Science.gov

Sample records for additional monitoring wells

  1. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2002-01-01

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  2. Monitoring well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  3. Power consumption monitoring using additional monitoring device

    SciTech Connect

    Truşcă, M. R. C. Albert, Ş. Tudoran, C. Soran, M. L. Fărcaş, F.; Abrudean, M.

    2013-11-13

    Today, emphasis is placed on reducing power consumption. Computers are large consumers; therefore it is important to know the total consumption of computing systems. Since their optimal functioning requires quite strict environmental conditions, without much variation in temperature and humidity, reducing energy consumption cannot be made without monitoring environmental parameters. Thus, the present work uses a multifunctional electric meter UPT 210 for power consumption monitoring. Two applications were developed: software which carries meter readings provided by electronic and programming facilitates remote device and a device for temperature monitoring and control. Following temperature variations that occur both in the cooling system, as well as the ambient, can reduce energy consumption. For this purpose, some air conditioning units or some computers are stopped in different time slots. These intervals were set so that the economy is high, but the work's Datacenter is not disturbed.

  4. A simple deep monitoring well dilution technique.

    NASA Astrophysics Data System (ADS)

    Rogiers, Bart; Labat, Serge; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    Well dilution techniques are well known and studied as one of the basic techniques to quantify groundwater fluxes. A typical well dilution test consists of the injection of a tracer, a mixing mechanism (e.g. water circulation with a pump) to achieve a homogeneous concentration distribution within the well, and monitoring of the evolution of tracer concentration with time. An apparent specific discharge can be obtained from such a test, and when details on the well construction are known, it can be converted into a specific discharge representative of the undisturbed aquifer. For deep wells however, the injection of tracer becomes less practical and the use of pumps for circulating and mixing the water becomes problematic. This is due to the limited pressure that common pumps can endure at the outlet, as well as the large volume of water that makes it difficult to achieve a homogeneous concentration, and the impracticalities of getting a lot of equipment to large depths in very small monitoring wells. Injection and monitoring of tracer at a specific depth omits several of the problems with deep wells. We present a very simple device that can be used to perform a dilution test at a specific depth in deep wells. The injection device consists of a PVC tube with a detachable rubber seal at its bottom. To minimize disturbance of the water column in the well, we integrated an EC sensor in this injection device, which enables us to use demineralized water or dissolved salts as a tracer. Once at the target depth, the PVC tube is retracted and the EC sensor and tracer become subject to groundwater flow. The device was tested on a shallow well, on which different types of dilution tests were performed. The results of the other tests agree well with the injection tube results. Finally, the device was used to perform a dilution test in a deep well in order to demonstrate the feasibility of the approach.

  5. Case Study: Leaking Groundwater Monitor Well Casting

    DTIC Science & Technology

    1994-07-01

    Jerald D. Broughton ; prepared for U.S. Army Environmental Center. 55 p . T ill. * 28 cm. -- (Miscellaneous paper; GL-94-28) Includes bibliographic...4 Chapter 1 Inboduojon LEG END ALLANALML A mm~rm qj -Mn- SUWM IWA11OI PT FM ftJM§ iiiR3 mT, P I *:.*’.’............ c h~ h~r, sni*co 2 Monitor Well...Sample 1455 fmm well 4- w sa0 prXge volume Iample taken on 16 FsMunq. Ouet problns with the sufterste pump afw fte sml Was taken, sampling was sopped

  6. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  7. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  8. Final report : monitoring well installation and sampling, 2004, Morrill, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2006-01-27

    This report documents the activities associated with the installation in 2004 of three groundwater monitoring wells at Morrill, Kansas, and the subsequent sampling of these wells and the six existing Kansas Department of Health and Environment (KDHE) monitoring wells. Also sampled were known private wells located within and downgradient of an area of groundwater contaminated with carbon tetrachloride. These activities were conducted as part of an ongoing environmental investigation at Morrill that is being performed by the Environmental Research Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), has entered into an interagency agreement with DOE, under which Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at its former grain storage facilities. The need for three additional monitoring wells at Morrill to supplement the existing sixwell network initially installed by the KDHE (GeoCore 1996) was documented in a letter report (Argonne 2003a), based on the data collected in October 2003, during the Phase I-Phase II expedited site characterization (Argonne 2004a). In December 2003, following approval of the proposed locations by the KDHE, a work plan for the installation and sampling of the monitoring wells was prepared and submitted to the KDHE (Argonne 2004b). This work plan, together with subsequent modifications (Argonne 2004c), was approved by the KDHE on April 8, 2004. Field work associated with the installation of the three monitoring wells was conducted in May 2004. Sampling of the existing monitoring wells and the known private wells within and downgradient of an area of groundwater contaminated with carbon tetrachloride occurred in June 2004. For one private well, permission to

  9. Site Selection for a Deep Monitor Well, Kualapuu, Molokai, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2000-01-01

    Management of the ground-water resources near Kualapuu on the island of Molokai, Hawaii, is hindered by the uncertainty in the vertical salinity structure in the aquifer. In the State of Hawaii, vertical profiles of ground-water salinity are commonly obtained from deep monitor wells, and these profiles are used to estimate the thicknesses of the freshwater part of the ground-water flow system and the freshwater-saltwater transition zone. Information from a deep monitor well would improve the understanding of the ground-water flow system and the ability to effectively manage the ground-water resources near Kualapuu; however, as of mid-1999 no deep monitor wells had been drilled on the island of Molokai. Selection of an appropriate site for drilling a deep monitor well in the Kualapuu area depends partly on where future ground-water development may occur. Simulations using an areally two-dimensional, steady-state, sharp-interface ground-water flow model previously developed for the island of Molokai, Hawaii, indicate that the southeastern part of the Kualapuu area is a possible area of future ground-water development because (1) withdrawals from this area have a small effect on water levels at existing wells in the Kualapuu area (relative to effects from withdrawals in other parts of the Kualapuu area that are outside of the dike complex), and (2) model-calculated water levels in this part of the Kualapuu area are high relative to water levels in other parts of the Kualapuu area that are outside of the dike complex. Additional site-selection criteria include (1) ground-water level, (2) ground-surface altitude, (3) land classification, ownership, and accessibility, (4) geology, (5) locations of existing production wells, and (6) historical ground-water quality information. A deep monitor well in the Kualapuu area will likely be most useful for management purposes if it is located (1) in the vicinity of future ground-water development, (2) in an area where water levels

  10. Fluid loss control additives for oil well cementing compositions

    SciTech Connect

    Crema, S.C.; Kucera, C.H.

    1992-03-03

    This patent describes a cementing composition useful in cementing oil, gas and water wells. It comprises hydraulic cement; and a fluid loss additive in an amount effective to reduce fluid loss, the fluid loss additive comprised of a copolymer of acrylamide monomer and vinyl formamide monomer and derivatives thereof in a weight percent ratio of from about 95:5 to 5:95, the copolymer having a molecular weight range of from about 10,000 to 3,000,000, the acrylamide monomer being selected from the group consisting of acrylamide, methacrylamide, N,N-dimethyl(meth)acrylamide, dialkylaminoalkyl(meth) acrylamide and mixtures thereof, the vinyl formamide monomer being selected from the group consisting of vinyl formamide, its hydrolysis products and derivatives thereof.

  11. Calendar Year 2002 RCRA & CERCLA Groundwater Monitoring Well summary report

    SciTech Connect

    MARTINEZ, C.R.

    2003-01-01

    This report describes the calendar year 2002 field activities associated with installing four new groundwater monitoring wells in the 200 West Area of the Hanford Site. Two groundwater monitoring wells are located around waste management area (WMA) TX-TY to support the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and two groundwater monitoring wells are located in the 200-UP-1 and 200-ZP-1 operable units (OU) to support the ''Comprehensive Environmental Response, Compensation, and Liability Act of 1980'' (CERCLA).

  12. Monitoring system for the quality assessment in additive manufacturing

    SciTech Connect

    Carl, Volker

    2015-03-31

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  13. Monitoring system for the quality assessment in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Carl, Volker

    2015-03-01

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality

  14. Saturated brine well treating fluids and additives therefore

    SciTech Connect

    Dobson, J.W. Jr.; Mondshine, A.T.; Mondshine, T.C.

    1989-04-18

    A well treating fluid is described, comprising a saturated aqueous saline solution, a water soluble particulate salt which is insoluble in the saturated aqueous saline solution, a xanthomonas gum, and an eicholorhydrin crosslinked hydroxypropyl starch wherein the concentration of the xanthomonas gum is from about 0l.5 kg/m/sup 3/ to about 5.7 kg/m/sup 3/ of the well treating fluid and the concentration of the epichlorohydrin crosslinked hyroxypropyl starch is from about 0.7 kg/cm/sup 3/ to about 42 kg/m/sup 3/ of the well treating fluid.

  15. Sources of dissolved oxygen in monitoring and pumping wells

    NASA Astrophysics Data System (ADS)

    Bonte, Matthijs; Wols, Bas; Maas, Kees; Stuyfzand, Pieter

    2016-10-01

    Groundwater monitoring and pumping wells set in anoxic aquifers require attention to keep the groundwater free of dissolved oxygen (DO). In properly constructed monitoring or pumping wells, two processes can however still introduce oxygen to anoxic groundwater: (1) permeation of oxygen through polymer materials such as silicone, PVC, HDPE or Teflon, and (2) thermally driven convection, which can occur in all types of piezometers or wells, regardless of construction material, when the water table or pressure head is close (<10 m) to the land surface. Here, field measurements (temperature and DO well loggings) from a monitoring well in Bilthoven, the Netherlands, are combined with analytical and numerical modelling to investigate the role of both processes on oxygenation of anoxic groundwater in wells. The results of numerical and analytical modeling show that both permeation and convection can introduce oxygen into anoxic wells to near saturation concentrations. In the field data gathered, convection is primarily responsible for oxygen intrusion up to a depth of around 12 m. Oxygen intrusion through convection and permeation in monitoring and pumping wells may influence groundwater sampling and analyses, and may contribute to well clogging, depending on site conditions. The combination of field and modelling provides new insights into these processes, which can be used for both groundwater sampling and pumping well design.

  16. Basic Data Report for Monitor Well AEC-7 Reconfiguration

    SciTech Connect

    Washington Regulatory and Environmental Services

    2005-01-20

    The New Mexico Office of the State Engineer (OSE) permitted well AEC-7 as C-2742. This well has been part of the far-field monitoring network since 1974. The well was used to obtain water level elevations and hydraulic parameters from both the Bell Canyon Formation and the Culebra Member of the Rustler Formation. This basic data report provides a historical account of the well from the original installation to the current configuration.

  17. 81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY WEST OF THOSE IN CA-133-1-A-80. COMPLEX SAFETY WARNING LIGHTS FOR SLC-3E (PAD 2) AND BLDG. 763 (LOB) LOCATED ABOVE MONITOR 3; GREEN LIGHTS ON BOTTOM OF EACH STACK ILLUMINATED. LEFT TO RIGHT BELOW MONITORS: ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. US EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  19. OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS

    EPA Science Inventory

    The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...

  20. Test monitoring of prototype injection well, Waiale, Maui, Hawaii

    USGS Publications Warehouse

    Soroos, Ronald L.

    1979-01-01

    A high-capacity prototype injection well was tested in the isthmus area of Maui, Hawaii. Pumping tests were made on April 14 and 15, 1978, and 10 injection tests were made between May 12 and June 30, 1978. Selected tests were monitored in order to obtain data which could be used to assess the effects of subsurface disposal on the ground water in the basal aquifer. Pumping and injection rates were measured. Basal-water head responses to pumping and injection were observed at the prototype well and at two observation wells located 435 and 6 ,100 feet from the prototype well. Water-quality samples were collected at the prototype well and the nearest observation well prior to testing. Samples of the injection water, as well as samples from the observation wells, were collected prior to and after the final test. The head data and water-quality data are presented in this report. (USGS)

  1. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  2. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1991-01-01

    The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. Nitrogen Monitoring of West Hackberry 117 Cavern Wells

    SciTech Connect

    Bettin, Giorgia; Lord, David L.

    2015-02-01

    U.S. Strategic Petroleum Reserve (SPR) oil storage cavern West Hackberry 117 was tested under extended nitrogen monitoring following a successful mechanical integrity test in order to validate a newly developed hydrostatic column model to be used to differentiate between normal "tight" well behavior and small-leak behavior under nitrogen. High resolution wireline pressure and temperature data were collected during the test period and used in conjunction with the hydrostatic column model to predict the nitrogen/oil interface and the pressure along the entire fluid column from the bradenhead flange nominally at ground surface to bottom of brine pool. Results here and for other SPR caverns have shown that wells under long term nitrogen monitoring do not necessarily pressurize with a relative rate (P N2 /P brine) of 1. The theoretical relative pressure rate depends on the well configuration, pressure and the location of the nitrogen-oil interface and varies from well to well. For the case of WH117 the predicted rates were 0.73 for well A and 0.92 for well B. The measured relative pressurization rate for well B was consistent with the model prediction, while well A rate was found to be between 0.58-0.68. A number of possible reasons for the discrepancy between the model and measured rates of well A are possible. These include modeling inaccuracy, measurement inaccuracy or the possibility of the presence of a very small leak (below the latest calculated minimum detectable leak rate).

  4. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.

    PubMed

    Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S

    2017-03-03

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.

  5. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.

    2017-03-01

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.

  6. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing

    PubMed Central

    Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.

    2017-01-01

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595

  7. Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing

    DOE PAGES

    Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...

    2017-03-03

    To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less

  8. Monitoring Well Development Guidelines for Superfund Project Managers

    EPA Pesticide Factsheets

    This document provides well development guidelines and recommended additional sources of information. It was developed by the Supertund Ground Water Forum and draws upon U.S. Army Corps of Engineersand draft RCRA SW-846 field protocols. Comments..

  9. Recommendations for new monitoring wells at Everest, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2007-05-03

    On February 15, 2007, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) submitted Recommendations for Remedial Action at Everest, Kansas. Those Recommendations were accepted by the Kansas Department of Health and Environment (KDHE) in a letter to the CCC/USDA dated March 5, 2007. The approved Recommendations document outlines a plan for systematic groundwater sampling and monitoring at Everest to provide data necessary for the critical evaluation of remedial options - including a phytoremediation alternative - for restoration of the groundwater and protection of the surface waters of the intermittent creek at this site. Phase I of the KDHE-approved monitoring plan includes the following activities: (1) Groundwater sampling at existing monitoring wells, with analyses for volatile organic compounds (VOCs) and selected biodegradation parameters; (2) Sampling of surface waters along the intermittent creek for VOCs analyses; and (3) Periodic manual measurement and automated recording of groundwater and surface water levels in the vicinity of the intermittent creek. The locations selected for groundwater and surface water sampling and analyses under the approved monitoring program were determined in consultation with the KDHE. As a result of subsequent discussions among representatives of the KDHE, the CCC/USDA, and Argonne regarding the technical program at Everest, the CCC/USDA seeks KDHE approval for the installation of up to four new permanent monitoring wells along the upper reach of the intermittent creek west of the Nigh property, as shown in Figure 1. The proposed new well locations lie progressively downgradient in the anticipated direction of future groundwater and contaminant movement; all of the recommended points lie at least 2,000 ft upgradient, however, of the confirmed area of groundwater discharge to the creek identified near Highway 73. The proposed new wells will supplement the existing network of groundwater and surface

  10. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, John C.

    1993-01-01

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  11. Flow monitoring and control system for injection wells

    DOEpatents

    Corey, J.C.

    1993-02-16

    A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

  12. Utilizing online monitoring of water wells for detecting earthquake precursors

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Anker, Y.; Inbar, N.; Yellin-Dror, A.; Guttman, J.; Flexer, A.

    2015-12-01

    Groundwater reaction to earthquakes is well known and documented, mostly as changes in water levels or springs discharge, but also as changes in groundwater chemistry. During 2004 groundwater level undulations preceded a series of moderate (ML~5) earthquakes, which occurred along the Dead Sea Rift System (DSRS). In order to try and validate these preliminary observations monitoring of several observation wells was initiated. The monitoring and telemetry infrastructure as well as the wells were allocated specifically for the research by the Israeli National Water Company (Mekorot LTD.). Once several earthquake events were skipped due to insufficient sampling frequency and owing to insufficient storage capacity that caused loss of data, it was decided to establish an independent monitoring system. This current stage of research had commenced at 2011 and just recently became fully operative. At present there are four observation wells that are located along major faults, adjacent to the DSRS. The wells must be inactive and with a confined production layer. The wells are equipped with sensors for groundwter level, water conductivity and groundwater temperature measurements. The data acquisition and transfer resolution is of one minute and the dataset is being transferred through a GPRS network to a central database server. Since the start of the present research stage, most of the earthquakes recorded at the vicinity of the DSRS were smaller then ML 5, with groundwater response only after the ground movement. Nonetheless, distant earthquakes occurring as far as 300 km along a DSRS adjacent fault (ML~3), were noticed at the observation wells. A recent earthquake precursory reoccurrence was followed by a 5.5ML earthquake with an epicenter near the eastern shore of the Red Sea about 400km south to the wells that alerted the quake (see figure). In both wells anomalies is water levels and conductivity were found few hours before the quake, although any single anomaly cannot

  13. Biomedical wellness monitoring system based upon molecular markers

    NASA Astrophysics Data System (ADS)

    Ingram, Whitney

    2012-06-01

    We wish to assist caretakers with a sensor monitoring systems for tracking the physiological changes of homealone patients. One goal is seeking biomarkers and modern imaging sensors like stochastic optical reconstruction microscopy (STORM), which has achieved visible imaging at the nano-scale range. Imaging techniques like STORM can be combined with a fluorescent functional marker in a system to capture the early transformation signs from wellness to illness. By exploiting both microscopic knowledge of genetic pre-disposition and the macroscopic influence of epigenetic factors we hope to target these changes remotely. We adopt dual spectral infrared imaging for blind source separation (BSS) to detect angiogenesis changes and use laser speckle imaging for hypertension blood flow monitoring. Our design hypothesis for the monitoring system is guided by the user-friendly, veteran-preferred "4-Non" principles (noninvasive, non-contact, non-tethered, non-stop-to-measure) and by the NIH's "4Ps" initiatives (predictive, personalized, preemptive, and participatory). We augment the potential storage system with the recent know-how of video Compressive Sampling (CSp) from surveillance cameras. In CSp only major changes are saved, which reduces the manpower cost of caretakers and medical analysts. This CSp algorithm is based on smart associative memory (AM) matrix storage: change features and detailed scenes are written by the outer-product and read by the inner product without the usual Harsh index for image searching. From this approach, we attempt to design an effective household monitoring approach to save healthcare costs and maintain the quality of life of seniors.

  14. Monitoring of water quality of selected wells in Brno district

    NASA Astrophysics Data System (ADS)

    Marková, Jana; Harbuľáková, Vlasta Ondrejka

    2016-06-01

    The article deals with two wells in the country of Brno-district (Brčálka well and Well Olšová). The aim of work was monitoring of elementary parameters of water at regular monthly intervals to measure: water temperature, pH values, solubility oxygen and spring yield. According to the client's requirements (Lesy města Brno) laboratory analyzes of selected parameters were done twice a year and their results were compared with Ministry of Health Decree no. 252/2004 Coll.. These parameters: nitrate, chemical oxygen demand (COD), calcium and magnesium and its values are presented in graphs, for ammonium ions and nitrite in the table. Graphical interpretation of spring yields dependence on the monthly total rainfall and dependence of water temperature on ambient temperature was utilized. The most important features of wells include a water source, a landmark in the landscape, aesthetic element or resting and relaxing place. Maintaining wells is important in terms of future generations.

  15. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    NASA Astrophysics Data System (ADS)

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  16. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - June 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents the hydraulic and chemical data collected from June 1, 1975, when injection began, to June 30, 1977 through a monitoring program at a deep-well waste-injection system at the American Cyanamid Company's plant near Milton, about 12 miles northwest of Pensacola. The injection system consists of a primary injection well, a standby injection well, and two deep monitor wells all completed open hole in the lower limestone of the Floridan aquifer and one shallow-monitor well completed in the upper limestone of the Floridan aquifer. Two of the monitor wells and the standby injection well are used to observe hydraulic and geochemical effects of waste injection in the injection zone at locations 8,180 feet northeast, 1,560 feet south, and 1,025 feet southwest of the primary injection well. The shallow-monitor well, used to observe any effects in the first permeable zone above the 200-foot-thick confining bed, is 28 feet north of the primary injection well. Since injection began in June 1975, 607 million gallons of treated industrial liquid waste with a pH of 4.6 to 6.3 and containing high concentrations of nitrate, organic nitrogen and carbon have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at the injection well in June 1977 average 137 pounds per square inch and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Water levels rose from 36 to 74 feet at the three wells used to monitor the injection zone during the 25-month period. The water level in the shallow-monitor well declined about 8 feet. No changes were detected in the chemical character of water from the shallow-monitor well and deep-monitor well-north. Increases in concentration of bicarbonate and dissolved organic carbon were detected in water from the deep-test monitor well in February 1976 and at the standby injection well in August 1976. In addition to increases in bicarbonate and dissolved

  17. Passive electrical monitoring and localization of fluid leakages from wells

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mao, D.; Haas, A. K.; Karaoulis, M.; Frash, L.

    2015-02-01

    Electrokinetic phenomena are a class of cross-coupling phenomena involving the relative displacement between the pore water (together with the electrical diffuse layer) with respect to the solid phase of a porous material. We demonstrate that electrical fields of electrokinetic nature can be associated with fluid leakages from wells. These leakages can be remotely monitored and the resulting signals used to localize their causative source distribution both in the laboratory and in field conditions. The first laboratory experiment (Experiment #1) shows how these electrical fields can be recorded at the surface of a cement block during the leakage of a brine from a well. The measurements were performed with a research-grade medical electroencephalograph and were inverted using a genetic algorithm to localize the causative source of electrical current and therefore, localize the leak in the block. Two snapshots of electrical signals were used to show how the leak evolved over time. The second experiment (Experiment #2) was performed to see if we could localize a pulse water injection from a shallow well in field conditions in the case of a heterogeneous subsurface. We used the same equipment as in Experiment #1 and processed the data with a trend removal algorithm, picking the amplitude from 24 receiver channels just after the water injection. The amplitude of the electric signals changed from the background level indicating that a volume of water was indeed flowing inside the well into the surrounding soil and then along the well. We used a least-square inversion algorithm to invert a snapshot of the electrical potential data at the injection time to localize the source of the self-potential signals. The inversion results show positive potential anomalies in the vicinity of the well. For both experiments, forward numerical simulations of the problem using a finite element package were performed in order to assess the underlying physics of the causative source of the

  18. Thermographic process monitoring in powderbed based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    2015-03-01

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  19. Thermographic process monitoring in powderbed based additive manufacturing

    SciTech Connect

    Krauss, Harald Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  20. Process monitoring of additive manufacturing by using optical tomography

    SciTech Connect

    Zenzinger, Guenter E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander E-mail: alexander.ladewig@mtu.de; Hess, Thomas E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  1. Final report : 2004 monitoring well installation and sampling at Centralia,Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2006-02-08

    determining whether the subsurface environment is suitable for natural in situ biodegradation of carbon tetrachloride. A preliminary screening of the results with a protocol of the U.S. Environmental Protection Agency showed limited evidence for active reductive dechlorination, one of the anaerobic processes by which carbon tetrachloride is biodegraded. These results indicate that additional monitoring of the groundwater contamination at the former CCC/USDA facility at Centralia is merited. On the basis of the findings and conclusions of the Phase I and Phase II investigations, as well as the results of the 2004 well sampling, a program of twice yearly groundwater monitoring in the expanded network is recommended to collect the data necessary to (1) monitor changes in plume dynamics and (2) evaluate the suitability of monitored natural attenuation as a remedial option for the Centralia site. This monitoring program should be conducted for a minimum of two years. After completion of the two-year monitoring program, remedial action objectives and potential corrective action alternatives are to be developed to address the groundwater contamination at Centralia.

  2. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: inspecting the physical condition of monitoring wells at Y-12, determining maintenance needs that extend the life of a well, and identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment. This plan applies to groundwater monitoring wells installed at Y-12 and the related waste management facilities located within the three hydrogeologic regimes.

  3. Analysis of censored data in groundwater monitoring wells at the Savannah River Site

    SciTech Connect

    Weber, J.H.

    1994-07-01

    It is common in environmental analyses to deal with censored data. Censored data characteristically arise through laboratory analysis of samples with contaminant concentrations less than what the analytical method is able to reliably detect. These data are called ``less than detectable.`` Comparisons between downgradient or monitoring groundwater wells and upgradient or background wells are frequently done to determine if downgradient wells are more contaminated than background or some established maximum concentration limits (MCL`s). In addition, parameter estimates are often desired. The presence of censored data complicates the statistics that can be used as estimators for individual populations or to estimate differences between two populations. This paper describes the current process at Savannah River Site (SRS) to determine constituents of concern (COC`s) for complying with groundwater monitoring and clean-up regulations. COC`s are analytes found in downgradient monitoring wells in concentrations significantly greater than in background wells or significantly greater than the MCL`S. Both parametric and non-parametric statistics are explored. Data plots are examined for outliers, trends, laboratory or sampling contamination, and unusually large detection limits for censored results. Wells are grouped by similar concentration levels to form a ``characteristic`` well, improving the estimation and decision process.

  4. STEADY-STATE DESIGN OF VERTICAL WELLS FOR LIQUIDS ADDITION AT BIOREACTOR LANDFILLS

    EPA Science Inventory

    This paper presents design charts that a landfill engineer can use for the design of a vertical well system for liquids addition at bioreactor landfills. The flow rate and lateral and vertical zones of impact of a vertical well were estimated as a function of input variables su...

  5. Well installation and ground-water sampling plan for 1100 Area environmental monitoring wells

    SciTech Connect

    Bryce, R.W.

    1989-05-01

    This report outlines a plan for the installation and sampling of five wells between inactive waste sites in the 1100 Area of the Hanford Site and Richland City water supply wells. No contamination has been detected in water pumped from the water supply wells to date. The five wells are being installed to provide for early detection of contaminants and to provide data that may be used to make decisions concerning the management of the North Richland Well Field. This plan describes the existing waste disposal facilities and water supply wells, hydrogeology of the area, well completion specifics, and the data to be gathered from the five new wells. 26 refs., 8 figs., 4 tabs.

  6. Evaluation of existing wells at the Nevada Test Site for plugging and abandonment or for recompletion as monitoring wells

    SciTech Connect

    Gillespie, D.; Donithan, D.; Seaber, P.

    1996-09-01

    In this investigation, various information sources from the Nevada Test Site (NTS), national laboratories and the Desert Research Institute were utilized to verify the existence of approximately 250 existing wells or boreholes at the NTS. Of these wells, 40 were determined to be located within one kilometer of underground nuclear tests conducted near (within 25 m) or below the water table. These 40 existing wells were then investigated in detail to determine their drilling and construction history, lithology and hydrologic units penetrated, and current conditions. These findings are presented for each well, as well as recommendations as to whether individual wells should be plugged and abandoned or could possibly be recompleted as groundwater quality monitoring locations. Two of the 40 wells, UE-20e and UE-2a, contain lost drilling strings and do not penetrate aquifers. These two wells should be plugged and abandoned and removed from the NTS well inventory. Three other wells, TestWell No. 1, TestWell No. 5, and TestWell No. 6, are reported stemmed with sand to the surface. These three wells did not penetrate the water table and would require substantial deepening to be recompleted as groundwater monitoring locations. If not recompleted, these wells should also be plugged and abandoned and removed from the NTS well inventory. Eleven of the 34 wells, Test Well No. 7, RNM No. 1, RNM No. 2, RNM No. 2S, U-3cn No. 5, UE-20n No. 1, UE-7ns, UE-5n, UE-4t, UE-3e No. 3 and U-15k Test Hole, penetrate aquifers and do not require recompletion to produce groundwater monitoring locations. These wells are either constructed such that recompletion is not needed or not possible. Several of the 11 wells may require the removal of tubing and the placement or replacement of pump equipment. All five of the wells require wellhead rehabilitation to ensure they are not contaminated by surface water or other materials.

  7. Y-12 Groundwater Protection Program Monitoring Well Inspection And Maintenance Plan

    SciTech Connect

    2013-09-01

    This document is the fourth revision of the Monitoring Well Inspection and Maintenance Plan for groundwater monitoring wells installed at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for:  inspecting the physical condition of monitoring wells at Y-12,  determining maintenance needs that extend the life of a well, and  identifying those wells that no longer meet acceptable monitoring well design or well construction standards and require plugging and abandonment.

  8. Improvement of casing cementation of deep and ultradeep wells. Part 2: Oilfield cements and cement additives

    NASA Astrophysics Data System (ADS)

    Arens, K. H.; Akstinat, M.

    1982-07-01

    Oilfield cements and cement additives were investigated in order to improve the casing cementation of deep and ultradeep wells. Characterization and evaluation of the main oil field cements commercially available were studied. The testing was carried out according to American Petroleum Institute API standards and nonstandardized test methods (dynamic modulus of elasticity, expansion/shrinkage), especially the rheology, thickening time and the influence of pressure, temperature and water-cement ratio, were considered. The main emphasis in the field of cement additives was on the evaluation of cement retarders for high temperatures, accelerators, and additives for cement expansion. Furthermore oil field cements were tested, and their properties are described.

  9. U.S. EPA OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS (ROCKY GAP, MD)

    EPA Science Inventory

    The Optimal Well Locator (OWL): uses linear regression to fit a plane to the elevation of the water table in monitoring wells in each round of sampling. The slope of the plane fit to the water table is used to predict the direction and gradient of ground water flow. Along with ...

  10. OPTIMAL WELL LOCATOR (OWL): A SCREENING TOOL FOR EVALUATING LOCATIONS OF MONITORING WELLS: USER'S GUIDE VERSION 1.2

    EPA Science Inventory

    The Optimal Well Locator ( OWL) program was designed and developed by USEPA to be a screening tool to evaluate and optimize the placement of wells in long term monitoring networks at small sites. The first objective of the OWL program is to allow the user to visualize the change ...

  11. Fecal indicator bacteria variability in samples pumped from monitoring wells.

    PubMed

    Kozuskanich, J; Novakowski, K S; Anderson, B C

    2011-01-01

    The detection of microbiological contamination in drinking water from groundwater wells is often made with a limited number of samples that are collected using traditional geochemical sampling protocols. The objective of this study is to examine the variability of fecal indicator bacteria, as observed using discrete samples, due to pumping. Two wells were instrumented as multilevel piezometers in a bedrock aquifer, and bacterial enumeration was conducted on a total of 166 samples (for total coliform, fecal coliform, Escherichia coli, and fecal streptococci) using standard membrane filtration methods. Five tests were conducted using pumping rates ranging from 0.3 to 17 L/min in a variety of purging scenarios, which included constant and variable (incremental increase and decrease) flow. The results clearly show a rapid and reproducible, 1 to 2 log-unit decrease in fecal indicator bacteria at the onset of pumping to stabilized, low-level concentrations prior to the removal of three to five well volumes. The pumping rate was not found to be correlated with the magnitude of observed bacterial counts. Based on the results, we suggest sampling protocols for fecal indicator bacteria that include multiple collections during the course of pumping, including early-time samples, and consider other techniques such as microscopic enumeration when assessing the source of bacteria from the well-aquifer system.

  12. Calendar years 1989 and 1990 monitoring well installation program Y-12 plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-10-01

    This report documents the well-construction activities at the Y-12 Plant in Oak Ridge, Tennessee during 1989 and 1990. The well- construction program consisted of installing seventy-five monitoring wells. Geologists from ERCE (formally the Engineering, Design and Geosciences Group) and Martin Marietta Energy Systems (Energy Systems), supervised and documented well-construction activities and monitored for health and safety concerns. Sixty-seven monitoring wells were installed under the supervision of an ERCE geologist from March 1989 to September 1990. Beginning in September 1990, Energy Systems supervised drilling activities for eight monitoring wells, the last of which was completed in December 1990. 9 refs., 3 figs., 2 tabs.

  13. Addendum 2: Logs of monitor wells drilled May 1988 through December 1992

    SciTech Connect

    Stout, J.; Qualheim, B.; McPherrin, R.; Barber, K.; Hedegaard, R.; McConihe, W.; Miller, T.

    1993-11-01

    The logs in this addendum were plotted in a new format by the same software package (LOGGER by Rockware, Denver, CO) that was used in the original publication. The scale remains the same, 1 inch = 15 foot. The header is totally automated with a subheading indexing the well-construction symbols. Geophysical curves are labeled in their respective channels, and percentage core recovery is plotted in a histogram. Lithologic symbols are plotted to scale in a channel similar to previous logs. The lithologic description also has been automated to assure consistency in terminology. Descriptions are more extensive and are referenced by leader lines to the lithologic symbol. Additional figures included for this Addendum are: a plot of all the monitoring well locations at the LLNL Main site and a plot detailing the gasoline spill area well locations in the vicinity of Building 403.

  14. Data acquisition for low-temperature geothermal well tests and long-term monitoring. Final report

    SciTech Connect

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  15. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    SciTech Connect

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  16. Fiber optic well monitoring for Shell`s North Sea field

    SciTech Connect

    1995-12-01

    After eight years of development work, Alcatel Kabel Norge has reached an agreement with Shell U.K. Exploration and Production to install Alcatel`s first commercial Sub-Sea Fiber Optic Well Monitoring (FOWM) system in Shell`s Guillemot A-OP2 well on its completion in August 1996. The FOWM project was started in 1988 by Norske Shell and Alcatel. BP Norway joined the project in 1991, and additional support has been contributed by Norsk Hydro and the Norwegian Research Council. The first Alcatel FOWM system was installed in onshore gas Well 7 in NAM`s Sleen field in the Netherlands in October 1993. The final offshore test took place in late 1994, in BP Norway`s Well 2/1 A-32 in Gyda field, in the Norwegian North Sea. FOWM is a new type of permanently installed downhole monitoring system based on an optical sensor system integrating simple passive silicon resonator sensors with optical communication. The system tolerates high pressure and high temperatures (HPHT). Main elements that contribute to its high reliability are discussed.

  17. Handbook: Collecting Groundwater Samples from Monitoring Wells in Frenchman Flat, CAU 98

    SciTech Connect

    Chapman, Jenny; Lyles, Brad; Cooper, Clay; Hershey, Ron; Healey, John

    2015-06-01

    CAU. The sampling plan is designed to ensure that monitoring activities occur in compliance with the UGTA Quality Assurance Plan (DOE, 2012). The sampling plan should be referenced for Quality Assurance (QA) elements and procedures governing sampling activities. The NNSS Integrated Sampling Plan specifies the groundwater monitoring that will occur in CAU 98 until the long-term monitoring program is approved in the Closure Report. The plan specifies the wells that must be monitored and categorizes them by their sampling objective with the associated analytical requirements and frequency. Possible sample collection methods and required standard operating procedures are also presented. The intent of this handbook is to augment the NNSS Integrated Sampling Plan by providing well-specific details for the sampling professional implementing the Sampling Plan in CAU 98, Frenchman Flat. This handbook includes each CAU 98 well designated for sampling in the NNSS Integrated Sampling Plan. The following information is provided in the individual well sections: 1. The purpose of sampling. 2. A physical description of the well. 3. The chemical characteristics of the formation water. 4. Recommended protocols for purging and sampling. The well-specific information has been gathered from numerous historical and current sources cited in each section, but two particularly valuable resources merit special mention. These are the USGS NNSS website (http://nevada.usgs.gov/doe_nv/ntsarea5.cfm) and the UGTA Field Operations website (https://ugta.nv.doe.gov/sites/Field%20Operations/default.aspx). 2 Land surface elevation and measuring point for water level measurements in Frenchman Flat were a focus during CAU investigations (see Appendix B, Attachment 1 in Navarro-Intera, 2014). Both websites listed above provide information on the accepted datum for each well. A summary is found on the home page for the well on the USGS website. Additional information is available through a link in the

  18. Evaluation of Pre- and Post- Redevelopment Groundwater Chemical Analyses from LM Monitoring Wells

    SciTech Connect

    Kamp, Susan; Dayvault, Jalena

    2016-05-01

    This report documents the efforts and analyses conducted for the Applied Studies and Technology (AS&T) Ancillary Work Plan (AWP) project titled Evaluation of Pre- and Post- Redevelopment Groundwater Sample Laboratory Analyses from Selected LM Groundwater Monitoring Wells. This effort entailed compiling an inventory of nearly 500 previous well redevelopment events at 16 U.S. Department of Energy Office of Legacy Management (LM) sites, searching the literature for impacts of well redevelopment on groundwater sample quality, and—the focus of this report—evaluating the impacts of well redevelopment on field measurements and sample analytical results. Study Catalyst Monitoring well redevelopment, the surging or high-volume pumping of a well to loosen and remove accumulated sediment and biological build-up from a well, is considered an element of monitoring well maintenance that is implemented periodically during the lifetime of the well to mitigate its gradual deterioration. Well redevelopment has been conducted fairly routinely at a few LM sites in the western United States (e.g., the Grand Junction office site and the Gunnison processing site in Colorado), but at most other sites in this region it is not a routine practice. Also, until recently (2014–2015), there had been no specific criteria for implementing well redevelopment, and documentation of redevelopment events has been inconsistent. A catalyst for this evaluation was the self-identification of these inconsistencies by the Legacy Management Support contractor. As a result, in early 2015 Environmental Monitoring Operations (EMO) staff began collecting and documenting additional field measurements during well redevelopment events. In late 2015, AS&T staff undertook an independent internal evaluation of EMO's well redevelopment records and corresponding pre- and post-well-redevelopment groundwater analytical results. Study Findings Although literature discussions parallel the prevailing industry

  19. Monitoring well inspection and maintenance plan Y-12 Plant, Oak Ridge, Tennessee (revised)

    SciTech Connect

    1996-09-01

    Inspection and maintenance of groundwater monitoring wells is a primary element of the Oak Ridge Y-12 Plant Groundwater Protection Program (GWPP). This document is the revised groundwater monitoring well inspection and maintenance plan for the U.S. Department of Energy (DOE) Y-12 Plant in Oak Ridge, Tennessee. The plan provides a systematic program for: (1) inspecting the physical condition of monitoring wells at the Y-12 Plant and (2) identifying maintenance needs that will extend the life of each well and ensure that representative groundwater quality samples and hydrologic data are collected from the wells. Original documentation for the Y-12 Plant GWPP monitoring well inspection and maintenance program was provided in HSW, Inc. 1991a. The original revision of the plan specified that only a Monitoring Well Inspection/Maintenance Summary need be updated and reissued each year. Rapid growth of the monitoring well network and changing regulatory requirements have resulted in constant changes to the status of wells (active or inactive) listed on the Monitoring Well Inspection/Maintenance Summary. As a result, a new mechanism to track the status of monitoring wells has been developed and the plan revised to formalize the new business practices. These changes are detailed in Sections 2.4 and 2.5.

  20. Slug tests in wells screened across the water table: some additional considerations.

    PubMed

    Butler, J J

    2014-01-01

    The majority of slug tests done at sites of shallow groundwater contamination are performed in wells screened across the water table and are affected by mechanisms beyond those considered in the standard slug-test models. These additional mechanisms give rise to a number of practical issues that are yet to be fully resolved; four of these are addressed here. The wells in which slug tests are performed were rarely installed for that purpose, so the well design can result in problematic (small signal to noise ratio) test data. The suitability of a particular well design should thus always be assessed prior to field testing. In slug tests of short duration, it can be difficult to identify which portion of the test represents filter-pack drainage and which represents formation response; application of a mass balance can help confirm that test phases have been correctly identified. A key parameter required for all slug test models is the casing radius. However, in this setting, the effective casing radius (borehole radius corrected for filter-pack porosity), not the nominal well radius, is required; this effective radius is best estimated directly from test data. Finally, although conventional slug-test models do not consider filter-pack drainage, these models will yield reasonable hydraulic conductivity estimates when applied to the formation-response phase of a test from an appropriately developed well.

  1. Statement of Work for Drilling Five CERCLA Groundwater Monitoring Wells During Fiscal Year 2006, 300-FF-5 Operable Unit

    SciTech Connect

    Williams, Bruce A.

    2005-08-01

    Pacific Northwest National Laboratory, the U.S. Department of Energy (DOE), and the regulators have agreed that two characterization wells along with three additional performance monitoring wells shall be installed in the 300-FF-5 Operable Unit as defined in the proposed Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement [TPA]) Milestone M-24-57 and the 300-FF-5 Limited Field Investigation plan (DOE/RL-2005-47). This document contains the statement of work required to drill, characterize, and construct the proposed groundwater monitoring wells during FY 2006.

  2. ESTIMATION OF FREE HYDROCARBON VOLUME FROM FLUID LEVELS IN MONITORING WELLS

    EPA Science Inventory

    Under the assumption of local vertical equilibrium, fluid pressure distributions specified from well fluid levels in monitoring wells may be used to predict water and hydrocarbon saturation profiles given expressions for air-water-hydrocarbon saturation-pressure relations. Verti...

  3. Y-12 Groundwater Protection Program Monitoring Well Inspection and Maintenance Plan

    SciTech Connect

    2006-12-01

    This document is the third revision of the 'Monitoring Well Inspection and Maintenance Plan' for groundwater wells associated with the US Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. This plan describes the systematic approach for: (1) inspecting the physical condition of monitoring wells at Y-12; (2) identifying maintenance needs that extend the life of the well and assure well-head protection is in place, and (3) identifying wells that no longer meet acceptable monitoring-well design or well construction standards and require plugging and abandonment. The inspection and maintenance of groundwater monitoring wells is one of the primary management strategies of the Y-12 Groundwater Protection Program (GWPP) Management Plan, 'proactive stewardship of the extensive monitoring well network at Y-12' (BWXT 2004a). Effective stewardship, and a program of routine inspections of the physical condition of each monitoring well, ensures that representative water-quality monitoring and hydrologic data are able to be obtained from the well network. In accordance with the Y-12 GWPP Monitoring Optimization Plan (MOP) for Groundwater Monitoring Wells at the Y-12 National Security Complex, Oak Ridge, Tennessee (BWXT 2006b), the status designation (active or inactive) for each well determines the scope and extent of well inspections and maintenance activities. This plan, in conjunction with the above document, formalizes the GWPP approach to focus available resources on monitoring wells which provide the most useful data. This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within the three hydrogeologic regimes: (1) the Bear Creek Hydrogeologic Regime (Bear Creek Regime); (2) the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime); and (3) the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of the

  4. What Factors Coordinate the Optimal Position of a Single Monitoring Well Down Gradient of a Hazardous Site?

    NASA Astrophysics Data System (ADS)

    Bode, F.; Nowak, W.

    2013-12-01

    Drinking-water well catchments include many sources for potential contaminations like gas stations, roads, or fields used for agriculture. Additionally, there are many contaminated sites that need to be monitored inside and outside drinking water catchments. Finding optimal positions of monitoring wells for such purposes is challenging because there are various parameters (and their uncertainties) that influence the reliability and optimality of a suggested monitoring location. For example, there may be uncertainty in the exact position of the contamination, in the source volume, in the direction of the velocity field which can vary in angle and absolute value, and in other parameters that describe, e.g., dispersion and decay. Many national regulations and UN guidelines suggest monitoring as measure of risk control, but make no statements how to asses or design monitoring under the fact of uncertainty. To obtain optimal positions of monitoring wells, a large body of recent studies uses formal optimization approaches. Our goal is to obtain a better system understanding at a fundamental process level for the one-on-one situation of a single monitoring well for a single monitoring target. This knowledge can be used for a better understanding of the optimization results in complex situations, and also to better guide and restrict optimization procedures by newly obtained export knowledge. In order to obtain fundamental statements regardless of specific simulation settings, we use an analytical model based on the 2D steady-state advection-dispersion equation to predict contaminant transport from the monitoring target. Monte Carlo simulation techniques are applied to represent parametric uncertainty. Thus, we can obtain maps of contaminant detection probability for all possible placements of the monitoring well. The optimal position is defined by the highest detection probability. First findings show that uncertainty in the spill location pushes the optimal monitoring

  5. Rational risk-based decision support for drinking water well managers by optimized monitoring designs

    NASA Astrophysics Data System (ADS)

    Enzenhöfer, R.; Geiges, A.; Nowak, W.

    2011-12-01

    Advection-based well-head protection zones are commonly used to manage the contamination risk of drinking water wells. Considering the insufficient knowledge about hazards and transport properties within the catchment, current Water Safety Plans recommend that catchment managers and stakeholders know, control and monitor all possible hazards within the catchments and perform rational risk-based decisions. Our goal is to supply catchment managers with the required probabilistic risk information, and to generate tools that allow for optimal and rational allocation of resources between improved monitoring versus extended safety margins and risk mitigation measures. To support risk managers with the indispensable information, we address the epistemic uncertainty of advective-dispersive solute transport and well vulnerability (Enzenhoefer et al., 2011) within a stochastic simulation framework. Our framework can separate between uncertainty of contaminant location and actual dilution of peak concentrations by resolving heterogeneity with high-resolution Monte-Carlo simulation. To keep computational costs low, we solve the reverse temporal moment transport equation. Only in post-processing, we recover the time-dependent solute breakthrough curves and the deduced well vulnerability criteria from temporal moments by non-linear optimization. Our first step towards optimal risk management is optimal positioning of sampling locations and optimal choice of data types to reduce best the epistemic prediction uncertainty for well-head delineation, using the cross-bred Likelihood Uncertainty Estimator (CLUE, Leube et al., 2011) for optimal sampling design. Better monitoring leads to more reliable and realistic protection zones and thus helps catchment managers to better justify smaller, yet conservative safety margins. In order to allow an optimal choice in sampling strategies, we compare the trade-off in monitoring versus the delineation costs by accounting for ill

  6. The relative merits of monitoring and domestic wells for ground water quality investigations

    USGS Publications Warehouse

    Jones, J.L.; Roberts, L.M.

