMed

    Schlüter, Philipp M; Schiestl, Florian P

    2008-05-01

    Deceptive plants do not produce floral rewards, but attract pollinators by mimicking signals of other organisms, such as food plants or female insects. Such floral mimicry is particularly common in orchids, in which flower morphology, coloration and odour play key roles in deceiving pollinators. A better understanding of the molecular bases for these traits should provide new insights into the occurrence, mechanisms and evolutionary consequences of floral mimicry. It should also reveal the molecular bases of pollinator-attracting signals, in addition to providing strategies for manipulating insect behaviour in general. Here, we review data on the molecular bases for traits involved in floral mimicry, and we describe methodological advances helpful for the functional evaluation of key genes.

  12. An Additive Definition of Molecular Complexity.

    PubMed

    Böttcher, Thomas

    2016-03-28

    A framework for molecular complexity is established that is based on information theory and consistent with chemical knowledge. The resulting complexity index Cm is derived from abstracting the information content of a molecule by the degrees of freedom in the microenvironments on a per-atom basis, allowing the molecular complexity to be calculated in a simple and additive way. This index allows the complexity of any molecule to be universally assessed and is sensitive to stereochemistry, heteroatoms, and symmetry. The performance of this complexity index is evaluated and compared against the current state of the art. Its additive character gives consistent values also for very large molecules and supports direct comparisons of chemical reactions. Finally, this approach may provide a useful tool for medicinal chemistry in drug design and lead selection, as demonstrated by correlating molecular complexities of antibiotics with compound-specific parameters.

  13. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  14. Molecular Mechanics: Illustrations of Its Application.

    ERIC Educational Resources Information Center

    Cox, Philip J.

    1982-01-01

    The application of molecular mechanics (a nonquantum mechanical method for solving problems concerning molecular geometries) to calculate force fields for n-butane and cyclohexane is discussed. Implications regarding the stable conformations of the example molecules are also discussed. (Author/SK)

  15. Anticancer Molecular Mechanisms of Resveratrol

    PubMed Central

    Varoni, Elena M.; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment. PMID:27148534

  16. Anticancer Molecular Mechanisms of Resveratrol.

    PubMed

    Varoni, Elena M; Lo Faro, Alfredo Fabrizio; Sharifi-Rad, Javad; Iriti, Marcello

    2016-01-01

    Resveratrol is a pleiotropic phytochemical belonging to the stilbene family. Though it is only significantly present in grape products, a huge amount of preclinical studies investigated its anticancer properties in a plethora of cellular and animal models. Molecular mechanisms of resveratrol involved signaling pathways related to extracellular growth factors and receptor tyrosine kinases; formation of multiprotein complexes and cell metabolism; cell proliferation and genome instability; cytoplasmic tyrosine kinase signaling (cytokine, integrin, and developmental pathways); signal transduction by the transforming growth factor-β super-family; apoptosis and inflammation; and immune surveillance and hormone signaling. Resveratrol also showed a promising role to counteract multidrug resistance: in adjuvant therapy, associated with 5-fluoruracyl and cisplatin, resveratrol had additive and/or synergistic effects increasing the chemosensitization of cancer cells. Resveratrol, by acting on diverse mechanisms simultaneously, has been emphasized as a promising, multi-target, anticancer agent, relevant in both cancer prevention and treatment.

  17. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    NASA Astrophysics Data System (ADS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  18. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  19. Molecular mechanisms of magnetosome formation.

    PubMed

    Komeili, Arash

    2007-01-01

    Magnetotactic bacteria are a diverse group of microorganisms with the ability to use geomagnetic fields for direction sensing. This unique feat is accomplished with the help of magnetosomes, nanometer-sized magnetic crystals surrounded by a lipid bilayer membrane and organized into chains via a dedicated cytoskeleton within the cell. Because of the special properties of these magnetic crystals, magnetotactic bacteria have been exploited for a variety of applications in diverse disciplines from geobiology to biotechnology. In addition, magnetosomes have served as a powerful model system for the study of biomineralization and cell biology in bacteria. This review focuses on recent advances in understanding the molecular mechanisms of magnetosome formation and magnetite biomineralization.

  20. Mitochondrial diabetes: molecular mechanisms and clinical presentation.

    PubMed

    Maassen, J Antonie; 'T Hart, Leen M; Van Essen, Einar; Heine, Rob J; Nijpels, Giel; Jahangir Tafrechi, Roshan S; Raap, Anton K; Janssen, George M C; Lemkes, Herman H P J

    2004-02-01

    Mutations in mitochondrial DNA (mtDNA) associate with various disease states. A few mtDNA mutations strongly associate with diabetes, with the most common mutation being the A3243G mutation in the mitochondrial DNA-encoded tRNA(Leu,UUR) gene. This article describes clinical characteristics of mitochondrial diabetes and its molecular diagnosis. Furthermore, it outlines recent developments in the pathophysiological and molecular mechanisms leading to a diabetic state. A gradual development of pancreatic beta-cell dysfunction upon aging, rather than insulin resistance, is the main mechanism in developing glucose intolerance. Carriers of the A3243G mutation show during a hyperglycemic clamp at 10 mmol/l glucose a marked reduction in first- and second-phase insulin secretion compared with noncarriers. The molecular mechanism by which the A3243G mutation affects insulin secretion may involve an attenuation of cytosolic ADP/ATP levels leading to a resetting of the glucose sensor in the pancreatic beta-cell, such as in maturity-onset diabetes of the young (MODY)-2 patients with mutations in glucokinase. Unlike in MODY2, which is a nonprogressive form of diabetes, mitochondrial diabetes does show a pronounced age-dependent deterioration of pancreatic function indicating involvement of additional processes. Furthermore, one would expect that all mtDNA mutations that affect ATP synthesis lead to diabetes. This is in contrast to clinical observations. The origin of the age-dependent deterioration of pancreatic function in carriers of the A3243G mutation and the contribution of ATP and other mitochondrion-derived factors such as reactive oxygen species to the development of diabetes is discussed.

  1. Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography.

    PubMed

    Liu, Zhao-Sheng; Xu, Yan-Li; Yan, Chao; Gao, Ru-Yu

    2005-09-16

    The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.

  2. Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.

    PubMed

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying

    2017-06-01

    Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.

  3. The molecular mechanics of eukaryotic translation.

    PubMed

    Kapp, Lee D; Lorsch, Jon R

    2004-01-01

    Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.

  4. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    NASA Astrophysics Data System (ADS)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  5. Uncovering molecular details of urea crystal growth in the presence of additives.

    PubMed

    Salvalaglio, Matteo; Vetter, Thomas; Giberti, Federico; Mazzotti, Marco; Parrinello, Michele

    2012-10-17

    Controlling the shape of crystals is of great practical relevance in fields like pharmacology and fine chemistry. Here we examine the paradigmatic case of urea which is known to crystallize from water with a needle-like morphology. To prevent this undesired effect, inhibitors that selectively favor or discourage the growth of specific crystal faces can be used. In urea the most relevant faces are the {001} and the {110} which are known to grow fast and slow, respectively. The relevant growth speed difference between these two crystal faces is responsible for the needle-like structure of crystals grown in water solution. To prevent this effect, additives are used to slow down the growth of one face relative to another, thus controlling the shape of the crystal. We study the growth of fast {001} and slow {110} faces in water solution and the effect of shape controlling inhibitors like biuret. Extensive sampling through molecular dynamics simulations provides a microscopic picture of the growth mechanism and of the role of the additives. We find a continuous growth mechanism on the {001} face, while the slow growing {110} face evolves through a birth and spread process, in which the rate-determining step is the formation on the surface of a two-dimensional crystalline nucleus. On the {001} face, growth inhibitors like biuret compete with urea for the adsorption on surface lattice sites; on the {110} face instead additives cannot interact specifically with surface sites and play a marginal sterical hindrance of the crystal growth. The free energies of adsorption of additives and urea are evaluated with advanced simulation methods (well-tempered metadynamics) allowing a microscopic understanding of the selective effect of additives. Based on this case study, general principles for the understanding of the anisotropic growth of molecular crystals from solutions are laid out. Our work is a step toward a rational development of novel shape-affecting additives.

  6. Antiwear Additive Mechanisms in Sliding Contacts

    NASA Technical Reports Server (NTRS)

    Baldwin, B. A.

    1984-01-01

    The possible mechanisms associated with wear in a sliding contact and how an oil and antiwear additive can mitigate wear or prevent catastropic seizure of the contacting parts was examined. The various load and temperature regimes are examined and the mechanisms which are predominant under these conditions are determined. The critical mechanism(s) depend on the test parameters, particularly load and temperature, although sliding speed is also a factor. Different ways to improve the efficiency of antiwear additives are suggested.

  7. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    PubMed

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  8. Manipulating crystallization with molecular additives.

    PubMed

    Shtukenberg, Alexander G; Lee, Stephanie S; Kahr, Bart; Ward, Michael D

    2014-01-01

    Given the importance of organic crystals in a wide range of industrial applications, the chemistry, biology, materials science, and chemical engineering communities have focused considerable attention on developing methods to control crystal structure, size, shape, and orientation. Tailored additives have been used to control crystallization to great effect, presumably by selectively binding to particular crystallographic surfaces and sites. However, substantial knowledge gaps still exist in the fundamental mechanisms that govern the formation and growth of organic crystals in both the absence and presence of additives. In this review, we highlight research discoveries that reveal the role of additives, either introduced by design or present adventitiously, on various stages of formation and growth of organic crystals, including nucleation, dislocation spiral growth mechanisms, growth inhibition, and nonclassical crystal morphologies. The insights from these investigations and others of their kind are likely to guide the development of innovative methods to manipulate crystallization for a wide range of materials and applications.

  9. Inactivation of TEM-1 by avibactam (NXL-104): insights from quantum mechanics/molecular mechanics metadynamics simulations.

    PubMed

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco; Colombo, Giorgio

    2014-08-12

    The fast and constant development of drug-resistant bacteria represents a serious medical emergence. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this context, avibactam represents a promising, innovative inhibitor of beta-lactamases with a novel molecular structure compared to previously developed inhibitors, showing a promising inhibitory activity toward a significant number of beta-lactamase enzymes. In this work, we studied, at the atomistic level, the mechanisms of formation of the covalent complex between avibactam and TEM-1, an experimentally well-characterized class A beta-lactamase, using classical and quantum mechanics/molecular mechanics (QM/MM) simulations combined with metadynamics. Our simulations provide a detailed structural and energetic picture of the molecular steps leading to the formation of the avibactam/TEM-1 covalent adduct. In particular, they support a mechanism in which the rate-determining step is the water-assisted Glu166 deprotonation by Ser70. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements. Additionally, our simulations highlight the important role of Lys73 in assisting the Ser70 and Ser130 deprotonations. While based on the specific case of the avibactam/TEM-1, the simple protocol we present here can be immediately extended and applied to the study of covalent complex formation in different enzyme-inhibitor pairs.

  10. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    PubMed

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    PubMed

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  12. Molecular mechanisms of liver preconditioning

    PubMed Central

    Alchera, Elisa; Dal Ponte, Caterina; Imarisio, Chiara; Albano, Emanuele; Carini, Rita

    2010-01-01

    Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery. PMID:21182220

  13. Mechanics of additively manufactured biomaterials.

    PubMed

    Zadpoor, Amir A

    2017-06-01

    Additive manufacturing (3D printing) has found many applications in healthcare including fabrication of biomaterials as well as bioprinting of tissues and organs. Additively manufactured (AM) biomaterials may possess arbitrarily complex micro-architectures that give rise to novel mechanical, physical, and biological properties. The mechanical behavior of such porous biomaterials including their quasi-static mechanical properties and fatigue resistance is not yet well understood. It is particularly important to understand the relationship between the designed micro-architecture (topology) and the resulting mechanical properties. The current special issue is dedicated to understanding the mechanical behavior of AM biomaterials. Although various types of AM biomaterials are represented in the special issue, the primary focus is on AM porous metallic biomaterials. As a prelude to this special issue, this editorial reviews some of the latest findings in the mechanical behavior of AM porous metallic biomaterials so as to describe the current state-of-the-art and set the stage for the other studies appearing in the issue. Some areas that are important for future research are also briefly mentioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Molecular Mechanics

    PubMed Central

    Vanommeslaeghe, Kenno; Guvench, Olgun; MacKerell, Alexander D.

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and weaknesses. Variations and recent developments such as polarizable force fields are discussed. The section ends with a brief overview of common force fields in CSBDD. PMID:23947650

  15. A quantum-mechanics molecular-mechanics scheme for extended systems

    NASA Astrophysics Data System (ADS)

    Hunt, Diego; Sanchez, Veronica M.; Scherlis, Damián A.

    2016-08-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  16. A quantum-mechanics molecular-mechanics scheme for extended systems.

    PubMed

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  17. Molecular Mechanics: The Method and Its Underlying Philosophy.

    ERIC Educational Resources Information Center

    Boyd, Donald B.; Lipkowitz, Kenny B.

    1982-01-01

    Molecular mechanics is a nonquantum mechanical method for solving problems concerning molecular geometries and energy. Methodology based on: the principle of combining potential energy functions of all structural features of a particular molecule into a total force field; derivation of basic equations; and use of available computer programs is…

  18. The molecular mechanism of plant gravitropism.

    PubMed

    Wu, Di; Huang, Lin-zhou; Gao, Jin; Wang, Yong-hong

    2016-07-20

    Gravity is an important environmental factor that regulates plant growth and morphogenesis. In response to gravity stimulus, plants can set the optimum angle between the organs and the gravity vector. Plant gravitropism is divided into four sequential steps, including gravity perception, signal transduction, asymmetrical distribution of auxin, and organ curvature. In recent years, large numbers of mutants with defective gravitropism have been identified and genes involved in the regulation of gravitropism have been functionally characterized. In particular, progress has been achieved on elucidating the molecular mechanisms of gravity perception and asymmetrical distribution of auxin. As one of the most important strategies for plant to adapt environmental changes, gravitropism is also involved in the regulation of rice plant architecture and grain yield through modulating rice tiller angle. Therefore, the investigation of plant gravitropism not only contributes to decipher the regulatory mechanisms of plant growth and development, but also helps to guide the genetic improvement of crop architecture. However, the molecular mechanisms and regulatory network of gravitropism remain to be elusive. In this review, we focus on recent progress on elucidating molecular mechanisms underlying gravitropism and its involvement in regulating rice tiller angle, which is an important agronomic trait that determines rice plant architecture and thus grain yields.

  19. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  20. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    PubMed

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  1. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  2. Sexual polyploidization in plants--cytological mechanisms and molecular regulation.

    PubMed

    De Storme, Nico; Geelen, Danny

    2013-05-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. © 2013 Ghent University. New Phytologist © 2013 New Phytologist Trust.

  3. Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.

    PubMed

    Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin

    2010-03-02

    Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.

  4. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    PubMed Central

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  5. Ocular diseases: immunological and molecular mechanisms.

    PubMed

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation.

  6. Modelling the molecular mechanisms of aging

    PubMed Central

    Mc Auley, Mark T.; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M.; Morgan, Amy E.

    2017-01-01

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field. PMID:28096317

  7. Molecular Mechanisms of Bacterial Pathogenicity

    NASA Astrophysics Data System (ADS)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  8. A theoretical study of the molecular mechanism of the GAPDH Trypanosoma cruzi enzyme involving iodoacetate inhibitor

    NASA Astrophysics Data System (ADS)

    Carneiro, Agnaldo Silva; Lameira, Jerônimo; Alves, Cláudio Nahum

    2011-10-01

    The glyceraldehyde-3-phosphate dehydrogenase enzyme (GAPDH) is an important biological target for the development of new chemotherapeutic agents against Chagas disease. In this Letter, the inhibition mechanism of GAPDH involving iodoacetate (IAA) inhibitor was studied using the hybrid quantum mechanical/molecular mechanical (QM/MM) approach and molecular dynamic simulations. Analysis of the potential energy surface and potential of mean force show that the covalent attachment of IAA inhibitor to the active site of the enzyme occurs as a concerted process. In addition, the energy terms decomposition shows that NAD+ plays an important role in stabilization of the reagents and transition state.

  9. [A study of urine concentrating mechanism--a molecular biological approach].

    PubMed

    Marumo, F

    1994-07-01

    Human urine can be concentrated up to four times higher than that of the plasma. Urine concentrating mechanism has attracted for a long time. However, studies in the field are now picking up momentum due to recent breakthrough discoveries using molecular biology techniques. Vasopressin-regulated water channel in the apical membrane of the collecting duct and water channel in the basolateral side of the membrane were cloned. cloned. Osmolality-dependent chloride channel in the thin ascending limb of Henle was also cloned. In addition, vasopressin-regulated urea transporter was found in the collecting duct. These newly discovered channels and transporter should be playing important physiological roles in urine concentrating mechanism. Furthermore, recent findings on osmolytes and their transporters also add to the list of urine concentrating mechanisms.

  10. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  11. Sexual polyploidization in plants – cytological mechanisms and molecular regulation

    PubMed Central

    De Storme, Nico; Geelen, Danny

    2013-01-01

    In the plant kingdom, events of whole genome duplication or polyploidization are generally believed to occur via alterations of the sexual reproduction process. Thereby, diploid pollen and eggs are formed that contain the somatic number of chromosomes rather than the gametophytic number. By participating in fertilization, these so-called 2n gametes generate polyploid offspring and therefore constitute the basis for the establishment of polyploidy in plants. In addition, diplogamete formation, through meiotic restitution, is an essential component of apomixis and also serves as an important mechanism for the restoration of F1 hybrid fertility. Characterization of the cytological mechanisms and molecular factors underlying 2n gamete formation is therefore not only relevant for basic plant biology and evolution, but may also provide valuable cues for agricultural and biotechnological applications (e.g. reverse breeding, clonal seeds). Recent data have provided novel insights into the process of 2n pollen and egg formation and have revealed multiple means to the same end. Here, we summarize the cytological mechanisms and molecular regulatory networks underlying 2n gamete formation, and outline important mitotic and meiotic processes involved in the ectopic induction of sexual polyploidization. PMID:23421646

  12. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE PAGES

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma; ...

    2018-04-24

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  13. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  14. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ocular diseases: immunological and molecular mechanisms

    PubMed Central

    Song, Jing; Huang, Yi-Fei; Zhang, Wen-Jing; Chen, Xiao-Fei; Guo, Yu-Mian

    2016-01-01

    Many factors, such as environmental, microbial and endogenous stress, antigen localization, can trigger the immunological events that affect the ending of the diverse spectrum of ocular disorders. Significant advances in understanding of immunological and molecular mechanisms have been researched to improve the diagnosis and therapy for patients with ocular inflammatory diseases. Some kinds of ocular diseases are inadequately responsive to current medications; therefore, immunotherapy may be a potential choice as an alternative or adjunctive treatment, even in the prophylactic setting. This article first provides an overview of the immunological and molecular mechanisms concerning several typical and common ocular diseases; second, the functions of immunological roles in some of systemic autoimmunity will be discussed; third, we will provide a summary of the mechanisms that dictate immune cell trafficking to ocular local microenvironment in response to inflammation. PMID:27275439

  16. Molecular mechanism for the effects of trehalose on beta-hairpin folding revealed by molecular dynamics simulation.

    PubMed

    Liu, Fu-Feng; Dong, Xiao-Yan; Sun, Yan

    2008-11-01

    Recent work has shown that trehalose can facilitate and inhibit protein folding, but little is known about the molecular basis of these effects. Molecular-level insights into how the osmolyte affects protein folding are of significance for the rational design of small molecular additives for enhancing or hindering the folding of proteins. To investigate the molecular mechanisms of the facilitation and inhibition effects of trehalose on protein folding, molecular dynamics (MD) simulation of a beta-hairpin peptide (Trp-Arg-Tyr-Tyr-Glu-Ser-Ser-Leu-Glu-Pro-Glu-Pro-Asp) in different trehalose concentrations (0-0.26 mol/L) is performed using an all-atom model. It is found that at a proper trehalose concentration (0.065 mol/L), the peptide folds faster than that in water, but it cannot fold to the beta-hairpin at higher trehalose concentrations. Free energy landscape analysis indicates the presence of three intermediate states in both pure water and in 0.065 mol/L trehalose, but the potential energy barriers in the folding pathway decrease greatly in 0.065 mol/L trehalose, so the peptide folding is facilitated. Moreover, at this trehalose concentration, there is a favorable balance between the peptide backbone hydrogen bonds (H-bonds) and the peptide-trehalose H-bonds, leading to the stabilization of the folded peptide. At higher trehalose concentrations, however, trehalose molecules cluster in the peptide region and interact with the peptide via many H-bonds that prevent the peptide from folding to its native structure. The energy landscape analysis indicates that the potential energy barriers increase so greatly that the peptide cannot overcome it, getting trapped in a local free energy basin. The work reported herein has elucidated the molecular mechanism of the peptide folding in the presence of trehalose.

  17. Conduction mechanism of nitronyl-nitroxide molecular magnetic compounds

    NASA Astrophysics Data System (ADS)

    Dotti, N.; Heintze, E.; Slota, M.; Hübner, R.; Wang, F.; Nuss, J.; Dressel, M.; Bogani, L.

    2016-04-01

    We investigate the conduction mechanisms of nitronyl-nitroxide (NIT) molecular radicals, as useful for the creation of nanoscopic molecular spintronic devices, finding that it does not correspond to standard Mott behavior, as previously postulated. We provide a complete investigation using transport measurements, low-energy, sub-THz spectroscopy and introducing differently substituted phenyl appendages. We show that a nontrivial surface-charge-limited regime is present in addition to the standard low-voltage Ohmic conductance. Scaling analysis allows one to determine all the main transport parameters for the compounds and highlights the presence of charge-trapping effects. Comparison among the different compounds shows the relevance of intermolecular stacking between the aromatic ring of the phenyl appendix and the NIT motif in the creation of useful electron transport channels. The importance of intermolecular pathways is further highlighted by electronic structure calculations, which clarify the nature of the electronic channels and their effect on the Mott character of the compounds.

  18. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    PubMed Central

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  19. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    PubMed Central

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  20. Molecular mechanisms of fear learning and memory.

    PubMed

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Modeling molecular mechanisms in the axon

    NASA Astrophysics Data System (ADS)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  2. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    PubMed

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  3. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  4. Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity.

    PubMed

    Ávalos, Yenniffer; Kerr, Bredford; Maliqueo, Manuel; Dorfman, Mauricio

    2018-04-12

    Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types as well as cell and molecular mechanisms that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Since the discovery that high-fat diet and saturated fatty acids (SFAs) increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, and what the role of inflammation in the obesity pathogenesis. Recent studies have proposed that the inhibition of proinflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Molecular pathogenesis and mechanisms of thyroid cancer

    PubMed Central

    Xing, Mingzhao

    2013-01-01

    Thyroid cancer is a common endocrine malignancy. There has been exciting progress in understanding its molecular pathogenesis in recent years, as best exemplified by the elucidation of the fundamental role of several major signalling pathways and related molecular derangements. Central to these mechanisms are the genetic and epigenetic alterations in these pathways, such as mutation, gene copy-number gain and aberrant gene methylation. Many of these molecular alterations represent novel diagnostic and prognostic molecular markers and therapeutic targets for thyroid cancer, which provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. PMID:23429735

  6. Molecular Mechanisms of Right Ventricular Failure

    PubMed Central

    Reddy, Sushma; Bernstein, Daniel

    2015-01-01

    An abundance of data has provided insight into the mechanisms underlying the development of left ventricular (LV) hypertrophy and its progression to LV failure. In contrast, there is minimal data on the adaptation of the right ventricle (RV) to pressure and volume overload and the transition to RV failure. This is a critical clinical question, as the RV is uniquely at risk in many patients with repaired or palliated congenital heart disease and in those with pulmonary hypertension. Standard heart failure therapies have failed to improve function or survival in these patients, suggesting a divergence in the molecular mechanisms of RV vs. LV failure. Although, on the cellular level, the remodeling responses of the RV and LV to pressure overload are largely similar, there are several key differences: the stressed RV is more susceptible to oxidative stress, has a reduced angiogenic response, and is more likely to activate cell death pathways than the stressed LV. Together, these differences could explain the more rapid progression of the RV to failure vs. the LV. This review will highlight known molecular differences between the RV and LV responses to hemodynamic stress, the unique stressors on the RV associated with congenital heart disease, and the need to better understand these molecular mechanisms if we are to develop RV-specific heart failure therapeutics. PMID:26527692

  7. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calin-Jageman, Robert J

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereasmore » long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network

  8. Small-Molecule Hormones: Molecular Mechanisms of Action

    PubMed Central

    Budzińska, Monika

    2013-01-01

    Small-molecule hormones play crucial roles in the development and in the maintenance of an adult mammalian organism. On the molecular level, they regulate a plethora of biological pathways. Part of their actions depends on their transcription-regulating properties, exerted by highly specific nuclear receptors which are hormone-dependent transcription factors. Nuclear hormone receptors interact with coactivators, corepressors, basal transcription factors, and other transcription factors in order to modulate the activity of target genes in a manner that is dependent on tissue, age and developmental and pathophysiological states. The biological effect of this mechanism becomes apparent not earlier than 30–60 minutes after hormonal stimulus. In addition, small-molecule hormones modify the function of the cell by a number of nongenomic mechanisms, involving interaction with proteins localized in the plasma membrane, in the cytoplasm, as well as with proteins localized in other cellular membranes and in nonnuclear cellular compartments. The identity of such proteins is still under investigation; however, it seems that extranuclear fractions of nuclear hormone receptors commonly serve this function. A direct interaction of small-molecule hormones with membrane phospholipids and with mRNA is also postulated. In these mechanisms, the reaction to hormonal stimulus appears within seconds or minutes. PMID:23533406

  9. [Molecular mechanisms of neurotransmission].

    PubMed

    Nagatsu, T

    2000-12-01

    Neurotransmission is regulated by neurotransmitters at the synapses in the neuronal circuits. Main neurotransmitters are classified into the groups of amino acids, amines, purines, peptides, and nitric oxide. In principle, neurotransmitters except peptides are synthesized in the presynaptic neuroterminals from the precursors by the synthesizing enzymes, stored in the synaptic vesicles, released by exocytosis into the synaptic cleft, combined with the postsynaptic membrane receptors, and induce a series of signal transduction to produce acute, short-term, or long-term physiological effects. Termination of the neurotransmission is carried out either by re-uptake into presynaptic nerve terminals through plasma membrane transporters and storage into synaptic vesicles through vesicular transporters or by degradation through metabolizing enzymes (acetylcholine and peptides). Almost all genes related to neurotransmitters have been cloned and the structures of the genes and the protein products have been characterized. Molecular mechanisms of neurotransmission have been elucidated by mouse molecular genetics such as transgenic or knockout mice. Over-expression of human tyrosine hydroxylase (TH). the rate-limiting enzyme of catecholamine synthesis, in transgenic mice (Kaneda et al, Neuron 6, 583-584, 1991) or conversion of norepinephrine neurons to epinephrine neurons (Kobayashi et al, Proc Natl Acad Sci USA 89, 1631-1635, 1992) does not significantly change the phenotype due to compensatory mechanisms such as receptor down-regulation. In contrast, TH (-/-) mutant mice die at perinatal period due to heart failure caused by norepinephrine deficiency in the sympathetic neurons (Kobayashi et al, J Biol Chem 270, 27235-27243, 1995). TH (+/-) mice show a partial decrease in norepinephrine and a modest memory impairment (Kobayashi et al, J Neurosci 20, 2418-2426, 2000). One problem with adult phenotype in transgenic or knockout mice is that mutations cause the confounding effect

  10. Molecular mechanisms of peritoneal dissemination in gastric cancer.

    PubMed

    Kanda, Mitsuro; Kodera, Yasuhiro

    2016-08-14

    Peritoneal dissemination represents a devastating form of gastric cancer (GC) progression with a dismal prognosis. There is no effective therapy for this condition. The 5-year survival rate of patients with peritoneal dissemination is 2%, even including patients with only microscopic free cancer cells without macroscopic peritoneal nodules. The mechanism of peritoneal dissemination of GC involves several steps: detachment of cancer cells from the primary tumor, survival in the free abdominal cavity, attachment to the distant peritoneum, invasion into the subperitoneal space and proliferation with angiogenesis. These steps are not mutually exclusive, and combinations of different molecular mechanisms can occur in each process of peritoneal dissemination. A comprehensive understanding of the molecular events involved in peritoneal dissemination is important and should be systematically pursued. It is crucial to identify novel strategies for the prevention of this condition and for identification of markers of prognosis and the development of molecular-targeted therapies. In this review, we provide an overview of recently published articles addressing the molecular mechanisms of peritoneal dissemination of GC to provide an update on what is currently known in this field and to propose novel promising candidates for use in diagnosis and as therapeutic targets.

  11. General Anesthetics and Molecular Mechanisms of Unconsciousness

    PubMed Central

    Forman, Stuart A.; Chin, Victor A.

    2013-01-01

    General anesthetic agents are unique in clinical medicine, because they are the only drugs used to produce unconsciousness as a therapeutic goal. In contrast to older hypotheses that assumed all general anesthetics produce their central nervous system effects through a common mechanism, we outline evidence that general anesthesia represents a number of distinct pharmacological effects that are likely mediated by different neural circuits, and perhaps via different molecular targets. Within the context of this neurobiological framework, we review recent molecular pharmacological and transgenic animal studies. These studies reveal that different groups of general anesthetics, which can be discerned based on their clinical features, produce unconsciousness via distinct molecular targets and therefore via distinct mechanisms. We further postulate that different types of general anesthetics selectively disrupt different critical steps (perhaps in different neuronal circuits) in the processing of sensory information and memory that results in consciousness. PMID:18617817

  12. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-05

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  13. Molecular Mechanisms of Root Gravitropism.

    PubMed

    Su, Shih-Heng; Gibbs, Nicole M; Jancewicz, Amy L; Masson, Patrick H

    2017-09-11

    Plant shoots typically grow against the gravity vector to access light, whereas roots grow downward into the soil to take up water and nutrients. These gravitropic responses can be altered by developmental and environmental cues. In this review, we discuss the molecular mechanisms that govern the gravitropism of angiosperm roots, where a physical separation between sites for gravity sensing and curvature response has facilitated discovery. Gravity sensing takes place in the columella cells of the root cap, where sedimentation of starch-filled plastids (amyloplasts) triggers a pathway that results in a relocalization to the lower side of the cell of PIN proteins, which facilitate efflux of the plant hormone auxin efflux. Consequently, auxin accumulates in the lower half of the root, triggering bending of the root tip at the elongation zone. We review our understanding of the molecular mechanisms that control this process in primary roots, and discuss recent insights into the regulation of oblique growth in lateral roots and its impact on root-system architecture and soil exploration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Molecular mechanisms of optic axon guidance

    NASA Astrophysics Data System (ADS)

    Inatani, Masaru

    2005-12-01

    Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.

  15. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Molecular interference of fibrin’s divalent polymerization mechanism enables modulation of multiscale material properties

    PubMed Central

    Brown, Ashley C.; Baker, Stephen; Douglas, Alison; Keating, Mark; Alvarez-Elizondo, Martha; Botvinick, Elliot; Guthold, Martin; Barker, Thomas H.

    2015-01-01

    Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular ‘interference’ of fibrin’s native polymerization mechanism. We have previously reported that engagement of fibrin’s polymerization ‘hole b’, also known as ‘b-pockets’, through PEGylated complimentary ‘knob B’ mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics. PMID:25725552

  17. Molecular mechanics of silk nanostructures under varied mechanical loading.

    PubMed

    Bratzel, Graham; Buehler, Markus J

    2012-06-01

    Spider dragline silk is a self-assembling tunable protein composite fiber that rivals many engineering fibers in tensile strength, extensibility, and toughness, making it one of the most versatile biocompatible materials and most inviting for synthetic mimicry. While experimental studies have shown that the peptide sequence and molecular structure of silk have a direct influence on the stiffness, toughness, and failure strength of silk, few molecular-level analyses of the nanostructure of silk assemblies, in particular, under variations of genetic sequences have been reported. In this study, atomistic-level structures of wildtype as well as modified MaSp1 protein from the Nephila clavipes spider dragline silk sequences, obtained using an in silico approach based on replica exchange molecular dynamics and explicit water molecular dynamics, are subjected to simulated nanomechanical testing using different force-control loading conditions including stretch, pull-out, and peel. The authors have explored the effects of the poly-alanine length of the N. clavipes MaSp1 peptide sequence and identify differences in nanomechanical loading conditions on the behavior of a unit cell of 15 strands with 840-990 total residues used to represent a cross-linking β-sheet crystal node in the network within a fibril of the dragline silk thread. The specific loading condition used, representing concepts derived from the protein network connectivity at larger scales, have a significant effect on the mechanical behavior. Our analysis incorporates stretching, pull-out, and peel testing to connect biochemical features to mechanical behavior. The method used in this study could find broad applications in de novo design of silk-like tunable materials for an array of applications. Copyright © 2011 Wiley Periodicals, Inc.

  18. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    PubMed Central

    Callaghan, Richard

    2015-01-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. PMID:26517914

  19. Metal Additive Manufacturing: A Review of Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  20. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  1. Molecular Mechanism of Species-dependent Sweet Taste toward Artificial Sweeteners

    PubMed Central

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-01-01

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis and molecular modeling, we reveal that the different responses of mammalian species towards the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than that of aspartame. Our studies not only shed light on the molecular mechanism of species dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds. PMID:21795555

  2. Molecular mechanism of species-dependent sweet taste toward artificial sweeteners.

    PubMed

    Liu, Bo; Ha, Matthew; Meng, Xuan-Yu; Kaur, Tanno; Khaleduzzaman, Mohammed; Zhang, Zhe; Jiang, Peihua; Li, Xia; Cui, Meng

    2011-07-27

    The heterodimer of Tas1R2 and Tas1R3 is a broadly acting sweet taste receptor, which mediates mammalian sweet taste toward natural and artificial sweeteners and sweet-tasting proteins. Perception of sweet taste is a species-selective physiological process. For instance, artificial sweeteners aspartame and neotame taste sweet to humans, apes, and Old World monkeys but not to New World monkeys and rodents. Although specific regions determining the activation of the receptors by these sweeteners have been identified, the molecular mechanism of species-dependent sweet taste remains elusive. Using human/squirrel monkey chimeras, mutagenesis, and molecular modeling, we reveal that the different responses of mammalian species toward the artificial sweeteners aspartame and neotame are determined by the steric effect of a combination of a few residues in the ligand binding pocket. Residues S40 and D142 in the human Tas1R2, which correspond to residues T40 and E142 in the squirrel monkey Tas1R2, were found to be the critical residues for the species-dependent difference in sweet taste. In addition, human Tas1R2 residue I67, which corresponds to S67 in squirrel monkey receptor, modulates the higher affinity of neotame than of aspartame. Our studies not only shed light on the molecular mechanism of species-dependent sweet taste toward artificial sweeteners, but also provide guidance for designing novel effective artificial sweet compounds.

  3. Molecular mechanisms of foliar water uptake in a desert tree

    PubMed Central

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  4. A model of how different biology experts explain molecular and cellular mechanisms.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. © 2015 C. M. Trujillo et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Physiological and molecular biochemical mechanisms of bile formation

    PubMed Central

    Reshetnyak, Vasiliy Ivanovich

    2013-01-01

    This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965

  6. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    PubMed

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  7. United polarizable multipole water model for molecular mechanics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Rui; Wang, Qiantao; Ren, Pengyu, E-mail: pren@mail.utexas.edu

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interactionmore » site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.« less

  8. Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations of the thiopurine S-methyltransferase reaction with 6-mercaptopurine.

    PubMed

    Pan, Xiao-Liang; Cui, Feng-Chao; Liu, Jing-Yao

    2011-06-23

    Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the methylation of 6-mercaptopurine catalyzed by thiopurine S-methyltransferase. Several setups with different tautomeric forms and orientations of the substrate were considered. It is found that, with the orientation in chain A of the X-ray structure, the substrate can form an ideal near-attack configuration for the methylation reaction, which may take place after the deprotonation of the substrate by the conserved residue Asp23 through a water chain. The potential of mean force (PMF) of the methyl-transfer step for the most favorable pathway is 19.6 kcal/mol, which is in good agreement with the available experimental rate constant data.

  9. The relationship between water loss, mechanical stress, and molecular structure of human stratum corneum ex vivo.

    PubMed

    Vyumvuhore, Raoul; Tfayli, Ali; Biniek, Krysta; Duplan, Hélène; Delalleau, Alexandre; Manfait, Michel; Dauskardt, Reinhold; Baillet-Guffroy, Arlette

    2015-03-01

    Proper hydration of the stratum corneum (SC) is important for maintaining skin's vital functions. Water loss causes development of drying stresses, which can be perceived as 'tightness', and plays an important role in dry skin damage processes. However, molecular structure modifications arising from water loss and the subsequent development of stress has not been established. We investigated the drying stress mechanism by studying, ex vivo, the behaviors of the SC components during water desorption from initially fully hydrated samples using Raman spectroscopy. Simultaneously, we measure the SC mechanical stress with a substrate curvature instrument. Very good correlations of water loss to the mechanical stress of the stratum corneum were obtained, and the latter was found to depend mainly on the unbound water fraction. In addition to that, the water loss is accompanied with an increase of lipids matrix compactness characterized by lower chain freedom, while protein structure showed an increase in amount of α-helices, a decline in α-sheets, and an increase in folding in the tertiary structure of keratin. The drying process of SC involves a complex interplay of water binding, molecular modifications, and mechanical stress. This article provides a better understanding of the molecular mechanism associated to SC mechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy.

    PubMed

    Ahmad, Saif; Bhatia, Kanchan; Kannan, Annapoorna; Gangwani, Laxman

    2016-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.

  11. Nonlinear vibrational excitations in molecular crystals molecular mechanics calculations

    NASA Astrophysics Data System (ADS)

    Pumilia, P.; Abbate, S.; Baldini, G.; Ferro, D. R.; Tubino, R.

    1992-03-01

    The coupling constant for vibrational solitons χ has been examined in a molecular mechanics model for acetanilide (ACN) molecular crystal. According to A.C. Scott, solitons can form and propagate in solid acetanilide over a threshold energy value. This can be regarded as a structural model for the spines of hydrogen bond chains stabilizing the α helical structure of proteins. A one dimensional hydrogen bond chain of ACN has been built, for which we have found that, even though experimental parameters are correctly predicted, the excessive rigidity of the isolated chain prevents the formation of a localized distortion around the excitation. Yet, C=O coupling value with softer lattice modes could be rather high, allowing self-trapping to take place.

  12. Molecular Mechanism of TRP Channels

    PubMed Central

    Zheng, Jie

    2013-01-01

    Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation. PMID:23720286

  13. Epigenetics: Behavioral Influences on Gene Function, Part II--Molecular Mechanisms

    ERIC Educational Resources Information Center

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    A study presented on the effect of parenting on stress response and other behaviors show that animals exposed to a high degree of nurturing show a blunted response to stress. Molecular mechanisms responsible for these differences in the adult offspring as well as the molecular mechanisms by which epigenetic effects are propagated from one…

  14. Molecular mechanism of the sweet taste enhancers.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-09

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  15. Molecular mechanisms of fluoride toxicity.

    PubMed

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin.

    PubMed

    Liu, Xiaochang; Liu, Meiying; Liu, Chao; Quan, Peng; Zhao, Yongshan; Fang, Liang

    2017-08-30

    Chemical enhancers are widely used to facilitate drug permeation in transdermal drug delivery system (TDDS) and the effect of chemical enhancers is desired to be temporary. Though temporary enhancement effect of chemical enhancers has been widely discussed, there is still a lack of knowledge about the molecular mechanism of temporary enhancement effect. Using the skin permeation of flurbiprofen as a probe, the temporary enhancement effect of isopulegol decanoate (ISO-10) was evaluated with in vitro permeation experiment and confocal laser scanning microscopy (CLSM). In addition, molecular mechanism of skin recovery was explored with skin retention of ISO-10, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), molecular dynamic (MD) simulation and transepidermal water loss (TEWL). Temporary enhancement effect of ISO-10 was observed by the permeation of flurbiprofen after the treatment of 180min. Furthermore, temporary enhancement effect of ISO-10 on the diffusion of intercellular lipid in the stratum cornuem (SC) was observed by ATR-FTIR, molecular dynamic (MD) simulation. The SC barrier function recovered with the existence of ISO-10 in the lipid bilayer as indicated by the retention study and TEWL. In conclusion, the lipid bilayer accepted the enhancer as a new component to form a new stable arrangement, resulted the recovery of the skin barrier function. This work processed a novel mechanism of the recovery of skin barrier function after the addition of chemical enhancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Quantum mechanical/molecular mechanical/continuum style solvation model: time-dependent density functional theory.

    PubMed

    Thellamurege, Nandun M; Cui, Fengchao; Li, Hui

    2013-08-28

    A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.

  18. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    PubMed

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    DTIC Science & Technology

    2016-06-08

    AFRL-AFOSR-VA-TR-2016-0231 Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites Darren Lipomi...04-2013 to 31-03-2016 4. TITLE AND SUBTITLE Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites 5a... Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites PI: Prof. Darren J. Lipomi 9500 Gilman Dr., Mail Code #0448

  20. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  1. Molecular mechanisms of foliar water uptake in a desert tree.

