Science.gov

Sample records for additional non-transiting planets

  1. Possible detection of phase changes from the non-transiting planet HD 46375b by CoRoT

    NASA Astrophysics Data System (ADS)

    Gaulme, P.; Vannier, M.; Guillot, T.; Mosser, B.; Mary, D.; Weiss, W. W.; Schmider, F.-X.; Bourguignon, S.; Deeg, H. J.; Régulo, C.; Aigrain, S.; Schneider, J.; Bruntt, H.; Deheuvels, S.; Donati, J.-F.; Appourchaux, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Michel, E.; Samadi, R.

    2010-07-01

    Context. The present work deals with the detection of phase changes in an exoplanetary system. HD 46375 is a solar analog known to host a non-transiting Saturn-mass exoplanet with a 3.0236 day period. It was observed by the CoRoT satellite for 34 days during the fall of 2008. Aims: We attempt to identify at optical wavelengths, the changing phases of the planet as it orbits its star. We then try to improve the star model by means of a seismic analysis of the same light curve and the use of ground-based spectropolarimetric observations. Methods: The data analysis relies on the Fourier spectrum and the folding of the time series. Results: We find evidence of a sinusoidal signal compatible in terms of both amplitude and phase with light reflected by the planet. Its relative amplitude is Δ Fp/Fstar = [13.0, 26.8] ppm, implying an albedo A = [0.16, 0.33] or a dayside visible brightness temperature Tb ≃ [1880, 2030] K by assuming a radius R = 1.1 RJup and an inclination i = 45°. Its orbital phase differs from that of the radial-velocity signal by at most 2 σ_RV. However, the tiny planetary signal is strongly blended by another signal, which we attribute to a telluric signal with a 1 day period. We show that this signal is suppressed, but not eliminated, when using the time series for HD 46179 from the same CoRoT run as a reference. Conclusions: This detection of reflected light from a non-transiting planet should be confirmable with a longer CoRoT observation of the same field. In any case, it demonstrates that non-transiting planets can be characterized using ultra-precise photometric lightcurves with present-day observations by CoRoT and Kepler. The combined detection of solar-type oscillations on the same targets (Gaulme et al. 2010a) highlights the overlap between exoplanetary science and asteroseismology and shows the high potential of a mission such as Plato. The CoRoT space mission, launched on 2006 December 27, was developed and is operated by the CNES, with

  2. Aspects on the Dynamics and Detection of Additional Circumbinary Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Hinse, Tobias C.; Haghighipour, Nader; Goździewski, Krzysztof

    2014-04-01

    The presence of additional bodies orbiting a binary star system can be detected by monitoring the binary's eclipse timing. These so-called circumbinary objects will reveal themselves by i) either introducing a reflex motion of the binary system about the total system's barycenter creating a geometric light-travel time effect (LITE), ii) by gravitational perturbations on the binary orbit, or iii) a combination of the two effects resulting in eclipse timing (ETV) and transit timing (TTV) variations. Motivated by the four recently detected circumbinary planets by the Kepler space telescope (Kepler-16b, Kepler-34b, Kepler-35b and Kepler-38b) we have begun to study their dynamics in the presence of an additional massive perturber. In particular we used Kepler-16b as a test bed case. We are aiming to study the detectability of non-transiting and inclined circumbinary planets using the ETV effect along with the fast indicator MEGNO to quantitatively map the chaotic/quasi-periodic regions of the orbital parameter-space and to determine where the orbit of a circumbinary planet will be stable. We have calculated the amplitudes of TTV and ETV signals for different values of the mass and orbital elements of the planet and binary.

  3. A SEARCH FOR ADDITIONAL PLANETS IN THE NASA EPOXI OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436

    SciTech Connect

    Ballard, Sarah; Christiansen, Jessie L.; Charbonneau, David; Holman, Matthew J.; Fabrycky, Daniel; Deming, Drake; Barry, Richard K.; Kuchner, Marc J.; Livengood, Timothy A.; Hewagama, Tilak; A'Hearn, Michael F.; Wellnitz, Dennis D.; Sunshine, Jessica M.; Hampton, Don L.; Lisse, Carey M.; Seager, Sara; Veverka, Joseph F.

    2010-06-20

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the Extrasolar Planet Observation and Characterization (EPOCh) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.5 R{sub +} interior to GJ 436b with 95% confidence and larger than 1.25 R{sub +} with 80% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. However, if such a planet were to transit, we would rule out planets larger than 2.0 R{sub +} with orbital periods less than 8.5 days with 95% confidence. We also place dynamical constraints on additional bodies in the GJ 436 system, independent of radial velocity measurements. Our analysis should serve as a useful guide for similar analyses of transiting exoplanets for which radial velocity measurements are not available, such as those discovered by the Kepler mission. From the lack of observed secular perturbations, we set upper limits on the mass of a second planet as small as 10 M{sub +} in coplanar orbits and 1 M{sub +} in non-coplanar orbits close to GJ 436b. We present refined estimates of the system parameters for GJ 436. We find P = 2.64389579 {+-} 0.00000080 d, R{sub *} = 0.437 {+-} 0.016 R{sub sun}, and R{sub p} = 3.880 {+-} 0.147 R{sub +}. We also report a sinusoidal modulation in the GJ 436 light curve

  4. WASP-47: A Hot Jupiter System with Two Additional Planets Discovered by K2

    NASA Astrophysics Data System (ADS)

    Becker, Juliette C.; Vanderburg, Andrew; Adams, Fred C.; Rappaport, Saul A.; Schwengeler, Hans Martin

    2015-10-01

    Using new data from the K2 mission, we show that WASP-47, a previously known hot Jupiter host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth inner companion. We measure planetary properties from the K2 light curve and detect transit timing variations (TTVs), confirming the planetary nature of the outer planet. We performed a large number of numerical simulations to study the dynamical stability of the system and to find the theoretically expected TTVs. The theoretically predicted TTVs are in good agreement with those observed, and we use the TTVs to determine the masses of two planets, and place a limit on the third. The WASP-47 planetary system is important because companion planets can both be inferred by TTVs and are also detected directly through transit observations. The depth of the hot Jupiter's transits make ground-based TTV measurements possible, and the brightness of the host star makes it amenable for precise radial velocity measurements. The system serves as a Rosetta Stone for understanding TTVs as a planet detection technique.

  5. The Dynamics of the WASP-47 Planetary System: A Hot Jupiter, Two Additional Planets, and Observable Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Becker, Juliette C.; Vanderburg, Andrew; Rappaport, Saul; Schwengeler, Hans Martin

    2015-12-01

    New data from the K2 mission indicate that WASP-47, a previously known Hot Jupiter host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth inner companion. The measured period ratios and size ratios for these planets are unusual (extreme) for Hot Jupiter systems. We measure the planetary properties from the K2 light curve and detect transit timing variations, thereby confirming the planetary nature of the outer planet. We performed a large ensemble of numerical simulations to study the dynamical stability of the system and to find the theoretically expected transit timing variations (TTVs). The system is stable provided that the orbital eccentricities are small. The theoretically predicted TTVs are in good agreement with those observed, and we use the TTVs to determine the masses of two planets, and place a limit on the third. The WASP-47 planetary system is important because the companion planets can both be inferred by TTVs and are also detected directly through transit observations. The depth of the Hot Jupiter’s transits make ground-based TTV measurements possible, and the brightness of the host star makes it amenable for precise radial velocity measurements. The system thus serves as a Rosetta Stone for understanding TTVs as a planet detection technique. Moreover, this compact set of planets in nearly circular, coplanar orbits demonstrates that at least a subset of Jupiter-size planets can migrate in close to their host star in a dynamically quiet manner. As final curiosity, WASP-47 hosts one of few extrasolar planetary systems that can observe Earth in transit.

  6. Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant?

    NASA Astrophysics Data System (ADS)

    Funk, B.; Pilat-Lohinger, E.; Eggl, S.

    2015-04-01

    Locating planets in Habitable Zones (HZs) around other stars is a growing field in contemporary astronomy. Since a large percentage of all G-M stars in the solar neighbourhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional habitable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host additional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885 A. HD 196885 B can be considered a slightly more promising target in the search for Earth-twins. Gliese 86 A turned out to be a very good candidate, assuming that the system's history has not been excessively violent. For HD 41004, we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system. A more detailed investigation shows that for some initial conditions stable planetary motion is possible in the HZ of HD 41004 A. In spite of the massive companion HD 41004 Bb, we found that HD 41004 B, too, could host additional habitable worlds.

  7. The fates of Solar system analogues with one additional distant planet

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri

    2016-08-01

    The potential existence of a distant planet ("Planet Nine") in the Solar system has prompted a re-think about the evolution of planetary systems. As the Sun transitions from a main sequence star into a white dwarf, Jupiter, Saturn, Uranus and Neptune are currently assumed to survive in expanded but otherwise unchanged orbits. However, a sufficiently-distant and sufficiently-massive extra planet would alter this quiescent end scenario through the combined effects of Solar giant branch mass loss and Galactic tides. Here, I estimate bounds for the mass and orbit of a distant extra planet that would incite future instability in systems with a Sun-like star and giant planets with masses and orbits equivalent to those of Jupiter, Saturn, Uranus and Neptune. I find that this boundary is diffuse and strongly dependent on each of the distant planet's orbital parameters. Nevertheless, I claim that instability occurs more often than not when the planet is as massive as Jupiter and harbours a semimajor axis exceeding about 300 au, or has a mass of a super-Earth and a semimajor axis exceeding about 3000 au. These results hold for orbital pericentres ranging from 100 to at least 400 au. This instability scenario might represent a common occurrence, as potentially evidenced by the ubiquity of metal pollution in white dwarf atmospheres throughout the Galaxy.

  8. Late Chondritic Additions and Planet and Planetesimal Growth: Evaluation of Physical and Chemical Mechanisms

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2013-01-01

    Studies of terrestrial peridotite and martian and achondritic meteorites have led to the conclusion that addition of chondritic material to growing planets or planetesimals, after core formation, occurred on Earth, Mars, asteroid 4 Vesta, and the parent body of the angritic meteorites [1-4]. One study even proposed that this was a common process in the final stages of growth [5]. These conclusions are based almost entirely on the highly siderophile elements (HSE; Re, Au, Pt, Pd, Rh, Ru, Ir, Os). The HSE are a group of eight elements that have been used to argue for late accretion of chondritic material to the Earth after core formation was complete (e.g., [6]). This idea was originally proposed because the D(metal/silicate) values for the HSE are so high, yet their concentration in the mantle is too high to be consistent with such high Ds. The HSE also are present in chondritic relative abundances and hence require similar Ds if this is the result of core-mantle equilibration. Since the work of [6] there has been a realization that core formation at high PT conditions can explain the abundances of many siderophile elements in the mantle (e.g., [7]), but such detailed high PT partitioning data are lacking for many of the HSE to evaluate whether such ideas are viable for all four bodies. Consideration of other chemical parameters reveals larger problems that are difficult to overcome, but must be addressed in any scenario which calls on the addition of chondritic material to a reduced mantle. Yet these problems are rarely discussed or emphasized, making the late chondritic (or late veneer) addition hypothesis suspect.

  9. A Deep Search for Additional Satellites around the Dwarf Planet Haumea

    NASA Astrophysics Data System (ADS)

    Burkhart, Luke D.; Ragozzine, Darin; Brown, Michael E.

    2016-06-01

    Haumea is a dwarf planet with two known satellites, an unusually high spin rate, and a large collisional family, making it one of the most interesting objects in the outer solar system. A fully self-consistent formation scenario responsible for the satellite and family formation is still elusive, but some processes predict the initial formation of many small moons, similar to the small moons recently discovered around Pluto. Deep searches for regular satellites around Kuiper belt objects are difficult due to observational limitations, but Haumea is one of the few for which sufficient data exist. We analyze Hubble Space Telescope (HST) observations, focusing on a 10-consecutive-orbit sequence obtained in 2010 July, to search for new very small satellites. To maximize the search depth, we implement and validate a nonlinear shift-and-stack method. No additional satellites of Haumea are found, but by implanting and recovering artificial sources, we characterize our sensitivity. At distances between ∼10,000 and ∼350,000 km from Haumea, satellites with radii as small as ∼10 km are ruled out, assuming an albedo (p≃ 0.7) similar to Haumea. We also rule out satellites larger than ≳40 km in most of the Hill sphere using other HST data. This search method rules out objects similar in size to the small moons of Pluto. By developing clear criteria for determining the number of nonlinear rates to use, we find that far fewer shift rates are required (∼35) than might be expected. The nonlinear shift-and-stack method to discover satellites (and other moving transients) is tractable, particularly in the regime where nonlinear motion begins to manifest itself.

  10. A SEARCH FOR ADDITIONAL PLANETS IN FIVE OF THE EXOPLANETARY SYSTEMS STUDIED BY THE NASA EPOXI MISSION

    SciTech Connect

    Ballard, Sarah; Charbonneau, David; Holman, Matthew J.; Christiansen, Jessie L.; Deming, Drake; Barry, Richard K.; Kuchner, Marc J.; Livengood, Timothy A.; Hewagama, Tilak; Hampton, Don L.; Lisse, Carey M.; Seager, Sara; Veverka, Joseph F.

    2011-05-01

    We present time series photometry and constraints on additional planets in five of the exoplanetary systems studied by the EPOCh (Extrasolar Planet Observation and Characterization) component of the NASA EPOXI mission: HAT-P-4, TrES-3, TrES-2, WASP-3, and HAT-P-7. We conduct a search of the high-precision time series for photometric transits of additional planets. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series using putative periods from 0.5 days to 7 days, we demonstrate the sensitivity to detect Neptune-sized companions around TrES-2, sub-Saturn-sized companions in the HAT-P-4, TrES-3, and WASP-3 systems, and Saturn-sized companions around HAT-P-7. We investigate in particular our sensitivity to additional transits in the dynamically favorable 3:2 and 2:1 exterior resonances with the known exoplanets: if we assume coplanar orbits with the known planets, then companions in these resonances with HAT-P-4b, WASP-3b, and HAT-P-7b would be expected to transit, and we can set lower limits on the radii of companions in these systems. In the nearly grazing exoplanetary systems TrES-3 and TrES-2, additional coplanar planets in these resonances are not expected to transit. However, we place lower limits on the radii of companions that would transit if the orbits were misaligned by 2.{sup 0}0 and 1.{sup 0}4 for TrES-3 and TrES-2, respectively.

  11. THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS

    SciTech Connect

    Berta, Zachory K.; Charbonneau, David; Bean, Jacob; Irwin, Jonathan; Burke, Christopher J.; Desert, Jean-Michel; Nutzman, Philip; Falco, Emilio E.

    2011-07-20

    The super-Earth GJ1214b transits a nearby M dwarf that exhibits a 1% intrinsic variability in the near-infrared. Here, we analyze new observations to refine the physical properties of both the star and planet. We present three years of out-of-transit photometric monitoring of the stellar host GJ1214 from the MEarth Observatory and find the rotation period to be long, most likely an integer multiple of 53 days, suggesting low levels of magnetic activity and an old age for the system. We show that such variability will not pose significant problems to ongoing studies of the planet's atmosphere with transmission spectroscopy. We analyze two high-precision transit light curves from ESO's Very Large Telescope (VLT) along with seven others from the MEarth and Fred Lawrence Whipple Observatory 1.2 m telescopes, finding physical parameters for the planet that are consistent with previous work. The VLT light curves show tentative evidence for spot occultations during transit. Using two years of MEarth light curves, we place limits on additional transiting planets around GJ1214 with periods out to the habitable zone of the system. We also improve upon the previous photographic V-band estimate for the star, finding V = 14.71 {+-} 0.03.

  12. MOST Spacebased Photometry of the Transiting Exoplanet System HD 209458: Transit Timing to Search for Additional Planets

    NASA Astrophysics Data System (ADS)

    Miller-Ricci, E.; Rowe, J. F.; Sasselov, D.; Matthews, J. M.; Guenther, D. B.; Kuschnig, R.; Moffat, A. F. J.; Rucinski, S. M.; Walker, G. A. H.; Weiss, W. W.

    2007-07-01

    We report on the measurement of transit times for the HD 209458 planetary system from photometry obtained with the MOST (Microvariability & Oscillations of STars) space telescope. Deviations from a constant orbital period can indicate the presence of additional planets in the system that are yet undetected, potentially with masses approaching Earth mass. The MOST data sets of HD 209458 from 2004 and 2005 represent unprecedented time coverage with nearly continuous observations spanning 14 and 43 days and monitoring 2 and 12 consecutive transits, respectively. The transit times we obtain show no variations and allow us to place strong limits on the presence of additional close-in planets in the system, in some cases down to an Earth mass. This result, together with previous radial velocity and transit timing work, now eliminates the possibility that a perturbing planet could be responsible for the additional heat source needed to explain HD 209458b's anomalous low density. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  13. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    SciTech Connect

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Holman, Matthew J.; Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  14. The architecture of the multi-planet system of υ And: υ And b - a super-inflated hot Jupiter in a cosmic ping-pong game

    NASA Astrophysics Data System (ADS)

    Rodler, Florian

    2015-12-01

    The gas giant Upsilon Andromeda b (υ And b) was one of the first discovered exoplanets. This planet orbits around a bright, similar to the Sun star only 13.5 parsecs away from us. υ And b is also the innermost planet of a confirmed three-planet system, all of them non-transiting. As with all non-transiting planets, their exact masses and sizes are unknown, with their orbital inclination being the key parameter to unveil those values. Astrometric measurements have placed constraints to the orbital inclinations of the two outer planets in this system, indicating that we look almost 'face-on' on the system (McArthur et al. 2010). However, the orbital inclination for the innermost planet remained unknown.Photometric monitoring of υ And b orbit at infrared wavelengths has revealed significant brightness changes between the day-side and the night-side of the planet (Crossfield et al. 2010). The amplitude of those brightness variations depends on the orbital inclination of the planet and on its radius, therefore we can tightly constrain the size of the planet if its inclination is known.Here we present the measurement of the orbital inclination for the innermost planet υ And b, 23 deg, obtained by monitoring the Doppler shift of carbon monoxide (CO) lines on the atmospheric day-side of the planet with Keck/NIRSPEC. From this measurement we establish a planet mass of 1.7 times the mass of Jupiter and a minimum planet radius of 1.8 times the size of Jupiter. This result reveals that υ And b is likely to be one of the most inflated giant planets discovered to date. In addition, the observed strong CO absorption suggests an atmosphere with temperature uniformly decreasing towards higher altitudes, which suggests the absence of an atmospheric thermal inversion (Rodler et al. 2015).

  15. Stability of Earth-mass Planets in the Kepler-68 System

    NASA Astrophysics Data System (ADS)

    Kane, Stephen R.

    2015-11-01

    A key component of characterizing multi-planet exosystems is testing the orbital stability based on the observed properties. Such characterization not only tests the validity of how observations are interpreted but can also place additional constraints upon the properties of the detected planets. The Kepler mission has identified hundreds of multi-planet systems but there are a few that have additional non-transiting planets and also have well characterized host stars. Kepler-68 is one such system for which we are able to provide a detailed study of the orbital dynamics. We use the stellar parameters to calculate the extent of the habitable zone (HZ) for this system, showing that the outer planet lies within that region. We use N-body integrations to study the orbital stability of the system, in particular placing an orbital inclination constraint on the outer planet of i > 5°. Finally, we present the results of an exhaustive stability simulation that investigates possible locations of stable orbits for an Earth-mass planet. We show that there are several islands of stability within the HZ that could harbor such a planet, most particularly at the 2:3 mean motion resonance with the outer planet.

  16. Journey to Planet Seven.

    ERIC Educational Resources Information Center

    Gow, Ellen

    1987-01-01

    An imaginary journey to Planet Seven is used to introduce the concept of number systems not based on ten. Activities include making a base 7 chart, performing base 7 addition and subtraction, designing Planet Seven currency, and developing other base systems for other planets. (MT)

  17. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  18. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    NASA Astrophysics Data System (ADS)

    Piskorz, Danielle; Crockett, Nathan R.; Lockwood, Alexandra; Benneke, Björn; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Bryan, Marta; Carr, John S.; Fischer, Debra; Howard, Andrew; Isaacson, Howard T.; Johnson, John A.

    2016-10-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of its Keplerian orbital velocity, its true mass, its orbital inclination, and dominant atmospheric species. This, combined with eleven years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  19. RECOVERY OF THE CANDIDATE PROTOPLANET HD 100546 b WITH GEMINI/NICI AND DETECTION OF ADDITIONAL (PLANET-INDUCED?) DISK STRUCTURE AT SMALL SEPARATIONS

    SciTech Connect

    Currie, Thayne; Kudo, Tomoyuki; Muto, Takayuki; Honda, Mitsuhiko; Brandt, Timothy D.; Grady, Carol; Fukagawa, Misato; Burrows, Adam; Janson, Markus; Kuzuhara, Masayuki; McElwain, Michael W.; Follette, Katherine; Hashimoto, Jun; Henning, Thomas; Kandori, Ryo; Kusakabe, Nobuhiko; Morino, Jun-ichi; Nishikawa, Jun; Kwon, Jungmi; Mede, Kyle; and others

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover ''HD 100546 b'' with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models imply a mass of ≈15 M{sub J} . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 M{sub J} ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

  20. Recovery of the Candidate Protoplanet HD 100546 b with Gemini/NICI and Detection of Additional (Planet-induced?) Disk Structure at Small Separations

    NASA Astrophysics Data System (ADS)

    Currie, Thayne; Muto, Takayuki; Kudo, Tomoyuki; Honda, Mitsuhiko; Brandt, Timothy D.; Grady, Carol; Fukagawa, Misato; Burrows, Adam; Janson, Markus; Kuzuhara, Masayuki; McElwain, Michael W.; Follette, Katherine; Hashimoto, Jun; Henning, Thomas; Kandori, Ryo; Kusakabe, Nobuhiko; Kwon, Jungmi; Mede, Kyle; Morino, Jun-ichi; Nishikawa, Jun; Pyo, Tae-Soo; Serabyn, Gene; Suenaga, Takuya; Takahashi, Yasuhiro; Wisniewski, John; Tamura, Motohide

    2014-12-01

    We report the first independent, second epoch (re-)detection of a directly imaged protoplanet candidate. Using L' high-contrast imaging of HD 100546 taken with the Near-Infrared Coronagraph and Imager on Gemini South, we recover "HD 100546 b" with a position and brightness consistent with the original Very Large Telescope/NAos-COnica detection from Quanz et al., although data obtained after 2013 will be required to decisively demonstrate common proper motion. HD 100546 b may be spatially resolved, up to ≈12-13 AU in diameter, and is embedded in a finger of thermal IR-bright, polarized emission extending inward to at least 0.''3. Standard hot-start models imply a mass of ≈15 MJ . However, if HD 100546 b is newly formed or made visible by a circumplanetary disk, both of which are plausible, its mass is significantly lower (e.g., 1-7 MJ ). Additionally, we discover a thermal IR-bright disk feature, possibly a spiral density wave, at roughly the same angular separation as HD 100546 b but 90° away. Our interpretation of this feature as a spiral arm is not decisive, but modeling analyses using spiral density wave theory implies a wave launching point exterior to ≈0.''45 embedded within the visible disk structure: plausibly evidence for a second, hitherto unseen, wide-separation planet. With one confirmed protoplanet candidate and evidence for one to two others, HD 100546 is an important evolutionary precursor to intermediate-mass stars with multiple super-Jovian planets at moderate/wide separations like HR 8799.

  1. Polarisation of Planets and Exoplanets

    NASA Astrophysics Data System (ADS)

    Bailey, Jeremy; Kedziora-Chudczer, Lucyna; Bott, Kimberly; Cotton, Daniel V.

    2015-11-01

    We present observations of the linear polarisation of several hot Jupiter systems with our new high-precision polarimeter HIPPI (HIgh Precision Polarimetric Instrument). By looking at the combined light of the star and planet we aim to detect the polarised light reflected from the planet's atmosphere. This can provide information on the presence of, and nature of clouds in the atmosphere, and constrain the geometric albedo of the planet. The method is applicable to both transitting and non-transitting planets, and can also be used to determine the inclination of the system, and thus the true mass for radial velocity detected planets.To predict and interpret the polarisation from such observations, we have also developed an advanced polarimetric modelling capability, by incoroporating full polarised radiative transfer into our atmospheric modelling code VSTAR. This is done using the VLIDORT vector radiative transfer solver (Spurr, 2006). The resulting code allows us to predict disc-resolved, phase-resolved, and spectrally-resolved intensity and linear polarisation for any planet, exoplanet, brown dwarf or cool star atmosphere that can be modelled with VSTAR. We have tested the code by reproducing benchmark calculations in polarised radiative transfer, and by Solar System test cases, including reproducing the classic Hansen and Hovenier (1974) calculation of the polarisation phase curves of Venus.Hansen, J.E., & Hovenier, J.W., 1974, J. Atmos. Sci., 31, 1137Spurr, R., 2006, JQSRT, 102, 316.

  2. Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    NASA Astrophysics Data System (ADS)

    Brogi, M.; de Kok, R. J.; Birkby, J. L.; Schwarz, H.; Snellen, I. A. G.

    2014-05-01

    Context. In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. The system is bright enough to be an ideal target for near-infrared, high-resolution spectroscopy. Aims: Here we present the analysis of spectra of the system at 2.3 μm, obtained at a resolution of R ~ 100 000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. Methods: Unlike the telluric signal, the planet signal is subject to a changing Doppler shift during the observations. This is due to the changing radial component of the planet orbital velocity, which is on the order of 100-150 km s-1 for these hot Jupiters. We can therefore effectively remove the telluric absorption while preserving the planet signal, which is then extracted from the data by cross correlation with a range of model spectra for the planet atmosphere. Results: We detect molecular absorption from carbon monoxide and water vapor with a combined signal-to-noise ratio (S/N) of 6.3, at a projected planet orbital velocity of KP = (142.8 ± 3.4) km s-1, which translates into a planet mass of MP = (0.98 ± 0.04) Jupiter masses, and an orbital inclination of i = (67.7 ± 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R'HK > -4.9), this is in line with the hypothesis that stellar

  3. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  4. Terrestrial planet formation.

    PubMed

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  5. Terrestrial planet formation

    PubMed Central

    Righter, K.; O’Brien, D. P.

    2011-01-01

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (∼106 y), followed by planetesimals to embryos (lunar to Mars-sized objects; few × 106 y), and finally embryos to planets (107–108 y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids. PMID:21709256

  6. Giant Planets

    NASA Astrophysics Data System (ADS)

    Lunine, J. I.

    Beyond the inner solar system's terrestrial planets, with their compact orbits and rock -metal compositions, lies the realm of the outer solar system and the giant planets. Here the distance between planets jumps by an order of magnitude relative to the spacing of the terrestrial planets, and the masses of the giants are one to two orders of magnitude greater than Venus and Earth - the largest terrestrial bodies. Composition changes as well, since the giant planets are largely gaseous, with inferred admixtures of ice, rock, and metal, while the terrestrial planets are essentially pure rock and metal. The giant planets have many more moons than do the terrestrial planets, and the range of magnetic field strengths is larger in the outer solar system. It is the giant planets that sport rings, ranging from the magnificent ones around Saturn to the variable ring arcs of Neptune. Were it not for the fact that only Earth supports abundant life (with life possibly existing, but not proved to exist, in the martian crust and liquid water regions underneath the ice of Jupiter's moon Europa), the terrestrial planets would pale in interest next to the giant planets for any extraterrestrial visitor.

  7. The Occurrence of Additional Giant Planets Inside the Water-Ice Line in Systems with Hot Jupiters: Evidence Against High-Eccentricity Migration

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.; Winn, Joshua N.

    2016-07-01

    The origin of Jupiter-mass planets with orbital periods of only a few days is still uncertain. It is widely believed that these planets formed near the water-ice line of the protoplanetary disk, and subsequently migrated into much smaller orbits. Most of the proposed migration mechanisms can be classified either as disk-driven migration, or as excitation of a very high eccentricity followed by tidal circularization. In the latter scenario, the giant planet that is destined to become a hot Jupiter spends billions of years on a highly eccentric orbit, with apastron near the water-ice line. Eventually, tidal dissipation at periastron shrinks and circularizes the orbit. If this is correct, then it should be especially rare for hot Jupiters to be accompanied by another giant planet interior to the water-ice line. Using the current sample of giant planets discovered with the Doppler technique, we find that hot Jupiters with P orb < 10 days are no more or less likely to have exterior Jupiter-mass companions than longer-period giant planets with P orb ≥ 10 days. This result holds for exterior companions both inside and outside of the approximate location of the water-ice line. These results are difficult to reconcile with the high-eccentricity migration scenario for hot Jupiter formation.

  8. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  9. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  10. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  11. Extreme Planets

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This artist's concept depicts the pulsar planet system discovered by Aleksander Wolszczan in 1992. Wolszczan used the Arecibo radio telescope in Puerto Rico to find three planets - the first of any kind ever found outside our solar system - circling a pulsar called PSR B1257+12. Pulsars are rapidly rotating neutron stars, which are the collapsed cores of exploded massive stars. They spin and pulse with radiation, much like a lighthouse beacon. Here, the pulsar's twisted magnetic fields are highlighted by the blue glow.

    All three pulsar planets are shown in this picture; the farthest two from the pulsar (closest in this view) are about the size of Earth. Radiation from charged pulsar particles would probably rain down on the planets, causing their night skies to light up with auroras similar to our Northern Lights. One such aurora is illustrated on the planet at the bottom of the picture.

    Since this landmark discovery, more than 160 extrasolar planets have been observed around stars that are burning nuclear fuel. The planets spotted by Wolszczan are still the only ones around a dead star. They also might be part of a second generation of planets, the first having been destroyed when their star blew up. The Spitzer Space Telescope's discovery of a dusty disk around a pulsar might represent the beginnings of a similarly 'reborn' planetary system.

  12. PREDICTING PLANETS IN KEPLER MULTI-PLANET SYSTEMS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-05-20

    We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform long-term numerical integrations of 10{sup 7} years to investigate the stability of 4000-8000 test particles injected into the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which is related to quantities such as the dynamical spacing {Delta}, the separation between two planets in units of their mutual Hill radii. Our results suggest that planets with separation {Delta} < 10 are unlikely to host extensive stability regions, and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions. We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904, KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer detected planets. These predicted planets may be detected by future observations.

  13. The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; al., e

    2006-05-02

    The next major frontier in the study of extrasolar planets is direct imaging detection of the planets themselves. With high-order adaptive optics, careful system design, and advanced coronagraphy, it is possible for an AO system on a 8-m class telescope to achieve contrast levels of 10{sup -7} to 10{sup -8}, sufficient to detect warm self-luminous Jovian planets in the solar neighborhood. Such direct detection is sensitive to planets inaccessible to current radial-velocity surveys and allows spectral characterization of the planets, shedding light on planet formation and the structure of other solar systems. We have begun the construction of such a system for the Gemini Observatory. Dubbed the Gemini Planet Imager (GPI), this instrument should be deployed in 2010 on the Gemini South telescope. It combines a 2000-actuator MEMS-based AO system, an apodized-pupil Lyot coronagraph, a precision infrared interferometer for real-time wavefront calibration at the nanometer level, and a infrared integral field spectrograph for detection and characterization of the target planets. GPI will be able to achieve Strehl ratios > 0.9 at 1.65 microns and to observe a broad sample of science targets with I band magnitudes less than 8. In addition to planet detection, GPI will also be capable of polarimetric imaging of circumstellar dust disks, studies of evolved stars, and high-Strehl imaging spectroscopy of bright targets. We present here an overview of the GPI instrument design, an error budget highlighting key technological challenges, and models of the system performance.

  14. DECOUPLING PHASE VARIATIONS IN MULTI-PLANET SYSTEMS

    SciTech Connect

    Kane, Stephen R.; Gelino, Dawn M.