    1999-01-01

    The results of two studies of the effect of agricultural land use on shallow ground water quality indicate that monitoring wells may be a better choice than domestic wells for studies of pesticide occurrence or transport, or for use as early-warning indicators of potential drinking water contamination. Because domestic wells represent the used resource, and because domestic well water may be affected by historical rather than current pesticide and land- use practices, domestic wells would be the best choice for an investigation of drinking water quality. The key difference between the domestic and monitoring wells appears to be that the monitoring wells in this study were installed exclusively to sample the shallowest possible ground water. For these studies, 48 shallow domestic wells and 41 monitoring wells were located randomly within two land-use settings (row crops and orchards) in an irrigated agricultural region of eastern Washington and sampled for 145 pesticides (including nine pesticide degradates) and common water quality indicators. Constructing and sampling monitoring wells required approximately four times the resources (including manpower and materials) as locating and sampling domestic wells. Sample collection and quality assurance procedures and analytical techniques were identical except that a portable submersible pump was required for monitoring wells. In both land-use settings, no significant difference in nitrate concentration was found between well types; however, the average number of pesticides detected per well was significantly higher (p<0.05) in the monitoring wells. A greater variety of pesticides was detected in monitoring wells; many were detected only in monitoring wells. More than 60% of detections of pesticides that were found only in domestic wells were of compounds that are no longer in use. These differences in ground water quality found in this study relate to the depth of the well and are apparently related to the age of ground

  7. Hydrologic monitoring of a waste-injection well near Milton, Florida, June 1975 - December 1976

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1977-01-01

    Hydraulic and chemical data were collected through a monitoring program conducted by the U.S. Geological Survey at an industrial liquid-waste injection site 6 mi southwest of Milton, Fla., in Santa Rosa County. The injection system is described. Data include injection rates, volumes, and pressures; water-level data at three monitor wells and a standby injection well, and field and laboratory analyses of water samples from four wells. Hydraulic and geochemical effects of the waste-injection system at the plant as of December 31, 1976, have been detected only in the injection zone, the lower limestone of the Floridan aquifer. Increased pressures are evident at the three wells used to monitor the injection zone. Geochemical changes have been noted only at the deep-test monitor well closest to the injection well. (Woodard-USGS)

  8. Improved barometric and loading efficiency estimates using packers in monitoring wells

    NASA Astrophysics Data System (ADS)

    Cook, Scott B.; Timms, Wendy A.; Kelly, Bryce F. J.; Barbour, S. Lee

    2017-02-01

    Measurement of barometric efficiency (BE) from open monitoring wells or loading efficiency (LE) from formation pore pressures provides valuable information about the hydraulic properties and confinement of a formation. Drained compressibility (α) can be calculated from LE (or BE) in confined and semi-confined formations and used to calculate specific storage (S s). S s and α are important for predicting the effects of groundwater extraction and therefore for sustainable extraction management. However, in low hydraulic conductivity (K) formations or large diameter monitoring wells, time lags caused by well storage may be so long that BE cannot be properly assessed in open monitoring wells in confined or unconfined settings. This study demonstrates the use of packers to reduce monitoring-well time lags and enable reliable assessments of LE. In one example from a confined, high-K formation, estimates of BE in the open monitoring well were in good agreement with shut-in LE estimates. In a second example, from a low-K confining clay layer, BE could not be adequately assessed in the open monitoring well due to time lag. Sealing the monitoring well with a packer reduced the time lag sufficiently that a reliable assessment of LE could be made from a 24-day monitoring period. The shut-in response confirmed confined conditions at the well screen and provided confidence in the assessment of hydraulic parameters. A short (time-lag-dependent) period of high-frequency shut-in monitoring can therefore enhance understanding of hydrogeological systems and potentially provide hydraulic parameters to improve conceptual/numerical groundwater models.

  9. Self-decomposable Fibrous Bridging Additives for Temporary Cementitious Fracture Sealers in EGS Wells

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.; Kisslinger, K.; Iverson, B.; Bour, D.

    2012-11-01

    This study evaluates compatibility of a self-degradable temporary fracture sealer with the drilling mud and plugging and self-degrading performance of different fibers to be used in combination with the sealer. The sodium silicate-activated slag/Class C fly ash (SSASC) cementitious sealer must plug fractures at 85oC to allow continuous well drilling and it must degrade and leave the fractures open for water at later times when exposed to temperatures above 200oC. The sealer showed good compatibility with the mud. Even the blend of 80/20 vol.% of sealer/mud reached a compressive strength of more than 2000 psi set as one of the material criteria, mostly due to the additional activation of the slag and Class C fly ash by the alkaline ingredient present in the drilling fluid. In contrast, the drilling fluid was detrimental to the compressive strength development in conventional Class G well cement, so that it failed to meet this criterion. Among several organic fibers tested both polyvinyl alcohol (PVA)-and nylon-based fibers showed adequate plugging of the sealer in slot nozzles of 1-in. wide x 6-in. long x 0.08 in. and 0.24 in. high under pressures up to 700 psi. PVA fibers displayed better compressive toughness and self-degrading properties than nylon. The compressive toughness of sealers made by adding 1.0 wt% 6 mm-length PVA and 0.5 wt% 19 mm-length PVA was 9.5-fold higher than that of a non-bridged sealer. One factor governing the development of such high toughness was an excellent adherence of PVA to the SSASC cement. The alkali-catalyzed self-decomposition of PVA at 200°C led to the morphological transformation of the material from a fibrous structure to a microscale flake-like structure that helped the desirable conversion of the sealer into small fragments. In contrast, nylon’s decomposition provided a reticular network structure in the self-degraded sealer resulting in bigger fragments compared against the sealer with PVA. The PVA fiber has a high

  10. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Not Available

    1990-01-01

    This document covers the activities of monitoring environmental aspects at designated geothermal wells in Texas and Louisiana during the second quarter of 1990 by the Louisiana Geological Survey, Louisiana State University under contract with US DOE. 1 fig. (FSD)

  11. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  12. Measuring, Monitoring and Managing the Psychological Well-Being of First Year University Students

    ERIC Educational Resources Information Center

    Cooke, Richard; Bewick, Bridgette M.; Barkham, Michael; Bradley, Margaret; Audin, Kerry

    2006-01-01

    This paper profiles the psychological well-being of students in their initial year of university. There were three aims: to measure the impact of arrival at university on the psychological well-being of first year students, to monitor (i.e. profile) the shape of psychological well-being across the first year, and to investigate how students manage…

  13. Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary

    SciTech Connect

    Chase, J.A.

    1995-03-01

    During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  14. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  15. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    SciTech Connect

    Freifeld, Barry; Daley, Tom; Cook, Paul; Trautz, Robert; Dodds, Kevin

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned

  16. The Modular Borehole Monitoring Program. A research program to optimize well-based monitoring for geologic carbon sequestration

    DOE PAGES

    Freifeld, Barry; Daley, Tom; Cook, Paul; ...

    2014-12-31

    Understanding the impacts caused by injection of large volumes of CO2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Borehole Monitoring (MBM)more » Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM

  17. Water levels in continuously monitored wells in the Yucca Mountain area, Nevada, 1985--88

    SciTech Connect

    Luckey, R.R.; Lobmeyer, D.H.; Burkhardt, D.J.

    1993-07-01

    Water levels have been monitored hourly in 15 wells completed in 23 depth intervals in the Yucca Mountain area, Nevada. Water levels were monitored using pressure transducers and were recorded by data loggers. The pressure transducers were periodically calibrated by raising and lowering them in the wells. The water levels were normally measured at approximately the same time that the transducers were calibrated. Where the transducer output appeared reasonable, it was converted to water levels using the calibrations and manual water- level measurements. The amount of transducer output that was converted to water levels ranged from zero for several intervals to about 98 percent for one interval. Fourteen of the wells were completed in Tertiary volcanic rocks and one well was completed in Paleozoic carbonate rocks. Each well monitored from one to four depth intervals. Water-level fluctuation caused by barometric pressure changes and earth tides were observed.

  18. Numerical Simulation of Borehole Flow in Deep Monitor Wells, Pearl Harbor Aquifer, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Oki, D. S.; El-Kadi, A. I.

    2010-12-01

    Salinity profiles collected from uncased deep monitor wells are commonly used to monitor freshwater-lens thickness in coastal aquifers. However, vertical flow in these wells can cause the measured salinity to differ from salinity in the adjacent aquifer. Substantial borehole flow has been observed in uncased wells in the Pearl Harbor aquifer, Oahu, Hawaii. A numerical modeling approach, incorporating aquifer hydraulic characteristics and recharge rates representative of the Pearl Harbor aquifer, was used to evaluate the effects of borehole flow on measured salinity profiles from deep monitor wells. Borehole flow caused by vertical hydraulic gradients associated with the natural regional groundwater-flow system and local groundwater withdrawals was simulated. Model results were used to estimate differences between vertical salinity profiles in deep monitor wells and the adjacent aquifer in areas of downward, horizontal, and upward flow within the regional flow system—for cases with and without nearby pumped wells. Aquifer heterogeneity, represented in the model as layers of contrasting permeability, was incorporated in model scenarios. Results from this study provide insight into the magnitude of the differences between vertical salinity profiles from deep monitor wells and the salinity distributions in the aquifers. These insights are relevant and are critically needed for management and predictive modeling purposes.

  19. Borehole summary report for five ground-water monitoring wells constructed in the 1100 Area

    SciTech Connect

    Bryce, R.W.; Goodwin, S.M.

    1989-05-01

    This report contains the data collected during the installation and initial sampling of five ground-water monitoring wells between the 1100 Area and Richland City water supply wells. The five wells were installed to provide for early detection of contaminants and to provide data that may be used in making decisions on the management of the North Richland Well Field and recharge basins. 2 refs., 1 fig.

  20. Site study plan for exploratory shaft monitoring wells, Deaf Smith County Site, Texas: Preliminary Draft

    SciTech Connect

    Not Available

    1988-01-01

    As part of site characterization studies, two exploratory shafts will be constructed at the Deaf Smith County site, Texas. Twelve wells at five locations have been proposed to monitor potential impacts of shaft construction on water-bearing zones in the Ogallala Formation and the Dockum Group. In addition, tests have been proposed to determine the hydraulic properties of the water-bearing zones for use in design and construction of the shafts. Samples of the Blackwater Draw Formation, Ogallala Formation, and Dockum Group will be obtained during construction of these wells. Visual indentification, laboratory testing, and in situ testing will yield data necessary for Exploratory Shaft Facility design and construction. This activity provides the earliest data on the Blackwater Drew Formation, Ogallala Formation, and Dockum Group near the exploratory shaft locations. Drilling and hydrologic testing are scheduled prior to other subsurface activity at the Exploratory Shaft Facility to establish ground-water baseline conditions. The Technical Field Services Contractor is responsible for conducting the field program of drilling and testing. Samples and data will be handled and reported in accordance with established Salt Repository Project procedures. A quality assurance program will be utilized to assure that activities affecting quality are performed correctly and that the appropriate documentation is maintained. 45 refs., 11 figs., 4 tabs.

  1. Identifying the potential loss of monitoring wells using an uncertainty analysis.

    PubMed

    Freedman, Vicky L; Waichler, Scott R; Cole, Charles R; Vermeul, Vince R; Bergeron, Marcel P

    2005-01-01

    From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.

  2. Demonstration/Validation of Long-Term Monitoring Using Wells Installed by Direct-Push Technologies

    DTIC Science & Technology

    2008-04-01

    conditions as well as a cross-section of regulatory domains (e.g., EPA regions and states ). Direct- push wells have been installed adjacent to, in...compliance monitoring including chemical concentrations, oxidation - reduction potential (ORP), pH, temperature, conductivity, turbidity , and dissolved...Engineering Service Center NRCS Natural Resources Conservation Service NTU Nephelometric Turbidity Unit ORP Oxidation /Reduction Potential OU Operational

  3. Monitoring the mental well-being of caregivers during the Haiti-earthquake.

    PubMed Central

    Van der Auwera, Marcel; Debacker, Michel; Hubloue, Ives

    2012-01-01

    Introduction During disaster relief, personnel’s safety is very important. Mental well being is a part of this safety issue. There is however a lack of objective mental well being monitoring tools, usable on scene, during disaster relief. This study covers the use of validated tools towards detection of psychological distress and monitoring of mental well being of disaster relief workers, during the Belgian First Aid and Support Team deployment after the Haiti earthquake in 2010. Methodology The study was conducted using a demographic questionnaire combined with validated measuring instruments: Belbin Team Role, Compassion Fatigue and Satisfaction Self-Test for Helpers, DMAT PsySTART, K6+ Self Report. A baseline measurement was performed before departure on mission, and measurements were repeated at day 1 and day 7 of the mission, at the end of mission, and 7 days, 30 days and 90 days post mission. Results 23 out of the 27 team members were included in the study. Using the Compassion Fatigue and Satisfaction Self-Test for Helpers as a monitoring tool, a stable condition was monitored in 7 participants, a dip in 5 participants, an arousal in 10 participants and a double pattern in 1 participant. Conclusions The study proved the ability to monitor mental well being and detect psychological distress, by self administered validated tools, during a real disaster relief mission. However for practical reasons some tools should be adapted to the specific use in the field. This study opens a whole new research area within the mental well being and monitoring field. Citation: Van der Auwera M, Debacker M, Hubloue I. Monitoring the mental well-being of caregivers during the Haiti-earthquake.. PLoS Currents Disasters. 2012 Jul 18 PMID:22953241

  4. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives

    DTIC Science & Technology

    2007-08-01

    ER D C/ CR R EL T R -0 7 -1 4 Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for VOCs and Explosives Louise...release; distribution is unlimited. ERDC/CRREL TR-07-14 August 2007 Evaluation of the Snap Sampler for Sampling Ground Water Monitoring...determine the ability of the Snap Sampler to recover representative concentrations of VOC and explosives in ground water . For the laboratory studies

  5. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes

    DTIC Science & Technology

    2008-12-01

    within the well. The slits in the two discs were misaligned to limit water exchange. The discs are attached to the Snap Sampler trigger line with...ER D C/ CR R EL T R -0 8 -2 5 Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes...Louise V. Parker, Nathan D. Mulherin, and Gordon E. Gooch December 2008 Well Screen Baffle Snap Sampler Trigger Line Pump Tubing Top Snap Sampler RGC

  6. IMPACTS OF DRILLING ADDITIVES ON DATA OBTAINED FROM HYDROGEOLOGIC CHARACTERIZATION WELLS AT LOS ALAMOS NATIONAL LABORATORY

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to evaluate the impacts of well drilling practices at the Los Alamos National Laboratory (LANL). The focus of this review involved analysis of the impacts of bentonite- a...

  7. Locating monitoring wells in groundwater systems using embedded optimization and simulation models.

    PubMed

    Bashi-Azghadi, Seyyed Nasser; Kerachian, Reza

    2010-04-15

    In this paper, a new methodology is proposed for optimally locating monitoring wells in groundwater systems in order to identify an unknown pollution source using monitoring data. The methodology is comprised of two different single and multi-objective optimization models, a Monte Carlo analysis, MODFLOW, MT3D groundwater quantity and quality simulation models and a Probabilistic Support Vector Machine (PSVM). The single-objective optimization model, which uses the results of the Monte Carlo analysis and maximizes the reliability of contamination detection, provides the initial location of monitoring wells. The objective functions of the multi-objective optimization model are minimizing the monitoring cost, i.e. the number of monitoring wells, maximizing the reliability of contamination detection and maximizing the probability of detecting an unknown pollution source. The PSVMs are calibrated and verified using the results of the single-objective optimization model and the Monte Carlo analysis. Then, the PSVMs are linked with the multi-objective optimization model, which maximizes both the reliability of contamination detection and probability of detecting an unknown pollution source. To evaluate the efficiency and applicability of the proposed methodology, it is applied to Tehran Refinery in Iran.

  8. The utility of gravity and water-level monitoring at alluvial aquifer wells in southern Arizona

    USGS Publications Warehouse

    Pool, D.R.

    2008-01-01

    Coincident monitoring of gravity and water levels at 39 wells in southern Arizona indicate that water-level change might not be a reliable indicator of aquifer-storage change for alluvial aquifer systems. One reason is that water levels in wells that are screened across single or multiple aquifers might not represent the hydraulic head and storage change in a local unconfined aquifer. Gravity estimates of aquifer-storage change can be approximated as a one-dimensional feature except near some withdrawal wells and recharge sources. The aquifer storage coefficient is estimated by the linear regression slope of storage change (estimated using gravity methods) and water-level change. Nonaquifer storage change that does not percolate to the aquifer can be significant, greater than 3 ??Gal, when water is held in the root zone during brief periods following extreme rates of precipitation. Monitor-ing of storage change using gravity methods at wells also can improve understanding of local hydrogeologic conditions. In the study area, confined aquifer conditions are likely at three wells where large water-level variations were accompanied by little gravity change. Unconfined conditions were indicated at 15 wells where significant water-level and gravity change were positively linearly correlated. Good positive linear correlations resulted in extremely large specific-yield values, greater than 0.35, at seven wells where it is likely that significant ephemeral streamflow infiltration resulted in unsaturated storage change. Poor or negative linear correlations indicate the occurrence of confined, multiple, or perched aquifers. Monitoring of a multiple compressible aquifer system at one well resulted in negative correlation of rising water levels and subsidence-corrected gravity change, which suggests that water-level trends at the well are not a good indicatior of overall storage change. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  9. Design and Development of a Web-Based Self-Monitoring System to Support Wellness Coaching.

    PubMed

    Zarei, Reza; Kuo, Alex

    2017-01-01

    We analyzed, designed and deployed a web-based, self-monitoring system to support wellness coaching. A wellness coach can plan for clients' exercise and diet through the system and is able to monitor the changes in body dimensions and body composition that the client reports. The system can also visualize the client's data in form of graphs for both the client and the coach. Both parties can also communicate through the messaging feature embedded in the application. A reminder system is also incorporated into the system and sends reminder messages to the clients when their reporting is due. The web-based self-monitoring application uses Oracle 11g XE as the backend database and Application Express 4.2 as user interface development tool. The system allowed users to access, update and modify data through web browser anytime, anywhere, and on any device.

  10. The Effect of Borehole Flow on Salinity Profiles From Deep Monitor Wells in Hawaii

    NASA Astrophysics Data System (ADS)

    Rotzoll, K.; Hunt, C. D.; El-Kadi, A. I.

    2008-12-01

    Ground-water resource management in Hawaii is based partly on salinity profiles from deep wells that are used to monitor the thickness of freshwater lenses and the transition zone between freshwater and saltwater. Vertical borehole flow in these wells may confound understanding of the actual salinity-depth profiles in the basaltic aquifers and lead to misinterpretations that hamper effective water-resource management. Causes and effects of borehole flow on salinity profiles are being evaluated at 40 deep monitor wells in Hawaii. Step- like changes in fluid electrical conductivity with respect to depth are indicative of borehole flow and are evident in almost all available salinity profiles. A regional trend in borehole flow direction, expected from basin-wide ground-water flow dynamics, is evident as major downward flow components in inland recharge areas and major upward flow components in discharge areas near the coast. The midpoint of the transition zone in one deep monitor well showed inconsequential depth displacements in response to barometric pressure and tidal fluctuations and to pumping from nearby wellfields. Commonly, the 1 mS/cm conductivity value is used to indicate the top of the transition zone. Contrary to the more stable midpoint, the depth of the 1 mS/cm conductivity value may be displaced by as much as 200 m in deep monitor wells near pumping wellfields. The displacement is complemented with an increase in conductivity at a particular depth in the upper part of the profile. The observed increase in conductivity is linear with increase in nearby pumpage. The largest deviations from expected aquifer-salinity profiles occur in deep monitor wells located in the area extending from east Pearl Harbor to Kalihi on Oahu, which coincides with the most heavily pumped part of the aquifer.

  11. Monitoring and analysis of gravel-packing procedures to explain well performance

    SciTech Connect

    McLeod, H.O. Jr. ); Minarovic, M.J. )

    1994-10-01

    Gravel-packed gas wells completed in the Gulf of Mexico since 1980 were reviewed to build a selective database for a completion-effectiveness study. Gas wells with clean, uniform sands were selected for analysis. Significant monitoring data identified were injectivity tests at different points during the completion and fluid loss rates (barrels per hour). Injectivity before gravel packing and productivity after gravel packing were classified according to sidewall-core permeabilities. Different gravel-pack preparation and execution techniques were reviewed. Fluid-loss-control pills were identified as the greatest source of damage restricting gravel-packed well productivity. Injectivity tests and sidewall-core permeabilities provide valuable information for monitoring well completion procedures.

  12. A field study to compare performance of stainless steel research monitoring wells with existing on-farm drinking water wells in measuring pesticide and nitrate concentrations.

    PubMed

    Smith, C N; Payne, W R; Pope, J D; Winkie, J H; Parrish, R S

    1999-02-01

    Existing drinking water wells are widely used for the collection of ground water samples to evaluate chemical contamination. A well comparison study was conducted to compare pesticide and nitrate-N data from specially designed stainless steel research monitoring wells with data from nearby existing on-farm drinking water wells. Results could help to determine whether adequate information concerning ground water contamination can be obtained from existing drinking water wells for use in making pollutant control decisions. The study was conducted during 1993-1994 in the Little Coharie Watershed, a 158 square mile area located in the coastal plain of eastern North Carolina. Statistical analysis indicated that research monitoring wells provided a greater probability of detecting pesticides in ground water than existing on-farm wells. Atrazine was the most frequently detected pesticide found in all wells, followed in order by fluometuron, carbofuran, metolachlor, alachlor, carbaryl, butylate, chlorothalonil, linuron and simazine. Ninety-seven percent of all wells had observed concentrations of nitrate-N, ranging from 0.1 to 30.1 mg/L. There was not a significant difference between research wells and existing wells for monitoring nitrate-N. Based on results of this study, existing drinking water wells can be used for monitoring nitrate; however, specialized stainless steel monitoring wells should be used for monitoring pesticides in ground water.

  13. 40 CFR 60.1275 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance...

  14. 40 CFR 60.1275 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance...

  15. 40 CFR 60.1275 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance...

  16. 40 CFR 60.1275 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance...

  17. 40 CFR 60.1275 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring... additional requirements must I meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? Use the required span values and applicable performance...

  18. Contamination from sand-bentonite seal in monitoring wells installed in aquitards

    SciTech Connect

    Remenda, V.H.; Kamp, G. van der

    1997-01-01

    A six year field experiment has shown that a sand-bentonite mixture used to seal monitoring wells in aquitards contributes solutes to the ground water sampled from these wells. Monitoring wells were installed at field sites with hydraulic conductivity (K) ranging from 5 {times} 10{sup {minus}9} m/s to 3 {times} 10{sup {minus}11} m/s. In most cases the boreholes remained dry during installation which allowed the placement of a dry powdered bentonite/sand mixture tagged with potassium bromide (KBr) to seal and separate sampling points. Over six years, wells were sampled periodically and ground-water samples were analyzed for Br and Cl and other major ions. Typical Br results ranged from 10 mg/l to 35 mg/l in the first 700 days, as compared to an estimated initial concentration in the seal material of about 75 mg/l. After six years the bromide concentrations had decreased to between 3 mg/l and 5 mg/l. The total mass of Br removed in six years is less than 50% of that placed; therefore the contamination effects, although considerably diminished, persist. The trends of Br, Cl, Na, and SO{sub 4} indicate that varying degrees of contamination occur. These data show that the materials used to seal monitoring wells in aquitards can have a significant and long-lasting impact on the chemistry of the water in the wells.

  19. Monitoring-well network and sampling design for ground-water quality, Wind River Indian Reservation, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Sebree, Sonja K.; Quinn, Thomas L.

    2005-01-01

    The Wind River Indian Reservation, located in parts of Fremont and Hot Springs Counties, Wyoming, has a total land area of more than 3,500 square miles. Ground water on the Wind River Indian Reservation is a valuable resource for Shoshone and Northern Arapahoe tribal members and others who live on the Reservation. There are many types of land uses on the Reservation that have the potential to affect the quality of ground-water resources. Urban areas, rural housing developments, agricultural lands, landfills, oil and natural gas fields, mining, and pipeline utility corridors all have the potential to affect ground-water quality. A cooperative study was developed between the U.S. Geological Survey and the Wind River Environmental Quality Commission to identify areas of the Reservation that have the highest potential for ground-water contamination and develop a comprehensive plan to monitor these areas. An arithmetic overlay model for the Wind River Indian Reservation was created using seven geographic information system data layers representing factors with varying potential to affect ground-water quality. The data layers used were: the National Land Cover Dataset, water well density, aquifer sensitivity, oil and natural gas fields and petroleum pipelines, sites with potential contaminant sources, sites that are known to have ground-water contamination, and National Pollutant Discharge Elimination System sites. A prioritization map for monitoring ground-water quality on the Reservation was created using the model. The prioritization map ranks the priority for monitoring ground-water quality in different areas of the Reservation as low, medium, or high. To help minimize bias in selecting sites for a monitoring well network, an automated stratified random site-selection approach was used to select 30 sites for ground-water quality monitoring within the high priority areas. In addition, the study also provided a sampling design for constituents to be monitored, sampling

  20. SITE CHARACTERIZATION AND MONITORING DATA FROM THE AREA 5 PILOT WELLS

    SciTech Connect

    BECHTEL NEVADA; U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    2005-09-01

    Three exploratory boreholes were drilled and completed to the uppermost alluvial aquifer in Area 5 of the Nevada Test Site, Nye County, Nevada, in 1992. The boreholes and associated investigations were part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level, mixed, and high-specific-activity waste at this site. This series of boreholes was specifically designed to characterize the hydrogeology of the thick vadose zone and to help define the water quality and hydraulic properties of the uppermost aquifer. Wells UE5PW-1, UE5PW-2, and UE5PW-3 are located in a triangular array near the southeast, northeast, and northwest corners, respectively, of the approximately 2.6-square-kilometer Area 5 Radioactive Waste Management Site to give reasonable spatial coverage for sampling and characterization, and to help define the nearly horizontal water table. Two of the wells, UE5PW-1 and UE5PW-2, penetrated only unconsolidated alluvial materials. The third well, located closer to the margin of the basin, penetrated both alluvium and underlying ash-flow and bedded tuff units. The watertable was encountered at the elevation of approximately 734 meters. The results of laboratory testing of core and drill cuttings samples indicate that the mineralogical, material, and hydrologic properties of the alluvium are very similar within and between boreholes. Additional tests on the same core and drill cuttings samples indicate that hydrologic conditions within the alluvium are also similar between pilot wells. Both core and drill cuttings samples are dry (less than 10 percent water content by weight) throughout the entire unsaturated section of alluvium, and water content increases slightly with depth in each borehole. Water potential measurements on core samples show a large positive potential gradient (water tends to move upward, rather than downward) to a depth of approximately 30

  1. Effect of Additional Respiratory Muscle Endurance Training in Young Well-Trained Swimmers

    PubMed Central

    Lemaitre, Frédéric; Coquart, Jérémy B.; Chavallard, Florence; CASTRES, Ingrid; MUCCI, Patrick; Costalat, Guillaume; Chollet, Didier

    2013-01-01

    While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved only in the RMET group. Moreover, perceived exertion and dyspnea were lower in the RMET group in both trials (i.e., 50- and 200-m). Consequently, the swim training associated with RMET was more effective than swim training alone in improving swimming performances. RMET can therefore be considered as a worthwhile ergogenic aid for young competitive swimmers. Key Points Respiratory muscle endurance training improves the performance. Respiratory muscle endurance training improves the ventilatory function parameters, chest expansion, respiratory muscle strength and endurance. Respiratory muscle endurance training decreases the perceived exertion and dyspnea. Respiratory muscle endurance training can be considered as a worthwhile ergogenic aid for young competitive swimmers. PMID:24421721

  2. Effect of additional respiratory muscle endurance training in young well-trained swimmers.

    PubMed

    Lemaitre, Frédéric; Coquart, Jérémy B; Chavallard, Florence; Castres, Ingrid; Mucci, Patrick; Costalat, Guillaume; Chollet, Didier

    2013-01-01

    While some studies have demonstrated that respiratory muscle endurance training (RMET) improves performances during various exercise modalities, controversy continues about the transfer of RMET effects to swimming performance. The objective of this study was to analyze the added effects of respiratory muscle endurance training (RMET; normocapnic hyperpnea) on the respiratory muscle function and swimming performance of young well-trained swimmers. Two homogenous groups were recruited: ten swimmers performed RMET (RMET group) and ten swimmers performed no RMET (control group). During the 8-week RMET period, all swimmers followed the same training sessions 5-6 times/week. Respiratory muscle strength and endurance, performances on 50- and 200-m trials, effort perception, and dyspnea were assessed before and after the intervention program. The results showed that ventilatory function parameters, chest expansion, respiratory muscle strength and endurance, and performances were improved only in the RMET group. Moreover, perceived exertion and dyspnea were lower in the RMET group in both trials (i.e., 50- and 200-m). Consequently, the swim training associated with RMET was more effective than swim training alone in improving swimming performances. RMET can therefore be considered as a worthwhile ergogenic aid for young competitive swimmers. Key PointsRespiratory muscle endurance training improves the performance.Respiratory muscle endurance training improves the ventilatory function parameters, chest expansion, respiratory muscle strength and endurance.Respiratory muscle endurance training decreases the perceived exertion and dyspnea.Respiratory muscle endurance training can be considered as a worthwhile ergogenic aid for young competitive swimmers.

  3. Identifying the Potential Loss of Monitoring Wells Using an Uncertainty Analysis

    SciTech Connect

    Freedman, Vicky L.; Waichler, Scott R.; Cole, Charles R.; Vermeul, Vince R.; Bergeron, Marcel P.

    2005-11-01

    From the mid-1940s through the 1980s, large volumes of wastewater were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (in excess of 20 m) in the water table. When wastewater discharges ceased in 1988, groundwater mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify the wells that could potentially go dry, a first order uncertainty analysis was performed using a three-dimensional, finite element code (CFEST) coupled with UCODE, a nonlinear parameter estimation code. The analysis was conducted in four steps. First, key parameter values were identified by calibrating to historical hydraulic head data. Second, the model was tested for linearity, a strict requirement for representing output uncertainty. Third, results from the calibration period were used to verify model predictions by comparing monitoring wells? wet/dry status with field data. In the final step, predictions on the number and locations of dry wells were made through the year 2048. A non-physically based model that extrapolated trends at each individual well was also tested as a predictor of a well?s wet/dry status. Results demonstrated that when uncertainty in both parameter estimates and measurement error was considered, the CFEST-based model successfully predicted the majority of dry wells, outperforming the trend model. Predictions made through the year 2048 identified approximately 50% of the wells in the monitoring well network are likely to go dry, which can aid in decisions for their replacement.

  4. Kirschenmann Road multi-well monitoring site, Cuyama Valley, Santa Barbara County, California

    USGS Publications Warehouse

    Everett, R.R.; Hanson, R.T.; Sweetkind, D.S.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works, is evaluating the geohydrology and water availability of the Cuyama Valley, California (fig. 1). As part of this evaluation, the USGS installed the Cuyama Valley Kirschenmann Road multiple-well monitoring site (CVKR) in the South-Main subregion of the Cuyama Valley (fig. 1). The CVKR well site is designed to allow for the collection of depth-specific water-level and water-quality data. Data collected at this site provides information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus, enhancing the understanding of the geohydrologic framework of the Cuyama Valley. This report presents the construction information and initial geohydrologic data collected from the CVKR monitoring site, along with a brief comparison to selected supply and irrigation wells from the major subregions of the Cuyama Valley (fig. 1).

  5. Groundwater Flow Field Distortion by Monitoring Wells and Passive Flux Meters.

    PubMed

    Verreydt, G; Bronders, J; Van Keer, I; Diels, L; Vanderauwera, P

    2015-01-01

    Due to differences in hydraulic conductivity and effects of well construction geometry, groundwater lateral flow through a monitoring well typically differs from groundwater flow in the surrounding aquifer. These differences must be well understood in order to apply passive measuring techniques, such as passive flux meters (PFMs) used for the measurement of groundwater and contaminant mass fluxes. To understand these differences, lab flow tank experiments were performed to evaluate the influences of the well screen, the surrounding filter pack and the presence of a PFM on the natural groundwater flux through a monitoring well. The results were compared with analytical calculations of flow field distortion based on the potential theory of Drost et al. (1968). Measured well flow field distortion factors were found to be lower than calculated flow field distortion factors, while measured PFM flow field distortion factors were comparable to the calculated ones. However, this latter is not the case for all conditions. The slotted geometry of the well screen seems to make a correct analytical calculation challenging for conditions where flow field deviation occurs, because the potential theory assumes a uniform flow field. Finally, plots of the functional relationships of the distortion of the flow field with the hydraulic conductivities of the filter screen, surrounding filter pack and corresponding radii make it possible to design well construction to optimally function during PFM applications.

  6. Analysis of the response of the Raft River monitor wells to the 1979 injection tests

    SciTech Connect

    Spencer, S.G.; Callan, D.M.

    1980-09-01

    The geothermal resource for the Department of Energy's (DOE) Raft River Geothermal 5 MWe Power Project is located in a closed ground water basin in southcentral Idaho. Chemical analyses indicate the existence of natural communication along fractures between the geothermal reservoir and the shallower aquifers developed for irrigation. Much of the ground water that is presently used for irrigation is of poor quality. Injection of geothermal fluids at intermediate depths may increase communication between the reservoir and the aquifer, resulting in further degradation of shallow ground water quality over time. Seven monitor wells, ranging in depth from 150 m to 400 m, were drilled to evaluate the potential for this degradation. Monitoring of these wells during two 21-day injection tests at the Raft River Geothermal Injection Well-6 (RRGI-6) indicates two types of response in the shallow aquifer system. First, the water level in Monitor Well-4 (MW-4) increased an average of 0.4 m/week during injection, indicating direct fracture connection between the injection zone and the aquifer penetrated by MW-4. Second, water levels in MW-5, MW-6, and MW-7 showed a step function decrease which coincided with the period of the injection tests. Analyses indicate that this response may be caused by elastic deformation in the aquifer matrix.

  7. MS-BWME: A Wireless Real-Time Monitoring System for Brine Well Mining Equipment

    PubMed Central

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-01-01

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications. PMID:25340455

  8. MS-BWME: a wireless real-time monitoring system for brine well mining equipment.

    PubMed

    Xiao, Xinqing; Zhu, Tianyu; Qi, Lin; Moga, Liliana Mihaela; Zhang, Xiaoshuan

    2014-10-23

    This paper describes a wireless real-time monitoring system (MS-BWME) to monitor the running state of pumps equipment in brine well mining and prevent potential failures that may produce unexpected interruptions with severe consequences. MS-BWME consists of two units: the ZigBee Wireless Sensors Network (WSN) unit and the real-time remote monitoring unit. MS-BWME was implemented and tested in sampled brine wells mining in Qinghai Province and four kinds of indicators were selected to evaluate the performance of the MS-BWME, i.e., sensor calibration, the system's real-time data reception, Received Signal Strength Indicator (RSSI) and sensor node lifetime. The results show that MS-BWME can accurately judge the running state of the pump equipment by acquiring and transmitting the real-time voltage and electric current data of the equipment from the spot and provide real-time decision support aid to help workers overhaul the equipment in a timely manner and resolve failures that might produce unexpected production down-time. The MS-BWME can also be extended to a wide range of equipment monitoring applications.

  9. Installation and Implementation of a Comprehensive Groundwater Monitoring Program for the Indian Wells Valley, California

    DTIC Science & Technology

    2010-04-01

    shifts the δ13C to more positive values. This is used in age dating the groundwater with radiocarbon (14C). For a detailed discussion of... radiocarbon dating methods, other references should be consulted. See Reference 20 for an excellent summary of the methods. For this project, the following...well. Radiocarbon Data. In addition to the 14C age dates discussed in this report, there are an additional 21 values for wells further into the

  10. Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    USGS Publications Warehouse

    Arnold, L.R.; Flynn, J.L.; Paschke, S.S.

    2009-01-01

    The High Plains aquifer is an important water source for irrigated agriculture and domestic supplies in northeastern Colorado. To address the needs of Colorado's Groundwater Protection Program, the U.S. Geological Survey designed and installed a groundwater monitoring-well network in cooperation with the Colorado Department of Agriculture in 2008 to characterize water quality in the High Plains aquifer underlying areas of irrigated agriculture in eastern Colorado. A 30-well network was designed to provide for statistical representation of water-quality conditions by using a computerized technique to generate randomly distributed potential groundwater sampling sites based on aquifer extent, extent of irrigated agricultural land, depth to water from land surface, and saturated thickness. Twenty of the 30 sites were selected for well installation, and wells were drilled and installed during the period June-September 2008. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Documentation of the well-network design, site selection, lithologic logs, well-construction diagrams, and well-development records is presented in this report.

  11. Evidence for Legacy Contamination of Nitrate in Groundwater of North Carolina Using Monitoring and Private Well Data Models

    NASA Astrophysics Data System (ADS)

    Messier, K. P.; Kane, E.; Bolich, R.; Serre, M. L.

    2014-12-01

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. Legacy contamination, or past releases of NO3-, is thought to be impacting current groundwater and surface water of North Carolina. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure known as constrained forward nonlinear regression and hyperparameter optimization (CFN-RHO) is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is then used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. The major finding regarding legacy sources NO3- in this study is that the LUR-BME models show the geographical extent of low-level contamination of deeper drinking-water aquifers is beyond that of the shallower monitoring well. Groundwater NO3- in monitoring wells is highly variable with many areas predicted above the current Environmental Protection Agency standard of 10 mg/L. Contrarily, the private well results depict widespread, low-level NO3-concentrations. This evidence supports that in addition to downward transport, there is also a significant outward transport of groundwater NO3- in the drinking water aquifer to areas outside the range of sources. Results indicate that the deeper aquifers are potentially acting as a reservoir that is not only deeper, but also covers a larger geographical area, than the reservoir formed by the shallow aquifers. Results are of interest to agencies that regulate surface water and drinking water sources impacted by the effects of

  12. Analysis of Groundwater-Level Changes in High-Frequency Monitoring Wells

    NASA Astrophysics Data System (ADS)

    LIU, C.; Lee, C.; Lin, C.; Chia, Y.; Kuo, K.

    2013-12-01

    Earthquake-related groundwater level changes have often been observed in many places in Taiwan. The monitoring well stations that reflected coseismic groundwater-level changes were often recorded in 1-hour interval, and installed in the coastal plain or hillsides. Hourly groundwater-level data have been recorded by a dense monitoring network since 1980s, but high-frequency data, in second interval, record instrument were installed in only a few monitoring wells starting from the mid-2000s. Two types of earthquake-related groundwater-level changes, oscillatory and sustained, can be observed from high-frequency monitoring data. In this study, we analyzed groundwater-level data from seven wells (Chishan, Donher, Hualien, Liujar, Naba, Sheliao, Tunwei) to investigate the characteristic of groundwater level to earthquakes and different background factors, such as rainfall, barometric pressure and earth tides. Five earthquake cases were studied, four occurred in Taiwan island, the 2010 ML6.4 Kaohsiung earthquake, the 2012 ML6.4 Pingtung earthquake, the 2013 ML6.2 and ML6.5 Nantou earthquake, and one happened distance away, the 2011 MW 9.0 Japan Tohoku earthquake. Oscillatory groundwater-level changes were observed from all earthquake events, but sustained changes differed in each well. The duration of sustained groundwater-level changes ranged from a few minutes to an hour, which may reflect the hydrogeological condition or the redistribution of crustal stress and strain. High-frequency and high-resolution data can reflect the process of coseismic groundwater-level change, and is an indicator for studying the response to earthquakes or fault movement.

  13. Work plan for ground water elevation data recorder/monitor well injection at Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Grand Junction ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Grand Junction processing site; modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  14. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    SciTech Connect

    Not Available

    1994-07-18

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  15. Stable isotopes as indicators of sources and processes influencing nitrate distributions in dairy monitoring wells and domestic supply wells in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.; Esser, B. K.; Singleton, M. J.; Holstege, D.; Lockhart, K.; Applegate, O.

    2011-12-01

    Nitrate concentrations above the 10 mg/L NO3-N maximum contaminant level (MCL) have been found in many wells throughout the Central Valley, California. This area contains many possible anthropogenic nitrate sources including current and historic agriculture, private septic systems, municipal waste water, and confined animal feeding operations (primarily dairies). In order to better understand the potential contributions of dairy manure derived nitrate to both shallow and deep groundwater, we used a combined chemical, stable isotope, and age-dating approach for water samples collected from a network of shallow groundwater monitoring wells located on seven different dairies, and from a survey of approximately 200 deeper domestic supply wells (used for drinking water and dairy operations). Groundwater from shallow monitoring wells and deep supply wells was collected in two geographic regions. In the northern region, the lower San Joaquin Valley, the water table is shallow (2- 5 m below surface) and therefore considered highly vulnerable to contamination, while in the southern region, the Tulare Lake Basin, the water table is much deeper (20 - 30 m). Mean δ15N of nitrate in dairy monitoring wells in both the north and south regions was significantly higher than the mean δ15N measured in the deeper supply wells, and also showed greater variability. Mean δ15N and δ18O values measured in the deep supply wells were not significantly different between the north and south regions. Mean nitrate concentrations, δ15N, and δ18O were significantly higher in the northern (lower San Joaquin Valley) monitoring wells in comparison to the southern (Tulare Lake Basin) monitoring wells. Nitrate isotope measurements indicated that many of the northern monitoring wells had consistently high contributions of manure-derived nitrate to the shallow groundwater during the 16 month study. Monitoring wells located in relatively new dairies in the south region showed little evidence of

  16. Additive hazards regression and partial likelihood estimation for ecological monitoring data across space.

    PubMed

    Lin, Feng-Chang; Zhu, Jun

    2012-01-01

    We develop continuous-time models for the analysis of environmental or ecological monitoring data such that subjects are observed at multiple monitoring time points across space. Of particular interest are additive hazards regression models where the baseline hazard function can take on flexible forms. We consider time-varying covariates and take into account spatial dependence via autoregression in space and time. We develop statistical inference for the regression coefficients via partial likelihood. Asymptotic properties, including consistency and asymptotic normality, are established for parameter estimates under suitable regularity conditions. Feasible algorithms utilizing existing statistical software packages are developed for computation. We also consider a simpler additive hazards model with homogeneous baseline hazard and develop hypothesis testing for homogeneity. A simulation study demonstrates that the statistical inference using partial likelihood has sound finite-sample properties and offers a viable alternative to maximum likelihood estimation. For illustration, we analyze data from an ecological study that monitors bark beetle colonization of red pines in a plantation of Wisconsin.

  17. Comparison of two methods for delineating land use near monitoring wells used for assessing quality of shallow ground water

    USGS Publications Warehouse

    Lorenz, D.L.; Goldstein, R.M.; Cowdery, T.K.; Stoner, J.D.

    2003-01-01

    Two methods were compared for delineating land use near shallow monitoring wells. These wells were used to assess the effects of agricultural cropland on the quality of recently recharged ground water in two sand and gravel aquifers located near land surface. The two methods for delineating land use near wells were (1) the sector method, which used potentiometric-surface maps to estimate average flow direction and a ground-water-flow model to estimate maximum length of contributing area to the monitoring well within an upgradient sector; and (2) the circle method, which used a 500- meter radius circle around the well based on a national empirical analysis. Land uses were compiled for 29 wells in each of two surficial aquifers in the Red River of the North Basin within the area defined by each method. Land use near each well was interpreted from orthorectified photographs and site inspection for both delineation methods. Land use near individual wells characterized by each method varied greatly, which can affect the results of statistical correlations between land use and water quality. Land use determined by the circle method related more closely to the land use for each entire study area. Land use determined by the sector method (within 200 meters from the wells) compared more favorably to ground-water quality based on nitrate concentrations. The maximum length of contributing areas to wells estimated in this study may be of value for other studies of unconsolidated sand and gravel aquifers with similar hydrogeological characteristics of permeability, water-table slopes, recharge, and depth to water. The additional effort required for estimating the model delineation of land use and land cover for the sector method must be weighed against the improved confidence in statistical correlation between land use and the quality of shallow ground water. Improved scientific confidence and understanding of relations between land use and quality of ground water may encourage

  18. Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach

    NASA Astrophysics Data System (ADS)

    Su, Jason G.; Hopke, Philip K.; Tian, Yilin; Baldwin, Nichole; Thurston, Sally W.; Evans, Kristin; Rich, David Q.

    2015-12-01

    Land use regression modeling (LUR) through local scale circular modeling domains has been used to predict traffic-related air pollution such as nitrogen oxides (NOX). LUR modeling for fine particulate matters (PM), which generally have smaller spatial gradients than NOX, has been typically applied for studies involving multiple study regions. To increase the spatial coverage for fine PM and key constituent concentrations, we designed a mobile monitoring network in Monroe County, New York to measure pollutant concentrations of black carbon (BC, wavelength at 880 nm), ultraviolet black carbon (UVBC, wavelength at 3700 nm) and Delta-C (the difference between the UVBC and BC concentrations) using the Clarkson University Mobile Air Pollution Monitoring Laboratory (MAPL). A Deletion/Substitution/Addition (D/S/A) algorithm was conducted, which used circular buffers as a basis for statistics. The algorithm maximizes the prediction accuracy for locations without measurements using the V-fold cross-validation technique, and it reduces overfitting compared to other approaches. We found that the D/S/A LUR modeling approach could achieve good results, with prediction powers of 60%, 63%, and 61%, respectively, for BC, UVBC, and Delta-C. The advantage of mobile monitoring is that it can monitor pollutant concentrations at hundreds of spatial points in a region, rather than the typical less than 100 points from a fixed site saturation monitoring network. This research indicates that a mobile saturation sampling network, when combined with proper modeling techniques, can uncover small area variations (e.g., 10 m) in particulate matter concentrations.

  19. Geohydrology of deep-aquifer system monitoring-well site at Marina, Monterey County, California

    USGS Publications Warehouse

    Hanson, Randall T.; Everett, Rhett; Newhouse, Mark W.; Crawford, Steven M.; Pimentel, M. Isabel; Smith, Gregory A.

    2002-01-01

    In 2000, a deep-aquifer system monitoring-well site (DMW1) was completed at Marina, California to provide basic geologic and hydrologic information about the deep-aquifer system in the coastal region of the Salinas Valley. The monitoring-well site contains four wells in a single borehole; one completed from 930 to 950 feet below land surface (bls) in the Paso Robles Formation (DMW1-4); one 1,040 to 1,060 feet below land surface in the upper Purisima Formation (DMW1-3); one from 1,410 to 1,430 feet below land surface in the middle Purisima Formation (DMW1-2); and one from 1,820 to 1,860 feet below land surface in the lower Purisima Formation (DMW1-1). The monitoring site is installed between the coast and several deep-aquifer system supply wells in the Marina Coast Water District, and the completion depths are within the zones screened in those supply wells. Sediments below a depth of 955 feet at DMW1 are Pliocene age, whereas the sediments encountered at the water-supply wells are Pleistocene age at an equivalent depth. Water levels are below sea level in DMW1 and the Marina Water District deep-aquifer system supply wells, which indicate that the potential for seawater intrusion exists in the deep-aquifer system. If the aquifers at DMW1 are hydraulically connected with the submarine outcrops in Monterey Bay, then the water levels at the DMW1 site are 8 to 27 feet below the level necessary to prevent seawater intrusion. Numerous thick fine-grained interbeds and confining units in the aquifer systems retard the vertical movement of fresh and saline ground water between aquifers and restrict the movement of seawater to narrow water-bearing zones in the upper-aquifer system.Hydraulic testing of the DMW1 and the Marina Water District supply wells indicates that the tested zones within the deep-aquifer system are transmissive water-bearing units with hydraulic conductivities ranging from 2 to 14.5 feet per day. The hydraulic properties of the supply wells and monitoring

  20. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well.

    PubMed

    Robbins, Steven J; Evans, Paul N; Parks, Donovan H; Golding, Suzanne D; Tyson, Gene W

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid.

  1. Genome-Centric Analysis of Microbial Populations Enriched by Hydraulic Fracture Fluid Additives in a Coal Bed Methane Production Well

    PubMed Central

    Robbins, Steven J.; Evans, Paul N.; Parks, Donovan H.; Golding, Suzanne D.; Tyson, Gene W.