    PubMed

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Molecular mechanics of tropocollagen-hydroxyapatite biomaterials

    NASA Astrophysics Data System (ADS)

    Dubey, Devendra Kumar

    Hard biomaterials such as bone, dentin, and nacre show remarkable mechanical performance and serve as inspiration for development of next generation of composite materials with high strength and toughness. Such materials have primarily an organic phase (e.g. tropocollagen (TC) or chitin) and a mineral phase (e.g. hydroxyapatite (HAP) or aragonite) arranged in a staggered arrangement at nanoscopic length scales. Interfacial interactions between the organic phases and the mineral phases and structural effects arising due to the staggered and hierarchical arrangements are identified to be the two most important determinants for high mechanical performance of such biomaterials. Effects of these determinants in such biomaterials are further intertwined with factors such as loading configuration, chemical environment, mineral crystal shape, and residue sequences in polymer chains. Atomistic modeling is a desired approach to investigate such sub nanoscale issues as experimental techniques for investigations at such small scale are still in nascent stage. For this purpose, explicit three dimensional (3D) molecular dynamics (MD) and ab initio MD simulations of quasi-static mechanical deformations of idealized Tropocollagen-Hydroxyapatite (TC-HAP) biomaterials with distinct interfacial arrangements and different loading configurations are performed. Focus is on developing insights into the molecular level mechanics of TC-HAP biomaterials at fundamental lengthscale with emphasis on interface phenomenon. Idealized TC-HAP atomistic models are analyzed for their mechanical strength and fracture failure behavior from the viewpoint of interfacial interactions between TC and HAP and associated molecular mechanisms. In particular, study focuses on developing an understanding of factors such as role of interfacial structural arrangement, hierarchical structure design, influence of water, effect of changes in HAP crystal shape, and mutations in TC molecule on the mechanical strength

  3. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.

    PubMed

    Ferrer, Silvia; Ruiz-Pernía, Javier; Martí, Sergio; Moliner, Vicent; Tuñón, Iñaki; Bertrán, Juan; Andrés, Juan

    2011-01-01

    active site can be optimized to improve the transition state analogues (TSA) and to enhance the catalytic activity, even improve the active site to favor a desired direction of some promiscuous enzymes. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. Current computational tools to assist experimentalists for the design and engineering of proteins with desired catalytic properties are described. The interplay between enzyme design, molecular simulations, and experiments will be presented to emphasize the interdisciplinary nature of this research field. This text highlights the recent advances and examples selected from our laboratory are shown, of how the applications of these tools are a first attempt to de novo design of protein active sites. Identification of neutral/advantageous/deleterious mutation platforms can be exploited to penetrate some of Nature's closely guarded secrets of chemical reactivity. In this chapter, we give a brief introduction, the state of the art, and future prospects and implications of enzyme design. The first part describes briefly how the molecular modeling is carried out. Then, we discuss the requirements of hybrid quantum mechanical/molecular mechanics molecular dynamics (QM/MM MD) simulations, analyzing what are the basis of these theoretical methodologies, how we can use them with a view to its application in the study of enzyme catalysis, and what are the best methodologies for assessing its catalytic potential. In the second part, we focus on some selected examples, taking as a common guide the chorismate to prephenate rearrangement, studying the corresponding molecular mechanism in vacuo, in solution and in an enzyme environment. In addition, examples involving catalytic antibodies (CAs) and promiscuous enzymes will be presented. Finally, a special emphasis is made to provide some hints about the logical evolution that can be anticipated in this research

  4. Molecular dynamics simulations for the examination of mechanical properties of hydroxyapatite/ poly α-n-butyl cyanoacrylate under additive manufacturing.

    PubMed

    Wang, Yanen; Wei, Qinghua; Pan, Feilong; Yang, Mingming; Wei, Shengmin

    2014-01-01

    Molecular dynamics (MD) simulations emerged to be a helpful tool in the field of material science. In rapid prototyping artificial bone scaffolds process, the binder spraying volume and mechanism are very important for bone scaffolds mechanical properties. In this study, we applied MD simulations to investigating the binding energy of α-n-butyl cyanoacrylate (NBCA) on Hydroxyapatite (HA) crystallographic planes (001, 100 and 110), and to calculating and analyzing the mechanical properties and radial distribution function of the HA(110)/NBCA mixed system. The simulation results suggested that HA (110) has the highest binding energy with NBCA owing to the high planar atom density, and the mechanical properties of HA(110)/NBCA mixed system is stronger than pure HA system. Therefore, the multi-grade strength bone scaffold could be fabricated through spraying various volume NBCA binders during 3D printing process. By calculating the radial distribution function of HA(110)/NBCA, the essence of the interface interaction were successfully elucidated. The forming situation parameters can be referred to calculation results. There exists a strong interaction between HA crystallographic plane (110) and NBCA, it is mainly derived from the hydrogen bonds between O atoms which connect with C atoms of NBCA and H atoms in HA crystal. Furthermore, a strong adsorption effect can be demonstrated between HA and NBCA.

  5. Molecular mechanism of PDT-induced apoptotic cells stimulation NO production in macrophages

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Fei-fan; Yang, Si-hua; Chen, Wei R.

    2011-03-01

    It is well known that apoptotic cells (AC) participate in immune response. The immune response induced by AC, either immunostimulatory or immunosuppressive, have been extensively studied. However, the molecular mechanisms of the immunostimulatory effects induced by PDT-treated AC remain unclear. Nitric oxide (NO) is an important signal transduction molecule and has been implicated in a variety of functions. It has also been found to play an important role not only as a cytotoxic effector but an immune regulatory mediator. In this study, we demonstrate that the PDT-induced apoptotic tumor cells stimulate the production of NO in macrophages by up-regulating expression of inducible nitric oxide synthase (iNOS). In addition, we show that AC, through toll-like receptors (TLRs), can activate myeloid differentiation factor-88 (MyD88), indicating that AC serves as an intercellular signal to induce iNOS expression in immune cells after PDT treatment. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  6. [Programmed necrosis and necroptosis - molecular mechanisms].

    PubMed

    Giżycka, Agata; Chorostowska-Wynimko, Joanna

    2015-12-16

    Programmed necrosis has been proven vital for organism development and homeostasis maintenance. Its regulatory effects on functional activity of the immune system, as well as on pathways regulating the death mechanisms in cells with diminished apoptotic activity, including malignant cells, have been confirmed. There is also increasing evidence indicating necrosis involvement in many human pathologies. Contrary to previous beliefs, necrosis is not only a passive, pathological, gene-independent process. However, the current knowledge regarding molecular regulation of programmed necrosis is scarce. In part this is due to the multiplicity and complexity of signaling pathways involved in programmed necrosis, as well as the absence of specific cellular markers identifying this process, but also the ambiguous and imprecise international terminology. This review presents the current state of the art on molecular mechanisms of programmed necrosis. In particular, its specific and frequent form, necroptosis, is discussed. The role of RIP1 and RIP3 kinases in this process is presented, as well as the diverse pathways induced by ligation of tumor necrosis factor α, to its receptor, TNFR1, i.e. cell survival, apoptosis or necroptosis.

  7. Mechanisms of two-color laser-induced field-free molecular orientation.

    PubMed

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  8. Molecular Mechanisms of Neuroplasticity: An Expanding Universe.

    PubMed

    Gulyaeva, N V

    2017-03-01

    Biochemical processes in synapses and other neuronal compartments underlie neuroplasticity (functional and structural alterations in the brain enabling adaptation to the environment, learning, memory, as well as rehabilitation after brain injury). This basic molecular level of brain plasticity covers numerous specific proteins (enzymes, receptors, structural proteins, etc.) participating in many coordinated and interacting signal and metabolic processes, their modulation forming a molecular basis for brain plasticity. The articles in this issue are focused on different "hot points" in the research area of biochemical mechanisms supporting neuroplasticity.

  9. Mechanical properties of additively manufactured octagonal honeycombs.

    PubMed

    Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. Copyright © 2016 Elsevier B.V. All rights

  10. Reduction mechanisms of additives on Si anodes of Li-ion batteries.

    PubMed

    Martínez de la Hoz, Julibeth M; Balbuena, Perla B

    2014-08-28

    Solid-electrolyte interphase (SEI) layers are films deposited on the surface of Li-ion battery electrodes during battery charge and discharge processes. They are due to electrochemical instability of the electrolyte which causes electron transfer from (to) the anode (cathode) surfaces. The films could have a protective passivating role and therefore understanding the detailed reduction (oxidation) processes is essential. Here density functional theory and ab initio molecular dynamics simulations are used to investigate the reduction mechanisms of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) on lithiated silicon surfaces. These species are frequently used as "additives" to improve the SEI properties. It is found that on lithiated Si anodes (with low to intermediate degrees of lithiation) VC may be reduced via a 2e(-) mechanism yielding an opened VC(2-) anion. At higher degrees of lithiation, such a species receives two extra electrons from the surface resulting in an adsorbed CO(2-)(ads) anion and a radical anion ˙OC2H2O(2-). Additionally, in agreement with experimental observations, it is shown that CO2 can be generated from reaction of VC with the CO3(2-)anion, a product of the reduction of the main solvent, ethylene carbonate (EC). On the other hand, FEC reduction on LixSiy surfaces is found to be independent of the degree of lithiation, and occurs through three mechanisms. One of them leads to an adsorbed VC(2-) anion upon release from the FEC molecule and adsorption on the surface of F(-) and one H atom. Thus in some cases, the reduction of FEC may lead to the exact same reduction products as that of VC, which explains similarities in SEI layers formed in the presence of these additives. However, FEC may be reduced via two other multi-electron transfer mechanisms that result in formation of either CO2(2-), F(-), and ˙CH2CHO(-) or CO(2-), F(-), and ˙OCH2CHO(-). These alternative reduction products may oligomerize and form SEI layers with

  11. Cellular and molecular mechanisms regulating vascular tone. Part 1: basic mechanisms controlling cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

    PubMed

    Akata, Takashi

    2007-01-01

    General anesthetics cause hemodynamic instability and alter blood flow to various organs. There is mounting evidence that most general anesthetics, at clinical concentrations, influence a wide variety of cellular and molecular mechanisms regulating the contractile state of vascular smooth muscle cells (i.e., vascular tone). In addition, in current anesthetic practice, various types of vasoactive agents are often used to control vascular reactivity and to sustain tissue blood flow in high-risk surgical patients with impaired vital organ function and/or hemodynamic instability. Understanding the physiological mechanisms involved in the regulation of vascular tone thus would be beneficial for anesthesiologists. This review, in two parts, provides an overview of current knowledge about the cellular and molecular mechanisms regulating vascular tone-i.e., targets for general anesthetics, as well as for vasoactive drugs that are used in intraoperative circulatory management. This first part of the two-part review focuses on basic mechanisms regulating cytosolic Ca2+ concentration and the Ca2+-dependent regulation of vascular tone.

  12. Quantum ring-polymer contraction method: Including nuclear quantum effects at no additional computational cost in comparison to ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    John, Christopher; Spura, Thomas; Habershon, Scott; Kühne, Thomas D.

    2016-04-01

    We present a simple and accurate computational method which facilitates ab initio path-integral molecular dynamics simulations, where the quantum-mechanical nature of the nuclei is explicitly taken into account, at essentially no additional computational cost in comparison to the corresponding calculation using classical nuclei. The predictive power of the proposed quantum ring-polymer contraction method is demonstrated by computing various static and dynamic properties of liquid water at ambient conditions using density functional theory. This development will enable routine inclusion of nuclear quantum effects in ab initio molecular dynamics simulations of condensed-phase systems.

  13. Disease resistance: Molecular mechanisms and biotechnological applications

    USDA-ARS?s Scientific Manuscript database

    This special issue “Disease resistance: molecular mechanisms and biotechnological applications” contains 11 review articles and four original research papers. Research in the area of engineering for disease resistance continues to progress although only 10% of the transgenic plants registered for ...

  14. Elucidating the thermal, chemical, and mechanical mechanisms of ultraviolet ablation in poly(methyl methacrylate) via molecular dynamics simulations.

    PubMed

    Conforti, Patrick F; Prasad, Manish; Garrison, Barbara J

    2008-08-01

    [Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after. Molecular simulation is a particularly attractive technique to study the basic aspects of ablation because it allows control over specific process parameters and enables observation of microscopic mechanistic details. This Account describes a hybrid molecular dynamics-Monte Carlo technique to simulate laser ablation in poly(methyl methacrylate) (PMMA). It also discusses the impact of thermal and chemical excitation on the ensuing ejection processes. We used molecular dynamics simulation to study the molecular interactions in a coarse-grained PMMA substrate following photon absorption. To ascertain the role of chemistry in initiating ablation, we embedded a Monte Carlo protocol within the simulation framework. These calculations permit chemical reactions to occur probabilistically during the molecular dynamics calculation using predetermined reaction pathways and Arrhenius rates. With this hybrid scheme, we can examine thermal and chemical pathways of decomposition separately. In the simulations, we observed distinct mechanisms of ablation for each type of photoexcitation pathway. Ablation via thermal processes is governed by a critical number of bond breaks following the deposition of energy. For the case in which an absorbed photon directly causes a bond scission, ablation occurs following the rapid chemical decomposition of material. A detailed analysis of the processes shows that a critical energy for ablation can describe this complex series of events. The simulations show a decrease in the critical energy with a greater amount of photochemistry. Additionally, the simulations demonstrate the effects

  15. Molecular mechanisms of curcumin action: gene expression.

    PubMed

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  16. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.

    PubMed

    Shen, Lin; Yang, Weitao

    2018-03-13

    Direct molecular dynamics (MD) simulation with ab initio quantum mechanical and molecular mechanical (QM/MM) methods is very powerful for studying the mechanism of chemical reactions in a complex environment but also very time-consuming. The computational cost of QM/MM calculations during MD simulations can be reduced significantly using semiempirical QM/MM methods with lower accuracy. To achieve higher accuracy at the ab initio QM/MM level, a correction on the existing semiempirical QM/MM model is an attractive idea. Recently, we reported a neural network (NN) method as QM/MM-NN to predict the potential energy difference between semiempirical and ab initio QM/MM approaches. The high-level results can be obtained using neural network based on semiempirical QM/MM MD simulations, but the lack of direct MD samplings at the ab initio QM/MM level is still a deficiency that limits the applications of QM/MM-NN. In the present paper, we developed a dynamic scheme of QM/MM-NN for direct MD simulations on the NN-predicted potential energy surface to approximate ab initio QM/MM MD. Since some configurations excluded from the database for NN training were encountered during simulations, which may cause some difficulties on MD samplings, an adaptive procedure inspired by the selection scheme reported by Behler [ Behler Int. J. Quantum Chem. 2015 , 115 , 1032 ; Behler Angew. Chem., Int. Ed. 2017 , 56 , 12828 ] was employed with some adaptions to update NN and carry out MD iteratively. We further applied the adaptive QM/MM-NN MD method to the free energy calculation and transition path optimization on chemical reactions in water. The results at the ab initio QM/MM level can be well reproduced using this method after 2-4 iteration cycles. The saving in computational cost is about 2 orders of magnitude. It demonstrates that the QM/MM-NN with direct MD simulations has great potentials not only for the calculation of thermodynamic properties but also for the characterization of

  17. Mechanical Properties of Additively Manufactured Thick Honeycombs.

    PubMed

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-07-23

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson's ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  18. Mechanical Properties of Additively Manufactured Thick Honeycombs

    PubMed Central

    Hedayati, Reza; Sadighi, Mojtaba; Mohammadi Aghdam, Mohammad; Zadpoor, Amir Abbas

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA) using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions. PMID:28773735

  19. Molecular mechanisms underlying alcohol-drinking behaviours

    PubMed Central

    Ron, Dorit; Barak, Segev

    2016-01-01

    The main characteristic of alcohol use disorder is the consumption of large quantities of alcohol despite the negative consequences. The transition from the moderate use of alcohol to excessive, uncontrolled alcohol consumption results from neuroadaptations that cause aberrant motivational learning and memory processes. Here, we examine studies that have combined molecular and behavioural approaches in rodents to elucidate the molecular mechanisms that keep the social intake of alcohol in check, which we term ‘stop pathways’, and the neuroadaptations that underlie the transition from moderate to uncontrolled, excessive alcohol intake, which we term ‘go pathways’. We also discuss post-transcriptional, genetic and epigenetic alterations that underlie both types of pathways. PMID:27444358

  20. High-Flow, High-Molecular-Weight, Addition-Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.

    1993-01-01

    In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.

  1. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) study on Ornithine Cyclodeaminase (OCD): a tale of two iminiums.

    PubMed

    Ion, Bogdan F; Bushnell, Eric A C; Luna, Phil De; Gauld, James W

    2012-10-11

    Ornithine cyclodeaminase (OCD) is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD) and a hybrid quantum mechanics/molecular mechanics (QM/MM) method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine's C(α)-H group to the NAD+ cofactor with concomitant formation of a C(α)=NH(2)+ Schiff base with a barrier of 90.6 kJ mol-1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the C(α)=NH(2)+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the C(α)-position. This is then followed by cleavage and loss of the α-NH(2) group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.

  2. A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) Study on Ornithine Cyclodeaminase (OCD): A Tale of Two Iminiums

    PubMed Central

    Ion, Bogdan F.; Bushnell, Eric A. C.; De Luna, Phil; Gauld, James W.

    2012-01-01

    Ornithine cyclodeaminase (OCD) is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD) and a hybrid quantum mechanics/molecular mechanics (QM/MM) method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2 + Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2 + intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline. PMID:23202934

  3. Prediction of Sliding Friction Coefficient Based on a Novel Hybrid Molecular-Mechanical Model.

    PubMed

    Zhang, Xiaogang; Zhang, Yali; Wang, Jianmei; Sheng, Chenxing; Li, Zhixiong

    2018-08-01

    Sliding friction is a complex phenomenon which arises from the mechanical and molecular interactions of asperities when examined in a microscale. To reveal and further understand the effects of micro scaled mechanical and molecular components of friction coefficient on overall frictional behavior, a hybrid molecular-mechanical model is developed to investigate the effects of main factors, including different loads and surface roughness values, on the sliding friction coefficient in a boundary lubrication condition. Numerical modelling was conducted using a deterministic contact model and based on the molecular-mechanical theory of friction. In the contact model, with given external loads and surface topographies, the pressure distribution, real contact area, and elastic/plastic deformation of each single asperity contact were calculated. Then asperity friction coefficient was predicted by the sum of mechanical and molecular components of friction coefficient. The mechanical component was mainly determined by the contact width and elastic/plastic deformation, and the molecular component was estimated as a function of the contact area and interfacial shear stress. Numerical results were compared with experimental results and a good agreement was obtained. The model was then used to predict friction coefficients in different operating and surface conditions. Numerical results explain why applied load has a minimum effect on the friction coefficients. They also provide insight into the effect of surface roughness on the mechanical and molecular components of friction coefficients. It is revealed that the mechanical component dominates the friction coefficient when the surface roughness is large (Rq > 0.2 μm), while the friction coefficient is mainly determined by the molecular component when the surface is relatively smooth (Rq < 0.2 μm). Furthermore, optimal roughness values for minimizing the friction coefficient are recommended.

  4. Detergent-dispersant additives based on high-molecular-weight alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulieva, K.N.; Namazova, I.I.; Ismailova, N.D.

    1988-09-01

    This article describes the synthesis and investigation of Mannich bases produced for alkylphenols, obtained in turn from ethylene oligomers. These oligomers are the still bottoms from distillation products of high-temperature oligomerization of ethylene in the presence of triethylaluminum. Two narrow cuts obtained from the distillation of oligomer fraction were used to study the influence of ethylene oligomer molecular weight on the properties of the additives. The additives were blended in DS-11 oil to evaluate their detergency-dispersancy and other properties. Comparison blends were made with succinimide additives based on the same ethylene oligomers. The Mannich bases give improvements in the oxidationmore » resistance, anticorrosion properties, and detergency-dispersancy of the DS-11 diesel oil.« less

  5. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.

    PubMed

    Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús

    2015-01-01

    Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. [Molecular mechanisms of thymocyte differentiation].

    PubMed

    Kuklina, E M

    2003-01-01

    A review of the main molecular events occurring during differentiation of T-lymphocytes in the thymus: T-cell specialization of early intrathymic precursors, formation and expression of antigen receptor, formation of antigen recognizing cell repertoire, and alpha beta/gamma beta- and CD4/CD8-commitment. The mechanisms of glucocorticoid-induced apoptosis of thymocytes and its blockade during antigen-dependent activation are considered. A special attention is paid to the analysis of intracellular signals underlying the clonal selection of thymocytes.

  7. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco

    2016-09-13

    The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.

  8. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    PubMed

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  9. Molecular mechanics of mineralized collagen fibrils in bone

    PubMed Central

    Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.

    2013-01-01

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents. PMID:23591891

  10. Molecular mechanisms for protein-encoded inheritance

    PubMed Central

    Wiltzius, Jed J. W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David

    2013-01-01

    Strains are phenotypic variants, encoded by nucleic acid sequences in chromosomal inheritance and by protein “conformations” in prion inheritance and transmission. But how is a protein “conformation” stable enough to endure transmission between cells or organisms? Here new polymorphic crystal structures of segments of prion and other amyloid proteins offer structural mechanisms for prion strains. In packing polymorphism, prion strains are encoded by alternative packings (polymorphs) of β-sheets formed by the same segment of a protein; in a second mechanism, segmental polymorphism, prion strains are encoded by distinct β-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring “conformations,” capable of encoding strains. These molecular mechanisms for transfer of information into prion strains share features with the familiar mechanism for transfer of information by nucleic acid inheritance, including sequence specificity and recognition by non-covalent bonds. PMID:19684598

  11. Categorical prototyping: incorporating molecular mechanisms into 3D printing.

    PubMed

    Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J

    2016-01-15

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  12. Revealing Atomic-Level Mechanisms of Protein Allostery with Molecular Dynamics Simulations.

    PubMed

    Hertig, Samuel; Latorraca, Naomi R; Dror, Ron O

    2016-06-01

    Molecular dynamics (MD) simulations have become a powerful and popular method for the study of protein allostery, the widespread phenomenon in which a stimulus at one site on a protein influences the properties of another site on the protein. By capturing the motions of a protein's constituent atoms, simulations can enable the discovery of allosteric binding sites and the determination of the mechanistic basis for allostery. These results can provide a foundation for applications including rational drug design and protein engineering. Here, we provide an introduction to the investigation of protein allostery using molecular dynamics simulation. We emphasize the importance of designing simulations that include appropriate perturbations to the molecular system, such as the addition or removal of ligands or the application of mechanical force. We also demonstrate how the bidirectional nature of allostery-the fact that the two sites involved influence one another in a symmetrical manner-can facilitate such investigations. Through a series of case studies, we illustrate how these concepts have been used to reveal the structural basis for allostery in several proteins and protein complexes of biological and pharmaceutical interest.

  13. Recent Advances in Molecular Mechanisms of Abdominal Aortic Aneurysm Formation

    PubMed Central

    Annambhotla, Suman; Bourgeois, Sebastian; Wang, Xinwen; Lin, Peter H.; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abdominal Aortic Aneurysm (AAA) is an increasingly common clinical condition with fatal implications. It is associated with advanced age, male gender, cigarette smoking, atherosclerosis, hypertension, and genetic predisposition. Although significant evidence has emerged in the last decade, the molecular mechanisms of AAA formation remains poorly understood. Currently, the treatment for AAA remains primarily surgical with the lone innovation of endovascular therapy. With advance in the human genome, understanding precisely which molecules and genes mediate AAA development and blocking their activity at the molecular level could lead to important new discoveries and therapies. This review summarizes recent updates in molecular mechanisms of AAA formation including animal models, autoimmune components, infection, key molecules and cytokines, mechanical forces, genetics and pharmacotherapy. This review will be helpful to those who want to recognize the newest endeavors within the field and identify possible lines of investigation in AAA. PMID:18259804

  14. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    PubMed Central

    Denning, Denise; Roos, Wouter H.

    2016-01-01

    ABSTRACT The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a defined microenvironment has also garnered deep insight into the engineering mechanisms existing within the cell. This review presents recent experimental findings on the influence of several parameters of the extracellular environment on cell behavior and fate, such as substrate topography, stiffness, chemistry and charge. In addition, the use of synthetic environments to measure physical properties of the reconstituted cytoskeleton and their interaction with intracellular proteins such as molecular motors is discussed, which is relevant for understanding cell migration, division and structural integrity, as well as intracellular transport. Insight is provided regarding the next steps to be taken in this interdisciplinary field, in order to achieve the global aim of artificially directing cellular response. PMID:27266767

  15. Unraveling the molecular mechanisms of nitrogenase conformational protection against oxygen in diazotrophic bacteria.

    PubMed

    Lery, Letícia M S; Bitar, Mainá; Costa, Mauricio G S; Rössle, Shaila C S; Bisch, Paulo M

    2010-12-22

    represents a large step towards the understanding of the conformational protection mechanism of nitrogenase against oxygen. In addition, this is the first study regarding the structural complementarities of FeSII-nitrogenase interactions in diazotrophic bacteria. The combination of bioinformatic tools for genome analysis, comparative protein modeling, docking calculations and molecular dynamics provided a powerful strategy for the elucidation of molecular mechanisms and structural features of FeSII-nitrogenase interaction.

  16. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  17. Molecular mechanisms of temperature adaptation

    PubMed Central

    Bagriantsev, Sviatoslav N; Gracheva, Elena O

    2015-01-01

    Thermal perception is a fundamental physiological process pertaining to the vast majority of organisms. In vertebrates, environmental temperature is detected by the primary afferents of the somatosensory neurons in the skin, which express a ‘choir’ of ion channels tuned to detect particular temperatures. Nearly two decades of research have revealed a number of receptor ion channels that mediate the perception of several temperature ranges, but most still remain molecularly orphaned. Yet even within this well-researched realm, most of our knowledge largely pertains to two closely related species of rodents, mice and rats. While these are standard biomedical research models, mice and rats provide a limited perspective to elucidate the general principles that drive somatosensory evolution. In recent years, significant advances have been made in understanding the molecular mechanism of temperature adaptation in evolutionarily distant vertebrates and in organisms with acute thermal sensitivity. These studies have revealed the remarkable versatility of the somatosensory system and highlighted adaptations at the molecular level, which often include changes in biophysical properties of ion channels from the transient receptor potential family. Exploiting non-standard animal models has the potential to provide unexpected insights into general principles of thermosensation and thermoregulation, unachievable using the rodent model alone. PMID:25433072

  18. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  19. Molecular mechanism for lipid flip-flops.

    PubMed

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2007-12-06

    Transmembrane lipid translocation (flip-flop) processes are involved in a variety of properties and functions of cell membranes, such as membrane asymmetry and programmed cell death. Yet, flip-flops are one of the least understood dynamical processes in membranes. In this work, we elucidate the molecular mechanism of pore-mediated transmembrane lipid translocation (flip-flop) acquired from extensive atomistic molecular dynamics simulations. On the basis of 50 successful flip-flop events resolved in atomic detail, we demonstrate that lipid flip-flops may spontaneously occur in protein-free phospholipid membranes under physiological conditions through transient water pores on a time scale of tens of nanoseconds. While the formation of a water pore is induced here by a transmembrane ion density gradient, the particular way by which the pore is formed is irrelevant for the reported flip-flop mechanism: the appearance of a transient pore (defect) in the membrane inevitably leads to diffusive translocation of lipids through the pore, which is driven by thermal fluctuations. Our findings strongly support the idea that the formation of membrane defects in terms of water pores is the rate-limiting step in the process of transmembrane lipid flip-flop, which, on average, requires several hours. The findings are consistent with available experimental and computational data and provide a view to interpret experimental observations. For example, the simulation results provide a molecular-level explanation in terms of pores for the experimentally observed fact that the exposure of lipid membranes to electric field pulses considerably reduces the time required for lipid flip-flops.

  20. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results.

    PubMed

    Koopmans, Klaas P; Neels, Oliver N; Kema, Ido P; Elsinga, Philip H; Links, Thera P; de Vries, Elisabeth G E; Jager, Pieter L

    2009-09-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-systematic review is presented on receptor based and metabolic imaging methods. Receptor-based imaging covers the molecular backgrounds of somatostatin, vaso-intestinal peptide (VIP), bombesin and cholecystokinin (CCK) receptors and their link with nuclear imaging. Imaging methods based on specific metabolic properties include meta-iodo-benzylguanide (MIBG) and dimercapto-sulphuric acid (DMSA-V) scintigraphy as well as more modern positron emission tomography (PET)-based methods using radio-labeled analogues of amino acids, glucose, dihydroxyphenylalanine (DOPA), dopamine and tryptophan. Diagnostic sensitivities are presented for each imaging method and for each neuroendocrine tumor subtype. Finally, a Forest plot analysis of diagnostic performance is presented for each tumor type in order to provide a comprehensive overview for clinical use.

  1. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae.

    PubMed

    Shaban, Muhammad; Miao, Yuhuan; Ullah, Abid; Khan, Anam Qadir; Menghwar, Hakim; Khan, Aamir Hamid; Ahmed, Muhammad Mahmood; Tabassum, Muhammad Adnan; Zhu, Longfu

    2018-04-01

    Cotton, a natural fiber producing crop of huge importance for textile industry, has been reckoned as the backbone in the economy of many developing countries. Verticillium wilt caused by Verticillium dahliae reflected as the most devastating disease of cotton crop in several parts of the world. Average losses due to attack of this disease are tremendous every year. There is urgent need to develop strategies for effective control of this disease. In the last decade, progress has been made to understand the interaction between cotton-V. dahliae and several growth and pathogenicity related genes were identified. Still, most of the molecular components and mechanisms of cotton defense against Verticillium wilt are poorly understood. However, from existing knowledge, it is perceived that cotton defense mechanism primarily depends on the pre-formed defense structures including thick cuticle, synthesis of phenolic compounds and delaying or hindering the expansion of the invader through advanced measures such as reinforcement of cell wall structure, accumulation of reactive oxygen species (ROS), release of phytoalexins, the hypersensitive response and the development of broad spectrum resistance named as, systemic acquired resistance (SAR). Investigation of these defense tactics provide valuable information about the improvement of cotton breeding strategies for the development of durable, cost effective, and broad spectrum resistant varieties. Consequently, this management approach will help to reduce the use of fungicides and also minimize other environmental hazards. In the present paper, we summarized the V. dahliae virulence mechanism and comprehensively discussed the cotton molecular mechanisms of defense such as physiological, biochemical responses with the addition of signaling pathways that are implicated towards attaining resistance against Verticillium wilt. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  3. Resolving the molecular mechanism of cadherin catch bond formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manibog, Kristine; Li, Hui; Rakshit, Sabyasachi

    2014-06-02

    Classical cadherin Ca(2+)-dependent cell-cell adhesion proteins play key roles in embryogenesis and in maintaining tissue integrity. Cadherins mediate robust adhesion by binding in multiple conformations. One of these adhesive states, called an X-dimer, forms catch bonds that strengthen and become longer lived in the presence of mechanical force. Here we use single-molecule force-clamp spectroscopy with an atomic force microscope along with molecular dynamics and steered molecular dynamics simulations to resolve the molecular mechanisms underlying catch bond formation and the role of Ca(2+) ions in this process. Our data suggest that tensile force bends the cadherin extracellular region such that theymore » form long-lived, force-induced hydrogen bonds that lock X-dimers into tighter contact. When Ca(2+) concentration is decreased, fewer de novo hydrogen bonds are formed and catch bond formation is eliminated« less

  4. Integrated network analysis reveals potentially novel molecular mechanisms and therapeutic targets of refractory epilepsies

    PubMed Central

    Liu, Guangming; Wang, Yiwei; Zhao, Pengyao; Zhu, Yizhun; Yang, Xiaohan; Zheng, Tiezheng; Zhou, Xuezhong; Jin, Weilin; Sun, Changkai

    2017-01-01

    Epilepsy is a complex neurological disorder and a significant health problem. The pathogenesis of epilepsy remains obscure in a significant number of patients and the current treatment options are not adequate in about a third of individuals which were known as refractory epilepsies (RE). Network medicine provides an effective approach for studying the molecular mechanisms underlying complex diseases. Here we integrated 1876 disease-gene associations of RE and located those genes to human protein-protein interaction (PPI) network to obtain 42 significant RE-associated disease modules. The functional analysis of these disease modules showed novel molecular pathological mechanisms of RE, such as the novel enriched pathways (e.g., “presynaptic nicotinic acetylcholine receptors”, “signaling by insulin receptor”). Further analysis on the relationships between current drug targets and the RE-related disease genes showed the rational mechanisms of most antiepileptic drugs. In addition, we detected ten potential novel drug targets (e.g., KCNA1, KCNA4-6, KCNC3, KCND2, KCNMA1, CAMK2G, CACNB4 and GRM1) located in three RE related disease modules, which might provide novel insights into the new drug discovery for RE therapy. PMID:28388656

  5. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade.

    PubMed

    Li, Daotong; Wang, Pengpu; Luo, Yinghua; Zhao, Mengyao; Chen, Fang

    2017-05-24

    Anthocyanins are one of the most widespread families of natural pigments in the plant kingdom. Their health beneficial effects have been documented in many in vivo and in vitro studies. This review summarizes the most recent literature regarding the health benefits of anthocyanins and their molecular mechanisms. It appears that several signaling pathways, including mitogen-activated protein kinase, nuclear factor κB, AMP-activated protein kinase, and Wnt/β-catenin, as well as some crucial cellular processes, such as cell cycle, apoptosis, autophagy, and biochemical metabolism, are involved in these beneficial effects and may provide potential therapeutic targets and strategies for the improvement of a wide range of diseases in future. In addition, specific anthocyanin metabolites contributing to the observed in vivo biological activities, structure-activity relationships as well as additive and synergistic efficacy of anthocyanins are also discussed.

  6. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2008-03-19

    This paper investigates the mechanism of water splitting in photosystem II (PSII) as described by chemically sensible models of the oxygen-evolving complex (OEC) in the S0-S4 states. The reaction is the paradigm for engineering direct solar fuel production systems since it is driven by solar light and the catalyst involves inexpensive and abundant metals (calcium and manganese). Molecular models of the OEC Mn3CaO4Mn catalytic cluster are constructed by explicitly considering the perturbational influence of the surrounding protein environment according to state-of-the-art quantum mechanics/molecular mechanics (QM/MM) hybrid methods, in conjunction with the X-ray diffraction (XRD) structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The resulting models are validated through direct comparisons with high-resolution extended X-ray absorption fine structure spectroscopic data. Structures of the S3, S4, and S0 states include an additional mu-oxo bridge between Mn(3) and Mn(4), not present in XRD structures, found to be essential for the deprotonation of substrate water molecules. The structures of reaction intermediates suggest a detailed mechanism of dioxygen evolution based on changes in oxidization and protonation states and structural rearrangements of the oxomanganese cluster and surrounding water molecules. The catalytic reaction is consistent with substrate water molecules coordinated as terminal ligands to Mn(4) and calcium and requires the formation of an oxyl radical by deprotonation of the substrate water molecule ligated to Mn(4) and the accumulation of four oxidizing equivalents. The oxyl radical is susceptible to nucleophilic attack by a substrate water molecule initially coordinated to calcium and activated by two basic species, including CP43-R357 and the mu-oxo bridge between Mn(3) and Mn(4). The reaction is concerted with water ligand exchange, swapping the activated water by a water molecule in the second coordination shell of

  7. Combined quantum and molecular mechanics (QM/MM).

    PubMed

    Friesner, Richard A

    2004-12-01

    We describe the current state of the art of mixed quantum mechanics/molecular mechanics (QM/MM) methodology, with a particular focus on modeling of enzymatic reactions. Over the past decade, the effectiveness of these methods has increased dramatically, based on improved quantum chemical methods, advances in the description of the QM/MM interface, and reductions in the cost/performance of computing hardware. Two examples of pharmaceutically relevant applications, cytochrome P450 and class C β-lactamase, are presented.: © 2004 Elsevier Ltd . All rights reserved.

  8. A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration

    PubMed Central

    Tezel, Gülgün

    2013-01-01

    Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers. PMID:23396249

  9. Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Box, V. G. S.; Evans-Lora, T.

    2000-01-01

    The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.

  10. Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program

    NASA Astrophysics Data System (ADS)

    Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A.

    2017-12-01

    In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.

  11. Optimization and benchmarking of a perturbative Metropolis Monte Carlo quantum mechanics/molecular mechanics program.

    PubMed

    Feldt, Jonas; Miranda, Sebastião; Pratas, Frederico; Roma, Nuno; Tomás, Pedro; Mata, Ricardo A

    2017-12-28

    In this work, we present an optimized perturbative quantum mechanics/molecular mechanics (QM/MM) method for use in Metropolis Monte Carlo simulations. The model adopted is particularly tailored for the simulation of molecular systems in solution but can be readily extended to other applications, such as catalysis in enzymatic environments. The electrostatic coupling between the QM and MM systems is simplified by applying perturbation theory to estimate the energy changes caused by a movement in the MM system. This approximation, together with the effective use of GPU acceleration, leads to a negligible added computational cost for the sampling of the environment. Benchmark calculations are carried out to evaluate the impact of the approximations applied and the overall computational performance.

  12. Molecular and sensory mechanisms to mitigate sunlight-induced DNA damage in treefrog tadpoles.

    PubMed

    Schuch, André P; Lipinski, Victor M; Santos, Mauricio B; Santos, Caroline P; Jardim, Sinara S; Cechin, Sonia Z; Loreto, Elgion L S

    2015-10-01

    The increased incidence of solar ultraviolet B (UVB) radiation has been proposed as an environmental stressor, which may help to explain the enigmatic decline of amphibian populations worldwide. Despite growing knowledge regarding the UV-induced biological effects in several amphibian models, little is known about the efficacy of DNA repair pathways. In addition, little attention has been given to the interplay between these molecular mechanisms with other physiological strategies that avoid the damage induced by sunlight. Here, DNA lesions induced by environmental doses of solar UVB and UVA radiation were detected in genomic DNA samples of treefrog tadpoles (Hypsiboas pulchellus) and their DNA repair activity was evaluated. These data were complemented by monitoring the induction of apoptosis in blood cells and tadpole survival. Furthermore, the tadpoles' ability to perceive and escape from UV wavelengths was evaluated as an additional strategy of photoprotection. The results show that tadpoles are very sensitive to UVB light, which could be explained by the slow DNA repair rates for both cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6,4) pyrimidone photoproducts (6,4PPs). However, they were resistant to UVA, probably as a result of the activation of photolyases during UVA irradiation. Surprisingly, a sensory mechanism that triggers their escape from UVB and UVA light avoids the generation of DNA damage and helps to maintain the genomic integrity. This work demonstrates the genotoxic impact of both UVB and UVA radiation on tadpoles and emphasizes the importance of the interplay between molecular and sensory mechanisms to minimize the damage caused by sunlight. © 2015. Published by The Company of Biologists Ltd.

  13. Molecular Mechanisms Underlying Occult Hepatitis B Virus Infection

    PubMed Central

    Samal, Jasmine; Kandpal, Manish

    2012-01-01

    Summary: Chronic hepatitis B virus (HBV) infection is a complex clinical entity frequently associated with cirrhosis and hepatocellular carcinoma (HCC). The persistence of HBV genomes in the absence of detectable surface antigenemia is termed occult HBV infection. Mutations in the surface gene rendering HBsAg undetectable by commercial assays and inhibition of HBV by suppression of viral replication and viral proteins represent two fundamentally different mechanisms that lead to occult HBV infections. The molecular mechanisms underlying occult HBV infections, including recently identified mechanisms associated with the suppression of HBV replication and inhibition of HBV proteins, are reviewed in detail. The availability of highly sensitive molecular methods has led to increased detection of occult HBV infections in various clinical settings. The clinical relevance of occult HBV infection and the utility of appropriate diagnostic methods to detect occult HBV infection are discussed. The need for specific guidelines on the diagnosis and management of occult HBV infection is being increasingly recognized; the aspects of mechanistic studies that warrant further investigation are discussed in the final section. PMID:22232374

  14. Molecular mechanism of lytic polysaccharide monooxygenases.

    PubMed

    Hedegård, Erik Donovan; Ryde, Ulf

    2018-04-21

    The lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes that can enhance polysaccharide depolymerization through an oxidative mechanism and hence boost generation of biofuel from e.g. cellulose. By employing density functional theory in a combination of quantum mechanics and molecular mechanics (QM/MM), we report a complete description of the molecular mechanism of LPMOs. The QM/MM scheme allows us to describe all reaction steps with a detailed protein environment and we show that this is necessary. Several active species capable of abstracting a hydrogen from the substrate have been proposed previously and starting from recent crystallographic work on a substrate-LPMO complex, we investigate previously suggested paths as well as new ones. We describe the generation of the reactive intermediates, the abstraction of a hydrogen atom from the polysaccharide substrate, as well as the final recombination step in which OH is transferred back to the substrate. We show that a superoxo [CuO 2 ] + complex can be protonated by a nearby histidine residue (suggested by recent mutagenesis studies and crystallographic work) and, provided an electron source is available, leads to formation of an oxyl-complex after cleavage of the O-O bond and dissociation of water. The oxyl complex either reacts with the substrate or is further protonated to a hydroxyl complex. Both the oxyl and hydroxyl complexes are also readily generated from a reaction with H 2 O 2 , which was recently suggested to be the true co-substrate, rather than O 2 . The C-H abstraction by the oxyl and hydroxy complexes is overall favorable with activation barriers of 69 and 94 kJ mol -1 , compared to the much higher barrier (156 kJ mol -1 ) obtained for the copper-superoxo species. We obtain good structural agreement for intermediates for which structural data are available and the estimated reaction energies agree with experimental rate constants. Thus, our suggested mechanism is the most complete

  15. Molecular mechanism of Danshensu on platelet antiaggregation

    NASA Astrophysics Data System (ADS)

    Yu, Chen; Geng, Feng; Fan, Hua-Ying; Luan, Hai-Yun; Liu, Yue; Ji, Kai; Fu, Feng-Hua

    2018-04-01

    In this study, we detected the effect of Danshensu on PARs-PLCβsignaling pathway to elucidate molecular mechanism of Danshensu on platelet anti-aggregation. Our results demonstrate that Danshensu is able to decrease the levels of IP3, Ca2+ and AA secretion, which indicate that Danshensu may involve in PARs-PLCβ signaling pathways. Molecular docking study shows that Danshesu has similar polar interactions with PAR1 receptors as BMS200261 at the same position. The findings from our study enable a better understanding of Danshensu biological properties, which could ultimately lead to the development of multi-target antiplatelet natural medicine for the treatment and/or prevention of some thrombotic diseases.