    2013-01-10

    Due to the exquisite photometric precision, transiting exoplanet discoveries from the Kepler mission are enabling several new techniques of confirmation and characterization. One of these newly accessible techniques analyzes the phase variations of planets as they orbit their stars. The predicted phase variation for multi-planet systems can become rapidly complicated and depends upon the period, radius, and albedo distributions for planets in the system. Here we describe the confusion that may occur due to short-period terrestrial planets and/or non-transiting planets in a system, which can add high-frequency correlated noise or low-frequency trends to the data stream. We describe these sources of ambiguity with several examples, including that of our solar system. We further show how decoupling of these signals may be achieved with application to the Kepler-20 and Kepler-33 multi-planet systems.

  15. Outer Planets

    NASA Video Gallery

    Did you know that through NASA’s various satellite missions we have learned more about these planetary bodies in recent years than we knew collectively since we started to study our planets? Throu...

  16. Planet Formation

    NASA Astrophysics Data System (ADS)

    Klahr, Hubert; Brandner, Wolfgang

    2011-02-01

    1. Historical notes on planet formation Bodenheimer; 2. The formation and evolution of planetary systems Bouwman et al.; 3. Destruction of protoplanetary disks by photoevaporation Richling, Hollenbach and Yorke; 4. Turbulence in protoplanetary accretion disks Klahr, Rozyczka, Dziourkevitch, Wunsch and Johansen; 5. The origin of solids in the early solar system Trieloff and Palme; 6. Experiments on planetesimal formation Wurm and Blum; 7. Dust coagulation in protoplanetary disks Henning, Dullemond, Wolf and Dominik; 8. The accretion of giant planet cores Thommes and Duncan; 9. Planetary transits: direct vision of extrasolar planets Lecavelier des Etangs and Vidal-Madjar; 10. The core accretion - gas capture model Hubickyj; 11. Properties of exoplanets Marcy, Fischer, Butler and Vogt; 12. Giant planet formation: theories meet observations Boss; 13. From hot Jupiters to hot Neptures … and below Lovis, Mayor and Udry; 14. Disk-planet interaction and migration Masset and Kley; 15. The Brown Dwarf - planet relation Bate; 16. From astronomy to astrobiology Brandner; 17. Overview and prospective Lin.

  17. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  18. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1. PMID:22506608

  19. Microlensing Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    The theory and practice of microlensing planet searches is developed in a systematic way, from an elementary treatment of the deflection of light by a massive body to a thorough discussion of the most recent results. The main concepts of planetary microlensing, including microlensing events, finite-source effects, and microlens parallax, are first introduced within the simpler context of point-lens events. These ideas are then applied to binary (and hence planetary) lenses and are integrated with concepts specific to binaries, including caustic topologies, orbital motion, and degeneracies, with an emphasis on analytic understanding. The most important results from microlensing planet searches are then reviewed, with emphasis both on understanding the historical process of discovery and the means by which scientific conclusions were drawn from light-curve analysis. Finally, the future prospects of microlensing planets searches are critically evaluated. Citations to original works provide the reader with multiple entry points into the literature.

  20. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  1. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  2. Pluto: Planet or "Dwarf Planet"?

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; de Araújo, M. S. T.

    2010-09-01

    In August 2006 during the XXVI General Assembly of the International Astronomical Union (IAU), taken place in Prague, Czech Republic, new parameters to define a planet were established. According to this new definition Pluto will be no more the ninth planet of the Solar System but it will be changed to be a "dwarf planet". This reclassification of Pluto by the academic community clearly illustrates how dynamic science is and how knowledge of different areas can be changed and evolves through the time, allowing to perceive Science as a human construction in a constant transformation, subject to political, social and historical contexts. These epistemological characteristics of Science and, in this case, of Astronomy, constitute important elements to be discussed in the lessons, so that this work contributes to enable Science and Physics teachers who perform a basic education to be always up to date on this important astronomical fact and, thereby, carry useful information to their teaching.

  3. Characterizing Earth-like planets with terrestrial planet finder

    NASA Astrophysics Data System (ADS)

    Seager, Sara; Ford, E. B.; Turner, E. L.

    2002-11-01

    For the first time in human history the possibility of detecting and studying Earth-like planets is on the horizon. Terrestrial Planet Finder (TPF), with a launch date in the 2015 timeframe, is being planned by NASA to find and characterize planets in the habitable zones of nearby stars. The mission Darwin from ESA has similar goals. The motivation for both of these space missions is the detection and spectroscopic characterization of extrasolar terrestrial planet atmospheres. Of special interest are atmospheric biomarkers-such as O2, O3, H2O, CO and CH4-which are either indicative of life as we know it, essential to life, or can provide clues to a planet's habitability. A mission capable of measuring these spectral features would also obtain sufficient signal-to-noise to characterize other terrestrial planet properties. For example, physical characteristics such as temperature and planetary radius can be constrained from low-resolution spectra. In addition, planet characteristics such as weather, rotation rate, presence of large oceans or surface ice, and existence of seasons could be derived from photometric measurements of the planet's variability. We will review the potential to characterize terrestrial planets beyond their spectral signatures. We will also discuss the possibility to detect strong surface biomarkers-such as Earth's vegetation red edge near 700 nm-that are different from any known atomic or molecular signature.

  4. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  5. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally

  6. ORBITAL DISTRIBUTIONS OF CLOSE-IN PLANETS AND DISTANT PLANETS FORMED BY SCATTERING AND DYNAMICAL TIDES

    SciTech Connect

    Nagasawa, M.; Ida, S.

    2011-12-01

    We investigated the formation of close-in planets (hot Jupiters) by a combination of mutual scattering, Kozai effect, and tidal circularization, through N-body simulations of three gas giant planets, and compared the results with discovered close-in planets. We found that in about 350 cases out of 1200 runs ({approx}30%), the eccentricity of one of the planets is excited highly enough for tidal circularization by mutual close scatterings followed by secular effects due to outer planets, such as the Kozai mechanism, and the planet becomes a close-in planet through the damping of eccentricity and semimajor axis. The formation probability of close-in planets by such scattering is not affected significantly by the effect of the general relativity and inclusion of inertial modes in addition to fundamental modes in the tides. Detailed orbital distributions of the formed close-in planets and their counterpart distant planets in our simulations were compared with observational data. We focused on the possibility for close-in planets to retain non-negligible eccentricities ({approx}> 0.1) on timescales of {approx}10{sup 9} yr and have high inclinations, because close-in planets in eccentric or highly inclined orbits have recently been discovered. In our simulations we found that as many as 29% of the close-in planets have retrograde orbits, and the retrograde planets tend to have small eccentricities. On the other hand, eccentric close-in planets tend to have orbits of small inclinations.

  7. THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS

    SciTech Connect

    Dressing, Courtney D.; Charbonneau, David

    2013-04-10

    We use the optical and near-infrared photometry from the Kepler Input Catalog to provide improved estimates of the stellar characteristics of the smallest stars in the Kepler target list. We find 3897 dwarfs with temperatures below 4000 K, including 64 planet candidate host stars orbited by 95 transiting planet candidates. We refit the transit events in the Kepler light curves for these planet candidates and combine the revised planet/star radius ratios with our improved stellar radii to revise the radii of the planet candidates orbiting the cool target stars. We then compare the number of observed planet candidates to the number of stars around which such planets could have been detected in order to estimate the planet occurrence rate around cool stars. We find that the occurrence rate of 0.5-4 R{sub Circled-Plus} planets with orbital periods shorter than 50 days is 0.90{sup +0.04}{sub -0.03} planets per star. The occurrence rate of Earth-size (0.5-1.4 R{sub Circled-Plus }) planets is constant across the temperature range of our sample at 0.51{sub -0.05}{sup +0.06} Earth-size planets per star, but the occurrence of 1.4-4 R{sub Circled-Plus} planets decreases significantly at cooler temperatures. Our sample includes two Earth-size planet candidates in the habitable zone, allowing us to estimate that the mean number of Earth-size planets in the habitable zone is 0.15{sup +0.13}{sub -0.06} planets per cool star. Our 95% confidence lower limit on the occurrence rate of Earth-size planets in the habitable zones of cool stars is 0.04 planets per star. With 95% confidence, the nearest transiting Earth-size planet in the habitable zone of a cool star is within 21 pc. Moreover, the nearest non-transiting planet in the habitable zone is within 5 pc with 95% confidence.

  8. Planet Ocean

    NASA Astrophysics Data System (ADS)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  9. Exploring Planet Sizes

    NASA Video Gallery

    This lesson combines a series of activities to compare models of the size of Earth to other planets and the distances to other planets. Activities highlight space missions to other planets in our s...

  10. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-07-10

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

  11. Searching for planets with SIM-Lite

    NASA Astrophysics Data System (ADS)

    Howard, Andrew; SIM-Lite Team

    2009-05-01

    SIM-Lite will search for planets with masses as small as the Earth's orbiting in the `habitable zones’ of the nearest stars (within 20 pc). If Earth-like planets are common, SIM-Lite could discover dozens of them in the planned "Deep Survey" of 60 nearby stars. Additional planets in these systems would also be detected, potentially revealing a rich variety of planetary system architectures while probing the theory of their formation. The nearby planets discovered by SIM-Lite will be natural targets for future direct detection missions such as Terrestrial Planet Finder and Darwin. SIM-Lite's "Broad Survey” of 1000 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity and transit techniques. In particular, SIM-Lite will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  12. Flow of Planets, Not Weak Tidal Evolution, Produces the Short-Period Planet Distribution with More Planets than Expected

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2013-01-01

    being anti-correlated with additional planets. We present results from our study of inward migration.

  13. Urey Prize Lecture: Orbital Dynamics of Extrasolar Planets, Large and Small

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2012-10-01

    For centuries, planet formation theories were fine tuned to explain the details of solar system. Since 1999, the Doppler technique has discovered dozens of multiple planet systems. The diversity of architectures of systems with giant planets challenged previous theories and led to insights into planet formation, orbital migration and the excitation of orbital eccentricities and inclinations. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Precise measurements of the orbital period and phase constrain the significance of mutual gravitational interactions and potential orbital resonances. For systems that are tightly-packed or near an orbital resonance, measurements of transit timing variations provide a new means for confirming transiting planets and detecting non-transiting planets in multiple planet systems, even around faint target stars. Over the course of the extended mission, Kepler is poised to measure the gravitational effects of mutual planetary perturbations for 200 planets, providing precise (but complex) constraints on planetary masses, densities and orbits. I will survey the systems with multiple transiting planet candidates identified by Kepler and discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  14. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    SciTech Connect

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a result of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.

  15. On the detection of non-transiting exoplanets with dusty tails

    NASA Astrophysics Data System (ADS)

    DeVore, J.; Rappaport, S.; Sanchis-Ojeda, R.; Hoffman, K.; Rowe, J.

    2016-09-01

    We present a way of searching for non-transiting exoplanets with dusty tails. In the transiting case, the extinction by dust during the transit removes more light from the beam than is scattered into it. Thus, the forward scattering component of the light is best seen either just prior to ingress, or just after egress, but with reduced amplitude over the larger peak that is obscured by the transit. This picture suggests that it should be equally productive to search for positive-going peaks in the flux from non-transiting exoplanets with dusty tails. We discuss what amplitudes are expected for different orbital inclination angles. The signature of such objects should be distinct from normal transits, starspots, and most - but not all - types of stellar pulsations.

  16. Extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Korechoff, R. P.; Diner, D. J.; Tubbs, E. F.; Gaiser, S. L.

    1994-01-01

    This paper discusses the concept of extrasolar planet detection using a large-aperture infared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.

  17. Dance of the Planets

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    As students continue their monthly plotting of the planets along the ecliptic they should start to notice differences between inner and outer planet orbital motions, and their relative position or separation from the Sun. Both inner and outer planets have direct eastward motion, as well as retrograde motion. Inner planets Mercury and Venus,…

  18. Planets of β Pictoris revisited

    NASA Astrophysics Data System (ADS)

    Freistetter, F.; Krivov, A. V.; Löhne, T.

    2007-04-01

    Observations have revealed a large variety of structures (global asymmetries, warps, belts, rings) and dynamical phenomena ("falling-evaporating bodies" or FEBs, the "β Pic dust stream") in the disk of β Pictoris, most of which may indicate the presence of one or more planets orbiting the star. Because planets of β Pic have not been detected by observations yet, we use dynamical simulations to find "numerical evidence" for a planetary system. We show that one planet at 12 AU with a mass of 2 to 5 MJ and an eccentricity ⪉ 0.1 can probably already account for three major features (main warp, two inner belts, FEBs) observed in the β Pic disk. The existence of at least two additional planets at about 25 AU and 45 AU from the star seems likely. We find rather strong upper limits of 0.6 MJ and 0.2 MJ on the masses of those planets. The same planets could, in principle, also account for the outer rings observed at 500-800 AU.

  19. Inferring Planet Occurrence Rates With a Q1-Q16 Kepler Planet Candidate Catalog Produced by a Machine Learning Classifier

    NASA Astrophysics Data System (ADS)

    Catanzarite, Joseph; Jenkins, Jon Michael; Burke, Christopher J.; McCauliff, Sean D.; Kepler Science Operations Center

    2015-01-01

    NASA's Kepler Space Telescope monitored the photometric variations of over 170,000 stars within a ~100 square degree field in the constellation Cygnus, at half-hour cadence, over its four year prime mission. The Kepler SOC (Science Operations Center) pipeline calibrates the pixels of the target apertures for each star, corrects light curves for systematic error, and detects TCEs (threshold-crossing events) that may be due to transiting planets. Finally the pipeline estimates planet parameters for all TCEs and computes quantitative diagnostics that are used by the TCERT (Threshold Crossing Event Review Team) to produce a catalog containing KOIs (Kepler Objects of Interest). KOIs are TCEs that are determined to be either likely transiting planets or astrophysical false positives such as background eclipsing binary stars. Using examples from the Q1-Q16 TCERT KOI catalog as a training set, we created a machine-learning classifier that dispositions the TCEs into categories of PC (planet candidate), AFP (astrophysical false positive) and NTP (non-transiting phenomenon). The classifier uniformly and consistently applies heuristics developed by TCERT as well as other diagnostics to the Q1-Q16 TCEs to produce a more robust and reliable catalog of planet candidates than is possible with only human classification. In this work, we estimate planet occurrence rates, based on the machine-learning-produced catalog of Kepler planet candidates. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  20. Integrated software package STAMP for minor planets

    NASA Technical Reports Server (NTRS)

    Kochetova, O. M.; Shor, Viktor A.

    1992-01-01

    The integrated software package STAMP allowed for rapid and exact reproduction of the tables of the year-book 'Ephemerides of Minor Planets.' Additionally, STAMP solved the typical problems connected with the use of the year-book. STAMP is described. The year-book 'Ephemerides of Minor Planets' (EMP) is a publication used in many astronomical institutions around the world. It contains all the necessary information on the orbits of the numbered minor planets. Also, the astronomical coordinates are provided for each planet during its suitable observation period.

  1. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally

  2. Finding Spring on Planet X

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2007-01-01

    For a given orbital period and eccentricity, we determine the maximum time lapse between the winter solstice and the spring equinox on a planet. In addition, given an axial precession path, we determine the effects on the seasons. This material can be used at various levels to illustrate ideas such as periodicity, eccentricity, polar coordinates,…

  3. Terrestrial Planets: Comparative Planetology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Papers were presented at the 47th Annual Meteoritical Society Meeting on the Comparative planetology of Terrestrial Planets. Subject matter explored concerning terrestrial planets includes: interrelationships among planets; plaentary evolution; planetary structure; planetary composition; planetary Atmospheres; noble gases in meteorites; and planetary magnetic fields.

  4. Peeking at the Planets.

    ERIC Educational Resources Information Center

    Riddle, Bob

    2002-01-01

    Provides information about each of the planets in our solar system. Focuses on information related to the space missions that have visited or flown near each planet, and includes a summary of what is known about some of the features of each planet. (DDR)

  5. Kepler Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2015-01-01

    Kepler has vastly increased our knowledge of planets and planetary systems located close to stars. The new data shows surprising results for planetary abundances, planetary spacings and the distribution of planets on a mass-radius diagram. The implications of these results for theories of planet formation will be discussed.

  6. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  7. Planet Demographics from Transits

    NASA Astrophysics Data System (ADS)

    Howard, Andrew

    2015-08-01

    From the demographics of planets detected by the Kepler mission, we have learned that there exists approximately one planet per star for planets larger than Earth orbiting inside of 1 AU. We have also learned the relative occurrence of these planets as a function of their orbital periods, sizes, and host star masses and metallicities. In this talk I will review the key statistical findings that the planet size distribution peaks in the range 1-3 times Earth-size, the orbital period distribution is characterized by a power-law cut off at short periods, small planets are more prevalent around small stars, and that approximately 20% of Sun-like stars hosts a planet 1-2 times Earth-size in a habitable zone. Looking forward, I will describe analysis of photometry from the K2 mission that is yielding initial planet discoveries and offering the opportunity to measure planet occurrence in widely separated regions of the galaxy. Finally, I will also discuss recent techniques to discover transiting planets in space-based photometry and to infer planet population properties from the ensemble of detected and non-detected transit signals.

  8. The dependence of giant planet migration on disk and planet properties

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea; Ford, E. B.

    2010-05-01

    Given the severe challenges in forming giant planets so close to their host star, disk-induced migration is often invoked to explain their small semi-major axes. Migration theory is usually divided into two limiting cases: Type I migration, in which the planet remains embedded in the disk, and Type II migration, in which the planet is sufficiently massive that it clears a gap in the disk in the vicinity of its orbit and follows the viscous evolution of the disk. However, recent hydrodynamic simulations of giant planets in circumstellar disks do not seem to follow this prescription; giant planet migration rates show a dependence on planet mass that is inconsistent with migrration on a constant, viscous timescale (Edgar 2008). We use FARGO to extend the work of Edgar (2008) and Bate (2003) to higher viscosities and larger planet masses and present the results in the context of distinguishing between the standard description of giant planet migration and that of Edgar (2007). Additionally, we present simulations of planets on eccentric orbits and describe how eccentricity modifies giant planet migration.

  9. Detection of Terrestrial Planets Using Transit Photometry

    NASA Technical Reports Server (NTRS)

    Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.

  10. Planet Masses from Disk Spirals

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    observations of protoplanetary disks: this would give us the ability to measure the mass of a planet in a disk without ever needing to directly observe the planet itself!Modeling ObservationsFung and Dong confirm their models by additionally running 3D simulations, which yield very similar outcomes. From these simulation results, they then synthesize scattered-light images similar to what we would expect to be able to observe with telescopes like the VLT, Gemini, or Subaru. The authors demonstrate that from these scattered-light images, they can correctly retrieve the planets mass to within 30%.Finally, as a proof-of-concept, the authors apply this modeling to an actual system: SAO 206462, a nearly face-on protoplanetary disk with an observed two-armed spiral within it. From the measured azimuthal separation of the two arms, the authors estimate that it contains a planet of about 6 Jupiter masses.CitationJeffrey Fung () and Ruobing Dong () 2015 ApJ 815 L21. doi:10.1088/2041-8205/815/2/L21

  11. The properties of the planet(s) around Beta Pictoris

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.

    2014-09-01

    Since the discovery of the Beta Pictoris dust system in the 80s, the detailed study of the disk and the discovery of the falling evaporating bodies phenomenon around this star provided a growing evidence that the system was hosting, at least, on gas giant planet. In 2009, Lagrange et al. identified in VLT/NaCo high resolution imaging data a candidate planet located at a projected separation of 9 AU in the disk of Beta Pictoris. Since then, follow-up images of the system obtained with various instruments from 0.98 m to 4.8 m enabled to confirm that Beta Pic b is circling the star on a low-eccentricity orbit, has a mass of ~7-13 MJup, and a hot (Teff 1700 K) dusty atmosphere. The determination of Beta Pic b's orbital motion and spectro-photometric properties, the radial velocity (RV) measurements of the star, and the detailed study of disk structures offer altogether a unique chance to characterize the chemical and physical properties of a directly imaged planet, and to understand in detail how it formed and influenced the system architecture. In this talk, I will review the past and ongoing efforts to characterize the properties of Beta Pictoris b, and to find additional planets in the system.

  12. Is the Galactic Bulge Devoid of Planets?

    NASA Astrophysics Data System (ADS)

    Penny, Matthew T.; Henderson, Calen B.; Clanton, Christian

    2016-10-01

    We consider a sample of 31 exoplanetary systems detected by gravitational microlensing and investigate whether or not the estimated distances to these systems conform to the Galactic distribution of planets expected from models. We derive the expected distribution of distances and relative proper motions from a simulated microlensing survey, correcting for the dominant selection effects that affect the sensitivity of planet detection as a function of distance, and compare it to the observed distribution using Anderson–Darling (AD) hypothesis testing. Taking the relative abundance of planets in the bulge to that in the disk, {f}{bulge}, as a model parameter, we find that our model is consistent with the observed distribution only for {f}{bulge}\\lt 0.54 (for a p-value threshold of 0.01) implying that the bulge may be devoid of planets relative to the disk. Allowing for a dependence of planet abundance on metallicity and host mass, or an additional dependence of planet sensitivity on event timescale, does not restore consistency for {f}{bulge}=1. We examine the distance estimates of some events in detail, and conclude that some parallax-based estimates could be significantly in error. Only by combining the removal of one problematic event from our sample and the inclusion of strong dependences of planet abundance or detection sensitivity on host mass, metallicity, and event timescale are we able to find consistency with the hypothesis that the bulge and disk have equal planet abundance.

  13. On the mass and orbit of the ninth planet

    NASA Astrophysics Data System (ADS)

    Ugwoke, Azubike Christian

    2016-07-01

    ON THE MASS AND ORBIT OF THE NINTH PLANET A new planet is currently being proposed in the literature.This yet to be observed planet has its mass and orbit yet to be determined. However, if this planet is to escape being labelled a plutinoid, it must posses all the characteristics of a planet as currently set by the IAU. In addition it must be massive enough to enable it couple into the gravitational potential of the sun. Our earlier paper on this issue has suggested that no new planets are expected beyond Neptune , due to the vanishing gravitational potential of the sun within that orbit.Any new planet must be indeed very massive to be gravitationally linked sufficiently to the sun. In the current paper we have obtained estimates for planet 9 orbit and mass using this method.

  14. Kepler-47: A Three-Planet Circumbinary System

    NASA Astrophysics Data System (ADS)

    Welsh, William; Orosz, Jerome; Quarles, Billy; Haghighipour, Nader

    2015-12-01

    Kepler-47 is the most interesting of the known circumbinary planets. In the discovery paper by Orosz et al. (2012) two planets were detected, with periods of 49.5 and 303 days around the 7.5-day binary. In addition, a single "orphan" transit of a possible third planet was noticed. Since then, five additional transits by this planet candidate have been uncovered, leading to the unambiguous confirmation of a third transiting planet in the system. The planet has a period of 187 days, and orbits in between the previously detected planets. It lies on the inner edge of the optimistic habitable zone, while its outer sibling falls within the conservative habitable zone. The orbit of this new planet is precessing, causing its transits to become significantly deeper over the span of the Kepler observations. Although the planets are not massive enough to measurably perturb the binary, they are sufficiently massive to interact with each other and cause mild transit timing variations (TTVs). This enables our photodynamical model to estimate their masses. We find that all three planets have very low-density and are on remarkably co-planar orbits: all 4 orbits (the binary and three planets) are within ~2 degrees of one another. Thus the Kepler-47 system puts interesting constraints on circumbinary planet formation and migration scenarios.

  15. Properties of Planet-Forming Prostellar Disks

    NASA Technical Reports Server (NTRS)

    Lindstrom, David (Technical Monitor); Lubow, Stephen

    2005-01-01

    The proposal achieved many of its objectives. The main area of investigation was the interaction of young planets with surrounding protostellar disks. The grant funds were used to support visits by CoIs and visitors: Gordon Ogilvie, Gennaro D Angelo, and Matthew Bate. Funds were used for travel and partial salary support for Lubow. We made important progress in two areas described in the original proposal: secular resonances (Section 3) and nonlinear waves in three dimensions (Section 5). In addition, we investigated several new areas: planet migration, orbital distribution of planets, and noncoorbital corotation resonances.

  16. Kepler Stars with Multiple Transiting Planet Candidates

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    NASA's Kepler spacecraft was launched into an Earth-trailing heliocentric orbit in March of 2009. Kepler is designed to conduct a statistical census of planetary system properties using transit photometry. Among the most exciting early results from Kepler are target stars found to have photometric signatures that suggest the presence of more than one transiting planet. Individual transiting planets provide information on the size and orbital period distributions of exoplanets. Multiple transiting planets provide additional information on the spacing and flatness distributions of planetary systems. Results to d ate and plans for future analysis will be presented.

  17. Outer planet satellites

    NASA Astrophysics Data System (ADS)

    Schenk, Paul M.

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon.

  18. Planets in Motion

    ERIC Educational Resources Information Center

    Riddle, Bob

    2005-01-01

    All the planets in the solar system revolve around the Sun in the same direction, clockwise when viewed from above the North Pole. This is referred to as direct motion. From the perspective on the Earth's surface, the planets travel east across the sky in relation to the background of stars. The Sun also moves eastward daily, but this is an…

  19. Name That Planet!

    ERIC Educational Resources Information Center

    Beck, Judy; Rust, Cindy

    2002-01-01

    Presents an activity in which students in groups explore one planet in the solar system and present their findings to the whole class. Focuses on the planet's location in the solar system, geological features, rate of revolutions, and calendar year. (YDS)

  20. March of the Planets

    ERIC Educational Resources Information Center

    Thompson, Bruce

    2007-01-01

    The motion of the planets in their orbits can be demonstrated to students by using planetarium software programs. These allow time to be sped up so that the relative motions are readily observed. However, it is also valuable to have the students understand the real speed of the planets in their orbits. This paper describes an exercise that gives…

  1. THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS

    SciTech Connect

    Katherina Feng, Y.; Wright, Jason T.; Nelson, Benjamin; Wang, Sharon X.; Ford, Eric B.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2015-02-10

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1 M {sub Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M {sub Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.

  2. ''High-Speed, Photon-Counting Camera for the Detection of Extrasolar Planets''

    SciTech Connect

    Ullom, J; Cunningham, M; Macintosh, B; Miyazaki, T; Labov, S

    2003-02-07

    The search for extrasolar planets--planets orbiting stars outside out solar system-- is motivated by the desire to discover small planets similar to Earth. Since small planets are difficult to detect, the first step is finding giant planets with large orbits, like Jupiter. Solar systems containing these planets may have smaller, Earth-like planets travelling closer to the parent star. However, current methods detect extrasolar planets indirectly by observing a planet's gravitational influence on its parent star. These methods are primarily sensitive to giant planets with small orbits. A new method is needed to directly observe planets with large orbits. Direct observation can also provide additional information about a planet's composition and/or orbit. Directly observing an extrasolar planet from Earth is challenging because of the relative proximity of the planet to its parent star. Although a large, terrestrial telescope can provide the angular resolution necessary to visually separate the planet from the star, atmospheric turbulence limits the telescope's performance. In addition, the parent star appears much brighter than the planet. Adaptive optics (AO) can increase a planet's brightness, but they have little effect on residual star glare.

  3. Formation of giant planets

    NASA Astrophysics Data System (ADS)

    Magni, G.; Coradini, A.

    2003-04-01

    In this presentation we address the problem of the formation of giant planets and their regular satellites. We study in particular the problem of formation of the Jupiter System comparing the results of the model with the present characteristics of the system, in order to identify what are those better represented by our approach. In fact here, using a 3-D hydro-dynamical code, we study the modalities of gas accretion onto a solid core, believed to be the seed from which Jupiter started. To do that we have modelled three main regions: the central planet, a turbulent accretion disk surrounding it and an extended region from which the gas is collected. In the extended region we treat the gas as a frictionless fluid. Our main goal is to identify what are the characteristics of the planet during its growth and the physical parameters affecting its growth at the expenses of the nebular gas present in the feeding zone. Moreover we want to understand what are the thermodynamical parameters characterizing the gas captured by the planet and swirling around it. Finally, we check if a disk can be formed in prograde rotation around the planet and if this disk can survive the final phases of the planet formation. Due to the interaction between the accreting planet and the disk it has been necessary to develop a complete model of the Jupiter’s structure. In fact the radiation emitted by the growing planet heats up the surrounding gas. In turn the planet’s thermodynamic structure depend on the mass accretion rate onto it. When the accretion is rapid, shock waves in the gas are formed close to the planet. This region cannot be safely treated by a numerical code; for this reason we have developed a semi-analytically model of a a turbulent accretion disk to be considered as transition between the planet and the surrounding disk.

  4. Planet-crossing asteroid survey

    NASA Technical Reports Server (NTRS)

    Wilder, P. D.

    1984-01-01

    The planet-crossing asteroid survey was begun in 1973 in order to study those asteroids which may intersect the orbits of the inner planets. Throughout the history of the survey, many of the various classes of asteroids were investigated. The near-Earth objects including the Apollo, Amor, and Aten families were studied in addition to asteroids whose orbits cross that of Mars, and some objects which are generally confined to the main belt. Observing was done on the 18 inch Schmidt telescope at the Palomar Mtn. Observatory. Typically, two consecutive photographs of a favorable field are taken. The exposure times of the films are usually twenty minutes and ten minutes, respectively. The telescope is guided at sidereal rate, so that asteroids will leave short trailed images. The films are then scanned for trails. By comparing the two films, the direction and approximate rate of motion of an asteroid may be determined.

  5. Planet Nine From Outer Space

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Brown, Michael E.

    2016-10-01

    All known Kuiper belt objects with orbital periods longer than 4,000 years have orbits that are clustered in physical space. Statistically, the chances of such alignment being coincidental are smaller than a hundredth of a percent. In this talk, we show that the observed clustering of Kuiper belt orbits can be explained by a distant, eccentric, Neptune-like planet, whose orbit lies in approximately the same plane as those of the distant Kuiper belt objects, but whose perihelion is 180° away from the perihelia of the minor bodies. In addition to accounting for the observed grouping of orbital trajectories, the existence of such a planet naturally explains the presence of high-perihelion Sedna-like objects, as well as the known collection of high semi-major axis objects with inclinations between 60° and 150°.

  6. Wobbling Toward Planet Detection

    NASA Astrophysics Data System (ADS)

    Marcy, G. W.

    1995-12-01

    Several techniques have matured during the past year which enable indirect detection of planets orbiting main sequence stars. These methods include: RADIAL VELOCITIES, LONG BASELINE INTERFEROMETRY (astrometric, not imaging), LARGE TELESCOPE ASTROMETRY, TRANSITS BY TERRESTRIAL PLANETS, and GRAVITATIONAL LENSING. Current velocity precision is better than 10 m/s (at several observatories) which enables detection of jupiter-like planets within 5AU. Ground-based astrometry by Gatewood achieves a precision of 0.001arcsec, sufficient to detect jupiter-like planets orbiting >5AU from nearby stars. The above two techniques will soon benefit from larger aperture (Keck, HET, VLT) and superior seeing. Future ground-based interferometric astrometry should be able to detect planets like Uranus and Neptune. Detection of terrestrial planets are possible, in principle, with techniques of transits or lensing. I will review each of the above techniques with regard to instrumentation status and ultimate usefulness. I will report the results to date of on-going projects to detect planetary systems, especially from velocities and single-aperture astrometry. The status of the companion to 51 Pegasus and other reported planets will be described.

  7. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

  8. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations. PMID:15731449

  9. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    SciTech Connect

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-08-10

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  10. Terrestrial Planet Formation during the Migration and Resonance Crossings of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-08-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ~ 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths).

  11. Terrestrial Planet Formation During the Migration and Resonance Crossings of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Lykawka, Patryk S.; Ito, T.

    2013-10-01

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a ~1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter’s and Saturn’s more eccentric orbits (relative to present-day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars’ mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars’ small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths).