    2016-01-01

    Coal bed methane (CBM) is generated primarily through the microbial degradation of coal. Despite a limited understanding of the microorganisms responsible for this process, there is significant interest in developing methods to stimulate additional methane production from CBM wells. Physical techniques including hydraulic fracture stimulation are commonly applied to CBM wells, however the effects of specific additives contained in hydraulic fracture fluids on native CBM microbial communities are poorly understood. Here, metagenomic sequencing was applied to the formation waters of a hydraulically fractured and several non-fractured CBM production wells to determine the effect of this stimulation technique on the in-situ microbial community. The hydraulically fractured well was dominated by two microbial populations belonging to the class Phycisphaerae (within phylum Planctomycetes) and candidate phylum Aminicenantes. Populations from these phyla were absent or present at extremely low abundance in non-fractured CBM wells. Detailed metabolic reconstruction of near-complete genomes from these populations showed that their high relative abundance in the hydraulically fractured CBM well could be explained by the introduction of additional carbon sources, electron acceptors, and biocides contained in the hydraulic fracture fluid. PMID:27375557

  2. Perceptions of wellness to monitor adaptive responses to training and competition in elite Australian football.

    PubMed

    Gastin, Paul B; Meyer, Denny; Robinson, Dean

    2013-09-01

    Perceptions of wellness are often used by athletes and coaches to assess adaptive responses to training. The purpose of this research was to describe how players were coping with the demands of elite level Australian football over a competitive season using subjective ratings of physical and psychological wellness and to assess the ecological validity of such a monitoring approach. Twenty-seven players completed ratings for 9 items (fatigue, general muscle, hamstring, quadriceps, pain/stiffness, power, sleep quality, stress, well-being). Players subjectively rated each item as they arrived at the training or competition venue on a 1-5 visual analog scale, with 1 representing the positive end of the continuum. A total of 2,583 questionnaires were analyzed from completions on 183 days throughout the season (92 ± 24 per player, 103 ± 20 per week; mean ± SD). Descriptive statistics and multilevel modelling were used to understand how player ratings of wellness varied over the season and during the week leading into game day and whether selected player characteristics moderated these relationships. Results indicated that subjective ratings of physical and psychological wellness were sensitive to weekly training manipulations (i.e., improve steadily throughout the week to a game day low, p < 0.001), to periods of unloading during the season (i.e., a week of no competition, p < 0.05) and to individual player characteristics (e.g., muscle strain after a game was poorer in players with high maximum speed, p < 0.01). It is concluded that self-reported player ratings of wellness provide a useful tool for coaches and practitioners to monitor player responses to the rigorous demands of training, competition, and life as a professional athlete.

  3. GE/NOMADICS IN-WELL MONITORING SYSTEM FOR VERTICAL PROFILING OF DNAPL CONTAMINANTS

    SciTech Connect

    Ronald E. Shaffer; Radislav Potyralio; Joseph Salvo; Timothy Sivavec; Lloyd Salsman

    2003-04-01

    This report describes the Phase I effort to develop an Automated In Well Monitoring System (AIMS) for in situ detection of chlorinated volatile organic compounds such as trichloroethylene (TCE) and tetrachloroethylene (PCE) in groundwater. AIMS is composed of 3 primary components: (a) sensor probe, (b) instrument delivery system, and (c) communication/recharging station. The sensor probe utilizes an array of thickness shear mode (TSM) sensors coated with chemically-sensitive polymer films provides a low-cost, highly sensitive microsensor platform for detection and quantification. The instrument delivery system is used to position the sensor probe in 2 inch or larger groundwater monitoring wells. A communication/recharging station provides wireless battery recharging and communication to enable a fully automated system. A calibration curve for TCE in water was built using data collected in the laboratory. The detection limit of the sensor probe was 6.7 ppb ({micro}g/L) for TCE in water. A preliminary field test was conducted at a GE remediation location and a pilot field test was performed at the DOE Savannah River Site (SRS). The AIMS system was demonstrated in an uncontaminated (i.e., ''clean'') 2-inch well and in a 4-inch well containing 163.5 ppb of TCE. Repeat measurements at the two wells indicated excellent day-to-day reproducibility. Significant differences in the sensor responses were noted between the two types of wells but they did not closely match the laboratory calibration data. The robustness of the system presented numerous challenges for field work and limited the scope of the SRS pilot field test. However, the unique combination of trace detection (detection limits near the MCL, minimum concentration level) and size (operations in 2-inch or larger groundwater wells) is demonstration of the promise of this technology for long-term monitoring (LTM) applications or rapid site characterization. Using the lessons learned from the pilot field test, a

  4. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Groat, C.; Stevenson, D.

    1990-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test well in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles.

  5. Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas

    SciTech Connect

    Not Available

    1991-01-01

    The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test wells in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles. 2 figs.

  6. Comprehensive monitoring of drinking well water quality in Seoul metropolitan city, Korea.

    PubMed

    Kim, Ki-Hyun; Susaya, Janice P; Park, Chan Goo; Uhm, Jung-Hoon; Hur, Jin

    2013-08-01

    In this research, the quality of drinking well waters from 14 districts around Seoul metropolitan city, Korea was assessed by measuring a number of parameters with established guideline (e.g., arsenic, fluoride, nitrate nitrogen, benzene, 1,2-dichloroethene, dichloromethane, copper, and lead) and without such criteria (e.g., hardness, chloride ion, sulfate ion, ammonia nitrogen, aluminum, iron, manganese, and zinc). Physical parameters such as evaporation residue (or total dissolved solids) and turbidity were also measured. The importance of each parameter in well waters was examined in terms of the magnitude and exceedance frequency of guideline values established by international (and national) health agencies. The results of this study indicate that among the eight parameters with well-established guidelines (e.g., WHO), arsenic and lead (guideline value of 0.01 mg L(-1) for both) recorded the highest exceedance frequency of 18 and 16 well samples ranging in 0.06-136 and 2-9 mg L(-1), respectively. As such, a number of water quality parameters measured from many well waters in this urban area were in critical levels which require immediate attention for treatment and continuous monitoring.

  7. Report on the radiochemical and environmental isotope character for monitoring well UE-1-q: Groundwater Characterization Program

    SciTech Connect

    Davisson, M.L.; Hudson, G.B.; Kenneally, J.; Nimz, G.J.; Rego, J.H.

    1993-06-01

    Well UE-1-q is located in the northeastern portion of area 1 of the Nevada Test Site in southwestern Nevada, 1244.1 meters above sea level. The well was originally an exploratory hole drilled to a depth of 743 meters below the surface (mbs) by LANL in November of 1980. In May 1992, the Groundwater Characterization Program (GCP) extended the total depth to approximately 792.5 mbs. UE-1-q is cased to a total depth of 749.5 mbs, with the remaining uncased depth exposed exclusively to Paleozoicaged carbonate rock, the principle zone of groundwater sampling. Geologic logging indicates approximately 390 meters of tuffaceous and calcareous alluvium overlies 320 meters of Tertiary-aged volcanic ash-flow and bedded tuffs. Paleozoic carbonate lithology extends from 716 mbs to the total well depth and is separated from the overlying Tertiary volcanic deposits by 6 meters of paleocolluvium. This report outlines the results and interpretations of radiochemical and environmental isotopic analyses of groundwater sampled from UE-1-q on July 10, 1992 during the well pump test following well development. In addition, results of the field tritium monitoring performed during the well drilling are reported in Appendix 1. Sampling, analytical techniques, and analytical uncertainties for the groundwater analyses are presented in Appendix 2.

  8. Monitoring Residual Solvent Additives and Their Effects in Solution Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Fogel, Derek M.; Basham, James I.; Engmann, Sebastian; Pookpanratana, Sujitra J.; Bittle, Emily G.; Jurchescu, Oana D.; Gundlach, David J.

    2015-03-01

    High boiling point solvent additives are a widely adopted approach for increasing bulk heterojunction (BHJ) solar cell efficiency. However, experiments show residual solvent can persist for hours after film deposition, and certain common additives are unstable or reactive. We report here on the effects of residual 1,8-diiodooctane on the electrical performance of poly(3-hexylthiophene-2,5-diyl) (P3HT): phenyl-C71-butyric acid methyl ester (PC[71]BM) BHJ photovoltaic cells. We optimized our fabrication process for efficiency at an active layer thickness of 220 nm, and all devices were processed in parallel to minimize unintentional variations between test structures. The one variable in this study is the active layer post spin drying time. Immediately following the cathode deposition, we measured the current-voltage characteristics at one sun equivalent illumination intensity, and performed impedance spectroscopy to quantify charge density, lifetime, and recombination process. Spectroscopic ellipsometry, FTIR, and XPS are also used to monitor residual solvent and correlated with electrical performance. We find that residual additive degrades performance by increasing the series resistance and lowering efficiency, fill factor, and free carrier lifetime.

  9. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    USGS Publications Warehouse

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  10. Description of work for 200-UP-1 characterization of monitoring wells. Revision 1

    SciTech Connect

    Innis, B.E.; Kelty, G.G.

    1994-03-31

    This description of work details the field activities associated with the drilling, soil sampling, and construction of groundwater monitoring and dual-use wells as part of the Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater Operable Unit and will serve as a field guide for those performing the work. It will be used in conjunction with DOE-RE and Environmental Investigations and Site Characterization Manual. Groundwater wells are being constructed to characterize the vertical and horizontal extent of the Uranium and {sup 99}Tc plumes and to define aquifer properties such as hydraulic communication between aquifers and hydrostratigraphy. Some of these wells may be utilized for extraction purposes during the Interim Remedial Measures (IRM) phase anticipated at this operable unit and are being designed with a dual use in mind. These data will be used to optimize the IRM for the cleanup of these two plumes. The data will also be used with later Limited Field Investigation data to perform a Qualitative Risk Assessment for the operable unit. The locations for the proposed groundwater wells are presented. The contaminants of concern for the project are presented also.

  11. Description of work for 200-UP-1 characterization of monitoring wells

    SciTech Connect

    Innis, B.E.; Kelty, G.G.

    1994-02-01

    This description of work (DOW) details the field activities associated with the drilling, soil sampling, and construction of groundwater monitoring and dual-use wells in the 200-UP-1 Operable Unit (Tasks 2, 3, and 5 in the 200-UP-1 RI/FS Work Plan DOE/RL 1993a) and will serve as a field guide for those performing the work. It will be used in conjunction with the Remedial Investigation/Feasibility Study Work Plan for the 200-UP-1 Groundwater operable Unit (DOE-RL 1993a, [LFI]) and Site Characterization Manual (WHC 1988a). Groundwater wells are being constructed to characterize the vertical and horizontal extent of the Uranium and {sup 99}{Tc} plumes and to define aquifer properties such as hydraulic communication between aquifers and hydrostratigraphy. Some of these wells may be utilized for extraction purposes during the IRM phase anticipated at this operable unit and are being designed with a dual use in mind. These data will be used to optimize the Interim Remedial Measures (IRM) for the cleanup of these two plumes. The data will also be used with later Limited Field Investigation (LFI) data to perform a Qualitative Risk Assessment (QRA) for the operable unit. The locations for the proposed groundwater wells are presented in Figure 1. The contaminants of concern for the project are presented ih Table 1.

  12. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    SciTech Connect

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D; Lowe, Larry E; Ulrich, Joseph B

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  13. Integrated Sensor Networks for Monitoring the Health and Well-Being of Vulnerable Individuals

    NASA Astrophysics Data System (ADS)

    Heatley, D. J. T.; Kalawsky, R. S.; Neild, I.; Bowman, P. A.

    The inescapable fact that people are living longer today than ever before means that the number of elderly people needing care or medical treatment has never been higher. In response to this there is a growing trend to place the elderly and infirm in residential homes or in sheltered accommodation, where they live in a protective environment while retaining some independence. Current healthcare systems in residential, sheltered, and community settings generally operate on a reactive basis rather than a pre-emptive basis [1]. This means that the people being cared for (the 'clients') are often already clinically ill and in need of medical attention, sometimes urgently, by the time the healthcare system engages, whereupon the treatment and recovery regime can be protracted and costly [2]. Unfortunately, a significant majority of our ageing population do not have the benefit of this level of healthcare [3], despite the evidence that our ageing population are regarded to be at an increased risk of falls [4], malnutrition [5], and failure to take prescribed medication [6]. It is this self-neglect that is of great concern. A far better scheme for all parties is one that continuously monitors clients who, although in fine health at that time, are considered to be at risk and likely to need attention at a time in the future, particularly if they are elderly and live alone. By continually monitoring certain behavioural characteristics of an individual, it is feasible to ascertain their well-being or detect when things deviate from the norm.

  14. Assessment of CO2 Injection Potential and Monitoring Well Location at the Mountaineer Power Plant Site

    SciTech Connect

    Bacon, Diana H.; White, Mark D.; Gupta, Neeraj; Sminchak, Joel R.; Kelley, Mark E.

    2006-11-01

    Numerical simulations of CO2 injection have been conducted as part of a program to assess the potential for geologic sequestration in a deep brine reservoir at the American Electric Power?s (AEP?s) Mountaineer Power Plant in New Haven, West Virginia. The results of the simulations will provide design guidance for injection and monitoring strategies, protocols, and permits for a demonstration project for CO2 injection in these deep saline aquifers as well as support for integrated risk assessments. The results of several three-dimensional simulations of CO2 injection into the Rose Run formation indicate that the formation is capable of receiving 666 to 837 ktonnes of CO2 at an injection pressure gradient of 1.53x104 Pa/m (0.675 psi/ft) over a period of 3 years.

  15. Assessment of continuous acoustic respiratory rate monitoring as an addition to a pulse oximetry-based patient surveillance system.

    PubMed

    McGrath, Susan P; Pyke, Joshua; Taenzer, Andreas H

    2016-05-03

    Technology advances make it possible to consider continuous acoustic respiratory rate monitoring as an integral component of physiologic surveillance systems. This study explores technical and logistical aspects of augmenting pulse oximetry-based patient surveillance systems with continuous respiratory rate monitoring and offers some insight into the impact on patient deterioration detection that may result. Acoustic respiratory rate sensors were introduced to a general care pulse oximetry-based surveillance system with respiratory rate alarms deactivated. Simulation was used after 4324 patient days to determine appropriate alarm thresholds for respiratory rate, which were then activated. Data were collected for an additional 4382 patient days. Physiologic parameters, alarm data, sensor utilization and patient/staff feedback were collected throughout the study and analyzed. No notable technical or workflow issues were observed. Sensor utilization was 57 %, with patient refusal leading reasons for nonuse (22.7 %). With respiratory rate alarm thresholds set to 6 and 40 breaths/min., the majority of nurse pager clinical notifications were triggered by low oxygen saturation values (43 %), followed by low respiratory rate values (21 %) and low pulse rate values (13 %). Mean respiratory rate collected was 16.6 ± 3.8 breaths/min. The vast majority (82 %) of low oxygen saturation states coincided with normal respiration rates of 12-20 breaths/min. Continuous respiratory rate monitoring can be successfully added to a pulse oximetry-based surveillance system without significant technical, logistical or workflow issues and is moderately well-tolerated by patients. Respiratory rate sensor alarms did not significantly impact overall system alarm burden. Respiratory rate and oxygen saturation distributions suggest adding continuous respiratory rate monitoring to a pulse oximetry-based surveillance system may not significantly improve patient deterioration detection.

  16. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect

    James Spillane

    2005-10-01

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  17. Construction, water-level, and water-quality data for multiple-well monitoring sites and test wells, Fort Irwin National Training Center, San Bernardino County, California, 2009-12

    USGS Publications Warehouse

    Kjos, Adam R.; Densmore, Jill N.; Nawikas, Joseph M.; Brown, Anthony A.

    2014-01-01

    Because of increasing water demands at the U.S. Army Fort Irwin National Training Center, the U.S. Geological Survey in cooperation with the U.S. Army carried out a study to evaluate the water quality and potential groundwater supply of undeveloped basins within the U.S. Army Fort Irwin National Training Center. In addition, work was performed in the three developed basins—Langford, Bicycle, and Irwin—proximal to or underlying cantonment to provide information in support of water-resources management and to supplement monitoring in these basins. Between 2009 and 2012, the U.S. Geological Survey installed 41 wells to expand collection of water-resource data within the U.S. Army Fort Irwin National Training Center. Thirty-four monitoring wells (2-inch diameter) were constructed at 14 single- or multiple-well monitoring sites and 7 test wells (8-inch diameter) were installed. The majority of the wells were installed in previously undeveloped or minimally developed basins (Cronise, Red Pass, the Central Corridor area, Superior, Goldstone, and Nelson Basins) proximal to cantonment (primary base housing and infrastructure). Data associated with well construction, water-level monitoring, and water-quality sampling are presented in this report.

  18. Automatic protective ventilation using the ARDSNet protocol with the additional monitoring of electrical impedance tomography

    PubMed Central

    2014-01-01

    Introduction Automatic ventilation for patients with respiratory failure aims at reducing mortality and can minimize the workload of clinical staff, offer standardized continuous care, and ultimately save the overall cost of therapy. We therefore developed a prototype for closed-loop ventilation using acute respiratory distress syndrome network (ARDSNet) protocol, called autoARDSNet. Methods A protocol-driven ventilation using goal-oriented structural programming was implemented and used for 4 hours in seven pigs with lavage-induced acute respiratory distress syndrome (ARDS). Oxygenation, plateau pressure and pH goals were controlled during the automatic ventilation therapy using autoARDSNet. Monitoring included standard respiratory, arterial blood gas analysis and electrical impedance tomography (EIT) images. After 2-hour automatic ventilation, a disconnection of the animal from the ventilator was carried out for 10 seconds, simulating a frequent clinical scenario for routine clinical care or intra-hospital transport. Results This pilot study of seven pigs showed stable and robust response for oxygenation, plateau pressure and pH value using the automated system. A 10-second disconnection at the patient-ventilator interface caused impaired oxygenation and severe acidosis. However, the automated protocol-driven ventilation was able to solve these problems. Additionally, regional ventilation was monitored by EIT for the evaluation of ventilation in real-time at bedside with one prominent case of pneumothorax. Conclusions We implemented an automatic ventilation therapy using ARDSNet protocol with seven pigs. All positive outcomes were obtained by the closed-loop ventilation therapy, which can offer a continuous standard protocol-driven algorithm to ARDS subjects. PMID:24957974

  19. Groundwater Age in Multi-Level Water Quality Monitor Wells on California Central Valley Dairies

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Visser, A.; Hillegonds, D. J.; Singleton, M. J.; Moran, J. E.; Harter, T.

    2011-12-01

    Dairy farming in California's Central Valley is a significant source of nitrate to underlying aquifers. One approach to mitigation is to implement farm-scale management plans that reduce nutrient loading to groundwater while sustaining crop yield. While the effect of different management practices on crop yield is easily measured, their effect on groundwater quality has only infrequently been evaluated. Documenting and predicting the impact of management on water quality requires a quantitative assessment of transport (including timescale and mixing) through the vadose and saturated zones. In this study, we measured tritium, helium isotopic composition, and noble gas concentrations in groundwater drawn from monitor wells on several dairies in the Lower San Joaquin Valley and Tulare Lake Basin of California's Central Valley in order to predict the timescales on which changes in management may produce observable changes in groundwater quality. These dairies differ in age (from <10 to >100 years old), thickness of the vadose zone (from <10 to 60 m), hydrogeologic setting, and primary source of irrigation water (surface or groundwater). All of the dairies use manure wastewater for irrigation and fertilization. Three of the dairies have implemented management changes designed to reduce nutrient loading and/or water usage. Monitor wells in the southern Tulare Lake Basin dairies were installed by UC-Davis as multi-level nested wells allowing depth profiling of tritium and noble gases at these sites. Tritium/helium-3 groundwater ages, calculated using a simple piston-flow model, range from <2 to >50 years. Initial tritium (the sum of measured tritium and tritiogenic helium-3) is close to or slightly above precipitation in the calculated recharge year for young samples; and significantly above the precipitation curve for older samples. This pattern is consistent with the use of 20-30 year old groundwater recharged before 1980 for irrigation, and illustrates how irrigation

  20. The Synthetic Convection Log - geophysical detection and identification of density-driven convection in monitoring wells and boreholes

    NASA Astrophysics Data System (ADS)

    Berthold, S.

    2009-12-01

    Detection and quantification of flow and transport is an important part of groundwater geophysics. A distinctive flow and transport problem occurs in boreholes and groundwater monitoring wells. They locally distort the natural flow field and open up an additional possibility of vertical heat and mass transfer between rock formations (e.g. aquifers), surrounding, and atmosphere. A variety of processes can cause a mass input or exchange through the fluid column. Density-driven convection (also called free convection or natural convection) plays an important role among them. Density-driven convective flows have adulterating effects on groundwater samples and in-situ measurements in monitoring wells and boreholes. Gases and other (dissolved) substances are possibly transported into new depths where varying chemical processes may arise. Consequently, knowing about the existence of vertical density-driven flows in fluid columns is crucial for hydrological investigations and for borehole geophysics. Moreover, temperatures in fluid columns and in the proximate formation may depart significantly from the ones in the surrounding rock when affected by vertical convection. Thus, understanding convective flow within the borehole is also important for subsurface water movement investigations and geothermics. The existence of significant vertical free convection was proven using pilot scale experiments and numerical modeling. However, so far, no particular logging device or interpretation algorithm was available that could detect free convection. Here an interpretation algorithm will be presented that approaches the problem. The so-called Synthetic Convection Log (SYNCO-Log) enables in-situ detection and even identification of free convective, including double-diffusive, flows using state-of-the-art geophysical borehole measurements like temperature and water conductivity/mud resistivity logs. In the sense of a "quick look" interpretation, the SYNCO-Log visually divides the fluid

  1. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    none,

    2013-09-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted "active" status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted "inactive" status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  2. MULTI-LAYER SAMPLING IN CONVENTIONAL MONITORING WELLS FOR IMPROVED ESTIMATION OF VERTICAL CONTAMINANT DISTRIBUTIONS AND MASS

    EPA Science Inventory

    "Traditional" approaches to sampling groundwater and interpreting monitoring well data often provide misleading pictures of plume shape and location in the subsurface and the true extent of contamination. Groundwater samples acquired using pumps and bailers in conventional monito...

  3. Monitoring-well installation, slug testing, and groundwater quality for selected sites in South Park, Park County, Colorado, 2013

    USGS Publications Warehouse

    Arnold, Larry R. Rick

    2015-01-01

    During May–June, 2013, the U.S. Geological Survey, in cooperation with Park County, Colorado, drilled and installed four groundwater monitoring wells in areas identified as needing new wells to provide adequate spatial coverage for monitoring water quality in the South Park basin. Lithologic logs and well-construction reports were prepared for each well, and wells were developed after drilling to remove mud and foreign material to provide for good hydraulic connection between the well and aquifer. Slug tests were performed to estimate hydraulic-conductivity values for aquifer materials in the screened interval of each well, and groundwater samples were collected from each well for analysis of major inorganic constituents, trace metals, nutrients, dissolved organic carbon, volatile organic compounds, ethane, methane, and radon. Documentation of lithologic logs, well construction, well development, slug testing, and groundwater sampling are presented in this report.

  4. Groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri, well field

    USGS Publications Warehouse

    Wilkison, Donald H.

    2012-01-01

    Source contributions to monitoring and supply wells, contributing recharge areas, groundwater travel times, and current (2012) understanding of alluvial water quality were used to develop a groundwater monitoring plan for the Missouri River alluvial aquifer in the vicinity of the City of Independence, Missouri well field. The plan was designed to evaluate long-term alluvial water quality and assess potential changes in, and threats to, well-field water quality. Source contributions were determined from an existing groundwater flow model in conjunction with particle-tracking analysis and verified with water-quality data collected from 1997 through 2010 from a network of 68 monitoring wells. Three conjunctive factors - well-field pumpage, Missouri River discharge, and aquifer recharge - largely determined groundwater flow and, therefore, source contributions. The predominant source of groundwater to most monitoring wells and supply wells is the Missouri River, and this was reflected, to some extent, in alluvial water quality. To provide an estimate of the maximum potential lead time available for remedial action, monitoring wells where groundwater travel times from the contributing recharge areas are less than 2 years and predominately singular sources (such as the Missouri River or the land surface) were selected for annual sampling. The sample interval of the remaining wells, which have varying travel times and intermediate mixtures of river and land-surface contributions, were staggered on a 2-, 3-, or 4-year rotation. This was done to provide data from similar contributing areas and account for inherent aquifer variability yet minimize sample redundancy.

  5. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 2

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area.

  6. Final work plan : targeted groundwater sampling and monitoring well installation for potential site reclassification at Barnes, Kansas.

    SciTech Connect

    LaFreniere, L. M.

    2006-07-11

    This ''Work Plan'' outlines the scope of work for a targeted groundwater sampling investigation and monitoring well installation at Barnes, Kansas. This activity is being conducted at the request of the Kansas Department of Health and Environment (KDHE), in accordance with the intergovernmental agreement between the KDHE and the Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA). Data resulting from the proposed work will be used to determine the hydraulic gradient near the former CCC/USDA facility, delineate the downgradient carbon tetrachloride plume, and determine additional monitoring requirements at Barnes. The overall goal is to establish criteria for monitoring leading to potential site reclassification. The proposed work will be performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. Argonne is a nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy (DOE). The Farm Service Agency of the USDA has entered into an interagency agreement with DOE, under which Argonne provides technical assistance with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a ''Master Work Plan'' (Argonne 2002) to provide general guidance for all investigations at former CCC/USDA facilities in Kansas. The ''Master Work Plan'', approved by the KDHE, contains the materials common to investigations at all locations in Kansas. This document must be consulted for the complete details of plans for this work associated with the former CCC/USDA facility at Barnes.

  7. STRMDEPL08 - An extended version of STRMDEPL with additional analytical solutions to calculate streamflow depletion by nearby pumping wells

    USGS Publications Warehouse

    Reeves, Howard W.

    2008-01-01

    STRMDEPL, a one-dimensional model using two analytical solutions to calculate streamflow depletion by a nearby pumping well, was extended to account for two additional analytical solutions. The extended program is named STRMDEPL08. The original program incorporated solutions for a stream that fully penetrates the aquifer with and without streambed resistance to ground-water flow. The modified program includes solutions for a partially penetrating stream with streambed resistance and for a stream in an aquitard subjected to pumping from an underlying leaky aquifer. The code also was modified to allow the user to input pumping variations at other than 1-day intervals. The modified code is shown to correctly evaluate the analytical solutions and to provide correct results for half-day time intervals.

  8. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2014

    USGS Publications Warehouse

    Thomas, Judith C.

    2015-10-07

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Thirty wells total were installed for this project: 10 in 2012 (DS 923, http://dx.doi.org/10.3133/ds923), and 20 monitoring wells were installed during April and June 2014 which are presented in this report. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system can provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  9. Additive effects prevail: The response of biota to multiple stressors in an intensively monitored watershed.

    PubMed

    Gieswein, Alexander; Hering, Daniel; Feld, Christian K

    2017-03-21

    Freshwater ecosystems are impacted by a range of stressors arising from diverse human-caused land and water uses. Identifying the relative importance of single stressors and understanding how multiple stressors interact and jointly affect biology is crucial for River Basin Management. This study addressed multiple human-induced stressors and their effects on the aquatic flora and fauna based on data from standard WFD monitoring schemes. For altogether 1095 sites within a mountainous catchment, we used 12 stressor variables covering three different stressor groups: riparian land use, physical habitat quality and nutrient enrichment. Twenty-one biological metrics calculated from taxa lists of three organism groups (fish, benthic invertebrates and aquatic macrophytes) served as response variables. Stressor and response variables were subjected to Boosted Regression Tree (BRT) analysis to identify stressor hierarchy and stressor interactions and subsequently to Generalised Linear Regression Modelling (GLM) to quantify the stressors standardised effect size. Our results show that riverine habitat degradation was the dominant stressor group for the river fauna, notably the bed physical habitat structure. Overall, the explained variation in benthic invertebrate metrics was higher than it was in fish and macrophyte metrics. In particular, general integrative (aggregate) metrics such as % Ephemeroptera, Plecoptera and Trichoptera (EPT) taxa performed better than ecological traits (e.g. % feeding types). Overall, additive stressor effects dominated, while significant and meaningful stressor interactions were generally rare and weak. We concluded that given the type of stressor and ecological response variables addressed in this study, river basin managers do not need to bother much about complex stressor interactions, but can focus on the prevailing stressors according to the hierarchy identified.

  10. Hydrologic monitoring of a deep-well waste-injection system near Pensacola, Florida, March 1970 - March 1977

    USGS Publications Warehouse

    Pascale, Charles A.; Martin, J.B.

    1978-01-01

    This report presents hydraulic and chemical data collected at a deep-well waste-injection system near Pensacola, Florida. Since injection began in July 1963, about 13.3 billion gallons of industrial acidic waste containing nitric acid, inorganic salts and numerous organic compounds have been injected into a saline-water-filled limestone aquifer. Wellhead pressure at two injection wells averaged 180 pounds per square inch in March 1977 and the hydraulic pressure gradient was 0.53 pound per square inch per foot of depth to the top of the injection zone. Increases in pressure since 1970 at two wells used to monitor the injection zone at sites located 1.9 miles north and 1.5 miles south of the injection site have been about 22 and 29 pounds per square inch. The pressure in a shallow monitor well, penetrating the first permeable zone above the 220-foot-thick confining bed, declined about 4 pounds per square inch. No changes were detected in the chemical character of water from the shallow monitor well and the north monitor well, but since late 1973, concentrations of bicarbonate and dissolved organic carbon in water from the south monitor well have increased. (Woodard-USGS)

  11. Hydroacoustic Monitoring of Downstream Migrant Salmon and Steelhead at Wells Dam in Spring 1984.

    SciTech Connect

    Raemhild, Gary A.

    1984-10-31

    The downstream migration of salmon and steelhead in spring 1984 at Wells Dam on the mid-Columbia River was monitored using hydroacoustics. The primary objective of this research was to document run timing and describe the distribution of smolts at the dam. The study occurred from April 2 to June 15, 1984. Four transducers were deployed at the bases of pier noses at Turbines 3, 5, 7, and 9 and aimed up 24/sup 0/ into the forebay. They were sampled once every hour, 24 hours per day, for 75 days. An index of fish passage was reported daily to the Water Budget Center in Portland, Oregon. This index was computed as follows. For each 24-h period, separate fish passage rates (number/time) at each of the four sampling locations were estimated by dividing the sum of the ''weighted'' fish detections by total sample time. These four values then were averaged to produced the daily index (number/day/location). The first substantial increase in fish passage occurred on April 25, 1984 due to the chinook released from the Winthrop hatchery on April 23. During May, run timing was fairly uniform except for peaks on May 2, 14, 18, and 22. The unexpected peak in run size that occurred from May 29 to June 2 could have been caused by juvenile mountain whitefish. Although the proportion of each species varied, chinook passage probably peaked in late April, and steelhead in the first two weeks of May; sockeye passage was variable throughout the study. The data indicated that most downstream migrants were distributed high in the water column and toward the western end of the dam. Average hourly passage rates for day and night were similar, but more fish passed the dam during the longer period of daylight than the shorter period of darkness. 7 refs., 13 figs.

  12. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  13. Leakage detection of Marcellus Shale natural gas at an Upper Devonian gas monitoring well: a 3-d numerical modeling approach.

    PubMed

    Zhang, Liwei; Anderson, Nicole; Dilmore, Robert; Soeder, Daniel J; Bromhal, Grant

    2014-09-16

    Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW. In this study, a numerical simulation code (TOUGH 2) was used to investigate the potential for detecting leaking natural gas in such an overlying geologic formation. The modeled zone was based on a gas field in Greene County, Pennsylvania, undergoing production activities. The model assumed, hypothetically, that methane (CH4), the primary component of natural gas, with some tracer, was leaking around an existing well between the Marcellus Shale and the shallower and lower-pressure Bradford Formation. The leaky well was located 170 m away from a monitoring well, in the Bradford Formation. A simulation study was performed to determine how quickly the tracer monitoring could detect a leak of a known size. Using some typical parameters for the Bradford Formation, model results showed that a detectable tracer volume fraction of 2.0 × 10(-15) would be noted at the monitoring well in 9.8 years. The most rapid detection of tracer for the leak rates simulated was 81 days, but this scenario required that the leakage release point was at the same depth as the perforation zone of the monitoring well and the zones above and below the perforation zone had low permeability, which created a preferred tracer migration pathway along the perforation zone. Sensitivity analysis indicated that the time needed to detect CH4 leakage at the monitoring well was very sensitive to changes in the thickness of the high-permeability zone, CH4 leaking rate, and production rate of the monitoring well.

  14. Installation of a groundwater monitoring-well network on the east side of the Uncompahgre River in the Lower Gunnison River Basin, Colorado, 2012

    USGS Publications Warehouse

    Thomas, Judith C.; Arnold, Larry R. Rick

    2015-07-06

    The east side of the Uncompahgre River Basin has been a known contributor of dissolved selenium to recipient streams. Discharge of groundwater containing dissolved selenium contributes to surface-water selenium concentrations and loads; however, the groundwater system on the east side of the Uncompahgre River Basin is not well characterized. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board and the Bureau of Reclamation, has established a groundwater-monitoring network on the east side of the Uncompahgre River Basin. Ten monitoring wells were installed during October and November 2012. This report presents location data, lithologic logs, well-construction diagrams, and well-development information. Understanding the groundwater system will provide managers with an additional metric for evaluating the effectiveness of salinity and selenium control projects.

  15. Sampling and analysis plan for the characterization of groundwater quality in two monitoring wells near Pavillion, Wyoming

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming to study groundwater quality. The U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, designed a plan to collect groundwater data from these monitoring wells. This sampling and analysis plan describes the sampling equipment that will be used, well purging strategy, purge water disposal, sample collection and processing, field and laboratory sample analysis, equipment decontamination, and quality-assurance and quality-control procedures.

  16. Comparison of CO2 Detection Methods Tested in Shallow Groundwater Monitoring Wells at a Geological Sequestration Site

    SciTech Connect

    Edenborn, Harry M.; Jain, Jinesh N.

    2016-05-17

    The geological storage of anthropogenic carbon dioxide (CO2) is one method of reducing the amount of CO2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO2 injection to evaluate if impacts related to injection have occurred. Because CO2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO2 in the field and lab are currently used, but most methods have significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO2 in water by monitoring temperature and pressure changes and calculating the PCO2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO2. The NDIR sensor results correlated well (r2= 0.93) with the CarboQC data, but CO2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both

  17. A method for designing configurations of nested monitoring wells near landfills

    NASA Astrophysics Data System (ADS)

    Hudak, Paul F.

    A method was devised for designing configurations of monitoring wells, consisting of vertically nested intakes in boreholes. The network-design method involves analyzing a subset of potential contaminant plumes emerging from the downgradient margin of a landfill. Plume widths are evaluated along selected equipotential lines and compared to the lengths of those lines. The method was applied to a 32-ha solid-waste landfill in Tarrant County, Texas, USA. Sixtynine potential source nodes were considered. A 15-borehole network devised by the method registered 93 detections in total, detecting all 69 model-generated plumes by at least one borehole. Based on an enumeration procedure, a minimum of 10 boreholes was needed to detect all of the model-generated plumes. However, the less conservative 10-borehole network had little capability for backup detection. An existing monitoring network of seven downgradient wells detected only 38 model-generated plumes. Results of this study illustrate a practical need for structured approaches to designing detection-based groundwater-monitoring configurations. Résumé Une méthode a été développée pour fournir les caractéristiques de puits de surveillance, avec des points de prélèvements superposés en forage. La méthode de réalisation du réseau s'appuie sur l'analyse d'un ensemble de panaches de pollution potentiels provenant du bord en aval d'une décharge. Les largeurs de panache sont estimées le long d'isopièzes sélectionnées et sont comparées à leur longueur. Cette méthode a été appliquée à une décharge de déchets solides couvrant 32ha, dans le canton de Tarrant (Texas, Etats-Unis). 69 noeuds de source potentielle de pollution ont été pris en compte. Un réseau de 15 forages, défini par la méthode, a enregistré au total 93 alarmes, détectant les 69 panaches simulés dans au moins un forage. Une procédure de dénombrement précise qu'un minimum de 10 forages est nécessaire pour détecter tous les

  18. Geologic, hydrologic, and water-quality data from multiple-well monitoring sites in the Central and West Coast basins, Los Angeles County, California, 1995-2000

    USGS Publications Warehouse

    Land, Michael; Everett, R.R.; Crawford, S.M.

    2002-01-01

    In 1995, the U.S. Geological Survey (USGS), in cooperation with the HYPERLINK 'http://wrd.org' Water Replenishment District of Southern California (WRDSC), began a study to examine ground-water resources in the Central and West Coast Basins in Los Angeles County, California. The study characterizes the geohydrology and geochemistry of the regional ground-water flow system and provides extensive data for evaluating ground-water management issues. This report is a compilation of geologic, hydrologic, and water-quality data collected from 24 recently constructed multiple-well monitoring sites for the period 1995?2000. Descriptions of the collected drill cuttings were compiled into lithologic logs, which are summarized along with geophysical logs?including gamma-ray, spontaneous potential, resistivity, electromagnetic induction, and temperature tool logs?for each monitoring site. At selected sites, cores were analyzed for magnetic orientation, physical and thermal properties, and mineralogy. Field and laboratory estimates of hydraulic conductivity are presented for most multiple-well monitoring sites. Periodic water-level measurements are also reported. Water-quality information for major ions, nutrients, trace elements, deuterium and oxygen-18, and tritium is presented for the multiple-well monitoring locations, and for selected existing production and observation wells. In addition, boron-11, carbon-13, carbon-14, sulfur-34, and strontium-87/86 data are presented for selected wells.

  19. Well-to-Wheels analysis of landfill gas-based pathways and their addition to the GREET model.

    SciTech Connect

    Mintz, M.; Han, J.; Wang, M.; Saricks, C.; Energy Systems

    2010-06-30

    Today, approximately 300 million standard cubic ft/day (mmscfd) of natural gas and 1600 MW of electricity are produced from the decomposition of organic waste at 519 U.S. landfills (EPA 2010a). Since landfill gas (LFG) is a renewable resource, this energy is considered renewable. When used as a vehicle fuel, compressed natural gas (CNG) produced from LFG consumes up to 185,000 Btu of fossil fuel and generates from 1.5 to 18.4 kg of carbon dioxide-equivalent (CO{sub 2}e) emissions per million Btu of fuel on a 'well-to-wheel' (WTW) basis. This compares with approximately 1.1 million Btu and 78.2 kg of CO{sub 2}e per million Btu for CNG from fossil natural gas and 1.2 million Btu and 97.5 kg of CO{sub 2}e per million Btu for petroleum gasoline. Because of the additional energy required for liquefaction, LFG-based liquefied natural gas (LNG) requires more fossil fuel (222,000-227,000 Btu/million Btu WTW) and generates more GHG emissions (approximately 22 kg CO{sub 2}e /MM Btu WTW) if grid electricity is used for the liquefaction process. However, if some of the LFG is used to generate electricity for gas cleanup and liquefaction (or compression, in the case of CNG), vehicle fuel produced from LFG can have no fossil fuel input and only minimal GHG emissions (1.5-7.7 kg CO{sub 2}e /MM Btu) on a WTW basis. Thus, LFG-based natural gas can be one of the lowest GHG-emitting fuels for light- or heavy-duty vehicles. This report discusses the size and scope of biomethane resources from landfills and the pathways by which those resources can be turned into and utilized as vehicle fuel. It includes characterizations of the LFG stream and the processes used to convert low-Btu LFG into high-Btu renewable natural gas (RNG); documents the conversion efficiencies and losses of those processes, the choice of processes modeled in GREET, and other assumptions used to construct GREET pathways; and presents GREET results by pathway stage. GREET estimates of well-to-pump (WTP), pump

  20. Results of calendar year 1994 monitor well inspection and maintenance program, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    McMaster, B.W.; Jones, S.B.; Sitzler, J.L.

    1995-06-01

    This document is a compendium of results of the calendar year 1994 Monitor Well Inspection and Maintenance Program at the Department of Energy Y-12 Plant in Oak Ridge, Tennessee. This report documents the work relating to well inspections and maintenance requests. Inspections are implemented in order to better assess the condition and maintenance needs of wells that are actively being monitored. Currently this approach calls for inspecting all wells on a routine (annual or triennial) basis which are: (1) in an active sampling program; (2) included in a hydrologic study; or (3) not in service, but not scheduled for plugging and abandonment. Routine inspections help to ensure that representative groundwater samples and hydrologic data are being collected, and contribute to the life expectancy of each well. This report formally presents well inspection and maintenance activities that were conducted at the Y-12 Plant during 1994. All inspections were conducted between April and December.

  1. Hydrogeology and groundwater quality at monitoring wells installed for the Tunnel and Reservoir Plan System and nearby water-supply wells, Cook County, Illinois, 1995–2013

    USGS Publications Warehouse

    Kay, Robert T.

    2016-04-04

    Groundwater-quality data collected from 1995 through 2013 from 106 monitoring wells open to the base of the Silurian aquifer surrounding the Tunnel and Reservoir Plan (TARP) System in Cook County, Illinois, were analyzed by the U.S. Geological Survey, in cooperation with the Metropolitan Water Reclamation District of Greater Chicago, to assess the efficacy of the monitoring network and the effects of water movement from the tunnel system to the surrounding aquifer. Groundwater from the Silurian aquifer typically drains to the tunnel system so that analyte concentrations in most of the samples from most of the monitoring wells primarily reflect the concentration of the analyte in the nearby Silurian aquifer. Water quality in the Silurian aquifer is spatially variable because of a variety of natural and non-TARP anthropogenic processes. Therefore, the trends in analyte values at a given well from 1995 through 2013 are primarily a reflection of the spatial variation in the value of the analyte in groundwater within that part of the Silurian aquifer draining to the tunnels. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer when flow in the tunnel systemis greater than 80 million gallons per day may affect water quality in some nearby monitoring wells. Intermittent drainage of combined sewer flow from the tunnel system to the Silurian aquifer appears to affect the values of electrical conductivity, hardness, sulfate, chloride, dissolved organic carbon, ammonia, and fecal coliform in samples from many wells but typically during less than 5 percent of the sampling events. Drainage of combined sewer flow into the aquifer is most prevalent in the downstream parts of the tunnel systems because of the hydraulic pressures elevated above background values and long residence time of combined sewer flow in those areas. Elevated values of the analytes emplaced during intermittent migration of combined sewer flow into the Silurian aquifer

  2. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    SciTech Connect

    Hooker, Matthew; Fabian, Paul

    2013-05-01

    depths. At present, the highest-temperature commercially available circuit boards are based on polyimide materials, and those have maximum use temperatures of 200 to 250°C. In addition to thermal stability, downhole electronics must also be fabricated into high-aspect-ratio packages. For example, the multilayer assemblies produced at SNL were approximately 2.5 cm wide and 50 cm long. Because of this very high form factor, glass-fiber-reinforced polymers are much more desirable than multilayer ceramic modules (MCM). MCMs have many advantages for some applications, but are susceptible to damage induced by the mechanical and vibrational loads commonly experienced by data-logging tools. Thus, as EGS technology continues to advance, there is a strong need for multilayer electronics that can provide the necessary thermal performance while also being compatible with high-form-factor circuit designs. This project involved the design and development of high-temperature circuit materials, as well as the fabrication and testing of circuit components. The material development included the evaluation of various polymer/fiberglass composites, whereas the circuit components were tested using conventional microelectronic evaluation techniques. This effort targeted development of a new class of high-temperature multilayer circuit boards for use in downhole data-logging applications where temperatures are on the order of 300°C. This is consistent with DOE’s multiyear plan for advancing technologies for use in enhanced geothermal systems. Organic and inorganic polymer systems, both with glass reinforcements, were considered to provide the following performance at elevated temperatures: • Mechanical strength and durability • High dielectric strength and electrical resistivity • Thermal stability • Strong adhesion to copper to ensure the reliability of the multilayer assemblies • Processing characteristics that are consistent with state-of-the-art multilayer circuit board

  3. 40 CFR 147.2913 - Monitoring and reporting requirements for wells authorized by rule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... or down-hole problems involving well integrity, well workovers, or any noncompliance. As...

  4. 40 CFR 147.2913 - Monitoring and reporting requirements for wells authorized by rule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... or down-hole problems involving well integrity, well workovers, or any noncompliance. As...

  5. TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

    SciTech Connect

    Williams, B.A.

    1996-09-11

    This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

  6. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    Elvado Environmental LLC

    2009-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on

  7. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm(-3), a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol(-1), and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m(-2) was generated. The MFC ran continuously up to 120 days without maintenance.

  8. How well can we monitor cloud properties over polar regions in winter?

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Holz, R.; Frey, R.; Heidinger, A.

    2008-12-01

    Understanding the impact of clouds on the Earth's radiation balance and detecting changes in the amount and distribution of global cloud cover requires accurate global cloud climatologies with well-characterized uncertainties. To meet this challenge, significant effort has been given to generating climate quality long-term cloud data sets using over 30 years of polar-orbiting satellite measurements [Rossow and Schiffer, 1999; Jacobowitz et al, 2003; Wylie and Menzel, 1999] with plans to continue the cloud record using the next generation of polar orbiting sensors [e.g. Ackerman, et al., 1998]. A "Climate Quality" climatology requires that both the uncertainties and the physical sensitivities are quantified and are smaller than the expected climate signature. Clouds play a critical role in the Arctic climate system, through interacting with other important climate processes, including snow/ice albedo feedback. Clouds modulate the surface radiative fluxes (Wang and Key, 2003) that influence the growth and melting of sea ice. Increasing cloud cover, which keeps the shortwave irradiances at the top-of-atmosphere unchanged, possibly compensates the reduced sea ice extent (Kato et al., 2006). However, assessing changes in polar conditions during winter has been a challenge. Holz et al (2008) presented a global two-month comparison between the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud properties. Both CALIOP and MODIS are part of the NASA A-Train constellation of satellites and provide continuous near-coincident measurements that result in over 28 million cloud detection comparisons in a month. Globally (includes polar regions), it was found that the MODIS 1-km cloud mask and the CALIOP 1-km averaged layer product agreement is 88% for cloudy conditions in both August 2006 and February 2007. For clear-sky conditions the agreement is 84 (85) % for August (February). The best agreement is

  9. Determination of recharge fraction of injection water in combined abstraction-injection wells using continuous radon monitoring.

    PubMed

    Lee, Kil Yong; Kim, Yong-Chul; Cho, Soo Young; Kim, Seong Yun; Yoon, Yoon Yeol; Koh, Dong Chan; Ha, Kyucheol; Ko, Kyung-Seok

    2016-12-01

    The recharge fractions of injection water in combined abstraction-injection wells (AIW) were determined using continuous radon monitoring and radon mass balance model. The recharge system consists of three combined abstraction-injection wells, an observation well, a collection tank, an injection tank, and tubing for heating and transferring used groundwater. Groundwater was abstracted from an AIW and sprayed on the water-curtain heating facility and then the used groundwater was injected into the same AIW well by the recharge system. Radon concentrations of fresh groundwater in the AIWs and of used groundwater in the injection tank were measured continuously using a continuous radon monitoring system. Radon concentrations of fresh groundwater in the AIWs and used groundwater in the injection tank were in the ranges of 10,830-13,530 Bq/m(3) and 1500-5600 Bq/m(3), respectively. A simple radon mass balance model was developed to estimate the recharge fraction of used groundwater in the AIWs. The recharge fraction in the 3 AIWs was in the range of 0.595-0.798. The time series recharge fraction could be obtained using the continuous radon monitoring system with a simple radon mass balance model. The results revealed that the radon mass balance model using continuous radon monitoring was effective for determining the time series recharge fractions in AIWs as well as for characterizing the recharge system.