  16. Axis of evil: molecular mechanisms of cancer metastasis.

    PubMed

    Bogenrieder, Thomas; Herlyn, Meenhard

    2003-09-29

    Although the genetic basis of tumorigenesis may vary greatly between different cancer types, the cellular and molecular steps required for metastasis are similar for all cancer cells. Not surprisingly, the molecular mechanisms that propel invasive growth and metastasis are also found in embryonic development, and to a less perpetual extent, in adult tissue repair processes. It is increasingly apparent that the stromal microenvironment, in which neoplastic cells develop, profoundly influences many steps of cancer progression, including the ability of tumor cells to metastasize. In carcinomas, the influences of the microenvironment are mediated, in large part, by bidirectional interactions (adhesion, survival, proteolysis, migration, immune escape mechanisms lymph-/angiogenesis, and homing on target organs) between epithelial tumor cells and neighboring stromal cells, such as fibroblasts as well as endothelial and immune cells. In this review, we summarize recent advances in understanding the molecular mechanisms that govern this frequently lethal metastatic progression along an axis from primary tumor to regional lymph nodes to distant organ sites. Affected proteins include growth factor signaling molecules, chemokines, cell-cell adhesion molecules (cadherins, integrins) as well as extracellular proteases (matrix metalloproteinases). We then discuss promising new therapeutic approaches targeting the microenvironment. We note, however, that there is still too little knowledge of how the many events are coordinated and integrated by the cancer cell, with conspiratorial help by the stromal component of the host. Before drug development can proceed with a legitimate chance of success, significant gaps in basic knowledge need to be filled.

  17. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  18. Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology

    PubMed Central

    Yu, Shaobin; Zhu, Ling; Shen, Qiang; Bai, Xue; Di, Xuhui

    2015-01-01

    Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level. PMID:25861156

  19. Mechanical response of two polyimides through coarse-grained molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sudarkodi, V.; Sooraj, K.; Nair, Nisanth N.; Basu, Sumit; Parandekar, Priya V.; Sinha, Nishant K.; Prakash, Om; Tsotsis, Tom

    2018-03-01

    Coarse-grained molecular dynamics (MD) simulations allow us to predict the mechanical responses of polymers, starting merely with a description of their molecular architectures. It is interesting to ask whether, given two competing molecular architectures, coarse-grained MD simulations can predict the differences that can be expected in their mechanical responses. We have studied two crosslinked polyimides PMR15 and HFPE52—both used in high- temperature applications—to assess whether the subtle differences in their uniaxial stress-strain responses, revealed by experiments, can be reproduced by carefully coarse-grained MD models. The coarse graining procedure for PMR15 is outlined in this work, while the coarse grain forcefields for HFPE52 are borrowed from an earlier one (Pandiyan et al 2015 Macromol. Theory Simul. 24 513-20). We show that the stress-strain responses of both these polyimides are qualitatively reproduced, and important insights into their deformation and failure mechanisms are obtained. More importantly, the differences in the molecular architecture between the polyimides carry over to the differences in the stress-strain responses in a manner that parallels the experimental results. A critical assessment of the successes and shortcomings of predicting mechanical responses through coarse-grained MD simulations has been made.

  20. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  1. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    PubMed

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  2. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease.

    PubMed

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  3. Integrated Modules Analysis to Explore the Molecular Mechanisms of Phlegm-Stasis Cementation Syndrome with Ischemic Heart Disease

    PubMed Central

    Xu, Wei-Ming; Yang, Kuo; Jiang, Li-Jie; Hu, Jing-Qing; Zhou, Xue-Zhong

    2018-01-01

    Background: Ischemic heart disease (IHD) has been the leading cause of death for several decades globally, IHD patients usually hold the symptoms of phlegm-stasis cementation syndrome (PSCS) as significant complications. However, the underlying molecular mechanisms of PSCS complicated with IHD have not yet been fully elucidated. Materials and Methods: Network medicine methods were utilized to elucidate the underlying molecular mechanisms of IHD phenotypes. Firstly, high-quality IHD-associated genes from both human curated disease-gene association database and biomedical literatures were integrated. Secondly, the IHD disease modules were obtained by dissecting the protein-protein interaction (PPI) topological modules in the String V9.1 database and the mapping of IHD-associated genes to the PPI topological modules. After that, molecular functional analyses (e.g., Gene Ontology and pathway enrichment analyses) for these IHD disease modules were conducted. Finally, the PSCS syndrome modules were identified by mapping the PSCS related symptom-genes to the IHD disease modules, which were further validated by both pharmacological and physiological evidences derived from published literatures. Results: The total of 1,056 high-quality IHD-associated genes were integrated and evaluated. In addition, eight IHD disease modules (the PPI sub-networks significantly relevant to IHD) were identified, in which two disease modules were relevant to PSCS syndrome (i.e., two PSCS syndrome modules). These two modules had enriched pathways on Toll-like receptor signaling pathway (hsa04620) and Renin-angiotensin system (hsa04614), with the molecular functions of angiotensin maturation (GO:0002003) and response to bacterium (GO:0009617), which had been validated by classical Chinese herbal formulas-related targets, IHD-related drug targets, and the phenotype features derived from human phenotype ontology (HPO) and published biomedical literatures. Conclusion: A network medicine

  4. Molecular mechanisms of the genetic risk factors in pathogenesis of Alzheimer disease.

    PubMed

    Kanatsu, Kunihiko; Tomita, Taisuke

    2017-01-01

    Alzheimer disease (AD) is a neurodegenerative disease characterized by the extensive deposition of senile plaques and neurofibrillary tangles. Until recently, only the APOE gene had been known as a genetic risk factor for late-onset AD (LOAD), which accounts for more than 95% of all AD cases. However, in addition to this well-established genetic risk factor, genome-wide association studies have identified several single nucleotide polymorphisms as genetic risk factors of LOAD, such as PICALM and BIN1 . In addition, whole genome sequencing and exome sequencing have identified rare variants associated with LOAD, including TREM2 . We review the recent findings related to the molecular mechanisms by which these genetic risk factors contribute to AD, and our perspectives regarding the etiology of AD for the development of therapeutic agents.

  5. Single molecule spectroscopy reveals heterogeneous transport mechanisms for molecular ions in a polyelectrolyte polymer brush.

    PubMed

    Reznik, Carmen; Estillore, Nicel; Advincula, Rigoberto C; Landes, Christy F

    2009-11-05

    Single molecule polarization and fluorescence correlation spectroscopy were used to evaluate heterogeneous transport mechanisms of molecular ions within supported polyelectrolyte brushes. Modes of diffusive transport include periods of significantly restricted rotational motion, often maintained over tens of milliseconds; periods of fast molecular rotation; and occasional adsorption of fluorescent probe molecules in the brush. The studies reveal rapid switching between orientational states during each observed mode of motion. Through quantitative analysis of state occupation times, the rate constants for transitions from weakly associated to strongly associated states were extracted. Additionally, the pH dependence of the ion transport rates in the brush exhibits an abrupt, rather than continuous, trend. These single molecule studies demonstrate the presence of dynamic anisotropic interactions between the charged molecular probe and the polymer brush and provide experimental evidence of stimuli responsive switchable transport functionality in the polyelectrolyte brush.

  6. Submillisecond elastic recoil reveals molecular origins of fibrin fiber mechanics.

    PubMed

    Hudson, Nathan E; Ding, Feng; Bucay, Igal; O'Brien, E Timothy; Gorkun, Oleg V; Superfine, Richard; Lord, Susan T; Dokholyan, Nikolay V; Falvo, Michael R

    2013-06-18

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin's elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin's mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Molecular and cellular mechanisms of aortic stenosis.

    PubMed

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  8. Cellular and molecular mechanisms for the bone response to mechanical loading

    NASA Technical Reports Server (NTRS)

    Bloomfield, S. A.

    2001-01-01

    To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.

  9. Interlocking Mechanism between Molecular Gears Attached to Surfaces.

    PubMed

    Zhao, Rundong; Zhao, Yan-Ling; Qi, Fei; Hermann, Klaus E; Zhang, Rui-Qin; Van Hove, Michel A

    2018-03-27

    While molecular machines play an increasingly significant role in nanoscience research and applications, there remains a shortage of investigations and understanding of the molecular gear (cogwheel), which is an indispensable and fundamental component to drive a larger correlated molecular machine system. Employing ab initio calculations, we investigate model systems consisting of molecules adsorbed on metal or graphene surfaces, ranging from very simple triple-arm gears such as PF 3 and NH 3 to larger multiarm gears based on carbon rings. We explore in detail the transmission of slow rotational motion from one gear to the next by these relatively simple molecules, so as to isolate and reveal the mechanisms of the relevant intermolecular interactions. Several characteristics of molecular gears are discussed, in particular the flexibility of the arms and the slipping and skipping between interlocking arms of adjacent gears, which differ from familiar macroscopic rigid gears. The underlying theoretical concepts suggest strongly that other analogous structures may also exhibit similar behavior which may inspire future exploration in designing large correlated molecular machines.

  10. Stress-induced mutation via DNA breaks in Escherichia coli: A molecular mechanism with implications for evolution and medicine

    PubMed Central

    Rosenberg, Susan M; Shee, Chandan; Frisch, Ryan L; Hastings, P J

    2012-01-01

    Abstract Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the “modern synthesis” of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen–host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer. PMID:22911060

  11. Stress-induced mutation via DNA breaks in Escherichia coli: a molecular mechanism with implications for evolution and medicine.

    PubMed

    Rosenberg, Susan M; Shee, Chandan; Frisch, Ryan L; Hastings, P J

    2012-10-01

    Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer. Copyright © 2012 WILEY Periodicals, Inc.

  12. Molecular mechanisms of immunosuppression.

    PubMed

    Baumann, G; Zenke, G; Wenger, R; Hiestand, P; Quesniaux, V; Andersen, E; Schreier, M H

    1992-04-01

    The immunosuppressive drug cyclosporin A (CsA, Sandimmun, SIM) is currently being evaluated in a variety of autoimmune disorders with some remarkable successes. Despite the wide empiric application of CsA, the precise mechanism of action of this drug remains elusive. To identify the molecular mode of action of CsA in the process of T cell activation, we have compared the biological profile of cyclophilin-binding cyclosporin analogues (CBCA), which lack immunosuppressive properties, with CsA. We have found that CsA binding to its intracellular receptor (cyclophilin) is required but not sufficient for immunosuppression. Moreover, inhibition of the peptidyl-prolyl cis-trans isomerase activity of cyclophilin does not seem to be relevant for the inhibitory effects of CsA. In analogy to the immunosuppressants FK506 and rapamycin, a specific structure at the 'effector' domain of the CsA molecule different from the immunophilin 'binding' domain determines the biological activity. Overall, a significant understanding of the structure-activity relationship of CsA has emerged. This will have a major impact on the identification of the precise mechanism of action of CsA and its side effects in the process of immunosuppression.

  13. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    PubMed

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  14. Graph-drawing algorithms geometries versus molecular mechanics in fullereness

    NASA Astrophysics Data System (ADS)

    Kaufman, M.; Pisanski, T.; Lukman, D.; Borštnik, B.; Graovac, A.

    1996-09-01

    The algorithms of Kamada-Kawai (KK) and Fruchterman-Reingold (FR) have been recently generalized (Pisanski et al., Croat. Chem. Acta 68 (1995) 283) in order to draw molecular graphs in three-dimensional space. The quality of KK and FR geometries is studied here by comparing them with the molecular mechanics (MM) and the adjacency matrix eigenvectors (AME) algorithm geometries. In order to compare different layouts of the same molecule, an appropriate method has been developed. Its application to a series of experimentally detected fullerenes indicates that the KK, FR and AME algorithms are able to reproduce plausible molecular geometries.

  15. How Molecular Structure Affects Mechanical Properties of an Advanced Polymer

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    2000-01-01

    density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

  16. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  17. Some Fundamental Molecular Mechanisms of Contractility in Fibrous Macromolecules

    PubMed Central

    Mandelkern, L.

    1967-01-01

    The fundamental molecular mechanisms of contractility and tension development in fibrous macromolecules are developed from the point of view of the principles of polymer physical chemistry. The problem is treated in a general manner to encompass the behavior of all macromolecular systems irrespective of their detailed chemical structure and particular function, if any. Primary attention is given to the contractile process which accompanies the crystal-liquid transition in axially oriented macromolecular systems. The theoretical nature of the process is discussed, and many experimental examples are given from the literature which demonstrate the expected behavior. Experimental attention is focused on the contraction of fibrous proteins, and the same underlying molecular mechanism is shown to be operative for a variety of different systems. PMID:6050598

  18. Molecular level detection and localization of mechanical damage in collagen enabled by collagen hybridizing peptides.

    PubMed

    Zitnay, Jared L; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P; Buehler, Markus J; Yu, S Michael; Weiss, Jeffrey A

    2017-03-22

    Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.

  19. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    PubMed

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  20. Molecular mechanical studies of proflavine and acridine orange intercalation.

    PubMed Central

    Dearing, A; Weiner, P; Kollman, P A

    1981-01-01

    Previous workers have reported that proflavine and acridine orange form various structurally different complexes with the dinucleoside phosphates rCpG and dCpG, with uniform C3'-endo and mixed C3'-endo (3'-5') C2'-endo sugar puckers being observed. We present theoretical calculations, based on the method of molecular mechanics, which support the experimental observations. The results suggest that the mixed C3'-edo (3'-5') C2'-endo pucker conformation isi intrinsically more stable than the uniform C3'-endo conformation, but that the additional stabilisation gained from specific, hydrogen bonding, interactions between nucleic acid and solvent, or intramolecularly within the nucleic acid, can lead to the adoption of the latter conformation, or of variants between the two. The role played by hydrogen bonding between amino-groups and nucleic acid phosphate appears more subtle than previously supposed. PMID:7232221

  1. Quantum Mechanical Studies of Molecular Hyperpolarizabilities.

    DTIC Science & Technology

    1980-04-30

    exponent , reflects the screening of an electron in a given orbital by the interior electrons in the atom or molecule. In practice, when studying...Basis sets have evolved over the years in molecular quantum mechanics until sets of orbital exponents for the different atoms composing the molecule have...and R. P. Hurst , J. Chem. Phys. 46, 2356 (1967); S. P. LickmannI and J. W. Moskowitz, J. Chem. Phys. 54, 3622 7T971). 26. T. H. Dunning, J. Chem. Phys

  2. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    DTIC Science & Technology

    2016-06-08

    conjugated polymers and composites by analysis of the structural determinants of the mechanical properties. We developed coarse-grained molecular...dynamics simulations that predicted the mechanical properties of conjugated polymers and polymer -fullerene composites. We elucidated the mechanical...We also determined the effect of cyclic stretching on the microstructure and mechanical properties of conjugated polymers . We used many of

  3. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).

    PubMed

    Yunpeng, Liang; Li, Yu

    2015-01-01

    As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.

  4. Drugs meeting the molecular basis of diabetic kidney disease: bridging from molecular mechanism to personalized medicine.

    PubMed

    Lambers Heerspink, Hiddo J; Oberbauer, Rainer; Perco, Paul; Heinzel, Andreas; Heinze, Georg; Mayer, Gert; Mayer, Bernd

    2015-08-01

    Diabetic kidney disease (DKD) is a complex, multifactorial disease and is associated with a high risk of renal and cardiovascular morbidity and mortality. Clinical practice guidelines for diabetes recommend essentially identical treatments for all patients without taking into account how the individual responds to the instituted therapy. Yet, individuals vary widely in how they respond to medications and therefore optimal therapy differs between individuals. Understanding the underlying molecular mechanisms of variability in drug response will help tailor optimal therapy. Polymorphisms in genes related to drug pharmacokinetics have been used to explore mechanisms of response variability in DKD, but with limited success. The complex interaction between genetic make-up and environmental factors on the abundance of proteins and metabolites renders pharmacogenomics alone insufficient to fully capture response variability. A complementary approach is to attribute drug response variability to individual variability in underlying molecular mechanisms involved in the progression of disease. The interplay of different processes (e.g. inflammation, fibrosis, angiogenesis, oxidative stress) appears to drive disease progression, but the individual contribution of each process varies. Drugs at the other hand address specific targets and thereby interfere in certain disease-associated processes. At this level, biomarkers may help to gain insight into which specific pathophysiological processes are involved in an individual followed by a rational assessment whether a specific drug's mode of action indeed targets the relevant process at hand. This article describes the conceptual background and data-driven workflow developed by the SysKid consortium aimed at improving characterization of the molecular mechanisms underlying DKD at the interference of the molecular impact of individual drugs in order to tailor optimal therapy to individual patients. © The Author 2015. Published by

  5. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    PubMed

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  6. Self-renewal molecular mechanisms of colorectal cancer stem cells.

    PubMed

    Pan, Tianhui; Xu, Jinghong; Zhu, Yongliang

    2017-01-01

    Colorectal cancer stem cells (CCSCs) represent a small fraction of the colorectal cancer cell population that possess self-renewal and multi-lineage differentiation potential and drive tumorigenicity. Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood, the aberrant activation of signaling pathways, such as Wnt, Notch, transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) and Hedgehog-Gli (HH-GLI), specific roles mediated by cell surface markers and micro-environmental factors are involved in the regulation of self-renewal. The elucidation of the molecular mechanisms behind self-renewal may lead to the development of novel targeted interventions for the treatment of colorectal cancer.

  7. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda-May, Pedro; Pu, Jingzhi, E-mail: jpu@iupui.edu

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r{sup −1} term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as amore » Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN{sub 2} reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN{sub 2} reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of

  8. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations.

    PubMed

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r(-1) term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  9. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    NASA Astrophysics Data System (ADS)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r-1 term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  10. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion

    PubMed Central

    Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng

    2016-01-01

    Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950

  12. Molecular Mechanism and Genetic Determinants of Buprofezin Degradation

    PubMed Central

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing

    2017-01-01

    ABSTRACT Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and nontarget insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond, and the release of the heterocyclic ring 2-tert-butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. A comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. The bfzA3A4A1A2 cluster encodes a novel Rieske nonheme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation, and aromatic ring cleavage of biphenyl, flavanone, flavone, and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. IMPORTANCE There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in

  13. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    PubMed Central

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  14. Nanostructure and molecular mechanics of spider dragline silk protein assemblies.

    PubMed

    Keten, Sinan; Buehler, Markus J

    2010-12-06

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 3₁-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre.

  15. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-01

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  16. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Identifying Cellular and Molecular Mechanisms for Magnetosensation

    PubMed Central

    Clites, Benjamin L.; Pierce, Jonathan T.

    2017-01-01

    Diverse animals ranging from worms and insects to birds and turtles perf orm impressive journeys using the magnetic field of the earth as a cue. Although major cellular and molecular mechanisms for sensing mechanical and chemical cues have been elucidated over the past three decades, the mechanisms that animals use to sense magnetic fields remain largely mysterious. Here we survey progress on the search for magnetosensory neurons and magnetosensitive molecules important for animal behaviors. Emphasis is placed on magnetosensation in insects and birds, as well as on the magnetosensitive neuron pair AFD in the nematode Caenorhabditis elegans. We also review conventional criteria used to define animal magnetoreceptors and suggest how approaches used to identify receptors for other sensory modalities may be adapted for magnetoreceptors. Finally, we discuss prospects for under-utilized and novel approaches to identify the elusive magnetoreceptors in animals. PMID:28772099

  18. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    PubMed

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  19. Molecular medicine of fragile X syndrome: based on known molecular mechanisms.

    PubMed

    Luo, Shi-Yu; Wu, Ling-Qian; Duan, Ran-Hui

    2016-02-01

    Extensive research on fragile X mental retardation gene knockout mice and mutant Drosophila models has largely expanded our knowledge on mechanism-based treatment of fragile X syndrome (FXS). In light of these findings, several clinical trials are now underway for therapeutic translation to humans. Electronic literature searches were conducted using the PubMed database and ClinicalTrials.gov. The search terms included "fragile X syndrome", "FXS and medication", "FXS and therapeutics" and "FXS and treatment". Based on the publications identified in this search, we reviewed the neuroanatomical abnormalities in FXS patients and the potential pathogenic mechanisms to monitor the progress of FXS research, from basic studies to clinical trials. The pathological mechanisms of FXS were categorized on the basis of neuroanatomy, synaptic structure, synaptic transmission and fragile X mental retardation protein (FMRP) loss of function. The neuroanatomical abnormalities in FXS were described to motivate extensive research into the region-specific pathologies in the brain responsible for FXS behavioural manifestations. Mechanism-directed molecular medicines were classified according to their target pathological mechanisms, and the most recent progress in clinical trials was discussed. Current mechanism-based studies and clinical trials have greatly contributed to the development of FXS pharmacological therapeutics. Research examining the extent to which these treatments provided a rescue effect or FMRP compensation for the developmental impairments in FXS patients may help to improve the efficacy of treatments.

  20. Disentangling the Role of Entanglement Density and Molecular Alignment in the Mechanical Response of Glassy Polymers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas; Robbins, Mark

    Glassy polymers are a ubiquitous part of modern life, but much about their mechanical properties remains poorly understood. Since chains in glassy states are hindered from exploring their conformational entropy, they can't be understood with common entropic network models. Additionally, glassy states are highly sensitive to material history and nonequilibrium distributions of chain alignment and entanglement can be produced during material processing. Understanding how these far-from equilibrium states impact mechanical properties is analytically challenging but essential to optimizing processing methods. We use molecular dynamics simulations to study the yield and strain hardening of glassy polymers as separate functions of the degree of molecular alignment and inter-chain entanglement. We vary chain alignment and entanglement with three different preparation protocols that mimic common processing conditions in and out of solution. We compare our results to common mechanical models of amorphous polymers and assess their applicability to different experimental processing conditions. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  1. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  2. Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses.

    PubMed

    Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing

    2018-02-16

    New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.

  3. Illustrating the Molecular Origin of Mechanical Stress in Ductile Deformation of Polymer Glasses

    NASA Astrophysics Data System (ADS)

    Li, Xiaoxiao; Liu, Jianning; Liu, Zhuonan; Tsige, Mesfin; Wang, Shi-Qing

    2018-02-01

    New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.

  4. Prediction of the mechanical properties of zeolite pellets for aerospace molecular decontamination applications.

    PubMed

    Rioland, Guillaume; Dutournié, Patrick; Faye, Delphine; Daou, T Jean; Patarin, Joël

    2016-01-01

    Zeolite pellets containing 5 wt % of binder (methylcellulose or sodium metasilicate) were formed with a hydraulic press. This paper describes a mathematical model to predict the mechanical properties (uniaxial and diametric compression) of these pellets for arbitrary dimensions (height and diameter) using a design of experiments (DOE) methodology. A second-degree polynomial equation including interactions was used to approximate the experimental results. This leads to an empirical model for the estimation of the mechanical properties of zeolite pellets with 5 wt % of binder. The model was verified by additional experimental tests including pellets of different dimensions created with different applied pressures. The optimum dimensions were found to be a diameter of 10-23 mm, a height of 1-3.5 mm and an applied pressure higher than 200 MPa. These pellets are promising for technological uses in molecular decontamination for aerospace-based applications.

  5. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability.

    PubMed

    Vieille, C; Zeikus, G J

    2001-03-01

    Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of > 80 degrees C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described.

  6. Neurobiological Mechanisms for the Regulation of Mammalian Sleep-Wake Behavior: Reinterpretation of Historical Evidence and Inclusion of Contemporary Cellular and Molecular Evidence

    PubMed Central

    Datta, Subimal; MacLean, Robert Ross

    2007-01-01

    At its most basic level, the function of mammalian sleep can be described as a restorative process of the brain and body; recently, however, progressive research has revealed a host of vital functions to which sleep is essential. Although many excellent reviews on sleep behavior have been published, none have incorporated contemporary studies examining the molecular mechanisms that govern the various stages of sleep. Utilizing a holistic approach, this review is focused on the basic mechanisms involved in the transition from wakefulness, initiation of sleep and the subsequent generation of slow-wave sleep and rapid eye movement (REM) sleep. Additionally, using recent molecular studies and experimental evidence that provides a direct link to sleep as a behavior, we have developed a new model, the Cellular-Molecular-Network model, explaining the mechanisms responsible for regulating REM sleep. By analyzing the fundamental neurobiological mechanisms responsible for the generation and maintenance of sleep-wake behavior in mammals, we intend to provide a broader understanding of our present knowledge in the field of sleep research. PMID:17445891

  7. Molecular simulation of dispersion and mechanical stability of organically modified layered silicates in polymer matrices

    NASA Astrophysics Data System (ADS)

    Fu, Yao-Tsung

    The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism

  8. Enzymatic studies using quantum mechanical and molecular mechanical techniques

    NASA Astrophysics Data System (ADS)

    Faulder, Paul F.

    Enzymes have evolved to increase the rate of biological reactions using fundamental physical processes. Until recently, the nature of catalysis has been based upon a classical model but it has since been considered that certain aspects of catalysis, particularly those concerning the transfer of a hydrogen species, may be accounted for using the theory of quantum mechanics. This thesis reports the use of reaction paths obtained using QMMM (combined quantum mechanics-molecular mechanics), combined with canonical variational transition state theory and multidimensional tunnelling corrections, to study two dehydrogenase enzymes, Liver Alcohol Dehydrogenase (LADH) and Methylamine Dehydrogenase (MADH). These methods are used to investigate the nature of these models in explaining reported experimental data indicative of quantum mechanical tunnelling within these enzymes. The results obtained are in good agreement with experimental data indicating the presence of tunnelling in LADH and, to a greater degree, in MADH, reflected in the magnitude of the calculated kinetic isotope effects (KIEs). For LADH, a primary tritium KIE of 5.6 is reported, calculated using transition state theory (TST) with a Wigner tunnelling correction, and compares favourably with an experimental value of 7.1. For MADH, a KIE of 11.1 was determined using canonical variational theory (CVT) with a small curvature tunnelling (SCT) correction, and compared favourably with an experimental value of 16.8. In addition, a relationship is observed between the contribution due to tunnelling in each system and the geometric positioning of the donating and accepting atoms of the transferring species, and is in qualitative agreement with current opinion concerning tunnelling and the dynamic nature of catalysis. Potential energy barriers have been obtained for both systems using QMMM. For LADH, barriers of 8.2 kcal mol-1 and 22.0 kcal mol-1, and reaction energies of -25.7 kcal mol-1 and +3.4 kcal mol-1, are

  9. A systems biology strategy to identify molecular mechanisms of action and protein indicators of traumatic brain injury.

    PubMed

    Yu, Chenggang; Boutté, Angela; Yu, Xueping; Dutta, Bhaskar; Feala, Jacob D; Schmid, Kara; Dave, Jitendra; Tawa, Gregory J; Wallqvist, Anders; Reifman, Jaques

    2015-02-01

    The multifactorial nature of traumatic brain injury (TBI), especially the complex secondary tissue injury involving intertwined networks of molecular pathways that mediate cellular behavior, has confounded attempts to elucidate the pathology underlying the progression of TBI. Here, systems biology strategies are exploited to identify novel molecular mechanisms and protein indicators of brain injury. To this end, we performed a meta-analysis of four distinct high-throughput gene expression studies involving different animal models of TBI. By using canonical pathways and a large human protein-interaction network as a scaffold, we separately overlaid the gene expression data from each study to identify molecular signatures that were conserved across the different studies. At 24 hr after injury, the significantly activated molecular signatures were nonspecific to TBI, whereas the significantly suppressed molecular signatures were specific to the nervous system. In particular, we identified a suppressed subnetwork consisting of 58 highly interacting, coregulated proteins associated with synaptic function. We selected three proteins from this subnetwork, postsynaptic density protein 95, nitric oxide synthase 1, and disrupted in schizophrenia 1, and hypothesized that their abundance would be significantly reduced after TBI. In a penetrating ballistic-like brain injury rat model of severe TBI, Western blot analysis confirmed our hypothesis. In addition, our analysis recovered 12 previously identified protein biomarkers of TBI. The results suggest that systems biology may provide an efficient, high-yield approach to generate testable hypotheses that can be experimentally validated to identify novel mechanisms of action and molecular indicators of TBI. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.

  10. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    PubMed

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. [Molecular mechanisms in vascular osteocartilaginous metaplasia: systematic review].

    PubMed

    Rosero Salazar, Doris Haydee

    2016-01-01

    The cartilage and bone metaplasia occurring in both the heart and blood vessels, are the result of risk factors or chronic diseases that gradually adversely affect the performance of a person in society; however, clinical signs are reversible in early and intermediate stages of alterations. To establish how the molecular mechanisms underlying the increased vascular metaplastic changes and possible aspects of treatment and prevention. A systematic review was performed by searching for articles indexed in PubMed, Scopus and Science Direct data from 1995 to 2015. The MeSH descriptors used were metaplasia and vascular calcification, which terms associated were molecular mechanisms, condrogenic and osteogenic. Multiple factors influence the metaplastic change, especially the pro-inflammatory associated with vascular oxidation and the presence of free radicals; this development is reversible by treatment with antioxidants and changes in lifestyle and secondary prevention as there is a diagnosis of chronic degenerative disease. The literature evidences that factors that reduce the tissue oxidative stress and promote the maintenance of vascular phenotype are protective and / or reducing the osteochondral metaplastic formations.

  12. The molecular basis of memory. Part 2: chemistry of the tripartite mechanism.

    PubMed

    Marx, Gerard; Gilon, Chaim

    2013-06-19

    We propose a tripartite mechanism to describe the processing of cognitive information (cog-info), comprising the (1) neuron, (2) surrounding neural extracellular matrix (nECM), and (3) numerous "trace" metals distributed therein. The neuron is encased in a polyanionic nECM lattice doped with metals (>10), wherein it processes (computes) and stores cog-info. Each [nECM:metal] complex is the molecular correlate of a cognitive unit of information (cuinfo), similar to a computer "bit". These are induced/sensed by the neuron via surface iontophoretic and electroelastic (piezoelectric) sensors. The generic cuinfo are used by neurons to biochemically encode and store cog-info in a rapid, energy efficient, but computationally expansive manner. Here, we describe chemical reactions involved in various processes that underline the tripartite mechanism. In addition, we present novel iconographic representations of various types of cuinfo resulting from"tagging" and cross-linking reactions, essential for the indexing cuinfo for organized retrieval and storage of memory.

  13. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.

    PubMed

    Zhang, Fan; Zhang, Liang; Zhang, Caiguo

    2016-01-01

    The human genome contains a large number of nonprotein-coding sequences. Recently, new discoveries in the functions of nonprotein-coding sequences have demonstrated that the "Dark Genome" significantly contributes to human diseases, especially with regard to cancer. Of particular interest in this review are long noncoding RNAs (lncRNAs), which comprise a class of nonprotein-coding transcripts that are longer than 200 nucleotides. Accumulating evidence indicates that a large number of lncRNAs exhibit genetic associations with tumorigenesis, tumor progression, and metastasis. Our current understanding of the molecular bases of these lncRNAs that are associated with cancer indicate that they play critical roles in gene transcription, translation, and chromatin modification. Therapeutic strategies based on the targeting of lncRNAs to disrupt their expression or their functions are being developed. In this review, we briefly summarize and discuss the genetic associations and the aberrant expression of lncRNAs in cancer, with a particular focus on studies that have revealed the molecular mechanisms of lncRNAs in tumorigenesis. In addition, we also discuss different therapeutic strategies that involve the targeting of lncRNAs.

  14. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers.

    PubMed

    Ohmiya, Akemi

    2018-01-01

    Chrysanthemum ( Chrysanthemum morifolium Ramat.) is one of the most important floricultural crops in the world. Although the origin of modern chrysanthemum cultivars is uncertain, several species belonging to the family Asteraceae are considered to have been integrated during the long history of breeding. The flower color of ancestral species is limited to yellow, pink, and white, and is derived from carotenoids, anthocyanins, and the absence of both pigments, respectively. A wide range of flower colors, including purplish-red, orange, red, and dark red, has been developed by increasing the range of pigment content or the combination of both pigments. Recently, green-flowered cultivars containing chlorophylls in their ray petals have been produced, and have gained popularity. In addition, blue/violet flowers have been developed using a transgenic approach. Flower color is an important trait that influences the commercial value of chrysanthemum cultivars. Understanding the molecular mechanisms that regulate flower pigmentation may provide important implications for the rationale manipulation of flower color. This review describes the pigment composition, genetics, and molecular basis of ray petal color formation in chrysanthemum cultivars.

  15. Cis-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Ter Brake, J. H. M.

    1984-08-01

    The molecular structure of cis-pent-2-ene has been investigated by using electron diffraction, vibrational analysis and molecular mechanics. It is possible to fit a model, describing cis-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics, ab initio self-consistent field molecular orbital calculations and microwave spectroscopy show that cis-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[CC] = 149.0(1), r[CC] = 133.8(2), r[CC] = 156.1(2), r[CH] = 109.2(2), r[CH] = 105.8(5) pm, ∠[CCC] = 127.4(2), ∠[CCC] = 112.4(4), ∠[CCH] = 124(2), ∠[CCH] = 114.2(3)° (standard deviations given in parentheses refer to the last significant digit).

  16. Molecular dynamics simulations of graphoepitaxy of organic semiconductors, sexithiophene, and pentacene: Molecular-scale mechanisms of organic graphoepitaxy

    NASA Astrophysics Data System (ADS)

    Ikeda, Susumu

    2018-03-01

    Molecular dynamics (MD) simulations of the organic semiconductors α-sexithiophene (6T) and pentacene were carried out to clarify the mechanism of organic graphoepitaxy at the molecular level. First, the models of the grooved substrates were made and the surfaces of the inside of the grooves were modified with -OH or -OSi(CH3)3, making the surfaces hydrophilic or hydrophobic. By the MD simulations of 6T, it was found that three stable azimuthal directions exist (0, ˜45, and 90° the angle that the c-axis makes with the groove), being consistent with experimental results. MD simulations of deposition processes of 6T and pentacene were also carried out, and pentacene molecules showed the spontaneous formation of herringbone packing during deposition. Some pentacene molecules stood on the surface and formed a cluster whose a-axis was parallel to the groove. It is expected that a deep understanding of the molecular-scale mechanisms will lead graphoepitaxy to practical applications, improving the performance of organic devices.

  17. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing

    PubMed Central

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands. PMID:26601037

  18. Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.

    PubMed

    Asahina, Masashi; Satoh, Shinobu

    2015-05-01

    Interactions among the functionally specialized organs of higher plants ensure that the plant body develops and functions properly in response to changing environmental conditions. When an incision or grafting procedure interrupts the original organ or tissue connection, cell division is induced and tissue reunion occurs to restore physiological connections. Such activities have long been observed in grafting techniques, which are advantageous not only for agriculture and horticulture but also for basic research. To understand how this healing process is controlled and how this process is initiated and regulated at the molecular level, physiological and molecular analyses of tissue reunion have been performed using incised hypocotyls of cucumber (Cucumis sativus) and tomato (Solanum lycopersicum) and incised flowering stems of Arabidopsis thaliana. Our results suggest that leaf gibberellin and microelements from the roots are required for tissue reunion in the cortex of the cucumber and tomato incised hypocotyls. In addition, the wound-inducible hormones ethylene and jasmonic acid contribute to the regulation of the tissue reunion process in the upper and lower parts, respectively, of incised Arabidopsis stems. Ethylene and jasmonic acid modulate the expression of ANAC071 and RAP2.6L, respectively, and auxin signaling via ARF6/8 is essential for the expression of these transcription factors. In this report, we discuss recent findings regarding molecular and physiological mechanisms of the graft union and the tissue reunion process in wounded tissues of plants.

  19. Theoretical study on the reaction mechanisms of Michael chirality addition between propionaldehyde and nitroalkene catalyzed by an enantioselective catalyst.

    PubMed

    Zhou, Xinming; Li, Ling; Sun, Xuejun; Wang, Yajun; Du, Dongmei; Fu, Hui

    2018-06-01

    The asymmetric Michael addition between propionaldehyde and nitroalkene catalyzed by 8-(ethoxycarbonyl)-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-2-carboxylic acid has obtained relatively high yields and excellent enantioselectivities at room temperature. In this study, the molecular structures and optical activity of the most stable conformation I are optimized at B3LYP/6-311++ G(d,p) level. We find that levorotatory conformation I catalyzing the same Michael addition can produce laevo-product A and dextrorotatory conformation I' can obtain the dextral-product A'. These results have guiding significance for further studying on the new chemzymes and the mechanism of the obtained different chiral products. © 2018 Wiley Periodicals, Inc.

  20. The Molecular and Cellular Mechanisms of Axon Guidance in Mossy Fiber Sprouting

    PubMed Central

    Koyama, Ryuta; Ikegaya, Yuji

    2018-01-01

    The question of whether mossy fiber sprouting is epileptogenic has not been resolved; both sprouting-induced recurrent excitatory and inhibitory circuit hypotheses have been experimentally (but not fully) supported. Therefore, whether mossy fiber sprouting is a potential therapeutic target for epilepsy remains under debate. Moreover, the axon guidance mechanisms of mossy fiber sprouting have attracted the interest of neuroscientists. Sprouting of mossy fibers exhibits several uncommon axonal growth features in the basically non-plastic adult brain. For example, robust branching of axonal collaterals arises from pre-existing primary mossy fiber axons. Understanding the branching mechanisms in adulthood may contribute to axonal regeneration therapies in neuroregenerative medicine in which robust axonal re-growth is essential. Additionally, because granule cells are produced throughout life in the neurogenic dentate gyrus, it is interesting to examine whether the mossy fibers of newly generated granule cells follow the pre-existing trajectories of sprouted mossy fibers in the epileptic brain. Understanding these axon guidance mechanisms may contribute to neuron transplantation therapies, for which the incorporation of transplanted neurons into pre-existing neural circuits is essential. Thus, clarifying the axon guidance mechanisms of mossy fiber sprouting could lead to an understanding of central nervous system (CNS) network reorganization and plasticity. Here, we review the molecular and cellular mechanisms of axon guidance in mossy fiber sprouting by discussing mainly in vitro studies. PMID:29896153

  1. Molecular Mechanisms of Induced Pluripotency

    PubMed Central

    Muchkaeva, I.A.; Dashinimaev, E.B.; Terskikh, V.V.; Sukhanov, Y.V.; Vasiliev, A.V.

    2012-01-01

    In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of transcription factors or the use of small molecules. Furthermore, the strategy of direct reprogramming of somatic cells omitting the generation of iPS cells is considered. The data concerning the differences between ES and iPS cells and the problem of epigenetic memory are also discussed. In conclusion, the possibility of using iPS cells in regenerative medicine is considered. PMID:22708059

  2. Water Assisted Reaction Mechanism of OH- with CCl4 in Aqueous Solution - Hybrid Quantum Mechanical and Molecular Mechanics Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jie; Yin, Hongyun; Wang, Dunyou

    2013-02-20

    The OH- (H2O) + CCl4 reaction in aqueous solution was investigated using the combined quantum mechanical and molecular mechanics approach. The reaction mechanism of OH- (H2O) + CCl4 consists of two concerted steps - formation of OH- in the favorable attack conformation via the proton transfer process, and the nucleophilic substitution process in which the newly formed OH- attacks the CCl4. The free energy activation barrier is 38.2 kcal/mol at CCSD(T)/MM level of theory for this reaction, which is about 10.3 kcal/mol higher than that of the direct nucleophilic substitution mechanism of the OH- + CCl4 reaction in aqueous solution.

  3. Molecular Mechanisms of Inner Ear Development

    PubMed Central

    Wu, Doris K.; Kelley, Matthew W.

    2012-01-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms. PMID:22855724

  4. Molecular mechanisms of inner ear development.

    PubMed

    Wu, Doris K; Kelley, Matthew W

    2012-08-01

    The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.

  5. Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Vogler, Tracy J.