  12. Planet formation and searches

    NASA Astrophysics Data System (ADS)

    Montgomery, Ryan Michael

    2009-08-01

    This thesis explores the possibilities for discovery of terrestrial-mass planets in the habitable zones of their host stars. Towards this aim, we present the results of three projects and discuss another two preliminary studies of further explorations. In so doing, we explore a fairly comprehensive range of possibilities regarding the formation and detection of terrestrial- mass planets in the habitable zone. We first study the potential for terrestrial planets to form in situ in and around the habitable zones of M-dwarf stars. We proceed to explore the feasibility of searches for these planets using the transit method via Monte- Carlo simulations. We find that M-dwarfs pose an interesting challenge for study: being inherently dim, widely spread on the sky, and photometrically variable. We present results of simulated ground-based transit search campaigns as well as simulated searches from a modest satellite mission. Our second project is a straightforward extension of the previous study: a collaborative effort to search for transit signals around the nearest M-dwarf: Proxima Centauri. We describe our observations as well as the Monte-Carlo analysis used to place constraints on the possible planetary radii and periods. Our third project is a search for transiting extra-solar Jovian planets using the Rossiter-McLaughlin effect. We search through the private Keck radial- velocity datasets for undiscovered Rossiter-McLaughlin signals. We present our results in the form of both strong null-result datasets as well as potential transiting systems. We then briefly analyze these larger Jovian planets for potential to harbor potentially habitable terrestrial satellites. Our final preliminary analysis looks into the potential for the Large Synoptic Survey Telescope to detect transiting Neptune-mass planets orbiting M-dwarfs which could then lead to terrestrial-mass planet detections. The sum of these efforts is a comprehensive investigation into the likelihood and

  13. PLANET HUNTERS: NEW KEPLER PLANET CANDIDATES FROM ANALYSIS OF QUARTER 2

    SciTech Connect

    Lintott, Chris J.; Schwamb, Megan E.; Schwainski, Kevin; and others

    2013-06-15

    We present new planet candidates identified in NASA Kepler Quarter 2 public release data by volunteers engaged in the Planet Hunters citizen science project. The two candidates presented here survive checks for false positives, including examination of the pixel offset to constrain the possibility of a background eclipsing binary. The orbital periods of the planet candidates are 97.46 days (KIC 4552729) and 284.03 (KIC 10005758) days and the modeled planet radii are 5.3 and 3.8 R{sub Circled-Plus }. The latter star has an additional known planet candidate with a radius of 5.05 R{sub Circled-Plus} and a period of 134.49 days, which was detected by the Kepler pipeline. The discovery of these candidates illustrates the value of massively distributed volunteer review of the Kepler database to recover candidates which were otherwise uncataloged.

  14. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk. PMID:21921192

  15. Kepler-16: a transiting circumbinary planet.

    PubMed

    Doyle, Laurance R; Carter, Joshua A; Fabrycky, Daniel C; Slawson, Robert W; Howell, Steve B; Winn, Joshua N; Orosz, Jerome A; Prša, Andrej; Welsh, William F; Quinn, Samuel N; Latham, David; Torres, Guillermo; Buchhave, Lars A; Marcy, Geoffrey W; Fortney, Jonathan J; Shporer, Avi; Ford, Eric B; Lissauer, Jack J; Ragozzine, Darin; Rucker, Michael; Batalha, Natalie; Jenkins, Jon M; Borucki, William J; Koch, David; Middour, Christopher K; Hall, Jennifer R; McCauliff, Sean; Fanelli, Michael N; Quintana, Elisa V; Holman, Matthew J; Caldwell, Douglas A; Still, Martin; Stefanik, Robert P; Brown, Warren R; Esquerdo, Gilbert A; Tang, Sumin; Furesz, Gabor; Geary, John C; Berlind, Perry; Calkins, Michael L; Short, Donald R; Steffen, Jason H; Sasselov, Dimitar; Dunham, Edward W; Cochran, William D; Boss, Alan; Haas, Michael R; Buzasi, Derek; Fischer, Debra

    2011-09-16

    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20 and 69% as massive as the Sun and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5° of a single plane, suggesting that the planet formed within a circumbinary disk.

  16. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Koczor, Ron; Lee, Jonathan; Grady, Kevin J.; Hudson, Wayne R.; Johnston, Gordon I.; Njoku, Eni G.

    1990-01-01

    To preserve the earth, it is necessary to understand the tremendously complex interactions of the atmosphere, oceans, land, and man's activities deeply enough to construct models that can predict the consequences of our actions and help us make sound environmental, energy, agriculture, and economic decisions. Mission to Planet Earth is NASA's suggested share and the centerpiece of the U.S. contribution to understanding the environment, the Global Change Research Program. The first major element of the mission would be the Earth Observing System, which would give the simultaneous, comprehensive, long-term earth coverage lacking previously. NASA's Geosynchronous Earth Observatory with two additional similar spacecraft would be orbited by the U.S., plus one each by Japan and the European Space Agency. These would be the first geostationary satellites to span all the disciplines of the earth sciences. A number of diverse data gathering payloads are also planned to be carried aboard the Polar Orbiting Platform. Making possible the long, continuous observations planned and coping with the torrent of data acquired will require technical gains across a wide front. Finally, how all this data is consolidated and disseminated by the EOS Data and Information System is discussed.

  17. PLANETS ON THE EDGE

    SciTech Connect

    Valsecchi, Francesca; Rasio, Frederic A.

    2014-05-20

    Hot Jupiters formed through circularization of high-eccentricity orbits should be found at orbital separations a exceeding twice that of their Roche limit a {sub R}. Nevertheless, about a dozen giant planets have now been found well within this limit (a {sub R} < a < 2 a {sub R}), with one coming as close as 1.2 a {sub R}. In this Letter, we show that orbital decay (starting beyond 2 a {sub R}) driven by tidal dissipation in the star can naturally explain these objects. For a few systems (WASP-4 and 19), this explanation requires the linear reduction in convective tidal dissipation proposed originally by Zahn and verified by recent numerical simulations, but rules out the quadratic prescription proposed by Goldreich and Nicholson. Additionally, we find that WASP-19-like systems could potentially provide direct empirical constraints on tidal dissipation, as we could soon be able to measure their orbital decay through high precision transit timing measurements.

  18. The Earth: A Changing Planet

    NASA Astrophysics Data System (ADS)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    hours of class time for students from 13 to 14 years of age. During the learning process, different methodological tools of teaching and learning have been used. After reading and understanding news about natural disasters such as earthquakes and eruptions, cooperative group work and an oral presentation are prepared. In addition, it has been very useful to follow-up with some web simulations to predict natural phenomena, which can then be tested in the laboratory. Finally, the students apply their new understanding on a visit to a geological formation, where applying the language learned by observing the rocks, they demonstrate that the planet Earth has changed over the course of many millions of years. Natural hazards are a small and timely demonstration of the ability to change our planet.

  19. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M. O.; Brain, D. A.; Peticolas, L. M.; Yan, D.; Fricke, K. W.; Thrall, L.

    2013-12-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and even give us clues to the atmospheric history of these planets. This presentation highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines around "mystery planets" using orbiting "spacecraft" (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle/high school age audiences. However, we also show a scaled-down version that has been used with elementary school age audiences.

  20. Planets Around Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wolszczan, Alexander; Kulkarni, Shrinivas R; Anderson, Stuart B.

    2003-01-01

    The objective of this proposal was to continue investigations of neutron star planetary systems in an effort to describe and understand their origin, orbital dynamics, basic physical properties and their relationship to planets around normal stars. This research represents an important element of the process of constraining the physics of planet formation around various types of stars. The research goals of this project included long-term timing measurements of the planets pulsar, PSR B1257+12, to search for more planets around it and to study the dynamics of the whole system, and sensitive searches for millisecond pulsars to detect further examples of old, rapidly spinning neutron stars with planetary systems. The instrumentation used in our project included the 305-m Arecibo antenna with the Penn State Pulsar Machine (PSPM), the 100-m Green Bank Telescope with the Berkeley- Caltech Pulsar Machine (BCPM), and the 100-m Effelsberg and 64-m Parkes telescopes equipped with the observatory supplied backend hardware.

  1. The Antarctic Planet Interferometer

    NASA Technical Reports Server (NTRS)

    Swain, Mark R.; Walker, Christopher K.; Traub, Wesley A.; Storey, John W.; CoudeduForesto, Vincent; Fossat, Eric; Vakili, Farrok; Stark, Anthony A.; Lloyd, James P.; Lawson, Peter R.; Burrows, Adam S.; Ireland, Michael; Millan-Gabet, Rafael; vanBelle, Gerard T.; Lane, Benjamin; Vasisht, Gautam; Travouillon, Tony

    2004-01-01

    The Antarctic Planet Interferometer is an instrument concept designed to detect and characterize extrasolar planets by exploiting the unique potential of the best accessible site on earth for thermal infrared interferometry. High-precision interferometric techniques under development for extrasolar planet detection and characterization (differential phase, nulling and astrometry) all benefit substantially from the slow, low-altitude turbulence, low water vapor content, and low temperature found on the Antarctic plateau. At the best of these locations, such as the Concordia base being developed at Dome C, an interferometer with two-meter diameter class apertures has the potential to deliver unique science for a variety of topics, including extrasolar planets, active galactic nuclei, young stellar objects, and protoplanetary disks.

  2. Managing Planet Earth.

    ERIC Educational Resources Information Center

    Clark, William C.

    1989-01-01

    Discusses the human use of the planet earth. Describes the global patterns and the regional aspects of change. Four requirements for the cultivation of leadership and institutional competence are suggested. Lists five references for further reading. (YP)

  3. Kepler's Multiple Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2012-01-01

    Among the 1800 Kepler targets that have candidate planets, 20% have two or more candidate planets. While most of these objects have not yet been confirmed as true planets, several considerations strongly suggest that the vast majority of these multi-candidate systems are true planetary systems. Virtually all candidate systems are stable, as tested by numerical integrations (assuming a nominal mass-radius relationship). Statistical studies performed on these candidates reveal a great deal about the architecture of planetary systems, including the typical spacing of orbits and flatness of planetary systems. The distribution of observed period ratios shows that the vast majority of candidate pairs are neither in nor near low-order mean motion resonances. Nonetheless, there are small but statistically significant excesses of candidate pairs both in resonance and spaced slightly too far apart to be in resonance, particularly near the 2:1 resonance. The characteristics of the confirmed Kepler multi-planet systems will also be discussed.

  4. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  5. The planet Saturn (1970)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The present-day knowledge on Saturn and its environment are described for designers of spacecraft which are to encounter and investigate the planet. The discussion includes physical properties of the planet, gravitational field, magnetic and electric fields, electromagnetic radiation, satellites and meteoroids, the ring system, charged particles, atmospheric composition and structure, and clouds and atmospheric motions. The environmental factors which have pertinence to spacecraft design criteria are also discussed.

  6. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  7. The planet Mercury (1971)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.

  8. Planets' magnetic environments

    SciTech Connect

    Lanzerotti, L.J.; Uberoi, C.

    1989-02-01

    The magnetospheres of Mercury, Venus, Mars, Jupiter, Saturn, Uranus, and comets and the heliomagnetosphere are examined. The orientations of the planetary spin and magnetic axes, the size of the magnetospheres, and the magnetic properties and the radio emissions of the planets are compared. Results from spacecraft studies of the planets are included. Plans for the Voyager 2 mission and its expected study of the Neptune magnetosphere are considered.

  9. Planets, pluralism, and conceptual lineage

    NASA Astrophysics Data System (ADS)

    Brusse, Carl

    2016-02-01

    Conceptual change can occur for a variety of reasons; some more scientifically significant than others. The 2006 definition of 'planet', which saw Pluto reclassified as a dwarf planet, is an example toward the more mundane end of the scale. I argue however that this case serves as a useful example of a related phenomenon, whereby what appears to be a single kind term conceals two or more distinct concepts with independent scientific utility. I examine the historical background to this case, as a template for developing additional evidence for pluralist approaches to conceptual disputes within science and elsewhere. "I would like to note that the two speakers who have spoken so far have both done the same extremely insulting gaffe," he said. "They have used the expression 'a physical definition of a planet' - by implication, suggesting that a dynamical definition is not physics!" He said he felt he had to teach the panel "something you should know": that dynamics was indeed physics, and in fact was addressed before solid-state physics in every textbook ever written." (Boyle, 2010, p. 126)

  10. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  11. A Search for Short-period Rocky Planets around WDs with the Cosmic Origins Spectrograph (COS)

    NASA Astrophysics Data System (ADS)

    Sandhaus, Phoebe H.; Debes, John H.; Ely, Justin; Hines, Dean C.; Bourque, Matthew

    2016-05-01

    The search for transiting habitable exoplanets has broadened to include several types of stars that are smaller than the Sun in an attempt to increase the observed transit depth and hence the atmospheric signal of the planet. Of all spectral types, white dwarfs (WDs) are the most favorable for this type of investigation. The fraction of WDs that possess close-in rocky planets is unknown, but several large angle stellar surveys have the photometric precision and cadence to discover at least one if they are common. Ultraviolet observations of WDs may allow for detection of molecular oxygen or ozone in the atmosphere of a terrestrial planet. We use archival Hubble Space Telescope data from the Cosmic Origins Spectrograph to search for transiting rocky planets around UV-bright WDs. In the process, we discovered unusual variability in the pulsating WD GD 133, which shows slow sinusoidal variations in the UV. While we detect no planets around our small sample of targets, we do place stringent limits on the possibility of transiting planets, down to sub-lunar radii. We also point out that non-transiting small planets in thermal equilibrium are detectable around hotter WDs through infrared excesses, and identify two candidates. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

  12. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    SciTech Connect

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  13. Second generation planet formation in NN Serpentis?

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Hessman, F. V.

    2014-02-01

    In this paper, we study the general impact of stellar mass-ejection events in planetary orbits in post-common envelope binaries with circumbinary planets like those around NN Serpentis. We discuss a set of simple equations that determine upper and lower limits for orbital expansion and investigate the effect of initial eccentricity. We deduce the range of possible semi-major axes and initial eccentricity values of the planets prior to the common-envelope event. In addition to spherically-symmetric mass-ejection events, we consider planetary dynamics under the influence of an expanding disk. In order to have survived, we suggest that the present planets in NN Ser must have had semi-major axes ≳10 AU and high eccentricity values which is in conflict with current observations. Consequently, we argue that these planets were not formed together with their hosting stellar system, but rather originated from the fraction of matter of the envelope that remained bound to the binary. According to the cooling age of the white dwarf primary of 106 yr, the planets around NN Ser might be the youngest known so far and open up a wide range of further study of second generation planet formation.

  14. Formation and Stability of "Hot Earth" Planets

    NASA Astrophysics Data System (ADS)

    Raymond, Sean

    2007-05-01

    Close-in planets with masses less than one Neptune mass have been detected around roughly ten stars to date. In addition to these so-called "Hot Neptunes" or "Hot Super-Earths", upcoming missions such as CoRot and Kepler expect to find a large number of smaller, close-in "Hot Earths". Most disk models do not contain a large amount of mass in their innermost regions. So, how do Hot Earths form? There are several candidate mechanisms: 1) A "type 2" migrating giant planet can shepherd material interior to strong mean motion resonances. More than half of the solid component of the disk inside the giant planet's starting orbit can be displaced to the region interior to the giant planet's final orbit. So, many close-in giant planets may be accompanied by "hot Earths"; 2) Terrestrial cores, interacting tidally with the gaseous disk, can "type 1" migrate into the very inner disk. Interactions between cores may result in near-resonant configurations; and 3) In a system with two or more giant planets with non-zero eccentricities, dispersal of the gaseous disk can cause secular resonances to sweep through the system, and can moderately enhance the amount of material in the inner regions. Each of these mechanisms makes predictions that should be testable in the near future. References: Fogg & Nelson (2005, 2007), Zhou et al (2005), Raymond, Mandell & Sigurdsson (2006), Mandell, Raymond & Sigurdsson (2007), Terquem & Papaloizou (2007)

  15. Sensitivity of the terrestrial planet finder

    NASA Technical Reports Server (NTRS)

    Beichman, Charles

    1998-01-01

    A key long-term goal of NASA's Origins program is the detection and characterization of habitable planets orbiting stars within the solar neighborhood. A cold, space-borne interferometer operating in the mid-infrared with a approx. 75 m baseline can null the light of a parent star and detect the million-times fainter radiation from an Earth-like planet located in the "habitable zone" around stars as far as 15 pc away. Such an interferometer, designated the Terrestrial Planet Finder (TPF) by NASA, could even detect atmospheric signatures of species such as CO2, O3, and H2O indicative of either the possibility or presence of primitive life. This talk highlights some of the sensitivity issues affecting the detectability of terrestrial planets. Sensitivity calculations show that a system consisting of 2 m apertures operating at 5 AU or 4 m apertures operating at 1 AU can detect terrestrial planets in reasonable integration times for levels of exo-zodiacal emission up to 10 times that seen in our solar system (hereafter denoted as 10xSS). Additionally, simulations show that confusion noise from structures in the exo-zodiacal cloud should not impede planet detection until the exo-zodiacal emission reaches the 10xSS level.

  16. Protostars and Planets VI

    NASA Astrophysics Data System (ADS)

    Beuther, Henrik; Klessen, Ralf S.; Dullemond, Cornelis P.; Henning, Thomas

    The Protostars and Planets book and conference series has been a long-standing tradition that commenced with the first meeting led by Tom Gehrels and held in Tucson, Arizona, in 1978. The goal then, as it still is today, was to bridge the gap between the fields of star and planet formation as well as the investigation of planetary systems and planets. As Tom Gehrels stated in the preface to the first Protostars and Planets book, "Cross-fertilization of information and understanding is bound to occur when investigators who are familiar with the stellar and interstellar phases meet with those who study the early phases of solar system formation." The central goal remained the same for the subsequent editions of the books and conferences Protostars and Planets II in 1984, Protostars and Planets III in 1990, Protostars and Planets IV in 1998, and Protostars and Planets V in 2005, but has now been greatly expanded by the flood of new discoveries in the field of exoplanet science. The original concept of the Protostars and Planets series also formed the basis for the sixth conference in the series, which took place on July 15-20, 2013. It was held for the first time outside of the United States in the bustling university town of Heidelberg, Germany. The meeting attracted 852 participants from 32 countries, and was centered around 38 review talks and more than 600 posters. The review talks were expanded to form the 38 chapters of this book, written by a total of 250 contributing authors. This Protostars and Planets volume reflects the current state-of-the-art in star and planet formation, and tightly connects the fields with each other. It is structured into four sections covering key aspects of molecular cloud and star formation, disk formation and evolution, planetary systems, and astrophysical conditions for life. All poster presentations from the conference can be found at www.ppvi.org. In the eight years that have passed since the fifth conference and book in the

  17. The effect of planets beyond the ice line on the accretion of volatiles by habitable-zone rocky planets

    SciTech Connect

    Quintana, Elisa V.; Lissauer, Jack J.

    2014-05-01

    Models of planet formation have shown that giant planets have a large impact on the number, masses, and orbits of terrestrial planets that form. In addition, they play an important role in delivering volatiles from material that formed exterior to the snow line (the region in the disk beyond which water ice can condense) to the inner region of the disk where terrestrial planets can maintain liquid water on their surfaces. We present simulations of the late stages of terrestrial planet formation from a disk of protoplanets around a solar-type star and we include a massive planet (from 1 M {sub ⊕} to 1 M {sub J}) in Jupiter's orbit at ∼5.2 AU in all but one set of simulations. Two initial disk models are examined with the same mass distribution and total initial water content, but with different distributions of water content. We compare the accretion rates and final water mass fraction of the planets that form. Remarkably, all of the planets that formed in our simulations without giant planets were water-rich, showing that giant planet companions are not required to deliver volatiles to terrestrial planets in the habitable zone. In contrast, an outer planet at least several times the mass of Earth may be needed to clear distant regions of debris truncating the epoch of frequent large impacts. Observations of exoplanets from radial velocity surveys suggest that outer Jupiter-like planets may be scarce, therefore, the results presented here suggest that there may be more habitable planets residing in our galaxy than previously thought.

  18. Habitable planets around the star Gliese 581?

    NASA Astrophysics Data System (ADS)

    Selsis, F.; Kasting, J. F.; Levrard, B.; Paillet, J.; Ribas, I.; Delfosse, X.

    2007-12-01

    Context: Thanks to remarkable progress, radial velocity surveys are now able to detect terrestrial planets at habitable distance from low-mass stars. Recently, two planets with minimum masses below 10 M⊕ have been reported in a triple system around the M-type star Gliese 581. These planets are found at orbital distances comparable to the location of the boundaries of the habitable zone of their star. Aims: In this study, we assess the habitability of planets Gl 581c and Gl 581d (assuming that their actual masses are close to their minimum masses) by estimating the locations of the habitable-zone boundaries of the star and discussing the uncertainties affecting their determination. An additional purpose of this paper is to provide simplified formulae for estimating the edges of the habitable zone. These may be used to evaluate the astrobiological potential of terrestrial exoplanets that will hopefully be discovered in the near future. Methods: Using results from radiative-convective atmospheric models and constraints from the evolution of Venus and Mars, we derive theoretical and empirical habitable distances for stars of F, G, K, and M spectral types. Results: Planets Gl 581c and Gl 581d are near to, but outside, what can be considered as the conservative habitable zone. Planet “c” receives 30% more energy from its star than Venus from the Sun, with an increased radiative forcing caused by the spectral energy distribution of Gl 581. This planet is thus unlikely to host liquid water, although its habitability cannot be positively ruled out by theoretical models due to uncertainties affecting cloud properties and cloud cover. Highly reflective clouds covering at least 75% of the day side of the planet could indeed prevent the water reservoir from being entirely vaporized. Irradiation conditions of planet “d” are comparable to those of early Mars, which is known to have hosted surface liquid water. Thanks to the greenhouse effect of CO2-ice clouds, also

  19. Binary star systems and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew Ward

    For ten years, planets around stars similar to the Sun have been discovered, confirmed, and their properties studied. Planets have been found in a variety of environments previously thought impossible. The results have revolutionized the way in which scientists understand planet and star formation and evolution, and provide context for the roles of the Earth and our own solar system. Over half of star systems contain more than one stellar component. Despite this, binary stars have often been avoided by programs searching for planets. Discovery of giant planets in compact binary systems would indirectly probe the timescales of planet formation, an important quantity in determining by which processes planets form. A new observing method has been developed to perform very high precision differential astrometry on bright binary stars with separations in the range of [approximate] 0.1--1.0 arcseconds. Typical measurement precisions over an hour of integration are on the order of 10 micro-arcseconds (mas), enabling one to look for perturbations to the Keplerian orbit that would indicate the presence of additional components to the system. This method is used as the basis for a new program to find extrasolar planets. The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) is a search for giant planets orbiting either star in 50 binary systems. The goal of this search is to detect or rule out planets in the systems observed and thus place limits on any enhancements of planet formation in binaries. It is also used to measure fundamental properties of the stars comprising the binary, such as masses and distances, useful for constraining stellar models at the 10 -3 level. This method of differential astrometry is applied to three star systems. d Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. PHASES data are

  20. Likely Planet Candidates Identified by Machine Learning Applied to Four Years of Kepler Data

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; McCauliff, S. D.; Catanzarite, J.; Twicken, J. D.; Burke, C. J.; Campbell, J.; Seader, S.

    2014-01-01

    Over 3200 transiting planet candidates, 134 confirmed planets, and ~2,400 eclipsing binaries have been identified by the Kepler Science pipeline since launch in March 2009. Compiling the list of candidates is an intensive manual effort as over 18,000 transit-like signatures are identified for a run across 34 months. The vast majority are caused by artifacts that mimic transits. While the pipeline provides diagnostics that can reduce the initial list down to ~5,000 light curves, this effort can overlook valid planetary candidates. The large number of diagnostics 100) makes it difficult to examine all the information available. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). We have developed a random-forest classifier that classifies each TCE as `planet candidate’, `astrophysical false positive’, or `non-transiting phenomena’. Ideally the algorithm will generate a list of candidates that approximates those generated by human review, thereby allowing the humans to focus on the most interesting cases. By using a machine learning-based auto-vetting process, we have the opportunity to identify the most important metrics and diagnostics for separating signatures of transiting planets and eclipsing binaries from instrument-induced features, thereby improving the efficiency of the manual effort. We report the results of applying a random forest classifier to four years of Kepler data. We present characteristics of the likely planet candidates identified by the auto-vetter as well as those objects classified as astrophysical false positives (eclipsing binaries and background eclipsing binaries). We examine the auto-vetter's performance through receiver operating characteristic curves for each of three classes: planet candidate, astrophysical false positive, and non-transiting phenomena. Funding for this mission is provided by NASA

  1. Characterizing Young Giant Planets with the Gemini Planet Imager: An Iterative Approach to Planet Characterization

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2015-01-01

    After discovery, the first task of exoplanet science is characterization. However experience has shown that the limited spectral range and resolution of most directly imaged exoplanet data requires an iterative approach to spectral modeling. Simple, brown dwarf-like models, must first be tested to ascertain if they are both adequate to reproduce the available data and consistent with additional constraints, including the age of the system and available limits on the planet's mass and luminosity, if any. When agreement is lacking, progressively more complex solutions must be considered, including non-solar composition, partial cloudiness, and disequilibrium chemistry. Such additional complexity must be balanced against an understanding of the limitations of the atmospheric models themselves. For example while great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the spectral shape of Y and J spectral bands. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. I will present examples of the iterative process of directly imaged exoplanet characterization as applied to both known and potentially newly discovered exoplanets with a focus on constraints provided by GPI spectra. If a new GPI planet is lacking, as a case study I will discuss HR 8799 c and d will explain why some solutions, such as spatially inhomogeneous cloudiness, introduce their own additional layers of complexity. If spectra of new planets from GPI are available I will explain the modeling process in the context of understanding these new worlds.

  2. Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Boss, Alan; Lecavelier des Etangs, Alain; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Kokubo, Eiichiro; Mardling, Rosemary; Minniti, Dante; Queloz, Didier

    2012-04-01

    Commission 53 was created at the 2006 Prague General Assembly (GA) of the IAU, in recognition of the outburst of astronomical progress in the field of extrasolar planet discovery, characterization, and theoretical work that has occurred since the discovery of the first planet in orbit around a solar-type star in 1995. Commission 53 is the logical successor to the IAU Working Group on Extrasolar Planets (WGESP), which ended its six years of existence in August 2006. The founding President of Commission 53 was Michael Mayor, in honor of his seminal contributions to this new field of astronomy. The current President is Alan Boss, the former chair of the WGESP. The current members of the Commission 53 (C53) Organizing Committee (OC) began their service in August 2009 at the conclusion of the Rio de Janeiro IAU GA.

  3. Magnetic Mystery Planets

    NASA Astrophysics Data System (ADS)

    Fillingim, M.; Brain, D.; Peticolas, L.; Yan, D.; Fricke, K.; Thrall, L.

    2014-07-01

    The magnetic fields of the large terrestrial planets, Venus, Earth, and Mars, are all vastly different from each other. These differences can tell us a lot about the interior structure, interior history, and they can even give us clues to the atmospheric history of these planets. This paper highlights a classroom presentation and accompanying activity that focuses on the differences between the magnetic fields of Venus, Earth, and Mars, what these differences mean, and how we measure these differences. During the activity, students make magnetic field measurements and draw magnetic field lines of “mystery planets” using orbiting “spacecraft” (small compasses). Based on their observations, the students then determine whether they are orbiting Venus-like, Earth-like, or Mars-like planets. This activity is targeted to middle and high school audiences. However, we have also used a scaled-down version with elementary school audiences.

  4. Planet Formation and Habitability

    NASA Astrophysics Data System (ADS)

    alibert, yann

    2016-04-01

    Extrasolar planetary systems show an extreme diversity in mass and orbital architecture, and, very likely, in habitability. Explaining this diversity is one of the key challenges for theoretical models and requires understanding the formation, composition and evolution of planetary systems from the stage of the protoplanetary disk up to the full mature planetary system. I will review in this contribution the different models of planet formation and how they can be related to planetary habitability. In a first part, I will review the main planetary system formation models, and how, from these models, the composition of planets can be predicted. In a second part, I will link the results of these early phases of planetary systems, to the potential planetary habitability. Finally, I will show how it is possible, from transit observations, to put constraints on the water content of extrasolar planets.

  5. Characterizing extrasolar planets

    NASA Astrophysics Data System (ADS)

    Brown, Timothy M.

    Transiting extrasolar planets provide the best current opportunities for characterizing the physical properties of extrasolar planets. In this review, I first describe the geometry of planetary transits, and methods for detecting and refining the observations of such transits. I derive the methods by which transit light curves and radial velocity data can be analyzed to yield estimates of the planetary radius, mass, and orbital parameters. I also show how visible-light and infrared spectroscopy can be valuable tools for understanding the composition, temperature, and dynamics of the atmospheres of transiting planets. Finally, I relate the outcome of a participatory lecture-hall exercise relating to one term in the Drake equation, namely the lifetime of technical civilizations.

  6. Recipes for planet formation

    NASA Astrophysics Data System (ADS)

    Meyer, Michael R.

    2009-11-01

    Anyone who has ever used baking soda instead of baking powder when trying to make a cake knows a simple truth: ingredients matter. The same is true for planet formation. Planets are made from the materials that coalesce in a rotating disk around young stars - essentially the "leftovers" from when the stars themselves formed through the gravitational collapse of rotating clouds of gas and dust. The planet-making disk should therefore initially have the same gas-to-dust ratio as the interstellar medium: about 100 to 1, by mass. Similarly, it seems logical that the elemental composition of the disk should match that of the star, reflecting the initial conditions at that particular spot in the galaxy.

  7. Formation and Evolution of Circumbinary Planets, and the Apparent Lack of CPBs Around Short-Period Binaries

    NASA Astrophysics Data System (ADS)

    Haghighipour, Nader

    2015-12-01

    The success of the Kepler space telescope in detecting planets in circumbinary orbits strongly suggests that planet formation around binary stars is robust and planets of a variety of sizes and orbital configurations may exist in such complex environments. Accurate modeling of Kepler data has also indicated that some of these planets orbit their central binaries in close proximity to the boundary of orbital stability. This finding, combined with the unsuccessful attempts in forming circumbinary planets (CBPs) close to the orbital stability limit has lent strong support to the idea that almost all currently known CBPs have formed at large distances and undergone substantial radial migration. A survey of the currently known CBPs further indicates that these planets are mainly Neptune-mass and there seems to be a lack of planets of Jupiter-mass or larger in P-type orbits. Furthermore, an examination of the observational data obtained by the Kepler telescope seems to suggest an absence of CBPs around short-period binaries. Finally, recent detections of episodic transits in the two newly discovered circumbinary systems, Kepler 413b and Kepler 453b, as well as the discovery of Kepler non-transiting CBPs, (please see the abstract by Fabrycky et al) have indicated that in general, the orbits of planets and their host binaries are not co-planar. We present a new model for the formation and evolution of CBPs in which the migration of CBPs has been studied for low and high eccentricity binaries, and for different values of binary period. Results of our extensive hydrodynamical simulations show that planet-disk interaction in low-eccentricity binaries can account for the migration of CBPs and the proximity of their final orbits to the boundary of stability. In eccentric binaries, the situation is, however, more complex and in order to explain the final orbital architecture of the system, other factors such as planet-planet interaction have to be taken into account. We show

  8. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  9. Extrasolar planet interactions

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Greenberg, Richard

    2008-05-01

    The dynamical interactions of planetary systems may be a clue to their formation histories. Therefore, the distribution of these interactions provides important constraints on models of planet formation. We focus on each system's apsidal motion and proximity to dynamical instability. Although only 25 multiple planet systems have been discovered to date, our analyses in these terms have revealed several important features of planetary interactions. 1) Many systems interact such that they are near the boundary between stability and instability. 2) Planets tend to form such that at least one planet's eccentricity periodically drops to near zero. 3) Mean-motion resonant pairs would be unstable if not for the resonance. 4) Scattering of approximately equal mass planets is unlikely to produce the observed distribution of apsidal behavior. 5) Resonant interactions may be identified through calculating a system's proximity to instability, regardless of knowledge of angles such as mean longitude and longitude of periastron (e.g. GJ 317 b and c are probably in a 4:1 resonance). These properties of planetary systems have been identified through calculation of two parameters that describe the interaction. The apsidal interaction can be quantified by determining how close a planet is to an apsidal separatrix (a boundary between qualitatively different types of apsidal oscillations, e.g. libration or circulation of the major axes). This value can be calculated through short numerical integrations. The proximity to instability can be measured by comparing the observed orbital elements to an analytic boundary that describes a type of stability known as Hill stability. We have set up a website dedicated to presenting the most up-to-date information on dynamical interactions: http://www.lpl.arizona.edu/~rory/research/xsp/dynamics.