  10. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2003-09-30

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure 1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 which provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater sampling (Section 3.0), whereas well granted ''inactive'' status are not used for either purpose. The status designation also determines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 4.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 5.0). This plan applies to groundwater monitoring wells associated with Y-12 and related waste management facilities located within three hydrogeologic regimes (Figure 1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime is directly south of Y-12 and encompasses a section of Chestnut Ridge that is bound to the

  11. High-throughput sequencing and morphology perform equally well for benthic monitoring of marine ecosystems

    PubMed Central

    Lejzerowicz, Franck; Esling, Philippe; Pillet, Loïc; Wilding, Thomas A.; Black, Kenneth D.; Pawlowski, Jan

    2015-01-01

    Environmental diversity surveys are crucial for the bioassessment of anthropogenic impacts on marine ecosystems. Traditional benthic monitoring relying on morphotaxonomic inventories of macrofaunal communities is expensive, time-consuming and expertise-demanding. High-throughput sequencing of environmental DNA barcodes (metabarcoding) offers an alternative to describe biological communities. However, whether the metabarcoding approach meets the quality standards of benthic monitoring remains to be tested. Here, we compared morphological and eDNA/RNA-based inventories of metazoans from samples collected at 10 stations around a fish farm in Scotland, including near-cage and distant zones. For each of 5 replicate samples per station, we sequenced the V4 region of the 18S rRNA gene using the Illumina technology. After filtering, we obtained 841,766 metazoan sequences clustered in 163 Operational Taxonomic Units (OTUs). We assigned the OTUs by combining local BLAST searches with phylogenetic analyses. We calculated two commonly used indices: the Infaunal Trophic Index and the AZTI Marine Biotic Index. We found that the molecular data faithfully reflect the morphology-based indices and provides an equivalent assessment of the impact associated with fish farms activities. We advocate that future benthic monitoring should integrate metabarcoding as a rapid and accurate tool for the evaluation of the quality of marine benthic ecosystems. PMID:26355099

  12. Formation of particulate matter monitoring during combustion of wood pellete with additives

    NASA Astrophysics Data System (ADS)

    Palacka, Matej; Holubčík, Michal; Vician, Peter; Jandačka, Jozef

    2016-06-01

    Application additives into the material for the production of wood pellets achieve an improvement in some properties such as pellets ash flow temperature and abrasion resistance. Additives their properties influence the course of combustion, and have an impact on the results of issuance. The experiment were selected additives corn starch and dolomite. Wood pellets were produced in the pelleting press and pelletizing with the additives. Selected samples were tested for the production of particulate matter (PM) during their direct burn. The paper analyzing a process of producing wood pellets and his effect on the final properties.

  13. Characterisation of microbial activity in the framework of natural attenuation without groundwater monitoring wells?: a new Direct-Push probe.

    PubMed

    Schurig, Christian; Melo, Vinicio Alejandro; Miltner, Anja; Kaestner, Matthias

    2014-01-01

    At many contaminated field sites in Europe, monitored natural attenuation is a feasible site remediation option. Natural attenuation includes several processes but only the microbial degradation leads to real contaminant removal and very few methods are accepted by the authorities providing real evidence of microbial contaminant degradation activity. One of those methods is the recently developed in situ microcosm approach (BACTRAP®). These in situ microcosms consist of perforated stainless steel cages or PTFE tubes filled with an activated carbon matrix that is amended with 13C-labelled contaminants; the microcosms are then exposed within groundwater monitoring wells. Based on this approach, natural attenuation was accepted by authorities as a site remediation option for the BTEX-polluted site Zeitz in Germany. Currently, the in situ microcosms are restricted to the use inside groundwater monitoring wells at the level of the aquifer. The (classical) system therefore is only applicable on field sites with a network of monitoring wells, and only microbial activity inside the monitoring wells at the level of the aquifer can be assessed. In order to overcome these limitations, a new Direct-Push BACTRAP probe was developed on the basis of the Geoprobe® equipment. With respect to the mechanical boundary conditions of the DP technique, these new probes were constructed in a rugged and segmented manner and are adaptable to various sampling concepts. With this new probe, the approach can be extended to field sites without existing monitoring wells, and microbial activity was demonstrated to be measureable even under very dry conditions inside the vadose zone above the aquifer. In a field test, classical and Direct-Push BACTRAPs were applied in the BTEX-contaminated aquifer at the ModelPROBE reference site Zeitz (Germany). Both types of BACTRAPs were incubated in the centre and at the fringe of the BTEX plume. Analysis of phospholipid fatty acid (PLFA) patterns showed

  14. Under which conditions, additional monitoring data are worth gathering for improving decision making? Application of the VOI theory in the Bayesian Event Tree eruption forecasting framework

    NASA Astrophysics Data System (ADS)

    Loschetter, Annick; Rohmer, Jérémy

    2016-04-01

    Standard and new generation of monitoring observations provide in almost real-time important information about the evolution of the volcanic system. These observations are used to update the model and contribute to a better hazard assessment and to support decision making concerning potential evacuation. The framework BET_EF (based on Bayesian Event Tree) developed by INGV enables dealing with the integration of information from monitoring with the prospect of decision making. Using this framework, the objectives of the present work are i. to propose a method to assess the added value of information (within the Value Of Information (VOI) theory) from monitoring; ii. to perform sensitivity analysis on the different parameters that influence the VOI from monitoring. VOI consists in assessing the possible increase in expected value provided by gathering information, for instance through monitoring. Basically, the VOI is the difference between the value with information and the value without additional information in a Cost-Benefit approach. This theory is well suited to deal with situations that can be represented in the form of a decision tree such as the BET_EF tool. Reference values and ranges of variation (for sensitivity analysis) were defined for input parameters, based on data from the MESIMEX exercise (performed at Vesuvio volcano in 2006). Complementary methods for sensitivity analyses were implemented: local, global using Sobol' indices and regional using Contribution to Sample Mean and Variance plots. The results (specific to the case considered) obtained with the different techniques are in good agreement and enable answering the following questions: i. Which characteristics of monitoring are important for early warning (reliability)? ii. How do experts' opinions influence the hazard assessment and thus the decision? Concerning the characteristics of monitoring, the more influent parameters are the means rather than the variances for the case considered

  15. Continuous monitoring and discrete water-quality data from groundwater wells in the Edwards aquifer, Texas, 2014–15

    USGS Publications Warehouse

    Opsahl, Stephen P.; Musgrove, Marylynn; Slattery, Richard N.

    2017-01-01

    In cooperation with the San Antonio Water System, continuous and discrete water-quality data were collected from groundwater wells completed in the Edwards aquifer, Texas, 2014-2015. Discrete measurements of nitrate were made by using a nitrate sensor. Precipitation data from two sites in the National Oceanic and Atmospheric Administration Global Historical Climatology Network are included in the dataset. The continuous monitoring data were collected using water quality sensors and include hourly measurements of nitrate, specific conductance, and water level in two wells. Discrete measurements of nitrate, specific conductance, and vertical flow rate were collected from one well site at different depths throughout the well bore.

  16. Y-12 Groundwater Protection Program Monitoring Optimization Plan for Groundwater Monitoring Wells at the U.S. Department of Energy Y-12 National Security Complex

    SciTech Connect

    2006-12-01

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and water-quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted ''active'' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted ''inactive'' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the

  17. Groundwater-quality and quality-control data for two monitoring wells near Pavillion, Wyoming, April and May 2012

    USGS Publications Warehouse

    Wright, Peter R.; McMahon, Peter B.; Mueller, David K.; Clark, Melanie L.

    2012-01-01

    In June 2010, the U.S. Environmental Protection Agency installed two deep monitoring wells (MW01 and MW02) near Pavillion, Wyoming, to study groundwater quality. During April and May 2012, the U.S Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, collected groundwater-quality data and quality-control data from monitoring well MW01 and, following well redevelopment, quality-control data for monitoring well MW02. Two groundwater-quality samples were collected from well MW01—one sample was collected after purging about 1.5 borehole volumes, and a second sample was collected after purging 3 borehole volumes. Both samples were collected and processed using methods designed to minimize atmospheric contamination or changes to water chemistry. Groundwater-quality samples were analyzed for field water-quality properties (water temperature, pH, specific conductance, dissolved oxygen, oxidation potential); inorganic constituents including naturally occurring radioactive compounds (radon, radium-226 and radium-228); organic constituents; dissolved gasses; stable isotopes of methane, water, and dissolved inorganic carbon; and environmental tracers (carbon-14, chlorofluorocarbons, sulfur hexafluoride, tritium, helium, neon, argon, krypton, xenon, and the ratio of helium-3 to helium-4). Quality-control sample results associated with well MW01 were evaluated to determine the extent to which environmental sample analytical results were affected by bias and to evaluate the variability inherent to sample collection and laboratory analyses. Field documentation, environmental data, and quality-control data for activities that occurred at the two monitoring wells during April and May 2012 are presented.

  18. Geologic, water-chemistry, and hydrologic data from multiple-well monitoring sites and selected water-supply wells in the Santa Clara Valley, California, 1999-2003

    USGS Publications Warehouse

    Newhouse, M.W.; Hanson, R.T.; Wentworth, C.M.; Everett, Rhett; Williams, C.F.; Tinsley, J.C.; Noce, T.E.; Carkin, B.A.

    2004-01-01

    To better identify the three-dimensional geohydrologic framework of the Santa Clara Valley, lithologic, geologic, geophysical, geomechanical, hydraulic, and water-chemistry data were collected from eight ground-water multiple-well monitoring sites constructed in Santa Clara County, California, as part of a series of cooperative studies between the U.S. Geological Survey and the Santa Clara Valley Water District. The data are being used to update and improve the three-dimensional geohydrologic framework of the basin and to address issues related to water supply, water chemistry, sequence stratigraphy, geology, and geological hazards. This report represents a compilation of data collected from 1999 to 2003, including location and design of the monitoring sites, cone penetrometer borings, geologic logs, lithologic logs, geophysical logs, core analysis, water-chemistry analysis, ground-water-level measurements, and hydraulic and geomechanical properties from wells and core samples. Exploratory cone penetrometer borings taken in the upper 17 to 130 feet at six of the monitoring sites identified the base of Holocene as no deeper than 75 feet in the central confined area and no deeper than 35 feet in the southern unconfined areas of the valley. Generalized lithologic characterization from the monitoring sites indicates about four to six different aquifer units separated by relatively fine-grained units occur within the alluvial deposits shallower than 860 feet deep. Analysis of geophysical logs indicates that coarse-grained units varied in thickness between 10 and 25 feet in the southeastern unconfined area of the valley and between 50 and 200 feet in the south-central and southwestern areas of the valley. Deviations from temperature-gradient logs indicate that the majority of horizontal ground-water flow occurs above a depth of 775 feet in the south central and above 510 feet in the southeastern areas of the valley. Bulk physical properties from more than 1,150 feet of

  19. 40 CFR 147.2922 - Monitoring and reporting requirements for wells authorized by permit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... Osage UIC office within 30 days of any mechanical failure or down-hole problems involving well...

  20. 40 CFR 147.2922 - Monitoring and reporting requirements for wells authorized by permit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED UNDERGROUND... Osage UIC office within 30 days of any mechanical failure or down-hole problems involving well...

  1. Locations and monitoring well completion logs of wells surveyed by U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, Fort Worth area, Texas

    USGS Publications Warehouse

    Williams, M.D.; Kuniansky, E.L.

    1996-01-01

    Completion logs are presented for 16 monitoring wells installed by the U.S. Geological Survey at Air Force Plant 4 and Naval Air Station, Joint Reserve Base, Carswell Field, in the Fort Worth area, Texas. Natural gamma-ray logs are presented for selected monitoring wells. Also included are survey data for eight wells installed by Geo-Marine, Inc.

  2. Sucrose taken during mixed meal has no additional hyperglycaemic action over isocaloric amounts of starch in well-controlled diabetics.

    PubMed

    Slama, G; Haardt, M J; Jean-Joseph, P; Costagliola, D; Goicolea, I; Bornet, F; Elgrably, F; Tchobroutsky, G

    1984-07-21

    The hyperglycaemic effect of 20 g sucrose taken at the end of a regular mixed meal by diabetic patients was measured in six adult type 1 diabetics, C-peptide negative, controlled by the artificial pancreas, and twelve adult type 2 diabetics, with fasting plasma glucose levels below 7.2 mmol/l (130 mg/100 ml) and post-prandial plasma glucose levels below 10.0 mmol/l (180 mg/100 ml), treated by diet alone or with glibenclamide and/or metformin. All the patients were given on consecutive days, in random order, two mixed meals of grilled meat, green beans, and cheese, as well as a cake made either of rice, skimmed milk, and saccharine (meal A) or rice, skimmed milk, and 20 g sucrose (meal B). The meals contained equal amounts of calories and of carbohydrate. There was no difference between the meals in plasma glucose curves and plasma insulin or insulin infusion rate variations whether in peak values, peaking times, or areas under the curves, in either group of patients. Sparing use of sucrose taken during mixed meals might help well-controlled diabetic patients to comply with their daily dietary prescription while maintaining good blood glucose control.

  3. USE OF DRILLING FLUIDS IN MONITORING WELL NETWORK INSTALLATION: LANL AND OPEN DISCUSSION

    EPA Science Inventory

    Personnel at the EPA Ground Water and Ecosystems Restoration Division (GWERD) were requested by EPA Region 6 to provide a technical analysis of the impacts of well drilling practices implemented at the Los Alamos National Laboratory (LANL) as part of the development of their grou...

  4. The Application of Additive Factors Methodology to Workload Assessment in a Dynamic System Monitoring Task.

    DTIC Science & Technology

    1980-12-01

    resources, task interference will be greater, and changes in the difficulty of one task will be more likely to derogate performance of the other. It...number of items in short term memory and response latency suggesting the presence of a comparison process between test stimulus onset and response...execution. Each additional item in memory adds approximately 38ms to the response latency. The essentially equivalent slopes for positive and negative

  5. Glucose Fluctuations during Gestation: An Additional Tool for Monitoring Pregnancy Complicated by Diabetes

    PubMed Central

    Dalfrà, M. G.; Chilelli, N. C.; Di Cianni, G.; Mello, G.; Lencioni, C.; Biagioni, S.; Scalese, M.; Sartore, G.; Lapolla, A.

    2013-01-01

    Continuous glucose monitoring (CGM) gives a unique insight into magnitude and duration of daily glucose fluctuations. Limited data are available on glucose variability (GV) in pregnancy. We aimed to assess GV in healthy pregnant women and cases of type 1 diabetes mellitus or gestational diabetes (GDM) and its possible association with HbA1c. CGM was performed in 50 pregnant women (20 type 1, 20 GDM, and 10 healthy controls) in all three trimesters of pregnancy. We calculated mean amplitude of glycemic excursions (MAGE), standard deviation (SD), interquartile range (IQR), and continuous overlapping net glycemic action (CONGA), as parameters of GV. The high blood glycemic index (HBGI) and low blood glycemic index (LBGI) were also measured as indicators of hyperhypoglycemic risk. Women with type 1 diabetes showed higher GV, with a 2-fold higher risk of hyperglycemic spikes during the day, than healthy pregnant women or GDM ones. GDM women had only slightly higher GV parameters than healthy controls. HbA1c did not correlate with GV indicators in type 1 diabetes or GDM pregnancies. We provided new evidence of the importance of certain GV indicators in pregnant women with GDM or type 1 diabetes and recommended the use of CGM specifically in these populations. PMID:24319455

  6. Groundwater quality monitoring well installation for Waste Area Grouping at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 18 groundwater quality monitoring (GQM) wells on the perimeter of Waste Area Grouping (WAG) 11. WAG 11 (White Wing Scrap Yard) is located on the west end of East Fork Ridge between White Wing Road and the Oak Ridge Turnpike. The scrap yard is approximately 25 acres in size. The wells at WAG 11 were drilled and developed between January 1990 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at WAG 11 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of four basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at WAG 11. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  7. Evaluation of Four Well Casing Materials for Monitoring Selected Trace Level Organics in Ground Water

    DTIC Science & Technology

    1988-10-01

    than in those from Several components of rigid PVC may possibly either plastic-lined well. leach. These components include vinyl chloride At site 2, the...casing materials, polyvinyl chloride ( PVC ), Teflon, stainless steel 304 (SS 304) and stainless steel 316 (SS 316), to determine their suitability for...virgin fluorocarbon resins, i.e., fluorinated ethyl- tion (NSF) or ASTM-approved polyvinyl chloride ene propylene (FEP), polytetrafluoroethylene ( PVC

  8. Construction, Geology, and Aquifer Testing of the Maalo Road, Aahoaka Hill, and Upper Eleele Tank Monitor Wells, Kauai, Hawaii

    USGS Publications Warehouse

    Izuka, Scot K.

    2005-01-01

    The Maalo Road, Aahoaka Hill, and Upper Eleele Tank monitor wells were constructed using rotary drilling methods between July 1998 and August 2002 as part of a program of exploratory drilling, aquifer testing, and hydrologic analysis on Kauai. Aquifer tests were conducted in the uncased boreholes of the wells. The Maalo Road monitor well in the Lihue Basin penetrated 915 feet, mostly through mafic lava flows. Most of the rock samples from this well had chemical compositions similar to the Koloa Volcanics, but the deepest sample analyzed had a composition similar to the Waimea Canyon Basalt. Water temperature ranged from 25.6 to 27.4 degrees Celsius and specific conductance ranged from 303 to 627 microsiemens per centimeter during aquifer testing. Discharge rate ranged from 174 to 220 gallons per minute and maximum drawdown was 138.25 ft during a 7-day sustained-discharge test, but the test was affected by pump and generator problems. The Aahoaka Hill monitor well in the Lihue Basin penetrated 804 feet, mostly through mafic lava flows and possibly dikes. The well penetrated rocks having chemical compositions similar to the Waimea Canyon Basalt. During the first three hours of a sustained-discharge aquifer test in which the discharge rate varied between 92 and 117 gallons per minute, water temperature was 24.6 to 25.6 degrees Celsius, and specific conductance was 212 to 238 microsiemens per centimeter; this test was halted after a short period because drawdown was high. In a subsequent 7-day test, discharge was 8 to 23 gallons per minute, and maximum drawdown was 37.71 feet after 1,515 minutes of testing. The Upper Eleele Tank monitor well is near the Hanapepe River Valley. The well penetrated 740 feet through soil, sediment, mafic lava flows, volcanic ash, and scoria. Rocks above a depth of 345 feet had compositions similar to the Koloa Volcanics, but a sample from 720 to 725 feet had a composition similar to rocks of the Waimea Canyon Basalt. During a 7-day aquifer

  9. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    SciTech Connect

    Not Available

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing.

  10. Paleontology and geochronology of the Long Beach core sites and monitoring wells, Long Beach, California

    USGS Publications Warehouse

    McDougall, Kristin; Hillhouse, John; Powell, Charles; Mahan, Shannon; Wan, Elmira; Sarna-Wojcicki, Andrei M.

    2012-01-01

    The U.S. Geological Survey's Focus on Quaternary Stratigraphy in Los Angeles (FOQUS-LA) project was a cooperative coring program between Federal, State, and local agencies. It was designed to provide a better understanding of earthquake potentials and to develop a stratigraphic model of the western Los Angeles Basin in California. The biostratigraphic, geochronologic, and paleoecologic analyses of eight wells drilled during the FOQUS-LA project are presented. These analyses are based on microfossils (benthic and planktic foraminifers), macrofossils, paleomagnetic stratigraphy, optically stimulated luminescence, thermoluminescence, radiocarbon dating, and tephrochronology. A geochronologic framework (incorporating paleomagnetism, luminescence, and tephrochronology) was used to calibrate the sequence stratigraphic units in the FOQUS-LA wells and also was used to calibrate the ages of the microfossil stage and zonal boundaries. The results of this study show that (1) the offshore California margin zones can be used in a nearshore setting, and (2) the California margin zonal scheme refines the chronostratigraphic resolution of the benthic foraminiferal biostratigraphic framework for the Pacific Coast. Benthic foraminiferal stages are modified by the recognition of an early Hallian substage, which is a faunal change recognized throughout the Los Angeles Basin. Although no detailed macrofossil zonations exist for the Quaternary of southern California, several species, whose distribution is regulated by the climatic conditions, are useful as secondary marker species in the shallower water deposits of the Los Angeles Basin.

  11. Optimum allocation of monitoring wells around a solid-waste landfill site using precursor indicators and fuzzy utility functions

    NASA Astrophysics Data System (ADS)

    Morisawa, Shinsuke; Inoue, Yoriteru

    1991-06-01

    An optimum monitoring well network (number of wells and their locations) is proposed which enables rapid, redundant and economical detection of contaminants in groundwater around a solid-waste landfill site. The procedure also guarantees detection of the contaminants given data on the probability of detection at different points in the saturated zone. The well selection is accomplished using a two-step procedure: (1) A Monte Carlo simulation of contaminant transport in the unconsolidated shallow saturated zone is conducted. In this zone hydrogeological parameters are variable but their stochastic distributions are known. Three governing equations are solved numerically using the finite-difference method to obtain the travel time distribution of each contaminant: the two-dimensional steady-state groundwater flow equation; the two-dimensional transient convective-dispersion equation for sorptive contaminants; and the sorptive-desorptive isotherm equation. (2) The procedure utilizes "fuzzy" theory, comprising of a set of newly developed mathematical techniques to deal with uncertainty in a wide range of man-machine interface issues, to assist in the design of a monitoring well network. The procedure requires a mathematical description of a four-attribute design problem using fuzzy utility functions and fuzzy weights. An optimum monitoring well network is then defined as the network having maximum total utility, which is evaluated as a fuzzy expectation of weighted arithmetic sums of the four utilities. One result of the simulation is the definition of relationships between the contaminant of interest and precursor materials. The precursor material can then serve as an "indicator" for faster detection of contaminant leaked from solid-waste landfill site. The procedures are applied to a hypothetical solid-waste landfill site under appropriate conditions to obtain the optimum monitoring well network for detection of precursor indicators. Sensitivity analysis of the

  12. A non-additive repulsive contribution in an equation of state: The development for homonuclear square well chains equation of state validated against Monte Carlo simulation.

    PubMed

    Trinh, Thi-Kim-Hoang; Passarello, Jean-Philippe; de Hemptinne, Jean-Charles; Lugo, Rafael; Lachet, Veronique

    2016-03-28

    This work consists of the adaptation of a non-additive hard sphere theory inspired by Malakhov and Volkov [Polym. Sci., Ser. A 49(6), 745-756 (2007)] to a square-well chain. Using the thermodynamic perturbation theory, an additional term is proposed that describes the effect of perturbing the chain of square well spheres by a non-additive parameter. In order to validate this development, NPT Monte Carlo simulations of thermodynamic and structural properties of the non-additive square well for a pure chain and a binary mixture of chains are performed. Good agreements are observed between the compressibility factors originating from the theory and those from molecular simulations.

  13. Groundwater quality monitoring well installation for Upper Waste Areas Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of seven groundwater quality monitoring (GQM) wells on the perimeter of Upper Waste Area Grouping (WAG) 2. Upper WAG 2 is composed of portions of White Oak Creek (WOC), Melton Branch, two of Melton Branch`s tributaries, and the floodplains surrounding these water bodies. The WOC section of the subject site begins at the confluence of WOC and Melton Branch and extends 0.62 mile upstream to the 7,500 bridge. The Melton Branch portion of the site also begins at the confluence of WOC and Melton Branch and extends eastward 0.88 mile upstream. The wells at Upper WAG 2 were drilled and developed between December 1989 and October 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The purpose of the well installation program was to install GQM wells for groundwater characterization at Upper WAG-2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  14. Evaluation of groundwater levels in the South Platte River alluvial aquifer, Colorado, 1953-2012, and design of initial well networks for monitoring groundwater levels

    USGS Publications Warehouse

    Wellman, Tristan

    2015-01-01

    A network of candidate monitoring wells was proposed to initiate a regional monitoring program. Consistent monitoring and analysis of groundwater levels will be needed for informed decisions to optimize beneficial use of water and to limit high groundwater levels in susceptible areas. Finalization of the network will require future field reconnaissance to assess local site conditions and discussions with State authorities.

  15. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems.

    PubMed

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C

    2017-01-19

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  16. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    PubMed Central

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys. PMID:28102290

  17. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems

    NASA Astrophysics Data System (ADS)

    Korbel, Kathryn; Chariton, Anthony; Stephenson, Sarah; Greenfield, Paul; Hose, Grant C.

    2017-01-01

    When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.

  18. Evaluation of U.S. Geological Survey Monitoring-well network and potential effects of changes in water use, Newlands Project, Churchill County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.; Seiler, Ralph L.; Watkins, Sharon A.

    2004-01-01

    releases from Lahontan Reservoir. This period coincides with the period of irrigation reductions, tending to mask declines directly caused by the reductions. It is likely that seepage from the diffuse network of canals and ditches in Lahontan Valley also masks declines caused by reductions in irrigation. In addition, the limited number of monitoring wells near land removed from irrigation, yet more than 300 feet from an active canal, does not allow a valid statistical correlation between reductions in irrigation and water-level declines. Water-level declines between the last two periods of below normal releases from Lahontan Reservoir, 1992-95 and 2000-2003, ranged from 0.4 to 4.2 feet at 11 monitoring wells near land removed from irrigation. The maximum observed water declines were about 2 to 4 feet in three wells in the southern part of Lahontan Valley. The three wells are near or surrounded by more than 1,000 acres removed from irrigation, are now more than 3,600 feet from continued irrigation, and are within 300 feet of a canal with greatly decreased use. Water levels generally rose in monitoring wells near Stillwater, Nevada, even though large amounts of nearby land were removed from irrigation. This was likely caused by conditions in 2003 that were not as dry as those in the early 1990's and additional seepage from the increased use and stage of canals for delivery of water to wetland areas. Five wells have been sampled since the late 1990's and two wells have been sampled since 2000 to evaluate long-term changes in water quality. Specific conductance of water sampled from these wells was used to evaluate changes in water quality. One well shows a large decline in specific conductance that may be related to changes in water use. In three other wells that showed a decrease in specific conductance it is uncertain if the decrease was related to changes in water use because samples were not collected shortly before and after the time land was removed

  19. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU

  20. Well Conductor Strain Monitoring

    DTIC Science & Technology

    2014-05-06

    secured to a worm gear clamp having a galvanized or stainless steel band with slots, similar to a common hose clamp. Once tensioned, the cable remains...the base 32 so as to be movable over the base in the directions shown by double arrow A. A gear housing 36 is positioned over the band 34 and is... arrow A is parallel to longitudinal axis X of the measurement cable. As the screw 38 is rotated; engagement of the screw with the threads 34a results

  1. Monitoring the Restart of a High-Rate Wastewater Disposal Well in the Val d'Agri Oilfield (Italy)

    NASA Astrophysics Data System (ADS)

    De Gori, P.; Improta, L.; Moretti, M.; Colasanti, G.; Criscuoli, F.

    2015-12-01

    The Val d'Agri Quaternary basin in the Southern Apennine range of Italy hosts the largest inland oil field in Europe. Wastewater coming from the oil exploitation is re-injected by a high-rate disposal well into strongly fractured limestones of the hydrocarbon carbonate reservoir. Disposal activity has induced micro-seismicity since the beginning of injection in June 2006. Around 220 small magnitude events (ML < 2.3) were recorded between 2006 and 2013 by the trigger-mode monitoring local network managed by the oil company and by the National Seismic Network of Istituto Nazionale di Geofisica e Vulcanologia. The induced micro-seismicity illuminated a pre-existing high-angle fault located 1 km below the well. Since June 2006, wastewater has been re-injected with only short interruptions due acid stimulations. In January 2015 disposal activity was halted due to technical operations in the oil refinery and wastewater injection restarted after two weeks. We installed 5 short-period stations within 10 km of the disposal well to carefully monitor the re-start phase and the subsequent 3 months of disposal activity. This temporary network was complemented by stations of the National Seismic Network giving this final configuration:9 stations within 10 km of the well with the closest station 2 km apart, 13 stations within 20 km. Here we report on the preliminary analysis of the local earthquake recorded during the survey focusing on the events occurred in the injection area. The seismicity rate is compared with injection data.In spite of the dense network, we found that the rate of induced seismicity (both the number and energy of events) is very low when compared to the seismicity recorded during the first 5 years of injection activity carried out with comparable rate and pressure.

  2. Siting and constructing very deep monitoring wells on the US Department of Energy`s Nevada Test Site

    SciTech Connect

    Cullen, J J; Jacobson, R L; Russell, C E

    1991-12-31

    Many aspects of the Nevada Test Site`s (NTS) hydrogeologic setting restrict the use of traditional methods for the siting and construction of ground-water characterization and monitoring wells. The size of the NTS precludes establishing high-density networks of characterization wells, as are typically used at smaller sites. The geologic complexity and variability of the NTS requires that the wells be criticality situated. The hydrogeologic complexity requires that each well provide access to many aquifers. Depths to ground water on the NTS require the construction of wells averaging approximately 1000 meters in depth. Wells meeting these criteria are uncommon in the ground-water industry, therefore techniques used by petroleum engineers are being employed to solve certain siting-, design- and installation-related problems. To date, one focus has been on developing completion strings that facilitate routine and efficient ground-water sampling from multiple intervals in a single well. The method currently advocated employs a new design of sliding side door sleeve that is actuated by an electrically operated hydraulic shifting tool. Stemming of the wells is being accomplished with standard materials (cement based grouts and sands); however, new stemming methods are being developed, to accommodate the greater depths, to minimize pH-related problems caused by the use of cements, to enhance the integrity of the inter-zone seals, and to improve the representativeness of radionuclide analyses performed on ground-water samples. Bench-scale experiments have been used to investigate the properties of more than a dozen epoxy-aggregate grout mixtures -- materials that are commonly used in underwater sealing applications.

  3. Environmental baseline monitoring in the area of general crude oil-Department of Energy Pleasant Bayou Number 2: a geopressured geothermal test well, 1980. Annual report

    SciTech Connect

    Gustavson, T.C.; Howard, R.C.; McGookey, D.

    1982-01-01

    A description of baseline air and water quality of the test well site, a summary of microseismic activity before and during 1980, and a description of the monitoring of a liquid tiltmeter at the test well site are included.

  4. 40 CFR 62.15220 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring...

  5. 40 CFR 60.1765 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span...

  6. 40 CFR 60.1765 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span...

  7. 40 CFR 60.1765 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span...

  8. 40 CFR 62.15220 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring...

  9. 40 CFR 62.15220 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring...

  10. 40 CFR 60.1765 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span...

  11. 40 CFR 62.15220 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring...

  12. 40 CFR 60.1765 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 60.1765 Section 60.1765 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... continuous emission monitoring systems and continuous opacity monitoring system? Use the required span...

  13. 40 CFR 62.15220 - What additional requirements must I meet for the operation of my continuous emission monitoring...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meet for the operation of my continuous emission monitoring systems and continuous opacity monitoring system? 62.15220 Section 62.15220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... the operation of my continuous emission monitoring systems and continuous opacity monitoring...

  14. Monitoring enzyme-catalyzed reactions in micromachined nanoliter wells using a conventional microscope-based microarray reader

    NASA Astrophysics Data System (ADS)

    van den Doel, L. Richard; Moerman, R.; van Dedem, G. W. K.; Young, Ian T.; van Vliet, Lucas J.

    2002-06-01

    Yeast-Saccharomyces cerevisiae - it widely used as a model system for other higher eukaryotes, including man. One of the basic fermentation processes in yeast is the glycolytic pathway, which is the conversion of glucose to ethanol and carbon dioxide. This pathway consists of 12 enzyme-catalyzed reactions. With the approach of microarray technology we want to explore the metabolic regulation of this pathway in yeast. This paper will focus on the design of a conventional microscope based microarray reader, which is used to monitor these enzymatic reactions in microarrays. These microarrays are fabricated in silicon and have sizes of 300 by 300 micrometers 2. The depth varies from 20 to 50 micrometers . Enzyme activity levels can be derived by monitoring the production or consumption rate of NAD(P)H, which is excited at 360nm and emits around 450nm. This fluorophore is involved in all 12 reactions of the pathway. The microarray reader is equipped with a back-illuminated CCD camera in order to obtain a high quantum efficiency for the lower wavelengths. The dynamic range of our microarray reader varies form 5(mu) Molar to 1mMolar NAD(P)H. With this microarray reader enzyme activity levels down to 0.01 unit per milliliter can be monitored. The acquisition time per well is 0.1s. The total scan cycle time for a 5 X 5 microarray is less than half a minute. The number of cycles for a proper estimation of the enzyme activity is inversely proportional to the enzyme activity: long measurement times are needed to determine low enzyme activity levels.

  15. Real-time interferometric monitoring and measuring of photopolymerization based stereolithographic additive manufacturing process: sensor model and algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Rosen, D. W.

    2017-01-01

    As additive manufacturing is poised for growth and innovations, it faces barriers of lack of in-process metrology and control to advance into wider industry applications. The exposure controlled projection lithography (ECPL) is a layerless mask-projection stereolithographic additive manufacturing process, in which parts are fabricated from photopolymers on a stationary transparent substrate. To improve the process accuracy with closed-loop control for ECPL, this paper develops an interferometric curing monitoring and measuring (ICM&M) method which addresses the sensor modeling and algorithms issues. A physical sensor model for ICM&M is derived based on interference optics utilizing the concept of instantaneous frequency. The associated calibration procedure is outlined for ICM&M measurement accuracy. To solve the sensor model, particularly in real time, an online evolutionary parameter estimation algorithm is developed adopting moving horizon exponentially weighted Fourier curve fitting and numerical integration. As a preliminary validation, simulated real-time measurement by offline analysis of a video of interferograms acquired in the ECPL process is presented. The agreement between the cured height estimated by ICM&M and that measured by microscope indicates that the measurement principle is promising as real-time metrology for global measurement and control of the ECPL process.

  16. Monitoring ground-surface heating during expansion of the Casa Diablo production well field at Mammoth Lakes, California

    USGS Publications Warehouse

    Bergfeld, D.; Vaughan, R. Greg; Evans, William C.; Olsen, Eric

    2015-01-01

    The Long Valley hydrothermal system supports geothermal power production from 3 binary plants (Casa Diablo) near the town of Mammoth Lakes, California. Development and growth of thermal ground at sites west of Casa Diablo have created concerns over planned expansion of a new well field and the associated increases in geothermal fluid production. To ensure that all areas of ground heating are identified prior to new geothermal development, we obtained high-resolution aerial thermal infrared imagery across the region. The imagery covers the existing and proposed well fields and part of the town of Mammoth Lakes. Imagery results from a predawn flight on Oct. 9, 2014 readily identified the Shady Rest thermal area (SRST), one of two large areas of ground heating west of Casa Diablo, as well as other known thermal areas smaller in size. Maximum surface temperatures at 3 thermal areas were 26–28 °C. Numerous small areas with ground temperatures >16 °C were also identified and slated for field investigations in summer 2015. Some thermal anomalies in the town of Mammoth Lakes clearly reflect human activity.Previously established projects to monitor impacts from geothermal power production include yearly surveys of soil temperatures and diffuse CO2 emissions at SRST, and less regular surveys to collect samples from fumaroles and gas vents across the region. Soil temperatures at 20 cm depth at SRST are well correlated with diffuse CO2 flux, and both parameters show little variation during the 2011–14 field surveys. Maximum temperatures were between 55–67 °C and associated CO2 discharge was around 12–18 tonnes per day. The carbon isotope composition of CO2 is fairly uniform across the area ranging between –3.7 to –4.4 ‰. The gas composition of the Shady Rest fumarole however has varied with time, and H2S concentrations in the gas have been increasing since 2009.

  17. Effects of groundwater withdrawal on borehole flow and salinity measured in deep monitor wells in Hawai'i-implications for groundwater management

    USGS Publications Warehouse

    Rotzoll, Kolja

    2010-01-01

    Water-resource managers in Hawai`i rely heavily on salinity profiles from deep monitor wells to estimate the thickness of freshwater and the depth to the midpoint of the transition zone between freshwater and saltwater in freshwater-lens systems. The deep monitor wells are typically open boreholes below the water table and extend hundreds of feet below sea level. Because of possible borehole-flow effects, there is concern that salinity profiles measured in these wells may not accurately reflect the salinity distribution in the aquifer and consequently lead to misinterpretations that adversely affect water-resource management. Steplike changes in salinity or temperature with depth in measured profiles from nonpumped deep monitor wells may be indicative of water moving within the well, and such changes are evident to some extent in all available profiles. The maximum vertical step length, or displacement, in measured profiles ranges from 7 to 644 feet. Vertical steps longer than 70 feet exceed the typical thickness of massive lava flows; they therefore cannot be attributed entirely to geologic structure and may be indicative of borehole flow. The longest vertical steps occur in monitor wells located in southern O'ahu, coinciding with the most heavily developed part of the aquifer. Although regional groundwater withdrawals have caused a thinning of the freshwater lens over the past several decades, the measured midpoint of the transition zone in most deep monitor wells has shown only inconsequential depth displacement in direct response to short-term variations in withdrawals from nearby production wells. For profiles from some deep monitor wells, however, the depth of the measured top of the transition zone, indicated by a specific-conductance value of 1,000 microsiemens per centimeter, has risen several hundred feet in response to withdrawals from nearby production wells. For these deep monitor wells, monitoring the apparent top of the transition zone may not

  18. An investigative comparison of purging and non-purging groundwater sampling methods in Karoo aquifer monitoring wells

    NASA Astrophysics Data System (ADS)

    Gomo, M.; Vermeulen, D.

    2015-03-01

    An investigation was conducted to statistically compare the influence of non-purging and purging groundwater sampling methods on analysed inorganic chemistry parameters and calculated saturation indices. Groundwater samples were collected from 15 monitoring wells drilled in Karoo aquifers before and after purging for the comparative study. For the non-purging method, samples were collected from groundwater flow zones located in the wells using electrical conductivity (EC) profiling. The two data sets of non-purged and purged groundwater samples were analysed for inorganic chemistry parameters at the Institute of Groundwater Studies (IGS) laboratory of the Free University in South Africa. Saturation indices for mineral phases that were found in the data base of PHREEQC hydrogeochemical model were calculated for each data set. Four one-way ANOVA tests were conducted using Microsoft excel 2007 to investigate if there is any statistically significant difference between: (1) all inorganic chemistry parameters measured in the non-purged and purged groundwater samples per each specific well, (2) all mineral saturation indices calculated for the non-purged and purged groundwater samples per each specific well, (3) individual inorganic chemistry parameters measured in the non-purged and purged groundwater samples across all wells and (4) Individual mineral saturation indices calculated for non-purged and purged groundwater samples across all wells. For all the ANOVA tests conducted, the calculated alpha values (p) are greater than 0.05 (significance level) and test statistic (F) is less than the critical value (Fcrit) (F < Fcrit). The results imply that there was no statistically significant difference between the two data sets. With a 95% confidence, it was therefore concluded that the variance between groups was rather due to random chance and not to the influence of the sampling methods (tested factor). It is therefore be possible that in some hydrogeologic conditions

  19. Community Monitoring Systems: Tracking and Improving the Well-Being of America's Children and Adolescents. NIH Publication No. 07-5852

    ERIC Educational Resources Information Center

    National Institute on Drug Abuse (NIDA), 2007

    2007-01-01

    Monitoring the well-being of children and adolescents is a critical component of efforts to prevent psychological, behavioral, and health problems and to promote their successful development. Research during the past 40 years has helped identify aspects of child and adolescent functioning that are important to monitor. These aspects, which…

  20. Well-construction, water-level, geophysical, and water-quality data for ground-water monitoring wells for Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Hough, C.J.; Mahoney, E.N.; Robinson, J.A.

    1992-01-01

    Sixty-five wells were installed at 39 sites in the Arnold Air Force Base area in Coffee and Franklin Counties, Tennessee. The wells were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. Well depths ranged from 11 to 384 feet. Water-quality samples were collected from 60 wells and analyzed for common inorganic ions, trace metals, and volatile organic compounds. The median dissolved-solids concentrations were 60 milligrams per liter in the shallow aquifer, 48 million gallons per liter in the Manchester aquifer, 1,235 milligrams per liter in the Fort Payne aquifer, and 1,712 milligrams per liter in the upper Central Basin aquifer. Caliper, temperature, natural gamma, electric, neutron porosity, gamma-gamma density, and acoustic velocity borehole-geophysical logs were obtained for the six deep wells completed below the Chattanooga Shale. Petrographic and modal analysis were performed on rock samples from each deep well. These six deep wells provide the first information in the study area on hydraulic head and water quality from below the Chattanooga Shale.

  1. Environmental monitoring of three exploratory oil and gas wells drilled near the East Flower Garden Bank in the Gulf of Mexico

    SciTech Connect

    Gettleson, D.A.; Putt, R.E.; Hammer, R.M.; Laird, C.E.

    1981-01-01

    The results of two marine environmental monitoring programs associated with the drilling of three exploratory wells near the East Flower Garden Bank on the outer continental shelf of the northwest Gulf of Mexico are described. The purpose of the monitoring programs was to define the spatial distribution of the discharged drilling fluids relative to the Bank and assess the apparent health of the predominant reef-building corals of the East Flower Garden Bank before, during, and after the drilling operations. The monitoring programs demonstrated that detectable quantities of the drilling fluids in the surficial sediments were distributed to a distance exceeding 1000 meters from the near-surface discharged well.

  2. Data regarding hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Comprehensive, published, and publicly available data regarding the extent, location, and character of hydraulic fracturing in the United States are scarce. The objective of this data series is to publish data related to hydraulic fracturing in the public domain. The spreadsheets released with this data series contain derivative datasets aggregated temporally and spatially from the commercial and proprietary IHS database of U.S. oil and gas production and well data (IHS Energy, 2011). These datasets, served in 21 spreadsheets in Microsoft Excel (.xlsx) format, outline the geographical distributions of hydraulic fracturing treatments and associated wells (including well drill-hole directions) as well as water volumes, proppants, treatment fluids, and additives used in hydraulic fracturing treatments in the United States from 1947 through 2010. This report also describes the data—extraction/aggregation processing steps, field names and descriptions, field types and sources. An associated scientific investigation report (Gallegos and Varela, 2014) provides a detailed analysis of the data presented in this data series and comparisons of the data and trends to the literature.

  3. Shear-tensile/implosion (STI) source model: a good substitute to moment tensor in single-well monitoring of hydrofrac-induced seismicity

    NASA Astrophysics Data System (ADS)

    Sileny, J.

    2011-12-01

    Moment tensor (MT) is a general dipole source, but for practice it may be too general, its generality causing troubles during its reconstruction from noisy data in the inverse process, which may be additionally ill-conditioned due to inexact hypocenter location and/or availability of a rough velocity/attenuation model only. Then, the retrieved source may be biased, containing artifacts of a low-quality data or the inconsistent inverse problem. The crucial point for success in the retrieval of the mechanism is the station configuration. The extreme case of depleted configuration is a one well monitoring providing a single-azimuth observation only, which is a frequent case during hydrofracturing treatment of oil and gas wells. Then, the complete moment tensor cannot be retrieved from far-field data and additional constraints are necessary. To avoid the trouble, it seems reasonable to assume a simpler source model directly describing the physical phenomena anticipated in the foci of the induced events. A simple combination of a shear slip with a tensile crack or 1D implosion - the STI model - is a good alternative to the moment tensor. Its advantage is twofold: (1) being described by smaller number of parameters, it removes the under-determination of the MT from single-azimuth observation, and (2) containing simple physical mechanisms only, namely a shear slip and tensile crack (or open crack implosion), it avoids unphysical sources like the compensated linear-vector dipole (CLVD) a priori. This feature helps a lot just in cases of a poor location or velocity modeling. We have tested the STI model in a series of synthetic experiments simulating a single well and two-well monitoring, the Cotton Valley (E Texas) hydrofracture treatment being the pattern of the observation. As theoretical mechanisms, a strike-slip and dip-slip with variable off-plane slip component were considered. The synthetic data were inverted by using Green's function simulating a mislocation of the

  4. Microseismic monitoring of Chocolate Bayou, Texas. The Pleasant Bayou No. 2 geopressured/geothermal energy test-well program. 1982 annual progress report

    SciTech Connect

    Mauk, F.J.; Davis, R.A.

    1982-01-01

    To investigate the seismic risks associated with geopressured fluid production from the Pleasant Bayou No. 2 design well a seismic monitoring program was conducted in the vicinity of the Brazoria County design wells since 1979. The monitoring program was designed first to establish the nature of the local ambient seismicity prior to production, and second to provide continued surveillance of the area during the well tests to determine if production altered ambient seismic conditions significantly. The operation, data analyses, results and conclusions of the Brazoria seismic network during the operational period from 1 January through 31 December 1982 are described.

  5. Importance of well-designed monitoring programs for the conservation of endangered species: case study of the Snail Kite

    USGS Publications Warehouse

    Martin, J.; Kitchens, W.M.; Hines, J.E.

    2007-01-01

    Monitoring natural populations is often a necessary step to establish the conservation status of species and to help improve management decisions. Nevertheless, many monitoring programs do not effectively address primary sources of variability in monitoring data, which ultimately may limit the utility of monitoring in identifying declines and improving management. To illustrate the importance of taking into account detectability and spatial variation, we used a recently proposed estimator of abundance (superpopulation estimator) to estimate population size of and number of young produced by the Snail Kite (Rostrhamus sociabilis plumbeus) in Florida. During the last decade, primary recovery targets set by the U.S. Fish and Wildlife Service for the Snail Kite that were based on deficient monitoring programs (i.e., uncorrected counts) were close to being met (by simply increasing search effort during count surveys). During that same period, the Snail Kite population declined dramatically (by 55% from 1997 to 2005) and the number of young decreased by 70% between 1992?1998 and 1999?2005. Our results provide a strong practical case in favor of the argument that investing a sufficient amount of time and resources into designing and implementing monitoring programs that carefully address detectability and spatial variation is critical for the conservation of endangered species.

  6. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  7. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOEpatents

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  8. Validation of the AQT Color-Form Additive Model for Screening and Monitoring Pharmacological Treatment of ADHD

    ERIC Educational Resources Information Center

    Nielsen, Niels Peter; Wiig, Elisabeth Hemmersam

    2013-01-01

    Objective:This retrospective study used A Quick Test of Cognitive Speed (AQT) processing-speed and efficiency measures for evaluating sensitivity and monitoring effects during pharmacological treatment of adults with ADHD. Method: Color (C), form (F), and color-form (CF) combination naming were administered to 69 adults during outpatient…

  9. Raising Standards for Pupils Who Have English as an Additional Language (EAL) through Monitoring and Evaluation of Provision in Primary Schools

    ERIC Educational Resources Information Center

    Mistry, Malini; Sood, Krishan

    2012-01-01

    The aim of the research is to further knowledge and understand how monitoring and evaluation of pupils who have English as an additional language (EAL) is undertaken in primary schools. This is a comparative study across primary schools using qualitative approaches to help gain insight into current good practice and identify future needs in EAL.…

  10. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures

    PubMed Central

    Engelen, Bert; Meinken, Kristin; von Wintzingerode, Friedrich; Heuer, Holger; Malkomes, Hans-Peter; Backhaus, Horst

    1998-01-01

    Herbogil (dinoterb), a reference herbicide, the mineral oil Oleo (paraffin oil used as an additive to herbicides), and Goltix (metamitron) were taken as model compounds for the study of impacts on microbial soil communities. After the treatment of soil samples, effects on metabolic sum parameters were determined by monitoring substrate-induced respiration (SIR) and dehydrogenase activity, as well as carbon and nitrogen mineralization. These conventional ecotoxicological testing procedures are used in pesticide registration. Inhibition of biomass-related activities and stimulation of nitrogen mineralization were the most significant effects caused by the application of Herbogil. Even though Goltix and Oleo were used at a higher dosage (10 times higher), the application of Goltix resulted in smaller effects and the additive Oleo was the least-active compound, with minor stimulation of test parameters at later observation times. The results served as a background for investigation of the power of “fingerprinting” methods in microbial ecology. Changes in catabolic activities induced by treatments were analyzed by using the 95 carbon sources provided by the BIOLOG system. Variations in the complex metabolic fingerprints demonstrated inhibition of many catabolic pathways after the application of Herbogil. Again, the effects of the other compounds were expressed at much lower levels and comprised stimulations as well as inhibitions. Testing for significance by a multivariate t test indicated that the sensitivity of this method was similar to the sensitivities of the conventional testing procedures. The variation of sensitive carbon sources, as determined by factor weights at different observation times, indicated the dynamics of the community shift induced by the Herbogil treatment in more detail. DNA extractions from soil resulted in a collection of molecules representing the genetic composition of total bacterial communities. Distinct and highly reproducible

  11. A rapid automated procedure for laboratory and shipboard spectrophotometric measurements of seawater alkalinity: continuously monitored single-step acid additions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Byrne, R. H.; Lindemuth, M.; Easley, R. A.; Patsavas, M. C.