    2015-06-01

    In most porous materials, void collapse during shock compression couples mechanical energy to thermal energy. Increased temperature drives up pressures and lowers densities in the final Hugoniot states as compared to full-density samples. Some materials, however, exhibit an anomalous enhanced densification in their Hugoniot states when porosity is introduced. We have recently shown that silicon is such a material, and demonstrated a molecular mechanism for the effect using molecular simulation. We will review results from large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniotstat simulations of shock compressed porous silicon, highlighting the mechanism by which porosity produces local shear which nucleate partial phase transition and localized melting at shock pressures below typical thresholds in these materials. Further, we will characterize the stress states and strength of the material as a function of porosity from 5 to 50 percent and with various porosity microstructures. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. 2017 update on the relationship between diabetes and colorectal cancer: epidemiology, potential molecular mechanisms and therapeutic implications

    PubMed Central

    Ardura, Juan Antonio; Corton, Marta; Fernández-Fernández, Beatriz; Aguilera, Oscar; Gomez-Guerrero, Carmen; Mas, Sebastián; Moreno, Juan Antonio; Ruiz-Ortega, Marta; Sanz, Ana Belen; Sanchez-Niño, Maria Dolores; Rojo, Federico; Vivanco, Fernando; Esbrit, Pedro; Ayuso, Carmen; Alvarez-Llamas, Gloria; Egido, Jesús; García-Foncillas, Jesús; Ortiz, Alberto

    2017-01-01

    Worldwide deaths from diabetes mellitus (DM) and colorectal cancer increased by 90% and 57%, respectively, over the past 20 years. The risk of colorectal cancer was estimated to be 27% higher in patients with type 2 DM than in non-diabetic controls. However, there are potential confounders, information from lower income countries is scarce, across the globe there is no correlation between DM prevalence and colorectal cancer incidence and the association has evolved over time, suggesting the impact of additional environmental factors. The clinical relevance of these associations depends on understanding the mechanism involved. Although evidence is limited, insulin use has been associated with increased and metformin with decreased incidence of colorectal cancer. In addition, colorectal cancer shares some cellular and molecular pathways with diabetes target organ damage, exemplified by diabetic kidney disease. These include epithelial cell injury, activation of inflammation and Wnt/β-catenin pathways and iron homeostasis defects, among others. Indeed, some drugs have undergone clinical trials for both cancer and diabetic kidney disease. Genome-wide association studies have identified diabetes-associated genes (e.g. TCF7L2) that may also contribute to colorectal cancer. We review the epidemiological evidence, potential pathophysiological mechanisms and therapeutic implications of the association between DM and colorectal cancer. Further studies should clarify the worldwide association between DM and colorectal cancer, strengthen the biological plausibility of a cause-and-effect relationship through characterization of the molecular pathways involved, search for specific molecular signatures of colorectal cancer under diabetic conditions, and eventually explore DM-specific strategies to prevent or treat colorectal cancer. PMID:28060743

  7. Trans-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Ter Brake, J. H. M.; Mijlhoff, F. C.

    1981-12-01

    The molecular structure of trans-pent-2-ene has been investigated, using electron diffraction, vibrational analysis and molecular mechanics. It is possible to Fit a model, describing trans-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics shows that trans-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[-C-C] = 148.4(1), r[-CC-] = 133.4(2), r[-C-C-] = 157.6(5), r[C-H] = 108.2(1)pm; ∠[-C-CC-] = 125.4(3), ∠[C-C-C-] = 115.6(6), ∠[-C-C-H] = 12.7(6), ∠[-CC-H] = 129(2)°. Standard deviations given in parentheses refer to the last significant digit.

  8. Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability

    PubMed Central

    Vieille, Claire; Zeikus, Gregory J.

    2001-01-01

    Enzymes synthesized by hyperthermophiles (bacteria and archaea with optimal growth temperatures of >80°C), also called hyperthermophilic enzymes, are typically thermostable (i.e., resistant to irreversible inactivation at high temperatures) and are optimally active at high temperatures. These enzymes share the same catalytic mechanisms with their mesophilic counterparts. When cloned and expressed in mesophilic hosts, hyperthermophilic enzymes usually retain their thermal properties, indicating that these properties are genetically encoded. Sequence alignments, amino acid content comparisons, crystal structure comparisons, and mutagenesis experiments indicate that hyperthermophilic enzymes are, indeed, very similar to their mesophilic homologues. No single mechanism is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermostability must be found, instead, in a small number of highly specific alterations that often do not obey any obvious traffic rules. After briefly discussing the diversity of hyperthermophilic organisms, this review concentrates on the remarkable thermostability of their enzymes. The biochemical and molecular properties of hyperthermophilic enzymes are described. Mechanisms responsible for protein inactivation are reviewed. The molecular mechanisms involved in protein thermostabilization are discussed, including ion pairs, hydrogen bonds, hydrophobic interactions, disulfide bridges, packing, decrease of the entropy of unfolding, and intersubunit interactions. Finally, current uses and potential applications of thermophilic and hyperthermophilic enzymes as research reagents and as catalysts for industrial processes are described. PMID:11238984

  9. Molecular mechanism and genetic determinants of buprofezin degradation.

    PubMed

    Chen, Xueting; Ji, Junbin; Zhao, Leizhen; Qiu, Jiguo; Dai, Chen; Wang, Weiwu; He, Jian; Jiang, Jiandong; Hong, Qing; Yan, Xin

    2017-07-14

    Buprofezin is a widely used insect growth regulator whose residue has been frequently detected in the environment, posing a threat to aquatic organisms and non-target insects. Microorganisms play an important role in the degradation of buprofezin in the natural environment. However, the relevant catabolic pathway has not been fully characterized, and the molecular mechanism of catabolism is still completely unknown. Rhodococcus qingshengii YL-1 can utilize buprofezin as a sole source of carbon and energy for growth. In this study, the upstream catabolic pathway in strain YL-1 was identified using tandem mass spectrometry. Buprofezin is composed of a benzene ring and a heterocyclic ring. The degradation is initiated by the dihydroxylation of the benzene ring and continues via dehydrogenation, aromatic ring cleavage, breaking of an amide bond and the release of the heterocyclic ring 2- tert -butylimino-3-isopropyl-1,3,5-thiadiazinan-4-one (2-BI). A buprofezin degradation-deficient mutant strain YL-0 was isolated. Comparative genomic analysis combined with gene deletion and complementation experiments revealed that the gene cluster bfzBA3A4A1A2C is responsible for the upstream catabolic pathway of buprofezin. bfzA3A4A1A2 encodes a novel Rieske non-heme iron oxygenase (RHO) system that is responsible for the dihydroxylation of buprofezin at the benzene ring; bfzB is involved in dehydrogenation, and bfzC is in charge of benzene ring cleavage. Furthermore, the products of bfzBA3A4A1A2C can also catalyze dihydroxylation, dehydrogenation and aromatic ring cleavage of biphenyl, flavanone, flavone and bifenthrin. In addition, a transcriptional study revealed that bfzBA3A4A1A2C is organized in one transcriptional unit that is constitutively expressed in strain YL-1. Importance There is an increasing concern about the residue and environmental fate of buprofezin. Microbial metabolism is an important mechanism responsible for the buprofezin degradation in natural environment

  10. Molecular Mechanisms of Aldehyde Toxicity: A Chemical Perspective

    PubMed Central

    2015-01-01

    Aldehydes are electrophilic compounds to which humans are pervasively exposed. Despite a significant health risk due to exposure, the mechanisms of aldehyde toxicity are poorly understood. This ambiguity is likely due to the structural diversity of aldehyde derivatives and corresponding differences in chemical reactions and biological targets. To gain mechanistic insight, we have used parameters based on the hard and soft, acids and bases (HSAB) theory to profile the different aldehyde subclasses with respect to electronic character (softness, hardness), electrophilic reactivity (electrophilic index), and biological nucleophilic targets. Our analyses indicate that short chain aldehydes and longer chain saturated alkanals are hard electrophiles that cause toxicity by forming adducts with hard biological nucleophiles, e.g., primary nitrogen groups on lysine residues. In contrast, α,β-unsaturated carbonyl derivatives, alkenals, and the α-oxoaldehydes are soft electrophiles that preferentially react with soft nucleophilic thiolate groups on cysteine residues. The aldehydes can therefore be grouped into subclasses according to common electronic characteristics (softness/hardness) and molecular mechanisms of toxicity. As we will discuss, the toxic potencies of these subgroups are generally related to corresponding electrophilicities. For some aldehydes, however, predictions of toxicity based on electrophilicity are less accurate due to inherent physicochemical variables that limit target accessibility, e.g., steric hindrance and solubility. The unsaturated aldehydes are also members of the conjugated type-2 alkene chemical class that includes α,β-unsaturated amide, ketone, and ester derivatives. Type-2 alkenes are electrophiles of varying softness and electrophilicity that share a common mechanism of toxicity. Therefore, exposure to an environmental mixture of unsaturated carbonyl derivatives could cause “type-2 alkene toxicity” through additive interactions

  11. Molecular gearing systems

    DOE PAGES

    Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.

    1997-11-01

    The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less

  12. Theoretical Characterization of the Spectral Density of the Water-Soluble Chlorophyll-Binding Protein from Combined Quantum Mechanics/Molecular Mechanics Molecular Dynamics Simulations.

    PubMed

    Rosnik, Andreana M; Curutchet, Carles

    2015-12-08

    Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.

  13. Insights into the mechanism and inhibition of fatty acid amide hydrolase from quantum mechanics/molecular mechanics (QM/MM) modelling.

    PubMed

    Lodola, Alessio; Mor, Marco; Sirirak, Jitnapa; Mulholland, Adrian J

    2009-04-01

    FAAH (fatty acid amide hydrolase) is a promising target for the treatment of several central nervous system and peripheral disorders. Combined QM/MM (quantum mechanics/molecular mechanics) calculations have elucidated the role of its unusual catalytic triad in the hydrolysis of oleamide and oleoylmethyl ester substrates, and have identified the productive inhibitor-binding orientation for the carbamoylating compound URB524. These are potentially crucial insights for designing new covalent inhibitors of this drug target.

  14. Antigenic variation: Molecular and genetic mechanisms of relapsing disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruse, J.M.; Lewis, R.E.

    1987-01-01

    This book contains 10 chapters. They are: Contemporary Concepts of Antigenic Variation; Antigenic Variation in the Influenza Viruses; Mechanisms of Escape of Visna Lentiviruses from Immunological Control; A Review of Antigenic Variation by the Equine Infectious Anemia Virus; Biologic and Molecular Variations in AIDS Retrovirus Isolates; Rabies Virus Infection: Genetic Mutations and the Impact on Viral Pathogenicity and Immunity; Immunobiology of Relapsing Fever; Antigenic Variation in African Trypanosomes; Antigenic Variation and Antigenic Diversity in Malaria; and Mechanisms of Immune Evasion in Schistosomiasis.

  15. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites.

    PubMed

    Tam, Lik-Ho; Wu, Chao

    2017-10-13

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect.

  16. Molecular Mechanics of the Moisture Effect on Epoxy/Carbon Nanotube Nanocomposites

    PubMed Central

    2017-01-01

    The strong structural integrity of polymer nanocomposite is influenced in the moist environment; but the fundamental mechanism is unclear, including the basis for the interactions between the absorbed water molecules and the structure, which prevents us from predicting the durability of its applications across multiple scales. In this research, a molecular dynamics model of the epoxy/single-walled carbon nanotube (SWCNT) nanocomposite is constructed to explore the mechanism of the moisture effect, and an analysis of the molecular interactions is provided by focusing on the hydrogen bond (H-bond) network inside the nanocomposite structure. The simulations show that at low moisture concentration, the water molecules affect the molecular interactions by favorably forming the water-nanocomposite H-bonds and the small cluster, while at high concentration the water molecules predominantly form the water-water H-bonds and the large cluster. The water molecules in the epoxy matrix and the epoxy-SWCNT interface disrupt the molecular interactions and deteriorate the mechanical properties. Through identifying the link between the water molecules and the nanocomposite structure and properties, it is shown that the free volume in the nanocomposite is crucial for its structural integrity, which facilitates the moisture accumulation and the distinct material deteriorations. This study provides insights into the moisture-affected structure and properties of the nanocomposite from the nanoscale perspective, which contributes to the understanding of the nanocomposite long-term performance under the moisture effect. PMID:29027979

  17. Determination of mechanical behavior of nanoscale materials using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Heo, Seongjun

    behavior of bridged and cantilevered CNTs are found to match the results of continuum mechanics calculations. The principal vibration frequency of the CNT is predicted to decrease with increasing nanotube length, gas pressure, and the atomic mass of the external fluid. In studies of CNT tribology, simulations show that two layers of filled CNTs are more resistant to compressive forces and exhibit lower friction coefficients during sliding than unfilled CNTs. The friction coefficient increases with the thickness of the CNT layer due to the increase in effective friction interface. The addition of an external, molecular fluid of benzene molecules is predicted to reduce the friction coefficient of CNTs because of the lubricity of the molecules. Lastly, simulation results illustrate the effect of relative orientation on the tribological properties of polyethylene (PE) sliding surfaces. The friction coefficient of perpendicular sliding is much higher than that of parallel sliding based on the polymer chain orientation. The PE exhibits stick-slip motion during sliding regardless of the sliding orientation. In addition, the PE shows no surface morphology change due to the higher strength of the PE bonds, which is in contrast to the behavior of other polymers, such as polytetrafluoroethylene (PTFE), which exhibits bond breaking and realignment of surface chains along the sliding direction in the less favorable orientation.

  18. Ionic micelles and aromatic additives: a closer look at the molecular packing parameter.

    PubMed

    Lutz-Bueno, Viviane; Isabettini, Stéphane; Walker, Franziska; Kuster, Simon; Liebi, Marianne; Fischer, Peter

    2017-08-16

    Wormlike micellar aggregates formed from the mixture of ionic surfactants with aromatic additives result in solutions with impressive viscoelastic properties. These properties are of high interest for numerous industrial applications and are often used as model systems for soft matter physics. However, robust and simple models for tailoring the viscoelastic response of the solution based on the molecular structure of the employed additive are required to fully exploit the potential of these systems. We address this shortcoming with a modified packing parameter based model, considering the additive-surfactant pair. The role of charge neutralization on anisotropic micellar growth was investigated with derivatives of sodium salicylate. The impact of the additives on the morphology of the micellar aggregates is explained from the molecular level to the macroscopic viscoelasticity. Changes in the micelle's volume, headgroup area and additive structure are explored to redefine the packing parameter. Uncharged additives penetrated deeper into the hydrophobic region of the micelle, whilst charged additives remained trapped in the polar region, as revealed by a combination of 1 H-NMR, SAXS and rheological measurements. A deeper penetration of the additives densified the hydrophobic core of the micelle and induced anisotropic growth by increasing the effective volume of the additive-surfactant pair. This phenomenon largely influenced the viscosity of the solutions. Partially penetrating additives reduced the electrostatic repulsions between surfactant headgroups and neighboring micelles. The resulting increased network density governed the elasticity of the solutions. Considering a packing parameter composed of the additive-surfactant pair proved to be a facile means of engineering the viscoelastic response of surfactant solutions. The self-assembly of the wormlike micellar aggregates could be tailored to desired morphologies resulting in a specific and predictable

  19. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  20. Redox Control of Leukemia: From Molecular Mechanisms to Therapeutic Opportunities

    PubMed Central

    Irwin, Mary E.; Rivera-Del Valle, Nilsa

    2013-01-01

    Abstract Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability—some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients. Antioxid. Redox Signal. 18, 1349–1383. PMID:22900756

  1. Effect of mechanical load on the shuttling operation of molecular muscles

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2009-06-01

    We use molecular dynamics simulations to investigate the effect of mechanical force on stimulus-induced deformation of rotaxane-based artificial molecular muscles. The study shows that a small external force slows down the shuttling motion and leads to longer actuation time for a muscle to reach its full extension. Further increase in the force can significantly reduce the traveling distance of the ring, leading to reduced strain output. A force larger than 28 pN can completely suppress the shuttling motion, suggesting a limit of force output of molecular muscles.

  2. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  3. Molecular Mechanisms of Breast Cancer Metastasis and Potential Anti-metastatic Compounds.

    PubMed

    Tungsukruthai, Sucharat; Petpiroon, Nalinrat; Chanvorachote, Pithi

    2018-05-01

    Throughout the world, breast cancer is among the major causes of cancer-related death and is the most common cancer found in women. The development of cancer molecular knowledge has surpassed the novel concept of cancer biology and unraveled principle targets for anticancer drug developments and treatment strategies. Metastatic breast cancer cells acquire their aggressive features through several mechanisms, including augmentation of survival, proliferation, tumorigenicity, and motility-related cellular pathways. Clearly, natural product-derived compounds have since long been recognized as an important source for anticancer drugs, several of which have been shown to have promising anti-metastasis activities by suppressing key molecular features supporting such cell aggressiveness. This review provides the essential details of breast cancer, the molecular-based insights into metastasis, as well as the effects and mechanisms of potential compounds for breast cancer therapeutic approaches. As the abilities of cancer cells to invade and metastasize are addressed as the hallmarks of cancer, compounds possessing anti-metastatic effects, together with their defined molecular drug action could benefit the development of new drugs as well as treatment strategies. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  4. Mechanically controllable break junctions for molecular electronics.

    PubMed

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.

    PubMed

    Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P

    2016-02-18

    Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Release mechanism of doxazosin from carrageenan matrix tablets: Effect of ionic strength and addition of sodium dodecyl sulphate.

    PubMed

    Kos, Petra; Pavli, Matej; Baumgartner, Saša; Kogej, Ksenija

    2017-08-30

    The polyelectrolyte matrix tablets loaded with an oppositely charged drug exhibit complex drug-release mechanisms. In this study, the release mechanism of a cationic drug doxazosin mesylate (DM) from matrix tablets based on an anionic polyelectrolyte λ-carrageenan (λ-CARR) is investigated. The drug release rates from λ-CARR matrices are correlated with binding results based on potentiometric measurements using the DM ion-sensitive membrane electrode and with molecular characteristics of the DM-λ-CARR-complex particles through hydrodynamic size measurements. Experiments are performed in solutions with different ionic strength and with the addition of an anionic surfactant sodium dodecyl sulphate (SDS). It is demonstrated that in addition to swelling and erosion of tablets, the release rates depend strongly on cooperative interactions between DM and λ-CARR. Addition of SDS at concentrations below its critical micelle concentration (CMC) slows down the DM release through hydrophobic binding of SDS to the DM-λ-CARR complex. On the contrary, at concentrations above the CMC SDS pulls DM from the complex by forming mixed micelles with it and thus accelerates the release. Results involving SDS show that the concentration of surfactants that are naturally present in gastrointestinal environment may have a great impact on the drug release process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Candida albicans biofilms: development, regulation, and molecular mechanisms

    PubMed Central

    Gulati, Megha; Nobile, Clarissa J.

    2016-01-01

    A major virulence attribute of Candida albicans is its ability to form biofilms, densely packed communities of cells adhered to a surface. These biofilms are intrinsically resistant to conventional antifungal therapeutics, the host immune system, and other environmental factors, making biofilm-associated infections a significant clinical challenge. Here, we review current knowledge on the development, regulation, and molecular mechanisms of C. albicans biofilms. PMID:26806384

  8. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2018-01-01

    This review focuses on research in the areas of epidemiology, neuropathology, molecular biology and genetics that implicates herpes simplex virus type 1 (HSV-1) as a causative agent in the pathogenesis of sporadic Alzheimer’s disease (AD). Molecular mechanisms whereby HSV-1 induces AD-related pathophysiology and pathology, including neuronal production and accumulation of amyloid beta (Aβ), hyperphosphorylation of tau proteins, dysregulation of calcium homeostasis, and impaired autophagy, are discussed. HSV-1 causes additional AD pathologies through mechanisms that promote neuroinflammation, oxidative stress, mitochondrial damage, synaptic dysfunction, and neuronal apoptosis. The AD susceptibility genes apolipoprotein E (APOE), phosphatidylinositol binding clathrin assembly protein (PICALM), complement receptor 1 (CR1) and clusterin (CLU) are involved in the HSV lifecycle. Polymorphisms in these genes may affect brain susceptibility to HSV-1 infection. APOE, for example, influences susceptibility to certain viral infections, HSV-1 viral load in the brain, and the innate immune response. The AD susceptibility gene cholesterol 25-hydroxylase (CH25H) is upregulated in the AD brain and is involved in the antiviral immune response. HSV-1 interacts with additional genes to affect cognition-related pathways and key enzymes involved in Aβ production, Aβ clearance, and hyperphosphorylation of tau proteins. Aβ itself functions as an antimicrobial peptide (AMP) against various pathogens including HSV-1. Evidence is presented supporting the hypothesis that Aβ is produced as an AMP in response to HSV-1 and other brain infections, leading to Aβ deposition and plaque formation in AD. Epidemiologic studies associating HSV-1 infection with AD and cognitive impairment are discussed. Studies are reviewed supporting subclinical chronic reactivation of latent HSV-1 in the brain as significant in the pathogenesis of AD. Finally, the rationale for and importance of clinical

  9. Molecularly imprinted polymers for the detection of illegal drugs and additives: a review.

    PubMed

    Xiao, Deli; Jiang, Yue; Bi, Yanping

    2018-04-04

    This review (with 154 refs.) describes the current status of using molecularly imprinted polymers in the extraction and quantitation of illicit drugs and additives. The review starts with an introduction into some synthesis methods (lump MIPs, spherical MIPs, surface imprinting) of MIPs using illicit drugs and additives as templates. The next section covers applications, with subsections on the detection of illegal additives in food, of doping in sports, and of illicit addictive drugs. A particular focus is directed towards current limitations and challenges, on the optimization of methods for preparation of MIPs, their applicability to aqueous samples, the leakage of template molecules, and the identification of the best balance between adsorption capacity and selectivity factor. At last, the need for convincing characterization methods, the lack of uniform parameters for defining selectivity, and the merits and demerits of MIPs prepared using nanomaterials are addressed. Strategies are suggested to solve existing problems, and future developments are discussed with respect to a more widespread use in relevant fields. Graphical abstract This review gives a comprehensive overview of the advances made in molecularly imprinting of polymers for use in the extraction and quantitation of illicit drugs and additives. Methods for syntheses, highlighted applications, limitations and current challenges are specifically addressed.

  10. Decomposition of amino diazeniumdiolates (NONOates): molecular mechanisms.

    PubMed

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V

    2014-12-01

    Although diazeniumdiolates (X[N(O)NO](-)) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R2N[N(O)NO](-), where R=N(C2H5)2 (1), N(C3H4NH2)2 (2), or N(C2H4NH2)2 (3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO](-) group with the apparent pKa and decomposition rate constants of 4.6 and 1 s(-1) for 1; 3.5 and 0.083 s(-1) for 2; and 3.8 and 0.0033 s(-1) for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R2N(H)N(O)NO tautomer (population ~10(-7), for 1) undergoes the NN heterolytic bond cleavage (kd~10(7) s(-1) for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. The bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH<2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO](-) group. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Decomposition of amino diazeniumdiolates (NONOates): Molecular mechanisms

    DOE PAGES

    Shaikh, Nizamuddin; Valiev, Marat; Lymar, Sergei V.

    2014-08-23

    Although diazeniumdiolates (X[N(O)NO] -) are extensively used in biochemical, physiological, and pharmacological studies due to their ability to release NO and/or its congeneric nitroxyl, the mechanisms of these processes remain obscure. In this work, we used a combination of spectroscopic, kinetic, and computational techniques to arrive at a quantitatively consistent molecular mechanism for decomposition of amino diazeniumdiolates (amino NONOates: R 2N[N(O)NO] -, where R = —N(C 2H 5) 2(1), —N(C 3H 4NH 2) 2(2), or —N(C 2H 4NH 2) 2(3)). Decomposition of these NONOates is triggered by protonation of their [NN(O)NO] - group with the apparent pKa and decomposition ratemore » constants of 4.6 and 1 s -1 for 1; 3.5 and 0.083 s -1 for 2; and 3.8 and 0.0033 s -1 for 3. Although protonation occurs mainly on the O atoms of the functional group, only the minor R 2N(H)N(O)NO tautomer (population ~ 10 -7, for 1) undergoes the N—N heterolytic bond cleavage (k d ~ 107 s -1 for 1) leading to amine and NO. Decompositions of protonated amino NONOates are strongly temperature-dependent; activation enthalpies are 20.4 and 19.4 kcal/mol for 1 and 2, respectively, which includes contributions from both the tautomerization and bond cleavage. Thus, the bond cleavage rates exhibit exceptional sensitivity to the nature of R substituents which strongly modulate activation entropy. At pH < 2, decompositions of all three NONOates that have been investigated are subject to additional acid catalysis that occurs through di-protonation of the [NN(O)NO] - group.« less

  12. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations.

    PubMed

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-14

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ(17-42) protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ(17-42) protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ(17-42) are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ(17-42) protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  13. Exploring the inter-molecular interactions in amyloid-β protofibril with molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area free energy calculations

    NASA Astrophysics Data System (ADS)

    Liu, Fu-Feng; Liu, Zhen; Bai, Shu; Dong, Xiao-Yan; Sun, Yan

    2012-04-01

    Aggregation of amyloid-β (Aβ) peptides correlates with the pathology of Alzheimer's disease. However, the inter-molecular interactions between Aβ protofibril remain elusive. Herein, molecular mechanics Poisson-Boltzmann surface area analysis based on all-atom molecular dynamics simulations was performed to study the inter-molecular interactions in Aβ17-42 protofibril. It is found that the nonpolar interactions are the important forces to stabilize the Aβ17-42 protofibril, while electrostatic interactions play a minor role. Through free energy decomposition, 18 residues of the Aβ17-42 are identified to provide interaction energy lower than -2.5 kcal/mol. The nonpolar interactions are mainly provided by the main chain of the peptide and the side chains of nine hydrophobic residues (Leu17, Phe19, Phe20, Leu32, Leu34, Met35, Val36, Val40, and Ile41). However, the electrostatic interactions are mainly supplied by the main chains of six hydrophobic residues (Phe19, Phe20, Val24, Met35, Val36, and Val40) and the side chains of the charged residues (Glu22, Asp23, and Lys28). In the electrostatic interactions, the overwhelming majority of hydrogen bonds involve the main chains of Aβ as well as the guanidinium group of the charged side chain of Lys28. The work has thus elucidated the molecular mechanism of the inter-molecular interactions between Aβ monomers in Aβ17-42 protofibril, and the findings are considered critical for exploring effective agents for the inhibition of Aβ aggregation.

  14. Cellular and Molecular Mechanisms of REM Sleep Homeostatic Drive: A Plausible Component for Behavioral Plasticity

    PubMed Central

    Datta, Subimal; Oliver, Michael D.

    2017-01-01

    Homeostatic regulation of REM sleep drive, as measured by an increase in the number of REM sleep transitions, plays a key role in neuronal and behavioral plasticity (i.e., learning and memory). Deficits in REM sleep homeostatic drive (RSHD) are implicated in the development of many neuropsychiatric disorders. Yet, the cellular and molecular mechanisms underlying this RSHD remain to be incomplete. To further our understanding of this mechanism, the current study was performed on freely moving rats to test a hypothesis that a positive interaction between extracellular-signal-regulated kinase 1 and 2 (ERK1/2) activity and brain-derived neurotrophic factor (BDNF) signaling in the pedunculopontine tegmentum (PPT) is a causal factor for the development of RSHD. Behavioral results of this study demonstrated that a short period (<90 min) of selective REM sleep restriction (RSR) exhibited a strong RSHD. Molecular analyses revealed that this increased RSHD increased phosphorylation and activation of ERK1/2 and BDNF expression in the PPT. Additionally, pharmacological results demonstrated that the application of the ERK1/2 activation inhibitor U0126 into the PPT prevented RSHD and suppressed BDNF expression in the PPT. These results, for the first time, suggest that the positive interaction between ERK1/2 and BDNF in the PPT is a casual factor for the development of RSHD. These findings provide a novel direction in understanding how RSHD-associated specific molecular changes can facilitate neuronal plasticity and memory processing. PMID:28959190

  15. Molecular mechanisms of aging and immune system regulation in Drosophila.

    PubMed

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.

  16. Hybrid quantum and molecular mechanics embedded cluster models for chemistry on silicon and silicon carbide surfaces

    NASA Astrophysics Data System (ADS)

    Shoemaker, James Richard

    Fabrication of silicon carbide (SiC) semiconductor devices are of interest for aerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC by oxidation is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schrodinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption sites on C- terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.

  17. Cation solvation with quantum chemical effects modeled by a size-consistent multi-partitioning quantum mechanics/molecular mechanics method.

    PubMed

    Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi

    2017-07-21

    In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.

  18. The epidemiology of supernumerary teeth and the associated molecular mechanism

    PubMed Central

    Lu, Xi; Yu, Fang; Liu, Junjun; Cai, Wenping; Zhao, Yumei; Zhao, Shouliang; Liu, Shangfeng

    2017-01-01

    ABSTRACT Supernumerary teeth are common clinical dental anomalies. Although various studies have provided abundant information regarding genes and signaling pathways involved in tooth morphogenesis, which include Wnt, FGF, BMP, and Shh, the molecular mechanism of tooth formation, especially for supernumerary teeth, is still unclear. In the population, some cases of supernumerary teeth are sporadic, while others are syndrome-related with familial hereditary. The prompt and accurate diagnosis of syndrome related supernumerary teeth is quite important for some distinctive disorders. Mice are the most commonly used model system for investigating supernumerary teeth. The upregulation of Wnt and Shh signaling in the dental epithelium results in the formation of multiple supernumerary teeth in mice. Understanding the molecular mechanism of supernumerary teeth is also a component of understanding tooth formation in general and provides clinical guidance for early diagnosis and treatment in the future. PMID:28598258

  19. Influence of type and level of water-soluble additives on drug release and surface and mechanical properties of Surelease films.

    PubMed

    Rohera, Bhagwan D; Parikh, Nilesh H

    2002-11-01

    Ethylcellulose in combination with water-soluble additives has been used in the development of microporous membrane-coated dosage forms. In the present study, application of three types of water-soluble additives, namely polyethylene glycols (PEG 400, 3350, and 8000), maltodextrins (Maltrin M150, M100, and M040 in the order of lower to higher average polymer size and molecular weight; dextrose equivalence 16.9, 11.1, and 4.8, respectively), and xylitol, as porosity modifiers in the films of a commercially available aqueous ethylcellulose dispersion (Surelease/E-7-7060 plasticized with glyceryl tricaprylate/caprate) was investigated. The effect of type and level of these additives on drug release characteristics and surface and mechanical properties of the polymeric films was studied. Each additive was incorporated at 20 and 30% levels in the polymeric dispersion based on its solids content. Ibuprofen tablets were coated using the polymeric dispersion with and without additive at 3% w/w coat level in a fluid-bed equipment. The coated tablets were evaluated for their drug release rate, coat reflectivity (gloss), Brinell hardness, and elastic modulus. Differential scanning calorimetric analysis of the films was performed to determine the physico-chemical changes in the applied film-coats. The rate of drug release, hence film porosity, was observed to be dependent on the type and level of the additive added. The molecular weight of the additive and its concentration in the polymeric dispersion had significant influence on the rate of drug release, hardness, and elasticity of the film-coats.

  20. Measuring the mechanical properties of molecular conformers

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Taylor, S.; Baran, J. D.; Champness, N. R.; Larsson, J. A.; Moriarty, P.

    2015-09-01

    Scanning probe-actuated single molecule manipulation has proven to be an exceptionally powerful tool for the systematic atomic-scale interrogation of molecular adsorbates. To date, however, the extent to which molecular conformation affects the force required to push or pull a single molecule has not been explored. Here we probe the mechanochemical response of two tetra(4-bromophenyl)porphyrin conformers using non-contact atomic force microscopy where we find a large difference between the lateral forces required for manipulation. Remarkably, despite sharing very similar adsorption characteristics, variations in the potential energy surface are capable of prohibiting probe-induced positioning of one conformer, while simultaneously permitting manipulation of the alternative conformational form. Our results are interpreted in the context of dispersion-corrected density functional theory calculations which reveal significant differences in the diffusion barriers for each conformer. These results demonstrate that conformational variation significantly modifies the mechanical response of even simple porpyhrins, potentially affecting many other flexible molecules.

  1. Molecular Mechanisms Controlling GLUT4 Intracellular Retention

    PubMed Central

    Blot, Vincent

    2008-01-01

    In basal adipocytes, glucose transporter 4 (GLUT4) is sequestered intracellularly by an insulin-reversible retention mechanism. Here, we analyze the roles of three GLUT4 trafficking motifs (FQQI, TELEY, and LL), providing molecular links between insulin signaling, cellular trafficking machinery, and the motifs in the specialized trafficking of GLUT4. Our results support a GLUT4 retention model that involves two linked intracellular cycles: one between endosomes and a retention compartment, and the other between endosomes and specialized GLUT4 transport vesicles. Targeting of GLUT4 to the former is dependent on the FQQI motif and its targeting to the latter is dependent on the TELEY motif. These two motifs act independently in retention, with the TELEY-dependent step being under the control of signaling downstream of the AS160 rab GTPase activating protein. Segregation of GLUT4 from endosomes, although positively correlated with the degree of basal retention, does not completely account for GLUT4 retention or insulin-responsiveness. Mutation of the LL motif slows return to basal intracellular retention after insulin withdrawal. Knockdown of clathrin adaptin protein complex-1 (AP-1) causes a delay in the return to intracellular retention after insulin withdrawal. The effects of mutating the LL motif and knockdown of AP-1 were not additive, establishing that AP-1 regulation of GLUT4 trafficking requires the LL motif. PMID:18550797

  2. Role of Arg228 in the phosphorylation of galactokinase: the mechanism of GHMP kinases by quantum mechanics/molecular mechanics studies.

    PubMed

    Huang, Meilan; Li, Xiaozhou; Zou, Jian-Wei; Timson, David J

    2013-07-16

    GHMP kinases are a group of structurally related small molecule kinases. They have been found in all kingdoms of life and are mostly responsible for catalyzing the ATP-dependent phosphorylation of intermediary metabolites. Although the GHMP kinases are of clinical, pharmaceutical, and biotechnological importance, the mechanism of GHMP kinases is controversial. A catalytic base mechanism was suggested for mevalonate kinase that has a structural feature of the γ-phosphate of ATP close to an aspartate residue; however, for one GHMP family member, homoserine kinase, where the residue acting as general base is absent, a direct phosphorylation mechanism was suggested. Furthermore, it was proposed by some authors that all the GHMP kinases function by a similar mechanism. This controversy in mechanism has limited our ability to exploit these enzymes as drug targets and in biotechnology. Here the phosphorylation reaction mechanism of the human galactokinase, a member of the GHMP kinase family, was investigated using molecular dynamics simulations and density functional theory-based quantum mechanics/molecular mechanics calculations (B3LYP-D/AMBER99). The reaction coordinates were localized by potential energy scan using an adiabatic mapping method. Our results indicate that a highly conserved Glu174 captures Arg105 in the proximity of the α-phosphate of ATP, forming a H-bond network; therefore, the mobility of ATP in the large oxyanion hole is restricted. Arg228 functions to stabilize the negative charge developed at the β,γ-bridging oxygen of the ATP during bond cleavage. The reaction occurs via a direct phosphorylation mechanism, and the Asp186 in the proximity of ATP does not directly participate in the reaction pathway. Because Arg228 is not conserved among GHMP kinases, reagents which form interactions with Arg228, and therefore can interrupt its function in phosphorylation, may be developed into potential selective inhibitors for galactokinase.

  3. Prediction of clathrate structure type and guest position by molecular mechanics.

    PubMed

    Fleischer, Everly B; Janda, Kenneth C

    2013-05-16

    The clathrate hydrates occur in various types in which the number, size, and shape of the various cages differ. Usually the clathrate type of a specific guest is predicted by the size and shape of the molecular guest. We have developed a methodology to determine the clathrate type employing molecular mechanics with the MMFF force field employing a strategy to calculate the energy of formation of the clathrate from the sum of the guest/cage energies. The clathrate type with the most negative (most stable) energy of formation would be the type predicted (we mainly focused on type I, type II, or bromine type). This strategy allows for a calculation to predict the clathrate type for any cage guest in a few minutes on a laptop computer. It proved successful in predicting the clathrate structure for 46 out of 47 guest molecules. The molecular mechanics calculations also provide a prediction of the guest position within the cage and clathrate structure. These predictions are generally consistent with the X-ray and neutron diffraction studies. By supplementing the diffraction study with molecular mechanics, we gain a more detailed insight regarding the details of the structure. We have also compared MM calculations to studies of the multiple occupancy of the cages. Finally, we present a density functional calculation that demonstrates that the inside of the clathrates cages have a relatively uniform and low electrostatic potential in comparison with the outside oxygen and hydrogen atoms. This implies that van der Waals forces will usually be dominant in the guest-cage interactions.

  4. New insights into the molecular mechanism of intestinal fatty acid absorption

    PubMed Central

    Wang, Tony Y.; Liu, Min; Portincasa, Piero; Wang, David Q.-H.

    2013-01-01

    Background Dietary fat is the most important energy source of all the nutrients. Fatty acids, stored as triacylglycerols in the body, are an important reservoir of stored energy and derive primarily from animal fats and vegetable oils. Design Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, i.e., fatty acid transporters on the apical membrane of enterocytes. Results These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical-chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. Conclusions A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. PMID:24102389

  5. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations.

    PubMed

    Papaioannou, Anastasios; Kuyucak, Serdar; Kuncic, Zdenka

    2016-01-01

    The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.

  6. Monoatomic layer removal mechanism in chemical mechanical polishing process: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun

    2010-03-01

    Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.

  7. Liraglutide, leptin, and their combined effects on feeding: additive intake reduction through common intracellular signaling mechanisms

    PubMed Central

    Kanoski, Scott E.; Ong, Zhi Yi; Fortin, Samantha M.; Schlessinger, Elizabeth S.; Grill, Harvey J.

    2014-01-01

    Aims Glucagon like peptide-1 receptor (GLP-1R) agonists and leptin each exert anorexigenic effects. In combination, the intake inhibitory and weight loss effects are greater than either treatment alone, however the mechanisms unclear. Materials and methods Effects of liraglutide (a long-acting GLP-1 analogue) and leptin co-treatment, delivered in low or moderate doses subcutaneously (SC) or to the 3rd ventricle respectively, on cumulative intake, meal patterns, and hypothalamic expression of intracellular signaling proteins [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and protein tyrosine phosphatase-1B (PTP1B)] were examined in lean rats. Results A low-dose combination of liraglutide (25μg/kg) and leptin (0.75μg) additively reduced cumulative food intake and body weight, a result mediated predominantly through a significant reduction in meal frequency that was not present with either drug alone. Liraglutide treatment alone also reduced meal size; an effect not enhanced with leptin co-administration. Moderate doses of liraglutide (75μg/kg) and leptin (4μg) examined separately each reduced meal frequency, cumulative food intake, and body weight; only liraglutide reduced meal size. In combination these doses did not further enhance the anorexigenic effects of either treatment alone. Ex vivo immunoblot showed elevated pSTAT3 in hypothalamic tissue following liraglutide-leptin co-treatment, an effect greater than leptin treatment alone. In addition, SC liraglutide reduced expression of PTP1B (a negative regulator of leptin receptor signaling), revealing a potential mechanism for the enhanced pSTAT3 response following liraglutide-leptin co-administration. Conclusions Collectively, these results provide novel behavioral and molecular mechanisms underlying the additive reduction in food intake and body weight following liraglutide-leptin combination treatment. PMID:25475828

  8. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    PubMed

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism.

  9. Exploring the molecular mechanism of trimethylamine-N-oxide's ability to counteract the protein denaturing effects of urea.

    PubMed

    Sarma, Rahul; Paul, Sandip

    2013-05-09

    Protein denaturation in highly concentrated urea solution is a well-known phenomenon. The counteracting effect of a naturally occurring osmolyte, trimethylamine-N-oxide (TMAO), against urea-conferred protein denaturation is also well-established. However, what is largely unknown is the mechanism by which TMAO counteracts this denaturation. To provide a molecular level understanding of how TMAO protects proteins in highly concentrated urea solution, we report here the structural, energetic, and dynamical properties of N-methylacetamide (NMA) solutions that also contain urea and/or TMAO. The solute NMA is of interest mainly because it contains the peptide linkage in addition to hydrophobic sites and represents the typical solvent-exposed state of proteins. Molecular dynamics computer simulation technique is employed in this study. Analysis of solvation characteristics reveals dehydration of NMA and reduction in hydrogen bond number between NMA oxygen and water upon addition of TMAO. The effect of TMAO on NMA-urea interaction is found to be insignificant. Because TMAO cannot donate its hydrogen to NMA oxygen, the total number of hydrogen bonds formed by NMA oxygen with solution species decreases in the presence of TMAO. In solution, TMAO is found to interact strongly with water and urea. Solvation of TMAO makes the water hydrogen bonding network relatively stronger and reduces relaxation of urea-water hydrogen bonds. Implications of these results for counteracting mechanism of TMAO are discussed.

  10. Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms

    PubMed Central

    Pandey, Prachi; Ramegowda, Venkategowda; Senthil-Kumar, Muthappa

    2015-01-01

    In field conditions, plants are often simultaneously exposed to multiple biotic and abiotic stresses resulting in substantial yield loss. Plants have evolved various physiological and molecular adaptations to protect themselves under stress combinations. Emerging evidences suggest that plant responses to a combination of stresses are unique from individual stress responses. In addition, plants exhibit shared responses which are common to individual stresses and stress combination. In this review, we provide an update on the current understanding of both unique and shared responses. Specific focus of this review is on heat–drought stress as a major abiotic stress combination and, drought–pathogen and heat–pathogen as examples of abiotic–biotic stress combinations. We also comprehend the current understanding of molecular mechanisms of cross talk in relation to shared and unique molecular responses for plant survival under stress combinations. Thus, the knowledge of shared responses of plants from individual stress studies and stress combinations can be utilized to develop varieties with broad spectrum stress tolerance. PMID:26442037

  11. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  12. Molecular mechanisms of action of bacterial exotoxins.

    PubMed

    Balfanz, J; Rautenberg, P; Ullmann, U

    1996-07-01

    Toxins are one of the inventive strategies that bacteria have developed in order to survive. As virulence factors, they play a major role in the pathogenesis of infectious diseases. Recent discoveries have once more highlighted the effectiveness of these precisely adjusted bacterial weapons. Furthermore, toxins have become an invaluable tool in the investigation of fundamental cell processes, including regulation of cellular functions by various G proteins, cytoskeletal dynamics and neural transmission. In this review, the bacterial toxins are presented in a rational classification based on the molecular mechanisms of action.