  10. Constraints on a second planet in the WASP-3 system

    SciTech Connect

    Maciejewski, G.; Niedzielski, A.; Nowak, G.; Deka, B.; Adamów, M.; Górecka, M.; Wolszczan, A.; Neuhäuser, R.; Errmann, R.; Seeliger, M.; Winn, J. N.; McKnight, L.; Fernández, M.; Aceituno, F. J.; Ohlert, J.; Dimitrov, D.; Latham, D. W.; Esquerdo, G. A.; Holman, M. J.; Jensen, E. L. N.; and others

    2013-12-01

    There have been previous hints that the transiting planet WASP-3b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity (RV) measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The RV data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period.

  11. Location of Planet X

    SciTech Connect

    Harrington, R.S.

    1988-10-01

    Observed positions of Uranus and Neptune along with residuals in right ascension and declination are used to constrain the location of a postulated tenth planet. The residuals are converted into residuals in ecliptic longitude and latitude. The results are then combined into seasonal normal points, producing average geocentric residuals spaced slightly more than a year apart that are assumed to represent the equivalent heliocentric average residuals for the observed oppositions. Such a planet is found to most likely reside in the region of Scorpius, with considerably less likelihood that it is in Taurus. 8 references.

  12. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  13. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  14. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  15. Stars and Planets: A New Set of Middle School Activities

    NASA Technical Reports Server (NTRS)

    Urquhart, M. L.

    2002-01-01

    A set of lesson plans for grades 6-8 which deal with the sizes and distances of stars and planets using a scale factor of 1 to 10 billion, the life cycle of stars, and the search for planets beyond the solar system. Additional information is contained in the original extended abstract.

  16. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  17. Making and Differentiating Planets

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2015-07-01

    The rocky planets formed by progressive aggregation of dust to make planetesimals which joined to make large objects called planetary embryos that finally accumulated into planets, one of which we live on. This chaotic process is complicated further by chemical changes with distance from the Sun, including differences in oxidation conditions and water concentration. Once the inner planets began to form, metallic iron sank to form cores, reacting with the rocky portions in the process. David C. Rubie (University of Bayreuth, Germany) and colleagues in Germany, France, and the United States put all this planetary action into an impressively thorough computer model of planet formation and differentiation. They show that the observed compositions of the Earth can be matched by simulations that include the Grand Tack (Jupiter and Saturn migrate inwards towards the Sun and then back out), and chemical gradients in the Solar System, with more reducing conditions near the Sun, more oxidizing farther from the Sun, and oxidizing and hydrated conditions even farther from the Sun. The study identifies other important variables, such as the extent to which metallic iron chemically equilibrated with the silicate making up the Earth's mantle, the pressure at which it happened, and the likelihood that Earth accreted heterogeneously.

  18. Take a Planet Walk

    ERIC Educational Resources Information Center

    Schuster, Dwight

    2008-01-01

    Physical models in the classroom "cannot be expected to represent the full-scale phenomenon with complete accuracy, not even in the limited set of characteristics being studied" (AAAS 1990). Therefore, by modifying a popular classroom activity called a "planet walk," teachers can explore upper elementary students' current understandings; create an…

  19. A Planet for Goldilocks

    NASA Astrophysics Data System (ADS)

    Batalha, N.

    2014-07-01

    The search for life beyond Earth has inspired Solar System exploration and SETI surveys. Today, the search for life also leads to exoplanet discovery and characterization. Launched in March 2009, NASA's Kepler Mission has discovered thousands of exoplanets with diverse properties. Though each new world is interesting in its own right, Kepler aims to understand the population as a whole. Its primary objective is to determine the frequency of exoplanets of different sizes and orbital periods. Of special interest are the Earth-size planets in the “Goldilocks” (or habitable) Zone where the flux of incoming starlight is conducive to the existence of surface liquid water. Once Kepler establishes the prevalence of such planets in the Solar neighborhood, future missions can be designed to find not just a planet in the Goldilocks Zone but a planet for Goldilocks—a truly habitable environment for life as we know it. Kepler discoveries and progress will be described as well as the resources available to bring Kepler science to the public and into the classroom. The possibility of finding evidence of life beyond Earth is working its way into the public consciousness and has the potential to inspire generations. Scientific literacy is a natural consequence of awakening the spirit of exploration and discovery that led Goldilocks into the forest and leads humans into space.

  20. The Artificial Planet

    NASA Astrophysics Data System (ADS)

    Glover, D. R.

    An interim milestone for interstellar space travel is proposed: the artificial planet. Interstellar travel will require breakthroughs in the areas of propulsion systems, energy systems, construction of large space structures, protection from space & radiation effects, space agriculture, closed environmental & life support systems, and many other areas. Many difficult problems can be attacked independently of the propulsion and energy challenges through a project to establish an artificial planet in our solar system. Goals of the project would include construction of a large space structure, development of space agriculture, demonstration of closed environmental & life support systems over long time periods, selection of gravity level for long-term spacecraft, demonstration of a self-sufficient colony, and optimization of space colony habitat. The artificial planet would use solar energy as a power source. The orbital location will be selected to minimize effects of the Earth, yet be close enough for construction, supply, and rescue operations. The artificial planet would start out as a construction station and evolve over time to address progressive goals culminating in a self-sufficient space colony.

  1. Planets and Pucks.

    ERIC Educational Resources Information Center

    Brueningsen, Christopher; Krawiec, Wesley

    1993-01-01

    Presents a simple activity designed to allow students to experimentally verify Kepler's second law, sometimes called the law of equal areas. It states that areas swept out by a planet as it orbits the Sun are equal for equal time intervals. (PR)

  2. Five Planets Transiting a Ninth Magnitude Star

    NASA Astrophysics Data System (ADS)

    Vanderburg, Andrew; Becker, Juliette C.; Kristiansen, Martti H.; Bieryla, Allyson; Duev, Dmitry A.; Jensen-Clem, Rebecca; Morton, Timothy D.; Latham, David W.; Adams, Fred C.; Baranec, Christoph; Berlind, Perry; Calkins, Michael L.; Esquerdo, Gilbert A.; Kulkarni, Shrinivas; Law, Nicholas M.; Riddle, Reed; Salama, Maïssa; Schmitt, Allan R.

    2016-08-01

    The Kepler mission has revealed a great diversity of planetary systems and architectures, but most of the planets discovered by Kepler orbit faint stars. Using new data from the K2 mission, we present the discovery of a five-planet system transiting a bright (V = 8.9, K = 7.7) star called HIP 41378. HIP 41378 is a slightly metal-poor late F-type star with moderate rotation (v sin i ≃ 7 {km} {{{s}}}-1) and lies at a distance of 116 ± 18 pc from Earth. We find that HIP 41378 hosts two sub-Neptune-sized planets orbiting 3.5% outside a 2:1 period commensurability in 15.6 and 31.7 day orbits. In addition, we detect three planets that each transit once during the 75 days spanned by K2 observations. One planet is Neptune-sized in a likely ˜160 day orbit, one is sub-Saturn-sized, likely in a ˜130 day orbit, and one is a Jupiter-sized planet in a likely ˜1 year orbit. We show that these estimates for the orbital periods can be made more precise by taking into account dynamical stability considerations. We also calculate the distribution of stellar reflex velocities expected for this system, and show that it provides a good target for future radial velocity observations. If a precise orbital period can be determined for the outer Jovian planets through future observations, this system will be an excellent candidate for follow-up transit observations to study its atmosphere and measure its oblateness.

  3. NASA Reveals Most Unusual Planet

    NASA Video Gallery

    In exploring the universe, NASA has uncovered one planet more unusual than all others. This 30 second video shows you which planet that is, and explains that NASA science helps us better understand...

  4. Finding Planets around other stars

    NASA Video Gallery

    Just as the Earth revolves around the sun, our closest star, other planets might orbit the stars you see in the night sky. Think of all the planets in the universe that may be just the right distan...

  5. Spectra and Biomarkers of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2005-01-01

    During this period, and focussing on ow work at SAO only, we have produced significant results in five areas: coronagraphs, color, Earthshine, near infrared, and meetings. We developed the theory of a new type of coronograph for detecting and characterizing extrasolar planets. We wrote two papers, the first laying out the one-dimensional theory, and the second developing the two-dimensional theory, plus additional results. We gained new insights into the role that simple color measurements can play in characterizing extrasolar planets.

  6. Young Exo-Planet Transit Initiative (YETI)

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Ralph; Errmann, Ronny; Raetz, Stefanie; Chen, Wen-Ping; Hu, Seline; Torres, Guillermo; Kellerer, Aglae; Kitze, Manfred; YETI Team

    2013-07-01

    The Young Exo-Planet Transit Initiative (YETI) uses a network of about 20 telescopes worldwide to monitor several young stellar clusters in order to study all kinds of variability, but primarily to identify planetary transits. We will present first results from the clusters Trumpler-37 and 25 Ori including follow-up imaging and spectroscopy of our first three transit candidates. Discovery of a transiting planet (with direct mass and radius estimates) in a cluster younger than about 10 Myr allows critical tests of planetary formation theories. We will also present additional science results on variability of young stars and eclipsing young binaries.

  7. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    PubMed

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions.

  8. On the possibility of Earth-type habitable planets in the 55 Cancri system.

    PubMed

    von Bloh, W; Cuntz, M; Franck, S; Bounama, C

    2003-01-01

    We discuss the possibility of Earth-type planets in the planetary system of 55 Cancri, a nearby G8 V star, which is host to two, possibly three, giant planets. We argue that Earth-type planets around 55 Cancri are in principle possible. Several conditions are necessary. First, Earth-type planets must have formed despite the existence of the close-in giant planet(s). In addition, they must be orbitally stable in the region of habitability considering that the stellar habitable zone is relatively close to the star compared to the Sun because of 55 Cancri's low luminosity and may therefore be affected by the close-in giant planet(s). We estimate the likelihood of Earth-type planets around 55 Cancri based on the integrated system approach previously considered, which provides a way of assessing the long-term possibility of photosynthetic biomass production under geodynamic conditions. PMID:14987474

  9. Classifying Planets: Nature vs. Nurture

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.

    2009-05-01

    The idea of a planet was so simple when we learned about the solar system in elementary school. Now students and professional s alike are faced with confusing array of definitions --- from "Brown Dwarfs” to "Super Jupiters", from "Super Earths” to "Terrestrial Planets", and from "Planets” to "Small, Sort-of Round Things That Aren't Really Planets". I will discuss how planets might be defined by how they formed, where they are found, or by the life they might support.

  10. The Story of Planets: Anchoring Numerics in Reality

    NASA Astrophysics Data System (ADS)

    Leinhardt, Zoë M.

    2014-01-01

    Building a complete coherent model of planet formation has proven difficult. There are gaps in the observational record, difficult physical processes that we have yet to fully understand, such as planetesimal formation, and an extensive list of observationally determined constraints that the model must fulfil. For example, the diversity of extrasolar planets detected to date is staggering - from single hot-Jupiters to multiple planet systems with several tightly packed super-Earths. In addition, the characteristics of the host stars are broad from single solar-mass stars to tight binaries and low mass, low metalicity stars. Even more surprising, perhaps, is the frequency of detection and thus, the implied efficiency of the planet formation process. Any theoretical model must not just be able to explain how planets form but must also explain the frequency and diversity of planetary systems. So why is planet formation so prolific? What parameters determine the type of planetary system that will result? How important are the initial parameters of the protoplanetary disk, such as composition, versus stochastic effects, such as gravitational scattering events, that occur during the evolution of the planetary system? Current observations of extrasolar planets provide snapshots in time of the earliest and latest stages of planet formation but do not show the evolution between the two. It is at this point that we must rely on numerical models to evolve proto-planetary disks into planets. But how can we validate the results of our numerical simulations if the middle stages of planet formation are effectively invisible? Collisions are a core component of planet formation. Planetesimals, the building blocks of planets, collide with one another as they grow and evolve into planets or planetary cores and are viscously stirred by larger protoplanets and fully-formed planets. The range of impact parameters encountered during growth from planetesimals to planets span multiple

  11. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  12. Finding Planet Nine: a Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2016-06-01

    Planet Nine is a hypothetical planet located well beyond Pluto that has been proposed in an attempt to explain the observed clustering in physical space of the perihelia of six extreme trans-Neptunian objects or ETNOs. The predicted approximate values of its orbital elements include a semimajor axis of 700 au, an eccentricity of 0.6, an inclination of 30°, and an argument of perihelion of 150°. Searching for this putative planet is already under way. Here, we use a Monte Carlo approach to create a synthetic population of Planet Nine orbits and study its visibility statistically in terms of various parameters and focusing on the aphelion configuration. Our analysis shows that, if Planet Nine exists and is at aphelion, it might be found projected against one out of the four specific areas in the sky. Each area is linked to a particular value of the longitude of the ascending node and two of them are compatible with an apsidal anti-alignment scenario. In addition and after studying the current statistics of ETNOs, a cautionary note on the robustness of the perihelia clustering is presented.

  13. Lithium Abundance in Planet Search Stars

    NASA Astrophysics Data System (ADS)

    Myles, Justin; Yale Exoplanets

    2016-01-01

    Since most lithium in the universe is primordial and is destroyed in stars, lithium abundance can be used as a stellar age indicator. Some research seems to show that planet formation may also affect lithium abundance in exoplanet host stars (EHS). However, small and heterogenous samples have made both of these phenomena unclear. Further study of lithium abundance in EHS is needed to better understand possible physical roles of lithium in planet formation theory. We use a large homogenous sample with accurate stellar parameters on which we will use equivalent width analysis to determine precise lithium abundances. From these abundance values we determine an age vs. abundance relation. Additionally, we aim to explore correlation between lithium abundance and planet formation.

  14. ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS

    SciTech Connect

    Lissauer, Jack J.; Rowe, Jason F.; Bryson, Stephen T.; Howell, Steve B.; Jenkins, Jon M.; Kinemuchi, Karen; Koch, David G.; Marcy, Geoffrey W.; Adams, Elisabeth; Fressin, Francois; Geary, John; Holman, Matthew J.; Ragozzine, Darin; Buchhave, Lars A.; Ciardi, David R.; Fabrycky, Daniel C.; Ford, Eric B.; Morehead, Robert C.; Gilliland, Ronald L.; and others

    2012-05-10

    We present a statistical analysis that demonstrates that the overwhelming majority of Kepler candidate multiple transiting systems (multis) indeed represent true, physically associated transiting planets. Binary stars provide the primary source of false positives among Kepler planet candidates, implying that false positives should be nearly randomly distributed among Kepler targets. In contrast, true transiting planets would appear clustered around a smaller number of Kepler targets if detectable planets tend to come in systems and/or if the orbital planes of planets encircling the same star are correlated. There are more than one hundred times as many Kepler planet candidates in multi-candidate systems as would be predicted from a random distribution of candidates, implying that the vast majority are true planets. Most of these multis are multiple-planet systems orbiting the Kepler target star, but there are likely cases where (1) the planetary system orbits a fainter star, and the planets are thus significantly larger than has been estimated, or (2) the planets orbit different stars within a binary/multiple star system. We use the low overall false-positive rate among Kepler multis, together with analysis of Kepler spacecraft and ground-based data, to validate the closely packed Kepler-33 planetary system, which orbits a star that has evolved somewhat off of the main sequence. Kepler-33 hosts five transiting planets, with periods ranging from 5.67 to 41 days.

  15. How Giant Planets Shape the Characteristics of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa V.

    2016-01-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are not ubiquitous. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times and the delivery of volitiles. This work has important implications for determining the frequency of habitable planets.

  16. Images of a fourth planet orbiting HR 8799.

    PubMed

    Marois, Christian; Zuckerman, B; Konopacky, Quinn M; Macintosh, Bruce; Barman, Travis

    2010-12-23

    High-contrast near-infrared imaging of the nearby star HR 8799 has shown three giant planets. Such images were possible because of the wide orbits (>25 astronomical units, where 1 au is the Earth-Sun distance) and youth (<100 Myr) of the imaged planets, which are still hot and bright as they radiate away gravitational energy acquired during their formation. An important area of contention in the exoplanet community is whether outer planets (>10 au) more massive than Jupiter form by way of one-step gravitational instabilities or, rather, through a two-step process involving accretion of a core followed by accumulation of a massive outer envelope composed primarily of hydrogen and helium. Here we report the presence of a fourth planet, interior to and of about the same mass as the other three. The system, with this additional planet, represents a challenge for current planet formation models as none of them can explain the in situ formation of all four planets. With its four young giant planets and known cold/warm debris belts, the HR 8799 planetary system is a unique laboratory in which to study the formation and evolution of giant planets at wide (>10 au) separations.

  17. Terrestrial planet formation from a truncated disk -- The 'Grand Tack'

    NASA Astrophysics Data System (ADS)

    Walsh, K. J.; Morbidelli, A.; Raymond, S.; O'Brien, D. P.; Mandell, A. M.

    2012-12-01

    A new terrestrial planet formation model (Walsh et al., 2011) explores the effects of a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008, Pierens & Raymond 2011). The inward migration of Jupiter truncates the disk of planetesimals and embryos in the terrestrial planet region. Subsequent accretion in that region then forms the terrestrial planets, in particular it produces the correct Earth/Mars mass ratio, which has been difficult to reproduce in simulations with a self-consistent set of initial conditions (see, eg. Raymond et al. 2009, Hansen 2009). Additionally, the outward migration of the giant planets populates the asteroid belt with distinct populations of bodies, with the inner belt filled by bodies originating inside of 3 AU, and the outer belt filled with bodies originating from beyond the giant planets. This differs from previous models of terrestrial planet formation due to the early radial mixing of material due to the giant planet's substantial migration. Specifically, the assumption that the current radial distribution of material in the inner Solar System is reflective of the primordial distribution of material in that region is no longer necessary. We will discuss the implications of this model in relation to previous models of terrestrial planet formation as well as available chemical and isotopic constraints.

  18. Six Planets Orbiting HD 219134

    NASA Astrophysics Data System (ADS)

    Vogt, Steven S.; Burt, Jennifer; Meschiari, Stefano; Butler, R. Paul; Henry, Gregory W.; Wang, Songhu; Holden, Brad; Gapp, Cyril; Hanson, Russell; Arriagada, Pamela; Keiser, Sandy; Teske, Johanna; Laughlin, Gregory

    2015-11-01

    We present new, high-precision Doppler radial velocity (RV) data sets for the nearby K3V star HD 219134. The data include 175 velocities obtained with the HIRES Spectrograph at the Keck I Telescope and 101 velocities obtained with the Levy Spectrograph at the Automated Planet Finder Telescope at Lick Observatory. Our observations reveal six new planetary candidates, with orbital periods of P = 3.1, 6.8, 22.8, 46.7, 94.2, and 2247 days, spanning masses of {M}{sin}i=3.8, 3.5, 8.9, 21.3, 10.8, and 108 {{M}}\\oplus , respectively. Our analysis indicates that the outermost signal is unlikely to be an artifact induced by stellar activity. In addition, several years of precision photometry with the T10 0.8 m automatic photometric telescope at Fairborn Observatory demonstrated a lack of brightness variability to a limit of ∼0.0002 mag, providing strong support for planetary-reflex motion as the source of the RV variations. The HD 219134 system with its bright (V = 5.6) primary provides an excellent opportunity to obtain detailed orbital characterization (and potentially follow-up observations) of a planetary system that resembles many of the multiple-planet systems detected by Kepler, which are expected to be detected by NASA’s forthcoming TESS Mission and by ESA’s forthcoming PLATO Mission.

  19. Early Giant Planet Candidates from the SDSS-III MARVELS Planet Survey

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, J.; Li, R.; Sithajan, S.; Chen, Y.; Shi, J.; Ma, B.; Liu, J.

    2014-01-01

    We report the first discoveries of giant planet candidates from the SDSS-III MARVELS survey. These candidates are found using the new MARVELS data pipeline developed at UF from scratch over the past two years. Unlike the old data pipeline, this pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile). The result is long-term RV precisions that approach the photon limits in many cases and has yielded four giant planet candidates of ~1-6 Jupiter mass from only the initial fraction of data processed with the new techniques. More survey data is being processed which will likely lead to discoveries of additional giant planet candidates that will be verified and characterized with follow-up observations by the MARVELS team. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with well defined cadence 27 RV measurements over 2 years). The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity ([Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the “planet desert” within 0.6 AU in the planet orbital distribution of intermediate-mass stars real?

  20. From Pebbles to Planets

    NASA Astrophysics Data System (ADS)

    Johansen, Anders

    2013-10-01

    Planets form in protoplanetary discs around young stars as dust and ice particles collide to form ever larger bodies. Particle concentration in the turbulent gas flow may be necessary to form the planetesimals which are the building blocks of both the terrestrial planets and the cores of the gas giants and the ice giants. The streaming instability, which feeds off the relative motion of gas and particles, is a powerful mechanism to create overdense particle filaments. These filaments contract under their own gravity to form planetesimals with a wide range of sizes. I will also discuss how the pebbles left over from the planetesimal formation stage can lead to rapid formation of the cores of gas giants, well within the protoplanetary disc life-time, even in wide orbits.

  1. Mission to Planet Earth

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory S.; Backlund, Peter W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. An overview of the MTPE, flight programs, data and information systems, interdisciplinary research efforts, and international coordination, is presented.

  2. Planet Forming Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Lubow, Stephen

    1998-01-01

    The project achieved many of its objectives. The main area of investigation was the interaction of young binary stars with surrounding protostellar disks. A secondary objective was the interaction of young planets with their central stars and surrounding disks. The grant funds were used to support visits by coinvestigators and visitors: Pawel Artymowicz, James Pringle, and Gordon Ogilvie. Funds were also used to support travel to meetings by Lubow and to provide partial salary support.

  3. Pluto: Dwarf planet 134340

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2016-01-01

    In recent decades, investigations of Pluto with up-to-date astronomical instruments yielded results that have been generally confirmed by the New Horizons mission. In 2006, in Prague, the General Assembly of the International Astronomical Union (IAU) reclassified Pluto as a member of the dwarf planet category according to the criteria defined by the IAU for the term "planet". At the same time, interest in studies of Pluto was increasing, while the space investigations of Pluto were delayed. In 2006, the New Horizons Pluto spacecraft started its journey to Pluto. On July 14, 2015, the spacecraft, being in fly-by mode, made its closest approach to Pluto. The heterogeneities and properties of the surface and rarified atmosphere were investigated thoroughly. Due to the extreme remoteness of the spacecraft and the energy limitations, it will take 18 months to transmit the whole data volume. Along with the preliminary results of the New Horizons Pluto mission, this paper reviews the basics on Pluto and its moons acquired from the ground-based observations and with the Hubble Space Telescope (HST). There are only a few meteorite craters on the surfaces of Pluto and Charon, which distinctly marks them apart from such satellites of the giant planets as Ganymede and Callisto. The explanation is that the surface of Pluto is young: its age is estimated at less than 100 Myr. Ice glaciers of apparently a nitrogen nature were found. Nitrogen is also the main component of the atmosphere of Pluto. The planet demonstrates the signs of strong geologic activity, though the energy sources of these processes are unknown.

  4. Terrestrial Planet Geophysics

    NASA Astrophysics Data System (ADS)

    Phillips, R. J.

    2008-12-01

    Terrestrial planet geophysics beyond our home sphere had its start arguably in the early 1960s, with Keith Runcorn contending that the second-degree shape of the Moon is due to convection and Mariner 2 flying past Venus and detecting no planetary magnetic field. Within a decade, in situ surface geophysical measurements were carried out on the Moon with the Apollo program, portions of the lunar magnetic and gravity fields were mapped, and Jack Lorell and his colleagues at JPL were producing spherical harmonic gravity field models for Mars using tracking data from Mariner 9, the first spacecraft to orbit another planet. Moreover, Mariner 10 discovered a planetary magnetic field at Mercury, and a young Sean Solomon was using geological evidence of surface contraction to constrain the thermal evolution of the innermost planet. In situ geophysical experiments (such as seismic networks) were essentially never carried out after Apollo, although they were sometimes planned just beyond the believability horizon in planetary mission queues. Over the last three decades, the discipline of terrestrial planet geophysics has matured, making the most out of orbital magnetic and gravity field data, altimetric measurements of surface topography, and the integration of geochemical information. Powerful constraints are provided by tectonic and volcanic information gleaned from surface images, and the engagement of geologists in geophysical exercises is actually quite useful. Accompanying these endeavors, modeling techniques, largely adopted from the Earth Science community, have become increasingly sophisticated and have been greatly enhanced by the dramatic increase in computing power over the last two decades. The future looks bright with exciting new data sets emerging from the MESSENGER mission to Mercury, the promise of the GRAIL gravity mission to the Moon, and the re-emergence of Venus as a worthy target for exploration. Who knows? With the unflagging optimism and persistence

  5. Developments in Planet Detection using Transit Timing Variations

    SciTech Connect

    Steffen, Jason H.; Agol, Eric; /Washington U., Seattle, Astron. Dept.

    2006-12-01

    In a transiting planetary system, the presence of a second planet will cause the time interval between transits to vary. These transit timing variations (TTV) are particularly large near mean-motion resonances and can be used to infer the orbital elements of planets with masses that are too small to detect by any other means. The author presents the results of a study of simulated data where they show the potential that this planet detection technique has to detect and characterize secondary planets in transiting systems. These results have important ramifications for planetary transit searches since each transiting system presents an opportunity for additional discoveries through a TTV analysis. They present such an analysis for 13 transits of the HD 209458 system that were observed with the Hubble Space Telescope. This analysis indicates that a putative companion in a low-order, mean-motion resonance can be no larger than the mass of the Earth and constitutes, to date, the most sensitive probe for extrasolar planets that orbit main sequence stars. The presence or absence of small planets in low-order, mean-motion resonances has implications for theories of the formation and evolution of planetary systems. Since TTV is most sensitive in these regimes, it should prove a valuable tool not only for the detection of additional planets in transiting systems, but also as a way to determine the dominant mechanisms of planet formation and the evolution of planetary systems.

  6. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-01

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance. PMID:23641110

  7. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-01

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  8. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  9. The Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Graham, James R.; Macintosh, Bruce; Perrin, Marshall D.; Ingraham, Patrick; Konopacky, Quinn M.; Marois, Christian; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam Seth; Cardwell, Andrew; Chilcote, Jeffrey K.; De Rosa, Robert John J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James E.; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Kathleen M.; Nielsen, Eric L.; Norton, Andew; Oppenheimer, Rebecca; Palmer, David; Patience, Jenny; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemeyer, Leslie; Savransky, Dmitry; Serio, Andrew W.; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wang, Jason; Wiktorowicz, Sloane; Wolff, Schulyer; Gpi/Gpies Team

    2015-01-01

    The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of GPI has been tuned for maximum sensitivity to faint planets near bright stars. GPI has undergone a year of commissioning, verification, and calibration work. We have achieved an estimated H-band contrast (5-sigma) of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds in spectral mode, and suppression of unpolarized starlight by a factor of 800 in imaging polarimetry mode. Early science observations include study of the spectra of β Pic b and HR 8799, orbital investigations of β Pic b and PZ Tel, and observations of the debris disk systems associated with β Pic, AU Mic, and HR 4796A. An 890-hour exoplanet survey with GPI is scheduled to begin in late 2014. A status report for the campaign will be presented.

  10. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Wright, Jason T.; Fischer, Debra A.

    2008-05-01

    We analyze 8 years of precise radial velocity measurements from the Keck Planet Search, characterizing the detection threshold, selection effects, and completeness of the survey. We first carry out a systematic search for planets, by assessing the false-alarm probability associated with Keplerian orbit fits to the data. This allows us to understand the detection threshold for each star in terms of the number and time baseline of the observations, and the underlying "noise" from measurement errors, intrinsic stellar jitter, or additional low-mass planets. We show that all planets with orbital periods P < 2000 days, velocity amplitudes K > 20 m s-1, and eccentricities e lsim 0.6 have been announced, and we summarize the candidates at lower amplitudes and longer orbital periods. For the remaining stars, we calculate upper limits on the velocity amplitude of a companion. For orbital periods less than the duration of the observations, these are typically 10 m s-1 and increase vprop P2 for longer periods. We then use the nondetections to derive completeness corrections at low amplitudes and long orbital periods and discuss the resulting distribution of minimum mass and orbital period. We give the fraction of stars with a planet as a function of minimum mass and orbital period and extrapolate to long-period orbits and low planet masses. A power-law fit for planet masses >0.3 MJ and periods < 2000 days gives a mass-period distribution dN = CMαPβd ln Md ln P with α = -0.31 ± 0.2, β = 0.26 ± 0.1, and the normalization constant C such that 10.5% of solar type stars have a planet with mass in the range 0.3-10 MJ and orbital period 2-2000 days. The orbital period distribution shows an increase in the planet fraction by a factor of ≈5 for orbital periods gsim300 days. Extrapolation gives 17%-20% of stars having gas giant planets within 20 AU. Finally, we constrain the occurrence rate of planets orbiting M dwarfs compared to FGK dwarfs, taking into account differences in

  11. Choosing Stars to Search for Habitable Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    oxygen in the planetary atmosphere. This type of detection will only be feasible for low-mass dwarfs, however, due to the relative size of the star and the planet.An Ideal RangeStellar rotation period as a function of stellar mass. The blue shaded region shows the habitable zone as a function of stellar mass. For M dwarfs between ~0.25 and ~0.5 solar mass, the habitable-zone period overlaps with the stellar rotation period. [Newton et al. 2016]Newton and collaborators find that stars in the mass range of 0.25 to 0.5 solar mass (stellar class M1V-M4V) are non-ideal targets, because their stellar rotation periods (or a multiple thereof) coincide with the orbital periods of their habitable zones. In addition, atmospheric characterization will only be feasible in the near future for stars with mass less than ~0.25 solar mass.On the other hand, dwarfs with mass less than ~0.1 solar masses (stellar classes later than M6V) will retain their stellar activity and faster rotation rates throughout most of their lifetimes, making them non-ideal targets as well.When searching for habitable exoplanets, the best targets are therefore the mid M dwarfs in the mass range of 0.1 to 0.25 solar mass (stellar class M4V-M6V). Building a sample focused on these stars will reduce the likelihood that planets found in the stars habitable zones are false detections. This will hopefully produce a catalog of potentially habitable exoplanets that we can eventually follow up with atmospheric observations.CitationElisabeth R. Newton et al 2016 ApJ 821 L19. doi:10.3847/2041-8205/821/1/L19

  12. Complex patterns in the distribution of planets show planet migration and planet and star properties

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    We present dramatic patterns in the distribution of exoplanet periods and eccentricities that vary as functions of iron abundance of the host star, planet mass, stellar properties, and presence of a stellar companion. These patterns include surprising peaks and gaps. They raise the question of whether planets themselves contribute to increasing stellar metallicity by causing other planets or material to “pollute” the star.We also show that the falloff in planets at the shortest periods can be used to determine the rate of planets migrating into the star as a function of the strength of tidal dissipation in the star. A small rate of planets migrating into the star can produce the observed population of the shortest period planets without having to invoke extremely weak tidal dissipation. Tidal dissipation strengths stronger than the tidal quality factor Q being equal to 107 are possible if there is a moderate flow of giant planets into the star. It is likely that within a decade it will be possible to measure the time shift of transits of the shortest period orbits due to orbital period decreases caused by tidal migration.The distribution of the shortest period planets indicates that the strength of tidal dissipation in stars is a function of stellar mass, making it worthwhile to monitor the shortest period systems for time shifts across a range of stellar masses. This time shift is inversely proportional to the lifetime of a planet.It is essential to know the rate of planets migrating into stars in order to understand whether inflated planets are only briefly inflated during a faster migration into the star, or if planets maintain anomalously large radii for longer periods of time.The paucity of Neptune-mass planets at the shortest periods could be due either to a lower rate of inward migration or to evaporation. Knowing how evaporation contributes to this paucity could help determine the fractions of planets that are rock, liquid water, or gas.