    2012-12-01

    An automated system for shipboard and laboratory alkalinity measurements is presented. The simple system, which consists of a Dosimat titrator to deliver acid volumetrically and a USB 4000 spectrophotometer to monitor the titration progress, provides fast, precise and accurate measurements of total alkalinity for oceanographic research. The analytical method is based on single-point HCl titrations of seawater samples of a known volume; bromol cresol purple is used as an indicator to determine the final pH. Field data from an Arctic cruise demonstrates accuracy and precision around 1 micro mol/kg and a sample processing rate of 6 min per sample.

  12. Results of a monitoring program of continuous water levels and physical water properties at the Operable Unit 1 area of the Savage Municipal Well Superfund site, Milford, New Hampshire, water years 2000-03

    USGS Publications Warehouse

    Harte, Philip T.

    2005-01-01

    The Milford-Souhegan glacial-drift (MSGD) aquifer, in south-central New Hampshire, is an important source of industrial, commercial, and domestic water. The MSGD aquifer was also an important source of drinking water for the town of Milford until it was found to contain high concentrations of volatile organic compounds (VOCs) in the Savage and Keyes municipal-supply wells in the early 1980s. A VOC plume was found to cover part of the southwestern half of the MSGD aquifer. In September 1984, the site was designated a Superfund site, called the Savage Municipal Well Superfund site. The primary source area of contaminants was a former tool manufacturing facility (called the OK Tool facility, and now called the Operable Unit 1 (OU1) area) that disposed of solvents at the surface and in the subsurface. The facility was closed in 1987 and removed in 1998. A low-permeability containment barrier wall was constructed and installed in the overburden (MSGD aquifer) in 1998 to encapsulate the highest concentrations of VOCs, and a pump-and-treat remediation facility was also added. Remedial operations of extraction and injection wells started in May 1999. A network of water-level monitoring sites was implemented in water year 2000 (October 1, 1999, through September 30, 2000) in the OU1 area to help assess the effectiveness of remedial operations to mitigate the VOC plume, and to evaluate the effect of the barrier wall and remedial operations on the hydraulic connections across the barrier and between the overburden and underlying bedrock. Remedial extraction and injections wells inside and outside the barrier help isolate ground-water flow inside the barrier and the further spreading of VOCs. This report summarizes both continuous and selected periodic manual measurements of water level and physical water properties (specific conductance and water temperature) for 10 monitoring locations during water years 2000-03. Additional periodic manual measurements of water levels were

  13. COMPARISON OF VENTED AND ABSOLUTE PRESSURE TRANSDUCERS FOR WATER-LEVEL MONITORING IN HANFORD SITE CENTRAL PLATEAU WELLS

    SciTech Connect

    MCDONALD JP

    2011-09-08

    Automated water-level data collected using vented pressure transducers deployed in Hanford Site Central Plateau wells commonly display more variability than manual tape measurements in response to barometric pressure fluctuations. To explain this difference, it was hypothesized that vented pressure transducers installed in some wells are subject to barometric pressure effects that reduce water-level measurement accuracy. Vented pressure transducers use a vent tube, which is open to the atmosphere at land surface, to supply air pressure to the transducer housing for barometric compensation so the transducer measurements will represent only the water pressure. When using vented transducers, the assumption is made that the air pressure between land surface and the well bore is in equilibrium. By comparison, absolute pressure transducers directly measure the air pressure within the wellbore. Barometric compensation is achieved by subtracting the well bore air pressure measurement from the total pressure measured by a second transducer submerged in the water. Thus, no assumption of air pressure equilibrium is needed. In this study, water-level measurements were collected from the same Central Plateau wells using both vented and absolute pressure transducers to evaluate the different methods of barometric compensation. Manual tape measurements were also collected to evaluate the transducers. Measurements collected during this study demonstrated that the vented pressure transducers over-responded to barometric pressure fluctuations due to a pressure disequilibrium between the air within the wellbores and the atmosphere at land surface. The disequilibrium is thought to be caused by the relatively long time required for barometric pressure changes to equilibrate between land surface and the deep vadose zone and may be exacerbated by the restriction of air flow between the well bore and the atmosphere due to the presence of sample pump landing plates and well caps. The

  14. Monitoring

    SciTech Connect

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  15. Development of a Mobile Phone App to Support Self-Monitoring of Emotional Well-Being: A Mental Health Digital Innovation

    PubMed Central

    2016-01-01

    Background Emotional well-being is a primary component of mental health and well-being. Monitoring changes in emotional state daily over extended periods is, however, difficult using traditional methodologies. Providing mental health support is also challenging when approximately only 1 in 2 people with mental health issues seek professional help. Mobile phone technology offers a sustainable means of enhancing self-management of emotional well-being. Objective This paper aims to describe the development of a mobile phone tool designed to monitor emotional changes in a natural everyday context and in real time. Methods This evidence-informed mobile phone app monitors emotional mental health and well-being, and it provides links to mental health organization websites and resources. The app obtains data via self-report psychological questionnaires, experience sampling methodology (ESM), and automated behavioral data collection. Results Feedback from 11 individuals (age range 16-52 years; 4 males, 7 females), who tested the app over 30 days, confirmed via survey and focus group methods that the app was functional and usable. Conclusions Recommendations for future researchers and developers of mental health apps to be used for research are also presented. The methodology described in this paper offers a powerful tool for a range of potential mental health research studies and provides a valuable standard against which development of future mental health apps should be considered. PMID:27881358

  16. Hydrogeology, estimated impact, and regional well monitoring of effects of subsurface wastewater injection, Tampa Bay area, Florida

    USGS Publications Warehouse

    Hickey, John J.

    1981-01-01

    Six proposed injection sites are located in Pinellas County, Fla., and the city of St. Petersburg. Projected maximum injection rate, if all sites become operational, will be about 40 million gallons per day. The injection zone at the proposed sites is in a consistently dolomitized section of the Avon Park Limestone in the lower part of the Floridan aquifer. The injection zone contains saline ground water that has a chloride concentration of 19,000 to 20,000 milligrams per liter. Pressure and velocity changes were computed at selected regional locations in the upper and lower parts of the Floridan aquifer. Results of the model computations suggest that the regional impact after 20 years of injection will be small. Three locations are proposed for regional monitoring of subsurface injection. They are in the vicinity of the intersection of highways U.S. 19 and U.S. 60 in Pinellas County, Sun City in Hillsborough County, and the intersection of Sheldon Road and Gunn Highway in Hillsborough County. (USGS)

  17. Seven-year Collection of Well-monitored Fermi-LAT Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.

    2017-03-01

    We present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection in the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).

  18. Monitoring with SEAMIST{trademark} from soil venting to landfills -- Where it works best and not so well

    SciTech Connect

    Keller, C.

    1994-12-31

    This is a review paper of the progress of the SEAMIST{trademark} technology from its conception to its wide range of current applications. The monitoring function seems to be its role of most advantage. The original purpose of SEAMIST{trademark} was to wick moisture from fractures in unsaturated rock. The pneumatically driven everting membrane allows the ideal emplacement off absorbent material against the hole wall. However, the greater use is to transport tubing into a borehole, seal the borehole, and isolate multiple sampling ports in the same hole. That high spatial resolution also allows the extraction of large volumes of pore fluid as often as desired. Hence, the history of pore fluid composition, pore pressure, permeability changes, arrival of tracers or nutrients, and many other parameters have been determined at the many sites described across the country. The limiting factors are assessed as a function of the site and application. The method has been extended to use under new landfills (e.g., mixed waste landfills), via prefabrication of the access passages. An evaluation for the Department of Energy by the Los Alamos National Laboratory shows the SEAMIST{trademark} method to be cost competitive in deeper installations or when multiple measurements are desired.

  19. Microseismic monitoring of Chocolate Bayou, Texas: The Pleasant Bayou no. 2 geopressured/geothermal energy test well program

    NASA Astrophysics Data System (ADS)

    Mauk, F. J.; Kimball, B.; Davis, R. A.

    The Brazoria seismic network, instrumentation, design, and specifications are described. The data analysis procedures are presented. Seismicity is described in relation to the Pleasant Bayou production history. Seismicity originating near the chemical plant east of the geopressured/geothermal well is discussed.

  20. Groundwater quality monitoring well installation for Lower Waste Area Grouping 2 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Mortimore, J.A.; Lee, T.A.

    1994-09-01

    This report documents the drilling and installation of 11 groundwater quality monitoring (GQM) wells on the perimeter of Lower Waste Area Grouping (WAG) 2. Lower WAG 2 consists of White Oak Lake and the embayment below White Oak Dam above the Clinch River. The wells in Lower WAG 2 were drilled and developed between December 1989 and September 1990. These wells were installed to characterize and assess the WAG in accordance with applicable Department of Energy, state, and Environmental Protection Agency regulatory requirements. The wells at Lower WAG 2 were drilled with auger or air rotary rigs. Depending on the hydrogeologic conditions present at each proposed well location, one of three basic installation methods was utilized. Detailed procedures for well construction were specified by the Engineering Division to ensure that the wells would provide water samples representative of the aquifer. To ensure conformance with the specifications, Energy Systems Construction Engineering and ERCE provided continuous oversight of field activities. The purpose of the well installation program was to install GQM wells for groundwater characterization at Lower WAG 2. Data packages produced during installation activities by the ERCE hydrogeologists are an important product of the program. These packages document the well drilling, installation, and development activities and provide valuable data for well sampling and WAG characterization. The forms contained in the packages include predrilling and postdrilling checklists, drilling and construction logs, development and hydraulic conductivity records, and quality control-related documents.

  1. Analysis of vertical flow during ambient and pumped conditions in four monitoring wells at the Pantex Plant, Carson County, Texas, July-September 2008

    USGS Publications Warehouse

    Stanton, Gregory P.; Thomas, Jonathan V.; Stoval, Jeffery

    2009-01-01

    Logs collected in monitoring well PTX06–1068 during ambient conditions indicate a static environment with no flow. During pumping there was upward vertical flow at rates ranging from 0.4 to 4.8 gallons per minute. During pumping, a gradual trend of more positive flowmeter values (upward flow) with distance up the well was observed. Estimated total transmissivity for four production zones identified from Flow–B numerical model results taken together was calculated to be about 200 feet squared per day.

  2. Borehole Geophysical, Water-Level, and Water-Quality Investigation of a Monitoring Well Completed in the St. Francois Aquifer in Oregon County, Missouri, 2005-08

    USGS Publications Warehouse

    Schumacher, John G.; Kleeschulte, Michael J.

    2010-01-01

    A deep (more than 2,000 feet) monitoring well was installed in an area being explored for lead and zinc deposits within the Mark Twain National Forest in southern Missouri. The area is a mature karst terrain where rocks of the Ozark aquifer, a primary source of water for private and public supplies and major springs in the nearby Eleven Point National Wild and Scenic River and the Ozark National Scenic Riverways, are exposed at the surface. The potential lead deposits lie about 2,000 feet below the surface within a deeper aquifer, called the St. Francois aquifer. The two aquifers are separated by the St. Francois confining unit. The monitoring well was installed as part of a series of investigations to examine potentiometric head relations and water-quality differences between the two aquifers. Results of borehole flowmeter measurements in the open borehole and water-level measurements from the completed monitoring well USGS-D1 indicate that a seasonal upward gradient exists between the St. Francois aquifer and the overlying Ozark aquifer from about September through February. The upward potentiometric heads across the St. Francois confining unit that separates the two aquifers averaged 13.40 feet. Large reversals in this upward gradient occurred during the late winter through summer (about February through August) when water levels in the Ozark aquifer were as much as 138.47 feet higher (average of 53.84 feet) than water levels in the St. Francois aquifer. Most of the fluctuation of potentiometric gradient is caused by precipitation and rapid recharge that cause large and rapid increases in water levels in the Ozark aquifer. Analysis of water-quality samples collected from the St. Francois aquifer interval of the monitoring well indicated a sodium-chloride type water containing dissolved-solids concentrations as large as 1,300 milligrams per liter and large concentrations of sodium, chloride, sulfate, boron, and lithium. In contrast, water in the overlying Ozark

  3. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down gradient of the Proposed Yucca Mountain Nuclear Waste Repository

    SciTech Connect

    Inyo County

    2006-07-26

    Inyo County has participated in oversight activities associated with the Yucca Mountain Nuclear Waste Repository since 1987. The overall goal of these studies are the evaluation of far-field issues related to potential transport, by ground water, or radionuclides into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) and the biosphere. Our oversight and completed Cooperative Agreement research, and a number of other investigators research indicate that there is groundwater flow between the alluvial and carbonate aquifers both at Yucca Mountain and in Inyo County. In addition to the potential of radionuclide transport through the LCA, Czarnecki (1997), with the US Geological Survey, research indicate potential radionuclide transport through the shallower Tertiary-age aquifer materials with ultimate discharge into the Franklin Lake Playa in Inyo County. The specific purpose of this Cooperative Agreement drilling program was to acquire geological, subsurface geology, and hydrologic data to: (1) establish the existence of inter-basin flow between the Amargosa Basin and Death Valley Basin; (2) characterize groundwater flow paths in the LCA through Southern Funeral Mountain Range, and (3) Evaluation the hydraulic connection between the Yucca Mountain repository and the major springs in Death Valley through the LCA.

  4. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    SciTech Connect

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. )

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  5. Drilling, Construction, Water-Level, and Water-Quality Information for the Kualapuu Deep Monitor Well, 4-0800-01, Molokai, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.; Bauer, Glenn R.

    2001-01-01

    A monitor well was completed in January 2001 by the U.S. Geological Survey in the Kualapuu area of central Molokai, Hawaii that allows for monitoring the thicknesses of the freshwater body and the upper part of the underlying freshwater-saltwater transition zone. The well was drilled in cooperation with the State Department of Hawaiian Home Lands and the Maui County Department of Water Supply, and is located near the area that supplies much of the drinking water on Molokai. The well is at a ground-surface elevation of about 982 feet and penetrated a 1,585-foot section of soil and volcanic rock to a depth of 603 feet below sea level. Prior to casing, a cave-in caused the bottom 55 feet of the well to be filled with rocks originating from a zone above. Thus, the final well depth reported by the driller was 1,530 feet. Measured water levels in the well during the period from February 1 to July 13, 2001 range from 8.68 to 9.05 feet above sea level. The most recent available water-conductivity profile from July 13, 2001 indicates that the lowest salinity water in the well is in the upper zone from the water table to a depth of about 220 feet below sea level. Below this upper zone, water salinity increases with depth. The water-temperature profile from July 13, 2001 indicates that the lowest temperature water (20.2 degrees Celsius) in the well is located in the upper zone from the water table to a depth of about 200 feet below sea level. Water temperature increases to 24.5 degrees Celsius near the bottom of the measured profile, 507 feet below sea level.

  6. Bioaccumulation monitoring and toxicity testing in streams and groundwater wells at the US Department of Energy Kansas City Plant

    SciTech Connect

    Southworth, G.R.; Stewart, A.J.; Peterson, M.J.; Ashwood, T.L.

    1992-03-01

    The Kansas City Plant (KCP) is part of a federal complex located in south Kansas City, Missouri. The plant, operated by Allied-Signal Inc., Kansas City Division for the US Department of Energy (DOE), occupies 137 of the 300 acres covered by the complex. Blue River and its tributary Indian Creek receive surface water runoff, discharges permitted under the National Pollutant Discharge Elimination System (NPDES), and groundwater from the complex. Indian Creek also receives runoff from residential and commercial facilities and discharges from a sewage treatment plant upstream from the KCP. Blue River, a tributary of the Missouri River, receives runoff from an urban area, including a large landfill downstream from the KCP. Polychlorinated biphenyls (PCBs) have been detected in outfall 002 and in soils in various locations around the KCP. The Missouri Department of Conservation (MDC) found that both carp and channel catfish collected from the Blue River were contaminated with PCBs and chlordane; however, the source of this contamination was not identified. Trichlorethene (TCE) and 1,2-dichloroethene (DCE) are present in some wells adjacent to the Blue River, both TCE and DCE have been detected in outfall 001. To assess the biological significance of PCB and chlorinated solvent contamination from the KCP and to determine whether the KCP was a significant source of PCB contamination in fish, two separate studies were conducted by staff members of Oak Ridge National Laboratory (ORNL). This report presents the results of these studies.

  7. Uranium hydrogeochemical survey of well waters from an area around Pie Town, Catron County, West-Central New Mexico, including concentrations of twenty-three additional elements

    SciTech Connect

    Morgan, T.L.; George, W.E.; Hensley, W.K.; Thomas, G.J.; Langhorst, A.L.

    1980-10-01

    As part of the Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) of the National Uranium Resource Evaluation (NURE) sponsored by the US Department of Energy (DOE), the Los Alamos Scientific Laboratory (LASL) conducted a detailed hydrogeochemical survey of well waters in a 4250-km/sup 2/ area near Pie Town in west-central New Mexico. A total of 300 well samples was collected and analyzed for uranium and 23 other elements. The results of these analyses and carbonate and bicarbonate ion concentrations are presented in the Appendixes of this report. Uranium concentrations range from below the detection limit of 0.02 parts per billion (ppB) to 293.18 ppB and average 8.71 ppB. Samples containing high levels of uranium were collected from the Largo Creek valley west of Quemado, from a small area about 6 km east of Quemado, from a small area surrounding Pie Town, and from scattered locations in the area surrounding Adams Diggings north of Pie Town. Most of the samples containing high uranium concentrations were collected from wells associated with the volcanic sedimentary facies of the Datil formation. This formation is a likely source of mobile uranium that may be precipitating in the underlying Baca formation, a known uranium host unit. Bicarbonate ion concentration, while proportional to uranium concentration in some cases, is not a strong controlling factor in the uranium concentrations in samples from this area.

  8. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-09-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  9. Geophysical, Stratigraphic, and Flow-Zone Logs of Selected Test, Monitor, and Water-Supply Wells in Cayuga County, New York

    USGS Publications Warehouse

    Anderson, J. Alton; Williams, John H.; Eckhardt, David A.V.; Miller, Todd S.

    2003-01-01

    Volatile-organic compounds have been detected in water sampled from more than 50 supply wells between the City of Auburn and Village of Union Springs in Cayuga County, New York, and the area was declared a Superfund site in 2002. In 2001-04, geophysical logs were collected from 37 test, monitor, and water-supply wells as a preliminary part of the investigation of volatile-organic compound contamination in the carbonate-bedrock aquifer system. The geophysical logs included gamma, induction, caliper, wellbore image, deviation, fluid resistivity and temperature, and flowmeter. The geophysical logs were analyzed along with core samples and outcrops of the bedrock to define the stratigraphic units and flow zones penetrated by the wells. This report describes the logging methods used in the study and presents the geophysical, stratigraphic, and flow-zone logs.

  10. Evaluation of site-selection criteria, well design, monitoring techniques, and cost analysis for a ground-water supply in Piedmont crystalline rocks, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.

    1990-01-01

    A statistical analysis of data from wells drilled into the crystalline rocks of the Piedmont and Blue Ridge provinces of North Carolina verified and refined previously proposed criteria for the siting of wells to obtain greater than average yields. An opportunity to test the criteria was provided by the expansion of the town of Cary's municipal ground-water system. Three criteria were used: type of rock, thickness of saturated regolith based upon topography, and presence of fractures and joints based upon drainage lineations. A conceptual model of the local hydrogeologic system was developed to guide the selection of the most favorable well sites, and on the basis of the model, six type sites were determined. Eleven of 12 test wells that were located on the basis of type sites yielded from slightly above average to as much as six times the average yield to be expected from particular rock types as reported in the literature. Only one well drilled at a type site had a less than average yield. One well not located at any of the type sites produced little water. Long-term testing and monitoring after the wells were put into production showed that an 18-hour-on, 6-hour-off pumping cycle was much more effective in terms of total production, reduced head loss, and less drawdown than a 5-day-on and 2-day-off cycle. It was also observed that long-term yields by the production wells were about 75 percent of those predicted on the basis of 24-hour pumping tests and only about 60 percent of the driller's reported yields. Cost analysis showed that, by using criteria-selected well sites, a cost-effective well system can be developed that will provide water at an equivalent or lower cost than a surface-water supply. The analysis showed that the system would be cost effective if only one high-yield well were obtained out of every four drilled.

  11. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  12. Scattering effect of the well-ordered MgB4 impurity phase in two-step sintered polycrystalline MgB2 with glycine addition

    NASA Astrophysics Data System (ADS)

    Cai, Qi; Liu, Yongchang; Guo, Qianying; Ma, Zongqing

    2017-04-01

    Glycine-doped MgB2 bulk was prepared by two-step sintering in this study, first at 750 °C and then 900 °C. The MgB4 particles are induced to precipitate where the dislocations concentrated after C substitution or along the steps of screw dislocation during crystal growth, forming ordered MgB4 arrays throughout the MgB2 grain. By means of atomic force microscope, the detected magnetic domains are arranged in agreement with the ordered MgB4 particles after the measurement of magnetic hysteresis loop, which supported that the nano-scale MgB4 domain structure brought strong scattering effects and indicated that atomic force microscopy could test the role of the impurities. As a result, the extrapolating upper critical field H c2(0 K) is enhanced to 22.8 T for the sample with ordered MgB4, while only 18.1 T for the un-doped sample underwent the same sintering program. Besides, carbon substitution contributed to the enhancement of H c2 as well.

  13. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar.

    PubMed

    Hale, Sarah E; Hanley, Kelly; Lehmann, Johannes; Zimmerman, Andrewr; Cornelissen, Gerard

    2011-12-15

    In this study, the suitability of biochar and activated carbon (AC) for contaminated soil remediation is investigated by determining the sorption of pyrene to both materials in the presence and absence of soil and before as well as after aging. Biochar and AC were aged either alone or mixed with soil via exposure to (a) nutrients and microorganisms (biological), (b) 60 and 110 °C (chemical), and (c) freeze-thaw cycles (physical). Before and after aging, the pH, elemental composition, cation exchange capacity (CEC), microporous SA, and sorption isotherms of pyrene were quantified. Aging at 110 °C altered the physicochemical properties of all materials to the greatest extent (for example, pH increased by up to three units and CEC by up to 50% for biochar). Logarithmic K(Fr) values ranged from 7.80 to 8.21 (ng kg(-1))(ng L(-1))(-nF) for AC and 5.22 to 6.21 (ng kg(-1))(ng L(-1))(-nF) for biochar after the various aging regimes. Grinding biochar to a smaller particle size did not significantly affect the sorption of d(10) pyrene, implying that sorption processes operate on the subparticle scale. Chemical aging decreased the sorption of pyrene to the greatest extent (up to 1.8 log unit for the biochar+soil). The sorption to AC was affected more by the presence of soil than the sorption to biochar was. Our results suggest that AC and biochar have a high sorption capacity for pyrene that is maintained both in the presence of soil and during harsh aging. Both materials could therefore be considered in contaminated land remediation.

  14. Oil-Well Cement and C3S Hydration Under High Pressure as Seen by In Situ X-Ray Diffraction, Temperatures ;= 80 degrees C with No Additives

    SciTech Connect

    Jupe, Andrew C.; Wilkinson, Angus P.; Funkhouser, Garry P.

    2012-06-28

    The hydration kinetics of a white cement and batches of both Class G and H oil-well cements were examined between 0 and 60 MPa, at {le}80 C, using in situ synchrotron X-ray diffraction. This gives a continuous measure of the C{sub 3}S (Ca{sub 3}SiO{sub 5}), CH (Ca(OH){sub 2}), C{sub 4}AF (Ca{sub 2}FeAlO{sub 5}), ettringite, and other phases in the hydrating slurries. Slurries prepared from single-phase C{sub 3}S; synthetic C{sub 4}AF, and gypsum; and white cement, synthetic C{sub 4}AF and gypsum were also examined. An increasing pressure enhanced the rate of hydration for all slurries. Analysis of the data, using a kinetic model, provided rate constants that were used to obtain activation volumes for C{sub 3}S hydration. For all the cement and C{sub 3}S slurries studied, similar activation volumes were obtained (average {Delta}V{double_dagger}{sup -}-35 cm{sup 3}/mol), indicating that the presence of cement phases other than C{sub 3}S has a modest influence on the pressure dependence of C{sub 3}S hydration. An alternative analysis, using the time at which 90% of the initial C{sub 3}S remained, gave similar activation volumes. Pressure accelerated the formation of ettringite from synthetic C{sub 4}AF in the presence of gypsum. However, in slurries containing cement, the pressure dependence of C{sub 3}S hydration plays a major role in determining the pressure dependence of ettringite formation.

  15. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  16. RCRA Groundwater Monitoring Plan for Single-Shell Tank Waste Management Area A-AX at the Hanford Site, Interim Change Notice 2

    SciTech Connect

    Narbutovskih, Susan M.

    2004-11-05

    This ICN documents the installation of two additional downgradient monitoring wells and two additional upgradient wells. It updates the monitoring network. The project scientist will provide a schedule change request providing the list of additional wells to the sample scheduler.

  17. Demonstrating usefulness of real-time monitoring at streambank wells coupled with active streamgages - Pilot studies in Wyoming, Montana, and Mississippi

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Constantz, Jim; Wheeler, Jerrod D.; Caldwell, Rodney R.; Barlow, Jeannie R.B.

    2012-01-01

    Groundwater and surface water in many cases are considered separate resources, but there is growing recognition of a need to treat them as a single resource. For example, groundwater inflow during low streamflow is vitally important to the health of a stream for many reasons, including buffering temperature, providing good quality water to the stream, and maintaining flow for aquatic organisms. The U.S. Geological Survey (USGS) has measured stream stage and flow at thousands of locations since 1889 and has the ability to distribute the information to the public within hours of collection, but collecting shallow groundwater data at co-located measuring sites is a new concept. Recently developed techniques using heat as a tracer to quantify groundwater and surface-water exchanges have shown the value of coupling these resources to increase the understanding of the water resources of an area. In 2009, the USGS Office of Groundwater began a pilot study to examine the feasibility and utility of widespread use of real-time groundwater monitoring at streambank wells coupled with real-time surface-water monitoring at active streamgages to assist in understanding the exchange of groundwater and surface water in a cost effective manner.

  18. Depth to Water, Saturated Thickness, and Other Geospatial Datasets Used in the Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado

    USGS Publications Warehouse

    Flynn, Jennifer L.; Arnold, L. Rick; Paschke, Suzanne S.

    2009-01-01

    These datasets were compiled in support of U.S. Geological Survey Data Series 456, Design and Installation of a Groundwater Monitoring-Well Network in the High Plains Aquifer, Colorado. These datasets were developed as part of a cooperative project between the U.S. Geological Survey and the Colorado Department of Agriculture. The purpose of the project was to design a 30-well network and install 20 of the 30 wells to characterize water quality in the High Plains aquifer in areas of irrigated agriculture in Colorado. The five datasets are described as follows and are further described in Data Series 456: (1) ds472_dtw: This dataset represents the depth to groundwater in the High Plains Aquifer in Colorado in 2000. This grid was used to determine areas where the depth to water was less than 200 feet below land surface. (2) Ds472_sat: This dataset represents the saturated thickness of the High Plains aquifer within Colorado in 2000. This grid was used to determine areas where the saturated thickness was greater than 50 feet. (3) Ds472_equalareas: This dataset includes 30 equal-area polygons overlying the High Plains Aquifer in Colorado having a depth to water less than 200 feet, a saturated thickness greater than 50 feet, and underlying irrigated agricultural lands. (4) Ds472_randomsites: This dataset includes 90 randomly-generated potential groundwater sampling sites. This dataset provides a first, second, and third choice placed within the 30 equal area polygons of dataset dsXX_equalareas. (5) Ds472_welldata: This dataset includes point locations and well completion data for the 20 wells installed as part of this project. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.

  19. 18 CFR 806.30 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... consumptive use. (4) Measure groundwater levels in all approved production wells, as specified by the Commission. (5) Measure groundwater levels at additional monitoring locations, as specified by the...

  20. 18 CFR 806.30 - Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... consumptive use. (4) Measure groundwater levels in all approved production wells, as specified by the Commission. (5) Measure groundwater levels at additional monitoring locations, as specified by the...

  1. 18 CFR 806.30 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... consumptive use. (4) Measure groundwater levels in all approved production wells, as specified by the Commission. (5) Measure groundwater levels at additional monitoring locations, as specified by the...

  2. Nuclear reactor effluent monitoring

    SciTech Connect

    Minns, J.L.; Essig, T.H.

    1993-12-31

    Radiological environmental monitoring and effluent monitoring at nuclear power plants is important both for normal operations, as well as in the event of an accident. During normal operations, environmental monitoring verifies the effectiveness of in-plant measures for controlling the release of radioactive materials in the plant. Following an accident, it would be an additional mechanism for estimating doses to members of the general public. This paper identifies the U.S. Nuclear Regulatory Commission (NRC) regulatory basis for requiring radiological environmental and effluent monitoring, licensee conditions for effluent and environmental monitoring, NRC independent oversight activities, and NRC`s program results.

  3. Hydrogeologic, water-level, and water-quality data from monitoring wells at the US Marine Corps Air Station, Cherry Point, North Carolina

    USGS Publications Warehouse

    Murray, L.C.; Keoughan, K.M.

    1990-01-01

    Unlined hazardous-waste disposal sites at the U.S. Marine Corps Air Station, Cherry Point, North Carolina, are located near drinking-water supply wells that tap the Castle Hayne aquifer. Hydrogeologic and water-quality data were collected near 2 of these sites from 12 monitoring wells installed in May through June 1987. Near the northernmost landfill site, differences in hydraulic head between the surficial, intermediate Yorktown, and Castle Hayne aquifers indicate a potential for migration of contaminants downward into the intermediate Yorktown and Castle Hayne aquifers. Movement would be impeded, however, by two confining units of silty sand to sandy clay that separate these aquifers. Geophysical and lithologic data show the upper confining unit to be approximately 26 feet thick near this landfill. Near the southernmost landfill, these confining units are thin and discontinuous in an area that coincides with the location of a buried paleochannel. Static water-level data collected in this area indicate that both the Castle Hayne and Yorktown aquifers discharge into the surficial aquifer, minimizing the potential for downward contaminant movement. Ground water in the surficial aquifer at both landfills moves laterally away from nearby drinking-water supply wells and toward Slocum Creek, a tributary of the Neuse River. Concentrations of organic compounds and trace inorganic constituents included on the U.S. Environmental Protection Agency?s list of priority pollutants were determined for water samples from the surficial and Yorktown aquifers. High concentrations of two purgeable organic compounds, trichloroethylene and 1,2-dichloroethene (4,600 and 4,800 micrograms per liter, respectively), were detected in water samples collected from the surficial aquifer near the southernmost landfill; much smaller concentrations of trichloroethylene and 1,2-dichloroethene were detected in samples from wells in the Yorktown aquifer (up to 16 and 12 micrograms per liter

  4. Oxygen transfer phenomena in 48-well microtiter plates: determination by optical monitoring of sulfite oxidation and verification by real-time measurement during microbial growth.

    PubMed

    Kensy, Frank; Zimmermann, Hartmut F; Knabben, Ingo; Anderlei, Tibor; Trauthwein, Harald; Dingerdissen, Uwe; Büchs, Jochen

    2005-03-20

    Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent

  5. Monitoring materials

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  6. Health protection well inventory

    SciTech Connect

    Janssen, J.

    1989-03-01

    This report is an inventory of the wells contained in Health Protection (HP) documents since the startup of the Savannah River Plan (SRP) and includes wells monitored by special request and SRL research wells.

  7. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques.

    PubMed

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-04-11

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  8. Annual Report RCRA Post-Closure Monitoring and Inspections for Corrective Action Unit 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the Period October 2001 - October 2002

    SciTech Connect

    G. Richardson

    2003-02-01

    This annual monitoring and inspection report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2001 to October 2002 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron logging is to monitor the soil moisture conditions along the 128-meter (m) (420-feet [ft]) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft).

  9. Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites.

    PubMed

    Ko, Kyung-Seok; Kong, In Chul

    2017-02-01

    This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R (2) < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R (2) values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.

  10. Ground-water availability in part of the Borough of Carroll Valley, Adams County, Pennsylvania, and the establishment of a drought-monitor well

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2002-01-01

    Continued population growth in the Borough of Carroll Valley (Borough) coupled with the drought of 2001 have increased the demand for ground water in the Borough. This demand has led Borough officials to undertake an effort to evaluate the capability of the crystalline-bedrock aquifers to meet future, projected growth and to establish a drought-monitor well within and for the use of the Borough. As part of this effort, this report summarizes ground-water data available from selected sections within the Borough and provides geohydrologic information needed to evaluate ground-water availability and recharge sources within part of the Borough. The availability of ground water in the Borough is limited by the physical characteristics of the underlying bedrock, and its upland topographic setting. The crystalline rocks (metabasalt, metarhyolite, greenstone schist) that underlie most of the study area are among the lowest yielding aquifers in the Commonwealth. More than 25 percent of the wells drilled in the metabasalt, the largest bedrock aquifer in the study area, have driller reported yields less than 1.25 gallons per minute. Driller reports indicate also that water-producing zones are shallow and few in number. In general, 50 percent of the water-producing zones reported by drillers are penetrated at depths of 200 feet or less and 90 percent at depths of 370 feet or less. Borehole geophysical data indicate that most of the water-producing zones are at lithologic contacts, but such contacts are penetrated infrequently and commonly do not intersect areas of ground-water recharge. Single-well aquifer tests and slug tests indicate that the bedrock aquifers also do not readily transmit large amounts of water. The median hydraulic conductivity and transmissivity of the bedrock aquifers are 0.01 foot per dayand 2.75 feet squared per day, respectively. The crystalline and siliciclastic (Weverton and Loudoun Formations) bedrock aquifers are moderately to highly resistant to

  11. GROUND-WATER SAMPLING BIAS OBSERVED IN SHALLOW, CONVENTIONAL WELLS

    EPA Science Inventory

    A previous field demonstration project on nitrate-based bioremediation of a fuel-contaminated aquifer used short-screened clustered well points in addition to shallow (10 foot), conventional monitoring wells to monitor the progress of remediation during surface application of rec...

  12. Effect-Based Screening Methods for Water Quality Characterization Will Augment Conventional Analyte-by-Analyte Chemical Methods in Research As Well As Regulatory Monitoring

    EPA Science Inventory

    Conventional approaches to water quality characterization can provide data on individual chemical components of each water sample. This analyte-by-analyte approach currently serves many useful research and compliance monitoring needs. However these approaches, which require a ...

  13. Non-Destructive Geophysical Monitoring of Near-Surface Water-Content: Comparison Between GPR Velocities Obtained From Surface and Well Experiments

    NASA Astrophysics Data System (ADS)

    Mangue, M.

    2005-12-01

    Pollution of sub-surface aquifers is a major environmental problem. An important step would be the validation of a non-destructive methodology able to monitor water tranfers from the soil surface to the water table in quality and quantity. The study zone is situated in the alluvial plain of the Adour river in the northen Pyrénées piemont (France). It is located at the border of corn field where fertilizers and irrigation are applied. The alluvial deposits are composed of pebbles, sand, silt which overly an impermeable layer of clay with pebbles. From february 2002 to january 2003, multi-offset Ground Penetrating Radar (GPR) profiling was conducted, completed with electrical conductivity measurements. From the obtained data, total porosity was determinated and the monitoring of vertical transport from soil surface to the water table was performed each month. To process GPR data, original technique were used, Common Refexion Surface Stack (CRS) for the RMS velocity estimation, followed by kriging for interpolation. In order to convert RMS velocities in time into interval velocity in depth, the classical Dix formula was used. In january 2004 and in june 2005, crosswell transmission GPR data were recorded so as to compare with the results obtained from the multi-offset GPR acquisition. The purpose is to validate the non-destructive surface methodology from different comparisons between the two datasets. Ten holes were drilled along the same profile every five meters with a six meters depth. Transmitter and receiver are in different holes and measurements were recorded from wells pair. From the crosswell GPR dataset, in a first step, only horizontal raypathes were considered, i.e., transmitter and receiver at the same depth and at a five meters distance. For such a subset, assumption of straight raypathes is reasonnable due to the weak dip of the soil layers that we can consider as sub-horizontal. Comparisons were made between velocities obtained from multi-offset GPR

  14. High-resolution monitoring across the soil-groundwater interface - Revealing small-scale hydrochemical patterns with a novel multi-level well

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Griebler, Christian; Stumpp, Christine

    2016-04-01

    Biogeochemical turnover processes in the subsurface are highly variable both in time and space. In order to capture this variability, high resolution monitoring systems are required. Particular in riparian zones the understanding of small-scale biogeochemical processes is of interest, as they are regarded as important buffer zones for nutrients and contaminants with high turnover rates. To date, riparian research has focused on influences of groundwater-surface water interactions on element cycling, but little is known about processes occurring at the interface between the saturated and the unsaturated zone during dynamic flow conditions. Therefore, we developed a new type of high resolution multi-level well (HR-MLW) that has been installed in the riparian zone of the Selke river. This HR-MLW for the first time enables to derive water samples both from the unsaturated and the saturated zone across one vertical profile with a spatial vertical resolution of 0.05 to 0.5 m to a depth of 4 m b.l.s. Water samples from the unsaturated zone are extracted via suction cup sampling. Samples from the saturated zone are withdrawn through glass filters and steel capillaries. Both, ceramic cups and glass filters, are installed along a 1" HDPE piezometer tube. First high resolution hydrochemical profiles revealed a distinct depth-zonation in the riparian alluvial aquifer. A shallow zone beneath the water table carried a signature isotopically and hydrochemically similar to the nearby river, while layers below 1.5 m were influenced by regional groundwater. This zonation showed temporal dynamics related to groundwater table fluctuations and microbial turnover processes. The HR-MLW delivered new insight into mixing and turnover processes between riverwater and groundwater in riparian zones, both in a temporal and spatial dimension. With these new insights, we are able to improve our understanding of dynamic turnover processes at the soil - groundwater interface and of surface

  15. Assessing heat tracing experiment data sets for direct forecast of temperature evolution in subsurface models: an example of well and geophysical monitoring data

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Maria, Klepikova; Jef, Caers

    2016-04-01

    Hydrogeological inverse modeling is used for integrating data and calibrating subsurface model parameters. On one hand, deterministic approaches are relatively fast but fail to catch the uncertainty related to the spatial distribution of model parameters. On the other hand, stochastic inverse modeling is time-consuming and sampling the full high-dimensional parameter space is generally impossible. Even then, the end result is not the inverted model itself, but the forecast built from such models. In this study, we investigate a prediction-focused approach (PFA) in order to derive a direct statistical relationship between data and forecast without explicitly calibrating any models to the data. To derive this relationship, we first sample a limited number of models from the prior distribution using geostatistical methods. For each model, we then apply two forward simulations: the first corresponds to the forward model of the data (past), the second corresponds to the forward model of the forecast (future). The relationship between observed data and forecast is generally highly non-linear, depending on the complexity of the prior distribution and the differences in the two forward operators. In order to derive a useful relationship, we first reduce the dimension of the data and the forecast through principal component analysis (PCA) related techniques in order to keep the most informative part of both sets. Then, we apply canonical correlation analysis (CCA) to establish a linear relationship between data and forecast in the reduced space components. If such a relationship exists, it is possible to directly sample the posterior distribution of the forecast with a multi-Gaussian framework. In this study, we apply this methodology to forecast the evolution with time of the distribution of temperature in a control panel in an alluvial aquifer. We simulate a heat tracing experiment monitored with both well logging probes and electrical resistivity tomography. We show (1

  16. Monitoring Subsurface Microbial Biomass, Community Composition and Physiological Status during Biological Uranium Reduction with Acetate Addition using Lipid Analysis, DNA Arrays and q-PCR

    NASA Astrophysics Data System (ADS)

    Peacock, A. D.; Long, P. E.; N'Guessan, L.; Williams, K. H.; Chandler, D.

    2011-12-01

    Our objectives for this effort were to investigate microbial community dynamics during each of the distinct terminal electron accepting phases that occur during long-term acetate addition for the immobilization of Uranium. Groundwater was collected from four wells (one up gradient and three down gradient) at three different depths and at four different times (pre-acetate injection, peak iron reduction, iron/sulfate reduction transition and during heavy sulfate reduction). Phospholipid fatty acid analysis (PLFA) results from ground water showed that microbial biomass was highest during Iron reduction and then lower during the transition from Iron reduction to Sulfate reduction and lowest during Sulfate reduction. Microbial community composition parameters as measured by PLFA showed distinct differences with terminal electron accepting status. Monounsaturated PLFA that have been shown to correspond with Gram-negative bacteria and Geobacteracea increased markedly with Iron reduction and then decreased with the onset of sulfate reduction. Bacterial physiological stress levels as measured by PLFA fluctuated with terminal electron acceptor status. Low bacterial stress levels coincided with pre-donor addition and Iron reduction but were much higher during Iron to Sulfate transition and during Sulfate reduction. Microarray results showed the expected progression of microbial signatures from Iron to Sulfate -reducers with changes in acetate amendment and in situ field conditions. The microarray response for Geobacter was highly correlated with qPCR for the same target gene (R2 = 0.84). Probes targeting Desulfobacter and Desulfitobacterium were the most reactive during the Iron to Sulfate transition and into Sulfate reduction, with a consistent Desulfotomaculum signature throughout the field experiment and a general decrease in Geobacter signal to noise ratios during the onset of Sulfate reducing conditions. Nitrate reducers represented by Dechloromonas and Dechlorosoma

  17. Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the United States from 1947 through 2010: data analysis and comparison to the literature

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.

    2015-01-01

    Hydraulic fracturing is presently the primary stimulation technique for oil and gas production in low-permeability, unconventional reservoirs. Comprehensive, published, and publicly available information regarding the extent, location, and character of hydraulic fracturing in the United States is scarce. This national spatial and temporal analysis of data on nearly 1 million hydraulically fractured wells and 1.8 million fracturing treatment records from 1947 through 2010 (aggregated in Data Series 868) is used to identify hydraulic fracturing trends in drilling methods and use of proppants, treatment fluids, additives, and water in the United States. These trends are compared to the literature in an effort to establish a common understanding of the differences in drilling methods, treatment fluids, and chemical additives and of how the newer technology has affected the water use volumes and areal distribution of hydraulic fracturing. Historically, Texas has had the highest number of records of hydraulic fracturing treatments and associated wells in the United States documented in the datasets described herein. Water-intensive horizontal/directional drilling has also increased from 6 percent of new hydraulically fractured wells drilled in the United States in 2000 to 42 percent of new wells drilled in 2010. Increases in horizontal drilling also coincided with the emergence of water-based “slick water” fracturing fluids. As such, the most current hydraulic fracturing materials and methods are notably different from those used in previous decades and have contributed to the development of previously inaccessible unconventional oil and gas production target areas, namely in shale and tight-sand reservoirs. Publicly available derivative datasets and locations developed from these analyses are described.

  18. Ground-water monitoring plan, water quality, and variability of agricultural chemicals in the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1998-2000

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five

  19. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine.

    PubMed

    Le Roux, Peter; Menon, David K; Citerio, Giuseppe; Vespa, Paul; Bader, Mary Kay; Brophy, Gretchen; Diringer, Michael N; Stocchetti, Nino; Videtta, Walter; Armonda, Rocco; Badjatia, Neeraj; Bösel, Julian; Chesnut, Randall; Chou, Sherry; Claassen, Jan; Czosnyka, Marek; De Georgia, Michael; Figaji, Anthony; Fugate, Jennifer; Helbok, Raimund; Horowitz, David; Hutchinson, Peter; Kumar, Monisha; McNett, Molly; Miller, Chad; Naidech, Andrew; Oddo, Mauro; Olson, DaiWai; O'Phelan, Kristine; Provencio, J Javier; Puppo, Corinna; Riker, Richard; Roberson, Claudia; Schmidt, Michael; Taccone, Fabio

    2014-12-01

    Careful patient monitoring using a variety of techniques including clinical and laboratory evaluation, bedside physiological monitoring with continuous or non-continuous techniques and imaging is fundamental to the care of patients who require neurocritical care. How best to perform and use bedside monitoring is still being elucidated. To create a basic platform for care and a foundation for further research the Neurocritical Care Society in collaboration with the European Society of Intensive Care Medicine, the Society for Critical Care Medicine and the Latin America Brain Injury Consortium organized an international, multidisciplinary consensus conference to develop recommendations about physiologic bedside monitoring. This supplement contains a Consensus Summary Statement with recommendations and individual topic reviews as a background to the recommendations. In this article, we highlight the recommendations and provide additional conclusions as an aid to the reader and to facilitate bedside care.

  20. Comprehensive Challenges for the Well Being of Young Children: A Population-Based Study of Publicly Monitored Risks in a Large Urban Center

    ERIC Educational Resources Information Center

    Rouse, Heather L.; Fantuzzo, John W.; LeBoeuf, Whitney

    2011-01-01

    This population-based study investigated the unique and cumulative relations between risks that are monitored by public surveillance systems and academic and behavioral outcomes for an entire cohort of third graders in a large, urban public school system. Using integrated, administrative records from child welfare, public health, housing, and…

  1. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect

    2013-06-01

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  2. Hydrologic monitoring program in Eldridge-Wilde and East Lake Road well-field areas, Pinellas and Hillsborough counties, Florida, 1978

    USGS Publications Warehouse

    Mills, L.R.

    1980-01-01

    This report describes the observation-well network in Eldridge-Wilde and East Lake Road well-field areas, Pinellas and Hillsborough Counties, Florida. Data obtained in 1978 from the network in and adjacent to the two well fields, as well as rainfall and pumpage records, are presented. The Southwest Florida Water Management District has established regulatory water-level limits in four observation wells and water-quality limits in three observation wells. Water levels dropped below regulatory limits in the spring of 1978 in three wells. Chloride concentrations in 1978 remained above regulatory limits for the entire year in one well and exceeded the limit during the late spring in the other two deep wells, both west of Eldridge-Wilde well field. (USGS)

  3. Personality correlates of the Five-Factor Model for a sample of business owners/managers: associations with scores on Self-Monitoring, Type A Behavior, Locus of Control, and Subjective Well-being.

    PubMed

    Morrison, K A

    1997-02-01

    Bivariate relationships were examined between scores on the Five-Factor Model of personality and four personality dimensions including Self-monitoring, Locus of Control, Type A Behavior, and Subjective Well-being. Data were collected from 307 franchise business owner/managers from four different industries. Scores for Self-monitoring were positively related to those on Extraversion; Self-monitoring was the only personality measure significantly correlated with scores on Openness to Experience. Scores for Type A Behavior, measured by the Jenkins Activity Survey, were negatively correlated with Agreeableness and positively correlated with those for Extraversion. Somewhat surprisingly, the score for Type A Behavior had a relatively low correlation with the score for Conscientiousness. Scores for Subjective Well-being and Locus of Control were most strongly correlated with the positive pole of Neuroticism (Emotional Stability), Conscientiousness, and Extraversion. Possible explanations for the observed relationships are discussed.

  4. The limitations of tissue-oxygen measurement and positron emission tomography as additional methods for postoperative breast reconstruction free-flap monitoring.