  13. Molecular Mechanisms and Management of a Cutaneous Inflammatory Disorder: Psoriasis

    PubMed Central

    Cho, Dae Ho; Park, Hyun Jeong

    2017-01-01

    Psoriasis is a complex chronic inflammatory cutaneous disorder. To date, robust molecular mechanisms of psoriasis have been reported. Among diverse aberrant immunopathogenetic mechanisms, the current model emphasizes the role of Th1 and the IL-23/Th17 axis, skin-resident immune cells and major signal transduction pathways involved in psoriasis. The multiple genetic risk loci for psoriasis have been rapidly revealed with the advent of a novel technology. Moreover, identifying epigenetic modifications could bridge the gap between genetic and environmental risk factors in psoriasis. This review will provide a better understanding of the pathogenesis of psoriasis by unraveling the complicated interplay among immunological abnormalities, genetic risk foci, epigenetic modification and environmental factors of psoriasis. With advances in molecular biology, diverse new targets are under investigation to manage psoriasis. The recent advances in treatment modalities for psoriasis based on targeted molecules are also discussed. PMID:29232931

  14. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    PubMed

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  15. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions

    PubMed Central

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-01-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells. PMID:28503089

  16. Molecular Mechanisms of Olfactory Responses to Stimulus Mixtures

    DTIC Science & Technology

    1991-02-26

    demonstrated that the amino acid chemoreceptors in this organism are function- ally coupled to one or more G-proteins (19). Biochemical studies have also shown...Hwang, P.M. and Pevsner, J. (1989) Molecular mechanisms of olfaction. TINS 12, 35-38. 3. Bruch, R.C. (1990) Signal transduction in olfaction and taste ...amino acid olfactory receptor. Comp. Biochem. Physiol. 91B, 535-540. 17. Caprio, J. (1978) Olfaction and taste in the channel catfish: An

  17. Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease

    PubMed Central

    Zhou, Fan; Katirai, Foad

    2011-01-01

    Abstract Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases. Antioxid. Redox Signal. 15, 1043–1083. PMID:21294649

  18. Molecular mechanisms of dominance evolution in Müllerian mimicry.

    PubMed

    Llaurens, V; Joron, M; Billiard, S

    2015-12-01

    Natural selection acting on dominance between adaptive alleles at polymorphic loci can be sufficiently strong for dominance to evolve. However, the molecular mechanisms underlying such evolution are generally unknown. Here, using Müllerian mimicry as a case-study for adaptive morphological variation, we present a theoretical analysis of the invasion of dominance modifiers altering gene expression through different molecular mechanisms. Toxic species involved in Müllerian mimicry exhibit warning coloration, and converge morphologically with other toxic species of the local community, due to positive frequency-dependent selection acting on these colorations. Polymorphism in warning coloration may be maintained by migration-selection balance with fine scale spatial heterogeneity. We modeled a dominance modifier locus altering the expression of the warning coloration locus, targeting one or several alleles, acting in cis or trans, and either enhancing or repressing expression. We confirmed that dominance could evolve when balanced polymorphism was maintained at the color locus. Dominance evolution could result from modifiers enhancing one allele specifically, irrespective of their linkage with the targeted locus. Nonspecific enhancers could also persist in populations, at frequencies tightly depending on their linkage with the targeted locus. Altogether, our results identify which mechanisms of expression alteration could lead to dominance evolution in polymorphic mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  19. New insights into the molecular mechanism of intestinal fatty acid absorption.

    PubMed

    Wang, Tony Y; Liu, Min; Portincasa, Piero; Wang, David Q-H

    2013-11-01

    Dietary fat is one of the most important energy sources of all the nutrients. Fatty acids, stored as triacylglycerols (also called triglycerides) in the body, are an important reservoir of stored energy and derived primarily from animal fats and vegetable oils. Although the molecular mechanisms for the transport of water-insoluble amphipathic fatty acids across cell membranes have been debated for many years, it is now believed that the dominant means for intestinal fatty acid uptake is via membrane-associated fatty acid-binding proteins, that is, fatty acid transporters on the apical membrane of enterocytes. These findings indicate that intestinal fatty acid absorption is a multistep process that is regulated by multiple genes at the enterocyte level, and intestinal fatty acid absorption efficiency could be determined by factors influencing intraluminal fatty acid molecules across the brush border membrane of enterocytes. To facilitate research on intestinal, hepatic and plasma triacylglycerol metabolism, it is imperative to establish standard protocols for precisely and accurately measuring the efficiency of intestinal fatty acid absorption in humans and animal models. In this review, we will discuss the chemical structure and nomenclature of fatty acids and summarize recent progress in investigating the molecular mechanisms underlying the intestinal absorption of fatty acids, with a particular emphasis on the physical chemistry of intestinal lipids and the molecular physiology of intestinal fatty acid transporters. A better understanding of the molecular mechanism of intestinal fatty acid absorption should lead to novel approaches to the treatment and the prevention of fatty acid-related metabolic diseases that are prevalent worldwide. © 2013 Stichting European Society for Clinical Investigation Journal Foundation. Published by John Wiley & Sons Ltd.

  20. Molecular mechanisms in lithium-associated renal disease: a systematic review.

    PubMed

    Rej, Soham; Pira, Shamira; Marshe, Victoria; Do, André; Elie, Dominique; Looper, Karl J; Herrmann, Nathan; Müller, Daniel J

    2016-11-01

    Lithium is an essential treatment in bipolar disorder and treatment-resistant depression; however, its use has been limited by concerns regarding its renal adverse effects. An improved understanding of potential molecular mechanisms can help develop prevention and treatment strategies for lithium-associated renal disease. We conducted a systematic literature search using MEDLINE, Embase, and PsychINFO including English-language original research articles published prior to November 2015 that specifically investigated lithium's effects on nephrogenic diabetes insipidus (NDI) and chronic kidney disease (CKD), using molecular markers. From a total of 3510 records, 71 pre-clinical studies and two relevant clinical studies were identified. Molecular alterations were reported in calcium signaling, inositol monophosphate, extracellular-regulated, prostaglandin, sodium/solute transport, G-protein-coupled receptors, nitric oxide, vasopressin/aquaporin, and inflammation-related pathways in lithium-associated renal disease. The majority of studies found that these mechanisms were implicated in NDI, while few studies had examined CKD. Future studies will have to focus on (1) validating the present findings in human subjects and (2) examining CKD, which is the most clinically relevant lithium-associated renal effect. This will improve our understanding of lithium's biological effects, as well as inform a personalized medicine approach, which could lead to safer lithium prescribing and less renal adverse events.

  1. Molecular Mechanisms of Aging and Immune System Regulation in Drosophila

    PubMed Central

    Eleftherianos, Ioannis; Castillo, Julio Cesar

    2012-01-01

    Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span. PMID:22949833

  2. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms

    ERIC Educational Resources Information Center

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections…

  3. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valiev, Marat; Yang, Jie; Adams, Joseph

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfermore » of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.« less

  5. Molecular mechanisms of cryptococcal meningitis

    PubMed Central

    Liu, Tong-Bao; Perlin, David; Xue, Chaoyang

    2012-01-01

    Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and cause meningitis after establishment of local infection are the dissemination of fungal cells to the bloodstream and invasion through the blood brain barrier to reach the CNS. In this review, we use cryptococcal CNS infection as an example to describe the current molecular understanding of fungal meningitis, including the establishment of the infection, dissemination, and brain invasion. Host and microbial factors that contribute to these infection steps are also discussed. PMID:22460646

  6. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE PAGES

    Huang, Jing; Mei, Ye; König, Gerhard; ...

    2017-01-24

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  7. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    PubMed

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  8. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Mei, Ye; König, Gerhard

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  9. Molecular mechanism of the Syk activation switch.

    PubMed

    Tsang, Emily; Giannetti, Anthony M; Shaw, David; Dinh, Marie; Tse, Joyce K Y; Gandhi, Shaan; Ho, Hoangdung; Wang, Sandra; Papp, Eva; Bradshaw, J Michael

    2008-11-21

    Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques. We found that dephosphorylated full-length Syk demonstrates a low initial rate of substrate phosphorylation that increases during the kinase reaction due to autophosphorylation. The initial rate of Syk activity was strongly increased by either pre-autophosphorylation or binding of phosphorylated immune tyrosine activation motif peptides, and each of these factors independently fully activated Syk. Deletion mutagenesis was used to identify regions of Syk important for regulation, and residues 340-356 of the SH2 kinase linker region were identified to be important for suppression of activity before activation. Comparison of the activation processes of Syk and Zap-70 revealed that Syk is more readily activated by autophosphorylation than Zap-70, although both kinases are rapidly activated by Src family kinases. We also studied Syk activity in B cell lysates and found endogenous Syk is also activated by phosphorylation and immune tyrosine activation motif binding. Together these experiments show that Syk functions as an "OR-gate" type of molecular switch. This mechanism of switch-like activation helps explain how Syk is both rapidly activated after receptor binding but also sustains activity over time to facilitate longer term changes in gene expression.

  10. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  11. Mechanical and Fatigue Properties of Additively Manufactured Metallic Materials

    NASA Astrophysics Data System (ADS)

    Yadollahi, Aref

    This study aims to investigate the mechanical and fatigue behavior of additively manufactured metallic materials. Several challenges associated with different metal additive manufacturing (AM) techniques (i.e. laser-powder bed fusion and direct laser deposition) have been addressed experimentally and numerically. Experiments have been carried out to study the effects of process inter-layer time interval--i.e. either building the samples one-at-a-time or multi-at-a-time (in-parallel)--on the microstructural features and mechanical properties of 316L stainless steel samples, fabricated via a direct laser deposition (DLD). Next, the effect of building orientation--i.e. the orientation in which AM parts are built--on microstructure, tensile, and fatigue behaviors of 17-4 PH stainless steel, fabricated via a laser-powder bed fusion (L-PBF) method was investigated. Afterwards, the effect of surface finishing--here, as-built versus machined--on uniaxial fatigue behavior and failure mechanisms of Inconel 718 fabricated via a laser-powder bed fusion technique was sought. The numerical studies, as part of this dissertation, aimed to model the mechanical behavior of AM materials, under monotonic and cyclic loading, based on the observations and findings from the experiments. Despite significant research efforts for optimizing process parameters, achieving a homogenous, defect-free AM product--immediately after fabrication--has not yet been fully demonstrated. Thus, one solution for ensuring the adoption of AM materials for application should center on predicting the variations in mechanical behavior of AM parts based on their resultant microstructure. In this regard, an internal state variable (ISV) plasticity-damage model was employed to quantify the damage evolution in DLD 316L SS, under tensile loading, using the microstructural features associated with the manufacturing process. Finally, fatigue behavior of AM parts has been modeled based on the crack-growth concept

  12. On The Molecular Mechanism Of Positive Novolac Resists

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  13. Cellular trajectories and molecular mechanisms of iPSC reprogramming.

    PubMed

    Apostolou, Effie; Stadtfeld, Matthias

    2018-06-16

    The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. The molecular mechanisms underlying lens fiber elongation

    PubMed Central

    Audette, Dylan S.; Scheiblin, David A.; Duncan, Melinda K.

    2016-01-01

    Lens fiber cells are highly elongated cells with complex membrane morphologies that are critical for the transparency of the ocular lens. Investigations into the molecular mechanisms underlying lens fiber cell elongation were first reported in the 1960s, however, our understanding of the process is still poor nearly 50 years later. This review summarizes what is currently hypothesized about the regulation of lens fiber cell elongation along with the available experimental evidence, and how this information relates to what is known about the regulation of cell shape/elongation in other cell types, particularly neurons. PMID:27015931

  15. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  16. Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2.

    PubMed

    Tang, Wei; Xing, Zhuqing; Li, Chao; Wang, Jinju; Wang, Yanping

    2017-04-15

    Lactobacillus plantarum MA2 was isolated from Chinese traditional Tibetan kefir grains. The antioxidant activities in vitro of this strain were evaluated extensively. The results showed that L. plantarum MA2 can tolerate hydrogen peroxide up to 2.0mM, and its fermentate (fermented supernatant, intact cell and cell-free extract) had strong reducing capacities, lipid peroxidation inhibition capacities, Fe 2+ -chelating abilities, as well as various free radical scavenging capacities. Additionally, both the fermented supernatant and cell homogenate exhibited glutathione peroxidase activity and superoxide dismutase activity. In order to investigate the antioxidant mechanism of L. plantarum MA2 at the molecular level, eight antioxidant-related genes were identified, and further analyzed. Three groups of genes cat, gshR and npx, were found up-regulated under H 2 O 2 challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Roychowdhury, Rajib; Fujita, Masayuki

    2013-01-01

    High temperature (HT) stress is a major environmental stress that limits plant growth, metabolism, and productivity worldwide. Plant growth and development involve numerous biochemical reactions that are sensitive to temperature. Plant responses to HT vary with the degree and duration of HT and the plant type. HT is now a major concern for crop production and approaches for sustaining high yields of crop plants under HT stress are important agricultural goals. Plants possess a number of adaptive, avoidance, or acclimation mechanisms to cope with HT situations. In addition, major tolerance mechanisms that employ ion transporters, proteins, osmoprotectants, antioxidants, and other factors involved in signaling cascades and transcriptional control are activated to offset stress-induced biochemical and physiological alterations. Plant survival under HT stress depends on the ability to perceive the HT stimulus, generate and transmit the signal, and initiate appropriate physiological and biochemical changes. HT-induced gene expression and metabolite synthesis also substantially improve tolerance. The physiological and biochemical responses to heat stress are active research areas, and the molecular approaches are being adopted for developing HT tolerance in plants. This article reviews the recent findings on responses, adaptation, and tolerance to HT at the cellular, organellar, and whole plant levels and describes various approaches being taken to enhance thermotolerance in plants. PMID:23644891

  18. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012.

    PubMed

    Chen, Lianguo; Qian, Pei-Yuan

    2017-08-28

    Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N -acyl homoserine lactone for quorum sensing and intracellular Ca 2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.

  19. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012

    PubMed Central

    Chen, Lianguo; Qian, Pei-Yuan

    2017-01-01

    Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N-acyl homoserine lactone for quorum sensing and intracellular Ca2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop. PMID:28846624

  20. Molecular mechanisms of CRISPR-mediated microbial immunity.

    PubMed

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.

  1. Comparative study of the molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer "bulk" polymerization and traditional radical "bulk" polymerization.

    PubMed

    Ma, Yue; Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Zhang, Huiqi

    2013-05-01

    Bisphenol A (BPA) and propranolol-imprinted polymers have been prepared via both reversible addition-fragmentation chain transfer "bulk" polymerization (RAFTBP) and traditional radical "bulk" polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Molecular Mechanism of Active Zone Organization at Vertebrate Neuromuscular Junctions

    PubMed Central

    Nishimune, Hiroshi

    2013-01-01

    Organization of presynaptic active zones is essential for development, plasticity, and pathology of the nervous system. Recent studies indicate a trans-synaptic molecular mechanism that organizes the active zones by connecting the pre- and the postsynaptic specialization. The presynaptic component of this trans-synaptic mechanism is comprised of cytosolic active zone proteins bound to the cytosolic domains of voltage-dependent calcium channels (P/Q-, N-, and L-type) on the presynaptic membrane. The postsynaptic component of this mechanism is the synapse organizer (laminin β2) that is expressed by the postsynaptic cell and accumulates specifically on top of the postsynaptic specialization. The pre- and the postsynaptic components interact directly between the extracellular domains of calcium channels and laminin β2 to anchor the presynaptic protein complex in front of the postsynaptic specialization. Hence, the presynaptic calcium channel functions as a scaffolding protein for active zone organization and as an ion-conducting channel for synaptic transmission. In contrast to the requirement of calcium influx for synaptic transmission, the formation of the active zone does not require the calcium influx through the calcium channels. Importantly, the active zones of adult synapses are not stable structures and require maintenance for their integrity. Furthermore, aging or diseases of the central and peripheral nervous system impair the active zones. This review will focus on the molecular mechanisms that organize the presynaptic active zones and summarize recent findings at the neuromuscular junctions and other synapses. PMID:22135013

  3. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    NASA Astrophysics Data System (ADS)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular

  4. The archetype-genome exemplar in molecular dynamics and continuum mechanics

    NASA Astrophysics Data System (ADS)

    Greene, M. Steven; Li, Ying; Chen, Wei; Liu, Wing Kam

    2014-04-01

    We argue that mechanics and physics of solids rely on a fundamental exemplar: the apparent properties of a system depend on the building blocks that comprise it. Building blocks are referred to as archetypes and apparent system properties as the system genome. Three entities are of importance: the archetype properties, the conformation of archetypes, and the properties of interactions activated by that conformation. The combination of these entities into the system genome is called assembly. To show the utility of the archetype-genome exemplar, this work presents the mathematical ingredients and computational implementation of theories in solid mechanics that are (1) molecular and (2) continuum manifestations of the assembly process. Both coarse-grained molecular dynamics (CGMD) and the archetype-blending continuum (ABC) theories are formulated then applied to polymer nanocomposites (PNCs) to demonstrate the impact the components of the assembly triplet have on a material genome. CGMD simulations demonstrate the sensitivity of nanocomposite viscosities and diffusion coefficients to polymer chain types (archetype), polymer-nanoparticle interaction potentials (interaction), and the structural configuration (conformation) of dispersed nanoparticles. ABC simulations show the contributions of bulk polymer (archetype) properties, occluded region of bound rubber (interaction) properties, and microstructural binary images (conformation) to predictions of linear damping properties, the Payne effect, and localization/size effects in the same class of PNC material. The paper is light on mathematics. Instead, the focus is on the usefulness of the archetype-genome exemplar to predict system behavior inaccessible to classical theories by transitioning mechanics away from heuristic laws to mechanism-based ones. There are two core contributions of this research: (1) presentation of a fundamental axiom—the archetype-genome exemplar—to guide theory development in computational

  5. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    NASA Astrophysics Data System (ADS)

    Yang, Qingcheng; To, Albert C.

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.

  6. Suppression of Kasha's rule as a mechanism for fluorescent molecular rotors and aggregation-induced emission

    NASA Astrophysics Data System (ADS)

    Qian, Hai; Cousins, Morgan E.; Horak, Erik H.; Wakefield, Audrey; Liptak, Matthew D.; Aprahamian, Ivan

    2017-01-01

    Although there are some proposed explanations for aggregation-induced emission, a phenomenon with applications that range from biosensors to organic light-emitting diodes, current understanding of the quantum-mechanical origin of this photophysical behaviour is limited. To address this issue, we assessed the emission properties of a series of BF2-hydrazone-based dyes as a function of solvent viscosity. These molecules turned out to be highly efficient fluorescent molecular rotors. This property, in addition to them being aggregation-induced emission luminogens, enabled us to probe deeper into their emission mechanism. Time-dependent density functional theory calculations and experimental results showed that the emission is not from the S1 state, as predicted from Kasha's rule, but from a higher energy (>S1) state. Furthermore, we found that suppression of internal conversion to the dark S1 state by restricting the rotor rotation enhances fluorescence, which leads to the proposal that suppression of Kasha's rule is the photophysical mechanism responsible for emission in both viscous solution and the solid state.

  7. The ligand binding mechanism to purine nucleoside phosphorylase elucidated via molecular dynamics and machine learning.

    PubMed

    Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea

    2015-01-27

    The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.

  8. Spiers Memorial Lecture. Molecular mechanics and molecular electronics.

    PubMed

    Beckman, Robert; Beverly, Kris; Boukai, Akram; Bunimovich, Yuri; Choi, Jang Wook; DeIonno, Erica; Green, Johnny; Johnston-Halperin, Ezekiel; Luo, Yi; Sheriff, Bonnie; Stoddart, Fraser; Heath, James R

    2006-01-01

    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits.

  9. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  10. The accumulation mechanism of the hypoxia imaging probe "FMISO" by imaging mass spectrometry: possible involvement of low-molecular metabolites.

    PubMed

    Masaki, Yukiko; Shimizu, Yoichi; Yoshioka, Takeshi; Tanaka, Yukari; Nishijima, Ken-Ichi; Zhao, Songji; Higashino, Kenichi; Sakamoto, Shingo; Numata, Yoshito; Yamaguchi, Yoshitaka; Tamaki, Nagara; Kuge, Yuji

    2015-11-19

    (18)F-fluoromisonidazole (FMISO) has been widely used as a hypoxia imaging probe for diagnostic positron emission tomography (PET). FMISO is believed to accumulate in hypoxic cells via covalent binding with macromolecules after reduction of its nitro group. However, its detailed accumulation mechanism remains unknown. Therefore, we investigated the chemical forms of FMISO and their distributions in tumours using imaging mass spectrometry (IMS), which visualises spatial distribution of chemical compositions based on molecular masses in tissue sections. Our radiochemical analysis revealed that most of the radioactivity in tumours existed as low-molecular-weight compounds with unknown chemical formulas, unlike observations made with conventional views, suggesting that the radioactivity distribution primarily reflected that of these unknown substances. The IMS analysis indicated that FMISO and its reductive metabolites were nonspecifically distributed in the tumour in patterns not corresponding to the radioactivity distribution. Our IMS search found an unknown low-molecular-weight metabolite whose distribution pattern corresponded to that of both the radioactivity and the hypoxia marker pimonidazole. This metabolite was identified as the glutathione conjugate of amino-FMISO. We showed that the glutathione conjugate of amino-FMISO is involved in FMISO accumulation in hypoxic tumour tissues, in addition to the conventional mechanism of FMISO covalent binding to macromolecules.

  11. Molecular Modeling of an Electrophilic Addition Reaction with "Unexpected" Regiochemistry

    ERIC Educational Resources Information Center

    Best, Katherine T.; Li, Diana; Helms, Eric D.

    2017-01-01

    The electrophilic addition of a hydrohalic acid (HX) to an alkene is often one of the first reactions learned in second-year undergraduate organic chemistry classes. During the ensuing discussion of the mechanism, it is shown that this reaction follows Markovnikov's rule, which states that the hydrogen atom will attach to the carbon with fewer…

  12. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    PubMed Central

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  13. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods

    NASA Astrophysics Data System (ADS)

    Gilbert, Kathleen M.; Skawinski, William J.; Misra, Milind; Paris, Kristina A.; Naik, Neelam H.; Buono, Ronald A.; Deutsch, Howard M.; Venanzi, Carol A.

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte> MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the phenyl

  14. Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

    PubMed

    Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng

    2017-05-05

    Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Molecular Mechanisms of Ethanol-associated Oro-esophageal Squamous Cell Carcinoma

    PubMed Central

    Liu, Yao; Chen, Hao; Sun, Zheng; Chen, Xiaoxin

    2016-01-01

    Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC. PMID:25766659

  16. [Pharmacodynamic evaluation and molecular mechanism research of Huanshao capsule on irregular menstruation].

    PubMed

    Sun, Jian-Hui; Huo, Hai-Ru; Li, Xiao-Qin; Li, Hong-Mei; Qin, De-Huai; Wu, Chun

    2018-04-01

    Huanshao capsule is widely used in irregular menstruation and has achieved a good effect. Huanshao capsule can promote gonad development in mice, significantly improve the ovarian index in mice, increase estrogen level and reduce FSH level in rats, inhibit the pain response induced by oxytocin and estrogen, inhibit writhing reaction induced by acetic acid pain in mice. Due to the complexity of traditional Chinese medical formula, the pharmacological mechanism of the treatment on the irregular menstruation of the Huanshao capsule is unclear. In this study, the internet-based computation platform (www.tcmip.cn)was used to explore the molecular mechanism of Huanshao capsule on the menstrual. The aim of this study was to find the molecular mechanism of Huanshao capsule in treating menstrual. In the study of the molecular mechanism of Huanshao capsule in the treatment of menstrual by using the internet-based computation platform, Huanshao capsule maybe treat the menstrual by the pathway of endocrine system, GnRH signal transduction pathway, estrogen signal transduction pathway, oxytocin signaling pathway, thyroid hormone signaling pathway, VEGF signaling pathway, FCεRI signaling pathway and purine metabolism and nucleotide metabolism. The early pharmacological study confirmed Huanshao capsule could increase the serum estradiol level and decrease follicle stimulating hormone level and the traditional Chinese medicine pharmacology coincide with the prediction result of internet-based computation platform which roles as the pathway of GnRH signaling pathway and estrogen signal transduction pathway. Other pathway needs further experimental verification. Copyright© by the Chinese Pharmaceutical Association.

  17. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  18. Molecular mechanisms and ecological function of far-red light signalling.

    PubMed

    Sheerin, David J; Hiltbrunner, Andreas

    2017-11-01

    Land plants possess the ability to sense and respond to far-red light (700-760 nm), which serves as an important environmental cue. Due to the nature of far-red light, it is not absorbed by chlorophyll and thus is enriched in canopy shade and will also penetrate deeper into soil than other visible wavelengths. Far-red light responses include regulation of seed germination, suppression of hypocotyl growth, induction of flowering and accumulation of anthocyanins, which depend on one member of the phytochrome photoreceptor family, phytochrome A (phyA). Here, we review the current understanding of the underlying molecular mechanisms of how plants sense far-red light through phyA and the physiological responses to this light quality. Light-activated phytochromes act on two primary pathways within the nucleus; suppression of the E3 ubiquitin ligase complex CUL4/DDB1 COP1/SPA and inactivation of the PHYTOCHROME INTERACTING FACTOR (PIF) family of bHLH transcription factors. These pathways integrate with other signal transduction pathways, including phytohormones, for tissue and developmental stage specific responses. Unlike other phytochromes that mediate red-light responses, phyA is transported from the cytoplasm to the nucleus in far-red light by the shuttle proteins FAR-RED ELONGATED HYPOCOTYL 1 (FHY1) and FHY1-LIKE (FHL). However, additional mechanisms must exist that shift the action of phyA to far-red light; current hypotheses are discussed. © 2017 John Wiley & Sons Ltd.

  19. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.

    PubMed

    Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H

    2004-01-01

    Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.

  20. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  1. The relationships between deformation mechanisms and mechanical properties of additively manufactured porous biomaterials.

    PubMed

    Kadkhodapour, J; Montazerian, H; Darabi, A Ch; Zargarian, A; Schmauder, S

    2017-06-01

    Modulating deformation mechanism through manipulating morphological parameters of scaffold internal pore architecture provides potential to tailor the overall mechanical properties under physiological loadings. Whereas cells sense local strains, cell differentiation is also impressed by the elastic deformations. In this paper, structure-property relations were developed for Ti6-Al-4V scaffolds designed based on triply periodic minimal surfaces. 10mm cubic scaffolds composed of 5×5×5 unit cells formed of F-RD (bending dominated) and I-WP (stretching dominated) architectures were additively manufactured at different volume fractions and subjected to compressive tests. The first stages of deformation for stretching dominated structure, was accompanied by bilateral layer-by-layer failure of unit cells owing to the buckling of micro-struts, while for bending dominated structure, namely F-RD, global shearing bands appeared since the shearing failure of struts in the internal architecture. Promoted mechanical properties were found for stretching dominated structure since the global orientation of struts were parallel to loading direction while inclination of struts diminished specific properties for bending dominated structure. Moreover, elastic-plastic deformation was computationally studied by applying Johnson-Cook damage model to the voxel-based models in FE analysis. Scaling analysis was performed for mechanical properties with respect to the relative density thereby failure mechanism was correlated to the constants of power law describing mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Bioinformatics analysis on molecular mechanism of rheum officinale in treatment of jaundice

    NASA Astrophysics Data System (ADS)

    Shan, Si; Tu, Jun; Nie, Peng; Yan, Xiaojun

    2017-01-01

    Objective: To study the molecular mechanism of Rheum officinale in the treatment of Jaundice by building molecular networks and comparing canonical pathways. Methods: Target proteins of Rheum officinale and related genes of Jaundice were searched from Pubchem and Gene databases online respectively. Molecular networks and canonical pathways comparison analyses were performed by Ingenuity Pathway Analysis (IPA). Results: The molecular networks of Rheum officinale and Jaundice were complex and multifunctional. The 40 target proteins of Rheum officinale and 33 Homo sapiens genes of Jaundice were found in databases. There were 19 common pathways both related networks. Rheum officinale could regulate endothelial differentiation, Interleukin-1B (IL-1B) and Tumor Necrosis Factor (TNF) in these pathways. Conclusions: Rheum officinale treat Jaundice by regulating many effective nodes of Apoptotic pathway and cellular immunity related pathways.

  3. Mechanism of Urea Crystal Dissolution in Water from Molecular Dynamics Simulation.

    PubMed

    Anand, Abhinav; Patey, G N

    2018-01-25

    Molecular dynamics simulations are used to determine the mechanism of urea crystal dissolution in water under sink conditions. Crystals of cubic and tablet shapes are considered, and results are reported for four commonly used water models. The dissolution rates for different water models can differ considerably, but the overall dissolution mechanism remains the same. Urea dissolution occurs in three stages: a relatively fast initial stage, a slower intermediate stage, and a final stage. We show that the long intermediate stage is well described by classical rate laws, which assume that the dissolution rate is proportional to the active surface area. By carrying out simulations at different temperatures, we show that urea dissolution is an activated process, with an activation energy of ∼32 kJ mol -1 . Our simulations give no indication of a significant diffusion layer, and we conclude that the detachment of molecules from the crystal is the rate-determining step for dissolution. The results we report for urea are consistent with earlier observations for the dissolution of NaCl crystals. This suggests that the three-stage mechanism and classical rate laws might apply to the dissolution of other ionic and molecular crystals.

  4. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions

    PubMed Central

    Büttner, Henning; Mack, Dietrich; Rohde, Holger

    2015-01-01

    Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles. PMID:25741476

  5. Molecular mechanisms underlying the actions of dietary factors on the skeleton

    USDA-ARS?s Scientific Manuscript database

    This book chapter summarizes the current state of knowledge on molecular mechanisms whereby nutritional status and dietary factors found in fruits, vegetables, and grains affect bone turnover and skeletal quality. The Wnt-beta catenin and bone morphogenic protein (BMP) pathways in osteoblast bone ce...

  6. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  7. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  8. Molecular mechanisms of cisplatin resistance in cervical cancer

    PubMed Central

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%–20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer. PMID:27354763

  9. Molecular mechanisms of cisplatin resistance in cervical cancer.

    PubMed

    Zhu, Haiyan; Luo, Hui; Zhang, Wenwen; Shen, Zhaojun; Hu, Xiaoli; Zhu, Xueqiong

    2016-01-01

    Patients with advanced or recurrent cervical cancer have poor prognosis, and their 1-year survival is only 10%-20%. Chemotherapy is considered as the standard treatment for patients with advanced or recurrent cervical cancer, and cisplatin appears to treat the disease effectively. However, resistance to cisplatin may develop, thus substantially compromising the efficacy of cisplatin to treat advanced or recurrent cervical cancer. In this article, we systematically review the recent literature and summarize the recent advances in our understanding of the molecular mechanisms underlying cisplatin resistance in cervical cancer.

  10. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells.

    PubMed

    Kumar, Sanjay; Tchounwou, Paul B

    2015-12-01

    Cis-diamminedichloroplatinum (II) (cisplatin) is a widely used anti-tumor drug for the treatment of a broad range of human malignancies with successful therapeutic outcomes for head and neck, ovarian, and testicular cancers. It has been found to inhibit cell cycle progression and to induce oxidative stress and apoptosis in acute promyelocytic leukemia (APL) cells. However, its molecular mechanisms of cytotoxic action are poorly understood. We hypothesized that cisplatin induces cytotoxicity through DNA adduct formation, oxidative stress, transcriptional factors (p53 and AP-1), cell cycle regulation, stress signaling and apoptosis in APL cells. We used the APL cell line as a model, and applied a variety of molecular tools to elucidate the cytotoxic mode of action of cisplatin. We found that cisplatin inhibited cell proliferation by a cytotoxicity, characterized by DNA damage and modulation of oxidative stress. Cisplatin also activated p53 and phosphorylated activator protein (AP-1) component, c-Jun at serine (63, 73) residue simultaneously leading to cell cycle arrest through stimulation of p21 and down regulation of cyclins and cyclin dependent kinases in APL cell lines. It strongly activated the intrinsic pathway of apoptosis through alteration of the mitochondrial membrane potential, release of cytochrome C, and up-regulation of caspase 3 activity. It also down regulated the p38MAPK pathway. Overall, this study highlights the molecular mechanisms that underline cisplatin toxicity to APL cells, and provides insights into selection of novel targets and/or design of therapeutic agents to treat APL.

  11. Advancing neuroscience through epigenetics: molecular mechanisms of learning and memory.

    PubMed

    Molfese, David L

    2011-01-01

    Humans share 96% of our 30,000 genes with Chimpanzees. The 1,200 genes that differ appear at first glance insufficient to describe what makes us human and them apes. However, we are now discovering that the mechanisms that regulate how genes are expressed tell a much richer story than our DNA alone. Sections of our DNA are constantly being turned on or off, marked for easy access, or secluded and hidden away, all in response to ongoing cellular activity. In the brain, neurons encode information-in effect memories-at the cellular level. Yet while memories may last a lifetime, neurons are dynamic structures. Every protein in the synapse undergoes some form of turnover, some with half-lives of only hours. How can a memory persist beyond the lifetimes of its constitutive molecular building blocks? Epigenetics-changes in gene expression that do not alter the underlying DNA sequence-may be the answer. In this article, epigenetic mechanisms including DNA methylation and acetylation or methylation of the histone proteins that package DNA are described in the context of animal learning. Through the interaction of these modifications a "histone code" is emerging wherein individual memories leave unique memory traces at the molecular level with distinct time courses. A better understanding of these mechanisms has implications for treatment of memory disorders caused by normal aging or diseases including schizophrenia, Alzheimer's, depression, and drug addiction.

  12. Prevention of preterm birth by progestational agents: what are the molecular mechanisms?

    PubMed Central

    Nold, Christopher; Maubert, Monique; Anton, Lauren; Yellon, Steven; Elovitz, Michal A.

    2013-01-01

    OBJECTIVE Clinically, vaginal progesterone (VP) and 17 alpha-hydroxyprogestreone caproate (17P) have been shown to prevent preterm birth (PTB) in high risk populations. We hypothesize treatment with these agents may prevent PTB by altering molecular pathways involved in uterine contractility or cervical remodeling. STUDY DESIGN Using a mouse model, on days E14-E17 CD-1 pregnant mice were treated with either 1) 0.1cc of 25 mg/ml of 17P subcutaneously, 2) 0.1cc of castor oil subcutaneously, 3) 0.1 cc of 10 mg/ml of progesterone in Replens vaginally, or 4) 0.1cc of Replens vaginally, with four dams per treatment group. Mice were sacrificed six hours after treatment on E17.5. Cervices and uteri were collected for molecular analysis. RESULTS Exposure to VP significantly increased the expression of Defensin 1 compared to Replens (p<0.01) on E17.5. Neither VP nor 17P altered the expression of uterine contraction-associated proteins, progesterone mediated regulators of uterine quiescence, microRNAs involved in uterine contractility, or pathways involved in cervical remodeling. In addition, neither agent had an effect on immune cell trafficking or collagen content in the cervix. CONCLUSION Neither VP nor 17P had any effect on the studied pathways known to be involved in uterine contractility or quiescence. In the cervix, neither VP nor 17P altered pathways demonstrated to be involved in cervical remodeling. Administration of VP was noted to increase the expression of the antimicrobial protein Defensin 1. Whether this molecular change from VP results in a functional effect and is a key mechanism by which VP prevents PTB requires further study. PMID:23433326

  13. Combined quantum-mechanics/molecular-mechanics dynamics simulation of A-DNA double strands irradiated by ultra-low-energy carbon ions

    NASA Astrophysics Data System (ADS)

    Ngaojampa, C.; Nimmanpipug, P.; Yu, L. D.; Anuntalabhochai, S.; Lee, V. S.

    2011-02-01

    In order to promote understanding of the fundamentals of ultra-low-energy ion interaction with DNA, molecular dynamics simulations using combined quantum-mechanics/molecular-mechanics of poly-AT and poly-GC A-DNA double strands irradiated by <200 eV carbon ions were performed to investigate the molecular implications of mutation bias. The simulations were focused on the responses of the DNA backbones and nitrogenous bases to irradiation. Analyses of the root mean square displacements of the backbones and non-hydrogen atoms of base rings of the simulated DNA structure after irradiation revealed a potential preference of DNA double strand separation, dependent on the irradiating energy. The results show that for the backbones, the large difference in the displacement between poly-GC and poly-AT in the initial time period could be the reason for the backbone breakage; for the nitrogenous base pairs, A-T is 30% more sensitive or vulnerable to ion irradiation than G-C, demonstrating a preferential, instead of random, effect of irradiation-induced mutation.

  14. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    PubMed

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules.

  15. Elucidation of the molecular mechanisms underlying adverse reactions associated with a kinase inhibitor using systems toxicology

    PubMed Central

    Amemiya, Takahiro; Honma, Masashi; Kariya, Yoshiaki; Ghosh, Samik; Kitano, Hiroaki; Kurachi, Yoshihisa; Fujita, Ken-ichi; Sasaki, Yasutsuna; Homma, Yukio; Abernethy, Darrel R; Kume, Haruki; Suzuki, Hiroshi

    2015-01-01

    Background/Objectives: Targeted kinase inhibitors are an important class of agents in anticancer therapeutics, but their limited tolerability hampers their clinical performance. Identification of the molecular mechanisms underlying the development of adverse reactions will be helpful in establishing a rational method for the management of clinically adverse reactions. Here, we selected sunitinib as a model and demonstrated that the molecular mechanisms underlying the adverse reactions associated with kinase inhibitors can efficiently be identified using a systems toxicological approach. Methods: First, toxicological target candidates were short-listed by comparing the human kinase occupancy profiles of sunitinib and sorafenib, and the molecular mechanisms underlying adverse reactions were predicted by sequential simulations using publicly available mathematical models. Next, to evaluate the probability of these predictions, a clinical observation study was conducted in six patients treated with sunitinib. Finally, mouse experiments were performed for detailed confirmation of the hypothesized molecular mechanisms and to evaluate the efficacy of a proposed countermeasure against adverse reactions to sunitinib. Results: In silico simulations indicated the possibility that sunitinib-mediated off-target inhibition of phosphorylase kinase leads to the generation of oxidative stress in various tissues. Clinical observations of patients and mouse experiments confirmed the validity of this prediction. The simulation further suggested that concomitant use of an antioxidant may prevent sunitinib-mediated adverse reactions, which was confirmed in mouse experiments. Conclusions: A systems toxicological approach successfully predicted the molecular mechanisms underlying clinically adverse reactions associated with sunitinib and was used to plan a rational method for the management of these adverse reactions. PMID:28725458

  16. Unraveling the mechanism of molecular doping in organic semiconductors.

    PubMed

    Mityashin, Alexander; Olivier, Yoann; Van Regemorter, Tanguy; Rolin, Cedric; Verlaak, Stijn; Martinelli, Nicolas G; Beljonne, David; Cornil, Jérôme; Genoe, Jan; Heremans, Paul

    2012-03-22

    The mechanism by which molecular dopants donate free charge carriers to the host organic semiconductor is investigated and is found to be quite different from the one in inorganic semiconductors. In organics, a strong correlation between the doping concentration and its charge donation efficiency is demonstrated. Moreover, there is a threshold doping level below which doping simply has no electrical effect. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  18. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death

    PubMed Central

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-01-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30–50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases. PMID:26024394

  19. Molecular mechanisms of Ebola virus pathogenesis: focus on cell death.

    PubMed

    Falasca, L; Agrati, C; Petrosillo, N; Di Caro, A; Capobianchi, M R; Ippolito, G; Piacentini, M

    2015-08-01

    Ebola virus (EBOV) belongs to the Filoviridae family and is responsible for a severe disease characterized by the sudden onset of fever and malaise accompanied by other non-specific signs and symptoms; in 30-50% of cases hemorrhagic symptoms are present. Multiorgan dysfunction occurs in severe forms with a mortality up to 90%. The EBOV first attacks macrophages and dendritic immune cells. The innate immune reaction is characterized by a cytokine storm, with secretion of numerous pro-inflammatory cytokines, which induces a huge number of contradictory signals and hurts the immune cells, as well as other tissues. Other highly pathogenic viruses also trigger cytokine storms, but Filoviruses are thought to be particularly lethal because they affect a wide array of tissues. In addition to the immune system, EBOV attacks the spleen and kidneys, where it kills cells that help the body to regulate its fluid and chemical balance and that make proteins that help the blood to clot. In addition, EBOV causes liver, lungs and kidneys to shut down their functions and the blood vessels to leak fluid into surrounding tissues. In this review, we analyze the molecular mechanisms at the basis of Ebola pathogenesis with a particular focus on the cell death pathways induced by the virus. We also discuss how the treatment of the infection can benefit from the recent experience of blocking/modulating cell death in human degenerative diseases.