  13. The Effect of Giant Planets on Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Quintana, Elisa

    2015-12-01

    The giant planets in the Solar System likely played a defining role in shaping the properties of the Earth and other terrestrial planets during their formation. Observations from the Kepler spacecraft indicate that terrestrial planets are highly abundant. However, there are hints that giant planets a few AU from their stars are relatively uncommon based on long baseline radial velocity searches. It therefore seems reasonable to assume that many terrestrial planets lack a Jupiter-like companion. We use a recently developed, state-of-the-art N-body model that allows for collisional fragmentation to perform hundreds of numerical simulations of the final stages of terrestrial planet formation around a Sun-like star -- with and without giant outer planets. We quantify the effects that outer giant planet companions have on collisions and the planet accretion process. We focus on Earth-analogs that form in each system and explore how giant planets influence the relative frequency of giant impacts occurring at late times.

  14. A Ninth Planet in Our Solar System?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    its presence. But the authors model has an additional testable hypothesis: if its correct, there should be a population of high-perihelion Kuiper belt objects that dont exhibit the same alignment of their orbits as the KBOs we know about, but instead have opposite-aligned orbits. If we discover such a collection of objects, that would be an excellent confirmation of this model.The authors caution that their work is preliminary, and additional investigation will be required to better understand the possibilities presented here. But with any luck, future theoretical work, as well as observational tests of this models predictions, will help us determine whether there might be a distant ninth planet in our solar system!BonusCheck out this video (created with WWT!), which walks us first through a view of the six aligned KBO orbits, then shows a possible orbit for the hypothesized planet, and then shows an additional population of already-discovered objects (also predicted by the model) that have orbits perpendicular both to the plane of the solar system and to the planets orbit. [Caltech/Robert Hurt]http://aasnova.org/wp-content/uploads/2016/01/Planet9_anim_720.m4vCitationKonstantin Batygin and Michael E. Brown 2016 AJ 151 22. doi:10.3847/0004-6256/151/2/22

  15. The properties of planets around giant stars

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Jenkins, J. S.; Bluhm, P.; Rojo, P.; Melo, C. H. F.

    2014-06-01

    Context. More than 50 exoplanets have been found around giant stars, revealing different properties when compared to planets orbiting solar-type stars. In particular, they are super-Jupiters and are not found orbiting interior to ~0.5 AU. Aims: We are conducting a radial velocity study of a sample of 166 giant stars aimed at studying the population of close-in planets orbiting giant stars and how their orbital and physical properties are influenced by the post-MS evolution of the host star. Methods: We have collected multiepoch spectra for all of the targets in our sample. We have computed precision radial velocities from FECH/CHIRON and FEROS spectra, using the I2 cell technique and the simultaneous calibration method, respectively. Results: We present the discovery of a massive planet around the giant star HIP 105854. The best Keplerian fit to the data leads to an orbital distance of 0.81 ± 0.03 AU, an eccentricity of 0.02 ± 0.03 and a projected mass of 8.2 ± 0.2 MJ. With the addition of this new planet discovery, we performed a detailed analysis of the orbital properties and mass distribution of the planets orbiting giant stars. We show that there is an overabundance of planets around giant stars with a ~ 0.5 - 0.9 AU, which might be attributed to tidal decay. Additionally, these planets are significantly more massive than those around MS and subgiant stars, suggesting that they grow via accretion either from the stellar wind or by mass transfer from the host star. Finally, we show that planets around evolved stars have lower orbital eccentricities than those orbiting solar-type stars, which suggests that they are either formed in different conditions or that their orbits are efficiently circularized by interactions with the host star. Based on observations collected at La Silla - Paranal Observatory under programs IDs 085.C-0557, 087.C.0476, 089.C-0524 and 090.C-0345.The RV Table is only available at the CDS via anonymous ftp to http

  16. Planet Detection: The Kepler Mission

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; Smith, Jeffrey C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey

    2012-03-01

    The search for exoplanets is one of the hottest topics in astronomy and astrophysics in the twenty-first century, capturing the public's attention as well as that of the astronomical community. This nascent field was conceived in 1989 with the discovery of a candidate planetary companion to HD114762 [35] and was born in 1995 with the discovery of the first extrasolar planet 51 Peg-b [37] orbiting a main sequence star. As of March, 2011, over 500 exoplanets have been discovered* and 106 are known to transit or cross their host star, as viewed from Earth. Of these transiting planets, 15 have been announced by the Kepler Mission, which was launched into an Earth-trailing, heliocentric orbit in March, 2009 [1,4,6,15,18,20,22,31,32,34,36,43]. In addition, over 1200 candidate transiting planets have already been detected by Kepler [5], and vigorous follow-up observations are being conducted to vet these candidates. As the false-positive rate for Kepler is expected to be quite low [39], Kepler has effectively tripled the number of known exoplanets. Moreover, Kepler will provide an unprecedented data set in terms of photometric precision, duration, contiguity, and number of stars. Kepler's primary science objective is to determine the frequency of Earth-size planets transiting their Sun-like host stars in the habitable zone, that range of orbital distances for which liquid water would pool on the surface of a terrestrial planet such as Earth, Mars, or Venus. This daunting task demands an instrument capable of measuring the light output from each of over 100,000 stars simultaneously with an unprecedented photometric precision of 20 parts per million (ppm) at 6.5-h intervals. The large number of stars is required because the probability of the geometrical alignment of planetary orbits that permit observation of transits is the ratio of the size of the star to the size of the planetary orbit. For Earth-like planets in 1-astronomical unit (AU) orbits† about sun-like stars

  17. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  18. Planet hunters. VI. An independent characterization of KOI-351 and several long period planet candidates from the Kepler archival data

    SciTech Connect

    Schmitt, Joseph R.; Wang, Ji; Fischer, Debra A.; Moriarty, John C.; Boyajian, Tabetha S.; Jek, Kian J.; LaCourse, Daryll; Omohundro, Mark R.; Winarski, Troy; Goodman, Samuel Jon; Jebson, Tony; Schwengeler, Hans Martin; Paterson, David A.; Schwamb, Megan E.; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Smith, Arfon M.; Parrish, Michael; Schawinski, Kevin; and others

    2014-08-01

    We report the discovery of 14 new transiting planet candidates in the Kepler field from the Planet Hunters citizen science program. None of these candidates overlapped with Kepler Objects of Interest (KOIs) at the time of submission. We report the discovery of one more addition to the six planet candidate system around KOI-351, making it the only seven planet candidate system from Kepler. Additionally, KOI-351 bears some resemblance to our own solar system, with the inner five planets ranging from Earth to mini-Neptune radii and the outer planets being gas giants; however, this system is very compact, with all seven planet candidates orbiting ≲ 1 AU from their host star. A Hill stability test and an orbital integration of the system shows that the system is stable. Furthermore, we significantly add to the population of long period transiting planets; periods range from 124 to 904 days, eight of them more than one Earth year long. Seven of these 14 candidates reside in their host star's habitable zone.

  19. Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets

    NASA Astrophysics Data System (ADS)

    Langton, Jonathan; Laughlin, Gregory

    2008-02-01

    We employ a two-dimensional, grid-based hydrodynamic model to simulate upper atmospheric dynamics on extrasolar giant planets. The hydrodynamic equations of motion are integrated on a rotating, irradiated sphere using a pseudospectral algorithm. We use a two-frequency, two-stream approximation of radiative transfer to model the temperature forcing. This model is well suited to simulate the dynamics of the atmospheres of planets with high orbital eccentricity, which are subject to widely varying irradiation conditions. We identify six such planets, with eccentricities between e = 0.28 and e = 0.93 and semimajor axes from a = 0.0508 AU to a = 0.432 AU, as particularly interesting. For each, we determine the temperature profile and resulting infrared light curves in the 8 μm Spitzer band. Especially notable are the results for HD 80606b, which has the largest eccentricity (e = 0.9321) of any known planet, and HAT-P-2b, which transits its parent star, so that its physical properties are well constrained. Despite the varied orbital parameters, the atmospheric dynamics of these planets display a number of interesting common properties. In all cases, the atmospheric response is primarily driven by the intense irradiation at periastron. The resulting expansion of heated air produces high-velocity turbulent flow, including long-lived circumpolar vortices. In addition, a superrotating acoustic front develops on some planets; the strength of this disturbance depends on both the eccentricity and the temperature gradient from uneven heating. The specifics of the resulting infrared light curves depend strongly on the orbital geometry. We show, however, that the variations on HD 80606b and HAT-P-2b should be readily detectable at 4.5 and 8 μm using Spitzer. These two objects present the most attractive observational targets of all known high-e exoplanets.

  20. Global stratigraphy. [of planet Mars

    NASA Technical Reports Server (NTRS)

    Tanaka, Kenneth L.; Scott, David H.; Greeley, Ronald

    1992-01-01

    Attention is given to recent major advances in the definition and documentation of Martian stratigraphy and geology. Mariner 9 provided the images for the first global geologic mapping program, resulting in the recognition of the major geologic processes that have operated on the planet, and in the definition of the three major chronostratigraphic divisions: the Noachian, Hesperian, and Amazonian Systems. Viking Orbiter images permitted the recognition of additional geologic units and the formal naming of many formations. Epochs are assigned absolute ages based on the densities of superposed craters and crater-flux models. Recommendations are made with regard to future areas of study, namely, crustal stratigraphy and structure, the highland-lowland boundary, the Tharsis Rise, Valles Marineris, channels and valley networks, and possible Martian oceans, lakes, and ponds.

  1. Astrometric Planet Searches with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Unwin, Stephen C.; Shao, Michael; Tanner, Angelle M.; Catanzarite, Joseph H.; March, Geoffrey W.

    2007-01-01

    SIM will search for planets with masses as small as the Earth's orbiting in the habitable zones' around more than 100 of the stars and could discover many dozen if Earth-like planets are common. With a planned 'Deep Survey' of 100-450 stars (depending on desired mass sensitivity) SIM will search for terrestrial planets around all of the candidate target stars for future direct detection missions such as Terrestrial Planet Finder and Darwin, SIM's 'Broad Survey' of 2010 stars will characterize single and multiple-planet systems around a wide variety of stellar types, including many now inaccessible with the radial velocity technique. In particular, SIM will search for planets around young stars providing insights into how planetary systems are born and evolve with time.

  2. The Search for Planet Nine

    NASA Astrophysics Data System (ADS)

    Brown, Michael E.; Batygin, Konstantin

    2016-10-01

    We use an extensive suite of numerical simulations to constrain the mass and orbit of Planet Nine, and we use these constraints to begin the search for this newly proposed planet in new and in archival data. Here, we compare our simulations to the observed population of aligned eccentric high semimajor axis Kuiper belt objects and determine which simulation parameters are statistically compatible with the observations. We find that only a narrow range of orbital elements can reproduce the observations. In particular, the combination of semimajor axis, eccentricity, and mass of Planet Nine strongly dictates the semimajor axis range of the orbital confinement of the distant eccentric Kuiper belt objects. Allowed orbits, which confine Kuiper belt objects with semimajor axis beyond 380 AU, have perihelia roughly between 150 and 350 AU, semimajor axes between 380 and 980 AU, and masses between 5 and 20 Earth masses. Orbitally confined objects also generally have orbital planes similar to that of the planet, suggesting that the planet is inclined approximately 30 degrees to the ecliptic. We compare the allowed orbital positions and estimated brightness of Planet Nine to previous and ongoing surveys which would be sensitive to the planet's detection and use these surveys to rule out approximately two-thirds of the planet's orbit. Planet Nine is likely near aphelion with an approximate brightness of 22planet.

  3. Capture of terrestrial-sized moons by gas giant planets.

    PubMed

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars. PMID:23537110

  4. Capture of terrestrial-sized moons by gas giant planets.

    PubMed

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  5. Atmospheric models for post- giant impact planets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Zahnle, K. J.; Marley, M. S.; Schaefer, L. K.; Fegley, B.; Morley, C.; Cahoy, K.; Freedman, R. S.; Fortney, J. J.

    2013-12-01

    the reflected and emergent flux. We find that these atmospheres are dominated by H2O and CO2, while the formation of CH4, and NH3 is quenched due to short dynamical timescales. Other important constituents are HF, HCl, NaCl, and SO2. These are apparent in the emerging spectra, and can be indicative that an impact has occurred. Estimates including photochemistry and vertical mixing show that these atmospheres are enhanced in sulfur-bearing species, particularly SO2, one of the most important absorbers. At this stage we do not address cloud formation and aerosol opacity. Estimated luminosities for post-impact planets, although lower than predicted by previous models, show that the hottest post-giant-impact planets will be detectable with the planned 30 m-class telescopes. Finally, we use the models to describe the cooling of a post-impact terrestrial planet and briefly investigate its time evolution, which ends as the planet transitions into a more conventional steam atmosphere runaway greenhouse. This calculation brings a significant improvement over previous runaway greenhouse models, by including additional opacity sources and comprehensive line lists for H2O and CO2. We find that the cooling timescale for post-giant impact Earths ranges between about 10^5 and 10^6 years, where the slower cooling is associated with the planet going through a runaway greenhouse stage.

  6. Dwarf Planets as the Most Populous Class of Planet

    NASA Astrophysics Data System (ADS)

    McKinnon, W. B.

    2009-05-01

    Dwarf planets should form whenever the surface density of a protoplanetary disk is low enough, and as a transient stage during planet formation in more massive disks. In terms of physical attributes (hydrostatic shape, presence of atmospheres, internal oceans, active geology, satellites) there is no clear dividing line bewteen dwarf planets and larger, "regular" planets. In our Solar System, all presently recognized dwarf planets (Eris, Pluto, Haumea, Makemake, Ceres) and former dwarf planets (Triton) are icy, although whether Ceres is a differentiated ice-rich body or a somewhat porous, hydrated rocky body can be debated. Regardless, it is only a matter of time (and data) before the dwarf planets outnumber the 8 "classical" planets. In this talk I will review the question of dwarf planet composition in the Kuiper Belt, including the key role of the solar C/O ratio, the evidence for differentiation (rock core formation) and compositional diversity among these bodies, and the possibility for active cryovolcanism such as may be observed by the New Horizons mission when it reaches the Pluto system in 2015.

  7. Watching How Planets Form

    NASA Astrophysics Data System (ADS)

    2006-09-01

    Anatomy of a Planet-Forming Disc around a Star More Massive than the Sun With the VISIR instrument on ESO's Very Large Telescope, astronomers have mapped the disc around a star more massive than the Sun. The very extended and flared disc most likely contains enough gas and dust to spawn planets. It appears as a precursor of debris discs such as the one around Vega-like stars and thus provides the rare opportunity to witness the conditions prevailing prior to or during planet formation. "Planets form in massive, gaseous and dusty proto-planetary discs that surround nascent stars. This process must be rather ubiquitous as more than 200 planets have now been found around stars other than the Sun," said Pierre-Olivier Lagage, from CEA Saclay (France) and leader of the team that carried out the observations. "However, very little is known about these discs, especially those around stars more massive than the Sun. Such stars are much more luminous and could have a large influence on their disc, possibly quickly destroying the inner part." The astronomers used the VISIR instrument [1] on ESO's Very Large Telescope to map in the infrared the disc surrounding the young star HD 97048. With an age of a few million years [2], HD 97048 belongs to the Chameleon I dark cloud, a stellar nursery 600 light-years away. The star is 40 times more luminous than our Sun and is 2.5 times as massive. The astronomers could only have achieved such a detailed view due to the high angular resolution offered by an 8-metre size telescope in the infrared, reaching a resolution of 0.33 arcsecond. They discovered a very large disc, at least 12 times more extended than the orbit of the farthest planet in the Solar System, Neptune. The observations suggest the disc to be flared. "This is the first time such a structure, predicted by some theoretical models, is imaged around a massive star," said Lagage. ESO PR Photo 36/06 ESO PR Photo 36/06 A Flared Proto-Planetary Disc Such a geometry can only be

  8. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Jacobsen, Stein; Sasselov, Dimitar D.

    2015-01-01

    We propose to use evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called 'late veneer'. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. We plan to build an integrative model of Earth-like planets from the bottom up. We would like to infer their chemical compositions from their mass-radius relations and their host stars' elemental abundances, and understand the origins of volatile contents (especially water) on their surfaces, and thereby shed light on the origins of life on them.

  9. Transiting circumbinary planets Kepler-34 b and Kepler-35 b.

    PubMed

    Welsh, William F; Orosz, Jerome A; Carter, Joshua A; Fabrycky, Daniel C; Ford, Eric B; Lissauer, Jack J; Prša, Andrej; Quinn, Samuel N; Ragozzine, Darin; Short, Donald R; Torres, Guillermo; Winn, Joshua N; Doyle, Laurance R; Barclay, Thomas; Batalha, Natalie; Bloemen, Steven; Brugamyer, Erik; Buchhave, Lars A; Caldwell, Caroline; Caldwell, Douglas A; Christiansen, Jessie L; Ciardi, David R; Cochran, William D; Endl, Michael; Fortney, Jonathan J; Gautier, Thomas N; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Howard, Andrew W; Howell, Steve B; Isaacson, Howard; Jenkins, Jon M; Klaus, Todd C; Latham, David W; Li, Jie; Marcy, Geoffrey W; Mazeh, Tsevi; Quintana, Elisa V; Robertson, Paul; Shporer, Avi; Steffen, Jason H; Windmiller, Gur; Koch, David G; Borucki, William J

    2012-01-11

    Most Sun-like stars in the Galaxy reside in gravitationally bound pairs of stars (binaries). Although long anticipated, the existence of a 'circumbinary planet' orbiting such a pair of normal stars was not definitively established until the discovery of the planet transiting (that is, passing in front of) Kepler-16. Questions remained, however, about the prevalence of circumbinary planets and their range of orbital and physical properties. Here we report two additional transiting circumbinary planets: Kepler-34 (AB)b and Kepler-35 (AB)b, referred to here as Kepler-34 b and Kepler-35 b, respectively. Each is a low-density gas-giant planet on an orbit closely aligned with that of its parent stars. Kepler-34 b orbits two Sun-like stars every 289 days, whereas Kepler-35 b orbits a pair of smaller stars (89% and 81% of the Sun's mass) every 131 days. The planets experience large multi-periodic variations in incident stellar radiation arising from the orbital motion of the stars. The observed rate of circumbinary planets in our sample implies that more than ∼1% of close binary stars have giant planets in nearly coplanar orbits, yielding a Galactic population of at least several million.

  10. DISCOVERING HABITABLE EARTHS, HOT JUPITERS, AND OTHER CLOSE PLANETS WITH MICROLENSING

    SciTech Connect

    Di Stefano, R.

    2012-06-20

    Searches for planets via gravitational lensing have focused on cases in which the projected separation, a, between planet and star is comparable to the Einstein radius, R{sub E} . This paper considers smaller orbital separations and demonstrates that evidence of close-orbit planets can be found in the low-magnification portion of the light curves generated by the central star. We develop a protocol for discovering hot Jupiters as well as Neptune-mass and Earth-mass planets in the stellar habitable zone. When planets are not discovered, our method can be used to quantify the probability that the lens star does not have planets within specified ranges of the orbital separation and mass ratio. Nearby close-orbit planets discovered by lensing can be subject to follow-up observations to study the newly discovered planets or to discover other planets orbiting the same star. Careful study of the low-magnification portions of lensing light curves should produce, in addition to the discoveries of close-orbit planets, definite detections of wide-orbit planets through the discovery of 'repeating' lensing events. We show that events exhibiting extremely high magnification can effectively be probed for planets in close, intermediate, and wide distance regimes simply by adding several-time-per-night monitoring in the low-magnification wings, possibly leading to gravitational lensing discoveries of multiple planets occupying a broad range of orbits, from close to wide, in a single planetary system.

  11. Dynamical Stability and Habitability of a Terrestrial Planet in HD74156

    NASA Astrophysics Data System (ADS)

    Gino, M. C.

    2003-12-01

    The detection of extrasolar terrestrial planets located in the habitable regions of a star system is presently beyond our observational technologies. However, systems with multiple Jupiter-like extrasolar planets may prove to be candidates for supporting terrestrial planets provided that stable regions exist. The results of numerical integrations for the systems HD74156 and HD12661, each of which have two Jovian-type planets orbiting their parent star, demonstrates that a region exists in HD74156 where a terrestrial planet can remain in orbit on a timescale of 10\\^5 years, while HD12661 cannot support additional planets. The Swinburne Supercluster running the SWIFT computer code is used for the simulation of both massless test particles and Earth-mass planets to investigate their short-term dynamical stability. These results can be used to constrain the search region within HD74156 in which habitable terrestrial planets are most likely to be found.

  12. Planets Suitable for Life

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When searching for extraterrestrial life, and particularly intelligent life, elsewhere in the solar system or in our galaxy, the obvious places to look are habitable Earth-like planets. This is because most living organisms are quite vulnerable to harsh conditions, and thus the presence of life will be most likely when very favorable conditions occur. Here organisms that survive under extreme conditions on Earth represent no contradiction, because they have adapted to their way of life by the fierce battle of survival on the basis of Darwin's theory (discussed in Chap. 6). But what are the conditions that are favorable for life?

  13. Planet X - ract or fiction

    SciTech Connect

    Anderson, J.

    1988-08-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  14. Starting a Planet Protectors Club

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2007

    2007-01-01

    If your mission is to teach children how to reduce, reuse, and recycle waste and create the next generation of Planet Protectors, perhaps leading a Planet Protectors Club is part of your future challenges. You don't have to be an expert in waste reduction and recycling to lead a a Planet Protectors Club. You don't even have to be a teacher. You do…

  15. Planet X - Fact or fiction?

    NASA Technical Reports Server (NTRS)

    Anderson, John

    1988-01-01

    The search for a possible tenth planet in our solar system is examined. The history of the discoveries of Uranus, Neptune, and Pluto are reviewed. Searches of the sky with telescopes and theoretical studies of the gravitational influences on the orbits of known objects in the solar system are discussed. Information obtained during the Pioneer 10 and 11 missions which could suggest the presence of an undiscovered planet and computer simulations of the possible orbit of a tenth planet are presented.

  16. The Automated Planet Finder telescope's automation and first three years of planet detections

    NASA Astrophysics Data System (ADS)

    Burt, Jennifer

    The Automated Planet Finder (APF) is a 2.4m, f/15 telescope located at the UCO's Lick Observatory, atop Mt. Hamilton. The telescope has been specifically optimized to detect and characterize extrasolar planets via high precision, radial velocity (RV) observations using the high-resolution Levy echelle spectrograph. The telescope has demonstrated world-class internal precision levels of 1 m/s when observing bright, RV standard stars. Observing time on the telescope is divided such that ˜80% is spent on exoplanet related research and the remaining ˜20% is made available to the University of California consortium for other science goals. The telescope achieved first light in 2013, and this work describes the APF's early science achievements and its transition from a traditional observing approach to a fully autonomous facility. First we provide a characteristic look at the APF telescope and the Levy spectrograph, focusing on the stability of the instrument and its performance on RV standard stars. Second, we describe the design and implementation of the dynamic scheduling software which has been running our team's nightly observations on the APF for the past year. Third, we discuss the detection of a Neptune-mass planet orbiting the nearby, low-mass star GL687 by the APF in collaboration with the HIRES instrument on Keck I. Fourth, we summarize the APF's detection of two multi-planet systems: the four planet system orbiting HD 141399 and the 6 planet system orbiting HD 219134. Fifth, we expand our science focus to assess the impact that the APF - with the addition of a new, time-varying prioritization scheme to the telescope's dynamic scheduling software - can have on filling out the exoplanet Mass-Radius diagram when pursuing RV follow-up of transiting planets detected by NASA's TESS satellite. Finally, we outline some likely next science goals for the telescope.

  17. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    SciTech Connect

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  18. Stars and Planets

    NASA Astrophysics Data System (ADS)

    Neta, Miguel

    2014-05-01

    'Estrelas e Planetas' (Stars and Planets) project was developed during the academic year 2009/2010 and was tested on three 3rd grade classes of one school in Quarteira, Portugal. The aim was to encourage the learning of science and the natural and physical phenomena through the construction and manipulation of materials that promote these themes - in this case astronomy. Throughout the project the students built a small book containing three themes of astronomy: differences between stars and planets, the solar system and the phases of the Moon. To each topic was devoted two sessions of about an hour each: the first to teach the theoretical aspects of the theme and the second session to assembly two pages of the book. All materials used (for theoretical sessions and for the construction of the book) and videos of the finished book are available for free use in www.miguelneta.pt/estrelaseplanetas. So far there is only a Portuguese version but soon will be published in English as well. This project won the Excellency Prize 2011 of Casa das Ciências, a portuguese site for teachers supported by the Calouste Gulbenkian Fundation (www.casadasciencias.org).

  19. Four-planet meteorology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    All planets with atmospheres have common characteristics which are helpful in understanding weather and climate on earth. Of the terrestrial planets, Mars displays the most earth-like characteristics. The feedback mechanism of the Martian Great Dust Storms may control climate on a global scale and shows some parallels to the water cycle on the earth. Venus, on the other hand, has atmosphere motions and characteristics far different from those of earth but appears to be valuable for comparative meteorology and it seems to be a simple weather machine due to absence of axial tilt. A completely gaseous Jupiter also can help because its atmosphere, driven by internal heat, flows round-and-round, showing the same general patterns for years at a time. Results of studying extraterrestrial atmospheres are most important for understanding earth's multi-year weather cycles such as the droughts in the American West every 22 years or effects of the Little Ice Age (1450-1915) on agriculture in the North Hemisphere.

  20. The Giant Planet Jupiter

    NASA Astrophysics Data System (ADS)

    Rogers, John H.

    2009-07-01

    Part I. Observing Jupiter: 1. Observations from Earth; 2. Observations from spacecraft; Part II. The Visible Structure of the Atmosphere: 3. Horizontal structure: belts, currents, spots and storms; 4. Vertical structure: colours and clouds; Part III. The Observational Record of the Atmosphere: 5. The Polar Region; 6. North North Temperate Regions (57°N to 35°N); 7. North Temperate Region (35°N to 23°N); 8. North Tropical Region (23°N to 9°N); 9. Equatorial Region (9°N to 9°S); 10. South Tropical Region (9°S to 27°S); 11. South Temperate Region (27°S to 37°S); 12. South South Temperate Region (37°S to 53°S); Part IV: The Physics and Chemistry of the Atmosphere: 13. Possible large-scale and long-term patterns; 14. The dynamics of individual spots; 15. Theoretical models of the atmosphere; 16. The composition of the planet; Part V. The Electrodynamic Environment of Jupiter: 17. Lights in the Jovian night; 18. The magnetosphere and radiation belts; Part VI. The Satellites: 19. The inner satellites and the ring; 20. The Galilean satellites; 21. Io; 22. Europa; 23. Ganymede; 24. Callisto; 25. The outer satellites; Appendices: 1. Measurement of longitude; 2. Measurement of latitude; 3. Lists of apparitions and published reports; 4. Bibliography (The planet); 5. Bibliography (The magnetosphere and satellites); Index.

  1. Inside-Out Planet Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan; Chatterjee, Sourav

    2013-07-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theory. Formation in situ from disks with radial mass surface density profiles similar to the minimum mass solar nebula (MMSN) but boosted in normalization by factors >10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) "pebbles", drifting inwards via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magneto-rotational instability (MRI)-inactive ("dead zone") region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ~1-10M_Earth planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead zone boundary. Our simple theoretical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly-packed system architectures, starting from typical protoplanetary disk properties.

  2. Inside-out Planet Formation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Tan, Jonathan C.

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors >~ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) "pebbles," drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ("dead zone") region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ~1 M ⊕ planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  3. Inside-out planet formation

    SciTech Connect

    Chatterjee, Sourav; Tan, Jonathan C. E-mail: jt@astro.ufl.edu

    2014-01-01

    The compact multi-transiting planet systems discovered by Kepler challenge planet formation theories. Formation in situ from disks with radial mass surface density, Σ, profiles similar to the minimum mass solar nebula but boosted in normalization by factors ≳ 10 has been suggested. We propose that a more natural way to create these planets in the inner disk is formation sequentially from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (∼cm-m size) 'pebbles', drifting inward via gas drag. Pebbles collect at the pressure maximum associated with the transition from a magnetorotational instability (MRI)-inactive ('dead zone') region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an ∼1 M {sub ⊕} planet directly or induces gradual planet formation via core accretion. The planet may undergo Type I migration into the active region, allowing a new pebble ring and planet to form behind it. Alternatively, if migration is inefficient, the planet may continue to accrete from the disk until it becomes massive enough to isolate itself from the accretion flow. A variety of densities may result depending on the relative importance of residual gas accretion as the planet approaches its isolation mass. The process can repeat with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. Our simple analytical model for this scenario of inside-out planet formation yields planetary masses, relative mass scalings with orbital radius, and minimum orbital separations consistent with those seen by Kepler. It provides an explanation of how massive planets can form with tightly packed and well-aligned system architectures, starting from typical protoplanetary disk properties.

  4. Observational Constraints on Planet Nine: Cassini Range Observations

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Payne, Matthew J.

    2016-10-01

    We examine the tidal perturbations induced by a possible additional, distant planet in the solar system on the distance between the Earth and the Cassini spacecraft. We find that measured range residuals alone can significantly constrain the sky position, distance, and mass of the perturbing planet to sections of the sky essentially orthogonal to the orbit of Saturn. When we combine these constraints from tidal perturbations with the dynamical constraints from Batygin & Brown and Brown & Batygin, we further constrain the allowed location of the perturbing planet to a region of the sky approximately centered on (R.A., decl.) = (40°, ‑15°) and extending ∼20° in all directions.

  5. CONSEQUENCES OF THE EJECTION AND DISRUPTION OF GIANT PLANETS

    SciTech Connect

    Guillochon, James; Ramirez-Ruiz, Enrico; Lin, Douglas

    2011-05-10

    The discovery of Jupiter-mass planets in close orbits about their parent stars has challenged models of planet formation. Recent observations have shown that a number of these planets have highly inclined, sometimes retrograde orbits about their parent stars, prompting much speculation as to their origin. It is known that migration alone cannot account for the observed population of these misaligned hot Jupiters, which suggests that dynamical processes after the gas disk dissipates play a substantial role in yielding the observed inclination and eccentricity distributions. One particularly promising candidate is planet-planet scattering, which is not very well understood in the nonlinear regime of tides. Through three-dimensional hydrodynamical simulations of multi-orbit encounters, we show that planets that are scattered into an orbit about their parent stars with closest approach distance being less than approximately three times the tidal radius are either destroyed or completely ejected from the system. We find that as few as 9 and as many as 12 of the currently known hot Jupiters have a maximum initial apastron for scattering that lies well within the ice line, implying that these planets must have migrated either before or after the scattering event that brought them to their current positions. If stellar tides are unimportant (Q{sub *} {approx}> 10{sup 7}), disk migration is required to explain the existence of the hot Jupiters present in these systems. Additionally, we find that the disruption and/or ejection of Jupiter-mass planets deposits a Sun's worth of angular momentum onto the host star. For systems in which planet-planet scattering is common, we predict that planetary hosts have up to a 35% chance of possessing an obliquity relative to the invariable plane of greater than 90{sup 0}.