    PubMed

    Schrey, Aleksi; Niemi, Tarja; Kinnunen, Ilpo; Minn, Heikki; Vahlberg, Tero; Kalliokoski, Kari; Suominen, Erkki; Grénman, Reidar; Aitasalo, Kalle

    2010-02-01

    Twelve patients who underwent breast reconstruction with a microvascular flap were monitored postoperatively with continuous partial tissue oxygenation (p(ti)O(2)) measurement. The regional blood flow (BF) of the entire flap was evaluated with positron emission tomography (PET) using oxygen-15-labelled water on the first postoperative (POP) morning to achieve data of the perfusion of the entire flap. A re-exploration was carried out if the p(ti)O(2) value remained lower than 15 mmHg for over 30 min. The mean p(ti)O(2) value of the flaps was 52.9+/-5.5 mmHg, whereas the mean BF values were 3.3+/-1.0 ml per 100 g min(-1). One false-positive result was detected by p(ti)O(2) measurement, resulting in an unnecessary re-exploration. Another re-operation suggested by the low p(ti)O(2) results was avoided due to the normal BF results assessed with PET. Totally, three flaps were re-explored. This prospective study suggests that continuous tissue-oxygen measurement with a polarographic needle probe is reliable for monitoring free breast flaps from one part of the flap, but assessing perfusion of the entire flap requires more complex monitoring methods, for example, PET. Clinical examination by experienced personnel remains important in free-breast-flap monitoring. PET could be useful in assessing free-flap perfusion in selected high-risk patients as an alternative to a re-operation when clinical examination and evaluation by other means are unreliable or present controversial results.

  5. Effects of dietary additives (potassium diformate/organic acids) as well as influences of grinding intensity (coarse/fine) of diets for weaned piglets experimentally infected with Salmonella Derby or Escherichia coli.

    PubMed

    Taube, V A; Neu, M E; Hassan, Y; Verspohl, J; Beyerbach, M; Kamphues, J

    2009-06-01

    The aim of this study was to examine whether and to what extent the addition of potassium diformate (pdf) or free organic acids (fpa) to the diet and the grinding intensity might affect the course of infection and the passage of orally applied Salmonella and Escherichia coli in pigs. Experiments were carried out using 80 reared piglets allotted to four groups. Pigs were fed pelleted diets ad libitum (except during a 15 h feed-withholding-period before infection). The control diet contained finely ground cereals (2 mm screen). To two test diets (also finely ground) 1.2% pdf, 0.9% organic acids (75% formic and 25% propionic acid, fpa) respectively were added. The fourth diet (without acids) was based on coarsely ground cereals (6-mm screen). After experimental infection alternately with S. Derby or E. coli, the course of infection was examined (rectal swab technique). Pigs were sacrificed 4-5 h after a further oral application of approximately 10(9)-10(10) CFU S. Derby or E. coli to determine the counts of Salmonella or E. coli in chyme (classical culture methods). Adding pdf or fpa to the diet led to reduced Salmonella shedding and resulted in significantly lower counts of Salmonella and E. coli in the stomach content indicating an improved efficacy of the stomach barrier. In the distal parts of the digestive tract, the effect was less obvious concerning counts of E. coli, whereas counts of Salmonella were reduced markedly as well. The diet based on coarsely ground cereals failed to demonstrate positive effects concerning infection and passage of orally applied bacteria as well, but this diet was also pelleted and showed unintentionally, comparable amounts of fine particles. Results obtained in this study allow the recommendation of using pdf or organic acids as additives when dietary measures against Salmonella or E. coli in pigs are required.

  6. Annual Report RCRA Post-Closure Monitoring and Inspections for CAU 91: Area 3 U-3fi Injection Well, Nevada Test Site, Nevada, for the period October 2000-October 2001

    SciTech Connect

    D. S. Tobiason

    2002-02-01

    This annual Neutron Soil Moisture Monitoring report provides an analysis and summary for site inspections, meteorological information, and neutron soil moisture monitoring data obtained at the U-3fi Injection Well during the October 2000 to October 2001 period. The U-3fi Injection Well is located in Area 3 of the Nevada Test Site (NTS), Nye County, Nevada. Inspections of the Area 3 U-3fi Injection Well are conducted to determine and document the physical condition of the concrete pad, facilities, and any unusual conditions that could impact the proper operation of the waste disposal unit closure. The objective of the neutron-logging program is to monitor the soil moisture conditions along the 128-meter (m) (420-ft) ER3-3 monitoring well and detect changes that may be indicative of moisture movement in the regulated interval extending between 73 to 82 m (240 to 270 ft) or to detect changes that may be indicative of subsidence within the disposal unit itself.

  7. What Gets Measured Gets Done: High Priority Opportunities to Improve Our Nation's Capacity to Monitor Child and Youth Well-Being. A White Paper for the Annie E. Casey Foundation

    ERIC Educational Resources Information Center

    Brown, Brett; Moore, Kristin Anderson

    2009-01-01

    Child Trends has been asked by the Annie E. Casey Foundation to identify key opportunities that a new Administration might pursue to improve the capacity of the federal statistical system to monitor child and youth well-being. In this paper the authors discuss a number of areas of opportunity, offering concrete steps that can be taken, generally…

  8. Hydrologic monitoring program in Eldridge-Wilde and East Lake Road well-field areas, Pinellas and Hillsborough counties, Florida, 1977 water year

    USGS Publications Warehouse

    Joyner, Boyd F.; Gerhart, James M.

    1980-01-01

    The observation-well network in the vicinity of the two well fields is described in detail. Data obtained from the network from October 1976 through September 1977, as well as rainfall and pumpage records, are presented and discussed. Below-normal rainfall caused the water table and potentiometric surface of the Floridan aquifer in Eldridge-Wilde well field to recover 2 feet less in September 1977 than in the previous September. Water levels in East Lake Road will field were approximately the same in Spetember of both years. The Southwest Florida Water Management District has established regulatory water-level and water-quality limits in several observation wells. Water levels did not drop below regulatory limits during the year. Water from two deep wells west of Eldridge-Wilde well field exceeded the regulatory limits for chloride concentrations. The position of the 250 milligram per liter chloride line is shown in cross section in the vicinity of Eldridge-Wilde well field in September 1977. Network modifications are proposed that would result in a more comprehensive knowledge of the hydrologic system. (USGS)

  9. POST-CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 91: AREA 3 U3fi INJECTION WELL, NEVADA TEST SITE, NEVADA FOR THE PERIOD NOVEMBER 2003 - OCTOBER 2004

    SciTech Connect

    2005-01-01

    This Post-Closure Inspection and Monitoring report provides an analysis and summary of inspections, meteorological information, and neutron soil moisture monitoring for Corrective Action Unit (CAU) 91: Area 3 U-3fi Injection Well, Nevada Test Site (NTS), Nevada. This report covers the annual period November 2003 through October 2004. Site inspections of CAU 91 are performed every six months to identify any significant changes that could impact the proper operation of the waste disposal unit. Inspection results for the current period indicate that the overall condition of the concrete pad, perimeter fence, and warning signs is good.

  10. Monitoring of ractopamine concentration in the mixture of this feed additive with vitamin mineral complex and with swine feed by HPLC.

    PubMed

    Freire, Ellen Figueiredo; Borges, Keyller Bastos; Tanimoto, Hélio; Nogueira, Raquel Tassara; Bertolini, Lucimara Cristiane Toso; de Gaitani, Cristiane Masetto

    2013-01-01

    Ractopamine (RAC) analysis at all stages in the feed chain until its final mixing into swine feed is necessary to ensure the safety of all meat consumers and to decrease waste and the cost of supplementation of feed. Two suitable HPLC methods were developed and validated for RAC determination in vitamin mineral complex (VMC) and in swine feed. Both methods employed reverse-phase (C18 column at 40°C) and isocratic elution, but with some modifications to the methods. Validation parameters, such as selectivity, linearity, precision, trueness and robustness, were shown to be within the acceptable range. Therefore, the developed methods can be successfully applied for the monitoring of RAC concentrations in samples of VMC and swine feed ensuring economy to producers and security to consumers of swine meat.

  11. Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions.

    PubMed

    González-Sáiz, J M; Esteban-Díez, I; Sánchez-Gallardo, C; Pizarro, C

    2008-08-01

    Wastes and by-products of the onion-processing industry pose an increasing disposal and environmental problem and represent a loss of valuable sources of nutrients. The present study focused on the production of vinegar from worthless onions as a potential valorisation route which could provide a viable solution to multiple disposal and environmental problems, simultaneously offering the possibility of converting waste materials into a useful food-grade product and of exploiting the unique properties and health benefits of onions. This study deals specifically with the second and definitive step of the onion vinegar production process: the efficient production of vinegar from onion waste by transforming onion ethanol, previously produced by alcoholic fermentation, into acetic acid via acetic fermentation. Near-infrared spectroscopy (NIRS), coupled with multivariate calibration methods, has been used to monitor the concentrations of both substrates and products in acetic fermentation. Separate partial least squares (PLS) regression models, correlating NIR spectral data of fermentation samples with each kinetic parameter studied, were developed. Wavelength selection was also performed applying the iterative predictor weighting-PLS (IPW-PLS) method in order to only consider significant spectral features in each model development to improve the quality of the final models constructed. Biomass, substrate (ethanol) and product (acetic acid) concentration were predicted in the acetic fermentation of onion alcohol with high accuracy using IPW-PLS models with a root-mean-square error of the residuals in external prediction (RMSEP) lower than 2.5% for both ethanol and acetic acid, and an RMSEP of 6.1% for total biomass concentration (a very satisfactory result considering the relatively low precision and accuracy associated with the reference method used for determining the latter). Thus, the simple and reliable calibration models proposed in this study suggest that they

  12. Monitoring Well Construction and Groundwater Quality Analysis at the U. S. Army Reserve Center Complex and Training Area, 84th Division, Milwaukee, Wisconsin

    DTIC Science & Technology

    1989-03-01

    was placed in the annular space between the well screen, casing, and native formation from a depth of 9.5 feet to 25.3 feet. The native formation in...was placed in the annular space between the well screen, casing, and native formation from a depth of 33.8 feet to 44.4 feet. The native formation in...annular space between the protective casing flush mount cover and native formation. The concrete collar was sloped gently away from the cover to

  13. ER Operations Installation of Three FLUTe Soil-Vapor Monitoring Wells (MWL-SV03 MWL-SV04 and MWL-SV05) at the Mixed Waste Landfill.

    SciTech Connect

    Copland, John Robin

    2014-09-01

    This installation report describes the May through July 2014 drilling activities performed for the installation of three multi-port soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) at the Mixed Waste Landfill (MWL), which is located at Sandia National Laboratories, New Mexico (SNL/NM). SNL/NM is managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy (DOE)/National Nuclear Security Administration. The MWL is designated as Solid Waste Management Unit (SWMU) 76 and is located in Technical Area (TA) III (Figure 1-1). The locations of the three soil-vapor monitoring wells (MWL-SV03, MWL-SV04, and MWL-SV05) are shown in Figure 1-2

  14. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  15. Pre-injection Comparison of Methods for Sampling Formation Water and Associated Gas from a Monitoring Well at a Carbon Dioxide Injection Site, Citronelle Oil Field, Alabama

    NASA Astrophysics Data System (ADS)

    Conaway, C.; Thordsen, J. J.; Manning, M. A.; Cook, P. J.; Abedini, A. A.; Trautz, R. C.; Thomas, B.; Kharaka, Y. K.

    2012-12-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a well in the Citronelle Oil Field, Alabama, a site that will be used for a carbon dioxide injection experiment. Prior to each of the two sampling periods, the well was cleaned from the drilling fluids and KCl solutions by producing at least three pore volumes of formation water. Accurate measurements of the chemical composition of groundwater or formation water, including dissolved gasses, and gas samples is essential in understanding subsurface geochemical processes occurring as a result of geologic carbon dioxide injection, which is used for enhanced oil recovery (EOR) and has been proposed as a means of carbon sequestration. In this study, formation water and gas samples for geochemical analyses were obtained from well D-9-8 #2 at Citronelle using nitrogen lift, submersible pump, U-Tube, and a downhole (Kuster) sampler. Field chemical analyses included electrical conductivity, hydrogen sulfide, alkalinity, and pH, and laboratory analyses included major, minor and trace elements by mass spectrometry and ion chromatography, dissolved carbon, organic acid anions, free and dissolved gas species. The formation water obtained from this well is a Na-Ca-Cl brine with a salinity of 160,000 and 200,000 mg/L total dissolved solids (TDS). Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity measurements. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the downhole sampler and U-Tube system performing most favorably in this aspect.

  16. Staying Well

    MedlinePlus

    ... Site Tour Contact Us For Professionals Researchers Physicians Nurses Rehabilitation Professionals Mental Health Professionals Health and Wellness Professionals What Is MS? Symptoms & Diagnosis Treating MS Resources & Support Living Well with MS Research Get Involved

  17. A current modulation in the Gd{sub 2}O{sub 3}/Si/Gd{sub 2}O{sub 3} quantum well structure as a mean to monitor oxygen vacancies

    SciTech Connect

    Sitaputra, Wattaka; Hudak, John A.; Tsu, Raphael

    2014-05-15

    The Gd{sub 2}O{sub 3} layer grown by electron beam evaporation system normally leads to oxygen deficient sites unless the oxygen partial pressure is provided. These oxygen vacancies were monitored through their current modulating effect. This modulation controlled the current within a Si well of the Gd{sub 2}O{sub 3}/Si/Gd{sub 2}O{sub 3} quantum well structure through the migration of the oxygen vacancies. Such behavior were not found in the structure that contains far less oxygen vacancy such as SiO{sub 2}/Si/SiO{sub 2} structure.

  18. Remotely Monitored Sealing Array Software

    SciTech Connect

    2012-09-12

    The Remotely Monitored Sealing Array (RMSA) utilizes the Secure Sensor Platform (SSP) framework to establish the fundamental operating capabilities for communication, security, power management, and cryptography. In addition to the SSP framework the RMSA software has unique capabilities to support monitoring a fiber optic seal. Fiber monitoring includes open and closed as well as parametric monitoring to detect tampering attacks. The fiber monitoring techniques, using the SSP power management processes, allow the seals to last for years while maintaining the security requirements of the monitoring application. The seal is enclosed in a tamper resistant housing with software to support active tamper monitoring. New features include LED notification of fiber closure, the ability to retrieve the entire fiber optic history via translator command, separate memory storage for fiber optic events, and a more robust method for tracking and resending failed messages.

  19. Hanford wells

    SciTech Connect

    McGhan, V.L.

    1989-06-01

    The Site Characterization and Assessment Section of the Geosciences Department at Pacific Northwest Laboratory (PNL) has compiled a list of wells located on or near the Hanford Site. Information has been updated on wells existing from the days before construction of the Hanford Works to the present. This work was funded by the US Department of Energy (DOE). The list of wells will be used by DOE contractors who need condensed, tabular information on well location, construction, and completion dates. This report does not include data on lithologic logs and ground-water contamination. Moreover, the completeness of this list is limited because of new well construction and existing well modifications, which are continually under way. Despite these limitations, this list represents the most complete description possible of data pertaining to wells on or adjacent to the Hanford Site. 7 refs., 1 fig., 2 tabs.

  20. Arsenic in drinking water wells on the Bolivian high plain: Field monitoring and effect of salinity on removal efficiency of iron-oxides-containing filters.

    PubMed

    Van Den Bergh, K; Du Laing, G; Montoya, Juan Carlos; De Deckere, E; Tack, F M G

    2010-11-01

    In the rural areas around Oruro (Bolivia), untreated groundwater is used directly as drinking water. This research aimed to evaluate the general drinking water quality, with focus on arsenic (As) concentrations, based on analysis of 67 samples from about 16 communities of the Oruro district. Subsequently a filter using Iron Oxide Coated Sand (IOCS) and a filter using a Composite Iron Matrix (CIM) were tested for their arsenic removal capacity using synthetic water mimicking real groundwater. Heavy metal concentrations in the sampled drinking water barely exceeded WHO guidelines. Arsenic concentrations reached values up to 964 μ g L⁻¹ and exceeded the current WHO provisional guideline value of 10 μ g L⁻¹ in more than 50% of the sampled wells. The WHO guideline of 250 mg L⁻¹ for chloride and sulphate was also exceeded in more than a third of the samples, indicating high salinity in the drinking waters. Synthetic drinking water could be treated effectively by the IOCS- and CIM-based filters reducing As to concentrations lower than 10 μ g L⁻¹. High levels of chloride and sulphate did not influence As removal efficiency. However, phosphate concentrations in the range from 4 to 24 mg L⁻¹ drastically decreased removal efficiency of the IOCS-based filter but had no effects on removal efficiency of the CIM-based filter. Results of this study can be used as a base for further testing and practical implementation of drinking water purification in the Oruro region.

  1. Construction, completion, and testing of replacement monitoring wells MW 3-2, MW 6-2, MW 7-2, and MW 11-2, Mountain Home Air Force Base, Idaho, February through April 2000

    USGS Publications Warehouse

    Parliman, D.J.

    2000-01-01

    In February and March 2000, the U.S. Geological Survey Western Regional Research Drilling Operation constructed replacement monitoring wells MW 3–2, MW 6–2, MW 7–2, and MW 11–2 as part of a regional ground-water monitor- ing network for the Mountain Home Air Force Base, Elmore County, Idaho. Total well depths ranged from 435.5 to 456.5 feet, and initial depth-to-water measurements ranged from about 350 to 375 feet below land surface. After completion, wells were pumped and onsite measurements were made of water temperature, specific conductance, pH, and dissolved oxygen. At each well, natural gamma, spontaneous potential, resistivity, caliper, and temperature logs were obtained from instruments placed in open boreholes. A three- dimensional borehole flow analysis was completed for MW 3–2 and MW 11–2, and a video log was obtained for MW 11–2 to annotate lithology and note wet zones in the borehole above saturated rock.

  2. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data

    PubMed Central

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5. PMID:26540446

  3. Estimating PM2.5 Concentrations in Xi'an City Using a Generalized Additive Model with Multi-Source Monitoring Data.

    PubMed

    Song, Yong-Ze; Yang, Hong-Lei; Peng, Jun-Huan; Song, Yi-Rong; Sun, Qian; Li, Yuan

    2015-01-01

    Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe environmental problem and is of negative impact on human health. Xi'an City, with a population of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there were 191 days in Xi'an City on which PM2.5 concentrations were greater than 100 μg/m3. Recently, a few studies have explored the potential causes of high PM2.5 concentration using remote sensing data such as the MODIS aerosol optical thickness (AOT) product. Linear regression is a commonly used method to find statistical relationships among PM2.5 concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indicative of emission sources. The relationships of these variables, however, are usually complicated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate the statistical relationships between potential variables and PM2.5 concentrations. This model contains linear functions of SO2 and CO, univariate smoothing non-linear functions of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 = 0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%. The two most significant variables, CO concentration and AOT, represent 20.65% and 19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2, NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City, the traffic and other industrial emissions are the primary source of PM2.5. Temperature, location, and wind variables also non-linearly related with PM2.5.

  4. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate

  5. Hanford wells

    SciTech Connect

    Chamness, M.A.; Merz, J.K.

    1993-08-01

    Records describing wells located on or near the Hanford Site have been maintained by Pacific Northwest Laboratory and the operating contractor, Westinghouse Hanford Company. In support of the Ground-Water Surveillance Project, portions of the data contained in these records have been compiled into the following report, which is intended to be used by those needing a condensed, tabular summary of well location and basic construction information. The wells listed in this report were constructed over a period of time spanning almost 70 years. Data included in this report were retrieved from the Hanford Envirorunental Information System (HEIS) database and supplemented with information not yet entered into HEIS. While considerable effort has been made to obtain the most accurate and complete tabulations possible of the Hanford Site wells, omissions and errors may exist. This document does not include data on lithologic logs, ground-water analyses, or specific well completion details.

  6. Well packer

    SciTech Connect

    Henderson, W.D.; Patel, D.C.; Rood, D.D.; Sprout, R.M.

    1987-06-09

    This patent describes a well packer comprising: a tubular body mandrel having a central longitudinal flow passage; a drag spring assembly mounted on the body mandrel for engaging a well bore wall to hold the drag spring assembly for relative rotational and longitudinal movement of the body mandrel therein; and a locking assembly including longitudinally spaced slip expanders and expandable slips in a slip carrier arranged for movement of the slips.

  7. The Immatsiak network of groundwater wells in a small catchment basin in the discontinuous permafrost zone of Northern Quebec, Canada: A unique opportunity for monitoring the impacts of climate change on groundwater (Invited)

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Lemieux, J.; Molson, J. W.; Therrien, R.; Ouellet, M.; Bart, J.

    2013-12-01

    During a summer drilling campaign in 2012, a network of nine groundwater monitoring wells was installed in a small catchment basin in a zone of discontinuous permafrost near the Inuit community of Umiujaq in Northern Quebec, Canada. This network, named Immatsiak, is part of a provincial network of groundwater monitoring wells to monitor the impacts of climate change on groundwater resources. It provides a unique opportunity to study cold region groundwater dynamics in permafrost environments and to assess the impacts of permafrost degradation on groundwater quality and availability as a potential source of drinking water. Using the borehole logs from the drilling campaign and other information from previous investigations, an interpretative cryo-hydrogeological cross-section of the catchment basin was produced which identified the Quaternary deposit thickness and extent, the depth to bedrock, the location of permafrost, one superficial aquifer located in a sand deposit, and another deep aquifer in fluvio-glacial sediments and till. In the summer of 2013, data were recovered from water level and barometric loggers which were installed in the wells in August 2012. Although the wells were drilled in unfrozen zones, the groundwater temperature is very low, near 0.4 °C, with an annual variability of a few tenths of a degree Celsius at a depth of 35 m. The hydraulic head in the wells varied as much as 6 m over the last year. Pumping tests performed in the wells showed a very high hydraulic conductivity of the deep aquifer. Groundwater in the wells and surface water in small thermokarst lakes and at the catchment outlet were sampled for geochemical analysis (inorganic parameters, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and radioactive isotopes of carbon (δ14C), hydrogen (tritium δ3H) and helium (δ3He)) to assess groundwater quality and origin. Preliminary results show that the signature of melt water from permafrost thawing is observed in the

  8. Well tool

    SciTech Connect

    Sable, D.E.

    1992-06-09

    This patent describes a stabilizer rod conductible in a sucker rod string to constitute the bottom end portion of a rod sting and connect it to a reciprocable member of a well pump, the sucker rod string having sucker rods whose elongate shanks are provided.

  9. Wellness Matters

    ERIC Educational Resources Information Center

    Arteaga, Brenda

    2011-01-01

    Creating a healthier school in today's world of budget cuts and seemingly endless to-do lists is not only possible, but it is also imperative. Beyond the health implications, one of the most compelling reasons for creating healthier schools is that wellness serves as a power booster for learning. Numerous studies have documented what educators…

  10. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  11. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  12. Well apparatus

    SciTech Connect

    Akkerman, N.H.

    1986-12-16

    This patent describes, for use in landing a well tool within a selected one of a plurality of vertically spaced landing nipples of a well conduit connected as part of a well string, wherein each nipple has a cylindrical bore of the same diameter as the others and a groove having an upwardly facing seat thereabout, a well apparatus comprising a wire line running tool, a landing tool connectible to the running tool for raising and lowering therewith within the well string, keys each having a downwardly facing shoulder and carried by the landing tool for radial movement between inner positions in which they move past the locking grooves and outer positions in which they may move upwardly through the nipples. They fit within the groove of any of the nipples to land the shoulders thereof on the seat of the groove, upon downward movement, spring means carried by the landing tool for shifting between a first position urging the keys to their inner positions, as the landing tool is lowered within the conduit and until the keys are beneath the groove in a selected nipple. A second position urges the keys to their outer positions, upon raising of the landing tool to lift the keys above the groove in the selected nipple, sensing means carried by the landing tool and urged radially outwardly to a position to engage the bore of a nipple as the landing tool is lowered to move the keys into a position opposite the groove of the selected nipple, and means on the landing tool which is responsive to movement of the sensing means into engagement with the bore and further lowering of the landing tool, following movement of the keys into the groove, for holding the keys within the locking groove of the selected nipple.

  13. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  14. Groundwater monitoring of hydraulic fracturing in California: Recommendations for permit-required monitoring

    NASA Astrophysics Data System (ADS)

    Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.

    2015-12-01

    California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across

  15. Well pump

    SciTech Connect

    Page, J.S.

    1983-03-08

    Well fluid pumping apparatus comprises: (A) body structure defining an upright plunger bore, (B) a plunger reciprocable in that bore, (C) the body structure also defining a chamber sidewardly offset from an axis defined by the plunger bore and communicating with the bore, and (D) valving carried by the body structure to pass intake fluid via the chamber into the plunger bore in response to stroking of the plunger in one direction in the bore, and to pass discharge fluid from the plunger bore into and from the chamber in response to stroking of the plunger in the opposite direction in the bore.

  16. Monitoring Physiological Variables with Membrane Probes

    NASA Technical Reports Server (NTRS)

    Janle, Elsa M.

    1997-01-01

    This project has demonstrated the possibility of using membrane probes in rodents to monitor physiological variables for extended periods of time. The utility of these probes in physiological studies of microgravity has been demonstrated. The feasibility of developing on-line sensors has also been demonstrated and allows for the possibility of developing real-time automated monitoring systems which can be used in ground-base physiological research as well as in research and medical monitoring in space. In addition to space applications these techniques can be extended to medical monitoring in critical care situations on earth as well as facilitating research in many human and animal diseases.

  17. Oil-Well Cement and C[subscript 3]S Hydration Under High Pressure as Seen by In Situ X-Ray Diffraction, Temperatures 80[degrees]C with No Additives

    SciTech Connect

    Jupe, Andrew C.; Wilkinson, Angus P.; Funkhouser, Gary P.

    2013-01-10

    The hydration kinetics of a white cement and batches of both Class G and H oil-well cements were examined between 0 and 60 MPa, at {le}80 C, using in situ synchrotron X-ray diffraction. This gives a continuous measure of the C{sub 3}S (Ca{sub 3}SiO{sub 5}), CH (Ca(OH){sub 2}), C{sub 4}AF (Ca{sub 2}FeAlO{sub 5}), ettringite, and other phases in the hydrating slurries. Slurries prepared from single-phase C{sub 3}S; synthetic C{sub 4}AF, and gypsum; and white cement, synthetic C{sub 4}AF and gypsum were also examined. An increasing pressure enhanced the rate of hydration for all slurries. Analysis of the data, using a kinetic model, provided rate constants that were used to obtain activation volumes for C{sub 3}S hydration. For all the cement and C{sub 3}S slurries studied, similar activation volumes were obtained (average {Delta}{double_dagger}{approx}-35 cm{sup 3}/mol), indicating that the presence of cement phases other than C{sub 3}S has a modest influence on the pressure dependence of C{sub 3}S hydration. An alternative analysis, using the time at which 90% of the initial C{sub 3}S remained, gave similar activation volumes. Pressure accelerated the formation of ettringite from synthetic C{sub 4}AF in the presence of gypsum. However, in slurries containing cement, the pressure dependence of C{sub 3}S hydration plays a major role in determining the pressure dependence of ettringite formation.

  18. Using open hole and cased-hole resistivity logs to monitor gas hydrate dissociation during a thermal test in the mallik 5L-38 research well, Mackenzie Delta, Canada

    USGS Publications Warehouse

    Anderson, B.I.; Collett, T.S.; Lewis, R.E.; Dubourg, I.

    2008-01-01

    Gas hydrates, which are naturally occurring ice-like combinations of gas and water, have the potential to provide vast amounts of natural gas from the world's oceans and polar regions. However, producing gas economically from hydrates entails major technical challenges. Proposed recovery methods such as dissociating or melting gas hydrates by heating or depressurization are currently being tested. One such test was conducted in northern Canada by the partners in the Mallik 2002 Gas Hydrate Production Research Well Program. This paper describes how resistivity logs were used to determine the size of the annular region of gas hydrate dissociation that occurred around the wellbore during the thermal test in the Mallik 5L-38 well. An open-hole logging suite, run prior to the thermal test, included array induction, array laterolog, nuclear magnetic resonance and 1.1-GHz electromagnetic propagation logs. The reservoir saturation tool was run both before and after the thermal test to monitor formation changes. A cased-hole formation resistivity log was run after the test.Baseline resistivity values in each formation layer (Rt) were established from the deep laterolog data. The resistivity in the region of gas hydrate dissociation near the wellbore (Rxo) was determined from electromagnetic propagation and reservoir saturation tool measurements. The radius of hydrate dissociation as a function of depth was then determined by means of iterative forward modeling of cased-hole formation resistivity tool response. The solution was obtained by varying the modeled dissociation radius until the modeled log overlaid the field log. Pretest gas hydrate production computer simulations had predicted that dissociation would take place at a uniform radius over the 13-ft test interval. However, the post-test resistivity modeling showed that this was not the case. The resistivity-derived dissociation radius was greatest near the outlet of the pipe that circulated hot water in the wellbore

  19. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004-2006.

    PubMed

    Werckenthin, Christiane; Alesík, Eva; Grobbel, Mirjam; Lübke-Becker, Antina; Schwarz, Stefan; Wieler, Lothar H; Wallmann, Jürgen

    2007-01-01

    During the BfT-GermVet monitoring program, Pseudomonas (P) aeruginosa from dogs and cats (n = 99) as well as Arcanobacterium (A.) pyogenes from cattle and swine (n = 90) were examined for their antimicrobial susceptibility. In general, P. aeruginosa is known to be resistant against many antimicrobial agents whereas A. pyogenes is thought to be susceptible to most agents in-vitro. However, representative and actual minimum inhibitory concentration (MIC) values are missing for both veterinary pathogens. In the present study, MIC values were determined and categorized according to the recommendations given in the Clinical and Laboratory Standards Institute (CLSI) documents M31-A2 and M31-S1. For susceptibility testing of A. pyogenes, the CLSI methodology was slightly modified. Specific breakpoints were not available for most of the antimicrobial agents tested. P. aeruginosa isolates from infections of the skin, ear and mouth as well as the urinary and genital tract of dogs and cats were either resistant or exhibited high MIC values to most antimicrobial agents tested. However, gentamicin resistant isolates were observed in only 27% and 11% (intermediate isolates 29% and 39%), respectively. For the same bacterium/host animal/organ system combinations, enrofloxacin resistance was detected in only 24% and 11% of the isolates (intermediate isolates 49% and 61%). For A. pyogenes, resistance was most prevalent against tetracycline (33%-56%, bovine and porcine isolates) and sulfonamides (26%-40%, bovine isolates).

  20. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  1. INTEC Groundwater Monitoring Report 2006

    SciTech Connect

    J. R. Forbes S. L. Ansley M. Leecaster

    2007-02-01

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  2. Hanford well custodians. Revision 1

    SciTech Connect

    Schatz, A.L.; Underwood, D.J.

    1995-02-02

    The Hanford Site Groundwater Protection Management Program recognized the need to integrate monitoring well activities in a centralized manner. A key factor to Hanford Site well integration was the need to clearly identify a responsible party for each of the wells. WHC was asked to identify all wells on site, the program(s) using each well, and the program ultimately responsible for the well. This report lists the custodian and user(s) for each Hanford well and supplies a comprehensive list of all decommissioned and orphaned wells on the Hanford Site. This is the first update to the original report released in December 1993.

  3. Monitoring pesticides in wildlife

    USGS Publications Warehouse

    Dustman, E.H.; Martin, W.E.; Heath, R.G.; Reichel, W.L.

    1971-01-01

    Early in the development of the wildlife monitoring program, certain criteria were recognized as being important in the selection of species of wild animals suitable for pesticide monitoring purposes. Ideally, the forms selected should be geographically well distributed, and they should be reasonably abundant and readily available for sampling. In addition, animals occurring near the top of food chains have the capacity to reflect residues in organisms occurring at lower levels in the same food chains. Based on these criteria, species chosen for monitoring include the starling (Sturnus vulgaris), mallard (Anas platyrhynchos) and black ducks (Anas rubripes), and the bald eagle (Haliaeetus leucocephalus). The black duck is substituted for the mallard in States where suitable numbers of mallards cannot be obtained. The Bureau of Sport Fisheries and Wildlife is held responsible for the execution of the wildlife portion of the National Pesticide Monitoring Program. The primary objective is to ascertain on a nationwide basis and independent of specific treatments the levels and trends of certain pesticidal chemicals and other pollutants in the bodies of selected forms of wildlife. The program was first described by Johnson et al. (4) in 1967. The purpose of this report is to update and redescribe the wildlife monitoring program and briefly review accomplishments.

  4. Routine Assessment of Patient Index Data 3 score (RAPID3) correlates well with Bath Ankylosing Spondylitis Disease Activity index (BASDAI) in the assessment of disease activity and monitoring progression of axial spondyloarthritis.

    PubMed

    Danve, Abhijeet; Reddy, Anusha; Vakil-Gilani, Kiana; Garg, Neha; Dinno, Alexis; Deodhar, Atul

    2015-01-01

    Routine Assessment of Patient Index Data 3 (RAPID3) is a composite index, very useful for assessment of disease activity of various rheumatic diseases including RA. If RAPID3 can also reliably measure disease activity in axial spondyloarthritis (axSpA), it may prove to be a practical and effective quantitative assessment tool in busy practices. We studied the association of RAPID3 with Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Patients with Ankylosing Spondylitis (AS) seen from 2007 to 2012 were classified as having AS or non-radiographic axial spondyloarthritis (nr-axSpA) using modified New York criteria and Assessment of SpondyloArthritis International Society criteria, respectively. Patients with simultaneous BASDAI and RAPID3 scores were enrolled (N = 112; 105 with AS, seven with nr-axSpA). Multiple regression and nonparametric receiver operating characteristics were used. Baseline mean (SD) BASDAI and RAPID3 were 4.2 (2.5) and 3.8 (2.3), respectively. Multiple linear regressions modeled a quadratic relationship between BASDAI and RAPID3 for 321 observations in 112 patients with axSpA (1) cross-sectionally: BASDAI predicted by RAPID3 (β = 1.171; s.e. = 0.113, p < 0.001) and RAPID3(2) (β = -0.037; s.e. = 0.014, p = 0.011) with an adjusted R (2) of 0.676; and (2) longitudinally: BASDAI predicted by RAPID3 (β = 1.196; s.e. = 0.111, p < 0.001), RAPID3(2) (β = -0.042; s.e. = 0.014, p = 0.004), and visit number (β = -0.142; s.e. = 0.038, p < 0.001) with an adjusted R (2) of 0.689. RAPID3 (correctly classified) corresponded to BASDAI scores of 2, 4, and 6: 1.40 (85.8 %), 3.33 (81.9 %), and 5.43 (87.1 %), respectively. RAPID3 correlates well with BASDAI in monitoring axSpA patients (including AS) in cross-sectional and longitudinal follow-up. Since it also correlates with measures of disease activity of other rheumatic diseases including RA, RAPID3 could be an attractive measure

  5. Remote down-hole well telemetry

    DOEpatents

    Briles, Scott D.; Neagley, Daniel L.; Coates, Don M.; Freund, Samuel M.

    2004-07-20

    The present invention includes an apparatus and method for telemetry communication with oil-well monitoring and recording instruments located in the vicinity of the bottom of gas or oil recovery pipes. Such instruments are currently monitored using electrical cabling that is inserted into the pipes; cabling has a short life in this environment, and requires periodic replacement with the concomitant, costly shutdown of the well. Modulated reflectance, a wireless communication method that does not require signal transmission power from the telemetry package will provide a long-lived and reliable way to monitor down-hole conditions. Normal wireless technology is not practical since batteries and capacitors have to frequently be replaced or recharged, again with the well being removed from service. RF energy generated above ground can also be received, converted and stored down-hole without the use of wires, for actuating down-hole valves, as one example. Although modulated reflectance reduces or eliminates the loss of energy at the sensor package because energy is not consumed, during the transmission process, additional stored extra energy down-hole is needed.

  6. Additive manufacturing of materials: Opportunities and challenges

    SciTech Connect

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; Peter, William H.; Watkins, Thomas R.; Pannala, Sreekanth

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performance computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.

  7. Additive manufacturing of materials: Opportunities and challenges

    DOE PAGES

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Dehoff, Ryan R.; ...

    2015-11-01

    Additive manufacturing (also known as 3D printing) is considered a disruptive technology for producing components with topologically optimized complex geometries as well as functionalities that are not achievable by traditional methods. The realization of the full potential of 3D printing is stifled by a lack of computational design tools, generic material feedstocks, techniques for monitoring thermomechanical processes under in situ conditions, and especially methods for minimizing anisotropic static and dynamic properties brought about by microstructural heterogeneity. In this paper, we discuss the role of interdisciplinary research involving robotics and automation, process control, multiscale characterization of microstructure and properties, and high-performancemore » computational tools to address each of these challenges. In addition, emerging pathways to scale up additive manufacturing of structural materials to large sizes (>1 m) and higher productivities (5–20 kg/h) while maintaining mechanical performance and geometrical flexibility are also discussed.« less

  8. Child Wellness and Happiness

    ERIC Educational Resources Information Center

    Rettew, David C.

    2009-01-01

    Wellness and happiness should be considered in the clinical treatment of child and adolescent psychiatry, in addition with thinking about illness. Meanwhile, various studies on child and adolescent psychiatry,which includes an article from the "Journal of Happiness Studies," are discussed.

  9. Fallon FORGE Well Lithologies

    SciTech Connect

    Doug Blankenship

    2016-03-01

    x,y,z text file of the downhole lithologic interpretations in the wells in and around the Fallon FORGE site. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.

  10. Groundwater data for selected wells within the Eastern San Joaquin Groundwater Subbasin, California, 2003-8

    USGS Publications Warehouse

    Clark, Dennis A.; Izbicki, John A.; Metzger, Loren F.; Everett, Rhett; Smith, Gregory A.; O'Leary, David R.; Teague, Nicholas F.; Burgess, Matthew K.

    2012-01-01

    Data were collected by the U.S. Geological Survey from 2003 through 2008 in the Eastern San Joaquin Groundwater Subbasin, 80 miles east of San Francisco, California, as part of a study of the increasing chloride concentrations in groundwater processes. Data collected include geologic, geophysical, chemical, and hydrologic data collected during and after the installation of five multiple-well monitoring sites, from three existing multiple-well sites, and from 79 selected public-supply, irrigation, and domestic wells. Each multiple-well monitoring site installed as part of this study contained three to five 2-inch diameter polyvinyl chloride (PVC)-cased wells ranging in depth from 68 to 880 feet below land surface. Continuous water-level data were collected from the 19 wells installed at these 5 sites and from 10 existing monitoring wells at 3 additional multiple-well sites in the study area. Thirty-one electromagnetic logs were collected seasonally from the deepest PVC-cased monitoring well at seven multiple-well sites. About 200 water samples were collected from 79 wells in the study area. Coupled well-bore flow data and depth-dependent water-quality data were collected from 12 production wells under pumped conditions, and well-bore flow data were collected from 10 additional wells under unpumped conditions.

  11. Monitoring a high-amplitude δ Scuti star for 152 days: discovery of 12 additional modes and modulation effects in the light curve of CoRoT 101155310

    NASA Astrophysics Data System (ADS)

    Poretti, E.; Rainer, M.; Weiss, W. W.; Bognár, Zs.; Moya, A.; Niemczura, E.; Suárez, J. C.; Auvergne, M.; Baglin, A.; Baudin, F.; Benkő, J. M.; Debosscher, J.; Garrido, R.; Mantegazza, L.; Paparó, M.

    2011-04-01

    Aims: The detection of small-amplitude nonradial modes in high-amplitude δ Sct (HADS) variables has been very elusive until at least five of them were detected in the light curve of V974 Oph obtained from ground-based observations. The combination of radial and nonradial modes has a high asteroseismic potential, thanks to the strong constraints we can put in the modelling. The continuous monitoring of ASAS 192647-0030.0 ≡ CoRoT 101155310 (P = 0.1258 d, V = 13.4) ensured from space by the CoRoT (COnvection, ROtation and planetary Transits) mission constitutes a unique opportunity to exploit such potential. Methods: The 22270 CoRoT measurements were performed in the chromatic mode. They span 152 d and cover 1208 consecutive cycles. After the correction for one jump and the long-term drift, the level of the noise turned out to be 29 μmag. The phase shifts and amplitude ratios of the coloured CoRoT data, the HARPS spectra, and the period-luminosity relation were used to determine a self-consistent physical model. In turn, it allowed us to model the oscillation spectrum, also giving feedback on the internal structure of the star. Results: In addition to the fundamental radial mode f1 = 7.949 d-1 with harmonics up to 10f1, we detected 12 independent terms. Linear combinations were also found and the light curve was solved by means of 61 frequencies (smallest amplitude 0.10 mmag). The newest result is the detection of a periodic modulation of the f1 mode (triplets at ± 0.193 d-1 centred on f1 and 2f1), discussed as a rotational effect or as an extension of the Blazhko effect to HADS stars. The physical model suggests that CoRoT 101155310 is an evolved star, with a slight subsolar metallic abundance, close to the terminal age main sequence. All the 12 additional terms are identified with mixed modes in the predicted overstable region. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science

  12. Isobaric groundwater well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  13. Workshop on hydrologic and geochemical monitoring in the Long Valley Caldera: proceedings

    SciTech Connect

    Sorey, M.L.; Farrar, C.D.; Wollenberg, H.A.

    1984-10-01

    A workshop reviewed the results of hydrologic and geochemical monitoring in the Long Valley caldera. Such monitoring is being done to detect changes in the hydrothermal system induced by ongoing magmatic and tectonic processes. Workshop participants discussed the need to instrument sites for continuous measurements of several parameters and to obtain additional hydrologic and chemical information from intermediate and deep drill holes. In addition to seismic and deformation monitoring, programs are currently in progress to monitor changes in the discharge characteristics of hot springs, fumaroles, and soil gases, as well as pressures and temperatures in wells. Some hydrochemical parameters are measured continuously, others are measured monthly or at longer intervals. This report summarizes the information presented at the hydrologic monitoring workshop, following the workshop agenda which was divided into four sessions: (1) overview of the hydrothermal system; (2) monitoring springs, fumaroles, and wells; (3) monitoring gas emissions; and (4) conclusions and recommendations.

  14. Testing of the Pleasant Bayou Well through October 1990

    SciTech Connect

    Randolph, P.L.; Hayden, C.G.; Mosca, V.L.; Anhaiser, J.L.

    1992-08-01

    Pleasant Bayou location was inactive from 1983 until the cleanout of the production and disposal wells in 1986. The surface facilities were rehabilitated and after shakedown of the system, additional repair of wellhead valves, and injection of an inhibitor pill, continuous long-term production was started in 1988. Over two years of production subsequent to that are reviewed here, including: production data, brine sampling and analysis, hydrocarbon sampling and analysis, solids sampling and analysis, scale control and corrosion monitoring and control.

  15. Neutron Characterization for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Watkins, Thomas; Bilheux, Hassina; An, Ke; Payzant, Andrew; DeHoff, Ryan; Duty, Chad; Peter, William; Blue, Craig; Brice, Craig A.

    2013-01-01

    Oak Ridge National Laboratory (ORNL) is leveraging decades of experience in neutron characterization of advanced materials together with resources such as the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR) shown in Fig. 1 to solve challenging problems in additive manufacturing (AM). Additive manufacturing, or three-dimensional (3-D) printing, is a rapidly maturing technology wherein components are built by selectively adding feedstock material at locations specified by a computer model. The majority of these technologies use thermally driven phase change mechanisms to convert the feedstock into functioning material. As the molten material cools and solidifies, the component is subjected to significant thermal gradients, generating significant internal stresses throughout the part (Fig. 2). As layers are added, inherent residual stresses cause warping and distortions that lead to geometrical differences between the final part and the original computer generated design. This effect also limits geometries that can be fabricated using AM, such as thin-walled, high-aspect- ratio, and overhanging structures. Distortion may be minimized by intelligent toolpath planning or strategic placement of support structures, but these approaches are not well understood and often "Edisonian" in nature. Residual stresses can also impact component performance during operation. For example, in a thermally cycled environment such as a high-pressure turbine engine, residual stresses can cause components to distort unpredictably. Different thermal treatments on as-fabricated AM components have been used to minimize residual stress, but components still retain a nonhomogeneous stress state and/or demonstrate a relaxation-derived geometric distortion. Industry, federal laboratory, and university collaboration is needed to address these challenges and enable the U.S. to compete in the global market. Work is currently being conducted on AM technologies at the ORNL

  16. The Savannah River Site's groundwater monitoring program

    SciTech Connect

    Not Available

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  17. Monitoring Local Comprehension Monitoring in Sentence Reading

    ERIC Educational Resources Information Center

    Vorstius, Christian; Radach, Ralph; Mayer, Michael B.; Lonigan, Christopher J.

    2013-01-01

    on ways to improve children's reading comprehension. However, processes and mechanisms underlying this skill are currently not well understood. This article describes one of the first attempts to study comprehension monitoring using eye-tracking methodology. Students in fifth…

  18. Well productivity for arbitrarily inclined well

    SciTech Connect

    Mochizuki, S.

    1995-12-31

    This work extends Peaceman`s equation to a well areally and vertically inclined at arbitrary angles with respect to grid lines in anisotropic reservoirs. The method is based on the transformation of the anisotropic flow equation to a homogeneous equation, and interpolating the effective well block radius, wellbore radius, and equivalent well length as a function of angles.

  19. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  20. Vapor port and groundwater sampling well

    DOEpatents

    Hubbell, Joel M.; Wylie, Allan H.

    1996-01-01

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  1. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    SciTech Connect

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; Bjornstad, Bruce N.; Mackley, Rob D.; Kelly, Mark E.; Sullivan, Charlotte; Williams, Mark D.; Amonette, James E.; Downs, Janelle L.; Fritz, Brad G.; Szecsody, Jim E.; Bonneville, Alain; Gilmore, Tyler J.

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoring strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.

  2. Fiscal year 1994 well installation program summary report, Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1994-09-01

    This report summarizes the well installation activities conducted during the federal fiscal year (FY) 1994 drilling program at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Synopses of monitoring well construction/well development data, well location rationale, geological/hydrological observations, quality assurance/quality control methods, and health and safety monitoring are included. Two monitoring wells were installed and one piezometer installation was attempted, but not completed, during the FY 1994 drilling program. In addition, SAIC provided health and safety and geotechnical oversight for two soil borings in support of the Y-12 Underground Storage Tank (UST) Program. All new monitoring wells were developed by either a 2.0-in. diameter swab rig or by hand bailing until nonspecific indicator parameters (pH and specific conductance) attained steady-state levels. Turbidity levels were lowered, if required, to the extent practicable by continued development beyond a steady-state level of pH and conductance. All well installation was conducted following industry-standard methods and approved procedures in the Environment Surveillance Procedures Quality Control Program (Energy Systems 1988), the Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document (EPA 1986), and Guidelines for Installation of Monitor Wells at the Y-12 Plant (Geraghty and Miller 1985). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Martin Marietta Energy Systems, Inc. (Energy Systems) guidelines. All of the monitoring wells installed during FY 1994 at the Y-12 Plant were of screened construction.

  3. HyperCard Monitor System.

    ERIC Educational Resources Information Center

    Harris, Julian; Maurer, Hermann

    An investigation into high level event monitoring within the scope of a well-known multimedia application, HyperCard--a program on the Macintosh computer, is carried out. A monitoring system is defined as a system which automatically monitors usage of some activity and gathers statistics based on what is has observed. Monitor systems can give the…

  4. Geopressured-geothermal well activities in Louisiana

    SciTech Connect

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  5. Well servicing fluid

    SciTech Connect

    Liao, A.

    1991-07-02

    This patent describes a well servicing fluid. It comprises an aqueous medium from about 0.2 to about 5 pounds per barrel of a partially hydrolyzed homopolymer of acrylamide having an average molecular weight greater than 1 million, and a calcium-controlling additive. It comprises from about 0.1 to about 2.5 pounds per barrel of the fluid of an alkali metal bicarbonate, from about 0.1 to about 2.5 pounds per barrel of the fluid of a water-soluble, carboxylic acid, and from about 0.1 to about 1.5 pounds per barrel of the fluid of a terpolymer containing from about 40 to about 70% by weight acrylamide, from about 20 to about 40% by weight of an acrylic acid and from about 5 to about 20% by weight of 2-acrylamido-2-methylpropanesulfonic acid, the terpolymer having an average molecular weight of from about 5 to about 10 million.