  20. Molecular Signature and Mechanisms of Hepatitis D Virus-Associated Hepatocellular Carcinoma.

    PubMed

    Diaz, Giacomo; Engle, Ronald E; Tice, Ashley; Melis, Marta; Montenegro, Stephanie; Rodriguez-Canales, Jaime; Hanson, Jeffrey; Emmert-Buck, Michael R; Bock, Kevin W; Moore, Ian N; Zamboni, Fausto; Govindarajan, Sugantha; Kleiner, David; Farci, Patrizia

    2018-06-01

    There is limited data on the molecular mechanisms whereby hepatitis D virus (HDV) promotes liver cancer. Therefore, serum and liver specimens obtained at the time of liver transplantation from well-characterized patients with HDV-HCC (n-5) and with non-HCC HDV cirrhosis (n=7) were studied using an integrated genomic approach. Transcriptomic profiling was performed using laser capture-microdissected (LCM) malignant and non-malignant hepatocytes, tumorous and non-tumorous liver tissue from patients with HDV-HCC, and liver tissue from patients with non-HCC HDV cirrhosis. HDV-HCC was also compared with hepatitis B virus (HBV) HBV-HCC alone and hepatitis C virus (HCV) HCV-HCC. HDV malignant hepatocytes were characterized by an enrichment of up-regulated transcripts associated with pathways involved in cell cycle/DNA replication, damage and repair (sonic hedgehog, GADD45, DNA-damage-induced 14-3-3σ, cyclins and cell cycle regulation, cell cycle: G2/M DNA-damage checkpoint regulation, and hereditary breast cancer). Moreover, a large network of genes identified functionally relate to DNA repair, cell cycle, mitotic apparatus and cell division, including 4 cancer testis antigen genes, attesting to the critical role of genetic instability in this tumor. Besides being over-expressed, these genes were also strongly co-regulated. Gene co-regulation was high not only when compared to non-malignant hepatocytes, but also to malignant hepatocytes from HBV-HCC alone or HCV-HCC. Activation and co-regulation of genes critically associated with DNA replication, damage, and repair point to genetic instability as an important mechanism of HDV hepatocarcinogenesis. This specific HDV-HCC trait emerged also from the comparison of the molecular pathways identified for each hepatitis virus-associated HCC. Despite the dependence of HDV on HBV, these findings suggest that HDV and HBV promote carcinogenesis by distinct molecular mechanisms. This study identifies a molecular signature of HDV

  1. Impact of Low Molecular Weight Poly(3-hexylthiophene)s as Additives in Organic Photovoltaic Devices.

    PubMed

    Seibers, Zach D; Le, Thinh P; Lee, Youngmin; Gomez, Enrique D; Kilbey, S Michael

    2018-01-24

    Despite tremendous progress in using additives to enhance the power conversion efficiency of organic photovoltaic devices, significant challenges remain in controlling the microstructure of the active layer, such as at internal donor-acceptor interfaces. Here, we demonstrate that the addition of low molecular weight poly(3-hexylthiophene)s (low-MW P3HT) to the P3HT/fullerene active layer increases device performance up to 36% over an unmodified control device. Low MW P3HT chains ranging in size from 1.6 to 8.0 kg/mol are blended with 77.5 kg/mol P3HT chains and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) fullerenes while keeping P3HT/PCBM ratio constant. Optimal photovoltaic device performance increases are obtained for each additive when incorporated into the bulk heterojunction blend at loading levels that are dependent upon additive MW. Small-angle X-ray scattering and energy-filtered transmission electron microscopy imaging reveal that domain sizes are approximately invariant at low loading levels of the low-MW P3HT additive, and wide-angle X-ray scattering suggests that P3HT crystallinity is unaffected by these additives. These results suggest that oligomeric P3HTs compatibilize donor-acceptor interfaces at low loading levels but coarsen domain structures at higher loading levels and they are consistent with recent simulations results. Although results are specific to the P3HT/PCBM system, the notion that low molecular weight additives can enhance photovoltaic device performance generally provides a new opportunity for improving device performance and operating lifetimes.

  2. Molecular mechanisms influencing efficiency of RNA interference in insects.

    PubMed

    Cooper, Anastasia M W; Silver, Kristopher; Jianzhen, Zhang; Park, Yoonseong; Zhu, Kun Yan

    2018-06-21

    RNA interference (RNAi) is an endogenous, sequence-specific gene silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. The recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Mechanical properties of PP/PA blends in addition with PP-g-MAH with different PP molecular weight and MAH content

    NASA Astrophysics Data System (ADS)

    Tokumitsu, Katuhisa; Nakajima, Yuki; Aoki, Kenji

    2016-03-01

    The mechanical properties and morphological changes of PP/PA6/PP-g-MAH blends were investigated. In particular, various kinds of PP-g-MAH, which have a series of different Mw of PP and MAH content, were investigated. From the tensile test results of PP/PA6 blends, although the elongation at break and yield stress can be improved by adding PP-g-MAH, modulus slightly decreased. In particular, elongation at break of PP/PA in addition with PP-g-MAH increased twentyfold from 27.0% (without PP-g-MAH) to 570%. On the basis of Charpy impact test results, the impact strength can also be improved by adding PP-g-MAH. From SEM observation, it was found that the diameter of the dispersed PA6 phase in PP matrix was getting much smaller with PP-g-MAH content. From the TEM observation, the boundary of the PA phase in PP/PA blends without PP-g-MAH compatibilizer can be observed clearly, but it becomes hard to see the boundary part of the PA phase in PP/PA blend with compatibilizer. Furthermore, when comparing the inside of the PA phase, small amount of PP phase can be observed in the PA phase of PP/PA blend with compatibilizer. Here, we defined a parameter, Comprehensive Mechanical Property Factor (CMPF), which can be calculated by multiple each mechanical property (elongation at break, yield stress, modulus and impact strength) against each maximum value, and it was found that CMPF has a good correlation with the diameter of PA6 phase. In conclusion, an optimum mechanical property of PP/PA6 can be obtained by using PP-g-MAH with Mw around 35,000 ˜ 50,000 g mol-1 and MAH content around 2.0 ˜ 3.5 %.

  4. Possible molecular mechanisms linking air pollution and asthma in children.

    PubMed

    Esposito, Susanna; Tenconi, Rossana; Lelii, Mara; Preti, Valentina; Nazzari, Erica; Consolo, Silvia; Patria, Maria Francesca

    2014-03-01

    Air pollution has many effects on the health of both adults and children, but children's vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics. Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children's susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections. Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease

  5. Amino acid analogues bind to carbon nanotube via π-π interactions: Comparison of molecular mechanical and quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-01

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  6. Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations.

    PubMed

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-14

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  7. Increased Mechanical Properties Through the Addition of Zr to GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Lerch, Bradley A.

    2011-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has shown exceptional mechanical properties above 932 F (773 K). However, its properties below 932 F (773 K) are inferior to precipitation strengthened alloys such as Cu-Cr, Cu-Zr and Cu-Cr-Zr when they are in the fully aged, hard-drawn condition. It has been noted that the addition of small amounts of Zr, typically 0.1 wt.% to 0.5 wt.%, can greatly enhance the mechanical properties of copper-based alloys. Limited testing was conducted upon GRCop-84 with an addition of 0.4 wt.% Zr to determine its tensile, creep and low cycle fatigue (LCF) properties. Very large increases in strength (up to 68%) and ductility (up to 123%) were observed at both room temperature and 932 F (773 K). Creep properties at 932 F (773 K) demonstrated more than an order of magnitude decrease in the creep rate relative to unmodified GRCop-84 with a corresponding order of magnitude increase in creep life. Limited LCF testing showed that the modified alloy had a comparable LCF life at room temperature, but it was capable of sustaining a much higher load. While more testing and composition optimization are required, the addition of Zr to GRCop-84 has shown clear benefits to mechanical properties.

  8. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    PubMed

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  9. Build platform that provides mechanical engagement with additive manufacturing prints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, Amelia M.

    A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.

  10. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface.

    PubMed

    Löytynoja, T; Li, X; Jänkälä, K; Rinkevicius, Z; Ågren, H

    2016-07-14

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  11. Quantum mechanics capacitance molecular mechanics modeling of core-electron binding energies of methanol and methyl nitrite on Ag(111) surface

    NASA Astrophysics Data System (ADS)

    Löytynoja, T.; Li, X.; Jänkälä, K.; Rinkevicius, Z.; Ågren, H.

    2016-07-01

    We study a newly devised quantum mechanics capacitance molecular mechanics (QMCMM) method for the calculation of core-electron binding energies in the case of molecules adsorbed on metal surfaces. This yet untested methodology is applied to systems with monolayer of methanol/methyl nitrite on an Ag(111) surface at 100 K temperature. It was found out that the studied C, N, and O 1s core-hole energies converge very slowly as a function of the radius of the metallic cluster, which was ascribed to build up of positive charge on the edge of the Ag slab. Further analysis revealed that an extrapolation process can be used to obtain binding energies that deviated less than 0.5 eV against experiments, except in the case of methanol O 1s where the difference was as large as 1.8 eV. Additional QM-cluster calculations suggest that the latter error can be connected to the lack of charge transfer over the QM-CMM boundary. Thus, the results indicate that the QMCMM and QM-cluster methods can complement each other in a holistic picture of molecule-adsorbate core-ionization studies, where all types of intermolecular interactions are considered.

  12. Gap compression/extension mechanism of bacterial flagellar hook as the molecular universal joint.

    PubMed

    Furuta, Tadaomi; Samatey, Fadel A; Matsunami, Hideyuki; Imada, Katsumi; Namba, Keiichi; Kitao, Akio

    2007-03-01

    Bacterial flagellar hook acts as a molecular universal joint, transmitting torque produced by the flagellar basal body, a rotary motor, to the flagellar filament. The hook forms polymorphic supercoil structures and can be considered as an assembly of 11 circularly arranged protofilaments. We investigated the molecular mechanism of the universal joint function of the hook by a approximately two-million-atom molecular dynamics simulation. On the inner side of the supercoil, protein subunits are highly packed along the protofilament and no gaps remain for further compression, whereas subunits are slightly separated and are hydrogen bonded through one layer of water molecules on the outer side. As for the intersubunit interactions between protofilaments, subunits are packed along the 6-start helix in a left-handed supercoil whereas they are highly packed along the 5-start helix in a right-handed supercoil. We conclude that the supercoiled structures of the hook in the left- and right-handed forms make maximal use of the gaps between subunits, which we call "gap compression/extension mechanism". Mutual sliding of subunits at the subunit interface accompanying rearrangements of intersubunit hydrogen bonds is interpreted as a mechanism to allow continuous structural change of the hook during flagellar rotation at low energy cost.

  13. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    PubMed

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  14. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  15. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations

    NASA Astrophysics Data System (ADS)

    Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G.

    2011-10-01

    The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.

  16. Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin.

    PubMed

    Aziz, Jazli; Shezali, Hafiz; Radzi, Zamri; Yahya, Noor Azlin; Abu Kassim, Noor Hayaty; Czernuszka, Jan; Rahman, Mohammad Tariqur

    2016-01-01

    Collagen and elastin networks make up the majority of the extracellular matrix in many organs, such as the skin. The mechanisms which are involved in the maintenance of homeostatic equilibrium of these networks are numerous, involving the regulation of genetic expression, growth factor secretion, signalling pathways, secondary messaging systems, and ion channel activity. However, many factors are capable of disrupting these pathways, which leads to an imbalance of homeostatic equilibrium. Ultimately, this leads to changes in the physical nature of skin, both functionally and cosmetically. Although various factors have been identified, including carcinogenesis, ultraviolet exposure, and mechanical stretching of skin, it was discovered that many of them affect similar components of regulatory pathways, such as fibroblasts, lysyl oxidase, and fibronectin. Additionally, it was discovered that the various regulatory pathways intersect with each other at various stages instead of working independently of each other. This review paper proposes a model which elucidates how these molecular pathways intersect with one another, and how various internal and external factors can disrupt these pathways, ultimately leading to a disruption in collagen and elastin networks. © 2016 S. Karger AG, Basel.

  17. Identification and the molecular mechanism of a novel myosin-derived ACE inhibitory peptide.

    PubMed

    Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Shiuan, David; Chen, Feng; Li, Jianrong; Liu, Jingbo

    2018-01-24

    The objective of this work was to identify a novel ACE inhibitory peptide from myosin using a number of in silico methods. Myosin was evaluated as a substrate for use in the generation of ACE inhibitory peptides using BIOPEP and ExPASy PeptideCutter. Then the ACE inhibitory activity prediction of peptides in silico was evaluated using the program peptide ranker, following the database search of known and unknown peptides using the program BIOPEP. In addition, the interaction mechanisms of the peptide and ACE were evaluated by DS. All of the tripeptides were predicted to be nontoxic. Results suggested that the tripeptide NCW exerted potent ACE inhibitory activity with an IC 50 value of 35.5 μM. Furthermore, the results suggested that the peptide NCW comes into contact with Zn 701, Tyr 523, His 383, Glu 384, Glu 411, and His 387. The potential molecular mechanism of the NCW/ACE interaction was investigated. Results confirmed that the higher inhibitory potency of NCW might be attributed to the formation of more hydrogen bonds with the ACE's active site. Therefore, the in silico method is effective to predict and identify novel ACE inhibitory peptides from protein hydrolysates.

  18. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    PubMed

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  19. Convergent and divergent pathways decoding hierarchical additive mechanisms in treating cerebral ischemia-reperfusion injury.

    PubMed

    Zhang, Ying-Ying; Li, Hai-Xia; Chen, Yin-Ying; Fang, Hong; Yu, Ya-Nan; Liu, Jun; Jing, Zhi-Wei; Wang, Zhong; Wang, Yong-Yan

    2014-03-01

    Cerebral ischemia is considered to be a highly complex disease resulting from the complicated interplay of multiple pathways. Disappointedly, most of the previous studies were limited to a single gene or a single pathway. The extent to which all involved pathways are translated into fusing mechanisms of a combination therapy is of fundamental importance. We report an integrative strategy to reveal the additive mechanism that a combination (BJ) of compound baicalin (BA) and jasminoidin (JA) fights against cerebral ischemia based on variation of pathways and functional communities. We identified six pathways of BJ group that shared diverse additive index from 0.09 to 1, which assembled broad cross talks from seven pathways of BA and 16 pathways of JA both at horizontal and vertical levels. Besides a total of 60 overlapping functions as a robust integration background among the three groups based on significantly differential subnetworks, additive mechanism with strong confidence by networks altered functions. These results provide strong evidence that the additive mechanism is more complex than previously appreciated, and an integrative analysis of pathways may suggest an important paradigm for revealing pharmacological mechanisms underlying drug combinations. © 2013 John Wiley & Sons Ltd.

  20. Detection of plasticity mechanisms in an energetic molecular crystal through shock-like 3D unidirectional compressions: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard

    2017-06-01

    TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.

  1. Molecular Mechanisms of Diabetic Retinopathy, General Preventive Strategies, and Novel Therapeutic Targets

    PubMed Central

    Safi, Sher Zaman; Kumar, Selva; Ismail, Ikram Shah Bin

    2014-01-01

    The growing number of people with diabetes worldwide suggests that diabetic retinopathy (DR) and diabetic macular edema (DME) will continue to be sight threatening factors. The pathogenesis of diabetic retinopathy is a widespread cause of visual impairment in the world and a range of hyperglycemia-linked pathways have been implicated in the initiation and progression of this condition. Despite understanding the polyol pathway flux, activation of protein kinase C (KPC) isoforms, increased hexosamine pathway flux, and increased advanced glycation end-product (AGE) formation, pathogenic mechanisms underlying diabetes induced vision loss are not fully understood. The purpose of this paper is to review molecular mechanisms that regulate cell survival and apoptosis of retinal cells and discuss new and exciting therapeutic targets with comparison to the old and inefficient preventive strategies. This review highlights the recent advancements in understanding hyperglycemia-induced biochemical and molecular alterations, systemic metabolic factors, and aberrant activation of signaling cascades that ultimately lead to activation of a number of transcription factors causing functional and structural damage to retinal cells. It also reviews the established interventions and emerging molecular targets to avert diabetic retinopathy and its associated risk factors. PMID:25105142

  2. Molecular mechanism of extreme mechanostability in a pathogen adhesin.

    PubMed

    Milles, Lukas F; Schulten, Klaus; Gaub, Hermann E; Bernardi, Rafael C

    2018-03-30

    High resilience to mechanical stress is key when pathogens adhere to their target and initiate infection. Using atomic force microscopy-based single-molecule force spectroscopy, we explored the mechanical stability of the prototypical staphylococcal adhesin SdrG, which targets a short peptide from human fibrinogen β. Steered molecular dynamics simulations revealed, and single-molecule force spectroscopy experiments confirmed, the mechanism by which this complex withstands forces of over 2 nanonewtons, a regime previously associated with the strength of a covalent bond. The target peptide, confined in a screwlike manner in the binding pocket of SdrG, distributes forces mainly toward the peptide backbone through an intricate hydrogen bond network. Thus, these adhesins can attach to their target with exceptionally resilient mechanostability, virtually independent of peptide side chains. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Active mechanics in living oocytes reveal molecular-scale force kinetics

    NASA Astrophysics Data System (ADS)

    Ahmed, Wylie; Fodor, Etienne; Almonacid, Maria; Bussonnier, Matthias; Verlhac, Marie-Helene; Gov, Nir; Visco, Paolo; van Wijland, Frederic; Betz, Timo

    Unlike traditional materials, living cells actively generate forces at the molecular scale that change their structure and mechanical properties. This nonequilibrium activity is essential for cellular function, and drives processes such as cell division. Single molecule studies have uncovered the detailed force kinetics of isolated motor proteins in-vitro, however their behavior in-vivo has been elusive due to the complex environment inside the cell. Here, we quantify active forces and intracellular mechanics in living oocytes using in-vivo optical trapping and laser interferometry of endogenous vesicles. We integrate an experimental and theoretical framework to connect mesoscopic measurements of nonequilibrium properties to the underlying molecular- scale force kinetics. Our results show that force generation by myosin-V drives the cytoplasmic-skeleton out-of-equilibrium (at frequencies below 300 Hz) and actively softens the environment. In vivo myosin-V activity generates a force of F ~ 0 . 4 pN, with a power-stroke of length Δx ~ 20 nm and duration τ ~ 300 μs, that drives vesicle motion at vv ~ 320 nm/s. This framework is widely applicable to characterize living cells and other soft active materials.

  4. PDMS Network Structure-Property Relationships: Influence of Molecular Architecture on Mechanical and Wetting Properties

    NASA Astrophysics Data System (ADS)

    Melillo, Matthew Joseph

    /TDSS and commercial PDMS-based Sylgard 184 composite, but only keep improving with additional crosslinker in the silanol/TEOS systems due to in situ TEOS aggregation. We relate molecular network topology to mechanical properties using outputs from the Miller-Macosko model in the vinyl/TDSS system. The elastic fraction and storage modulus correlate well, as do the pendant fraction and the loss tangent, demonstrating the importance of each fraction in bulk mechanical properties. By studying the dynamic behavior of water droplets wetting PDMS substrates, we observe non-linear wetting behaviors that are markedly different from linear behaviors seen on glassy polymer substrates. The non-linear behavior is only observed prior to extraction, while after extraction, both systems demonstrate behavior similar to glassy polymers. This reveals the dramatic role small amounts of uncrosslinked materials present in the sol fraction play in the surface wetting dynamics of PDMS materials. We further demonstrate the role of uncrosslinked material by adding silicone oils into otherwise fully crosslinked PDMS networks and study their wetting properties. Through careful formulation and preparation of PDMS materials, compared to simply mixing two formulations present in Sylgard 184, one can apply polymer network models to glean useful information about network topology. The benefits of doing so outweigh the costs. We stress the importance of performing Soxhlet extraction to remove unreacted components from PDMS materials, even when using optimal stoichiometry. These mobile molecules that remain after crosslinking can alter significantly wetting behavior and readily leach into liquid environments. However, it is equally important to stress that Soxhlet extraction will not remove all unreacted material. Some will always remain in PDMS, which is often the practice in preparing microfluidic devices. While Sylgard 184 is very well suited for some applications, the results presented in this

  5. Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 microglial cells and the molecular mechanism.

    PubMed

    Yuan, Dan; Ma, Bin; Yang, Jing-yu; Xie, Yuan-yuan; Wang, Li; Zhang, Li-jia; Kano, Yoshihiro; Wu, Chun-fu

    2009-12-01

    Excessive production of nitric oxide (NO) and proinflammatory cytokines from activated microglia contributes to human neurodegenerative disorders. Our previous study demonstrated the potent inhibition of lipopolysaccharide (LPS)-induced NO production in rat primary microglial cells by rhynchophylline (RIN) and isorhynchophylline (IRN), a pair of isomeric alkaloids of Uncaria rhynchophylla (Miq.) Jacks. that has been used in China for centuries as a "cognitive enhancer" as well as to treat strokes. We further investigated whether RIN and IRN effectively suppress release of proinflammatory cytokines in LPS-activated microglial cells and the underling molecular mechanism for the inhibition of microglial activation. RIN and IRN concentration-dependently attenuated LPS-induced production of proinflammatory cytokines such as TNF-alpha and IL-1beta as well as NO in mouse N9 microglial cells, with IRN showing more potent inhibition of microglial activation. The western blotting analysis indicated that the potential molecular mechanism for RIN or IRN-mediated attenuation was implicated in suppressions of iNOS protein level, phosphorylation of ERK and p38 MAPKs, and degradation of IkappaBalpha. In addition, the differential regulation of the three signaling pathways by two isomers was shown. Our results suggest that RIN and IRN may be effective therapeutic candidates for use in the treatment of neurodegenerative diseases accompanied by microglial activation.

  6. Analysis of the Molecular Mechanisms of Reepithelialization in Drosophila Embryos

    PubMed Central

    Matsubayashi, Yutaka; Millard, Tom H.

    2016-01-01

    Significance: The epidermis provides the main barrier function of skin, and therefore its repair following wounding is an essential component of wound healing. Repair of the epidermis, also known as reepithelialization, occurs by collective migration of epithelial cells from around the wound edge across the wound until the advancing edges meet and fuse. Therapeutic manipulation of this process could potentially be used to accelerate wound healing. Recent Advances: It is difficult to analyze the cellular and molecular mechanisms of reepithelialization in human tissue, so a variety of model organisms have been used to improve our understanding of the process. One model system that has been especially useful is the embryo of the fruit fly Drosophila, which provides a simple, accessible model of the epidermis and can be manipulated genetically, allowing detailed analysis of reepithelialization at the molecular level. This review will highlight the key insights that have been gained from studying reepithelialization in Drosophila embryos. Critical Issues: Slow reepithelialization increases the risk of wounds becoming infected and ulcerous; therefore, the development of therapies to accelerate or enhance the process would be a great clinical advance. Improving our understanding of the molecular mechanisms that underlie reepithelialization will help in the development of such therapies. Future Directions: Research in Drosophila embryos has identified a variety of genes and proteins involved in triggering and driving reepithelialization, many of which are conserved in humans. These novel reepithelialization proteins are potential therapeutic targets and therefore findings obtained in Drosophila may ultimately lead to significant clinical advances. PMID:27274434

  7. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.

    PubMed

    Silvestre, Jean-Sébastien; Smadja, David M; Lévy, Bernard I

    2013-10-01

    After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.

  8. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.

    PubMed

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-05-30

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.

  9. Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer

    PubMed Central

    Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping

    2015-01-01

    Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957

  10. Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance.

    PubMed

    Xue, Dawei; Zhang, Xiaoqin; Lu, Xueli; Chen, Guang; Chen, Zhong-Hua

    2017-01-01

    Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.

  11. Addition of perfluorocarbons to alginate hydrogels significantly impacts molecular transport and fracture stress.

    PubMed

    White, Joseph C; Stoppel, Whitney L; Roberts, Susan C; Bhatia, Surita R

    2013-02-01

    Perfluorocarbons (PFCs) are used in biomaterial formulations to increase oxygen (O(2) ) tension and create a homogeneous O(2) environment in three-dimensional tissue constructs. It is unclear how PFCs affect mechanical and transport properties of the scaffold, which are critical for robustness, intracellular signaling, protein transport, and overall device efficacy. In this study, we investigate composite alginate hydrogels containing a perfluorooctyl bromide (PFOB) emulsion stabilized with Pluronic(®) F68 (F68). We demonstrate that PFC addition significantly affects biomaterial properties and performance. Solution and hydrogel mechanical properties and transport of representative hydrophilic (riboflavin), hydrophobic (methyl and ethyl paraben), and protein (bovine serum albumin, BSA) solutes were compared in alginate/F68 composite hydrogels with or without PFOB. Our results indicate that mechanical properties of the alginate/F68/PFOB hydrogels are not significantly affected under small strains, but a significant decrease fracture stress is observed. The effective diffusivity D(eff) of hydrophobic small molecules decreases with PFOB emulsion addition, yet the D(eff) of hydrophilic small molecules remained unaffected. For BSA, the D(eff) increased and the loading capacity decreased with PFOB emulsion addition. Thus, a trade-off between the desired increased O(2) supply provided by PFCs and the mechanical weakening and change in transport of cellular signals must be carefully considered in the design of biomaterials containing PFCs. Copyright © 2012 Wiley Periodicals, Inc.

  12. Molecular Simulation Study on Modification Mechanism of Red Mud Modified Asphalt

    NASA Astrophysics Data System (ADS)

    Tao, FU; Hui-ming, BAO; xing-xing, Duan

    2017-12-01

    This article used red mud, the aluminum industrial wastes, as modified asphalt material, through the study of the routine test of modified asphalt properties, and the micro test of electron microscope scanning, infrared spectrum and differential scanning calorimetry analysis etc. to discuss its performance and modification mechanism . The test results show that after mixing red mud, asphalt’s penetration index and 15 °C ductility reduced, softening point enhanced, thus the temperature sensitivity and high temperature stability of asphalt improved; Red mud after mixing the matrix asphalt, can form a uniform, stable and matrix asphalt blending system, and improve the asphalt’s thermal stability. Using molecular simulation technology to analyze the asphalt with the temperature change of energy and find in the process of asphalt melting, the largest is the key to influence on bituminous, and van der waals energy is small. It concludes that red mud -modified asphalt material is mainly controlled by bond energy, in order to obtain its favorable property of modification mechanism, red mud of senior activation and molecular bond energy of asphalt is needed to be enhanced.The results of molecular simulation show that the main component of hematite in red mud is the most adsorbed in the asphalt, the asphaltene is the second, the colloid is the worst, but the adsorption capacity of the colloid is the highest.

  13. Role of Vanadium in Cellular and Molecular Immunology: Association with Immune-Related Inflammation and Pharmacotoxicology Mechanisms

    PubMed Central

    Tsave, Olga; Petanidis, Savvas; Kioseoglou, Efrosini; Yavropoulou, Maria P.; Yovos, John G.; Anestakis, Doxakis; Tsepa, Androniki; Salifoglou, Athanasios

    2016-01-01

    Over the last decade, a diverse spectrum of vanadium compounds has arisen as anti-inflammatory therapeutic metallodrugs targeting various diseases. Recent studies have demonstrated that select well-defined vanadium species are involved in many immune-driven molecular mechanisms that regulate and influence immune responses. In addition, advances in cell immunotherapy have relied on the use of metallodrugs to create a “safe,” highly regulated, environment for optimal control of immune response. Emerging findings include optimal regulation of B/T cell signaling and expression of immune suppressive or anti-inflammatory cytokines, critical for immune cell effector functions. Furthermore, in-depth perusals have explored NF-κB and Toll-like receptor signaling mechanisms in order to enhance adaptive immune responses and promote recruitment or conversion of inflammatory cells to immunodeficient tissues. Consequently, well-defined vanadium metallodrugs, poised to access and resensitize the immune microenvironment, interact with various biomolecular targets, such as B cells, T cells, interleukin markers, and transcription factors, thereby influencing and affecting immune signaling. A synthetically formulated and structure-based (bio)chemical reactivity account of vanadoforms emerges as a plausible strategy for designing drugs characterized by selectivity and specificity, with respect to the cellular molecular targets intimately linked to immune responses, thereby giving rise to a challenging field linked to the development of immune system vanadodrugs. PMID:27190573

  14. Insight into the interaction mechanism of human SGLT2 with its inhibitors: 3D-QSAR studies, homology modeling, and molecular docking and molecular dynamics simulations.

    PubMed

    Dong, Lili; Feng, Ruirui; Bi, Jiawei; Shen, Shengqiang; Lu, Huizhe; Zhang, Jianjun

    2018-03-06

    Human sodium-dependent glucose co-transporter 2 (hSGLT2) is a crucial therapeutic target in the treatment of type 2 diabetes. In this study, both comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to generate three-dimensional quantitative structure-activity relationship (3D-QSAR) models. In the most accurate CoMFA-based and CoMSIA-based QSAR models, the cross-validated coefficients (r 2 cv ) were 0.646 and 0.577, respectively, while the non-cross-validated coefficients (r 2 ) were 0.997 and 0.991, respectively, indicating that both models were reliable. In addition, we constructed a homology model of hSGLT2 in the absence of a crystal structure. Molecular docking was performed to explore the bonding mode of inhibitors to the active site of hSGLT2. Molecular dynamics (MD) simulations and binding free energy calculations using MM-PBSA and MM-GBSA were carried out to further elucidate the interaction mechanism. With regards to binding affinity, we found that hydrogen-bond interactions of Asn51 and Glu75, located in the active site of hSGLT2, with compound 40 were critical. Hydrophobic and electrostatic interactions were shown to enhance activity, in agreement with the results obtained from docking and 3D-QSAR analysis. Our study results shed light on the interaction mode between inhibitors and hSGLT2 and may aid in the development of C-aryl glucoside SGLT2 inhibitors.

  15. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies.

    PubMed

    Marie, Pierre J

    2015-04-01

    Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.

  16. Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures

    NASA Astrophysics Data System (ADS)

    Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos

    2015-02-01

    The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.

  17. Energy landscapes of a mechanical prion and their implications for the molecular mechanism of long-term memory.

    PubMed

    Chen, Mingchen; Zheng, Weihua; Wolynes, Peter G

    2016-05-03

    Aplysia cytoplasmic polyadenylation element binding (CPEB) protein, a translational regulator that recruits mRNAs and facilitates translation, has been shown to be a key component in the formation of long-term memory. Experimental data show that CPEB exists in at least a low-molecular weight coiled-coil oligomeric form and an amyloid fiber form involving the Q-rich domain (CPEB-Q). Using a coarse-grained energy landscape model, we predict the structures of the low-molecular weight oligomeric form and the dynamics of their transitions to the β-form. Up to the decamer, the oligomeric structures are predicted to be coiled coils. Free energy profiles confirm that the coiled coil is the most stable form for dimers and trimers. The structural transition from α to β is shown to be concentration dependent, with the transition barrier decreasing with increased concentration. We observe that a mechanical pulling force can facilitate the α-helix to β-sheet (α-to-β) transition by lowering the free energy barrier between the two forms. Interactome analysis of the CPEB protein suggests that its interactions with the cytoskeleton could provide the necessary mechanical force. We propose that, by exerting mechanical forces on CPEB oligomers, an active cytoskeleton can facilitate fiber formation. This mechanical catalysis makes possible a positive feedback loop that would help localize the formation of CPEB fibers to active synapse areas and mark those synapses for forming a long-term memory after the prion form is established. The functional role of the CPEB helical oligomers in this mechanism carries with it implications for targeting such species in neurodegenerative diseases.

  18. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    PubMed Central

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  19. Pairwise-additive hydrophobic effect for alkanes in water

    PubMed Central

    Wu, Jianzhong; Prausnitz, John M.

    2008-01-01

    Pairwise additivity of the hydrophobic effect is indicated by reliable experimental Henry's constants for a large number of linear and branched low-molecular-weight alkanes in water. Pairwise additivity suggests that the hydrophobic effect is primarily a local phenomenon and that the hydrophobic interaction may be represented by a semiempirical force field. By representing the hydrophobic potential between two methane molecules as a linear function of the overlap volume of the hydration layers, we find that the contact value of the hydrophobic potential (−0.72 kcal/mol) is smaller than that from quantum mechanics simulations (−2.8 kcal/mol) but is close to that from classical molecular dynamics (−0.5∼−0.9 kcal/mol). PMID:18599448

  20. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs.

    PubMed

    Pachov, Dimitar V; van den Bedem, Henry

    2015-07-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural

  1. Nullspace Sampling with Holonomic Constraints Reveals Molecular Mechanisms of Protein Gαs

    PubMed Central

    Pachov, Dimitar V.; van den Bedem, Henry

    2015-01-01

    Proteins perform their function or interact with partners by exchanging between conformational substates on a wide range of spatiotemporal scales. Structurally characterizing these exchanges is challenging, both experimentally and computationally. Large, diffusional motions are often on timescales that are difficult to access with molecular dynamics simulations, especially for large proteins and their complexes. The low frequency modes of normal mode analysis (NMA) report on molecular fluctuations associated with biological activity. However, NMA is limited to a second order expansion about a minimum of the potential energy function, which limits opportunities to observe diffusional motions. By contrast, kino-geometric conformational sampling (KGS) permits large perturbations while maintaining the exact geometry of explicit conformational constraints, such as hydrogen bonds. Here, we extend KGS and show that a conformational ensemble of the α subunit Gαs of heterotrimeric stimulatory protein Gs exhibits structural features implicated in its activation pathway. Activation of protein Gs by G protein-coupled receptors (GPCRs) is associated with GDP release and large conformational changes of its α-helical domain. Our method reveals a coupled α-helical domain opening motion while, simultaneously, Gαs helix α5 samples an activated conformation. These motions are moderated in the activated state. The motion centers on a dynamic hub near the nucleotide-binding site of Gαs, and radiates to helix α4. We find that comparative NMA-based ensembles underestimate the amplitudes of the motion. Additionally, the ensembles fall short in predicting the accepted direction of the full activation pathway. Taken together, our findings suggest that nullspace sampling with explicit, holonomic constraints yields ensembles that illuminate molecular mechanisms involved in GDP release and protein Gs activation, and further establish conformational coupling between key structural

  2. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

    PubMed

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-16

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  3. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  4. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    PubMed Central

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  5. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology

    PubMed Central

    Csordás, György; Várnai, Peter; Golenár, Tünde; Sheu, Shey-Shing; Hajnóczky, György

    2011-01-01

    Growing evidence supports that mitochondrial calcium uptake is important for cell metabolism, signaling and survival. However, both the molecular nature of the mitochondrial Ca2+ transport sites and the calcium signals they respond to remained elusive. Recent RNA interference studies have identified new candidate proteins for Ca2+ uptake across the inner mitochondrial membrane, including LETM1, MCU, MICU1 and NCLX. The sensitivity of these factors to several drugs has been tested and in parallel, some new inhibitors of mitochondrial Ca2+ uptake have been described. This paper provides an update on the pharmacological aspects of the molecular mechanisms of the inner mitochondrial membrane Ca2+ transport. PMID:22123069

  6. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review).

    PubMed

    Yan, Fenggen; Mo, Xiumei; Liu, Junfeng; Ye, Siqi; Zeng, Xing; Chen, Dacan

    2017-11-01

    The thymus is critical in establishing and maintaining the appropriate microenvironment for promoting the development and selection of T cells. The function and structure of the thymus gland has been extensively studied, particularly as the thymus serves an important physiological role in the lymphatic system. Numerous studies have investigated the morphological features of thymic involution. Recently, research attention has increasingly been focused on thymic proteins as targets for drug intervention. Omics approaches have yielded novel insights into the thymus and possible drug targets. The present review addresses the signaling and transcriptional functions of the thymus, including the molecular mechanisms underlying the regulatory functions of T cells and their role in the immune system. In addition, the levels of cytokines secreted in the thymus have a significant effect on thymic functions, including thymocyte migration and development, thymic atrophy and thymic recovery. Furthermore, the regulation and molecular mechanisms of stress‑mediated thymic atrophy and involution were investigated, with particular emphasis on thymic function as a potential target for drug development and discovery using proteomics.

  7. Molecular mechanism of Mg2+-dependent gating in CorA

    NASA Astrophysics Data System (ADS)

    Dalmas, Olivier; Sompornpisut, Pornthep; Bezanilla, Francisco; Perozo, Eduardo

    2014-04-01

    CorA is the major transport system responsible for Mg2+ uptake in bacteria and can functionally substitute for its homologue Mrs2p in the yeast inner mitochondrial membrane. Although several CorA crystal structures are available, the molecular mechanism of Mg2+ uptake remains to be established. Here we use electron paramagnetic resonance spectroscopy, electrophysiology and molecular dynamic simulations to show that CorA is regulated by cytoplasmic Mg2+ acting as a ligand and elucidate the basic conformational rearrangements responsible for Mg2+-dependent gating. Mg2+ unbinding at the divalent cation sensor triggers a conformational change that leads to the inward motion of the stalk helix, which propagates to the pore-forming transmembrane helix TM1. Helical tilting and rotation in TM1 generates an iris-like motion that increases the diameter of the permeation pathway, triggering ion conduction. This work establishes the molecular basis of a Mg2+-driven negative feedback loop in CorA as the key physiological event controlling Mg2+ uptake and homeostasis in prokaryotes.

  8. Anti-inflammatory activity and molecular mechanism of delphinidin 3-sambubioside, a Hibiscus anthocyanin.

    PubMed

    Sogo, Takayuki; Terahara, Norihiko; Hisanaga, Ayami; Kumamoto, Takuma; Yamashiro, Takaaki; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2015-01-01

    Delphinidin 3-sambubioside (Dp3-Sam), a Hibiscus anthocyanin, was isolated from the dried calices of Hibiscus sabdariffa L, which has been used for folk beverages and herbal medicine although the molecular mechanisms are poorly defined. Based on the properties of Dp3-Sam and the information of inflammatory processes, we investigated the anti-inflammatory activity and molecular mechanisms in both cell and animal models in the present study. In the cell model, Dp3-Sam and Delphinidin (Dp) reduced the levels of inflammatory mediators including iNOS, NO, IL-6, MCP-1, and TNF-α induced by LPS. Cellular signaling analysis revealed that Dp3-Sam and Dp downregulated NF-κB pathway and MEK1/2-ERK1/2 signaling. In animal model, Dp3-Sam and Dp reduced the production of IL-6, MCP-1 and TNF-α and attenuated mouse paw edema induced by LPS. Our in vitro and in vivo data demonstrated that Hibiscus Dp3-Sam possessed potential anti-inflammatory properties. © 2015 International Union of Biochemistry and Molecular Biology.

  9. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury.

    PubMed

    van Niekerk, Erna A; Tuszynski, Mark H; Lu, Paul; Dulin, Jennifer N

    2016-02-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Structural distributions from single-molecule measurements as a tool for molecular mechanics

    PubMed Central

    Hanson, Jeffrey A.; Brokaw, Jason; Hayden, Carl C.; Chu, Jhih-Wei; Yang, Haw

    2011-01-01

    A mechanical view provides an attractive alternative for predicting the behavior of complex systems since it circumvents the resource-intensive requirements of atomistic models; however, it remains extremely challenging to characterize the mechanical responses of a system at the molecular level. Here, the structural distribution is proposed to be an effective means to extracting the molecular mechanical properties. End-to-end distance distributions for a series of short poly-L-proline peptides with the sequence PnCG3K-biotin (n = 8, 12, 15 and 24) were used to experimentally illustrate this new approach. High-resolution single-molecule Förster-type resonance energy transfer (FRET) experiments were carried out and the conformation-resolving power was characterized and discussed in the context of the conventional constant-time binning procedure for FRET data analysis. It was shown that the commonly adopted theoretical polymer models—including the worm-like chain, the freely jointed chain, and the self-avoiding chain—could not be distinguished by the averaged end-to-end distances, but could be ruled out using the molecular details gained by conformational distribution analysis because similar polymers of different sizes could respond to external forces differently. Specifically, by fitting the molecular conformational distribution to a semi-flexible polymer model, the effective persistence lengths for the series of short poly-L-proline peptides were found to be size-dependent with values of ~190 Å, ~67 Å, ~51 Å, and ~76 Å for n = 8, 12, 15, and 24, respectively. A comprehensive computational modeling was carried out to gain further insights for this surprising discovery. It was found that P8 exists as the extended all-trans isomaer whereas P12 and P15 predominantly contained one proline residue in the cis conformation. P24 exists as a mixture of one-cis (75%) and two-cis (25%) isomers where each isomer contributes to an experimentally resolvable

  11. Variational Implicit Solvation with Solute Molecular Mechanics: From Diffuse-Interface to Sharp-Interface Models.

    PubMed

    Li, Bo; Zhao, Yanxiang

    2013-01-01

    Central in a variational implicit-solvent description of biomolecular solvation is an effective free-energy functional of the solute atomic positions and the solute-solvent interface (i.e., the dielectric boundary). The free-energy functional couples together the solute molecular mechanical interaction energy, the solute-solvent interfacial energy, the solute-solvent van der Waals interaction energy, and the electrostatic energy. In recent years, the sharp-interface version of the variational implicit-solvent model has been developed and used for numerical computations of molecular solvation. In this work, we propose a diffuse-interface version of the variational implicit-solvent model with solute molecular mechanics. We also analyze both the sharp-interface and diffuse-interface models. We prove the existence of free-energy minimizers and obtain their bounds. We also prove the convergence of the diffuse-interface model to the sharp-interface model in the sense of Γ-convergence. We further discuss properties of sharp-interface free-energy minimizers, the boundary conditions and the coupling of the Poisson-Boltzmann equation in the diffuse-interface model, and the convergence of forces from diffuse-interface to sharp-interface descriptions. Our analysis relies on the previous works on the problem of minimizing surface areas and on our observations on the coupling between solute molecular mechanical interactions with the continuum solvent. Our studies justify rigorously the self consistency of the proposed diffuse-interface variational models of implicit solvation.

  12. A molecular dynamics investigation into the mechanisms of alectinib resistance of three ALK mutants.

    PubMed

    He, Muyang; Li, Weikang; Zheng, Qingchuan; Zhang, Hongxing

    2018-07-01

    Alectinib, a highly selective next-genetation anaplastic lymphoma kinase (ALK) inhibitor, has demonstrated promising antitumor activity in patients with ALK-positive non-small cell lung carcinomas (NSCLC). However, the therapeutic benefits of alectinib is inescapably hampered by the development of acquired resistant mutations in ALK. Despite the availability of ample experimental mutagenesis data, the molecular origin and the structural motifs under alectinib binding affinity deficiencies are still ambiguous. Here, molecular dynamics (MD) simulations and molecular mechanics generalized born surface area (MM-GBSA) calculation approaches were employed to elucidate the mechanisms of alectinib resistance induced by the mutations I1171N, V1180L, and L1198F. The MD results reveal that the studied mutations could trigger the dislocation of alectinib as well as conformational changes at the inhibitor binding site, thus induce the interactional changes between alectinib and mutants. The most influenced regions are the ligand binding entrance and the hinge region, which are considered to be the dominant binding motifs accounting for the binding affinity loss in mutants. The "key and lock mechanism" between the ethyl group at position 9 of alectinib and a recognition cavity in the hinge region of ALK is presented to illustrate the major molecular origin of drug resistance. Our results provide mechanistic insight into the effect of ALK mutations resistant to alectinib, which could contribute to further rational design of inhibitors to combat the acquired resistance. © 2018 Wiley Periodicals, Inc.