  6. Planets and Life

    NASA Astrophysics Data System (ADS)

    Sullivan, Woodruff T., III; Baross, John

    2007-09-01

    Foreword; Preface; Contributors; Prologue; Part I. History: 1. History of astrobiological ideas W. T. Sullivan and D. Carney; 2. From exobiology to astrobiology S. J. Dick; Part II. The Physical Stage: 3. Formation of Earth-like habitable planets D. E. Brownlee and M. Kress; 4. Planetary atmospheres and life D. Catling and J. F. Kasting; Part III. The Origin of Life on Earth: 5. Does 'life' have a definition? C.E. Cleland and C. F. Chyba; 6. Origin of life: crucial issues R. Shapiro; 7. Origin of proteins and nucleic acids A. Ricardo and S. A. Benner; 8. The roots of metabolism G.D. Cody and J. H. Scott; 9. Origin of cellular life D. W. Deamer; Part IV. Life on Earth: 10. Evolution: a defining feature of life J. A. Baross; 11. Evolution of metabolism and early microbial communities J. A. Leigh, D. A. Stahl and J. T. Staley; 12. The earliest records of life on Earth R. Buick; 13. The origin and diversification of eukaryotes M. L. Sogin, D. J. Patterson and A. McArthur; 14. Limits of carbon life on Earth and elsewhere J. A. Baross, J. Huber and M. Schrenk; 15. Life in ice J. W. Deming and H. Eicken; 16. The evolution and diversification of life S. Awramik and K. J. McNamara; 17. Mass extinctions P. D. Ward; Part V. Potentially Habitable Worlds: 18. Mars B. M. Jakosky, F. Westall and A. Brack; 19. Europa C. F. Chyba and C. B. Phillips; 20. Titan J. I. Lunine and B. Rizk; 21. Extrasolar planets P. Butler; Part VI. Searching for Extraterrestrial Life: 22. How to search for life on other worlds C. P. McKay; 23. Instruments and strategies for detecting extraterrestrial life P. G. Conrad; 24. Societial and ethical concerns M. S. Race; 25. Planetary protection J. D. Rummel; 26. Searching for extraterrestrial intelligence J. C. Tarter; 27. Alien biochemistries P. D. Ward and S. A. Benner; Part VII. Future of the Field: 28. Disciplinary and educational opportunities L. Wells, J. Armstrong and J. Huber; Epilogue C. F. Chyba; Appendixes: A. Units and usages; B. Planetary

  7. Tides in Giant Planets

    NASA Astrophysics Data System (ADS)

    Stevenson, David J.

    2015-11-01

    The arrival of Juno at Jupiter in less than a year necessitates analysis of what we can learn from the gravitational signal due to tides raised on the planet by satellites (especially Io but also Europa). In the existing literature, there is extensive work on static tidal theory (the response of the planet to a tidal potential whose time dependence is ignored) and this is what is usually quoted when people refer to tidal Love numbers. If this were correct then there would be almost no new information content in the measurement of tidally induced gravity field, since the perturbation is of the same kind as the response to rotation (i.e., the measurement of J2, a well-known quantity). However, tides are dynamic (that is, k2 is frequency dependent) and so there is new information in the frequency dependent part. There is also (highly important) information in the imaginary part (more commonly expressed as tidal Q) but there is no prospect of direct detection of this by Juno since that quadrature signal is so small. The difference between what we expect to measure and what we can already calculate directly from J2 is easily shown to be of order the square of tidal frequency over the lowest order normal mode frequency, and thus of order 10%. However, the governing equations are not simple (not separable) because of the Coriolis force. An approximate solution has been obtained for the n =1 polytrope showing that the correction to k2 is even smaller, typically a few percent, because the tidal frequency is not very different from twice the rotation frequency. Moreover, it is not highly sensitive to structure in standard models. However, the deep interior of the planet may be stably stratified because of a compositional gradient and this modifies the tidal flow amplitude, changing the dynamic k2 but not the static k2. This raises the exciting possibility that we can use the determination of k2 to set bounds on the extent of static stability, if any. There is also the slight

  8. Proxima Centauri's Influence on Planet Formation in Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Worth, Rachel; Sigurdsson, Steinn

    2016-01-01

    It is likely that the nearby M dwarf Proxima Centauri is in a loosely bound orbit around the Alpha Centauri binary and that the system formed as a more tightly-bound triple but evolved to its current state. We quantify how this evolution would have affected the protoplanetary disks around the stars, and characterize the size and location of planets that may be found there. These three stars are our closest neighbors, and thus present an excellent opportunity for detailed observations of any planets they may harbor, so it is particularly important to understand this system as thoroughly as possible. In addition, it gives us additional insight into planet formation in multistellar systems, which contain a large fraction of potential planet host stars.

  9. Proxima Centauri's Influence on Planet Formation in Alpha Centauri

    NASA Astrophysics Data System (ADS)

    Worth, Rachel J.; Sigurdsson, Steinn

    2015-12-01

    It is likely that the nearby M dwarf Proxima Centauri is in a loosely bound orbit around the Alpha Centauri binary and that the system formed as a more tightly-bound triple but evolved to its current state. We quantify how this evolution would have affected the protoplanetary disks around the stars, and characterize the size and location of planets that may be found there. These three stars are our closest neighbors, and thus present an excellent opportunity for detailed observations of any planets they may harbor, so it is particularly important to understand this system as thoroughly as possible. In addition, it gives us additional insight into planet formation in multistellar systems, which contain a large fraction of potential planet host stars.

  10. DO GIANT PLANETS SURVIVE TYPE II MIGRATION?

    SciTech Connect

    Hasegawa, Yasuhiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2013-09-10

    Planetary migration is one of the most serious problems to systematically understand the observations of exoplanets. We clarify that the theoretically predicted type II, migration (like type I migration) is too fast, by developing detailed analytical arguments in which the timescale of type II migration is compared with the disk lifetime. In the disk-dominated regime, the type II migration timescale is characterized by a local viscous diffusion timescale, while the disk lifetime is characterized by a global diffusion timescale that is much longer than the local one. Even in the planet-dominated regime where the inertia of the planet mass reduces the migration speed, the timescale is still shorter than the disk lifetime except in the final disk evolution stage where the total disk mass decays below the planet mass. This suggests that most giant planets plunge into the central stars within the disk lifetime, and it contradicts the exoplanet observations that gas giants are piled up at r {approx}> 1 AU. We examine additional processes that may arise in protoplanetary disks: dead zones, photoevaporation of gas, and gas flow across a gap formed by a type II migrator. Although they make the type II migration timescale closer to the disk lifetime, we show that none of them can act as an effective barrier for rapid type II migration with the current knowledge of these processes. We point out that gas flow across a gap and the fraction of the flow accreted onto the planets are uncertain and they may have the potential to solve the problem. Much more detailed investigation for each process may be needed to explain the observed distribution of gas giants in extrasolar planetary systems.

  11. Pluto: The Farthest Planet (Usually).

    ERIC Educational Resources Information Center

    Universe in the Classroom, 1988

    1988-01-01

    Provides background information about the planet Pluto. Includes the history of Pluto and discusses some of the common misconceptions about the planets. Addresses some of the recent discoveries about Pluto and contains a resource list of books, articles, and a videotape. (TW)

  12. The fate of scattered planets

    SciTech Connect

    Bromley, Benjamin C.; Kenyon, Scott J. E-mail: skenyon@cfa.harvard.edu

    2014-12-01

    As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ∼100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.

  13. Terrestrial planet composition: simulation and observation

    NASA Astrophysics Data System (ADS)

    Carter-Bond, J.; Bolmont, E.; Raymond, S.

    2014-03-01

    As direct detection and examination of terrestrial exoplanets is not yet possible, we must persue alternative methods to constarin the types of planets likely to be found within extrasolar planetary systems and thus guide future missions. Such studies cannot be undertaken by transit surveys. Instead, secondary sources must be utilized. In addition to simultions of terrestrial planet formation, based on spectroscopic observations of known stars, observations of polluted white dwarfs (e.g. Jura, M., & Xu, S. (2012); Gaensicke et al., (2013)) and simulations of the pollution of migrating gas giants may be utilized to determine the composition of solid bodies withn extrasolar planetary systems. Observations of polluted white dwarfs (e.g. Jura, M., & Xu, S. (2012); Gaensicke et al., (2013)) will be compared to simulations of the bulk composition of terrestrial planets (Carter-Bond et al. (2012)). Combining dynamical simulations of Carter-Bond et al. (2012) and Raymond et al. (2006) with spectrally-derived abundances for 15 planet-forming elements (H, C, N, O, Na, Mg, Al, Si, P, S, Ca, Ti, Cr, Fe and Ni), bulk compositions for simulated terrestrial planets have been obtained. This is the first time that compositional simulations can be compared with observations (albeit of a proxy for solid composition) and will be crucial for placing constraints on both the true diversity of planetary compositions expected to exist in extrasolar planetary systems and the simulations currently utilized. Simulations of the change in composition resulting from pollution of a gas giant as it migrates through a planetary system will also be presented. These simulations represent an as-yet untested approach to determining the solid composition within a planetary system. By simulating the amount and composition of material accreted by the gas giant (following Carter-Bond et al. (2012)), we will be able to determine what effect, if any, the accretion of solid material during migration has on

  14. Sizing up the planets

    NASA Astrophysics Data System (ADS)

    Meszaros, S. P.

    1985-05-01

    Visual, scaled comparisons are made among prominent volcanic, tectonic, crater and impact basin features photographed on various planets and moons in the solar system. The volcanic formation Olympus Mons, on Mars, is 27 km tall, while Io volcanic plumes reach 200-300 km altitude. Valles Marineris, a tectonic fault on Mars, is several thousand kilometers long, and the Ithasa Chasma on the Saturnian moon Tethys extends two-thirds the circumference of the moon. Craters on the Saturnian moons Tethys and Mimas are large enough to suggest a collision by objects which almost shattered the planetoids. Large meteorite impacts may leave large impact basins or merely ripples, such as found on Callisto, whose icy surface could not support high mountains formed by giant body impacts.

  15. Searching for Planets Around Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-09-01

    Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected

  16. Geothermal heating enhances atmospheric asymmetries on synchronously rotating planets

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob; Kopparapu, Ravi Kumar

    2015-01-01

    Earth-like planets within the liquid water habitable zone of M-type stars may evolve into synchronous rotators. On these planets, the substellar hemisphere experiences perpetual daylight while the opposing antistellar hemisphere experiences perpetual darkness. Because the night-side hemisphere has no direct source of energy, the air over this side of the planet is prone to freeze out and deposit on the surface, which could result in atmospheric collapse. However, general circulation models (GCMs) have shown that atmospheric dynamics can counteract this problem and provide sufficient energy transport to the antistellar side. Here, we use an idealized GCM to consider the impact of geothermal heating on the habitability of synchronously rotating planets. Geothermal heating may be expected due to tidal interactions with the host star, and the effects of geothermal heating provide additional habitable surface area and may help to induce melting of ice on the antistellar hemisphere. We also explore the persistence of atmospheric asymmetries between the Northern and Southern hemispheres, and we find that the direction of the meridional circulation (for rapidly rotating planets) or the direction of zonal wind (for slowly rotating planets) reverses on either side of the substellar point. We show that the zonal circulation approaches a theoretical state similar to a Walker circulation only for slowly rotating planets, while rapidly rotating planets show a zonal circulation with the opposite direction. We find that a cross-polar circulation is present in all cases and provides an additional mechanism of mass and energy transport from the substellar to antistellar point. Characterization of the atmospheres of synchronously rotating planets should include consideration of hemispheric differences in meridional circulation and examination of transport due to cross-polar flow.

  17. From Pixels to Planets

    NASA Technical Reports Server (NTRS)

    Brownston, Lee; Jenkins, Jon M.

    2015-01-01

    The Kepler Mission was launched in 2009 as NASAs first mission capable of finding Earth-size planets in the habitable zone of Sun-like stars. Its telescope consists of a 1.5-m primary mirror and a 0.95-m aperture. The 42 charge-coupled devices in its focal plane are read out every half hour, compressed, and then downlinked monthly. After four years, the second of four reaction wheels failed, ending the original mission. Back on earth, the Science Operations Center developed the Science Pipeline to analyze about 200,000 target stars in Keplers field of view, looking for evidence of periodic dimming suggesting that one or more planets had crossed the face of its host star. The Pipeline comprises several steps, from pixel-level calibration, through noise and artifact removal, to detection of transit-like signals and the construction of a suite of diagnostic tests to guard against false positives. The Kepler Science Pipeline consists of a pipeline infrastructure written in the Java programming language, which marshals data input to and output from MATLAB applications that are executed as external processes. The pipeline modules, which underwent continuous development and refinement even after data started arriving, employ several analytic techniques, many developed for the Kepler Project. Because of the large number of targets, the large amount of data per target and the complexity of the pipeline algorithms, the processing demands are daunting. Some pipeline modules require days to weeks to process all of their targets, even when run on NASA's 128-node Pleiades supercomputer. The software developers are still seeking ways to increase the throughput. To date, the Kepler project has discovered more than 4000 planetary candidates, of which more than 1000 have been independently confirmed or validated to be exoplanets. Funding for this mission is provided by NASAs Science Mission Directorate.

  18. Observational Constraints on Planet Nine

    NASA Astrophysics Data System (ADS)

    Payne, Matthew John; Holman, Matthew J.

    2016-10-01

    Recent publications from Batygin & Brown have rekindled interest in the possibility that there is a large (~10 Earth-Mass) planet lurking unseen in a distant (a~500 AU) orbit at the edge of the Solar System. Such a massive planet would tidally distort the orbits of the other planets in the Solar System.These distortions can potentially be measured and/or constrained through precise observations of the orbits of the outer planets and distant trans-Neptunian objects. I will discuss our recent (and ongoing) attempts to observationally constrain the possible location of Planet Nine via (a) measurements of the orbit of Pluto, and (b) measurements of the orbit of Saturn derived from the Cassini spacecraft.

  19. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored. PMID:22611562

  20. The search for life on Earth and other planets.

    PubMed

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  1. Which Ringed Planet...!?

    NASA Astrophysics Data System (ADS)

    2002-12-01

    Don't worry - you are not the only one who thought this was a nice amateur photo of planet Saturn, Lord of the Rings in our Solar System! But then the relative brightness and positions of the moons may appear somewhat unfamiliar... and the ring system does look unusually bright when compared to the planetary disk...?? Well, it is not Saturn, but Uranus , the next giant planet further out, located at a distance of about 3,000 million km, or 20 times the distance between the Sun and the Earth. The photo shows Uranus surrounded by its rings and some of the moons, as they appear on a near-infrared image that was obtained in the K s -band (at wavelength 2.2 µm) with the ISAAC multi-mode instrument on the 8.2-m VLT ANTU telescope at the ESO Paranal Observatory (Chile) . The exposure was made on November 19, 2002 (03:00 hrs UT) during a planetary research programme. The observing conditions were excellent (seeing 0.5 arcsec) and the exposure lasted 5 min. The angular diameter of Uranus is about 3.5 arcsec. The observers at ISAAC were Emmanuel Lellouch and Thérése Encrenaz of the Observatoire de Paris (France) and Jean-Gabriel Cuby and Andreas Jaunsen (both ESO-Chile). The rings The rings of Uranus were discovered in 1977, from observations during a stellar occultation event by astronomer teams at the Kuiper Airborne Observatory (KAO) and the Perth Observatory (Australia). Just before and after the planet moved in front of the (occulted) star, the surrounding rings caused the starlight to dim for short intervals of time. Photos obtained from the Voyager-2 spacecraft in 1986 showed a multitude of very tenuous rings. These rings are almost undetectable from the Earth in visible light. However, on the present VLT near-infrared picture, the contrast between the rings and the planet is strongly enhanced. At the particular wavelength at which this observation was made, the infalling sunlight is almost completely absorbed by gaseous methane present in the planetary atmosphere

  2. The Metallicity of Giant Planets

    NASA Astrophysics Data System (ADS)

    Thorngren, Daniel P.; Fortney, Jonathan

    2015-12-01

    Unique clues about the formation processes of giant planets can be found in their bulk compositions. Transiting planets provide us with bulk density determinations that can then be compared to models of planetary structure and evolution, to deduce planet bulk metallicities. At a given mass, denser planets have a higher mass fraction of metals. However, the unknown hot Jupiter "radius inflation" mechanism leads to under-dense planets that severely biases this work. Here we look at cooler transiting gas giants (Teff < 1000 K), which do not exhibit the radius inflation effect seen in their warmer cousins. We identified 40 such planets between 20 M_Earth and 20 M_Jup from the literature and used evolution models to determine their bulk heavy-element ("metal") mass. Several important trends are apparent. We see that all planets have at least ~10 M_Earth of metals, and that the mass of metal correlates strongly with the total mass of the planet. The heavy-element mass goes as the square root of the total mass. Both findings are consistent with the core accretion model. We also examined the effect of the parent star metallicity [Fe/H], finding that planets around high-metallicity stars are more likely to have large amounts of metal, but the relation appears weaker than previous studies with smaller sample sizes had suggested. We also looked for connections between bulk composition and planetary orbital parameters and stellar parameters, but saw no pattern, which is also an important result. This work can be directly compared to current and future outputs from planet formation models, including population synthesis.

  3. Planet Classification: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Weintraub, David A.

    2009-05-01

    As philosopher George Santayana famously said, "those who cannot remember the past are condemned to repeat it." The professional astronomy community, as embodied in the IAU, now suffers from Santayana's malady. Ceres was expelled from the community of planets because it apparently was not a planet; yet, no working, scientifically reasonable definition of the word planet existed in the early nineteenth century and so no rational basis existed for excluding or including Ceres or, for that matter, Uranus or the soon-to-be-discovered Neptune from the family of planets. Instead, William Herschel disparaged Ceres as only an "asteroid," a term he invented specifically to separate Ceres and Pallas and Vesta from the true planets. Clearly, in Herschel's view, Ceres was not big enough, and apparently, to Herschel, size mattered. So how big is big enough and by what method was size put in place as the critical scientific metric for assessing planethood? Certainly, as members of the newly discovered asteroid belt, the newly identified asteroids were members of a previously unknown family of objects in the solar system. But why did that make these non-classically known objects asteroids but not planets rather than asteroids and planets? Uranus and Neptune were also members of a newly identified and previously unknown family of solar system objects that we now call "ice giants." On what basis were these two objects embraced as planets and why have these two non-classical objects become known as ice giants and planets rather than ice giants but not planets? Perhaps our scientific predecessors were too quick to render judgment, as they lacked the scientific context in which to understand the many new objects discovered during the years 1781 to 1846. Is that a lesson from the past that we might remember today?

  4. The Effect of Giant Planets on Habitable Planet Formation

    NASA Astrophysics Data System (ADS)

    Quintana, Elisa V.; Barclay, Thomas

    2016-06-01

    The giant planets in the Solar System likely played a large role in shaping the properties of the Earth during its formation. To explore their effects, we numerically model the growth of Earth-like planets around Sun-like stars with and without Jupiter and Saturn analog companions. Employing state-of-the-art dynamical formation models that allow both accretion and collisional fragmentation, we perform hundreds of simulations and quantify the specific impact energies of all collisions that lead to the formation of an Earth-analog. Our model tracks the bulk compositions and water abundances in the cores and mantles of the growing protoplanets to constrain the types of giant planet configurations that allow the formation of habitable planets. We find significant differences in the collisional histories and bulk compositions of the final planets formed in the presence of different giant planet configurations. Exoplanet surveys like Kepler hint at a paucity of Jupiter analogs, thus these analyses have important implications for determining the frequency of habitable planets and also support target selection for future exoplanet characterization missions.

  5. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  6. An Update on Planet Nine

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Whats the news coming from the research world on the search for Planet Nine? Read on for an update from a few of the latest studies.Artists illustration of Planet Nine, a hypothesized Neptune-sized planet orbiting in the distant reaches of our solar system. [Caltech/Robert Hurt]What is Planet Nine?In January of this year, Caltech researchers Konstantin Batygin and Mike Brown presented evidence of a distant ninth planet in our solar system. They predicted this planet to be of a mass and volume consistent with a super-Earth, orbiting on a highly eccentric pathwith a period of tens of thousands of years.Since Batygin and Browns prediction, scientists have been hunting for further signs of Planet Nine. Though we havent yet discovered an object matching its description, we have come up with new strategies for finding it, we set some constraints on where it might be, and we made some interesting theoretical predictions about its properties.Visualizations of the resonant orbits of the four longest-period Kuiper belt objects, depicted in a frame rotating with the mean angular velocity of Planet Nine. Planet Nines position is on the right (with the trace of possible eccentric orbits e=0.17 and e=0.4 indicated in red). [Malhotra et al 2016]Here are some of the newest constraints on Planet Nine from studies published just within the past two weeks.Resonant OrbitsRenu Malhotra (University of Arizonas Lunar and Planetary Laboratory) and collaborators present further evidence of the shaping of solar system orbits by the hypothetical Planet Nine. The authors point out that the four longest-period Kuiper belt objects (KBOs) have orbital periods close to integer ratios with each other. Could it be that these outer KBOs have become locked into resonant orbits with a distant, massive body?The authors find that a distant planet orbiting with a period of ~17,117 years and a semimajor axis ~665 AU would have N/1 and N/2 period ratios with these four objects. If this is correct, it

  7. The First Planets: The Critical Metallicity for Planet Formation

    NASA Astrophysics Data System (ADS)

    Johnson, Jarrett L.; Li, Hui

    2012-06-01

    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H]crit ~= -1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z >~ 0.1 Z ⊙. If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

  8. THE FIRST PLANETS: THE CRITICAL METALLICITY FOR PLANET FORMATION

    SciTech Connect

    Johnson, Jarrett L.; Li Hui

    2012-06-01

    A rapidly growing body of observational results suggests that planet formation takes place preferentially at high metallicity. In the core accretion model of planet formation this is expected because heavy elements are needed to form the dust grains which settle into the midplane of the protoplanetary disk and coagulate to form the planetesimals from which planetary cores are assembled. As well, there is observational evidence that the lifetimes of circumstellar disks are shorter at lower metallicities, likely due to greater susceptibility to photoevaporation. Here we estimate the minimum metallicity for planet formation, by comparing the timescale for dust grain growth and settling to that for disk photoevaporation. For a wide range of circumstellar disk models and dust grain properties, we find that the critical metallicity above which planets can form is a function of the distance r at which the planet orbits its host star. With the iron abundance relative to that of the Sun [Fe/H] as a proxy for the metallicity, we estimate a lower limit for the critical abundance for planet formation of [Fe/H]{sub crit} {approx_equal} -1.5 + log (r/1 AU), where an astronomical unit (AU) is the distance between the Earth and the Sun. This prediction is in agreement with the available observational data, and carries implications for the properties of the first planets and for the emergence of life in the early universe. In particular, it implies that the first Earth-like planets likely formed from circumstellar disks with metallicities Z {approx}> 0.1 Z{sub Sun }. If planets are found to orbit stars with metallicities below the critical metallicity, this may be a strong challenge to the core accretion model.

  9. The Terrestrial Planets Formation in the Solar-System Analogs

    NASA Astrophysics Data System (ADS)

    Ji, Jianghui; Liu, L.; Chambers, J. E.; Butler, R. P.

    2006-09-01

    In this work, we numerically studied the terrestrial planets formation in the Solar-Systems Analogs using MERCURY (Chambers 1999). The Solar-System Analogs are herein defined as a solar-system like planetary system, where the system consists of two wide-separated Jupiter-like planets (e.g., 47 UMa, Ji et al. 2005) move about the central star on nearly circular orbits with low inclinations, then low-mass terrestrial planets can be formed there, and life would be possibly evolved. We further explored the terrestrial planets formation due to the current uncertainties of the eccentricities for two giant planets. In addition, we place a great many of the planetesimals between two Jupiter-like planets to investigate the potential asteroidal structure in such systems. We showed that the secular resonances and mean motion resonances can play an important role in shaping the asteroidal structure. We acknowledge the financial support by National Natural Science Foundation of China (Grant No.10573040, 10233020, 10203005) and Foundation of Minor Planets of Purple Mountain Observatory.

  10. Comparative Planetology and the Search for Habitable Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Meadows, V. S.

    2008-12-01

    In the last decade, comparative planetology has grown to encompass not just the planets in our own Solar System, but also the more than 300 planets that are now known to orbit other stars in our Galaxy. The vast majority of the planets discovered so far are gas or ice giants, but a growing fraction have masses less than 10 Earth masses, and so may be terrestrial. Over the next two decades, NASA and ESA are planning to build large space-borne telescopes that will enable statistical studies and the first direct detection and characterization of terrestrial planets beyond our Solar System. These missions will allow the study of planets formed under diverse initial conditions, and at stages of evolution that are billions of years younger or older than the Earth. Ultimately though, these missions will finally provide the technical capability to search for habitable environments and life on planets beyond our Solar System. The scientific foundation that will guide this search is built on comparative climate studies of the planets in our own Solar System. From the perspective of extrasolar planet studies, the evolution of the climates of Venus, Earth and Mars inform the definition and characteristics of planetary habitability. Climate and chemistry models, developed initially to be flexible enough for Venus, Earth and Mars studies, and validated against measurements and observations of these planets, are now being modified to model a diversity of plausible extrasolar planetary environments. Specifically, these models have been used to better understand the interaction between the parent star, and the global environment and biosphere of a terrestrial planet for planetary systems unlike our Solar System. Additionally, planetary radiative transfer models developed for Venus, Earth and Mars studies can be used to predict the spectroscopic appearance of distant planetary environments and to simulate a telescopic view of the Earth as an extrasolar planet. This presentation will

  11. The Effect of Star-Planet Interactions on Planetary Climate

    NASA Astrophysics Data System (ADS)

    Shields, Aomawa; Meadows, Victoria; Bitz, Cecilia; Pierrehumbert, Raymond; Joshi, Manoj; Robinson, Tyler; Agol, Eric; Barnes, Rory; Charnay, Benjamin; Virtual Planetary Laboratory

    2015-01-01

    In this work I explored the effect on planetary climate and habitability of interactions between a host star, an orbiting planet and additional planets in a stellar system. I developed and tested models that include both radiative and gravitational effects, and simulated planets covered by ocean, land and water ice, with incident stellar radiation from stars of different spectral types. These simulations showed that ice-covered conditions occurred on an F-dwarf planet with a much smaller decrease in stellar flux than planets orbiting stars with less near-UV radiation, due to ice reflecting strongly in the visible and near-UV. The surface ice-albedo feedback effect is less important at the outer edge of the habitable zone, where ˜3-10 bars of CO2 could entirely mask the climatic effect of ice and snow, leaving the traditional outer limit of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. The exit out of global ice cover was also sensitive to host star spectral energy distribution. A planet orbiting an M-dwarf star exhibited a smaller resistance to melting out of a frozen state, requiring a smaller stellar flux to initiate deglaciation than planets orbiting hotter, brighter stars. Given their greater climate stability, planets orbiting cooler, lower-mass stars may be the best candidates for long-term habitability and life beyond the Solar System. A specific case was explored—that of Kepler-62f, a potentially habitable planet in a five-planet system orbiting a K-dwarf star. Simulations using a 3-D Global Climate Model indicated that Kepler-62f would have areas of the planet with surface temperatures above the freezing point of water with 1 bar or more of CO2 in its atmosphere. In a low-CO2 case, increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter generated regions of the planet with above-freezing surface temperatures, which may

  12. Terrestrial planet formation with strong dynamical friction

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Morbidelli, Alessandro; Levison, Harold F.

    2006-09-01

    We have performed 8 numerical simulations of the final stages of accretion of the terrestrial planets, each starting with over 5× more gravitationally interacting bodies than in any previous simulations. We use a bimodal initial population spanning the region from 0.3 to 4 AU with 25 roughly Mars-mass embryos and an equal mass of material in a population of ˜1000 smaller planetesimals, consistent with models of the oligarchic growth of protoplanetary embryos. Given the large number of small planetesimals in our simulations, we are able to more accurately treat the effects of dynamical friction during the accretion process. We find that dynamical friction can significantly lower the timescales for accretion of the terrestrial planets and leads to systems of terrestrial planets that are much less dynamically excited than in previous simulations with fewer initial bodies. In addition, we study the effects of the orbits of Jupiter and Saturn on the final planetary systems by running 4 of our simulations with the present, eccentric orbits of Jupiter and Saturn (the EJS simulations) and the other 4 using a nearly circular and co-planar Jupiter and Saturn as predicted in the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466-469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R., 2005. Nature 435, 462-465] (the CJS simulations). Our EJS simulations provide a better match to our Solar System in terms of the number and average mass of the final planets and the mass-weighted mean semi-major axis of the final planetary systems, although increased dynamical friction can potentially improve the fit of the CJS simulations as well. However, we find that in our EJS simulations, essentially no water-bearing material from the outer asteroid belt ends up in the final terrestrial planets, while a large amount is

  13. Planet-planet scattering alone cannot explain the free-floating planet population

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Raymond, Sean N.

    2012-03-01

    Recent gravitational microlensing observations predict a vast population of free-floating giant planets that outnumbers main-sequence stars almost twofold. A frequently invoked mechanism for generating this population is a dynamical instability that incites planet-planet scattering and the ejection of one or more planets in isolated main-sequence planetary systems. Here, we demonstrate that this process alone probably cannot represent the sole source of these Galactic wanderers. By using straightforward quantitative arguments and N-body simulations, we argue that the observed number of exoplanets exceeds the plausible number of ejected planets per system from scattering. Thus, other potential sources of free floaters, such as planetary stripping in stellar clusters and post-main-sequence ejection, must be considered.

  14. Planet temperatures with surface cooling parameterized

    NASA Astrophysics Data System (ADS)

    Levenson, Barton Paul

    2011-06-01

    A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius-Clapeyron relation provides water-vapor feedback. The resulting iterative algorithm is applied to three "super-Earths" in the Gliese 581 system, including the "Goldilocks" planet g ( Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star's habitable zone without data or assumptions about a planet's atmosphere.

  15. Characterizing the Atmosphere of a Young Planet

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2016-01-01

    Since the discovery of the young, directly imaged planet 51 Eri b, its emergent spectrum has proved challenging to interpret. The initial discovery paper (Macintosh et al. 2015) interpreted the spectrum as indicative of a low mass (few Jupiter masses), effective temperature near 700 degrees Kelvin, and partial cloudiness. Subsequent observations in the K band, however, seem to invalidate the early models. In addition, newly improved photochemical data point to the likely presence of exotic haze species in the atmosphere. In my presentation I will explore the photochemistry of the atmosphere and discuss whether disequilibrium chemistry, hazes, clouds, or non-solar abundances of heavy elements may be responsible for the unusual spectrum of this planet. The implications for the interpretation of other young Jupiters in this mass and effective temperature range will also be considered.

  16. Planet Hunters: A Status Report

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Orosz, J. A.; Carter, J. A.; Fischer, D. A.; Howard, A. W.; Crepp, J. R.; Welsh, W. F.; Kaib, N. A.; Lintott, C. J.; Terrell, D.; Jek, K. J.; Gagliano, R.; Parrish, M.; Smith, A. M.; Lynn, S.; Brewer, J. M.; Giguere, M. J.; Schawinski, K.; Simpson, R. J.

    2012-10-01

    The Planet Hunters (http://www.planethunters.org) citizen science project uses the power of human pattern recognition via the World Wide Web to identify transits in the Kepler public data. Planet Hunters uses the Zooniverse (http://www.zooniverse.org) platform to present visitors to the Planet Hunters website with a randomly selected 30-day light curve segment from one of Kepler's 160,000 target stars. Volunteers are asked to draw boxes to mark the locations of visible transits with multiple independent classifiers reviewing each 30-day light curve segment. Since December 2010, more than 170,000 members of the general public have participated in Planet Hunters contributing over 12.5 million classifications searching the 1 1/2 years of publicly released Kepler observations. Planet Hunters is a novel and complementary technique to the automated transit detection algorithms, providing an independent assessment of the completeness of the Kepler exoplanet inventory. We report the latest results from Planet Hunters, highlighting in particular our latest efforts to search for circumbinary planets (planets orbiting a binary star) and single transit events in the first 1.5 years of public Kepler data. We will present a status report of our search of the first 6 Quarters of Kepler data, introducing our new planet candidates and sharing the results of our observational follow-up campaign to characterize these planetary systems. Acknowledgements: MES is supported by a NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-1003258. This is research is supported in part by an American Philosophical Society Franklin Grant.

  17. The Frequency of Habitable Planets Around Small Stars and the Characterization of Planets Orbiting Bright Kepler Targets

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.