  6. Evaluation of increases in dissolved solids in ground water, Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, Anthony; Packard, E.M.

    1982-01-01

    Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)

  7. New addition curing polyimides

    NASA Technical Reports Server (NTRS)

    Frimer, Aryeh A.; Cavano, Paul

    1991-01-01

    In an attempt to improve the thermal-oxidative stability (TOS) of PMR-type polymers, the use of 1,4-phenylenebis (phenylmaleic anhydride) PPMA, was evaluated. Two series of nadic end-capped addition curing polyimides were prepared by imidizing PPMA with either 4,4'-methylene dianiline or p-phenylenediamine. The first resulted in improved solubility and increased resin flow while the latter yielded a compression molded neat resin sample with a T(sub g) of 408 C, close to 70 C higher than PME-15. The performance of these materials in long term weight loss studies was below that of PMR-15, independent of post-cure conditions. These results can be rationalized in terms of the thermal lability of the pendant phenyl groups and the incomplete imidization of the sterically congested PPMA. The preparation of model compounds as well as future research directions are discussed.

  8. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  9. Monitoring of subsurface injection of wastes, Florida

    USGS Publications Warehouse

    Vecchioli, John

    1979-01-01

    Injection of waste liquids into Florida's subsurface is physically feasible in many places but should be accompanied by monitoring of the waste-receiving aquifer system in addition to the injection facility. Monitoring of the interaction of factors including hydrogeologic conditions, well construction, waste volumes and characteristics, and potable-water sources is desirable to assure that fresh-water resources are not being adversely affected. An effective aquifer-system monitoring program includes on-site wells located close to an injection well and open to the next-higher permeable stratum, satellite wells located hundreds to several thousands of feet from an injection well and open to the receiving aquifer, and regional wells located miles from individual injection wells and open to the receiving aquifer. An extensive aquifer-system monitoring program associated with two waste-injection facilities near Pensacola, Florida, has provided data which have aided hydrologists to understand the aquifer system's response to the injection and, accordingly, to evaluate the potential for affecting the area's fresh-water resources.

  10. Additive manufacturing of optical components

    NASA Astrophysics Data System (ADS)

    Heinrich, Andreas; Rank, Manuel; Maillard, Philippe; Suckow, Anne; Bauckhage, Yannick; Rößler, Patrick; Lang, Johannes; Shariff, Fatin; Pekrul, Sven

    2016-08-01

    The development of additive manufacturing methods has enlarged rapidly in recent years. Thereby, the work mainly focuses on the realization of mechanical components, but the additive manufacturing technology offers a high potential in the field of optics as well. Owing to new design possibilities, completely new solutions are possible. This article briefly reviews and compares the most important additive manufacturing methods for polymer optics. Additionally, it points out the characteristics of additive manufactured polymer optics. Thereby, surface quality is of crucial importance. In order to improve it, appropriate post-processing steps are necessary (e.g. robot polishing or coating), which will be discussed. An essential part of this paper deals with various additive manufactured optical components and their use, especially in optical systems for shape metrology (e.g. borehole sensor, tilt sensor, freeform surface sensor, fisheye lens). The examples should demonstrate the potentials and limitations of optical components produced by additive manufacturing.

  11. FISCAL YEAR 1997 WELL INSTALLATION, PLUGGING AND ABANDONMENT, AND REDEVELOPMENT SUMMARY REPORT Y-12 PLANT, OAK RIDGE, TENNESSEE

    SciTech Connect

    SCIENCE APPLICATIONS INTERNATIONAL CORPORATION

    1997-09-01

    This report summarizes the well installation, plugging and abandonment and redevelopment activities conducted during the federal fiscal year (FY) 1997 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. No new groundwater monitoring wells were installed during FY 1997. However, 13 temporary piezometers were installed around the Upper East Fork Poplar Creek (UEFPC) in the Y-12 Plant. An additional 36 temporary piezometers, also reported in this document, were installed in FY 1996 and, subsequently, assigned GW-series identification. A total of 21 monitoring wells at the Y-12 Plant were decommissioned in FY 1997. Three existing monitoring wells underwent redevelopment during FY 1997. All well installation and development (including redevelopment) was conducted following industry-standard methods and approved procedures in the Environmental Surveillance Procedures Quality Control Program (Energy Systems 1988), the {ital Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document} (EPA 19?6), and {ital Guidelines for Installation of Monitoring Wells at the Y-12 Plant} (Geraghty & Miller 1985). All wells were plugged and abandoned in accordance with the Monitoring Well Plugging and Abandonment Plan for the U.S. Department of Energy, Y-12 Plant, Oak Ridge, Tennessee (HSW, Inc. 1991). Health and safety monitoring and field screening of drilling returns and development waters were conducted in accordance with approved Lockheed Martin Energy Systems, Inc. (Energy Systems) guidelines.

  12. Blowout Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    C Language Integrated Production System (CLIPS), a NASA-developed software shell for developing expert systems, has been embedded in a PC-based expert system for training oil rig personnel in monitoring oil drilling. Oil drilling rigs if not properly maintained for possible blowouts pose hazards to human life, property and the environment may be destroyed. CLIPS is designed to permit the delivery of artificial intelligence on computer. A collection of rules is set up and, as facts become known, these rules are applied. In the Well Site Advisor, CLIPS provides the capability to accurately process, predict and interpret well data in a real time mode. CLIPS was provided to INTEQ by COSMIC.

  13. Monitoring cytosolic and ER Zn2+ in stimulated breast cancer cells using genetically encoded FRET sensors† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5mt00257e Click here for additional data file.

    PubMed Central

    Hessels, Anne M.; Taylor, Kathryn M.

    2016-01-01

    The Zn2+-specific ion channel ZIP7 has been implicated to play an important role in releasing Zn2+ from the ER. External stimulation of breast cancer cells has been proposed to induce phosphorylation of ZIP7 by CK2α, resulting in ZIP7-mediated Zn2+ release from the ER into the cytosol. Here, we examined whether changes in cytosolic and ER Zn2+ concentrations can be detected upon such external stimuli. Two previously developed FRET sensors for Zn2+, eZinCh-2 (K d = 1 nM at pH 7.1) and eCALWY-4 (K d = 0.63 nM at pH 7.1), were expressed in both the cytosol and the ER of wild-type MCF-7 and TamR cells. Treatment of MCF-7 and TamR cells with external Zn2+ and pyrithione, one of the previously used triggers, resulted in an immediate increase in free Zn2+ in both cytosol and ER, suggesting that Zn2+ was directly transferred across the cellular membranes by pyrithione. Cells treated with a second trigger, EGF/ionomycin, showed no changes in intracellular Zn2+ levels, neither in multicolor imaging experiments that allowed simultaneous imaging of cytosolic and ER Zn2+, nor in experiments in which cytosolic and ER Zn2+ were monitored separately. In contrast to previous work using small-molecule fluorescent dyes, these results indicate that EGF–ionomycin treatment does not result in significant changes in cytosolic Zn2+ levels as a result from Zn2+ release from the ER. These results underline the importance of using genetically encoded fluorescent sensors to complement and verify intracellular imaging experiments with synthetic fluorescent Zn2+ dyes. PMID:26739447

  14. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  15. Borehole Data Package for 1998 Wells Installed at Single-Shell Tank Waste Management Area U

    SciTech Connect

    DG Horton; FN Hodges

    1999-03-23

    Two new Resource Conservation and Recovery Act (RCR4) groundwater monitoring wells were installed at the single-shell tank f- Waste Management Area (WMA) U in October 1998 in fi,dfillrnent of Tri-PaQy Agreement (Ecology 1996) milestone M-24-39. The wells are 299-W19-41 and 299-W19-42. Well 299-W19-41 is located east of the southeastern comer of the WMA and replaces downgradient well 299-W19-32. Well 299-W19-42 is located east of the WNIA near the northeastern comer and is a new downgradient monitoring well. The locations of all wells in the monitoring network are shown on Figure 1. The groundwater monitoring plan for WMA U (Caggiano and Goodwin 1991) describes the hydrogeology of the 200 West Area and WMA U. An Interim Change Notice to the groundwater monitoring plan provides justification for the new wells. The new wells were constructed to the specifications and requirements described in Washington Administrative Code (WAC) 173-160 and WAC 173-303. This document compiles Mormation on the drilling and Construction well development pump installation, and sedment testing applicable to wells 299-W19-41 and 299-W19-42. Appendix A contains the geologist's log, the Well Construction Summary Reportj and Well Summary Sheet (as-built diagram); Appendix B contains results of laboratory measurements of particle size distribution pm conductivity, and calcium carbonate and moisture contents; and Append~ C contains geophysical logs. Aquifer tests (slug tests) were pefiormed on both new wells. Results from the aquifer tests will be reported elsewhere. Additional documentation concerning well construction is on file with Bechtel Hanford, Inc., Richland Washington.

  16. Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

    SciTech Connect

    L.H. Karr; J.J. Tappen; D. Shafer; K.J. Gray

    2008-06-05

    As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.

  17. Food additives and preschool children.

    PubMed

    Martyn, Danika M; McNulty, Breige A; Nugent, Anne P; Gibney, Michael J

    2013-02-01

    Food additives have been used throughout history to perform specific functions in foods. A comprehensive framework of legislation is in place within Europe to control the use of additives in the food supply and ensure they pose no risk to human health. Further to this, exposure assessments are regularly carried out to monitor population intakes and verify that intakes are not above acceptable levels (acceptable daily intakes). Young children may have a higher dietary exposure to chemicals than adults due to a combination of rapid growth rates and distinct food intake patterns. For this reason, exposure assessments are particularly important in this age group. The paper will review the use of additives and exposure assessment methods and examine factors that affect dietary exposure by young children. One of the most widely investigated unfavourable health effects associated with food additive intake in preschool-aged children are suggested adverse behavioural effects. Research that has examined this relationship has reported a variety of responses, with many noting an increase in hyperactivity as reported by parents but not when assessed using objective examiners. This review has examined the experimental approaches used in such studies and suggests that efforts are needed to standardise objective methods of measuring behaviour in preschool children. Further to this, a more holistic approach to examining food additive intakes by preschool children is advisable, where overall exposure is considered rather than focusing solely on behavioural effects and possibly examining intakes of food additives other than food colours.

  18. Traffic Monitor

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mestech's X-15 "Eye in the Sky," a traffic monitoring system, incorporates NASA imaging and robotic vision technology. A camera or "sensor box" is mounted in a housing. The sensor detects vehicles approaching an intersection and sends the information to a computer, which controls the traffic light according to the traffic rate. Jet Propulsion Laboratory technical support packages aided in the company's development of the system. The X-15's "smart highway" can also be used to count vehicles on a highway and compute the number in each lane and their speeds, important information for freeway control engineers. Additional applications are in airport and railroad operations. The system is intended to replace loop-type traffic detectors.

  19. Facility effluent monitoring

    SciTech Connect

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  20. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  1. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  2. Adverse reactions to drug additives.

    PubMed

    Simon, R A

    1984-10-01

    There is a long list of additives used by the pharmaceutical industry. Most of the agents used have not been implicated in hypersensitivity reactions. Among those that have, only reactions to parabens and sulfites have been well established. Parabens have been shown to be responsible for rare immunoglobulin E-mediated reactions that occur after the use of local anesthetics. Sulfites, which are present in many drugs, including agents commonly used to treat asthma, have been shown to provoke severe asthmatic attacks in sensitive individuals. Recent studies indicate that additives do not play a significant role in "hyperactivity." The role of additives in urticaria is not well established and therefore the incidence of adverse reactions in this patient population is simply not known. In double-blind, placebo-controlled studies, reactions to tartrazine or additives other than sulfites, if they occur at all, are indeed quite rare for the asthmatic population, even for the aspirin-sensitive subpopulation.

  3. Integrated monitoring plan for the Hanford groundwater monitoring project

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.; McDonald, J.P.; Mercer, R.B.; Newcomer, D.R.; Thornton, E.C.

    1998-09-01

    Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy (DOE) manages these activities through the Hanford Groundwater Monitoring Project (groundwater project), which is the responsibility of Pacific Northwest National Laboratory. The groundwater project does not include all of the monitoring to assess performance of groundwater remediation or all monitoring associated with active facilities. This document is the first integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; other, established monitoring plans by reference; and a master well/constituent/frequency matrix for the entire Hanford Site.

  4. Submersible well pump and well completion system

    SciTech Connect

    Bayh, R.I.

    1990-04-03

    This patent describes a well completion system for a downhole submersible pump and motor. It comprises: a production tubing string with a landing nipple forming an integral part thereof and defining in part a downhole location for releasably anchoring a submersible pump and related components within the production tubing string; a power cable having electrical conductors and fluid conductors to supply both electricity and treating fluid from the well surface to the submersible pump and related components; and a fluid flow path extending through the submersible pump motor and its related components to receive treating fluid from the power cable. Also described is the method of installing and operating a downhole submersible pump and motor.

  5. Wireless Temperature-Monitoring System

    NASA Technical Reports Server (NTRS)

    Solano, Wanda

    2003-01-01

    A relatively inexpensive instrumentation system that includes units that are connected to thermocouples and that are parts of a radio-communication network has been developed to enable monitoring of temperatures at multiple locations. Because there is no need to string wires or cables for communication, the system is well suited for monitoring temperatures at remote locations and for applications in which frequent changes of monitored or monitoring locations are needed. The system can also be adapted to monitoring of slowly varying physical quantities, other than temperature, that can be transduced by solid-state electronic sensors. The system comprises any number of transmitting units and a single receiving unit (see figure). Each transmitting unit includes connections for as many as four external thermocouples, a signal-conditioning module, a control module, and a radio-communication module. The signal- conditioning module acts as an interface between the thermocouples and the rest of the transmitting unit and includes a built-in solid ambient-temperature sensor that is in addition to the external thermocouples. The control module is a "system-on-chip" embedded processor that includes analog-to-digital converters, serial and parallel data ports, and an interface for local connection to an analog meter that is used during installation to verify correct operation. The radio-communication module contains a commercial spread-spectrum transceiver that operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band. This transceiver transmits data to the receiving unit at a rate of 19,200 baud. The receiving unit includes a transceiver like that of a transmitting unit, plus a control module that contains a system-on-chip processor that includes serial data port for output to a computer that runs monitoring and/or control software, a parallel data port for output to a printer, and a seven-segment light-emitting-diode display.

  6. Additive Similarity Trees

    ERIC Educational Resources Information Center

    Sattath, Shmuel; Tversky, Amos

    1977-01-01

    Tree representations of similarity data are investigated. Hierarchical clustering is critically examined, and a more general procedure, called the additive tree, is presented. The additive tree representation is then compared to multidimensional scaling. (Author/JKS)

  7. The organization and operation of the Savannah River Plant`s groundwater monitoring program. Revision 3

    SciTech Connect

    Olson, C.M.; Heffner, J.D.

    1988-09-01

    The Savannah River Plant (SRP) is operated by Du Pont for the Department of Energy. The plant has been operating since 1952 and is one of the largest industrial facilities in the nation. Its function is to produce nuclear materials for the national defense. This paper describes the organization and operation of the Groundwater Monitoring Program (GMP) at the SRP. Groundwater has been actively monitored for radiological parameters at the SRP since the commencement of site operations in the 1950s. More recently, monitoring expanded to include chemical parameters and numerous additional facilities. The GMP is a large monitoring program. Over 700 wells monitor more than 70 facilities which are spread over 300 square miles. The program includes both Du Pont personnel and contractors and is responsible for all phases of groundwater monitoring: the installation (or abandonment) of monitoring wells, the determination of water quality (sample collection, analysis, data review, etc.), and the generation of reports.

  8. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  9. [Food additives and healthiness].

    PubMed

    Heinonen, Marina

    2014-01-01

    Additives are used for improving food structure or preventing its spoilage, for example. Many substances used as additives are also naturally present in food. The safety of additives is evaluated according to commonly agreed principles. If high concentrations of an additive cause adverse health effects for humans, a limit of acceptable daily intake (ADI) is set for it. An additive is a risk only when ADI is exceeded. The healthiness of food is measured on the basis of nutrient density and scientifically proven effects.

  10. Investigation and evaluation of geopressured-geothermal wells. Summary of Gruy Federal's Well-of-Opportunity Program to January 31, 1980

    SciTech Connect

    Not Available

    1980-03-01

    Scouting and monitoring techniques peculiar to geopressured-geothermal wells and legal problems are presented. The following are tabulated: priority wells actively monitored, industry contacts, and the summary of industry responses to well-or-opportunity solicitation. (MHR)

  11. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  12. Hydrologic data and description of a hydrologic monitoring plan for the Borax Lake area, Oregon

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, William D.

    1995-01-01

    Information from field visits was used to develop a monitoring plan. The plan would include monitoring Borax Lake by measuring discharge, stage, evaporation, temperature, and specific conductance; water-quality sampling and analysis; and monitoring shallow ground-water levels near Borax Lake using shallow piezometers. Minimally, one hot spring in North Borax Lake Spring Group 1 would be monitored for temperature and specific conductance and sampled for water-quality analysis. In addition, two flowing wells would be monitored for water levels, temperature, specific conductance, and discharge and sampled for water-quality analysis. The construction characteristics of these wells must be verified before long-term data collection begins. In the future, it may be helpful to monitor shallow and (or) deep observation wells drilled into the thermal aquifer to understand the possible effects of geothermal development on Borax Lake and nearby springs.

  13. Hydrogeologic characterization of wells HTH-1, UE18r, UE6e, and HTH-3, Nevada Test Site

    SciTech Connect

    Lyles, B.F.; McKay, W.A.; Chapman, J.B.; Tyler, S.W.

    1991-06-01

    Monitoring for the migration of contaminants in groundwater or for the proper design of nuclear test emplacement holes at the Nevada Test Site (NTS) requires proper placement and completion of monitoring wells. This is only possible if the hydrogeologic system is understood in a regional and local context, necessitating data from existing wells and boreholes. Though the NTS Groundwater Characterization Project will be drilling wells, their great expense limits the number of new wells. However, there are many existing boreholes and wells on the NTS which have not been completely evaluated hydrologically. Some of these are incorporated in the Long Term Hydrologic Monitoring Program (LTHMP) of the US Environmental Protection Agency (EPA), others are related to the testing programs. In all cases, additional site investigation in necessary to properly interpret the hydrogeologic data from these wells. Monitoring wells on the NTS are poorly characterized with regard to aquifers penetrated, vertical hydraulic gradients, and vertical variations in water quality. One of the goals of the well validation program was to gain a thorough understanding of the parameters needed to interpret the source and fate potential hazardous and radioactive substances that may be detected in these wells in the future. One of the most critical parameters for monitoring is the knowledge of what aquifer or geologic unit is being sampled when a water sample is collected. Pumped water samples are weighted most heavily to the water quality of the most productive (highest transmissivity) aquifer penetrated by the well.

  14. Multiphase booster ups production from subsea well

    SciTech Connect

    1995-05-01

    The Rogn South subsea well has the world`s first commercial subsea multiphase boosting system. The well produces to A/S Norske Shell`s Draugen field, in the Norwegian Sea. The Smubs (Shell multiphase underwater booster station) provides additional energy to transport a mixture of gas and liquids over long distances. This reduces the back pressure on the reservoir to potentially enhance both production and recovery. In-house Shell International Petroleum Maatschappij B.V. (SIPM) has studied estimated facility costs and performance for a multiphase boosting system for a typical small (50 million bbl) field between 20--50 km from a host facility in water depths between 150--1,000 m. The studies showed that technical costs per barrel of oil produced could be cut by up to 30% compared to conventional technology. The Smubs main features are: A single retrievable cartridge that houses all active components susceptible to wear; No orientation requirements for the pump cartridge unit; No orientation requirements for the pump cartridge unit; Hydraulically set and tested seals; and Vertical installation and retrieval with a single tool, and a remotely operated vehicle (ROV) only for a monitoring.

  15. Novel Monitor Paradigm for Real-Time Exposure Assessment

    PubMed Central

    Negi, Indira; Tsow, Francis; Tanwar, Kshitiz; Zhang, Lihua; Iglesias, Rodrigo A.; Chen, Cheng; Rai, Anant; Forzani, Erica S.; Tao, Nongjian (NJ)

    2013-01-01

    A wearable monitor that can reliably, accurately and continuously measure personal exposure levels of various toxicants would not only accelerate the current environmental and occupational health and safety studies, but also enable new studies that are not possible with the current monitoring technology. Developing such a monitor has been a difficult challenge, and requires innovative sensing science and creative engineering. We have developed, built and tested a wearable monitor for real-time detection of toxic hydrocarbons and acids in environment. The monitor is low-cost, accurate, and user-friendly. In addition, it can communicate wirelessly with a cell phone in which the monitoring results can be processed, displayed, stored and transmitted to a designated computer. We have validated the functions and performance of the monitor, and carried out field tests with workers involving waste management, fire overhaul, and floor-cleaning activities, as well as with first- and second-hand smokers. The averaged exposure levels are in agreement with those determined by the standard NIOSH methods. The monitor provides accurate and real-time exposure assessment for the workers involving different activities. The real-time and continuous monitoring capability makes it possible to correlate the exposure levels with different activities and changes in the microenvironments. The monitor provides unprecedented real-time information that will help advance occupational safety and environmental health studies. It may also be used to better protect workers from occupational overexposure to toxic molecules. PMID:20551996

  16. Nevada Test Site Groundwater Well Rehabilitation Plan

    SciTech Connect

    David B. Hudson

    2006-12-01

    This plan describes actions to improve the utility and credibility of the Nevada Test Site (NTS) interim groundwater monitoring program. The two principal actions are: (1) well maintenance/rehabilitation activities and (2) the deployment of dedicated low-cost and reliable jack-pumps for groundwater sampling from deep monitoring wells. The scope of this proposal is to perform these actions on some number of nine selected wells (Figure 1) to evaluate whether these actions are achievable, practical, cost effective, and result in improved groundwater data quality.

  17. A Collaborative University Model for Employee Wellness

    ERIC Educational Resources Information Center

    Carter, Melondie R.; Kelly, Rebecca C.; Alexander, Chelley K.; Holmes, Lauren M.

    2011-01-01

    Universities are taking a more active approach in understanding and monitoring employees' modifiable health risk factors and chronic care conditions by developing strategies to encourage employees to start and sustain healthy behaviors. WellBama, the University of Alabama's signature health and wellness program, utilizes a collaborative model in…

  18. Raising Your Wellness Grade.

    ERIC Educational Resources Information Center

    American Council of Life Insurance, Washington, DC.

    Through an effective wellness program, one can improve his/her lifestyle to achieve a healthy, long life. The concept of wellness is defined in the beginning of this booklet. Next, the benefits of a wellness program are noted. A section is devoted to a "healthstyle" self-test developed by the U.S. Public Health Service. Once the…

  19. HYDRAULICS OF WELLS

    EPA Science Inventory

    Water wells have been used and continue to be used as devices for extracting ground water from aquifers. The importance of wells is not limited to the development of groundwater resources. Wells are used for environmental purposes, among others, the removal of contaminants from g...

  20. Installation of five new hydrogeologic groundwater monitoring wells.

    SciTech Connect

    Catechis, Christopher Spyros

    2013-01-01

    There are two sites comprised of several parcels of land within the Kirtland Military Reservation, Bernalillo County, New Mexico. Site A is located within T 9N, R 4E, Section 13 and Site B is located within T 9N, R 4E, Section 36. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  1. Passive fetal monitoring sensor

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Hall, Earl T. (Inventor); Baker, Donald A. (Inventor); Bryant, Timothy D. (Inventor)

    1992-01-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  2. Passive fetal monitoring sensor

    NASA Astrophysics Data System (ADS)

    Zuckerwar, Allan J.; Hall, Earl T.; Baker, Donald A.; Bryant, Timothy D.

    1992-08-01

    An ambulatory, passive sensor for use in a fetal monitoring system is discussed. The invention is comprised of a piezoelectric polymer film, combined with a metallic mounting plate fastened to a belt, and electrically connected to a signal processing unit by means of a shielded cable. The purpose of the sensor is to receive pressure pulses emitted by a fetus inside an expectant mother. Additionally, the monitor will filter out pressure pulses arising from other sources, such as the maternal heart.

  3. Polylactides in additive biomanufacturing.

    PubMed

    Poh, Patrina S P; Chhaya, Mohit P; Wunner, Felix M; De-Juan-Pardo, Elena M; Schilling, Arndt F; Schantz, Jan-Thorsten; van Griensven, Martijn; Hutmacher, Dietmar W

    2016-12-15

    New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.

  4. Additive Manufactured Product Integrity

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Wells, Doug; James, Steve; Nichols, Charles

    2017-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  5. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    SciTech Connect

    OHL, P.C.

    1999-09-23

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  6. Improve emissions monitoring

    SciTech Connect

    Vining, S.K.

    1998-01-01

    Marathon`s Texas City refinery was subject to five separate EPA regulations in addition to a state program for monitoring and repairing fugitive leaks. In this case history, the refinery sought an organizational solution that reduced monitoring costs and kept the facility fully compliant with current state and federal regulations. Equally important, the new monitoring program incorporated flexibility for future emission-reduction requirements. The paper describes the solution, regulatory background, the previous system, leak-threshold consolidation, operator ownership, and projects benefits.

  7. Potential hydrologic characterization wells in Amargosa Valley

    SciTech Connect

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley.

  8. Microseismic monitoring of the Chaveroo oil field, New Mexico

    SciTech Connect

    Rutledge, J.T.; Albright, J.N.; Fairbanks, T.D.; Murphy, M.B.; Roberts, P.M.

    1990-01-01

    Induced microseismicity was monitored in the Chaveroo oil field in southeastern New Mexico during a pressurized stimulation of a well being prepared as an injector for a waterflood operation. In addition, the microseismicity was monitored for 5 weeks following the stimulation while the area was under normal waterflood production. Little seismicity was detected during the 5.5 hour stimulation in which three thousand barrels of water were injected into the reservoir at pressures ranging from 96 to 257 bars in excess of hydrostatic pressure. Intermittent monitoring over the 5-week period indicated detectable seismicity occurred during waterflood production. Monitoring during the 5 weeks, however, was not complete enough to draw general conclusions on temporal variations of observed microseismicity. Seventy-three good quality events recorded over a cumulative 24 hours of intermittent monitoring were located using the hodogram technique. Events were detected at distances up to 1700 m from the monitor well but most occurred within 900 m. The map of microearthquake locations indicated that events occurred in the vicinity of producing wells and away from injection wells. The first half of the sequence of mappable events occurred along linear trends, but the pattern became more scattered during the later half of the sequence. The lack of seismicity during the pressurized injection and the increased seismicity levels occurring away from injection wells during waterflood production, suggest seismicity is not induced by Mohr-Coulomb failure. 6 refs., 6 figs.

  9. Well Log ETL tool

    SciTech Connect

    Good, Jessica

    2013-08-01

    This is an executable python script which offers two different conversions for well log data: 1) Conversion from a BoreholeLASLogData.xls model to a LAS version 2.0 formatted XML file. 2) Conversion from a LAS 2.0 formatted XML file to an entry in the WellLog Content Model. Example templates for BoreholeLASLogData.xls and WellLogsTemplate.xls can be found in the package after download.

  10. Phenology monitoring protocol: Northeast Temperate Network

    USGS Publications Warehouse

    Tierney, Geri; Mitchell, Brian; Miller-Rushing, Abraham J.; Katz, Jonathan; Denny, Ellen; Brauer, Corinne; Donovan, Therese; Richardson, Andrew D.; Toomey, Michael; Kozlowski, Adam; Weltzin, Jake F.; Gerst, Kathy; Sharron, Ed; Sonnentag, Oliver; Dieffenbach, Fred

    2013-01-01

    historical parks and national historic sites in the northeastern US. This protocol was developed in collaboration with and relies upon the procedures and infrastructure of the USA National Phenology Network (USA-NPN), including Nature’s Notebook, USA-NPN’s online plant and animal phenology observation program (www.nn.usanpn.org). Organized in 2007, USA-NPN is a nation-wide partnership among federal agencies, schools and universities, citizen volunteers, and others to monitor and understand the influence of seasonal cycles on the nation’s biological resources. The overall goal of NETN’s phenology monitoring program is to determine trends in the phenology of key species in order to assist park managers with the detection and mitigation of the effects of climate change on park resources. An additional programmatic goal is to interest and educate park visitors and staff, as well as a cadre of volunteer monitors.

  11. Developing psychophysiological profiles for monitoring stress

    NASA Astrophysics Data System (ADS)

    Moldow, Roberta L.; Bergen, Michael T.; Belin, Kari; Bululu, Luba; Couso, Olivita; McLaughlin, Joselyn; Short, Kenneth R.; Servatius, Richard J.

    2006-05-01

    Training prepares first responders for disasters including terrorist attacks. To train effectively it should be as realistic as possible and elicit the stress response. We are developing a profile that will be a marker for intensity of stress as well as differentiate stress from exertion. We have monitored stress during several training scenarios for different groups including civilian SWAT teams and the military. In addition, we can monitor stress to exposure to nonlethal weapons. We have monitored stress during exposure to blunt impact using a paintball paradigm. We have measured salivary substances (such as cortisol and DHEA [markers for the hypothalamic-pituitary-adrenal axis]) and amylase [marker for the sympathetic branch of the autonomic nervous system], physiological parameters (such as activity and heart rate), and neuropsychological assessment tools (such as Borg's perceived exertion scale, Spielberger's STAI and Thayer's ADC). With these neuroendocrine, physiological and behavioral indices in hand, we are poised to examine stress induction in preparedness in trainees.

  12. Personal Wellness Tools

    MedlinePlus

    ... Research Studies Learn About Research Studies Find Research Studies Peer Support Research WeSearchTogether Advocacy Center Balanced Mind Parent Network Peer Specialist Training Wellness Tracker Facing ...

  13. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  14. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  15. Feasibility of EGS Well Control Systems

    SciTech Connect

    Norann, Randy A; Darlow, Richard

    2015-02-03

    This report covers the 8th major objective listed in Grant DE-FG36-08GO18185. This objective takes the information and experience gained from the development of 300°C well monitoring system and applies them to concepts envisioned for future geothermal well control systems supporting EGS power production. This report covers a large number of instrumentation and control system engineering issues for EGS wells while also providing a window into existing technology to address those issues.

  16. Monitoring Cray Cooling Systems

    SciTech Connect

    Maxwell, Don E; Ezell, Matthew A; Becklehimer, Jeff; Donovan, Matthew J; Layton, Christopher C

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  17. Food Additives and Hyperkinesis

    ERIC Educational Resources Information Center

    Wender, Ester H.

    1977-01-01

    The hypothesis that food additives are causally associated with hyperkinesis and learning disabilities in children is reviewed, and available data are summarized. Available from: American Medical Association 535 North Dearborn Street Chicago, Illinois 60610. (JG)

  18. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  19. Water Treatment Technology - Wells.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  20. Staying Well at Work.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Employee wellness directly affects business/industry operations and costs. When employees are helped and encouraged to stay well, this people-positive policy results in triple benefits: reduced worker absenteeism, increased employee productivity, and lower company expenditures for health costs. Health care programs at the worksite offer these…

  1. Penrose Well Temperatures

    DOE Data Explorer

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  2. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  3. Environmental Monitoring Plan

    SciTech Connect

    Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

    2005-11-23

    The purpose of the environmental monitoring plan (EMP) is to promote the early identification of, and response to, potential adverse environmental impacts associated with DOE operations. Environmental monitoring supports the Integrated Safety Management System (ISMS) to detect, characterize, and respond to releases from DOE activities; assess impacts; estimate dispersal patterns in the environment; characterize the pathways of exposure to members of the public; characterize the exposures and doses to individuals and to the population; and to evaluate the potential impacts to the biota in the vicinity of the DOE activity. In addition, the EMP addresses the analytical work supporting environmental monitoring to ensure the following: (1) A consistent system for collecting, assessing, and documenting environmental data of known and documented quality; (2) A validated and consistent approach for sampling and analysis of radionuclide samples to ensure laboratory data meets program-specific needs and requirements within the framework of a performance-based approach for analytical laboratory work; and (3) An integrated sampling approach to avoid duplicative data collection. Until recently, environmental monitoring at Lawrence Livermore National Laboratory (LLNL) was required by DOE Order 5400.1, which was canceled in January 2003. LLNL is in the process of adopting the ISO 14001 Environmental Management Systems standard, which contains requirements to perform and document environmental monitoring. The ISO 14001 standard is not as prescriptive as DOE Order 5400.1, which expressly required an EMP. LLNL will continue to prepare the EMP because it provides an organizational framework for ensuring that the work is conducted appropriately. The environmental monitoring addressed by the plan includes preoperational characterization and assessment, and effluent and surveillance monitoring. Additional environmental monitoring is conducted at LLNL as part of the compliance with the

  4. Bladder Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Diagnostic Ultrasound Corporation's Bladder Scan Monitor continuously records and monitors bladder fullness and alerts the wearer or caretaker when voiding is required. The sensor is held against the lower abdomen by a belt and connected to the monitor by a cable. The sensor obtains bladder volume data from sound waves reflecting off the bladder wall. The device was developed by Langley Research Center, the Ames Research Center and the NASA Technology Applications Team. It utilizes Langley's advanced ultrasound technology. It is licensed to the ARC for medical applications, and sublicensed to Diagnostics Ultrasound. Central monitoring systems are planned for the future.

  5. IR Linearity Monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2012-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 19 non-linearity monitor, program 12696.

  6. IR linearity monitor

    NASA Astrophysics Data System (ADS)

    Hilbert, Bryan

    2013-10-01

    These observations will be used to monitor the signal non-linearity of the IR channel, as well as to update the IR channel non-linearity calibration reference file. The non-linearity behavior of each pixel in the detector will be investigated through the use of full frame and subarray flat fields, while the photometric behavior of point sources will be studied using observations of 47 Tuc. This is a continuation of the Cycle 20 non-linearity monitor, program 13079.

  7. Quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Barnham, K. W. J.; Ballard, I.; Connolly, J. P.; Ekins-Daukes, N. J.; Kluftinger, B. G.; Nelson, J.; Rohr, C.

    2002-04-01

    This paper reviews the experimental and theoretical studies of quantum well solar cells with an aim of providing the background to the more detailed papers on this subject in these proceedings. It discusses the way quantum wells enhance efficiency in real, lattice matched material systems and fundamental studies of radiative recombination relevant to the question of whether such enhancements are possible in ideal cells. A number of theoretical models for quantum well solar cells (QWSCs) are briefly reviewed and more detail is given of our own group's model of the dark-currents. The temperature and field dependence of QWSCs are all briefly reviewed.

  8. Puna Geothermal Venture Hydrologic Monitoring Program

    SciTech Connect

    1990-04-01

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  9. Gelled compositions and well treating

    SciTech Connect

    Swanson, B.L.

    1984-04-03

    Gelled compositions suitable as fracture fluids and water diversion agents comprising water, a polymeric viscosifier, an aldehyde component, and at least one phenolic component such as resorcinol, catechol, and the like, as well as selected oxidized phenolic materials such as 1,4-benzoquinone of natural or synthetic origin and natural and modified tannins. The gelled compositions can additionally contain gel stabilizers and chemical buffering agents.

  10. Group Sparse Additive Models

    PubMed Central

    Yin, Junming; Chen, Xi; Xing, Eric P.

    2016-01-01

    We consider the problem of sparse variable selection in nonparametric additive models, with the prior knowledge of the structure among the covariates to encourage those variables within a group to be selected jointly. Previous works either study the group sparsity in the parametric setting (e.g., group lasso), or address the problem in the nonparametric setting without exploiting the structural information (e.g., sparse additive models). In this paper, we present a new method, called group sparse additive models (GroupSpAM), which can handle group sparsity in additive models. We generalize the ℓ1/ℓ2 norm to Hilbert spaces as the sparsity-inducing penalty in GroupSpAM. Moreover, we derive a novel thresholding condition for identifying the functional sparsity at the group level, and propose an efficient block coordinate descent algorithm for constructing the estimate. We demonstrate by simulation that GroupSpAM substantially outperforms the competing methods in terms of support recovery and prediction accuracy in additive models, and also conduct a comparative experiment on a real breast cancer dataset.

  11. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  12. Monitoring your baby before labor

    MedlinePlus

    Prenatal care - monitoring; Pregnancy care - monitoring; Non-stress test - monitoring; NST- monitoring; Contraction stress test - monitoring; CST- monitoring; Biophysical profile - monitoring; BPP - monitoring

  13. Rocket engine condition monitoring system

    SciTech Connect

    Hagar, S.K.; Alcock, J.F.

    1989-01-01

    It is expected that the Rocket Engine Condition Monitoring System (RECMS) program will define engine monitoring technologies and an integration approach which can be applied to engine development in support of advanced launch system objectives. The RECMS program approaches engine monitoring as a system which is fully integrated with the engine controller, vehicle monitoring system, and ground processing systems to ensure mission success in addition to engine reliability. The system components are monitored through health and performance sensors; they are analyzed with the diagnostic and prognostic algorithms and demonstrated by system testing with hardware from other advanced development programs.

  14. Vadose zone isobaric well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A deep tensiometer is configured with an outer guide tube having a vented interval along a perforate section at its lower end, which is isolated from atmospheric pressure at or above grade. A transducer having a monitoring port and a reference port is located within a coaxial inner guide tube. The reference port of the transducer is open to the vented interval of the outer guide tube, which has the same gas pressure as in the sediment surrounding the tensiometer. The reference side of the pressure transducer is thus isolated from the effects of atmospheric pressure changes and relative to pressure changes in the material surrounding the tensiometer measurement location and so it is automatically compensated for such pressure changes.

  15. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamine, containing phenylethvnvl groups and various ratios of phthalic anhydride and 4-phenylethynviphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pvrrolidinone to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  16. Fused Lasso Additive Model

    PubMed Central

    Petersen, Ashley; Witten, Daniela; Simon, Noah

    2016-01-01

    We consider the problem of predicting an outcome variable using p covariates that are measured on n independent observations, in a setting in which additive, flexible, and interpretable fits are desired. We propose the fused lasso additive model (FLAM), in which each additive function is estimated to be piecewise constant with a small number of adaptively-chosen knots. FLAM is the solution to a convex optimization problem, for which a simple algorithm with guaranteed convergence to a global optimum is provided. FLAM is shown to be consistent in high dimensions, and an unbiased estimator of its degrees of freedom is proposed. We evaluate the performance of FLAM in a simulation study and on two data sets. Supplemental materials are available online, and the R package flam is available on CRAN. PMID:28239246

  17. Phenylethynyl Containing Reactive Additives

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2002-01-01

    Phenylethynyl containing reactive additives were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynylphthalic anhydride in glacial acetic acid to form the imide in one step or in N-methyl-2-pyrrolidi none to form the amide acid intermediate. The reactive additives were mixed in various amounts (10% to 90%) with oligomers containing either terminal or pendent phenylethynyl groups (or both) to reduce the melt viscosity and thereby enhance processability. Upon thermal cure, the additives react and become chemically incorporated into the matrix and effect an increase in crosslink density relative to that of the host resin. This resultant increase in crosslink density has advantageous consequences on the cured resin properties such as higher glass transition temperature and higher modulus as compared to that of the host resin.

  18. Wellness as fairness.

    PubMed

    Prilleltensky, Isaac

    2012-03-01

    I argue that distinct conditions of justice lead to diverse wellness outcomes through a series of psychosocial processes. Optimal conditions of justice, suboptimal conditions of justice, vulnerable conditions of injustice, and persisting conditions of injustice lead to thriving, coping, confronting, and suffering, respectively. The processes that mediate between optimal conditions of justice and thriving include the promotion of responsive conditions, the prevention of threats, individual pursuit, and avoidance of comparisons. The mechanisms that mediate between suboptimal conditions of justice and coping include resilience, adaptation, compensation, and downward comparisons. Critical experiences, critical consciousness, critical action, and righteous comparisons mediate between vulnerable conditions of injustice and confrontation with the system. Oppression, internalization, helplessness, and upward comparisons mediate between persisting conditions of injustice and suffering. These psychosocial processes operate within and across personal, interpersonal, organizational and community contexts. Different types of justice are hypothesized to influence well-being within each context. Intrapersonal injustice operates at the personal level, whereas distributive, procedural, relational, and developmental justice impact interpersonal well-being. At the organizational level, distributive, procedural, relational and informational justice influence well-being. Finally, at the community level, distributive, procedural, retributive, and cultural justice support community wellness. Data from a variety of sources support the suggested connections between justice and well-being.

  19. Active Sites Environmental Monitoring Program: Program plan

    SciTech Connect

    Ashwood, T.L.; Wickliff, D.S.; Morrissey, C.M.

    1992-02-01

    The Active Sites Environmental Monitoring Program (ASEMP), initiated in 1989, provides early detection and performance monitoring of transuranic (TRU) waste and active low-level waste (LLW) facilities at Oak Ridge National Laboratory (ORNL) in accordance with US Department of Energy (DOE) Order 5820.2A. Active LLW facilities in Solid Waste Storage Area (SWSA) 6 include Tumulus I and Tumulus II, the Interim Waste Management Facility (IWMF), LLW silos, high-range wells, asbestos silos, and fissile wells. The tumulus pads and IWMF are aboveground, high-strength concrete pads on which concrete vaults containing metal boxes of LLW are placed; the void space between the boxes and vaults is filled with grout. Eventually, these pads and vaults will be covered by an engineered multilayered cap. All other LLW facilities in SWSA 6 are below ground. In addition, this plan includes monitoring of the Hillcut Disposal Test Facility (HDTF) in SWSA 6, even though this facility was completed prior to the data of the DOE order. In SWSA 5 North, the TRU facilities include below-grade engineered caves, high-range wells, and unlined trenches. All samples from SWSA 6 are screened for alpha and beta activity, counted for gamma-emitting isotopes, and analyzed for tritium. In addition to these analytes, samples from SWSA 5 North are analyzed for specific transuranic elements.

  20. Additives in plastics.

    PubMed Central

    Deanin, R D

    1975-01-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products. PMID:1175566

  1. Additives in plastics.

    PubMed

    Deanin, R D

    1975-06-01

    The polymers used in plastics are generally harmless. However, they are rarely used in pure form. In almost all commercial plastics, they are "compounded" with monomeric ingredients to improve their processing and end-use performance. In order of total volume used, these monomeric additives may be classified as follows: reinforcing fibers, fillers, and coupling agents; plasticizers; colorants; stabilizers (halogen stabilizers, antioxidants, ultraviolet absorbers, and biological preservatives); processing aids (lubricants, others, and flow controls); flame retardants, peroxides; and antistats. Some information is already available, and much more is needed, on potential toxicity and safe handling of these additives during processing and manufacture of plastics products.

  2. Completion report for Well ER-19-1

    SciTech Connect

    1995-12-01

    Well ER-19-1 was drilled for the U.S. Department of Energy (DOE), Nevada Operations Office (DOE/NV), in support of the Nevada Environmental Restoration Project at the Nevada Test Site (NTS), Nye County, Nevada. IT Corporation (IT) was the principal environmental contractor for the project. The roles and responsibilities of IT and other contractors involved in the project are described in the Raytheon Services Nevada (RSN) Drilling and Completion Programs. The Well ER-19-1 investigation is part of the DOE`s Underground Test Area (UGTA) project at the NTS. The goals of the UGTA project include collecting geological, geophysical, hydrological, and water chemistry data from new and existing wells to define groundwater migration pathways, migration rates, and quality at the NTS. An additional major objective of drilling Well ER-19-1 was to develop dual-wall, reverse-circulation drilling technology for use on small-diameter wells at the NTS. The well will become part of the UGTA monitoring well network.

  3. Biobased lubricant additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  4. More Than Additional Space...

    ERIC Educational Resources Information Center

    CEFP Journal, 1973

    1973-01-01

    A much needed addition to the Jamestown Elementary School turned out to be more than an expansion of walls for more space. A new educational program, a limited budget, and a short time line were tackled on a team approach basis and were successfully resolved. (Author)

  5. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  6. Hantush Well Function revisited

    NASA Astrophysics Data System (ADS)

    Veling, E. J. M.; Maas, C.

    2010-11-01

    SummaryIn this paper, we comment on some recent numerical and analytical work to evaluate the Hantush Well Function. We correct an expression found in a Comment by Nadarajah [Nadarajah, S., 2007. A comment on numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 338, 152-153] to a paper by Prodanoff et al. [Prodanoff, J.A., Mansur, W.J., Mascarenhas, F.C.B., 2006. Numerical evaluation of Theis and Hantush-Jacob well functions. Journal of Hydrology 318, 173-183]. We subsequently derived another analytic representation based on a generalized hypergeometric function in two variables and from the hydrological literature we cite an analytic representation by Hunt [Hunt, B., 1977. Calculation of the leaky aquifer function. Journal of Hydrology 33, 179-183]. We have implemented both representations and compared the results. Using a convergence accelerator Hunt's representation of Hantush Well Function is efficient and accurate. While checking our implementations we found that Bear's table of the Hantush Well Function [Bear, J., 1979. Hydraulics of Groundwater. McGraw-Hill, New York, Tables 8-6] contains a number of typographical errors that are not present in the original table published by Hantush [Hantush, M.S., 1956. Analysis of data from pumping tests in leaky aquifers. Transactions, American Geophysical Union 37, 702-714]. Finally, we offer a very fast approximation with a maximum relative error of 0.0033 for the parameter range in the table given by Bear.

  7. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  8. DAM Safety and Deformation Monitoring in Dams

    NASA Astrophysics Data System (ADS)

    Kalkan, Y.; Bilgi, S.; Potts, L.; Miiama, J.; Mahgoub, M.; Rahman, S.

    2013-12-01

    Water is the life and necessity to water is increasing day by day with respect to the World population, rising of living standards and destruction of nature. Thus, the importance of water and water structures have been increasing gradually. Dams are among the most important engineering structures used for water supplies, flood controls, agricultural purposes as well as drinking and hydroelectric power. There are about 150.000 large size dams in the World. Especially after the Second World War, higher and larger capacity dams have been constructed. Dams create certain risks like the other manmade structures. No one knows precisely how many dam failures have occurred in the World, whereas hundreds of dam failures have occurred throughout the U.S. history. Some basic physical data are very important for assessing the safety and performance of dams. These are movement, water pressure, seepage, reservoir and tail-water elevations, local seismic activities, total pressure, stress and strain, internal concrete temperature, ambient temperature and precipitation. These physical data are measured and monitored by the instruments and equipment. Dams and their surroundings have to be monitored by using essential methods at periodic time intervals in order to determine the possible changes that may occur over the time. Monitoring programs typically consist of; surveillance or visual observation. These programs on dams provide information for evaluating the dam's performance related to the design intent and expected changes that could affect the safety performance of the dam. Additionally, these programs are used for investigating and evaluating the abnormal or degrading performance where any remedial action is necessary. Geodetic and non-geodetic methods are used for monitoring. Monitoring the performance of the dams is critical for producing and maintaining the safe dams. This study provides some information, safety and the techniques about the deformation monitoring of the

  9. Heart Rate and Electrocardiography Monitoring in Mice

    PubMed Central

    Ho, David; Zhao, Xin; Gao, Shumin; Hong, Chull; Vatner, Dorothy E.; Vatner, Stephen F.