  13. Targeting Metastasis with Snake Toxins: Molecular Mechanisms

    PubMed Central

    Urra, Félix A.

    2017-01-01

    Metastasis involves the migration of cancer cells from a primary tumor to invade and establish secondary tumors in distant organs, and it is the main cause for cancer-related deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells, being ineffective in metastatic disease. This highlights the need to find new anti-metastatic drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer cells; only a reduced number of toxin classes have been reported (i.e., disintegrins/disintegrin-like proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve (1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network. PMID:29189742

  14. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms

    PubMed Central

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2015-01-01

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  15. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    PubMed

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  16. Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II.

    PubMed

    Sproviero, Eduardo M; Gascón, José A; McEvoy, James P; Brudvig, Gary W; Batista, Victor S

    2007-04-01

    The annual production of 260 Gtonnes of oxygen, during the process of photosynthesis, sustains life on earth. Oxygen is produced in the thylakoid membranes of green-plant chloroplasts and the internal membranes of cyanobacteria by photocatalytic water oxidation at the oxygen-evolving complex (OEC) of photosystem II (PSII). Recent breakthroughs in X-ray crystallography and advances in quantum mechanics/molecular mechanics (QM/MM) hybrid methods have enabled the construction of chemically sensible models of the OEC of PSII. The resulting computational structural models suggest the complete ligation of the catalytic center by amino acid residues, water, hydroxide and chloride, as determined from the intrinsic electronic properties of the oxomanganese core and the perturbational influence of the surrounding protein environment. These structures are found to be consistent with available mechanistic data, and are also compatible with X-ray diffraction models and extended X-ray absorption fine structure measurements. It is therefore conjectured that these OEC models are particularly relevant for the elucidation of the catalytic mechanism of water oxidation.

  17. The control of the controller: molecular mechanisms for robust perfect adaptation and temperature compensation.

    PubMed

    Ni, Xiao Yu; Drengstig, Tormod; Ruoff, Peter

    2009-09-02

    Organisms have the property to adapt to a changing environment and keep certain components within a cell regulated at the same level (homeostasis). "Perfect adaptation" describes an organism's response to an external stepwise perturbation by regulating some of its variables/components precisely to their original preperturbation values. Numerous examples of perfect adaptation/homeostasis have been found, as for example, in bacterial chemotaxis, photoreceptor responses, MAP kinase activities, or in metal-ion homeostasis. Two concepts have evolved to explain how perfect adaptation may be understood: In one approach (robust perfect adaptation), the adaptation is a network property, which is mostly, but not entirely, independent of rate constant values; in the other approach (nonrobust perfect adaptation), a fine-tuning of rate constant values is needed. Here we identify two classes of robust molecular homeostatic mechanisms, which compensate for environmental variations in a controlled variable's inflow or outflow fluxes, and allow for the presence of robust temperature compensation. These two classes of homeostatic mechanisms arise due to the fact that concentrations must have positive values. We show that the concept of integral control (or integral feedback), which leads to robust homeostasis, is associated with a control species that has to work under zero-order flux conditions and does not necessarily require the presence of a physico-chemical feedback structure. There are interesting links between the two identified classes of homeostatic mechanisms and molecular mechanisms found in mammalian iron and calcium homeostasis, indicating that homeostatic mechanisms may underlie similar molecular control structures.

  18. Human Apolipoprotein A-I Natural Variants: Molecular Mechanisms Underlying Amyloidogenic Propensity

    PubMed Central

    Ramella, Nahuel A.; Schinella, Guillermo R.; Ferreira, Sergio T.; Prieto, Eduardo D.; Vela, María E.; Ríos, José Luis

    2012-01-01

    Human apolipoprotein A-I (apoA-I)-derived amyloidosis can present with either wild-type (Wt) protein deposits in atherosclerotic plaques or as a hereditary form in which apoA-I variants deposit causing multiple organ failure. More than 15 single amino acid replacement amyloidogenic apoA-I variants have been described, but the molecular mechanisms involved in amyloid-associated pathology remain largely unknown. Here, we have investigated by fluorescence and biochemical approaches the stabilities and propensities to aggregate of two disease-associated apoA-I variants, apoA-IGly26Arg, associated with polyneuropathy and kidney dysfunction, and apoA-ILys107-0, implicated in amyloidosis in severe atherosclerosis. Results showed that both variants share common structural properties including decreased stability compared to Wt apoA-I and a more flexible structure that gives rise to formation of partially folded states. Interestingly, however, distinct features appear to determine their pathogenic mechanisms. ApoA-ILys107-0 has an increased propensity to aggregate at physiological pH and in a pro-inflammatory microenvironment than Wt apoA-I, whereas apoA-IGly26Arg elicited macrophage activation, thus stimulating local chronic inflammation. Our results strongly suggest that some natural mutations in apoA-I variants elicit protein tendency to aggregate, but in addition the specific interaction of different variants with macrophages may contribute to cellular stress and toxicity in hereditary amyloidosis. PMID:22952757

  19. Investigation of the mechanism of the cell wall DD-carboxypeptidase reaction of penicillin-binding protein 5 of Escherichia coli by quantum mechanics/molecular mechanics calculations.

    PubMed

    Shi, Qicun; Meroueh, Samy O; Fisher, Jed F; Mobashery, Shahriar

    2008-07-23

    Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal x mol(-1) barrier. This barrier is approximately 2

  20. Mechanical-Kinetic Modeling of a Molecular Walker from a Modular Design Principle

    NASA Astrophysics Data System (ADS)

    Hou, Ruizheng; Loh, Iong Ying; Li, Hongrong; Wang, Zhisong

    2017-02-01

    Artificial molecular walkers beyond burnt-bridge designs are complex nanomachines that potentially replicate biological walkers in mechanisms and functionalities. Improving the man-made walkers up to performance for widespread applications remains difficult, largely because their biomimetic design principles involve entangled kinetic and mechanical effects to complicate the link between a walker's construction and ultimate performance. Here, a synergic mechanical-kinetic model is developed for a recently reported DNA bipedal walker, which is based on a modular design principle, potentially enabling many directional walkers driven by a length-switching engine. The model reproduces the experimental data of the walker, and identifies its performance-limiting factors. The model also captures features common to the underlying design principle, including counterintuitive performance-construction relations that are explained by detailed balance, entropy production, and bias cancellation. While indicating a low directional fidelity for the present walker, the model suggests the possibility of improving the fidelity above 90% by a more powerful engine, which may be an improved version of the present engine or an entirely new engine motif, thanks to the flexible design principle. The model is readily adaptable to aid these experimental developments towards high-performance molecular walkers.

  1. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Cellular, molecular, and epigenetic mechanisms in non-associative conditioning: implications for pain and memory.

    PubMed

    Rahn, Elizabeth J; Guzman-Karlsson, Mikael C; David Sweatt, J

    2013-10-01

    Sensitization is a form of non-associative conditioning in which amplification of behavioral responses can occur following presentation of an aversive or noxious stimulus. Understanding the cellular and molecular underpinnings of sensitization has been an overarching theme spanning the field of learning and memory as well as that of pain research. In this review we examine how sensitization, both in the context of learning as well as pain processing, shares evolutionarily conserved behavioral, cellular/synaptic, and epigenetic mechanisms across phyla. First, we characterize the behavioral phenomenon of sensitization both in invertebrates and vertebrates. Particular emphasis is placed on long-term sensitization (LTS) of withdrawal reflexes in Aplysia following aversive stimulation or injury, although additional invertebrate models are also covered. In the context of vertebrates, sensitization of mammalian hyperarousal in a model of post-traumatic stress disorder (PTSD), as well as mammalian models of inflammatory and neuropathic pain is characterized. Second, we investigate the cellular and synaptic mechanisms underlying these behaviors. We focus our discussion on serotonin-mediated long-term facilitation (LTF) and axotomy-mediated long-term hyperexcitability (LTH) in reduced Aplysia systems, as well as mammalian spinal plasticity mechanisms of central sensitization. Third, we explore recent evidence implicating epigenetic mechanisms in learning- and pain-related sensitization. This review illustrates the fundamental and functional overlay of the learning and memory field with the pain field which argues for homologous persistent plasticity mechanisms in response to sensitizing stimuli or injury across phyla. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms

    PubMed Central

    Azam, Mohammed Shariful; Choi, Jinkyung; Lee, Min-Sup; Kim, Hyeung-Rak

    2017-01-01

    There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds. PMID:28946635

  4. Mechanical features of various silkworm crystalline considering hydration effect via molecular dynamics simulations.

    PubMed

    Kim, Yoonjung; Lee, Myeongsang; Choi, Hyunsung; Baek, Inchul; Kim, Jae In; Na, Sungsoo

    2018-04-01

    Silk materials are receiving significant attention as base materials for various functional nanomaterials and nanodevices, due to its exceptionally high mechanical properties, biocompatibility, and degradable characteristics. Although crystalline silk regions are composed of various repetitive motifs with differing amino acid sequences, how the effect of humidity works differently on each of the motifs and their structural characteristics remains unclear. We report molecular dynamics (MD) simulations on various silkworm fibroins composed of major motifs (i.e. (GAGAGS) n , (GAGAGA) n , and (GAGAGY) n ) at varying degrees of hydration, and reveal how each major motifs of silk fibroins change at each degrees of hydration using MD simulations and their structural properties in mechanical perspective via steered molecular dynamics simulations. Our results explain what effects humidity can have on nanoscale materials and devices consisting of crystalline silk materials.

  5. Report on the Symposium “Molecular Mechanisms Involved in Neurodegeneration”

    PubMed Central

    Pentón-Rol, Giselle; Cervantes-Llanos, Majel

    2018-01-01

    The prevalence of neurodegenerative diseases is currently a major concern in public health because of the lack of neuroprotective and neuroregenerative drugs. The symposium on Molecular Mechanisms Involved in Neurodegeneration held in Varadero, Cuba, updated the participants on the basic mechanisms of neurodegeneration, on the different approaches for drug discovery, and on early research results on therapeutic approaches for the treatment of neurodegenerative diseases. Alzheimer’s disease and in silico research were covered by many of the presentations in the symposium, under the umbrella of the “State of the Art of Non-clinical Models for Neurodegenerative Diseases” International Congress, held from 20 to 24 June 2017. This paper summarizes the highlights of the symposium. PMID:29346273

  6. Chromosomal aberrations in soft tissue tumors. Relevance to diagnosis, classification, and molecular mechanisms.

    PubMed Central

    Sreekantaiah, C.; Ladanyi, M.; Rodriguez, E.; Chaganti, R. S.

    1994-01-01

    In recent years, significant progress has been made in identifying characteristic chromosomal rearrangements associated with several solid tumor types, notably sarcomas, a relatively rare subset of human cancer. Most sarcomas analyzed have been found to be characterized by recurrent chromosome translocations that are specific to histological types. We have reviewed published reports of chromosomal aberrations in benign and malignant soft tissue tumors and found an incidence of specific translocations in these neoplasms that ranged from 20% to 93% within histological tumor types. Identification of recurrent chromosomal abnormalities in benign tumors has resulted in a reappraisal of the general concept that benign tumors have a normal (diploid) chromosome constitution. The variety of recurrent changes present in the different tumor types attests to the cytogenetic diversity inherent in these tumors. The chromosomal rearrangements in each of the tumor types were unique and did not correspond to cancer-associated aberrations known from other solid or hematopoietic malignancies. Cytogenetics thus provides an essential adjunct to diagnostic surgical pathology in the case of malignant soft tissue tumors, which often present substantial diagnostic challenges. In addition, it represents another approach to determine the histogenetic origin of some tumors and identifies sites of gene deregulation for molecular analysis. Indeed, recent molecular analyses of several sarcoma-associated translocations have identified novel genes and novel mechanisms of their dysregulation. PMID:8203453

  7. Anesthetics mechanism on a DMPC lipid membrane model: Insights from molecular dynamics simulations.

    PubMed

    Saeedi, Marzieh; Lyubartsev, Alexander P; Jalili, Seifollah

    2017-07-01

    To provide insight into the molecular mechanisms of local anesthetic action, we have carried out an extensive investigation of two amide type local anesthetics, lidocaine and articaine in both charged and uncharged forms, interacting with DMPC lipid membrane. We have applied both standard molecular dynamics simulations and metadynamics simulations to provide a detailed description of the free energy landscape of anesthetics embedded in the lipid bilayer. The global minimum of the free energy surface (equilibrium position of anesthetics in the lipid membrane) occurred around 1nm of the bilayer center. The uncharged anesthetics show more affinity to bind to this region compared to the charged drugs. The binding free energy of uncharged lidocaine in the membrane (-30.3kJ/mol) is higher than uncharged articaine (-24.0kJ/mol), which is in good agreement with higher lipid solubility of lidocaine relative to the articaine. The octanol/water partition coefficient of uncharged drugs was also investigated using expanded ensemble simulations. In addition, complementary standard MD simulations were carried out to study the partitioning behavior of multiple anesthetics inside the lipid bilayer. The results obtained here are in line with previously reported simulations and suggest that the different forms of anesthetics induce different structural modifications in the lipid bilayer, which can provide new insights into their complex membrane translocation phenomena. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function.

    PubMed

    Khalili, Saeed; Jahangiri, Abolfazl; Hashemi, Zahra Sadat; Khalesi, Bahman; Mard-Soltani, Maysam; Amani, Jafar

    2017-03-01

    Epsilon toxin of the Clostridium perfringens garnered a lot of attention due to its potential for toxicity in humans, extreme potency for cytotoxicity in mice and lack of any approved therapeutics prescribed for human. However, the intricacies of the Epsilon toxin action mechanism are yet to be understood. In this regard, various in silico tools have been exploited to model and refine the 3D structure of the toxin and its two receptors. The receptor proteins were embedded into designed lipid membranes within an aqueous and ionized environment. Thereafter, the modeled structures subjected to series of consecutive molecular dynamics runs to achieve the most natural like coordination for each model. Ultimately, protein-protein interaction analyses were performed to understand the probable action mechanism. The obtained results successfully confirmed the accuracy of employed methods to achieve high quality models for the toxin and its receptors within their lipid bilayers. Molecular dynamics analyses lead the structures to a more native like coordination. Moreover, the results of previous empirical studies were confirmed, while new insights for action mechanisms including the detailed roles of Hepatitis A virus cellular receptor 1 (HAVCR1) and Myelin and lymphocyte protein (MAL) proteins were achieved. In light of previous and our observations, we suggested novel models which elucidated the existing interplay between potential players of Epsilon toxin action mechanism with detailed structural evidences. These models would pave the way to have more robust understanding of the Epsilon toxin biology, more precise vaccine construction and more successful drug (inhibitor) design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    PubMed Central

    Stigter, Kyla A.; Plaxton, William C.

    2015-01-01

    Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P), are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi), the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters. PMID:27135351

  10. Molecular mechanism of DNA association with single-stranded DNA binding protein

    PubMed Central

    Maffeo, Christopher

    2017-01-01

    Abstract During DNA replication, the single-stranded DNA binding protein (SSB) wraps single-stranded DNA (ssDNA) with high affinity to protect it from degradation and prevent secondary structure formation. Although SSB binds ssDNA tightly, it can be repositioned along ssDNA to follow the advancement of the replication fork. Using all-atom molecular dynamics simulations, we characterized the molecular mechanism of ssDNA association with SSB. Placed in solution, ssDNA–SSB assemblies were observed to change their structure spontaneously; such structural changes were suppressed in the crystallographic environment. Repeat simulations of the SSB–ssDNA complex under mechanical tension revealed a multitude of possible pathways for ssDNA to come off SSB punctuated by prolonged arrests at reproducible sites at the SSB surface. Ensemble simulations of spontaneous association of short ssDNA fragments with SSB detailed a three-dimensional map of local affinity to DNA; the equilibrium amount of ssDNA bound to SSB was found to depend on the electrolyte concentration but not on the presence of the acidic tips of the SSB tails. Spontaneous formation of ssDNA bulges and their diffusive motion along SSB surface was directly observed in multiple 10-µs-long simulations. Such reptation-like motion was confined by DNA binding to high-affinity spots, suggesting a two-step mechanism for SSB diffusion. PMID:29059392

  11. The Anti-Cancer Effect of Polyphenols against Breast Cancer and Cancer Stem Cells: Molecular Mechanisms

    PubMed Central

    Abdal Dayem, Ahmed; Choi, Hye Yeon; Yang, Gwang-Mo; Kim, Kyeongseok; Saha, Subbroto Kumar; Cho, Ssang-Goo

    2016-01-01

    The high incidence of breast cancer in developed and developing countries, and its correlation to cancer-related deaths, has prompted concerned scientists to discover novel alternatives to deal with this challenge. In this review, we will provide a brief overview of polyphenol structures and classifications, as well as on the carcinogenic process. The biology of breast cancer cells will also be discussed. The molecular mechanisms involved in the anti-cancer activities of numerous polyphenols, against a wide range of breast cancer cells, in vitro and in vivo, will be explained in detail. The interplay between autophagy and apoptosis in the anti-cancer activity of polyphenols will also be highlighted. In addition, the potential of polyphenols to target cancer stem cells (CSCs) via various mechanisms will be explained. Recently, the use of natural products as chemotherapeutics and chemopreventive drugs to overcome the side effects and resistance that arise from using chemical-based agents has garnered the attention of the scientific community. Polyphenol research is considered a promising field in the treatment and prevention of breast cancer. PMID:27657126

  12. Molecular mechanisms of the mammalian Hippo signaling pathway.

    PubMed

    Ji, Xin-yan; Zhong, Guoxuan; Zhao, Bin

    2017-07-20

    The Hippo pathway plays an evolutionarily conserved fundamental role in controlling organ size in multicellular organisms. Importantly, evidence from studies of patient samples and mouse models clearly indicates that deregulation of the Hippo signaling pathway plays a crucial role in the initiation and progression of many different types of human cancers. The Hippo signaling pathway is regulated by various stimuli, such as mechanical stress, G-protein coupled receptor signaling, and cellular energy status. When activated, the Hippo kinase cascade phosphorylates and inhibits the transcription co-activator YAP (Yes-associated protein), and its paralog TAZ (transcriptional coactivator with PDZ-binding motif), resulting in their cytoplasmic retention and degradation. When the Hippo signaling pathway is inactive, dephosphorylated YAP/TAZ translocate into the nucleus and activate gene transcription through binding to TEAD (TEA domain) family and other transcription factors. Such changes in gene expression promote cell proliferation and stem cell/progenitor cell self-renewal but inhibit apoptosis, thereby coordinately promote increase in organ size, tissue regeneration, and tumorigenesis. In this review, we summarize the molecular mechanisms of the mammalian Hippo signaling pathway with special emphasis on the Hippo kinase cascade and its upstream signals, the Hippo signaling pathway regulation of YAP and the mechanisms of YAP in regulation of gene transcription.

  13. [Plant physiological and molecular biological mechanism in response to aluminium toxicity].

    PubMed

    Liu, Qiang; Zheng, Shaojian; Lin, Xianyong

    2004-09-01

    Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.

  14. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing.

    PubMed

    Eggermann, Thomas; Heilsberg, Ann-Kathrin; Bens, Susanne; Siebert, Reiner; Beygo, Jasmin; Buiting, Karin; Begemann, Matthias; Soellner, Lukas

    2014-07-01

    The chromosomal region 11p15 contains two imprinting control regions (ICRs) and is a key player in molecular processes regulated by genomic imprinting. Genomic as well as epigenetic changes affecting 11p15 are associated either with Silver-Russell syndrome (SRS) or Beckwith-Wiedemann syndrome (BWS). In the last years, a growing number of patients affected by imprinting disorders (IDs) have reported carrying the disease-specific 11p15 hypomethylation patterns as well as methylation changes at imprinted loci at other chromosomal sites (multi-locus methylation defects, MLMD). Furthermore, in several patients, molecular alterations (e.g., uniparental disomies, UPDs) additional to the primary epimutations have been reported. To determine the frequency and distribution of mutations and epimutations in patients referred as SRS or BWS for genetic testing, we retrospectively ascertained our routine patient cohort consisting of 711 patients (SRS, n = 571; BWS, n = 140). As this cohort represents the typical cohort in a routine diagnostic lab without clinical preselection, the detection rates were much lower than those reported from clinically characterized cohorts in the literature (SRS, 19.9%; BWS, 28.6%). Among the molecular subgroups known to be predisposed to MLMD, the frequencies corresponded to that in the literature (SRS, 7.1% in ICR1 hypomethylation carriers; BWS, 20.8% in ICR2 hypomethylation patients). In several patients, more than one epigenetic or genetic disturbance could be identified. Our study illustrates that the complex molecular alterations as well as the overlapping and sometimes unusual clinical findings in patients with imprinting disorders (IDs) often make the decision for a specific imprinting disorder test difficult. We therefore suggest to implement molecular assays in routine ID diagnostics which allow the detection of a broad range of (epi)mutation types (epimutations, UPDs, chromosomal imbalances) and cover the clinically most relevant known ID

  15. Cellular and Molecular Mechanisms of Sexual Differentiation in the Mammalian Nervous System

    PubMed Central

    Forger, Nancy G.; Strahan, J. Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to rethink often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  16. Mitochondrial genetics in Bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness.

    PubMed

    Perlman, P S; Birky, C W

    1974-11-01

    Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

  17. Multiresolution molecular mechanics: Implementation and efficiency

    NASA Astrophysics Data System (ADS)

    Biyikli, Emre; To, Albert C.

    2017-01-01

    Atomistic/continuum coupling methods combine accurate atomistic methods and efficient continuum methods to simulate the behavior of highly ordered crystalline systems. Coupled methods utilize the advantages of both approaches to simulate systems at a lower computational cost, while retaining the accuracy associated with atomistic methods. Many concurrent atomistic/continuum coupling methods have been proposed in the past; however, their true computational efficiency has not been demonstrated. The present work presents an efficient implementation of a concurrent coupling method called the Multiresolution Molecular Mechanics (MMM) for serial, parallel, and adaptive analysis. First, we present the features of the software implemented along with the associated technologies. The scalability of the software implementation is demonstrated, and the competing effects of multiscale modeling and parallelization are discussed. Then, the algorithms contributing to the efficiency of the software are presented. These include algorithms for eliminating latent ghost atoms from calculations and measurement-based dynamic balancing of parallel workload. The efficiency improvements made by these algorithms are demonstrated by benchmark tests. The efficiency of the software is found to be on par with LAMMPS, a state-of-the-art Molecular Dynamics (MD) simulation code, when performing full atomistic simulations. Speed-up of the MMM method is shown to be directly proportional to the reduction of the number of the atoms visited in force computation. Finally, an adaptive MMM analysis on a nanoindentation problem, containing over a million atoms, is performed, yielding an improvement of 6.3-8.5 times in efficiency, over the full atomistic MD method. For the first time, the efficiency of a concurrent atomistic/continuum coupling method is comprehensively investigated and demonstrated.

  18. Multilevel Quantum Mechanics Theories and Molecular Mechanics Calculations of the Cl- + CH3I Reaction in Water.

    PubMed

    Liu, Peng; Li, Chen; Wang, Dunyou

    2017-10-19

    The Cl - + CH 3 I → CH 3 Cl + I - reaction in water was studied using combined multilevel quantum mechanism theories and molecular mechanics with an explicit water solvent model. The study shows a significant influence of aqueous solution on the structures of the stationary points along the reaction pathway. A detailed, atomic-level evolution of the reaction mechanism shows a concerted one-bond-broken and one-bond-formed mechanism, as well as a synchronized charge-transfer process. The potentials of mean force calculated with the CCSD(T) and DFT treatments of the solute produce a free activation barrier at 24.5 and 19.0 kcal/mol, respectively, which agrees with the experimental one at 22.0 kcal/mol. The solvent effects have also been quantitatively analyzed: in total, the solvent effects raise the activation energy by 20.2 kcal/mol, which shows a significant impact on this reaction in water.

  19. Whole Transcriptome Analysis Provides Insights into Molecular Mechanisms for Molting in Litopenaeus vannamei

    PubMed Central

    Gao, Yi; Zhang, Xiaojun; Wei, Jiankai; Sun, Xiaoqing; Yuan, Jianbo; Li, Fuhua; Xiang, Jianhai

    2015-01-01

    Molting is one of the most important biological processes in shrimp growth and development. All shrimp undergo cyclic molting periodically to shed and replace their exoskeletons. This process is essential for growth, metamorphosis, and reproduction in shrimp. However, the molecular mechanisms underlying shrimp molting remain poorly understood. In this study, we investigated global expression changes in the transcriptomes of the Pacific white shrimp, Litopenaeus vannamei, the most commonly cultured shrimp species worldwide. The transcriptome of whole L. vannamei was investigated by RNA-sequencing (RNA-seq) throughout the molting cycle, including the inter-molt (C), pre-molt (D0, D1, D2, D3, D4), and post-molt (P1 and P2) stages, and 93,756 unigenes were identified. Among these genes, we identified 5,117 genes differentially expressed (log2ratio ≥1 and FDR ≤0.001) in adjacent molt stages. The results were compared against the National Center for Biotechnology Information (NCBI) non-redundant protein/nucleotide sequence database, Swiss-Prot, PFAM database, the Gene Ontology database, and the Kyoto Encyclopedia of Genes and Genomes database in order to annotate gene descriptions, associate them with gene ontology terms, and assign them to pathways. The expression patterns for genes involved in several molecular events critical for molting, such as hormone regulation, triggering events, implementation phases, skelemin, immune responses were characterized and considered as mechanisms underlying molting in L. vannamei. Comparisons with transcriptomic analyses in other arthropods were also performed. The characterization of major transcriptional changes in genes involved in the molting cycle provides candidates for future investigation of the molecular mechanisms. The data generated in this study will serve as an important transcriptomic resource for the shrimp research community to facilitate gene and genome annotation and to characterize key molecular processes

  20. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    PubMed Central

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  1. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory.

    PubMed

    Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui

    2014-05-07

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.

  2. Quantum mechanical/molecular mechanical/continuum style solvation model: Second order Møller-Plesset perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao

    A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less

  3. Insights into the Molecular Mechanism of Rotation in the Fo Sector of ATP Synthase

    PubMed Central

    Aksimentiev, Aleksij; Balabin, Ilya A.; Fillingame, Robert H.; Schulten, Klaus

    2004-01-01

    F1Fo-ATP synthase is a ubiquitous membrane protein complex that efficiently converts a cell's transmembrane proton gradient into chemical energy stored as ATP. The protein is made of two molecular motors, Fo and F1, which are coupled by a central stalk. The membrane unit, Fo, converts the transmembrane electrochemical potential into mechanical rotation of a rotor in Fo and the physically connected central stalk. Based on available data of individual components, we have built an all-atom model of Fo and investigated through molecular dynamics simulations and mathematical modeling the mechanism of torque generation in Fo. The mechanism that emerged generates the torque at the interface of the a- and c-subunits of Fo through side groups aSer-206, aArg-210, and aAsn-214 of the a-subunit and side groups cAsp-61 of the c-subunits. The mechanism couples protonation/deprotonation of two cAsp-61 side groups, juxtaposed to the a-subunit at any moment in time, to rotations of individual c-subunit helices as well as rotation of the entire c-subunit. The aArg-210 side group orients the cAsp-61 side groups and, thereby, establishes proton transfer via aSer-206 and aAsn-214 to proton half-channels, while preventing direct proton transfer between the half-channels. A mathematical model proves the feasibility of torque generation by the stated mechanism against loads typical during ATP synthesis; the essential model characteristics, e.g., helix and subunit rotation and associated friction constants, have been tested and furnished by steered molecular dynamics simulations. PMID:14990464

  4. On the Cellular and Molecular Mechanisms of Drug-Induced Gingival Overgrowth

    PubMed Central

    Ramírez-Rámiz, Albert; Brunet-LLobet, Lluís; Lahor-Soler, Eduard; Miranda-Rius, Jaume

    2017-01-01

    Introduction: Gingival overgrowth has been linked to multiple factors such as adverse drug effects, inflammation, neoplastic processes, and hereditary gingival fibromatosis. Drug-induced gingival overgrowth is a well-established adverse event. In early stages, this gingival enlargement is usually located in the area of the interdental papilla. Histologically, there is an increase in the different components of the extracellular matrix. Objective: The aim of this manuscript is to describe and analyze the different cellular and molecular agents involved in the pathogenesis of Drug-induced gingival overgrowth. Method: A literature search of the MEDLINE/PubMed database was conducted to identify the mechanisms involved in the process of drug-induced gingival overgrowth, with the assistance of a research librarian. We present several causal hypotheses and discuss the advances in the understanding of the mechanisms that trigger this gingival alteration. Results: In vitro studies have revealed phenotypic cellular changes in keratinocytes and fibroblasts and an increase of the extracellular matrix with collagen and glycosaminoglycans. Drug-induced gingival overgrowth confirms the key role of collagenase and integrins, membrane receptors present in the fibroblasts, due to their involvement in the catabolism of collagen. The three drug categories implicated: calcineuron inhibitors (immunosuppressant drugs), calcium channel blocking agents and anticonvulsant drugs appear to present a multifactorial pathogenesis with a common molecular action: the blockage of the cell membrane in the Ca2+/Na+ ion flow. The alteration of the uptake of cellular folic acid, which depends on the regulated channels of active cationic transport and on passive diffusion, results in a dysfunctional degradation of the connective tissue. Certain intermediate molecules such as cytokines and prostaglandins play a role in this pathological mechanism. The concomitant inflammatory factor encourages the

  5. Modeling and Proposed Molecular Mechanism of Hydroxyurea Through Docking and Molecular Dynamic Simulation to Curtail the Action of Ribonucleotide Reductase.

    PubMed

    Iman, Maryam; Khansefid, Zeynab; Davood, Asghar

    2016-01-01

    Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.

  6. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  7. Molecular mechanisms of autophagy in the cardiovascular system.

    PubMed

    Gatica, Damián; Chiong, Mario; Lavandero, Sergio; Klionsky, Daniel J

    2015-01-30

    Autophagy is a catabolic recycling pathway triggered by various intra- or extracellular stimuli that is conserved from yeast to mammals. During autophagy, diverse cytosolic constituents are enveloped by double-membrane vesicles, autophagosomes, which later fuse with lysosomes or the vacuole to degrade their cargo. Dysregulation in autophagy is associated with a diverse range of pathologies including cardiovascular disease, the leading cause of death in the world. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been characterized widely in cardiomyocytes, cardiac fibroblasts, endothelial cells, and vascular smooth muscle cells. In all cases, a window of optimal autophagic activity seems to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. Here, we review the molecular mechanisms that govern autophagosome formation and analyze the link between autophagy and cardiovascular disease. © 2015 American Heart Association, Inc.

  8. Molecular mechanisms of the antiproliferative activity of somatostatin receptors (SSTRs) in neuroendocrine tumors.

    PubMed

    Florio, Tullio

    2008-01-01

    The current treatment of neuroendocrine tumors include the use of somatostatin (SST) agonists. These compounds are able to control most of the symptoms caused by the hypersecretory activity of the tumor cells, and for this reason, they provide a significant improvement in the well-being of the patients. Although, several reports also showed a possible direct antiproliferative activity of SST agonists in different neuroendocrine tumors, the therapeutic potential of an in vivo antiproliferative activity mediated by SST receptors is still debated. In recent years, there has been great insights on understanding the molecular basis of the antitumoral activity of SST that appears to be exerted via both direct and indirect mechanisms. Direct mechanisms require the activation of SST receptors in tumor cells and the induction of cell cycle arrest or apoptosis, mainly through the regulation of phosphotyrosine phosphatase (PTP) and MAP kinase activities. The indirect mechanisms involve the inhibition of tumor angiogenesis and the inhibition of the secretion of factors which are required for tumor growth. Here, we will review the molecular mechanisms which are implicated in the antiproliferative activity of SST. Such an understanding is necessary for improving the antitumoral efficacy of SSTR agonists as well as for the development of novel therapeutic strategies.

  9. Unexpected amino acid composition of modern Reptilia and its implications in molecular mechanisms of dinosaur extinction.

    PubMed

    Wang, Guang-Zhong; Ma, Bin-Guang; Yang, Yan; Zhang, Hong-Yu

    2005-08-12

    Dinosaur extinction is a great challenge to evolutionary biology. Although accumulating evidence suggests that an abrupt change of environment, such as a long period of low temperature induced by asteroid hit or other disasters, may be responsible for dinosaur extinction, little is known about the underlying molecular mechanisms. By analyzing the amino acid compositions of 13 biological classes, we found that the charged amino acid content of modern Reptilia, the sibling of dinosaur, is strikingly different from those of other classes, which inspires us to propose a possible molecular mechanism for dinosaur extinction.

  10. First-Principles Quantum Dynamics of Singlet Fission: Coherent versus Thermally Activated Mechanisms Governed by Molecular π Stacking

    NASA Astrophysics Data System (ADS)

    Tamura, Hiroyuki; Huix-Rotllant, Miquel; Burghardt, Irene; Olivier, Yoann; Beljonne, David

    2015-09-01

    Singlet excitons in π -stacked molecular crystals can split into two triplet excitons in a process called singlet fission that opens a route to carrier multiplication in photovoltaics. To resolve controversies about the mechanism of singlet fission, we have developed a first principles nonadiabatic quantum dynamical model that reveals the critical role of molecular stacking symmetry and provides a unified picture of coherent versus thermally activated singlet fission mechanisms in different acenes. The slip-stacked equilibrium packing structure of pentacene derivatives is found to enhance ultrafast singlet fission mediated by a coherent superexchange mechanism via higher-lying charge transfer states. By contrast, the electronic couplings for singlet fission strictly vanish at the C2 h symmetric equilibrium π stacking of rubrene. In this case, singlet fission is driven by excitations of symmetry-breaking intermolecular vibrations, rationalizing the experimentally observed temperature dependence. Design rules for optimal singlet fission materials therefore need to account for the interplay of molecular π -stacking symmetry and phonon-induced coherent or thermally activated mechanisms.

  11. A study on the anisole-water complex by molecular beam-electronic spectroscopy and molecular mechanics calculations.

    PubMed

    Becucci, M; Pietraperzia, G; Pasquini, M; Piani, G; Zoppi, A; Chelli, R; Castellucci, E; Demtroeder, W

    2004-03-22

    An experimental and theoretical study is made on the anisole-water complex. It is the first van der Waals complex studied by high resolution electronic spectroscopy in which the water is seen acting as an acid. Vibronically and rotationally resolved electronic spectroscopy experiments and molecular mechanics calculations are used to elucidate the structure of the complex in the ground and first electronic excited state. Some internal dynamics in the system is revealed by high resolution spectroscopy. (c) 2004 American Institute of Physics

  12. Molecular mechanisms underlying deoxy‐ADP.Pi activation of pre‐powerstroke myosin

    PubMed Central

    Nowakowski, Sarah G.

    2017-01-01

    Abstract Myosin activation is a viable approach to treat systolic heart failure. We previously demonstrated that striated muscle myosin is a promiscuous ATPase that can use most nucleoside triphosphates as energy substrates for contraction. When 2‐deoxy ATP (dATP) is used, it acts as a myosin activator, enhancing cross‐bridge binding and cycling. In vivo, we have demonstrated that elevated dATP levels increase basal cardiac function and rescues function of infarcted rodent and pig hearts. Here we investigate the molecular mechanism underlying this physiological effect. We show with molecular dynamics simulations that the binding of dADP.Pi (dATP hydrolysis products) to myosin alters the structure and dynamics of the nucleotide binding pocket, myosin cleft conformation, and actin binding sites, which collectively yield a myosin conformation that we predict favors weak, electrostatic binding to actin. In vitro motility assays at high ionic strength were conducted to test this prediction and we found that dATP increased motility. These results highlight alterations to myosin that enhance cross‐bridge formation and reveal a potential mechanism that may underlie dATP‐induced improvements in cardiac function. PMID:28097776

  13. Free-energy analysis of the electron-density fluctuation in the quantum-mechanical/molecular-mechanical simulation combined with the theory of energy representation.

    PubMed

    Matubayasi, Nobuyuki; Takahashi, Hideaki

    2012-01-28

    The relationship is investigated for QM/MM (quantum-mechanical/molecular-mechanical) systems between the fluctuations of the electronic state of the QM subsystem and of the solvation effect due to the QM-MM interaction. The free-energy change due to the electron-density fluctuation around its average is highlighted, and is evaluated through an approximate functional formulated in terms of distribution functions of the many-body coupling (pairwise non-additive) part of the QM-MM interaction energy. A set of QM/MM simulations are conducted in MM water solvent for QM water solute in ambient and supercritical conditions and for QM glycine solute in the neutral and zwitterionic forms. The variation of the electronic distortion energy of the QM solute in the course of QM/MM simulation is then shown to be compensated by the corresponding variation of the free energy of solvation. The solvation free energy conditioned by the electronic distortion energy is further analyzed with its components. It is found that the many-body contribution is essentially equal between the free energy and the average sum of solute-solvent interaction energy. © 2012 American Institute of Physics

  14. Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease

    PubMed Central

    Dai, Dao-Fu; Chen, Tony; Johnson, Simon C.; Szeto, Hazel

    2012-01-01

    Abstract Cardiovascular diseases (CVDs) are the major causes of death in the western world. The incidence of cardiovascular disease as well as the rate of cardiovascular mortality and morbidity increase exponentially in the elderly population, suggesting that age per se is a major risk factor of CVDs. The physiologic changes of human cardiac aging mainly include left ventricular hypertrophy, diastolic dysfunction, valvular degeneration, increased cardiac fibrosis, increased prevalence of atrial fibrillation, and decreased maximal exercise capacity. Many of these changes are closely recapitulated in animal models commonly used in an aging study, including rodents, flies, and monkeys. The application of genetically modified aged mice has provided direct evidence of several critical molecular mechanisms involved in cardiac aging, such as mitochondrial oxidative stress, insulin/insulin-like growth factor/PI3K pathway, adrenergic and renin angiotensin II signaling, and nutrient signaling pathways. This article also reviews the central role of mitochondrial oxidative stress in CVDs and the plausible mechanisms underlying the progression toward heart failure in the susceptible aging hearts. Finally, the understanding of the molecular mechanisms of cardiac aging may support the potential clinical application of several “anti-aging” strategies that treat CVDs and improve healthy cardiac aging. PMID:22229339

  15. Molecular mechanisms of liver ischemia reperfusion injury: Insights from transgenic knockout models

    PubMed Central

    Datta, Gourab; Fuller, Barry J; Davidson, Brian R

    2013-01-01

    Ischemia reperfusion injury is a major obstacle in liver resection and liver transplantation surgery. Understanding the mechanisms of liver ischemia reperfusion injury (IRI) and developing strategies to counteract this injury will therefore reduce acute complications in hepatic resection and transplantation, as well as expanding the potential pool of usable donor grafts. The initial liver injury is initiated by reactive oxygen species which cause direct cellular injury and also activate a cascade of molecular mediators leading to microvascular changes, increased apoptosis and acute inflammatory changes with increased hepatocyte necrosis. Some adaptive pathways are activated during reperfusion that reduce the reperfusion injury. IRI involves a complex interplay between neutrophils, natural killer T-cells cells, CD4+ T cell subtypes, cytokines, nitric oxide synthases, haem oxygenase-1, survival kinases such as the signal transducer and activator of transcription, Phosphatidylinositol 3-kinases/Akt and nuclear factor κβ pathways. Transgenic animals, particularly genetic knockout models, have become a powerful tool at elucidating mechanisms of liver ischaemia reperfusion injury and are complementary to pharmacological studies. Targeted disruption of the protein at the genetic level is more specific and maintained than pharmacological inhibitors or stimulants of the same protein. This article reviews the evidence from knockout models of liver IRI about the cellular and molecular mechanisms underlying liver IRI. PMID:23555157

  16. Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration.

    PubMed

    Suwanprateeb, Jintamai; Thammarakcharoen, Faungchat; Hobang, Nattapat

    2016-11-01

    A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n ~80,000) or low (M n ~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.

  17. Effects of Molecular Structure in Macroscopic Mechanical Properties of an Advanced Polymer (LARC(sup TM)-SI)

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Hinkley, Jeffrey A.; Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Mechanical testing of an advanced polymer resin with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The elastic properties, inelastic elongation behavior, and notched tensile strength all as a function of molecular weight and test temperature were determined. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature.

  18. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation.

    PubMed

    Fang, Jiansong; Wu, Ping; Yang, Ranyao; Gao, Li; Li, Chao; Wang, Dongmei; Wu, Song; Liu, Ai-Lin; Du, Guan-Hua

    2014-12-01

    In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔE ele+ΔG GB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.

  19. Nitrergic Mechanisms for Management of Recurrent Priapism

    PubMed Central

    Anele, Uzoma A.; Burnett, Arthur L.