    2015-01-01

    My thesis focuses on the frequency, detectability, and composition of small planets. I revised the parameters of the smallest Kepler main-sequence dwarf stars using Dartmouth Stellar Models and wrote a pipeline to search for planets in the full four-year Kepler data set. I characterized the completeness of my pipeline by injecting transiting planets and recording the fraction recovered. I refined the planet candidate sample by inspecting follow-up observations of planet host stars and correcting for transit depth dilution due to nearby stars. Accounting for possible false positive contamination, I estimated an occurrence rate of 0.2-0.8 potentially habitable planets per M dwarf; the variation in this estimated is dominated by the choice of habitable zone boundaries. For orbital periods <50 days, I measured an occurrence rate of 0.5 Earth-size (1-1.5 REarth) planets per small star.Using these results, I predicted the population of small planets accessible to current and future planet surveys. I supplemented our small star planet occurrence rate with estimates of the rate for FGK stars from the literature. I found that the nearest transiting, potentially habitable Earth-size planet is likely 10 +/- 4 pc away.I also conducted an adaptive optics imaging survey of 87 bright Kepler target stars with ARIES at the MMT to search for nearby stars that might be diluting the depths of the planetary transits. I identified visual companions within 1' for 5 targets, between 1' and 2' for 7 targets, and between 2' and 4' for 15 stars. For all stars observed, we placed limits on the presence of undetected nearby stars.Finally, I collaborated with the HARPS-N consortium to conduct an intensive observing campaign with the HARPS-N spectrograph at the Telescopio Nazionale Galileo in La Palma, Spain. We studied the Kepler-93 system, which contains a 1.4-Earth-radius planet in a 4.7-day orbit. Kepler-93b is a valuable addition to the exoplanet mass-radius diagram, as the physical

  18. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Jacobsen, S. B.; Sasselov, D. D.

    2015-12-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet's rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called "late veneer". The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet's surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars' elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  19. Planets to Cosmology

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Casertano, Stefano

    2006-04-01

    Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

  20. Planets to Cosmology

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Casertano, Stefano

    2011-11-01

    Preface; 1. Hubble's view of transiting planets D. Charbonneau; 2. Unsolved problems in star formation C. J. Clarke; 3. Star formation in clusters S. S. Larson; 4. HST abundance studies of low metallicity stars J. W. Truran, C. Sneden, F. Primas, J. J. Cowan and T. Beers; 5. Physical environments and feedback: HST studies of intense star-forming environments J. S. Gallagher, L. J. Smith and R. W. O'Connell; 6. Quasar hosts: growing up with monstrous middles K. K. McLeod; 7. Reverberation mapping of active galactic nuclei B. M. Peterson and K. Horne; 8. Feedback at high redshift A. E. Shapley; 9. The baryon content of the local intergalactic medium J. T. Stocke, J. M. Shull, and S. V. Penton; 10. Hot baryons in supercluster filaments E. D. Miller, R. A. Dupke and J. N. Bregman; 11. Galaxy assembly E. F. Bell; 12. Probing the reionization history of the Universe Z. Haiman; 13. Studying distant infrared-luminous galaxies with Spitzer and Hubble C. Papovich, E. Egami, E. Le Floc'h, P. Pérez-González, G. Rieke, J. Rigby, H. Dole and M. Reike; 14. Galaxies at z = g-i'-drop selection and the GLARE Project E. R. Stanway, K. Glazebrook, A. J. Bunker and the GLARE Consortium; 15. The Hubble Ultra Deep Field with NIMCOS R. I. Thompson, R. J. Bouwens and G. Illingworth.

  1. Giant Planet Candidates, Brown Dwarfs, and Binaries from the SDSS-III MARVELS Planet Survey.

    NASA Astrophysics Data System (ADS)

    Thomas, Neil; Ge, Jian; Li, Rui; de Lee, Nathan M.; Heslar, Michael; Ma, Bo; SDSS-Iii Marvels Team

    2015-01-01

    We report the discoveries of giant planet candidates, brown dwarfs, and binaries from the SDSS-III MARVELS survey. The finalized 1D pipeline has provided 18 giant planet candidates, 16 brown dwarfs, and over 500 binaries. An additional 96 targets having RV variability indicative of a giant planet companion are also reported for future investigation. These candidates are found using the advanced MARVELS 1D data pipeline developed at UF from scratch over the past three years. This pipeline carefully corrects most of the instrument effects (such as trace, slant, distortion, drifts and dispersion) and observation condition effects (such as illumination profile, fiber degradation, and tracking variations). The result is long-term RV precisions that approach the photon limits in many cases for the ~89,000 individual stellar observations. A 2D version of the pipeline that uses interferometric information is nearing completion and is demonstrating a reduction of errors to half the current levels. The 2D processing will be used to increase the robustness of the detections presented here and to find new candidates in RV regions not confidently detectable with the 1D pipeline. The MARVELS survey has produced the largest homogeneous RV measurements of 3300 V=7.6-12 FGK stars with a well defined cadence of 27 RV measurements over 2 years. The MARVELS RV data and other follow-up data (photometry, high contrast imaging, high resolution spectroscopy and RV measurements) will explore the diversity of giant planet companion formation and evolution around stars with a broad range in metallicity (Fe/H -1.5-0.5), mass ( 0.6-2.5M(sun)), and environment (thin disk and thick disk), and will help to address the key scientific questions identified for the MARVELS survey including, but not limited to: Do metal poor stars obey the same trends for planet occurrence as metal rich stars? What is the distribution of giant planets around intermediate-mass stars and binaries? Is the 'planet desert

  2. Prognosis for a sick planet.

    PubMed

    Maslin, Mark

    2008-12-01

    Global warming is the most important science issue of the 21st century, challenging the very structure of our global society. The study of past climate has shown that the current global climate system is extremely sensitive to human-induced climate change. The burning of fossil fuels since the beginning of the industrial revolution has already caused changes with clear evidence for a 0.75 degrees C rise in global temperatures and 22 cm rise in sea level during the 20th century. The Intergovernmental Panel on Climate Change synthesis report (2007) predicts that global temperatures by 2100 could rise by between 1.1 degrees C and 6.4 degrees C. Sea level could rise by between 28 cm and 79 cm, more if the melting of the polar ice caps accelerates. In addition, weather patterns will become less predictable and the occurrence of extreme climate events, such as storms, floods, heat waves and droughts, will increase. The potential effects of global warming on human society are devastating. We do, however, already have many of the technological solutions to cure our sick planet.

  3. Likely Planet Candidates Identified by Machine Learning Applied to Four Years of Kepler Data

    NASA Astrophysics Data System (ADS)

    Jenkins, Jon M.; McCauliff, S. D.; Catanzarite, J. H.; Twicken, J. D.; Klaus, T. C.; SOC, Kepler; SO, Kepler

    2013-10-01

    Over 3,200 transiting planet candidates, 134 confirmed planets, and ~2,400 eclipsing binaries have been identified by the Kepler Science pipeline since launch in March 2009. Compiling the list of candidates is an intensive manual effort as over 18,000 transit-like signatures are identified for a run across 34 months. The vast majority are caused by artifacts that mimic transits. While the pipeline provides diagnostics that can reduce the initial list down to ~5,000 light curves, this effort can overlook valid planetary candidates. The large number of diagnostics 100) makes it difficult to examine all the information available in identifying planetary candidates. The effort required for vetting all threshold-crossing events (TCEs) takes several months by many individuals associated with the Kepler Threshold Crossing Event Review Team (TCERT). We have developed a random-forest classifier that decides whether a TCE should be called `planet candidate’, `astrophysical false positive’, or `non-transiting phenomena’. Ideally a machine learning algorithm will generate a list of candidates that approximates those generated by human review, thereby allowing the humans to focus on the most interesting cases. By using a machine learning-based auto-vetting process, we have the opportunity to identify the most important metrics and diagnostics for separating signatures of transiting planets and eclipsing binaries from instrument-induced features, thereby improving the efficiency of the manual effort. We report the results of a applying a random forest classifier to four years of Kepler data. We present characteristics of the likely planet candidates identified by the auto-vetter as well as those objects classified as astrophysical false positives (eclipsing binaries and background eclipsing binaries). We examine the auto-vetter's performance through receiver operating characteristic curves for each of three classes: planet candidate, astrophysical false positive, and

  4. Armenian Names of the Planets

    NASA Astrophysics Data System (ADS)

    Harutyunian, Haik A.

    2007-08-01

    Striking similarities between the Armenian names of visible to the naked eye planets and their ancient Greek names used before 6 - 5 centuries BC are presented. Mercury, for instance, was called Stilbon in Greece which means “the Gleaming” and coincides with Armenian Paylatsou. One of the names of Venus was Phosphoros and in Armenia it is called Lusaber - both of these terms meaning the “Bringer of Light”. Ancient Greeks named the fourth planet Pyroeis meaning “fiery”. The Armenian name of this planet Hrat consists of the word “hur” meaning fire and a suffix “at”. Jupiter's and Saturn's ancient names are considered as well. Moreover, the term planet has its Armenian version being in the use more than 2500 years.

  5. Magnetospheres of the outer planets

    NASA Technical Reports Server (NTRS)

    Vanallen, James A.

    1987-01-01

    The five qualitatively different types of magnetism that a planet body can exhibit are outlined. Potential sources of energetic particles in a planetary magnetosphere are discussed. The magnetosphere of Uranus and Neptune are then described using Pioneer 10 data.

  6. Voyager to the Seventh Planet.

    ERIC Educational Resources Information Center

    Gold, Michael

    1986-01-01

    Presents recent findings obtained by the Voyager 2 mission on Uranus. Updates information on the planet's moons, rings, atmosphere, and magnetic field. Illustrations and diagrams of selected aspects of Uranus are included. (ML)

  7. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  8. ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2012-12-20

    We investigated the underlying architecture of planetary systems by deriving the distribution of planet multiplicity (number of planets) and the distribution of orbital inclinations based on the sample of planet candidates discovered by the Kepler mission. The scope of our study included solar-like stars and planets with orbital periods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based on Kepler planet candidates detected during Quarters 1-6. We created models of planetary systems with different distributions of planet multiplicity and inclinations, simulated observations of these systems by Kepler, and compared the properties of the transits of detectable objects to actual Kepler planet detections. Specifically, we compared with both the Kepler sample's transit numbers and normalized transit duration ratios in order to determine each model's goodness of fit. We did not include any constraints from radial velocity surveys. Based on our best-fit models, 75%-80% of planetary systems have one or two planets with orbital periods less than 200 days. In addition, over 85% of planets have orbital inclinations less than 3 Degree-Sign (relative to a common reference plane). This high degree of coplanarity is comparable to that seen in our solar system. These results have implications for planet formation and evolution theories. Low inclinations are consistent with planets forming in a protoplanetary disk, followed by evolution without significant and lasting perturbations from other bodies capable of increasing inclinations.

  9. Planet Hunters: Kepler by Eye

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Lintott, C.; Fischer, D.; Smith, A. M.; Boyajian, T. S.; Brewer, J. M.; Giguere, M. J.; Lynn, S.; Parrish, M.; Schawinski, K.; Schmitt, J.; Simpson, R.; Wang, J.

    2014-01-01

    Planet Hunters (http://www.planethunters.org), part of the Zooniverse's (http://www.zooniverse.org) collection of online citizen science projects, uses the World Wide Web to enlist the general public to identify transits in the pubic Kepler light curves. Planet Hunters utilizes human pattern recognition to identify planet transits that may be missed by automated detection algorithms looking for periodic events. Referred to as ‘crowdsourcing’ or ‘citizen science’, the combined assessment of many non-expert human classifiers with minimal training can often equal or best that of a trained expert and in many cases outperform the best machine-learning algorithm. Visitors to the Planet Hunters' website are presented with a randomly selected ~30-day light curve segment from one of Kepler’s ~160,000 target stars and are asked to draw boxes to mark the locations of visible transits in the web interface. 5-10 classifiers review each 30-day light curve segment. Since December 2010, more than 260,000 volunteers world wide have participated, contributing over 20 million classifications. We have demonstrated the success of a citizen science approach with the project’s more than 20 planet candidates, the discovery of PH1b, a transiting circumbinary planet in a quadruple star system, and the discovery of PH2-b, a confirmed Jupiter-sized planet in the habitable zone of a Sun-like star. I will provide an overview of Planet Hunters, highlighting several of project's most recent exoplanet and astrophysical discoveries. Acknowledgements: MES was supported in part by a NSF AAPF under award AST-1003258 and a American Philosophical Society Franklin Grant. We acknowledge support from NASA ADAP12-0172 grant to PI Fischer.

  10. Searching for Planets using Particle Swarm Optimization

    NASA Astrophysics Data System (ADS)

    Chambers, John E.

    2008-05-01

    The Doppler radial velocity technique has been highly successful in discovering planetary-mass companions in orbit around nearby stars. A typical data set contains around one hundred instantaneous velocities for the star, spread over a period of several years,with each observation measuring only the radial component of velocity. From this data set, one would like to determine the masses and orbital parameters of the system of planets responsible for the star's reflex motion. Assuming coplanar orbits, each planet is characterized by five parameters, with an additional parameter for each telescope used to make observations, representing the instrument's velocity offset. The large number of free parameters and the relatively sparse data sets make the fitting process challenging when multiple planets are present, especially if some of these objects have low masses. Conventional approaches using periodograms often perform poorly when the orbital periods are not separated by large amounts or the longest period is comparable to the length of the data set. Here, I will describe a new approach to fitting Doppler radial velocity sets using particle swarm optimization (PSO). I will describe how the PSO method works, and show examples of PSO fits to existing radial velocity data sets, with comparisons to published solutions and those submitted to the Systemic website (http://www.oklo.org).

  11. Provenance of the terrestrial planets.

    PubMed

    Wetherill, G W

    1994-01-01

    Earlier work on the simultaneous accumulation of the asteroid belt and the terrestrial planets is extended to investigate the relative contribution to the final planets made by material from different heliocentric distances. As before, stochastic variations intrinsic to the accumulation processes lead to a variety of final planetary configurations, but include systems having a number of features similar to our solar system. Fifty-nine new simulations are presented, from which thirteen are selected as more similar to our solar system than the others. It is found that the concept of "local feeding zones" for each final terrestrial planet has no validity for this model. Instead, the final terrestrial planets receive major contributions from bodies ranging from 0.5 to at least 2.5 AU, and often to greater distances. Nevertheless, there is a correlation between the final heliocentric distance of a planet and its average provenance. Together with the effect of stochastic fluctuations, this permits variation in the composition of the terrestrial planets, such as the difference in the decompressed density of Earth and Mars. Biologically important light elements, derived from the asteroidal region, are likely to have been significant constituents of the Earth during its formation.

  12. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  13. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  14. The signature of orbital motion from the dayside of the planet τ Boötis b.

    PubMed

    Brogi, Matteo; Snellen, Ignas A G; de Kok, Remco J; Albrecht, Simon; Birkby, Jayne; de Mooij, Ernst J W

    2012-06-28

    The giant planet orbiting τ Boötis (named τ Boötis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Boötis b. At a spectral resolution of ∼100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5° ± 1.5° and a mass 5.95 ± 0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Boötis b by the ultraviolet emission from the active host star. PMID:22739313

  15. The signature of orbital motion from the dayside of the planet τ Boötis b.

    PubMed

    Brogi, Matteo; Snellen, Ignas A G; de Kok, Remco J; Albrecht, Simon; Birkby, Jayne; de Mooij, Ernst J W

    2012-06-27

    The giant planet orbiting τ Boötis (named τ Boötis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Boötis b. At a spectral resolution of ∼100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5° ± 1.5° and a mass 5.95 ± 0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Boötis b by the ultraviolet emission from the active host star.

  16. PLANET-PLANET SCATTERING LEADS TO TIGHTLY PACKED PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Barnes, Rory; Veras, Dimitri; Armitage, Philip J.; Gorelick, Noel; Greenberg, Richard

    2009-05-01

    The known extrasolar multiple-planet systems share a surprising dynamical attribute: they cluster just beyond the Hill stability boundary. Here we show that the planet-planet scattering model, which naturally explains the observed exoplanet eccentricity distribution, can reproduce the observed distribution of dynamical configurations. We calculated how each of our scattered systems would appear over an appropriate range of viewing geometries; as Hill stability is weakly dependent on the masses, the mass-inclination degeneracy does not significantly affect our results. We consider a wide range of initial planetary mass distributions and find that some are poor fits to the observed systems. In fact, many of our scattering experiments overproduce systems very close to the stability boundary. The distribution of dynamical configurations of two-planet systems may provide better discrimination between scattering models than the distribution of eccentricity. Our results imply that, at least in their inner regions which are weakly affected by gas or planetesimal disks, planetary systems should be 'packed', with no large gaps between planets.

  17. PLANET HUNTERS. VIII. CHARACTERIZATION OF 41 LONG-PERIOD EXOPLANET CANDIDATES FROM KEPLER ARCHIVAL DATA

    SciTech Connect

    Wang, Ji; Fischer, Debra A.; Picard, Alyssa; Schmitt, Joseph R.; Boyajian, Tabetha S.; Barclay, Thomas; Bowler, Brendan P.; Riddle, Reed; Jek, Kian J.; LaCourse, Daryll; Simister, Dean Joseph; Grégoire, Boscher; Babin, Sean P.; Poile, Trevor; Jacobs, Thomas Lee; Baranec, Christoph; Law, Nicholas M.; Lintott, Chris; Schawinski, Kevin; and others

    2015-12-20

    The census of exoplanets is incomplete for orbital distances larger than 1 AU. Here, we present 41 long-period planet candidates in 38 systems identified by Planet Hunters based on Kepler archival data (Q0–Q17). Among them, 17 exhibit only one transit, 14 have two visible transits, and 10 have more than three visible transits. For planet candidates with only one visible transit, we estimate their orbital periods based on transit duration and host star properties. The majority of the planet candidates in this work (75%) have orbital periods that correspond to distances of 1–3 AU from their host stars. We conduct follow-up imaging and spectroscopic observations to validate and characterize planet host stars. In total, we obtain adaptive optics images for 33 stars to search for possible blending sources. Six stars have stellar companions within 4″. We obtain high-resolution spectra for 6 stars to determine their physical properties. Stellar properties for other stars are obtained from the NASA Exoplanet Archive and the Kepler Stellar Catalog by Huber et al. We validate 7 planet candidates that have planet confidence over 0.997 (3σ level). These validated planets include 3 single-transit planets (KIC-3558849b, KIC-5951458b, and KIC-8540376c), 3 planets with double transits (KIC-8540376b, KIC-9663113b, and KIC-10525077b), and 1 planet with four transits (KIC-5437945b). This work provides assessment regarding the existence of planets at wide separations and the associated false positive rate for transiting observation (17%–33%). More than half of the long-period planets with at least three transits in this paper exhibit transit timing variations up to 41 hr, which suggest additional components that dynamically interact with the transiting planet candidates. The nature of these components can be determined by follow-up radial velocity and transit observations.

  18. A Planet Found by Pulsations

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  19. GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET-PLANET INTERACTIONS

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth A.

    2013-04-20

    Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semimajor axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H] < 0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g., stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.

  20. Constraints on a Second Planet in the WASP-3 System

    NASA Astrophysics Data System (ADS)

    Maciejewski, G.; Niedzielski, A.; Wolszczan, A.; Nowak, G.; Neuhäuser, R.; Winn, J. N.; Deka, B.; Adamów, M.; Górecka, M.; Fernández, M.; Aceituno, F. J.; Ohlert, J.; Errmann, R.; Seeliger, M.; Dimitrov, D.; Latham, D. W.; Esquerdo, G. A.; McKnight, L.; Holman, M. J.; Jensen, E. L. N.; Kramm, U.; Pribulla, T.; Raetz, St.; Schmidt, T. O. B.; Ginski, Ch.; Mottola, S.; Hellmich, S.; Adam, Ch.; Gilbert, H.; Mugrauer, M.; Saral, G.; Popov, V.; Raetz, M.

    2013-12-01

    There have been previous hints that the transiting planet WASP-3b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity (RV) measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The RV data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period. Partly based on (1) observations made at the Centro Astronómico Hispano Alemán (CAHA), operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC), (2) data collected with telescopes at the Rozhen National Astronomical Observatory, and (3) observations obtained with telescopes of the University Observatory Jena, which is operated by the Astrophysical Institute of the Friedrich-Schiller-University.

  1. A Ninth Planet Would Produce a Distinctly Different Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Lawler, Samantha; Shankman, Cory; Kaib, Nathan A.; Bannister, Michele T.; Gladman, Brett; Kavelaars, J. J.

    2016-10-01

    The orbital element distribution of trans-Neptunian objects (TNOs) with large pericenters has been suggested to be influenced by the presence of an undetected, large planet at 200 or more AU from the Sun. We perform 4 Gyr N-body simulations with the currently known Solar System planetary architecture, plus a 10 Earth mass planet with similar orbital parameters to those suggested by Batygin and Brown (2016) or Trujillo and Sheppard (2014), and a hundred thousand test particles in an initial planetesimal disk. We find that including a distant superearth-mass ninth planet produces a substantially different orbital distribution for the scattering and detached TNOs, raising the pericenters and inclinations of moderate semimajor axis (50 < a < 500 AU) objects. We test whether this signature is detectable via a simulator with the observational characteristics of four precisely characterized TNO surveys. We find that the qualitatively very distinct Solar System models that include a ninth planet are essentially observationally indistinguishable from an outer Solar System produced solely by the four giant planets. We also find that the mass of the Kuiper Belt's current scattering and detached populations is required be 3-10 times larger in the presence of an additional planet. Wide-field, deep surveys targeting inclined high-pericenter objects will be required to distinguish between these different scenarios.

  2. Characterizing the shortest-period planets found by Kepler

    NASA Astrophysics Data System (ADS)

    Sanchis Ojeda, Roberto; Winn, Joshua N.; Rappaport, Saul A.

    2015-01-01

    It is no coincidence that the first exoplanets known to have rocky compositions, CoRoT-7b and Kepler-10b, both have orbital periods shorter than one day. Such ultra-short periods facilitate planet discovery and characterization, by enabling a large number of transits to be observed, enhancing the amplitude of the radial-velocity signal, and allowing a cleaner separation of the radial-velocity signal from the slower spurious variations due to stellar activity. We have constructed a list of 106 planet candidates with periods shorter than one day, based on an independent search of the Kepler database as well as a critical review of previously published candidates. Our survey has revealed that ultra-short-period planets are approximately as common as hot Jupiters, but are almost always smaller than 2 RE. In addition, the ultra-short-period planets tend to be found as part of compact multi-planet systems, in contrast to the 'loneliness' of hot Jupiters. I will describe our ongoing efforts to characterize this new family of planets, with a combination of stellar spectroscopy and radial-velocity monitoring using the Keck telescopes.

  3. TRANSITS OF TRANSPARENT PLANETS-ATMOSPHERIC LENSING EFFECTS

    SciTech Connect

    Sidis, Omer; Sari, Re'em

    2010-09-01

    Light refracted by the planet's atmosphere is usually ignored in analysis of planetary transits. Here, we show that refraction can add shoulders to the transit light curve, i.e., an increase in the observed flux, mostly just before and after the transit. During transit, light may be refracted away from the observer. Therefore, even completely transparent planets will display a very similar signal to that of a standard transit, i.e., of an opaque planet. We provide analytical expression for the amount of additional light deflected toward the observer before the transit, and show that the effect may be as large as 10{sup -4} of the stellar light and therefore measurable by current instruments. By observing this effect, we can directly measure the scale height of the planet's atmosphere. We also consider the attenuation of starlight in the planetary atmosphere due to Rayleigh scattering and discuss the conditions under which the atmospheric lensing effect is most prominent. We show that, for planets on orbital periods larger than about 70 days, the size of the transit is determined by refraction effects, and not by absorption within the planet.

  4. Catastrophic evaporation of rocky planets

    NASA Astrophysics Data System (ADS)

    Perez-Becker, Daniel; Chiang, Eugene

    2013-08-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ≲ 0.1 M⊕ (less than twice the mass of Mercury) and surface temperatures ≳2000 K are found to disintegrate entirely in ≲10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ≲ 0.02 M⊕ or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost ˜70 per cent of its formation mass; today we may be observing its naked iron core.

  5. Inside-Out Planet Formation

    NASA Astrophysics Data System (ADS)

    Tan, Jonathan Charles; Chatterjee, Sourav; Hu, Xiao; Zhu, Zhaohuan; Mohanty, Subhanjoy

    2015-08-01

    The Kepler-discovered systems with tightly-packed inner planets (STIPs), typically with several planets of Earth to super-Earth masses on well-aligned, sub-AU orbits may host the most common type of planets in the Galaxy. They pose a great challenge for planet formation theories, which fall into two broad classes: (1) formation further out followed by migration; (2) formation in situ from a disk of gas and planetesimals. I review the pros and cons of these classes, before focusing on a new theory of sequential in situ formation from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) "pebbles," drifting inward via gas drag. Pebbles first collect at the pressure trap associated with the transition from a magnetorotational instability (MRI)-inactive ("dead zone") region to an inner MRI-active zone. A pebble ring builds up until it either becomes gravitationally unstable to form an Earth to super-Earth-mass planet directly or induces gradual planet formation via core accretion. The planet continues to accrete until it becomes massive enough to isolate itself from the accretion flow via gap opening. The process repeats with a new pebble ring gathering at the new pressure maximum associated with the retreating dead-zone boundary. I discuss the theory’s predictions for planetary masses, relative mass scalings with orbital radius, and minimum orbital separations, and their comparison with observed systems. Finally I speculate about potential causes of diversity of planetary system architectures, i.e., STIPs versus Solar System analogs.

  6. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  7. Validation of Kepler's Multiple Planet Candidates. III. Light Curve Analysis and Announcement of Hundreds of New Multi-planet Systems

    NASA Astrophysics Data System (ADS)

    Rowe, Jason F.; Bryson, Stephen T.; Marcy, Geoffrey W.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Gilliland, Ronald L.; Issacson, Howard; Ford, Eric; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Steffen, Jason H.; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Fortney, Jonathan; Gautier, T. N., III; Hunter, Roger; Caldwell, Douglas A.; Ciardi, David R.; Devore, Edna; Cochran, William; Jenkins, Jon; Agol, Eric; Carter, Joshua A.; Geary, John

    2014-03-01

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ~two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  8. Validation of Kepler's multiple planet candidates. III. Light curve analysis and announcement of hundreds of new multi-planet systems

    SciTech Connect

    Rowe, Jason F.; Bryson, Stephen T.; Lissauer, Jack J.; Jontof-Hutter, Daniel; Mullally, Fergal; Howell, Steve B.; Borucki, William J.; Haas, Michael; Huber, Daniel; Thompson, Susan E.; Quintana, Elisa; Barclay, Thomas; Still, Martin; Marcy, Geoffrey W.; Issacson, Howard; Gilliland, Ronald L.; Ford, Eric; Steffen, Jason H.; Gautier, T. N. III; and others

    2014-03-20

    The Kepler mission has discovered more than 2500 exoplanet candidates in the first two years of spacecraft data, with approximately 40% of those in candidate multi-planet systems. The high rate of multiplicity combined with the low rate of identified false positives indicates that the multiplanet systems contain very few false positive signals due to other systems not gravitationally bound to the target star. False positives in the multi-planet systems are identified and removed, leaving behind a residual population of candidate multi-planet transiting systems expected to have a false positive rate less than 1%. We present a sample of 340 planetary systems that contain 851 planets that are validated to substantially better than the 99% confidence level; the vast majority of these have not been previously verified as planets. We expect ∼two unidentified false positives making our sample of planet very reliable. We present fundamental planetary properties of our sample based on a comprehensive analysis of Kepler light curves, ground-based spectroscopy, and high-resolution imaging. Since we do not require spectroscopy or high-resolution imaging for validation, some of our derived parameters for a planetary system may be systematically incorrect due to dilution from light due to additional stars in the photometric aperture. Nonetheless, our result nearly doubles the number verified exoplanets.

  9. Reaching for the red planet

    PubMed

    David, L

    1996-05-01

    The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.

  10. Exospheres from Asteroids to Planets

    NASA Astrophysics Data System (ADS)

    Killen, Rosemary M.; Burger, Matthew H.; Farrell, William M.; DREAM2

    2016-10-01

    The study of exospheres can help us understand the long-term loss of volatiles from planetary bodies due to interactions of planets, satellites, and small bodies with the interplanetary medium (solar wind, meteors, and dust), solar radiation, internal forces including diffusion and outgassing, and surface effects like sticking and chemistry. Recent evidence for water and OH on the moon has spurred interest in processes involving chemistry and sequestration of volatile species at the poles and in voids. In recent years, NASA has sent spacecraft to asteroids including Vesta and Ceres, and ESA sent Rosetta to the asteroids Lutetia and Steins. OSIRIS-REX will return a sample from a primitive asteroid, Bennu, to Earth. It is possible that a Phobos-Deimos flyby will be a precursor to a manned mission to Mars. Exospheric particles are derived from the surface and to some extent from interplanetary dust and meteoroids. By comparing the exospheric compositions before and after major meteor shower events it may be possible to determine the extent to which the exosphere reflects the surface composition. Observation of an escaping exosphere, termed a corona, is challenging. We therefore have embarked on a parametrical study of exospheres as a function of basic controlling parameters such as the mass of the primary object, mass of the exospheric species, heliocentric distance, rotation rate of the primary, composition of the body (asteroid type or icy body). These parameters will be useful for mission planning as well as quick look data to determine the size and location of bodies likely to retain their exospheres and observability of exospheric species. We will also consider the sizes of small clusters that may be gravitationally bound to small bodies such as Phobos. In addition, it is of interest to be able to determine the extent of contamination of the pristine exosphere due to the spacecraft sent to make measurements, and the effect on the measurements of outgassing in the

  11. A SEARCH FOR MULTI-PLANET SYSTEMS USING THE HOBBY-EBERLY TELESCOPE

    SciTech Connect

    Wittenmyer, Robert A.; Endl, Michael; Cochran, William D.; Levison, Harold F.; Henry, Gregory W.

    2009-05-15

    Extrasolar multiple-planet systems provide valuable opportunities for testing theories of planet formation and evolution. The architectures of the known multiple-planet systems demonstrate a fascinating level of diversity, which motivates the search for additional examples of such systems in order to better constrain their formation and dynamical histories. Here we describe a comprehensive investigation of 22 planetary systems in an effort to answer three questions: (1) are there additional planets? (2) where could additional planets reside in stable orbits? and (3) what limits can these observations place on such objects? We find no evidence for additional bodies in any of these systems; indeed, these new data do not support three previously announced planets (HD 20367 b: Udry et al.; HD 74156 d: Bean et al.; and 47 UMa c: Fischer et al.). The dynamical simulations show that nearly all of the 22 systems have large regions in which additional planets could exist in stable orbits. The detection-limit computations indicate that this study is sensitive to close-in Neptune-mass planets for most of the systems targeted. We conclude with a discussion on the implications of these nondetections.

  12. INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK

    SciTech Connect

    Marzari, F.; Nelson, Andrew F. E-mail: andy.nelson@lanl.go

    2009-11-10

    We investigate the dynamical evolution of a Jovian-mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet-planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out-of-plane configuration with inclinations as large as 20{sup 0}-30{sup 0}. In this scenario, the tidal interaction of the planet with the disk is more complex and, in addition to the usual Lindblad and corotation resonances, it also involves inclination resonances responsible for bending waves. We have performed three-dimensional hydrodynamic simulations of the disk and of its interactions with the planet with a smoothed particle hydrodynamics code. A main result is that the initial large eccentricity and inclination of the planetary orbit are rapidly damped on a timescale of the order of 10{sup 3} yr, almost independently of the initial semimajor axis and eccentricity of the planet. The disk is warped in response to the planet perturbations and it precesses. Inward migration also occurs when the planet is inclined, and it has a drift rate that is intermediate between type I and type II migration. The planet is not able to open a gap until its inclination becomes lower than approx10{sup 0}, when it also begins to accrete a significant amount of mass from the disk.