    2011-01-01

    The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the “gold standard” using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not. PMID:21743842

  10. Thermal indicator for wells

    DOEpatents

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  11. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-10-18

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  12. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-10-06

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

  13. Vinyl capped addition polyimides

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D. (Inventor); Malarik, Diane C. (Inventor); Delvigs, Peter (Inventor)

    1991-01-01

    Polyimide resins (PMR) are generally useful where high strength and temperature capabilities are required (at temperatures up to about 700 F). Polyimide resins are particularly useful in applications such as jet engine compressor components, for example, blades, vanes, air seals, air splitters, and engine casing parts. Aromatic vinyl capped addition polyimides are obtained by reacting a diamine, an ester of tetracarboxylic acid, and an aromatic vinyl compound. Low void materials with improved oxidative stability when exposed to 700 F air may be fabricated as fiber reinforced high molecular weight capped polyimide composites. The aromatic vinyl capped polyimides are provided with a more aromatic nature and are more thermally stable than highly aliphatic, norbornenyl-type end-capped polyimides employed in PMR resins. The substitution of aromatic vinyl end-caps for norbornenyl end-caps in addition polyimides results in polymers with improved oxidative stability.

  14. Model Wellness Policy

    ERIC Educational Resources Information Center

    South Dakota Department of Education, 2005

    2005-01-01

    In the Child Nutrition and WIC Reauthorization Act of 2004, PL 105-268, the U.S. Congress established a new requirement for all local agencies with a federally funded National School Lunch program. The local agencies are required to develop and implement wellness policies that address nutrition and physical activity by the start of the 2006-07…

  15. Telling It Well

    ERIC Educational Resources Information Center

    Hoffert, Barbara; Burns, Ann, Comp.

    2007-01-01

    Everybody has a story to tell, but not everybody can tell it well, which it why some first novels jump to the best sellers lists and others fade away. This year's crop of successful first novelists come from all walks of life--there's journalist Vanora Bennett and historian Alison Weir, dance critic Anita Amirrezvani, and financial analyst manque…

  16. Why Does Well

    ERIC Educational Resources Information Center

    Sartorius, Tara Cady

    2010-01-01

    There is something disappointing about life. It is messy and out of control. It seems the more one tries to put life in order, the more ordering there is to do. The more one seeks explanations, the more confusing things become. Life's an impossible task. Maybe one should just give up. Or, then again, one might as well keep trying. It's this…

  17. The world's deepest well

    NASA Astrophysics Data System (ADS)

    Kozlovskii, E. A.

    1984-12-01

    A 12,000-meter-deep research well at Kola in the Soviet Arctic is discussed. A major objective of the well was to penetrate into the basement rock of basaltic composition, presumably marked by an abrupt increase in the velocity of the seismic waves. At Kola the shift occurs at 9000 meters. However, instead of the basalt expected below that depth, an anomalous zone of disaggregated metamorphic rock was found. Further in that zone abundant flows of hot, highly mineralized 'water of crystallization' were found. Flows of gas, including helium, hydrogen, nitrogen, methane, and other hydrocarbons, and carbon dioxide were observed at all levels, thus indicating the existence of active gas-water processes, which raises the prospect of new ore deposits. The well utilizes a 400- to 500-ton aluminum alloy drill string. Unlike conventional drilling, the bit is powered by a turbine driven by the high-pressure flow of the drilling mud at 250 atm, which eliminates the disabling stresses at the surface caused by the rotation of the entire string. This technology opens the possibility of drilling to the depths of 15 to 17 km. The well is expected to help improve the interpretation of the seismic data.

  18. Well tool dislodgement apparatus

    SciTech Connect

    Coshow, C.L.

    1986-11-25

    An apparatus is described for assisting the lowering of an object into a well having a wall, the apparatus comprising: adapter shoe means for coupling the apparatus with the object, the adapter shoe means having a first end and a second end spaced from the first end; first roller means for engaging the wall of the well, the first roller means having first protuberances defined along the periphery thereof so that the protuberances engage the wall of the well to rotate the first roller means thereby tending to prevent the object from becoming stuck against the wall when the adapter shoe means couples the apparatus with the object and the object is lowered into the well. The first roller means has a first side surface and a second side surface spaced from the first side surface, and each of the first protuberances is disposed between the first and second side surfaces at an oblique angle thereto; and first roller attachment means for attaching the first roller means near the second end of the adapter shoe means.

  19. Parents and adolescents growing up in the digital age: latent growth curve analysis of proactive media monitoring.

    PubMed

    Padilla-Walker, Laura M; Coyne, Sarah M; Fraser, Ashley M; Dyer, W Justin; Yorgason, Jeremy B

    2012-10-01

    The current study examined how parents' use of restrictive and active monitoring and deference changed over three years, and examined both adolescent and parent characteristics as predictors of initial levels of media monitoring, as well as change in media monitoring. Participants included 276 mother-child dyads (M age of child = 12.08, SD = .63, 50% female) taken from Time 2 of the Flourishing Families Project, 96% of whom had complete data for Time 4 (N = 266). Active monitoring was the most common approach at the first and second time points, while active monitoring and deference were equally common by the final time point. Latent growth curve analysis revealed that restrictive and active monitoring decreased over time, while deference increased. In addition, both adolescent and parent characteristics were predictive of initial levels of all three types of monitoring, and of change in restrictive monitoring. Discussion focuses on developmental implications of these findings.

  20. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  1. Evaluation of NEPA-based environmental commitments at four geopressure design wells

    SciTech Connect

    Reed, A.W.; Hunsaker, D.B. Jr.; Roop, R.D.; Webb, J.W.

    1983-09-01

    The implementation of environmental mitigation and monitoring commitments made for four geopressure design well projects was evaluated. The evaluation was based on site visits conducted in August 1982 and April 1983 and on a review of monitoring and project activity reports provided by DOE contractors. The projects evaluated include: Pleasant Bayou No. 1 in Brazoria County, Texas; Dow Parcperdue in Vermilion Parish, Louisiana; and Gladys McCall and Sweet Lake No. 1 well sites in Cameron Parish, Louisiana. The contractors responsible for drilling and testing activities at the well sites have adequately implemented most of the mitigation measures described in each project's site-specific Environmental Assessment (EA). Exceptions include the lack of impermeable liners for drilling mud pits at the Dow Parcperdue, Gladys McCall, and Pleasant Bayou sites and the lack of a ring levee at the Pleasant Bayou site. Air and water quality and noise monitoring activities were not performed as strictly as outlined in the EAs. A review of the monitoring data collected to date indicates that no significant environmental degradation has occurred. This report recommends additional or future monitoring needs, especially with regard to soil contamination, subsidence, and microseismicity, and provides guidance for decommissioning.

  2. Functional Generalized Additive Models.

    PubMed

    McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David

    2014-01-01

    We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F{X(t), t} where F(·,·) is an unknown regression function and X(t) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F(·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X(t) is a signal from diffusion tensor imaging at position, t, along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.

  3. Wind Turbine Drivetrain Condition Monitoring - An Overview

    SciTech Connect

    Sheng, S; Veers, P.

    2011-10-01

    This paper provides an overview of wind turbine drivetrain condition monitoring based on presentations from a condition monitoring workshop organized by the National Renewable Energy Laboratory in 2009 and on additional references.

  4. Analysis of synthetic motor oils for additive elements by ICP-AES

    SciTech Connect

    Williams, M.C.; Salmon, S.G.

    1995-12-31

    Standard motor oils are made by blending paraffinic or naphthenic mineral oil base stocks with additive packages containing anti-wear agents, dispersants, corrosion inhibitors, and viscosity index improvers. The blender can monitor the correct addition of the additives by determining the additive elements in samples dissolved in a solvent by ICP-AES. Internal standardization is required to control sample transport interferences due to differences in viscosity between samples and standards. Synthetic motor oils, made with poly-alpha-olefins and trimethylol propane esters, instead of mineral oils, pose an additional challenge since these compounds affect the plasma as well as having sample transport interference considerations. The synthetic lubricant base stocks add significant oxygen to the sample matrix, which makes the samples behave differently than standards prepared in mineral oil. Determination of additive elements in synthetic motor oils will be discussed.

  5. Electrostatic monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  6. School Wellness Policies: Perceptions, Barriers, and Needs among School Leaders and Wellness Advocates

    ERIC Educational Resources Information Center

    Agron, Peggy; Berends, Victoria; Ellis, Karen; Gonzalez, Martin

    2010-01-01

    Background: School wellness policies are a key component to the prevention of adolescent obesity. This national research study sought to understand the wellness environment in school districts across the country and to identify challenges districts face and needs they have in order to effectively implement, monitor, and evaluate school wellness…

  7. Reconnaissance of hydrologic monitoring sites and preliminary monitoring plan for the Vale, Oregon, geothermal area

    USGS Publications Warehouse

    Gannett, Marshall W.; Caldwell, Rodney R.

    1996-01-01

    The Bonneville Power Administration is working with private industry to develop a geothermal demonstration project in the Known Geothermal Resources Area (KGRA) near Vale, Oregon. Hydrologic monitoring in the area is planned in order to evaluate any impacts from the proposed development. The hydrology in and around the Vale KGRA is not well known. Additionally, little is known about the targeted geothermal reservoir and the nature of its connection to the shallow ground-water system. Given this uncertainty, a variety of features were selected to ensure adequate monitoring coverage. Wells and springs in and around the geothermal area were evaluated, and 19 were selected as potential monitoring sites. In selecting wells and springs for monitoring, particular emphasis was placed on those with a known or probable connection with the geothermal system because they would most likely be the first to show any effects from development. The selected features include thermal wells in the hot-spring area near the town of Vale and a hot spring south of the KGRA. Several warm wells (70 to 90 degrees Fahrenheit) near the KGRA were also selected because it is likely that the water produced from these wells includes a component of geothermal water. In order to identify any effects of development, it is necessary to have an understanding of natural and man-caused variations and trends prior to development. A quarterly measurement schedule is proposed to help characterize these variations and trends. It is anticipated that the proposed monitoring plan will be modified as exploration and development proceed and more is learned about the geothermal system.

  8. Well system and method

    SciTech Connect

    Arendt, H.P.; Heard, T.J.

    1982-10-26

    A method and apparatus especially adapted for use with an injection well in which a valve controlled h-member interconnects the two tubings of a two tubing installation and landing nipples are attached to the lower legs of the h-member to receive expendable fluid control means, such as standing valves, in which pressure applied to one tubing to create a pressure differential will move the valve controlling the interconnection between the H -members to open position to permit tfl operations to be carried out in the well and thereafter pressure exerted on a ball supported on the valve member of the control valve for the hmember closes the control valve, and the ball passes through the control valve. The fluid control members in the landing nipples may be ejected either before or after closing of the valve in the h-member.

  9. Oil well service rig

    SciTech Connect

    Allen, W.H.

    1981-03-24

    An oil well service rig having three reels, two of the reels actuated by a hydraulic pump through a gear box which provides for selective engagement or disengagement and a two speed gear ratio change for either reel, the hydraulic pump being driven by a gasoline engine. An independent hydraulically operated brake system is utilized on the reels wherein one side of each reel is provided with a greater diameter than the other side, the larger side having a brake caliper pad assembly in engagement therewith. A smaller reel, also controlled by the hydraulic motor, controls the inclination and disposition of a mast having a double sheave assembly at its top receiving cables from each main reel for raising and lowering tools into the oil well shaft.

  10. Models for geothermal wells

    SciTech Connect

    Michaelides, E.E.

    1980-06-01

    The problem of two-phase flow pressure loss is examined in order to give an answer to the problem of determination of the wellhead conditions. For this purpose two models have been developed, the first based on the pattern structure of the flow and the second on the mixing length theory. The void fraction correlations and the transition conditions are presented in the first model as a means of estimating the pressure loss. Heat losses, and the effect of impurities are examined in detail. An expression for the critical flow conditions is also derived. The model is used to predict the available power at the wellhead under various conditions and an answer to the problem of well pumping is given. For the second model an outline of the mixing length theory and the boundary layer coordinates is given; a density distribution in the geothermal well is assumed and the equations for the pressure loss are derived by means of the entropy production function. Finally a comparison of the two models is made and their predictive power is tested against known well data. A brief comparison with the Denver Research Institute is also made.

  11. Caregiver Well-Being

    PubMed Central

    Dujela, Carren; Smith, André

    2015-01-01

    We know much about caregiving women compared with caregiving men and caregiving spouses compared with caregiving adult children. We know less about the intersections of relationship and gender. This article explores this intersection through the well-being (burden and self-esteem) of caregivers to family members with dementia. Throughout British Columbia, Canada, 873 caregivers were interviewed in person for on average, over 1½ hours. The results reveal that daughters experience the highest burden but also the highest self-esteem, suggesting the role is less salient for their self-identities. Wives emerge as the most vulnerable of the four groups when both burden and self-esteem are considered. The data confirm the usefulness of the intersectionality framework for understanding co-occupancy of more than one status and indicate that positive cognitive well-being and negative affective well-being can be differentially related. Multivariate analyses confirm the importance of caregiver, not patient, characteristics for burden and self-esteem. PMID:25651586

  12. Environmental Protection Department's well inventory through the second quarter of 1992

    SciTech Connect

    Rogers, C.D. )

    1992-09-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored, to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  13. Environmental Protection Department`s well inventory through the second quarter of 1992

    SciTech Connect

    Rogers, C.D.

    1992-09-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored, to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  14. Environmental Protection Department`s well inventory (through the fourth quarter of 1991)

    SciTech Connect

    Not Available

    1992-03-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  15. Environmental Protection Department's well inventory (through the fourth quarter of 1991)

    SciTech Connect

    Not Available

    1992-03-01

    This report is an inventory of the wells recorded in Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) documents since the startup of the Savannah River Site (SRS) and includes wells monitored by special request and SRS research wells. Wells listed in this inventory are monitoring wells unless otherwise indicated. The purpose of this report is as follows: to provide a historical record of the wells that EPD/EMS has monitored; to provide a document containing a list of wells that are currently in the EPD/EMS Groundwater Monitoring Program, and to provide pertinent information about all wells listed in EPD/EMS documents.

  16. Siloxane containing addition polyimides

    NASA Technical Reports Server (NTRS)

    Maudgal, S.; St. Clair, T. L.

    1984-01-01

    Addition polyimide oligomers have been synthesized from bis(gamma-aminopropyl) tetramethyldisiloxane and 3, 3', 4, 4'-benzophenonetetracarboxylic dianhydride using a variety of latent crosslinking groups as endcappers. The prepolymers were isolated and characterized for solubility (in amide, chlorinated and ether solvents), melt flow and cure properties. The most promising systems, maleimide and acetylene terminated prepolymers, were selected for detailed study. Graphite cloth reinforced composites were prepared and properties compared with those of graphite/Kerimid 601, a commercially available bismaleimide. Mixtures of the maleimide terminated system with Kerimid 601, in varying proportions, were also studied.

  17. All's Well That Ends Well: Shakespeare's treatment of anal fistula.

    PubMed

    Cosman, B C

    1998-07-01

    Textual and contextual evidence suggests that the French king's fistula, a central plot device in Shakespeare's play All's Well That Ends Well, is a fistula-in-ano. Anal fistula was known to the lay public in Shakespeare's time. In addition, Shakespeare may have known of the anal fistula treatise of John Arderne, an ancestor on Shakespeare's mother's side. Shakespeare's use of anal fistula differs from all previous versions of the story, which first appeared in Boccaccio's Decameron and from its possible historical antecedent, the fistula of Charles V of France. This difference makes sense given the conventions of Elizabethan comedy, which included anal humor. It is also understandable when one looks at what wounds in different locations mean in European legend. In this light, it is not surprising that subsequent expurgations treat Boccaccio's and Shakespeare's fistulas differently, censoring only Shakespeare's. This reading has implications for the staging of All's Well That Ends Well, and for our view of the place of anal fistulas in cultural history.

  18. Biological monitoring

    SciTech Connect

    Ho, M.H.; Dillon, H.K.

    1986-02-01

    Biological monitoring is defined as the measurement and assessment of workplace agents or their metabolites in tissues, secreta, excreta, expired air, or any combination of these to evaluate exposure and health risk compared to an appropriate reference. Biological monitoring offers several advantages: it takes into account individual variability in biological activity resulting from a chemical insult. It takes into account the effects of personal physical activity and individual life styles. It is a valuable adjunct to ambient monitoring and health surveillance. The importance of chemical speciation in the toxicity of pollutants is discussed. Basic protocols for lead, aluminum, cadmium, mercury, selenium, and nickel are presented. Basic criteria for biological monitoring methods are presented. 11 references, 1 table.

  19. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  20. Platelet additive solution - electrolytes.

    PubMed

    Azuma, Hiroshi; Hirayama, Junichi; Akino, Mitsuaki; Ikeda, Hisami

    2011-06-01

    Recent attention to solutions that replace most or all plasma in platelet concentrates, while maintaining satisfactory platelet function, is motivated by the potential of plasma reduction or depletion to mitigate various transfusion-related adverse events. This report considers the electrolytic composition of previously described platelet additive solutions, in order to draw general conclusions about what is required for platelet function and longevity. The optimal concentrations of Na(+) and Cl(-) are 69-115 mM. The presence of both K(+) and Mg(2+) in platelet suspension at nearly physiological concentrations (3-5mM and 1.5-3mM, respectively) is indispensable for good preservation capacity because both electrolytes are required to prevent platelet activation. In contrast to K(+) and Mg(2+), Ca(2+) may not be important because no free Ca(2+) is available in M-sol, which showed excellent platelet preservation capacity at less than 5% plasma concentration. The importance of bicarbonate (approximately 40 mM) can be recognized when the platelets are suspended in additive solution under less than 5% residual plasma concentration.

  1. Long-term Monitoring Plan for the Central Nevada Test Area

    SciTech Connect

    A. Hassan

    2003-09-02

    simulations and probability based approaches to select the first set of monitoring wells that will serve two purposes. The first is to place the wells in areas likely to encounter migration pathways thereby enhancing the probability of detecting radionuclide migration in the long run. The second objective is crucial in the short run and is aimed at using this set of wells to collect validation data for the model. The selection criteria should thus balance these two objectives. Based on the results of the validation process that progresses concurrently with the first monitoring stage, either more wells will be needed in this first stage or the second stage will be initiated. The second monitoring design stage will be based on an optimum design methodology that uses a suitable statistical approach, combined with an optimization approach, to augment the initial set of wells and develop the final long-term monitoring network. The first-stage probabilistic analysis conducted using the CNTA model indicates that the likelihood of migration away from the test cavity is very low and the probability of detecting radionuclides in the next 100 years is extremely low. Therefore, it is recommended to place one well in the downstream direction along the model longitudinal centerline (i.e., directly north of the working point), which is the location with the highest probability of encountering the plume. Lack of significant plume spreading, coupled with the extremely low velocities, suggests that this one well is sufficient for the first stage. Data from this well, and from additional wells located with validation as the prime objective, will benefit the model validation process. In the long run, this first monitoring well is going to be crucial for the long-term monitoring of the site (assuming that the flow model is validated), as it will be the most likely place to detect any plume migration away from the cavity.

  2. Casing lateral wells

    SciTech Connect

    Dismukes, N.B.

    1986-10-14

    A system is described for overcoming a resistance to advance of a pipe string in a well bore at least partly filled with drilling fluid comprising: a. A rotary prime mover releasably mounted inside the nether end of the pipe string; b. A marine screw propeller means spaced outside of, and beyond, the pipe string; and c. Means interconnecting the prime mover and the propeller whereby the propeller may be rotated by the prime mover to provide an advancing force acting on the pipe string.

  3. Development of an Innovative Direct Push Sensor System for Long Term Monitoring of Environmental Waste Sites

    NASA Astrophysics Data System (ADS)

    Eddy-Dilek, C. A.; Riha, B. D.; Bosze, S.; Rossabi, J.

    2001-12-01

    As the focus of environmental restoration in the federal complex moves from active characterization and remediation to long term monitoring, the costs of long-term monitoring will escalate and eventually dominate ongoing environmental restoration budgets. Most of the major DOE sites including the Savannah River Site have a documented need for some type of long term monitoring system that does not rely on the use of standard groundwater monitoring wells. We have developed and installed a prototype monitoring system that can be used to measure and/or sample multiple parameters appropriate for long term monitoring of environmental waste sites. This system is designed to function as a sentinel system that detects when a significant change in water quality parameters or contaminant concentration occurs in a well characterized system. The sensor drive configuration is flexible and the sensor system is installed using direct push methods. Site specific monitoring scenarios will be need to be developed to address the specific long term monitoring objectives at a given site. The drive point has a sample port (soil gas or groundwater) and windows/ports for additional sensors. A prototype system was installed and has been monitored at the D-area at the Savannah River Site since July. The probes are located in an area where multiple contaminant plumes dominated by volatile organic compounds, metals and tritium are currently monitored using standard groundwater wells. Currently, the prototype system measures temperature, resisitivity, ORP and pH on a continuous basis. In addition, concetrations of volatile organic compounds and tritium are measured periodically by laboratory analysis of diffusion bag samples deployed in the sample ports of the prototype system. Results will be reported from a three-month monitoring interval. The results will be compared with baseline analyses of samples collected from the adjacent groundwater well.

  4. Wireless Temperature-Monitoring System

    NASA Technical Reports Server (NTRS)

    Solano, Wanda; Thurman, Chuck

    2002-01-01

    A relatively inexpensive instrumentation system that includes units that are connected to thermocouples and that are parts of a radio-communication network has been developed to enable monitoring of temperatures at multiple locations. Because there is no need to string wires or cables for communication, the system is well suited for monitoring temperatures at remote locations and for applications in which frequent changes of monitored or monitoring locations are needed. The system can also be adapted to monitoring of slowly varying physical quantities, other than temperature, that can be transduced by solid-state electronic sensors. electronic sensors. The system comprises any number of transmitting units and a single receiving unit. Each transmitting unit includes connections for as many as four external thermocouples, a signal-conditioning module, a control module, and a radio-communication module. The signal-conditioning module acts as an interface between the thermocouples and the rest of the transmitting unit and includes a built-in solid ambient temperature sensor that is in addition to the external thermocouples. The control module is a system-on-chip embedded processor that includes analog-to-digital converters, serial and parallel data ports, and an interface for local connection to an analog meter that is used during installation to verify correct operation. The radio-communication module contains a commercial spread-spectrum transceiver that operates in the 900-MHz industrial, scientific, and medical (ISM) frequency band. This transceiver transmits data to the receiving unit at a rate of 19,200 baud. The receiving unit includes a transceiver like that of a transmitting unit, plus a control module that contains a system-on-chip processor that includes serial data port for output to a computer that runs monitoring and/or control software, a parallel data port for output to a printer, and a seven-segment light-emitting-diode display. Each transmitting unit

  5. Monitoring with Data Automata

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus

    2014-01-01

    We present a form of automaton, referred to as data automata, suited for monitoring sequences of data-carrying events, for example emitted by an executing software system. This form of automata allows states to be parameterized with data, forming named records, which are stored in an efficiently indexed data structure, a form of database. This very explicit approach differs from other automaton-based monitoring approaches. Data automata are also characterized by allowing transition conditions to refer to other parameterized states, and by allowing transitions sequences. The presented automaton concept is inspired by rule-based systems, especially the Rete algorithm, which is one of the well-established algorithms for executing rule-based systems. We present an optimized external DSL for data automata, as well as a comparable unoptimized internal DSL (API) in the Scala programming language, in order to compare the two solutions. An evaluation compares these two solutions to several other monitoring systems.

  6. Newberry Well 55-29 Stimulation Data 2014

    DOE Data Explorer

    Trenton T. Cladouhos

    2015-09-03

    The Newberry Volcano EGS Demonstration in central Oregon, a 5 year project begun in 2010, tests recent technological advances designed to reduce the cost of power generated by EGS in a hot, dry well (NWG 55-29) drilled in 2008. First, the stimulation pumps used were designed to run for weeks and deliver large volumes of water at moderate well-head pressure. Second, to stimulate multiple zones, AltaRock developed thermo-degradable zonal isolation materials (TZIMs) to seal off fractures in a geothermal well to stimulate secondary and tertiary fracture zones. The TZIMs degrade within weeks, resulting in an optimized injection/ production profile of the entire well. Third, the project followed a project-specific Induced Seismicity Mitigation Plan (ISMP) to evaluate, monitor for, and mitigate felt induced seismicity. An initial stimulation was conducted in 2012 and continued for 7 weeks, with over 41,000 m3 of water injected. Further analysis indicated a shallow casing leak and an unstable formation in the open hole. The well was repaired with a shallow casing tieback and perforated liner in the open hole and re-stimulated in 2014. The second stimulation started September 23rd, 2014 and continued for 3 weeks with over 9,500 m3 of water injected. The well was treated with several batches of newly tested TZIM diverter materials and a newly designed Diverter Injection Vessel Assembly (DIVA), which was the main modification to the original injection system design used in 2012. A second round of stimulation that included two perforation shots and additional batches of TZIM was conducted on November 11th, 2014 for 9 days with an additional 4,000 m3 of water injected. The stimulations resulted in a 3-4 fold increase in injectivity, and PTS data indicates partial blocking and creation of flow zones near the bottom of the well.

  7. Well pump controller

    SciTech Connect

    Pikna, R. G.

    1985-04-02

    A device for automatically controlling the pumping of fluids from a well of the type using a walking beam and positive displacement pump to provide efficient utilization of the pumping equipment and energy required therefor, and to obtain efficient flow rates from the wall. A sensor detects the position of the walking beam at a predetermined position on the up-stroke of its pumping cycle and generates a signal to a control unit. a diaphram detects the pressure differential between the well casing pressure and the fluid delivery tube pressure. The diaphram moves a spring biased plunger which actuates a switch upon a predetermined pressure differential existing between the casing and delivery tube which sends a second signal to the control unit. The control unit upon receiving both signals maintains the pumping unit energizes until the pressure differential on the diaphram drops to a predetermined value preventing the plunger from actuating the switch. The control unit will deenergize the pumping unit if both signals are not received at the appropriate time. The sensitivity of the diaphram actuated switch is adjustable by changing the biasing force of the spring on the plunger.

  8. Well safety valve

    SciTech Connect

    Vinzant, M.B.; Hilts, R.L.; Meaders, M.; Speegle, S.C.

    1984-07-24

    A retrievable well safety valve in a cased well system including a tubing string, a dual packer downhole around the tubing sealing with the casing and submersible pump in the tubing string below the packer. The safety valve controls flow of pumped fluids through the tubing to surface and directs gas flow into the casing annulus above the packer. When the safety valve is landed in cooperating tubing nipples above the packer, separated central annular flow passages are formed for pumped fluids and gas respectively. A ball valve in the central flow passage controls pumped fluid flow therethrough and an annular valve coupled to the ball valve controls gas flow from below the packer through the annular flow passage around and by the ball valve. When the ball valve is in the down and open position, the valve ball member engages a lower seat, which maintains the central and annular flow passages separate and prevents comingling flow of fluids and gas. The coupled valves are held open by pressured fluid from surface and are closed automatically on loss of pressure in their control fluid circuits. When the valves close, a circuit of flow passages for recirculating pumped fluids and gas are opened below the ball valve and the pump may continue operation without overload.

  9. Drilling the ``perfect'' well

    SciTech Connect

    1999-12-01

    In northeastern British Columbia, near Fort St. John, Calahoo Petroleum is chasing the elusive finger channels of a vast alluvial fan formed by runoff from the Rocky Mountains. The Cadomin formation is a thin, shallow, tight Cretaceous sandstore lying about 1,150m below the surface and loaded with gas at virgin pressure. Reserves are estimated at 3 Bcf per section. The formation is extremely fragile, and subject to damage if drilled improperly. Pores are lined with a thin layer of kaolinite, which when invaded will flocculate and clog pore throats, reducing permeability is estimated at 1 to 2 md, and wells that strike a channel can produce up to 3 MMcf/d of gas. Miss the sweet spot in the channel, and the best one can hope for is 0.5 md and 0.5 MMcf/d of gas. Finding the channels is a real challenge. There are only a few 2D spec seismic lines criss-crossing the play, few offset wells to correlate and a blanket of shallow coal seams above the Cadomin that tunes the seismic image and makes interpretation difficult. The combination of limited formation data and drilling challenges presents a complex set of problems. The paper discusses these challenges and what Calahoo is doing to meet them using a multidisciplinary team approach.

  10. Quantum well nonlinear microcavities

    NASA Astrophysics Data System (ADS)

    Oudar, J. L.; Kuszelewicz, R.; Sfez, B.; Pellat, D.; Azoulay, R.

    We report on recent progress in reducing the power threshold of all-optical bistable quantum well vertical microcavities. Significant improvements are achieved through an increase of the cavity finesse, together with a reduction of the device active layer thickness. A critical intensity of 5 μW/μm 2 has been observed on a microcavity of finesse 250, with a nonlinear medium of only 18 GaAs quantum wells of 10 nm thickness. Further improvements of the Bragg mirror quality resulted in a finesse of 700 and a power-lifetime product of 15 fJ/μm 2. Microresonator pixellation allows to obtain 2-dimensional arrays. A thermally-induced alloy-mixing technique is described, which produced a 110 meV carrier confinement energy, together with a refractive index change of -.012, averaged over the 2.6 μm nonlinear medium thickness. The resulting electrical and optical confinement is shown to improve the nonlinear characteristics, by limiting lateral carrier diffusion and light diffraction.

  11. Water based drilling mud additive

    SciTech Connect

    McCrary, J.L.

    1983-12-13

    A water based fluid additive useful in drilling mud used during drilling of an oil or gas well is disclosed, produced by reacting water at temperatures between 210/sup 0/-280/sup 0/ F. with a mixture comprising in percent by weight: gilsonite 25-30%, tannin 7-15%, lignite 25-35%, sulfonating compound 15-25%, water soluble base compound 5-15%, methylene-yielding compound 1-5%, and then removing substantially all of the remaining water to produce a dried product.

  12. Additive composition, for gasoline

    SciTech Connect

    Vataru, M.

    1989-01-10

    An admixture is described that comprises Diesel fuel and an additive composition added thereto which is between about 0.05 to about 2.0 percent by weight of the fuel, the composition comprising: (a) between about 0.05 and 25% relative weight parts of an organic peroxide, and (b) between about 0.1 and 25% relative weight parts of detergent selected from the component group that consists of: (i) fatty amines; (ii) ethoxylated and propoxylated derivatives of fatty amines; (iii) fatty diamines; (iv) fatty imidazlines; (v) polymeric amines and derivatives thereof; (vi) combination of one or more of the (i) through (v) components with carboxylic acid or acids having from three to forth carbon atoms, (c) from about 99.0 to about 50% by weight of a hydrocarbon solvent.

  13. Teardrop bladder: additional considerations

    SciTech Connect

    Wechsler, R.J.; Brennan, R.E.

    1982-07-01

    Nine cases of teardrop bladder (TDB) seen at excretory urography are presented. In some of these patients, the iliopsoas muscles were at the upper limit of normal in size, and additional evaluation of the perivesical structures with computed tomography (CT) was necessary. CT demonstrated only hypertrophied muscles with or without perivesical fat. The psoas muscles and pelvic width were measured in 8 patients and compared with the measurements of a control group of males without TDB. Patients with TDB had large iliopsoas muscles and narrow pelves compared with the control group. The psoas muscle width/pelvic width ratio was significantly greater (p < 0.0005) in patients with TDB than in the control group, with values of 1.04 + 0.05 and 0.82 + 0.09, respectively. It is concluded that TDB is not an uncommon normal variant in black males. Both iliopsoas muscle hypertrophy and a narrow pelvis are factors that predispose a patient to TDB.

  14. Perspectives on Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Bourell, David L.

    2016-07-01

    Additive manufacturing (AM) has skyrocketed in visibility commercially and in the public sector. This article describes the development of this field from early layered manufacturing approaches of photosculpture, topography, and material deposition. Certain precursors to modern AM processes are also briefly described. The growth of the field over the last 30 years is presented. Included is the standard delineation of AM technologies into seven broad categories. The economics of AM part generation is considered, and the impacts of the economics on application sectors are described. On the basis of current trends, the future outlook will include a convergence of AM fabricators, mass-produced AM fabricators, enabling of topology optimization designs, and specialization in the AM legal arena. Long-term developments with huge impact are organ printing and volume-based printing.

  15. An Additive Manufacturing Test Artifact

    PubMed Central

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system. PMID:26601039

  16. An Additive Manufacturing Test Artifact.

    PubMed

    Moylan, Shawn; Slotwinski, John; Cooke, April; Jurrens, Kevin; Donmez, M Alkan

    2014-01-01

    A test artifact, intended for standardization, is proposed for the purpose of evaluating the performance of additive manufacturing (AM) systems. A thorough analysis of previously proposed AM test artifacts as well as experience with machining test artifacts have inspired the design of the proposed test artifact. This new artifact is designed to provide a characterization of the capabilities and limitations of an AM system, as well as to allow system improvement by linking specific errors measured in the test artifact to specific sources in the AM system. The proposed test artifact has been built in multiple materials using multiple AM technologies. The results of several of the builds are discussed, demonstrating how the measurement results can be used to characterize and improve a specific AM system.

  17. Field and synthetic experiments for virtual source crosswell tomography in vertical wells: Perth Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Almalki, Majed; Harris, Brett; Dupuis, J. Christian

    2013-11-01

    It is common for at least one monitoring well to be located proximally to a production well. This presents the possibility of applying crosswell technologies to resolve a range of earth properties between the wells. We present both field and synthetic examples of dual well walk-away vertical seismic profiling in vertical wells and show how the direct arrivals from a virtual source may be used to create velocity images between the wells. The synthetic experiments highlight the potential of virtual source crosswell tomography where large numbers of closely spaced receivers can be deployed in multiple wells. The field experiment is completed in two monitoring wells at an aquifer storage and recovery site near Perth, Western Australia. For this site, the crosswell velocity distribution recovered from inversion of travel times between in-hole virtual sources and receivers is highly consistent with what is expected from sonic logging and detailed zero-offset vertical seismic profiling. When compared to conventional walkaway vertical seismic profiling, the only additional effort required to complete dual-well walkaway vertical seismic profiling is the deployment of seismic sensors in the second well. The significant advantage of virtual source crosswell tomography is realised where strong near surface heterogeneity results in large travel time statics.

  18. Microbial load monitor

    NASA Technical Reports Server (NTRS)

    Caplin, R. S.; Royer, E. R.

    1977-01-01

    Design analysis of a microbial load monitor system flight engineering model was presented. Checkout of the card taper and media pump system was fabricated as well as the final two incubating reading heads, the sample receiving and card loading device assembly, related sterility testing, and software. Progress in these areas was summarized.

  19. Trace Gas Monitoring

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space technology is contributing to air pollution control primarily through improved detectors and analysis methods. Miniaturized mass spectrometer is under development to monitor vinyl chloride and other hydrocarbon contaminants in an airborne laboratory. Miniaturized mass spectrometer can be used to protect personnel in naval and medical operations as well as aboard aircraft.

  20. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    SciTech Connect

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system

  1. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  2. Additive lattice kirigami.

    PubMed

    Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D

    2016-09-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.

  3. Ceramics with Different Additives

    NASA Astrophysics Data System (ADS)

    Wang, Juanjuan; Feng, Lajun; Lei, Ali; Zhao, Kang; Yan, Aijun

    2014-09-01

    Li2CO3, MgCO3, BaCO3, and Bi2O3 dopants were introduced into CaCu3Ti4O12 (CCTO) ceramics in order to improve the dielectric properties. The CCTO ceramics were prepared by conventional solid-state reaction method. The phase structure, microstructure, and dielectric behavior were carefully investigated. The pure structure without any impurity phases can be confirmed by the x-ray diffraction patterns. Scanning Electron Microscopy (SEM) analysis illuminated that the grains of Ca0.90Li0.20Cu3Ti4O12 ceramics were greater than that of pure CCTO. It was important for the properties of the CCTO ceramics to study the additives in complex impedance spectroscopy. It was found that the Ca0.90Li0.20Cu3Ti4O12 ceramics had the higher permittivity (>45000), the lower dielectric loss (<0.025) than those of CCTO at 1 kHz at room temperature and good temperature stability from -30 to 75 °C.

  4. Additive lattice kirigami

    PubMed Central

    Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.

    2016-01-01

    Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822

  5. Abandoning wells working group

    SciTech Connect

    1997-03-01

    The primary objective of this working group is to identify major technical, regulatory, and environmental issues that are relevant to the abandonment of offshore wellbores. Once the issues have been identified, the working group also has the objective of making recommendations or providing potential solutions for consideration. Areas for process improvement will be identified and {open_quotes}best practices{close_quotes} will be discussed and compared to {open_quotes}minimum standards.{close_quotes} The working group will primarily focus on wellbore abandonment in the Gulf of Mexico. However, workshop participants are encouraged to discuss international issues which may be relevant to wellbore abandonment practices in the Gulf of Mexico. The Abandoning Wells Group has identified several major areas for discussion that have concerns related to both operators and service companies performing wellbore abandonments in the Gulf of Mexico. The following broad topics were selected for the agenda: (1) MMS minimum requirements and state regulations. (2) Co-existence of best practices, new technology, and P & A economics. (3) Liability and environmental issues relating to wellbore abandonment.

  6. Groundwater monitoring plan for the 183-H Solar Evaporation Basins

    SciTech Connect

    Hartman, M.J.

    1997-05-01

    Groundwater monitoring at the 183-H Solar Evaporation Basins is regulated under Washington Administrative Code 173-303-645. Proposed in this plan is the first phase of a final-status, corrective action monitoring program for the site. The monitoring network consists of four existing wells: 199-H4-3, 199-H4-7, 199-H4-12A, and 199-H4-12C. Well 199-H4-12C is completed at the base of the unconfined aquifer; the other wells are screened at the water table. Wells 199-H4-7 and 199-H4-12A are groundwater extraction wells used in a pump-and-treat system. Groundwater samples will be collected from each well annually. Samples will be analyzed for the following: (1) constituents of concern (i.e., chromium, nitrate, technetium-99, and uranium) and fluoride; (2) additional constituents to aid data interpretation (e.g., alkalinity, anions, and metals); and (3) field parameters routinely acquired at the wellhead (e.g., pH, specific conductance, temperature, and turbidity). The objective of monitoring during operation of the pump-and-treat system is to determine whether concentrations of the contaminants of concern are decreasing.

  7. Applicability of Monte-Carlo Simulation to Equipment Design of Radioactive Noble Gas Monitor

    NASA Astrophysics Data System (ADS)

    Sakai, Hirotaka; Hattori, Kanako; Umemura, Norihiro

    In the nuclear facilities, radioactive noble gas is continuously monitored by using the radioactive noble gas monitor with beta-sensitive plastic scintillation radiation detector. The detection efficiency of the monitor is generally calibrated by using a calibration loop and standard radioactive noble gases such as 85Kr. In this study, the applicability of PHITS to the equipment design of the radioactive noble gas monitor was evaluated by comparing the calculated results to the test results obtained by actual calibration loop tests to simplify the radiation monitor design evaluation. It was confirmed that the calculated results were well matched to the test results of the monitor after the modeling. In addition, the key parameters for equipment design, such as thickness of detector window or depth of the sampler, were also specified and evaluated.

  8. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  9. Methods for Finding Legacy Wells in Large Areas

    SciTech Connect

    Hammack, Richard W.; Veloski, Garret A.; Hodges, D. Greg; White, Jr., Curt M.

    2016-06-16

    United States. When abandoned, many wells were not adequately sealed and now provide a potential conduit for the vertical movement of liquids and gases. Today, groundwater aquifers can be contaminated by surface pollutants flowing down wells or by deep, saline water diffusing upwards. Likewise, natural gas, carbon dioxide (CO2), or radon can travel upwards via these wells to endanger structures or human health on the surface. Recently, the need to find and plug wells has become critical with the advent of carbon dioxide injection into geologic formations for enhanced oil recovery (EOR) or carbon storage. The potential for natural gas or brine leakage through existing wells has also been raised as a concern in regions where shale resources are hydraulically fractured for hydrocarbon recovery. In this study, the National Energy Technology Laboratory (NETL) updated existing, effective well finding techniques to be able to survey large areas quickly using helicopter or ground-vehicle-mounted magnetometers, combined with mobile methane detection. For this study, magnetic data were collected using airborne and ground vehicles equipped with two boom-mounted magnetometers, or on foot using a hand-held magnetometer with a single sensor. Data processing techniques were employed to accentuate well-casing-type magnetic signatures. To locate wells with no magnetic signature (wells where the steel well casing had been removed), the team monitored for anomalous concentrations of methane, which could indicate migration of volatile compounds from deeper sedimentary strata along a well or fracture pathway. Methane measurements were obtained using the ALPIS DIfferential Absorption Lidar (DIAL) sensor for helicopter surveys and the Apogee leak detection system (LDS) for ground surveys. These methods were evaluated at a 100-year-old oilfield in Wyoming, where a helicopter magnetic survey accurately located 93% of visible wells. In addition, 20% of the wells found by the survey were

  10. Recreation monitoring

    SciTech Connect

    DiGennaro, B.; Merklein, G.H.

    1995-12-31

    Recreational use and recreational facilities are common features at hydropower projects. In fact, the hydropower industry is a major supplier of recreational opportunities contributing to tourism and rural economic growth in many communities across the country, As demands for public recreation have grown, pressure on the hydropower industry to provide more public access and more facilities has increased. This paper looks at recent developments in the FERC licensing and compliance arenas with regard to planning for and monitoring recreation at hydropower facilities. The paper highlights the increased occurrence of recreation monitoring requirements in license articles and discusses methods for complying with such requirements. The paper also looks at how monitoring data can be used to avoid unnecessary developments and to better plan for future recreation use.

  11. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1989-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  12. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1992-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  13. Roadmap to Long-Term Monitoring Optimization

    EPA Pesticide Factsheets

    This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...

  14. Vital signs monitoring system

    NASA Technical Reports Server (NTRS)

    Steffen, Dale A. (Inventor); Sturm, Ronald E. (Inventor); Rinard, George A. (Inventor)

    1981-01-01

    A system is disclosed for monitoring vital physiological signs. Each of the system components utilizes a single hybrid circuit with each component having high accuracy without the necessity of repeated calibration. The system also has low power requirements, provides a digital display, and is of sufficiently small size to be incorporated into a hand-carried case for portable use. Components of the system may also provide independent outputs making the component useful, of itself, for monitoring one or more vital signs. The overall system preferably includes an ECG amplifier and cardiotachometer signal conditioner unit, an impedance pneumograph and respiration rate signal conditioner unit, a heart/breath rate processor unit, a temperature monitoring unit, a selector switch, a clock unit, and an LCD driver unit and associated LCDs, with the system being capable of being expanded as needed or desired, such as, for example, by addition of a systolic/diastolic blood pressure unit.

  15. Rulison Monitoring Plan

    SciTech Connect

    2010-07-01

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides

  16. VISIR upgrade overview: all's well that ends well

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Tristram, Konrad; Asmus, Daniel; Baksai, Pedro; Di Lieto, Nicola; Dobrzycka, Danuta; Duhoux, Philippe; Finger, Gert; Hummel, Christian; Ives, Derek; Jakob, Gerd; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Pantin, Eric; Riquelme, Miguel; Sanchez, Joel; Sandrock, Stefan; Siebenmorgen, Ralf; Stegmeier, Jörg; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Valdes, Guillermo; Venema, Lars

    2016-08-01

    We present an overview of the VISIR instrument after its upgrade and return to science operations. VISIR is the midinfrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan was based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As AQUARIUS detector array manufactured by Raytheon. In addition, a new prism spectroscopic mode covers the whole N-band in a single observation. Finally, new scientific capabilities for high resolution and high-contrast imaging are offered by sub-aperture mask and coronagraphic modes. In order to make optimal use of favourable atmospheric conditions, a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a user-defined constraint on water vapour. During the commissioning in 2012, it was found that the on-sky sensitivity of the AQUARIUS detector was significantly below expectations. Extensive testing of the detector arrays in the laboratory and on-sky enabled us to diagnose the cause for the shortcoming of the detector as excess low frequency noise. It is inherent to the design chosen for this detector and cannot be remedied by changing the detector set-up. Since this is a form of correlated noise, its impact can be limited by modulating the scene recorded by the detector. After careful analysis, we have implemented fast (up to 4 Hz) chopping with field stabilization using the secondary mirror of the VLT. During commissioning, the upgraded VISIR has been confirmed to be more sensitive than the old instrument, and in particular for low-resolution spectroscopy in the N-band, a gain of a factor 6 is realized in observing efficiency

  17. P-Area Reactor 1993 annual groundwater monitoring report

    SciTech Connect

    1994-11-01

    Groundwater was sampled and analyzed during 1993 from wells monitoring the water table at the following locations in P Area: well P 24A in the eastern section of P Area, the P-Area Acid/Caustic Basin, the P-Area Coal Pile Runoff Containment Basin, the P-Area Disassembly Basin, the P-Area Burning/Rubble Pit, and the P-Area Seepage Basins. During 1993, pH was above its alkaline standard in well P 24A. Specific conductance was above its standard in one well each from the PAC and PCB series. Lead exceeded its 50 {mu}g/L standard in one well of the PDB series during one quarter. Tetrachloroethylene and trichloroethylene were detected above their final primary drinking water standards in one well of the PRP well series. Tritium was consistently above its DWS in the PDB and PSB series. Also during 1993, radium-228 exceeded the DWS for total radium in three wells of the PAC series and one well of the PCB series; total alpha-emitting radium exceeded the same standard in a different PCB well. These results are fairly consistent with those from previous years. Unlike results from past years, however, no halogenated volatiles other than trichloroethylene and tetrachloroethylene exceeded DWS in the PRP well series although gas chromatographic volatile organic analyses were performed throughout the year. Some of the regulated units in P Area appear to need additional monitoring by new wells because there are insufficient downgradient wells, sometimes because the original well network, installed prior to regulation, included sidegradient rather than downgradient wells. No monitoring wells had been installed through 1993 at one of the RCRA/CERCLA units named in the Federal Facilities Agreement, the Bingham Pump Outage Pits.

  18. 11. INTERIOR VIEW OF 19061910 ONESTORY SHED ADDITION, FIRST FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. INTERIOR VIEW OF 1906-1910 ONE-STORY SHED ADDITION, FIRST FLOOR, SHOWING ROOF MONITOR, LOOKING NORTHWEST - Massachusetts Mills, Cloth Room-Section 15, 95 Bridge Street, Lowell, Middlesex County, MA

  19. Export Control Guide: Loose Parts Monitoring Systems for Nuclear Power Plants

    SciTech Connect

    Langenberg, Donald W.

    2012-12-01

    This report describes a typical LPMS, emphasizing its application to the RCS of a modern NPP. The report also examines the versatility of AE monitoring technology by describing several nuclear applications other than loose parts monitoring, as well as some non-nuclear applications. In addition, LPMS implementation requirements are outlined, and LPMS suppliers are identified. Finally, U.S. export controls applicable to LPMSs are discussed.

  20. Additive-driven assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Daga, Vikram; Anderson, Eric; Watkins, James

    2011-03-01

    One challenge to the formation of well ordered hybrid materials is the incorporation of nanoscale additives including metal, semiconductor and dielectric nanoparticles at high loadings while maintaining strong segregation. Here we describe the molecular and functional design of small molecule and nanoparticle additives that enhance phase segregation in their block copolymer host and enable high additive loadings. Our approach includes the use of hydrogen bond interactions between the functional groups on the additive or particle that serve as hydrogen bond donors and one segment of the block copolymer containing hydrogen bond acceptors. Further, the additives show strong selectively towards the targeted domains, leading to enhancements in contrast between properties of the phases. In addition to structural changes, we explore how large changes in the thermal and mechanical properties occur upon incorporation of the additives. Generalization of this additive-induced ordering strategy to various block copolymers will be discussed.