    2015-01-01

    Introduction Priapism is a condition involving prolonged penile erection unrelated to sexual interest or desire. The ischemic type, including its recurrent variant, is often associated with both physical and psychological complications. As such, management is of critical importance. Ideal therapies for recurrent priapism should address its underlying pathophysiology. Aim To review the available literature on priapism management approaches particularly related to nitrergic mechanisms. Methods A literature review of the pathophysiology and management of priapism was performed using PubMed. Main Outcome Measure Publications pertaining to mechanisms of the molecular pathophysiology of priapism. Results Nitrergic mechanisms are characterized as major players in the molecular pathophysiology of priapism. PDE5 inhibitors represent an available therapeutic option with demonstrated ability in attenuating these underlying nitrergic derangements. Several additional signaling pathways have been found to play a role in the molecular pathophysiology of priapism and have also been associated with these nitrergic mechanisms. Conclusion An increasing understanding of the molecular pathophysiology of priapism has led to the discovery of new potential targets. Several mechanism-based therapeutic approaches may become available in the future. PMID:26478814

  20. Mechanical properties of ultrahigh molecular weight PHEMA hydrogels synthesized using initiated chemical vapor deposition.

    PubMed

    Bose, Ranjita K; Lau, Kenneth K S

    2010-08-09

    In this work, poly(2-hydroxyethyl methacrylate) (PHEMA), a widely used hydrogel, is synthesized using initiated chemical vapor deposition (iCVD), a one-step surface polymerization that does not use any solvents. iCVD synthesis is capable of producing linear stoichiometric polymers that are free from entrained unreacted monomer or solvent and, thus, do not require additional purification steps. The resulting films, therefore, are found to be noncytotoxic and also have low nonspecific protein adsorption. The kinetics of iCVD polymerization are tuned so as to achieve rapid deposition rates ( approximately 1.5 microm/min), which in turn yield ultrahigh molecular weight polymer films that are mechanically robust with good water transport and swellability. The films have an extremely high degree of physical chain entanglement giving rise to high tensile modulus and storage modulus without the need for chemical cross-linking that compromises hydrophilicity.

  1. Improving Student Understanding of Addition of Angular Momentum in Quantum Mechanics

    ERIC Educational Resources Information Center

    Zhu, Guangtian; Singh, Chandralekha

    2013-01-01

    We describe the difficulties advanced undergraduate and graduate students have with concepts related to addition of angular momentum in quantum mechanics. We also describe the development and implementation of a research-based learning tool, Quantum Interactive Learning Tutorial (QuILT), to reduce these difficulties. The preliminary evaluation…

  2. Aging and Immune Function: Molecular Mechanisms to Interventions

    PubMed Central

    Ponnappan, Subramaniam

    2011-01-01

    Abstract The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. Indeed, age-associated alterations such as thymic involution, T cell repertoire skewing, decreased ability to activate naïve T cells and to generate robust memory responses, have been shown to have a causative role in immune decline. Further, understanding the molecular mechanisms underlying the generation of proteotoxic stress, DNA damage response, modulation of ubiquitin proteasome pathway, and regulation of transcription factor NFκB activation, in immune decline, have paved the way to delineating signaling pathways that cross-talk and impact immune senescence. Given the role of the immune system in combating infections, its effectiveness with age may well be a marker of health and a predictor of longevity. It is therefore believed that a better understanding of the mechanisms underlying immune senescence will lead to an effective interventional strategy aimed at improving the health span of individuals. Antioxid. Redox Signal. 14, 1551–1585. PMID:20812785

  3. Molecular mechanisms of intrauterine growth restriction.

    PubMed

    Gurugubelli Krishna, Rao; Vishnu Bhat, B

    2017-07-10

    Intrauterine growth restriction (IUGR) is a pregnancy specific disease characterized by decreased growth rate of fetus than the normal growth potential at particular gestational age. In the current scenario it is a leading cause of fetal and neonatal morbidity and mortality. In the last decade exhilarating experimental studies from several laboratories have provided fascinating proof for comprehension of molecular basis of IUGR. Atypical expression of enzymes governed by TGFβ causes the placental apoptosis and altered expression of TGFβ due to hyper alimentation causes impairment of lung function. Crosstalk of cAMP with protein kinases plays a prominent role in the regulation of cortisol levels. Increasing levels of NOD1 proteins leads to development of IUGR by increasing the levels of inflammatory mediators. Increase in leptin synthesis in placental trophoblast cells is associated with IUGR. In this review, we emphasize on the regulatory mechanisms of IUGR and its associated diseases. They may help improve the in-utero fetal growth and provide a better therapeutic intervention for prevention and treatment of IUGR.

  4. Latent memory facilitates relearning through molecular signaling mechanisms that are distinct from original learning.

    PubMed

    Menges, Steven A; Riepe, Joshua R; Philips, Gary T

    2015-09-01

    A highly conserved feature of memory is that it can exist in a latent, non-expressed state which is revealed during subsequent learning by its ability to significantly facilitate (savings) or inhibit (latent inhibition) subsequent memory formation. Despite the ubiquitous nature of latent memory, the mechanistic nature of the latent memory trace and its ability to influence subsequent learning remains unclear. The model organism Aplysia californica provides the unique opportunity to make strong links between behavior and underlying cellular and molecular mechanisms. Using Aplysia, we have studied the mechanisms of savings due to latent memory for a prior, forgotten experience. We previously reported savings in the induction of three distinct temporal domains of memory: short-term (10min), intermediate-term (2h) and long-term (24h). Here we report that savings memory formation utilizes molecular signaling pathways that are distinct from original learning: whereas the induction of both original intermediate- and long-term memory in naïve animals requires mitogen activated protein kinase (MAPK) activation and ongoing protein synthesis, 2h savings memory is not disrupted by inhibitors of MAPK or protein synthesis, and 24h savings memory is not dependent on MAPK activation. Collectively, these findings reveal that during forgetting, latent memory for the original experience can facilitate relearning through molecular signaling mechanisms that are distinct from original learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  6. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  7. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  8. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1

    PubMed Central

    Stowe, Irma B.; Mercado, Ellen L.; Stowe, Timothy R.; Bell, Erika L.; Oses-Prieto, Juan A.; Hernández, Hilda; Burlingame, Alma L.; McCormick, Frank

    2012-01-01

    The Ras/mitogen-activated protein kinase (MAPK) pathway plays a critical role in transducing mitogenic signals from receptor tyrosine kinases. Loss-of-function mutations in one feedback regulator of Ras/MAPK signaling, SPRED1 (Sprouty-related protein with an EVH1 domain), cause Legius syndrome, an autosomal dominant human disorder that resembles Neurofibromatosis-1 (NF1). Spred1 functions as a negative regulator of the Ras/MAPK pathway; however, the underlying molecular mechanism is poorly understood. Here we show that neurofibromin, the NF1 gene product, is a Spred1-interacting protein that is necessary for Spred1's inhibitory function. We show that Spred1 binding induces the plasma membrane localization of NF1, which subsequently down-regulates Ras-GTP levels. This novel mechanism for the regulation of neurofibromin provides a molecular bridge for understanding the overlapping pathophysiology of NF1 and Legius syndrome. PMID:22751498

  9. Molecular imaging and the unification of multilevel mechanisms and data in medical physics.

    PubMed

    Nikiforidis, George C; Sakellaropoulos, George C; Kagadis, George C

    2008-08-01

    Molecular imaging (MI) constitutes a recently developed approach of imaging, where modalities and agents have been reinvented and used in novel combinations in order to expose and measure biologic processes occurring at molecular and cellular levels. It is an approach that bridges the gap between modalities acquiring data from high (e.g., computed tomography, magnetic resonance imaging, and positron-emitting isotopes) and low (e.g., PCR, microarrays) levels of a biological organization. While data integration methodologies will lead to improved diagnostic and prognostic performance, interdisciplinary collaboration, triggered by MI, will result in a better perception of the underlying biological mechanisms. Toward the development of a unifying theory describing these mechanisms, medical physicists can formulate new hypotheses, provide the physical constraints bounding them, and consequently design appropriate experiments. Their new scientific and working environment calls for interventions in their syllabi to educate scientists with enhanced capabilities for holistic views and synthesis.

  10. Molecular engineering and measurements to test hypothesized mechanisms in single molecule conductance switching.

    PubMed

    Moore, Amanda M; Dameron, Arrelaine A; Mantooth, Brent A; Smith, Rachel K; Fuchs, Daniel J; Ciszek, Jacob W; Maya, Francisco; Yao, Yuxing; Tour, James M; Weiss, Paul S

    2006-02-15

    Six customized phenylene-ethynylene-based oligomers have been studied for their electronic properties using scanning tunneling microscopy to test hypothesized mechanisms of stochastic conductance switching. Previously suggested mechanisms include functional group reduction, functional group rotation, backbone ring rotation, neighboring molecule interactions, bond fluctuations, and hybridization changes. Here, we test these hypotheses experimentally by varying the molecular designs of the switches; the ability of the molecules to switch via each hypothetical mechanism is selectively engineered into or out of each molecule. We conclude that hybridization changes at the molecule-surface interface are responsible for the switching we observe.

  11. MurD ligase from E. coli: Tetrahedral intermediate formation study by hybrid quantum mechanical/molecular mechanical replica path method.

    PubMed

    Perdih, Andrej; Hodoscek, Milan; Solmajer, Tom

    2009-02-15

    MurD (UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase), a three-domain bacterial protein, catalyses a highly specific incorporation of D-glutamate to the cytoplasmic intermediate UDP-N-acetyl-muramoyl-L-alanine (UMA) utilizing ATP hydrolysis to ADP and P(i). This reaction is part of a biosynthetic path yielding bacterial peptidoglycan. On the basis of structural studies of MurD complexes, a stepwise catalytic mechanism was proposed that commences with a formation of the acyl-phosphate intermediate, followed by a nucleophilic attack of D-glutamate that, through the formation of a tetrahedral reaction intermediate and subsequent phosphate dissociation, affords the final product, UDP-N-acetyl-muramoyl-L-alanine-D-glutamate (UMAG). A hybrid quantum mechanical/molecular mechanical (QM/MM) molecular modeling approach was utilized, combining the B3LYP QM level of theory with empirical force field simulations to evaluate three possible reaction pathways leading to tetrahedral intermediate formation. Geometries of the starting structures based on crystallographic experimental data and tetrahedral intermediates were carefully examined together with a role of crucial amino acids and water molecules. The replica path method was used to generate the reaction pathways between the starting structures and the corresponding tetrahedral reaction intermediates, offering direct comparisons with a sequential kinetic mechanism and the available structural data for this enzyme. The acquired knowledge represents new and valuable information to assist in the ongoing efforts leading toward novel inhibitors of MurD as potential antibacterial drugs. (c) 2008 Wiley-Liss, Inc.

  12. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    PubMed

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Molecular mechanism of carbon nanotube to activate Subtilisin Carlsberg in polar and non-polar organic media

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Li, Yuzhi; Yuan, Yuan; Jiang, Yuanyuan; Guo, Yanzhi; Li, Menglong; Pu, Xuemei

    2016-11-01

    In the work, we mainly used molecular dynamics (MD) simulation and protein structure network (PSN) to study subtilisin Carlsberg (SC) immobilized onto carbon nanotube (CNT) in water, acetonitrile and heptane solvents, in order to explore activation mechanism of enzymes in non-aqueous media. The result indicates that the affinity of SC with CNT follows the decreasing order of water > acetonitrile > heptane. The overall structure of SC and the catalytic triad display strong robustness to the change of environments, responsible for the activity retaining. However, the distances between two β-strands of substrate-binding pocket are significantly expanded by the immobilization in the increasing order of water < acetonitrile < heptane, contributing to the highest substrate-binding energy in heptane media. PSN analysis further reveals that the immobilization enhances structural communication paths to the substrate-binding pocket, leading to its larger change than the free-enzymes. Interestingly, the increase in the number of the pathways upon immobilization is not dependent on the absorbed extent but the desorbed one, indicating significant role of shifting process of experimental operations in influencing the functional region. In addition, some conserved and important hot-residues in the paths are identified, providing molecular information for functional modification.

  14. Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins.

    PubMed

    Ohtaki, Akashi; Kida, Hiroshi; Miyata, Yusuke; Ide, Naoki; Yonezawa, Akihiro; Arakawa, Takatoshi; Iizuka, Ryo; Noguchi, Keiichi; Kita, Akiko; Odaka, Masafumi; Miki, Kunio; Yohda, Masafumi

    2008-02-29

    Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 A resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various nonnative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the beta subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove.

  15. Molecular dynamics study of mechanical properties of carbon nanotube reinforced aluminum composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Ashish Kumar; Mokhalingam, A.; Singh, Akhileshwar; Kumar, Dinesh

    2016-05-01

    Atomistic simulations were conducted to estimate the effect of the carbon nanotube (CNT) reinforcement on the mechanical behavior of CNT-reinforced aluminum (Al) nanocomposite. The periodic system of CNT-Al nanocomposite was built and simulated using molecular dynamics (MD) software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator). The mechanical properties of the nanocomposite were investigated by the application of uniaxial load on one end of the representative volume element (RVE) and fixing the other end. The interactions between the atoms of Al were modeled using embedded atom method (EAM) potentials, whereas Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO) potential was used for the interactions among carbon atoms and these pair potentials are coupled with the Lennard-Jones (LJ) potential. The results show that the incorporation of CNT into the Al matrix can increase the Young's modulus of the nanocomposite substantially. In the present case, i.e. for approximately 9 with % reinforcement of CNT can increase the axial Young's modulus of the Al matrix up to 77 % as compared to pure Al.

  16. Molecular mechanisms of platelet P2Y(12) receptor regulation.

    PubMed

    Cunningham, Margaret R; Nisar, Shaista P; Mundell, Stuart J

    2013-02-01

    Platelets are critical for haemostasis, however inappropriate activation can lead to the development of arterial thrombosis, which can result in heart attack and stroke. ADP is a key platelet agonist that exerts its actions via stimulation of two surface GPCRs (G-protein-coupled receptors), P2Y(1) and P2Y(12). Similar to most GPCRs, P2Y receptor activity is tightly regulated by a number of complex mechanisms including receptor desensitization, internalization and recycling. In the present article, we review the molecular mechanisms that underlie P2Y(1) and P2Y(12) receptor regulation, with particular emphasis on the structural motifs within the P2Y(12) receptor, which are required to maintain regulatory protein interaction. The implications of these findings for platelet responsiveness are also discussed.

  17. Molecular Mechanisms of Pesticide-induced Neurotoxicity: Relevance to Parkinson’s Disease

    PubMed Central

    Franco, Rodrigo; Li, Sumin; Rodriguez-Rocha, Humberto; Burns, Michaela; Panayiotidis, Mihalis I.

    2010-01-01

    Pesticides are widely used in agricultural and other settings, resulting in continued human exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to neurodegenerative diseases. Epidemiological data has suggested a relationship between pesticide exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a model for Parkinson’s disease providing valuable insight into the possible mechanisms involved in the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In this work, we review the molecular mechanisms involved in the neurotoxic actions of pesticides, with a particular emphasis on the mechanisms associated with the induction neuronal cell death by paraquat as a model for Parkinsonian neurodegeneration. PMID:20542017

  18. Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury*

    PubMed Central

    van Niekerk, Erna A.; Tuszynski, Mark H.; Lu, Paul; Dulin, Jennifer N.

    2016-01-01

    Following axotomy, a complex temporal and spatial coordination of molecular events enables regeneration of the peripheral nerve. In contrast, multiple intrinsic and extrinsic factors contribute to the general failure of axonal regeneration in the central nervous system. In this review, we examine the current understanding of differences in protein expression and post-translational modifications, activation of signaling networks, and environmental cues that may underlie the divergent regenerative capacity of central and peripheral axons. We also highlight key experimental strategies to enhance axonal regeneration via modulation of intraneuronal signaling networks and the extracellular milieu. Finally, we explore potential applications of proteomics to fill gaps in the current understanding of molecular mechanisms underlying regeneration, and to provide insight into the development of more effective approaches to promote axonal regeneration following injury to the nervous system. PMID:26695766

  19. A molecular mechanism of chaperone-client recognition

    PubMed Central

    He, Lichun; Sharpe, Timothy; Mazur, Adam; Hiller, Sebastian

    2016-01-01

    Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature. PMID:28138538

  20. Effects of Graphene Oxide Addition on Mechanical and Thermal Properties of Evoh Films

    NASA Astrophysics Data System (ADS)

    González-Ruiz, Jesús; Yataco-Lazaro, Lourde; Virginio, Sueli; das Graças da Silva-Valenzuela, Maria; Moura, Esperidiana; Valenzuela-Díaz, Francisco

    Currently, ethylene vinyl alcohol (EVOH) is one of the oxygen barrier materials most used for food packaging. The addition of graphene oxide nanosheets to the EVOH matrix is employed to improve their mechanic al and barrier properties. In this work, films of EVOH-based composites reinforced with graphene oxide were prepared by melt extrusion, using a twin screw extruder machine and blown extrusion process. The graphene oxide was prepared via chemical oxidation of natural graphite and then was exfoliated into nanosheets using the sonochemical method. The composite films samples were characterized using FTIR and DSC analysis. In addition, their mechanical properties were also determined.

  1. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    PubMed

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage

    PubMed Central

    Redgrove, Kate A.; McLaughlin, Eileen A.

    2017-01-01

    In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte. PMID:29312475

  3. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.

    PubMed

    Faheem, Muhammad; Heyden, Andreas

    2014-08-12

    We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.

  4. Agronomic Traits and Molecular Marker Identification of Wheat–Aegilops caudata Addition Lines

    PubMed Central

    Gong, Wenping; Han, Ran; Li, Haosheng; Song, Jianmin; Yan, Hongfei; Li, Genying; Liu, Aifeng; Cao, Xinyou; Guo, Jun; Zhai, Shengnan; Cheng, Dungong; Zhao, Zhendong; Liu, Cheng; Liu, Jianjun

    2017-01-01

    Aegilops caudata is an important gene source for wheat breeding. Intensive evaluation of its utilization value is an essential first step prior to its application in breeding. In this research, the agronomical and quality traits of Triticum aestivum-Ae. caudata additions B–G (homoeologous groups not identified) were analyzed and evaluated. Disease resistance tests showed that chromosome D of Ae. caudata might possess leaf rust resistance, and chromosome E might carry stem rust and powdery mildew resistance genes. Investigations into agronomical traits suggested that the introduction of the Ae. caudata chromosome in addition line F could reduce plant height. Grain quality tests showed that the introduction of chromosomes E or F into wheat could increase its protein and wet gluten content. Therefore, wheat-Ae. caudata additions D–F are all potentially useful candidates for chromosome engineering activities to create useful wheat-alien chromosome introgressions. A total of 55 EST-based molecular markers were developed and then used to identify the chromosome homoeologous group of each of the Ae. caudata B–G chromosomes. Marker analysis indicated that the Ae. caudata chromosomes in addition lines B to G were structurally altered, therefore, a large population combined with intensive screening pressure should be taken into consideration when inducing and screening for wheat-Ae. caudata compensating translocations. Marker data also indicated that the Ae. caudata chromosomes in addition lines C–F were 5C, 6C, 7C, and 3C, respectively, while the homoeologous group of chromosomes B and G of Ae. caudata are as yet undetermined and need further research. PMID:29075275

  5. Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality

    PubMed Central

    Xu, Chongzhi; Tang, Xiaoli; Shao, Hongbo; Wang, Hongyan

    2016-01-01

    Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt tolerance mechanisms to respond to the salt tress and ensure normal growth and development under saline conditions in their lengthy evolutionary adaptation, so understanding how halophytes respond to salinity stress will provide us with methods and tactics to foster and develop salt resistant varieties of crops. The strategies in physiological and molecular level adopted by halophytes are various including the changes in photosynthetic and transpiration rate, the sequestration of Na+ to extracellular or vacuole, the regulation of stomata aperture and stomatal density, the accumulation and synthesis of the phytohormones as well as the relevant gene expression underlying these physiological traits, such as the stress signal transduction, the regulation of the transcription factors, the activation and expression of the transporter genes, the activation or inhibition of the synthetases and so on. This review focuses on the research advances of the regulating mechanisms in halophytes from physiological to molecular, which render the halophytes tolerance and adaption to salinity stress. PMID:27252587

  6. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn; Zheng, Xiao, E-mail: xz58@ustc.edu.cn

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It ismore » confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.« less

  7. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera)

    PubMed Central

    2014-01-01

    The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates. PMID:25225299

  8. ART and health: clinical outcomes and insights on molecular mechanisms from rodent studies

    PubMed Central

    Feuer, S.K.; Camarano, L.; Rinaudo, P.F.

    2013-01-01

    Since the birth of the first IVF-conceived child in 1978, the use of assisted reproductive technologies (ART) has grown dramatically, contributing to the successful birth of 5 million individuals worldwide. However, there are several reported associations of ART with pregnancy complications, such as low birthweight (LBW), preterm birth, birth defects, epigenetic disorders, cancer and poor metabolic health. Whether this is attributed to ART procedures or to the subset of the population seeking ART remains a controversy, but the most relevant question today concerns the potential long-term implications of assisted conception. Recent evidence has emerged suggesting that ART-conceived children have distinct metabolic profiles that may predispose to cardiovascular pathologies in adulthood. Because the eldest IVF individuals are still too young to exhibit components of chronic middle-aged syndromes, the use of animal models has become particularly useful in describing the effects of unusual or stressful preimplantation experiences on adult fitness. Elucidating the molecular mechanisms by which embryos integrate environmental signals into development and metabolic gene expression programs will be essential for optimizing ART procedures such as in vitro culture conditions, embryo selection and transfer. In the future, additional animal studies to identify mechanisms underlying unfavorable ART outcomes, as well as more epidemiological reviews to monitor the long-term health of ART children are required, given that ART procedures have become routine medical practice. PMID:23264495

  9. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems

    PubMed Central

    Lü, Jian-Ming; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Abstract Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system. PMID:19754673

  10. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation.

    PubMed

    Su, Grace L

    2002-08-01

    Endogenous gut-derived bacterial lipopolysaccharides have been implicated as important cofactors in the pathogenesis of liver injury. However, the molecular mechanisms by which lipopolysaccharides exert their effect are not entirely clear. Recent studies have pointed to proinflammatory cytokines such as tumor necrosis factor-alpha as mediators of hepatocyte injury. Within the liver, Kupffer cells are major sources of proinflammatory cytokines that are produced in response to lipopolysaccharides. This review will focus on three important molecular components of the pathway by which lipopolysaccharides activate Kupffer cells: CD14, Toll-like receptor 4, and lipopolysaccharide binding protein. Within the liver, lipopolysaccharides bind to lipopolysaccharide binding protein, which then facilitates its transfer to membrane CD14 on the surface of Kupffer cells. Signaling of lipopolysaccharide through CD14 is mediated by the downstream receptor Toll-like receptor 4 and results in activation of Kupffer cells. The role played by these molecules in liver injury will be examined.

  11. Mechanical properties and mechanism of single crystal Cu pillar by in situ TEM compression and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Lin, Kai-Peng; Fang, Te-Hua; Lin, Ying-Jhin

    2018-02-01

    In this study, we investigate the mechanical properties of single-crystal copper (Cu) nanopillars. Critical deformation variations of Cu-nanopillared structures are estimated using in situ transmission electron microscopy compression tests and molecular dynamics simulations. The Young’s moduli of Cu nanopillars with diameters of 2-6 nm were 90.20-124.47 GPa. The contact stiffnesses of the Cu nanopillars with diameters of 400 and 500 nm were 1.33 and 3.86 N m-1, respectively; the Poisson’s ratios for these nanopillars were 0.32 and 0.33. The yield strength of the nanopillars varied from 0.25 GPa at 500 nm to 0.42 GPa at 400 nm; the yield strength of single-crystal Cu nanopillars decreased with increasing diameter. The values of the indented hardness of the Cu block were 0.27 and 1.06 GPa, respectively. Through experimental work and molecular dynamics simulations, we demonstrate that Cu nanopillars exhibit internal stress transmission during compression. When compression reaches the maximum strain, it can be observed that Cu slips. Our results are useful for understanding the mechanical properties, contact, and local deformation of Cu nanopillars.

  12. Viewing Molecular and Interface Interactions of Curcumin Amorphous Solid Dispersions for Comprehending Dissolution Mechanisms.

    PubMed

    Li, Jing; Wang, Xin; Li, Chang; Fan, Na; Wang, Jian; He, Zhonggui; Sun, Jin

    2017-08-07

    Tautomeric curcumin amorphous solid dispersions (Cur ASDs) formulated with various typical polymers (polyethylene glycol 6000 (PEG), polyvinylpyrrolidone K30 (PVP), Eudragit EPO (EuD), EuD/hydroxypropylmethyl cellulose E50 (HPMC), and PVP/EuD) were probed using in situ Raman imaging plus spectroscopy and molecular modeling techniques, and dissolution mechanism of Cur ASDs were revealed mainly through molecular and interfacial interactions formed between Cur and polymer. The results demonstrated that Cur of keto form existed in Cur-PEG, Cur of enol form was shown in Cur-PVP, while Cur-EuD or Cur ASDs formulated with EuD as component had Cur of keto form and enol form. Hydrogen bond interactions were formed between OH group (PEG, HPMC) with C═O (Cur), and C═O (PVP or EuD) with the OH group (Cur). For Cur ASDs formulated with single polymer, the existed form of Cur was possibly related with the molecular interactions formed between drug and polymer. The wetting effect of excipient and Cur ASDs as well as their fitting equations of contact angle profiles should be seriously considered when analyzing the dissolution mechanism of Cur ASDs. Furthermore, dissolution of Cur-EuD with erosion dissolution pattern was higher than Cur-PVP with diffusion mechanism, and their crystallization pathway can ascribe to solution pathway and solid matrix pathway, respectively. Last but not least, turbidimetry method was effective in determining which excipient was superior and evaluating the function of polymers, including their abilities to improve amorphous Cur loading, drug dissolution, and supersaturation levels. Therefore, both the probing of tautomeric Cur in ASDs at intermolecular level and elucidation of its dissolution mechanism has tremendous value.

  13. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    PubMed

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  14. Cisplatin in cancer therapy: molecular mechanisms of action

    PubMed Central

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  15. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    NASA Astrophysics Data System (ADS)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  16. Congenital heart disease and genetic syndromes: new insights into molecular mechanisms.

    PubMed

    Calcagni, Giulio; Unolt, Marta; Digilio, Maria Cristina; Baban, Anwar; Versacci, Paolo; Tartaglia, Marco; Baldini, Antonio; Marino, Bruno

    2017-09-01

    Advances in genetics allowed a better definition of the role of specific genetic background in the etiology of syndromic congenital heart defects (CHDs). The identification of a number of disease genes responsible for different syndromes have led to the identification of several transcriptional regulators and signaling transducers and modulators that are critical for heart morphogenesis. Understanding the genetic background of syndromic CHDs allowed a better characterization of the genetic basis of non-syndromic CHDs. In this sense, the well-known association of typical CHDs in Down syndrome, 22q11.2 microdeletion and Noonan syndrome represent paradigms as chromosomal aneuploidy, chromosomal microdeletion and intragenic mutation, respectively. Area covered: For each syndrome the anatomical features, distinctive cardiac phenotype and molecular mechanisms are discussed. Moreover, the authors include recent genetic findings that may shed light on some aspects of still unclear molecular mechanisms of these syndromes. Expert commentary: Further investigations are needed to enhance the translational approach in the field of genetics of CHDs. When there is a well-established definition of genotype-phenotype (reverse medicine) and genotype-prognosis (predictive and personalized medicine) correlations, hopefully preventive medicine will make its way in this field. Subsequently a reduction will be achieved in the morbidity and mortality of children with CHDs.

  17. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  18. Anti-Alzheimers activity and molecular mechanism of albumin-derived peptides against AChE and BChE.

    PubMed

    Yu, Zhipeng; Wu, Sijia; Zhao, Wenzhu; Ding, Long; Fan, Yue; Shiuan, David; Liu, Jingbo; Chen, Feng

    2018-02-21

    Alzheimer's disease (AD) is a global health issue affecting millions of elderly people worldwide. The aim of the present study was to identify novel anti-AD peptides isolated from albumin. Anti-AD activities of the peptides were evaluated via inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Furthermore, the potential molecular mechanisms of the KLPGF/AChE were investigated by CDOCKER of Discovery studio 2017. The results revealed that peptide KLPGF could effectively inhibit AChE with an inhibition rate of 61.23% at a concentration of 50 μg mL -1 . In addition, the peptide KLPGF came in contact with acylation sites and peripheral anion sites of AChE. The present study demonstrates that the peptide KLPGF could become a potential functional food intervention in AD.

  19. Comparative Evaluation of Small Molecular Additives and Their Effects on Peptide/Protein Identification.

    PubMed

    Gao, Jing; Zhong, Shaoyun; Zhou, Yanting; He, Han; Peng, Shuying; Zhu, Zhenyun; Liu, Xing; Zheng, Jing; Xu, Bin; Zhou, Hu

    2017-06-06

    Detergents and salts are widely used in lysis buffers to enhance protein extraction from biological samples, facilitating in-depth proteomic analysis. However, these detergents and salt additives must be efficiently removed from the digested samples prior to LC-MS/MS analysis to obtain high-quality mass spectra. Although filter-aided sample preparation (FASP), acetone precipitation (AP), followed by in-solution digestion, and strong cation exchange-based centrifugal proteomic reactors (CPRs) are commonly used for proteomic sample processing, little is known about their efficiencies at removing detergents and salt additives. In this study, we (i) developed an integrative workflow for the quantification of small molecular additives in proteomic samples, developing a multiple reaction monitoring (MRM)-based LC-MS approach for the quantification of six additives (i.e., Tris, urea, CHAPS, SDS, SDC, and Triton X-100) and (ii) systematically evaluated the relationships between the level of additive remaining in samples following sample processing and the number of peptides/proteins identified by mass spectrometry. Although FASP outperformed the other two methods, the results were complementary in terms of peptide/protein identification, as well as the GRAVY index and amino acid distributions. This is the first systematic and quantitative study of the effect of detergents and salt additives on protein identification. This MRM-based approach can be used for an unbiased evaluation of the performance of new sample preparation methods. Data are available via ProteomeXchange under identifier PXD005405.

  20. Azobenzene as a photoregulator covalently attached to RNA: a quantum mechanics/molecular mechanics-surface hopping dynamics study.

    PubMed

    Mondal, Padmabati; Granucci, Giovanni; Rastädter, Dominique; Persico, Maurizio; Burghardt, Irene

    2018-05-28

    The photoregulation of nucleic acids by azobenzene photoswitches has recently attracted considerable interest in the context of emerging biotechnological applications. To understand the mechanism of photoinduced isomerisation and conformational control in these complex biological environments, we employ a Quantum Mechanics/Molecular Mechanics (QM/MM) approach in conjunction with nonadiabatic Surface Hopping (SH) dynamics. Two representative RNA-azobenzene complexes are investigated, both of which contain the azobenzene chromophore covalently attached to an RNA double strand via a β-deoxyribose linker. Due to the pronounced constraints of the local RNA environment, it is found that trans -to- cis isomerization is slowed down to a time scale of ∼10-15 picoseconds, in contrast to 500 femtoseconds in vacuo , with a quantum yield reduced by a factor of two. By contrast, cis -to- trans isomerization remains in a sub-picosecond regime. A volume-conserving isomerization mechanism is found, similarly to the pedal-like mechanism previously identified for azobenzene in solution phase. Strikingly, the chiral RNA environment induces opposite right-handed and left-handed helicities of the ground-state cis -azobenzene chromophore in the two RNA-azobenzene complexes, along with an almost completely chirality conserving photochemical pathway for these helical enantiomers.

  1. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  2. Clinical, Morphological, and Molecular Evaluations of Bone Regeneration With an Additive Manufactured Osteosynthesis Plate.

    PubMed

    Thor, Andreas; Palmquist, Anders; Hirsch, Jan-Michaél; Rännar, Lars-Erik; Dérand, Per; Omar, Omar

    2016-10-01

    There is limited information on the biological status of bone regenerated with microvascular fibula flap combined with biomaterials. This paper describes the clinical, histological, ultrastructural, and molecular picture of bone regenerated with patient-customized plate, used for mandibular reconstruction in combination with microvascular osteomyocutaneous fibula flap. The plate was virtually planned and additively manufactured using electron beam melting. This plate was retrieved from the patient after 33 months. Microcomputed tomography, backscattered-scanning electron microscopy, histology, and quantitative-polymerase chain reaction were employed to evaluate the regenerated bone and the flap bone associated with the retrieved plate. At retrieval, the posterior two-thirds of the plate were in close adaptation with the underlying flap, whereas soft tissue was observed between the native mandible and the anterior one-third. The histological and structural analyses showed new bone regeneration, ingrowth, and osseointegration of the posterior two-thirds. The histological observations were supported by the gene expression analysis showing higher expression of bone formation and remodeling genes under the posterior two-thirds compared with the anterior one-third of the plate. The observation of osteocytes in the flap indicated its viability. The present data endorse the suitability of the customized, additively manufactured plate for the vascularized fibula mandibular reconstruction. Furthermore, the combination of the analytical techniques provides possibilities to deduce the structural and molecular characteristics of bone regenerated using this procedure.

  3. Molecular mechanisms of programmed cell death-1 dependent T cell suppression: relevance for immunotherapy

    PubMed Central

    Zuazo, Miren; Gato-Cañas, Maria; Llorente, Noelia; Ibañez-Vea, María; Arasanz, Hugo

    2017-01-01

    Programmed cell death-1 (PD1) has become a significant target for cancer immunotherapy. PD1 and its receptor programmed cell death 1 ligand 1 (PDL1) are key regulatory physiological immune checkpoints that maintain self-tolerance in the organism by regulating the degree of activation of T and B cells amongst other immune cell types. However, cancer cells take advantage of these immunosuppressive regulatory mechanisms to escape T and B cell-mediated immunity. PD1 engagement on T cells by PDL1 on the surface of cancer cells dramatically interferes with T cell activation and the acquisition of effector capacities. Interestingly, PD1-targeted therapies have demonstrated to be highly effective in rescuing T cell anti-tumor effector functions. Amongst these the use of anti-PD1/PDL1 monoclonal antibodies are particularly efficacious in human therapies. Furthermore, clinical findings with PD1/PDL1 blockers over several cancer types demonstrate clinical benefit. Despite the successful results, the molecular mechanisms by which PD1-targeted therapies rescue T cell functions still remain elusive. Therefore, it is a key issue to uncover the molecular pathways by which these therapies exert its function in T cells. A profound knowledge of PDL1/PD1 mechanisms will surely uncover a new array of targets susceptible of therapeutic intervention. Here, we provide an overview of the molecular events underlying PD1-dependent T cell suppression in cancer. PMID:29114543

  4. The molecular mechanism of excitation in visual transduction and bacteriorhodopsin

    PubMed Central

    Lewis, Aaron

    1978-01-01

    An electronic theory of excitation is proposed and described in terms of a three-dimensional excited/ground-state energy surface which elucidates the photochemical and excited-state dynamics of rhodopsins. In this theory the primary action of light is to produce significant electron redistribution in the retinal, thereby generating new interactions that vibrationally excite and perturb the ground-state protein conformation. Thus, light energy causes charge redistribution in the retinal and induces transient charge-density assisted bond rearrangements (such as proton translocation) in the protein structure which is stabilized by subsequent retinal structural alteration. In this theory the isoprenoid chain of the retinal is considered a structurally pliable molecular entity that can generate charge redistributions and can be subsequently achieve intermediate conformations or various isomeric states to minimize the energy of the new protein structure generated by light. Thus, the 11-cis to all trans isomerization of the retinylidene chromophore is not considered a primary mechanism of excitation. An alternate biological role for this molecular process (which is eventually completed in all photoreceptors but not in bacterial rhodopsins) is to provide the irreversibility needed for effective quantum detection on the time scale of a neural response. Finally, it will be demonstrated that this mechanism, which readily accounts for the photophysical and photochemical data, can also be restated in terms of the Monod, Wyman, and Changeux terminology suggesting that aggregates of these pigments may function allosterically. PMID:273216

  5. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  6. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation.

    PubMed

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  7. Multi-level quantum mechanics theories and molecular mechanics study of the double-inversion mechanism of the F- + CH3I reaction in aqueous solution.

    PubMed

    Liu, Peng; Zhang, Jingxue; Wang, Dunyou

    2017-06-07

    A double-inversion mechanism of the F - + CH 3 I reaction was discovered in aqueous solution using combined multi-level quantum mechanics theories and molecular mechanics. The stationary points along the reaction path show very different structures to the ones in the gas phase due to the interactions between the solvent and solute, especially strong hydrogen bonds. An intermediate complex, a minimum on the potential of mean force, was found to serve as a connecting-link between the abstraction-induced inversion transition state and the Walden-inversion transition state. The potentials of mean force were calculated with both the DFT/MM and CCSD(T)/MM levels of theory. Our calculated free energy barrier of the abstraction-induced inversion is 69.5 kcal mol -1 at the CCSD(T)/MM level of theory, which agrees with the one at 72.9 kcal mol -1 calculated using the Born solvation model and gas-phase data; and our calculated free energy barrier of the Walden inversion is 24.2 kcal mol -1 , which agrees very well with the experimental value at 25.2 kcal mol -1 in aqueous solution. The calculations show that the aqueous solution makes significant contributions to the potentials of mean force and exerts a big impact on the molecular-level evolution along the reaction pathway.

  8. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  9. Palatogenesis: morphogenetic and molecular mechanisms of secondary palate development

    PubMed Central

    Bush, Jeffrey O.; Jiang, Rulang

    2012-01-01

    Mammalian palatogenesis is a highly regulated morphogenetic process during which the embryonic primary and secondary palatal shelves develop as outgrowths from the medial nasal and maxillary prominences, respectively, remodel and fuse to form the intact roof of the oral cavity. The complexity of control of palatogenesis is reflected by the common occurrence of cleft palate in humans. Although the embryology of the palate has long been studied, the past decade has brought substantial new knowledge of the genetic control of secondary palate development. Here, we review major advances in the understanding of the morphogenetic and molecular mechanisms controlling palatal shelf growth, elevation, adhesion and fusion, and palatal bone formation. PMID:22186724

  10. Soy Isoflavones and Prostate Cancer: A Review of Molecular Mechanisms

    PubMed Central

    Mahmoud, Abeer M.; Yang, Wancai; Bosland, Maarten C.

    2014-01-01

    Soy isoflavones are dietary components for which an association has been demonstrated with reduced risk of prostate cancer (PCa) in Asian populations. However, the exact mechanism by which these isoflavones may prevent the development or progression of PCa is not completely understood. There are a growing number of animal and in vitro studies that have attempted to elucidate these mechanisms. The predominant and most biologically active isoflavones in soy products, genistein, daidzein, equol, and glycetin, inhibit prostate carcinogenesis in some animal models. Cell-based studies show that soy isoflavones regulate genes that control cell cycle and apoptosis. In this review, we discuss the literature relevant to the molecular events that may account for the benefit of soy isoflavones in PCa prevention or treatment. These reports show that although soy isoflavone-induced growth arrest and apoptosis of PCa cells are plausible mechanisms, other chemo protective mechanisms are also worthy of consideration. These possible mechanisms include antioxidant defense, DNA repair, inhibition of angiogenesis and metastasis, potentiation of radio- and chemotherapeutic agents, and antagonism of estrogen- and androgen-mediated signaling pathways. Moreover, other cells in the cancer milieu, such as the fibroblastic stromal cells, endothelial cells, and immune cells, may be targeted by soy isoflavones, which may contribute to soy-mediated prostate cancer prevention. In this review, these mechanisms are discussed along with considerations about the doses and the preclinical models that have been used. PMID:24373791

  11. Studying chemical reactions in biological systems with MBN Explorer: implementation of molecular mechanics with dynamical topology

    NASA Astrophysics Data System (ADS)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.

    2016-01-01

    The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  12. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity.

    PubMed

    Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya

    2017-04-15

    The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy.

  14. Molecular Mechanisms of Taste Recognition: Considerations about the Role of Saliva

    PubMed Central

    Fábián, Tibor Károly; Beck, Anita; Fejérdy, Pál; Hermann, Péter; Fábián, Gábor

    2015-01-01

    The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed. PMID:25782158

  15. Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I

    PubMed Central

    Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.

    2014-01-01

    During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643

  16. Dietary flavonoids: molecular mechanisms of action as anti- inflammatory agents.

    PubMed

    Marzocchella, Laura; Fantini, Massimo; Benvenuto, Monica; Masuelli, Laura; Tresoldi, Ilaria; Modesti, Andrea; Bei, Roberto

    2011-09-01

    Flavonoids are a large group of polyphenolic compounds, which are ubiquitously expressed in plants. They are grouped according to their chemical structure and function into flavonols, flavones, flavan-3-ols, anthocyanins, flavanones and isoflavones. Many of flavonoids are found in fruits, vegetables and beverages. Flavonoids have been demonstrated to have advantageous effects on human health because their anti-allergic, anti-inflammatory, anti-platelet aggregation, anti-tumor and anti-oxidant behavior. This report reviews the current knowledge on the molecular mechanisms of action of flavonoids as anti-inflammatory agents and also discusses the relevant patents.

  17. [Homeostasis and Disorder of Musculoskeletal System.Molecular mechanism of bone metabolism and future therapeutic strategies.

    PubMed

    Nakashima, Tomoki

    Recent studies of mouse genetics and human gene mutations has greatly contributed to clarifying the molecular mechanism of bone metabolism. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication among bone component cells such as osteoclasts, osteoblasts, osteocytes and endothelial cells. An imbalance of this process is often linked to various bone diseases. Thus, the elucidation of the molecular mechanisms involved in bone remodeling is critical for a deeper understanding of the maintenance of healthy skeleton and bone disease.

  18. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  19. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  20. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.