  13. Mercury - the hollow planet

    NASA Astrophysics Data System (ADS)

    Rothery, D. A.

    2012-04-01

    Mercury is turning out to be a planet characterized by various kinds of endogenous hole (discounting impact craters), which are compared here. These include volcanic vents and collapse features on horizontal scales of tens of km, and smaller scale depressions ('hollows') associated with bright crater-floor deposits (BCFD). The BCFD hollows are tens of metres deep and kilometres or less across and are characteristically flat-floored, with steep, scalloped walls. Their form suggests that they most likely result from removal of surface material by some kind of mass-wasting process, probably associated with volume-loss caused by removal (via sublimation?) of a volatile component. These do not appear to be primarily a result of undermining. Determining the composition of the high-albedo bluish surface coating in BCFDs will be a key goal for BepiColombo instruments such as MIXS (Mercury Imaging Xray Spectrometer). In contrast, collapse features are non-circular rimless pits, typically on crater floors (pit-floor craters), whose morphology suggests collapse into void spaces left by magma withdrawal. This could be by drainage of either erupted lava (or impact melt) or of shallowly-intruded magma. Unlike the much smaller-scale BCFD hollows, these 'collapse pit' features tend to lack extensive flat floors and instead tend to be close to triangular in cross-section with inward slopes near to the critical angle of repose. The different scale and morphology of BCFD hollows and collapse pits argues for quite different modes of origin. However, BCFD hollows adjacent to and within the collapse pit inside Scarlatti crater suggest that the volatile material whose loss was responsible for the growth of the hollows may have been emplaced in association with the magma whose drainage caused the main collapse. Another kind of volcanic collapse can be seen within a 25 km-wide volcanic vent outside the southern rim of the Caloris basin (22.5° N, 146.1° E), on a 28 m/pixel MDIS NAC image

  14. Growth of planets from planetesimals

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Stewart, Glen R.

    1993-01-01

    The paper reviews the formation of terrestrial planets and the cores of Jovian planets within the framework of the planetesimal hypothesis, wherein planets are assumed to grow via the pairwise accumulation of small solid bodies. The rate of (proto)planetary growth is determined by the size and mass of the protoplanet, the surface density of planetesimals, and the distribution of planetesimal velocities relative to the protoplanet. Planetesimal velocities are modified by mutual gravitational interactions and collisions, which convert energy present in the ordered relative motions of orbiting particles into random motions and tend to reduce the velocities of the largest bodies in the swarm relative to those of smaller bodies, as well as by gas drag, which damps eccentricities and inclinations. The evolution of planetesimal size distribution is determined by the gravitationally enhanced collision cross section, which favors collisions between planetesimals with smaller velocities.

  15. Urban city transportation mode and respiratory health effect of air pollution: a cross-sectional study among transit and non-transit workers in Nigeria

    PubMed Central

    Ekpenyong, Chris E; Ettebong, E O; Akpan, E E; Samson, T K; Daniel, Nyebuk E

    2012-01-01

    Objectives To assess the respiratory health effect of city ambient air pollutants on transit and non-transit workers and compare such effects by transportation mode, occupational exposure and sociodemographic characteristics of participants. Design Cross-sectional, randomised survey. Setting A two primary healthcare centre survey in 2009/2010 in Uyo metropolis, South-South Nigeria. Participants Of the 245 male participants recruited, 168 (50 taxi drivers, 60 motorcyclists and 58 civil servants) met the inclusion criteria. These include age 18–35 years, a male transit worker or civil servant who had worked within Uyo metropolis for at least a year prior to the study, and had no history of respiratory disorders/impairment or any other debilitating illness. Main outcome measure The adjusted ORs for respiratory function impairment (force vital capacity (FVC) and/or FEV1<80% predicted or FEV1/FVC<70% predicted) using Global Initiative for Chronic Obstructive Lung Diseases (GOLD) and National Institute for Health and Clinical Excellence (NICE) criteria were calculated. In order to investigate specific occupation-dependent respiratory function impairment, a comparison was made between the ORs for respiratory impairment in the three occupations. Adjustments were made for some demographic variables such as age, BMI, area of residence, etc. Results Exposure to ambient air pollution by occupation and transportation mode was independently associated with respiratory functions impairment and incident respiratory symptoms among participants. Motorcyclists had the highest effect, with adjusted OR 3.10, 95% CI 0.402 to 16.207 for FVC<80% predicted and OR 1.71, 95% CI 0.61 to 4.76 for FEV1/FVC<70% predicted using GOLD and NICE criteria. In addition, uneducated, currently smoking transit workers who had worked for more than 1 year, with three trips per day and more than 1 h transit time per trip were significantly associated with higher odds for respiratory function

  16. Habitable Zone Limits for Dry Planets

    NASA Astrophysics Data System (ADS)

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H.; Zahnle, Kevin J.

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO2, rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m2 (170% that of modern Earth), compared to 330 W/m2 (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  17. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago. PMID:21707386

  18. Habitable zone limits for dry planets.

    PubMed

    Abe, Yutaka; Abe-Ouchi, Ayako; Sleep, Norman H; Zahnle, Kevin J

    2011-06-01

    Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.

  19. Dynamics of Giant Planet Polar Vortices

    NASA Astrophysics Data System (ADS)

    Brueshaber, Shawn R.; Sayanagi, Kunio M.

    2016-10-01

    The polar atmospheres of the giant planets have come under increasing interest since a compact, warm-core, stable, cyclonic polar vortex was discovered at each of Saturn's poles. In addition, the south pole of Neptune appears to have a similar feature, and Uranus' north pole is exhibiting activity that could indicate the formation of a polar vortex. We investigate the formation and maintenance of these giant planet polar vortices by varying several key atmospheric dynamics parameters in a forced-dissipative, 1.5-layer shallow water model. Our simulations are run using the EPIC (Explicit Planetary Isentropic Coordinate) global circulation model, to which we have added a gamma-plane rectangular grid option appropriate for simulating polar atmospheric dynamics.In our numerical simulations, we vary the atmospheric deformation radius, planetary rotation rate, storm forcing intensity, and storm vorticity (cyclone-to-anticyclone) ratio to determine what combination of values favors the formation of a polar vortex. We find that forcing the atmosphere by injecting small-scale mass perturbations ("storms") to form either all cyclones, all anticyclones, or equal numbers of both, may all result in a cyclonic polar vortex. Additionally, we examine the role of eddy momentum convergence in the intensification and maintenance of a polar cyclone.Our simulation results are applicable to understanding all four of the solar system giant planets. In the future, we plan to expand our modeling effort with a more realistic 3D primitive equations model, also with a gamma-plane rectangular grid using EPIC. With our 3D primitive equations model, we will study how various vertical atmospheric stratification structures influence the formation and maintenance of a polar cyclone. While our shallow-water model only involves storms of a single layer, a 3D primitive equations model allows us to study how storms of finite vertical extent and at differing levels in the atmosphere may further favor

  20. Habitable planets with high obliquities.

    PubMed

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  1. Habitable planets with high obliquities.

    PubMed

    Williams, D M; Kasting, J F

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations. PMID:11541242

  2. A Catalog of Transit Timing Posterior Distributions for all Kepler Planet Candidate Transit Events

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin Tyler; Becker, Juliette C.; Johnson, John Asher

    2015-12-01

    Kepler has ushered in a new era of planetary dynamics, enabling the detection of interactions between multiple planets in transiting systems for hundreds of systems. These interactions, observed as transit timing variations (TTVs), have been used to find non-transiting companions to transiting systems and to measure masses, eccentricities, and inclinations of transiting planets. Often, physical parameters are inferred by comparing the observed light curve to the result of a photodynamical model, a time-intensive process that often ignores the effects of correlated noise in the light curve. Catalogs of transit timing observations have previously neglected non-Gaussian uncertainties in the times of transit, uncertainties in the transit shape, and short cadence data. Here, I present a catalog of not only times of transit centers, but also posterior distributions on the time of transit for every planet candidate transit event in the Kepler data, developed through importance sampling of each transit. This catalog allows one to marginalize over uncertainties in the transit shape and incorporate short cadence data, the effects of correlated noise, and non-Gaussian posteriors. Our catalog will enable dynamical studies that reflect accurately the precision of Kepler and its limitations without requiring the computational power to model the light curve completely with every integration. I will also present our open-source N-body photodynamical modeling code, which integrates planetary and stellar orbits accounting for the effects of GR, tidal effects, and Doppler beaming.

  3. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets. PMID:24664912

  4. HUBBLE OBSERVES THE PLANET URANUS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole. Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible. Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope. Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on. Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes. One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should be unusual given

  5. Hubble Observes the Planet Uranus

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image of the planet Uranus reveals the planet's rings and bright clouds and a high altitude haze above the planet's south pole.

    Hubble's new view was obtained on August 14, 1994, when Uranus was 1.7 billion miles (2.8 billion kilometers) from Earth. These details, as imaged by the Wide Field Planetary Camera 2, were only previously seen by the Voyager 2 spacecraft, which flew by Uranus in 1986. Since then, none of these inner satellites has been further observed, and detailed observations of the rings have not been possible.

    Though Uranus' rings were discovered indirectly in 1977 (through stellar occultation observations), they have never before been seen in visible light through a ground-based telescope.

    Hubble resolves several of Uranus' rings, including the outermost Epsilon ring. The planet has a total of 11 concentric rings of dark dust. Uranus is tipped such that its rotation axis lies in the plane of its orbit, so the rings appear nearly face-on.

    Three of Uranus' inner moons each appear as a string of three dots at the bottom of the picture. This is because the picture is a composite of three images, taken about six minutes apart, and then combined to show the moons' orbital motions. The satellites are, from left to right, Cressida, Juliet, and Portia. The moons move much more rapidly than our own Moon does as it moves around the Earth, so they noticeably change position over only a few minutes.

    One of the four gas giant planets of our solar system, Uranus is largely featureless. HST does resolve a high altitude haze which appears as a bright 'cap' above the planet's south pole, along with clouds at southern latitudes (similar structures were observed by Voyager). Unlike Earth, Uranus' south pole points toward the Sun during part of the planet's 84-year orbit. Thanks to its high resolution and ability to make observations over many years, Hubble can follow seasonal changes in Uranus's atmosphere, which should

  6. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

  7. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  8. PLANET ENGULFMENT BY {approx}1.5-3 M{sub sun} RED GIANTS

    SciTech Connect

    Kunitomo, M.; Ikoma, M.; Sato, B.; Ida, S.; Katsuta, Y.

    2011-08-20

    Recent radial-velocity surveys for GK clump giants have revealed that planets also exist around {approx}1.5-3 M{sub sun} stars. However, no planets have been found inside 0.6 AU around clump giants, in contrast to solar-type main-sequence stars, many of which harbor short-period planets such as hot Jupiters. In this study, we examine the possibility that planets were engulfed by host stars evolving on the red-giant branch (RGB). We integrate the orbital evolution of planets in the RGB and helium-burning phases of host stars, including the effects of stellar tide and stellar mass loss. Then we derive the critical semimajor axis (or the survival limit) inside which planets are eventually engulfed by their host stars after tidal decay of their orbits. Specifically, we investigate the impact of stellar mass and other stellar parameters on the survival limit in more detail than previous studies. In addition, we make detailed comparisons with measured semimajor axes of planets detected so far, which no previous study has done. We find that the critical semimajor axis is quite sensitive to stellar mass in the range between 1.7 and 2.1 M{sub sun}, which suggests a need for careful comparison between theoretical and observational limits of the existence of planets. Our comparison demonstrates that all planets orbiting GK clump giants that have been detected are beyond the survival limit, which is consistent with the planet-engulfment hypothesis. However, on the high-mass side (>2.1M{sub sun}), the detected planets are orbiting significantly far from the survival limit, which suggests that engulfment by host stars may not be the main reason for the observed lack of short-period giant planets. To confirm our conclusion, the detection of more planets around clump giants, especially with masses {approx}> 2.5M{sub sun}, is required.

  9. Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets

    SciTech Connect

    Dawson, Rebekah I.; Clubb, Kelsey I.; Johnson, John Asher; Murray-Clay, Ruth A.; Fabrycky, Daniel C.; Foreman-Mackey, Daniel; Buchhave, Lars A.; Cargile, Phillip A.; Fulton, Benjamin J.; Howard, Andrew W.; Hebb, Leslie; Huber, Daniel; Shporer, Avi; Valenti, Jeff A.

    2014-08-20

    We establish the three-dimensional architecture of the Kepler-419 (previously KOI-1474) system to be eccentric yet with a low mutual inclination. Kepler-419b is a warm Jupiter at semi-major axis a=0.370{sub −0.006}{sup +0.007} AU with a large eccentricity (e = 0.85{sub −0.07}{sup +0.08}) measured via the 'photoeccentric effect'. It exhibits transit timing variations (TTVs) induced by the non-transiting Kepler-419c, which we uniquely constrain to be a moderately eccentric (e = 0.184 ± 0.002), hierarchically separated (a = 1.68 ± 0.03 AU) giant planet (7.3 ± 0.4 M {sub Jup}). We combine 16 quarters of Kepler photometry, radial-velocity (RV) measurements from the HIgh Resolution Echelle Spectrometer on Keck, and improved stellar parameters that we derive from spectroscopy and asteroseismology. From the RVs, we measure the mass of the inner planet to be 2.5 ± 0.3 M {sub Jup} and confirm its photometrically measured eccentricity, refining the value to e = 0.83 ± 0.01. The RV acceleration is consistent with the properties of the outer planet derived from TTVs. We find that despite their sizable eccentricities, the planets are coplanar to within 9{sub −6}{sup +8} degrees, and therefore the inner planet's large eccentricity and close-in orbit are unlikely to be the result of Kozai migration. Moreover, even over many secular cycles, the inner planet's periapse is most likely never small enough for tidal circularization. Finally, we present and measure a transit time and impact parameter from four simultaneous ground-based light curves from 1 m class telescopes, demonstrating the feasibility of ground-based follow-up of Kepler giant planets exhibiting large TTVs.

  10. Application of Synergistic Multipayload Assistance with Rotating Tethers (SMART) Concept to Outer Planet Exploration

    NASA Technical Reports Server (NTRS)

    Forward, R. L.; Hoyt, R. P.; Nordley, G. D.

    2001-01-01

    We propose an innovative approach to outer planet exploration using the Synergistic Multipayload Assistance with Rotating Tethers (SMART) concept invented by Gerald David Nordley. The basic concept can be implemented in many different ways to accomplish many different types of planetary missions, especially missions to the outer planets. Additional information is contained in the original extended abstract.

  11. Multiple Planets Problems and Solutions in Astrometry

    NASA Astrophysics Data System (ADS)

    Shao, Michael; Zhai, C.; Catanzarite, J.; Loredo, T.; McArthur, B.; Benedict, F.

    2009-01-01

    In early 2008, NASA asked the SIM project to conduct a double blind study to determine how well astrometry at the microarcsec level can detect Earth-like planets in the habitable zone in the environment of a multiple planet system. Astrometric planet detection looks for a periodic signature and confusion can result if two or more planets have orbital frequencies that can not be separated with a finite data set. 5 years of micro-arcsec level measurements from a mission like SIM, can not resolve orbital periods of planets separated by less than 0.2 cycles per year. Our solar system however has 4 planets, Jupiter, Saturn, Uranus and Neptune whose periods are all within 0.2 cycles/yr of each other. This paper describes the type of problems that arise and the procedures developed to work around these problems. The double blind study consisted of 48 multiple planet systems with a total of 98 planets and 483 asteroids and 48 of the 98 planets had a large enough signal to be detected, had they been "solo" planets. In the end the SIM science team was able to find 96% of the "48 planets", and 98% of the claimed detections were real. For terrestrial planets in the habitable zone all 13 planets were detected with no false positives.

  12. Planet scattering around binaries: ejections, not collisions

    NASA Astrophysics Data System (ADS)

    Smullen, Rachel A.; Kratter, Kaitlin M.; Shannon, Andrew

    2016-09-01

    Transiting circumbinary planets discovered by Kepler provide unique insight into binary star and planet formation. Several features of this new found population, for example the apparent pile-up of planets near the innermost stable orbit, may distinguish between formation theories. In this work, we determine how planet-planet scattering shapes planetary systems around binaries as compared to single stars. In particular, we look for signatures that arise due to differences in dynamical evolution in binary systems. We carry out a parameter study of N-body scattering simulations for four distinct planet populations around both binary and single stars. While binarity has little influence on the final system multiplicity or orbital distribution, the presence of a binary dramatically affects the means by which planets are lost from the system. Most circumbinary planets are lost due to ejections rather than planet-planet or planet-star collisions. The most massive planet in the system tends to control the evolution. Systems similar to the only observed multiplanet circumbinary system, Kepler-47, can arise from much more tightly packed, unstable systems. Only extreme initial conditions introduce differences in the final planet populations. Thus, we suggest that any intrinsic differences in the populations are imprinted by formation.

  13. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  14. Observations of Planet Crossing Asteroids

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1999-01-01

    This grant funds the investigation of the Solar System's planet crossing asteroid population, principally the near Earth and trans-Neptunian objects, but also the Centaurs. Investigations include colorimetry at both visible and near infrared wavelengths, light curve photometry, astrometry, and a pilot project to find near Earth objects with small aphelion distances, which requires observations at small solar elongations.

  15. MEMS AO for Planet Finding

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  16. The red planet shows off

    NASA Astrophysics Data System (ADS)

    Beish, J. D.; Parker, D. C.; Hernandez, C. E.

    1989-01-01

    Results from observations of Mars between November 1987 and September 1988 are reviewed. The observations were part of a program to provide continuous global coverage of Mars in the period surrounding its opposition on September 28, 1988. Observations of Martian clouds, dust storms, the planet's south pole, and the Martian surface are discussed.

  17. How Common are Habitable Planets?

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    2000-01-01

    The Earth is teeming with life, which, occupies a diverse array of environments; other bodies in our Solar System offer fewer, if any, niches which are habitable by life as we know it. Nonetheless, astronomical studies suggest that a large number of habitable planets-are likely to be present within our Galaxy.

  18. Giant Planets in Open Clusters

    NASA Astrophysics Data System (ADS)

    Quinn, S. N.; White, R. J.; Latham, D. W.

    2015-10-01

    Two decades after the discovery of 51 Peg b, more than 200 hot Jupiters have now been confirmed, but the details of their inward migration remain uncertain. While it is widely accepted that short period giant planets could not have formed in situ, several different mechanisms (e.g., Type II migration, planet-planet scattering, Kozai-Lidov cycles) may contribute to shrinking planetary orbits, and the relative importance of each is not well-constrained. Migration through the gas disk is expected to preserve circular, coplanar orbits and must occur quickly (within ˜ 10 Myr), whereas multi-body processes should initially excite eccentricities and inclinations and may take hundreds of millions of years. Subsequent evolution of the system (e.g., orbital circularization and inclination damping via tidal interaction with the host star) may obscure these differences, so observing hot Jupiters soon after migration occurs can constrain the importance of each mechanism. Fortunately, the well-characterized stars in young and adolescent open clusters (with known ages and compositions) provide natural laboratories for such studies, and recent surveys have begun to take advantage of this opportunity. We present a review of the discoveries in this emerging realm of exoplanet science, discuss the constraints they provide for giant planet formation and migration, and reflect on the future direction of the field.

  19. Venus and Mercury as Planets

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A general evolutionary history of the solar planetary system is given. The previously observed characteristics of Venus and Mercury (i.e. length of day, solar orbit, temperature) are discussed. The role of the Mariner 10 space probe in gathering scientific information on the two planets is briefly described.

  20. Magnetosphere of the outer planets

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.

    1972-01-01

    Scaling laws for possible outer planet magnetospheres are derived. These suggest that convection and its associated auroral effects will play a relatively smaller role than at earth, and that there is a possibility that they could have significant radiation belts of energetic trapped particles.

  1. Jupiter: Lord of the Planets.

    ERIC Educational Resources Information Center

    Kaufmann, William

    1984-01-01

    Presents a chapter from an introductory college-level astronomy textbook in which full-color photographs and numerous diagrams highlight an extensive description of the planet Jupiter. Topics include Jupiter's geology, rotation, magnetic field, atmosphere (including clouds and winds), and the Great Red Spot. (DH)

  2. Do Other Planets Have Summer?

    ERIC Educational Resources Information Center

    Nelson, George

    2005-01-01

    It's important to keep two things in mind when thinking about the cause of the seasons: (1) Earth and all the other planets except Pluto and Mercury move around the Sun in almost perfect circles, getting neither closer nor farther away from the Sun during the year; and (2) Earth's rotation axis is tilted with respect to the plane of its orbit…

  3. Terrestrial Planet Finder: science overview

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen C.; Beichman, C. A.

    2004-01-01

    The Terrestrial Planet Finder (TPF) seeks to revolutionize our understanding of humanity's place in the universe - by searching for Earth-like planets using reflected light, or thermal emission in the mid-infrared. Direct detection implies that TPF must separate planet light from glare of the nearby star, a technical challenge which has only in recent years been recognized as surmountable. TPF will obtain a low-resolution spectra of each planets it detects, providing some of its basic physical characteristics and its main atmospheric constituents, thereby allowing us to assess the likelihood that habitable conditions exist there. NASA has decided the scientific importance of this research is so high that TPF will be pursued as two complementary space observatories: a visible-light coronagraph and a mid-infrared formation flying interferometer. The combination of spectra from both wavebands is much more valuable than either taken separately, and it will allow a much fuller understanding of the wide diversity of planetary atmospheres that may be expected to exist. Measurements across a broad wavelength range will yield not only physical properties such as size and albedo, but will also serve as the foundations of a reliable and robust assessment of habitability and the presence of life.

  4. Tracking Planets around the Sun

    ERIC Educational Resources Information Center

    Riddle, Bob

    2008-01-01

    In earlier columns, the celestial coordinate system of hour circles of right ascension and degrees of declination was introduced along with the use of an equatorial star chart (see SFA Star Charts in Resources). This system shows the planets' motion relative to the ecliptic, the apparent path the Sun follows during the year. An alternate system,…

  5. The Chemistry of the Planets.

    ERIC Educational Resources Information Center

    Blake, Peter

    1988-01-01

    Introduces knowledge of planetary chemistry for possible use in teaching. Discusses the chemical composition of the planets; the atmosphere and clouds of Venus, Jupiter and its moons, and Titan. Includes diagrams of the greenhouse effects in the solar system, elemental abundances, and the chemical composition of Jupiter. (RT)

  6. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    .9+/-0.4 degrees, making the planet misaligned by 2.9+/-0.5 degrees from the main disk, consistent with other observations that beta Pic b is misaligned with the main disk, and part of the misaligned inner disk. In 2009 & 2012 we find a projected orbital separation of 312.8 +/- 18.3 and 466.35 +/- 8.4 milliarcseconds consistent with an orbital period of ˜ 20 years, and a semi-major axis of ˜ 9 AU as found by Macintosh et al. (2014). During the first commissioning observations with the Gemini Planet Imager (GPI), my collaborators and I took the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. The spectrum has a resolving power of ˜ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1650 +/- 50K and a surface gravity of log(g) = 4.0 +/- 0.25 (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 MJup and age between 10 and 20 Myrs. The spectrum is very similar to a known low mass field brown dwarf but has more flux at the long wavelength end of the filters compared to models. Given the very high signal-to-noise of our spectrum this likely indicates additional physics such as patchy clouds that need to be included in the model.

  7. Accreting planets as dust dams in 'transition' disks

    SciTech Connect

    Owen, James E.

    2014-07-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10{sup –9}-10{sup –8} M {sub ☉} yr{sup –1}), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M{sub J} ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  8. Close-in planet migration due to magnetic torques

    NASA Astrophysics Data System (ADS)

    Strugarek, Antoine; Brun, Allan Sacha; Matt, Sean; Réville, Victor

    2015-08-01

    The diversity of masses, sizes and orbits of known exoplanets has prompted recent efforts in the scientific community to explore the broad range of interactions that can exist between planets and their host stars. In addition to tidal interactions, planets orbiting inside the stellar wind Alfv ´en radius can magnetically interact with their host. These interactions could lead to an angular momentum transfer between the planet and its host, resulting in a substantial planetary migration and participating in the dynamical (in)stability of the system. Among the star-planet interaction (SPI) models that have been developed, magnetohydrodynamic (MHD) simulations combine state of the art numerical models of cool star magnetospheres with simplified models of planets. The advantage of these global, dynamical models is the ability to assess the effects of SPI in a self-consistent way, by modelling the full interaction channel from the planetary magnetosphere down to the lower stellar corona.We will present our study of global magnetic SPI using the PLUTO code. We first give an overview of different types of interactions, depending on the stellar wind and orbital properties. Based on our previous exploratory 2D axisymmetric study, we develop our magnetic interaction model in 3D to tackle the full geometry of the star-wind- planet connection. We study the formation of Aflv ´en wings and parametrize the key physical ingredients (magnetic field strength and topology, orbital distance, stellar wind mass and angular momentum loss rates) controlling the magnetic torques which lead to planet migration. These torques are shown to operate on time-scales comparable to tidal torques for sufficiently compact systems and favorable magnetic topologies.

  9. Uncovering the Chemistry of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Zeng, Li; Sasselov, Dimitar; Jacobsen, Stein

    2015-08-01

    We propose to use the evidence from our solar system to understand exoplanets, and in particular, to predict their surface chemistry and thereby the possibility of life. An Earth-like planet, born from the same nebula as its host star, is composed primarily of silicate rocks and an iron-nickel metal core, and depleted in volatile content in a systematic manner. The more volatile (easier to vaporize or dissociate into gas form) an element is in an Earth-like planet, the more depleted the element is compared to its host star. After depletion, an Earth-like planet would go through the process of core formation due to heat from radioactive decay and collisions. Core formation depletes a planet’s rocky mantle of siderophile (iron-loving) elements, in addition to the volatile depletion. After that, Earth-like planets likely accrete some volatile-rich materials, called “late veneer”. The late veneer could be essential to the origins of life on Earth and Earth-like planets, as it also delivers the volatiles such as nitrogen, sulfur, carbon and water to the planet’s surface, which are crucial for life to occur. Here we build an integrative model of Earth-like planets from the bottom up. Thus the chemical compositions of Earth-like planets could be inferred from their mass-radius relations and their host stars’ elemental abundances, and the origins of volatile contents (especially water) on their surfaces could be understood, and thereby shed light on the origins of life on them. This elemental abundance model could be applied to other rocky exoplanets in exoplanet systems.

  10. Tidal effects on Earth, Planets, Sun by far visiting moons

    NASA Astrophysics Data System (ADS)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  11. Tour of Planet With Extreme Temperature Swings

    NASA Video Gallery

    A computer simulation of the planet HD 80606b. The point of closest approach -- and maximum heating -- occurs about 4.5 seconds into the animation. As the planet whips around the star, we see the e...

  12. How climate evolved on the terrestrial planets.

    PubMed

    Kasting, J F; Toon, O B; Pollack, J B

    1988-02-01

    Planets with temperate, earthlike climates were once thought to be rare in our galaxy. Mathematical models now suggest that if planets do exist outside the solar system, many of them might be habitable.

  13. The Geology of the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Carr, M. H. (Editor); Saunders, R. S.; Strom, R. G.; Wilhelms, D. E.

    1984-01-01

    The geologic history of the terrestrial planets is outlined in light of recent exploration and the revolution in geologic thinking. Among the topics considered are planet formation; planetary craters, basins, and general surface characteristics; tectonics; planetary atmospheres; and volcanism.

  14. Kepler Discovers Its First Rocky Planet

    NASA Video Gallery

    NASA's Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system....

  15. Kepler Discovers Earth-size Planet Candidates

    NASA Video Gallery

    NASA's Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet's surface. Five of th...

  16. How climate evolved on the terrestrial planets.

    PubMed

    Kasting, J F; Toon, O B; Pollack, J B

    1988-02-01

    Planets with temperate, earthlike climates were once thought to be rare in our galaxy. Mathematical models now suggest that if planets do exist outside the solar system, many of them might be habitable. PMID:11538470

  17. Blue Marble: Remote Characterization of Habitable Planets

    NASA Technical Reports Server (NTRS)

    Woolf, Neville; Lewis, Brian; Chartres, James; Genova, Anthony

    2009-01-01

    The study of the nature and distribution of habitable environments beyond the Solar System is a key area for Astrobiology research. At the present time, our Earth is the only habitable planet that can be characterized in the same way that we might characterize planets beyond the Solar System. Due to limitations in our current and near-future technology, it is likely that extra-solar planets will be observed as single-pixel objects. To understand this data, we must develop skills in analyzing and interpreting the radiation obtained from a single pixel. These skills must include the study of the time variation of the radiation, and the range of its photometric, spectroscopic and polarimetric properties. In addition, to understand whether we are properly analyzing the single pixel data, we need to compare it with a ground truth of modest resolution images in key spectral bands. This paper discusses the concept for a mission called Blue Marble that would obtain data of the Earth using a combination of spectropolarimetry, spectrophotometry, and selected band imaging. To obtain imagery of the proper resolution, it is desirable to place the Blue Marble spacecraft no closer than the outer region of cis-lunar space. This paper explores a conceptual mission design that takes advantage of low-cost launchers, bus designs and mission elements to provide a cost effective observing platform located at one of the stable Earth-moon Lagrangian points (L4, L5). The mission design allows for the development and use of novel technologies, such as a spinning moon sensor for attitude control, and leverages lessons-learned from previous low-cost spacecraft such as Lunar Prospector to yield a low-risk mission concept.

  18. The planets and our culture a history and a legacy

    NASA Astrophysics Data System (ADS)

    Clarke, Theodore C.; Bolton, Scott J.

    2010-01-01

    This manuscript relates the great literature, great art and the vast starry vault of heaven. It relates the myths of gods and heroes for whom the planets and the Medicean moons of Jupiter are named. The myths are illustrated by great art works of the Renaissance, Baroque and Rococo periods which reveal poignant moments in the myths. The manuscript identifies constellations spun off of these myths. In addition to the images of great art are associated images of the moons and planets brought to us by spacecraft in our new age of exploration, the New Renaissance, in which we find ourselves deeply immersed.

  19. Water in the terrestrial planets and the moon

    SciTech Connect

    Liu, L.G.

    1988-04-01

    Current thermal models for the terrestrial planets, with the exception of Mercury, point to the probability of a partial melting zone's presence in the mantles of both Venus and Mars, but not in that of the earth; this is attested by the fact that plate tectonics is not apparent on Mars and Venus. In addition, the CO/sub 2/-dominated atmospheres of Venus and Mars may indicate that a large-scale hydrosphere has never (or only very briefly) existed on these planets. Most of the free H/sub 2/O above the water line of Venus and Mars is probably still trapped inside mantle melts. 37 references.

  20. A Quantitative Criterion for Defining Planets

    NASA Astrophysics Data System (ADS)

    Margot, J. L.

    2015-12-01

    A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence. This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets. All 8 planets and all classifiable exoplanets satisfy the criterion. This metric may be useful in generalizing and simplifying the definition of a planet.

  1. A Quantitative Criterion for Defining Planets

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc

    2015-12-01

    A simple metric can be used to determine whether a planet or exoplanet can clear its orbital zone during a characteristic time scale, such as the lifetime of the host star on the main sequence. This criterion requires only estimates of star mass, planet mass, and orbital period, making it possible to immediately classify 99% of all known exoplanets. All eight planets and all classifiable exoplanets satisfy the criterion. This metric may be useful in generalizing and simplifying the definition of a planet.

  2. Elemental ratios in stars vs planets

    NASA Astrophysics Data System (ADS)

    Thiabaud, Amaury; Marboeuf, Ulysse; Alibert, Yann; Leya, Ingo; Mezger, Klaus

    2015-08-01

    Context. The chemical composition of planets is an important constraint for planet formation and subsequent differentiation. While theoretical studies try to derive the compositions of planets from planet formation models in order to link the composition and formation process of planets, other studies assume that the elemental ratios in the formed planet and in the host star are the same. Aims: Using a chemical model combined with a planet formation model, we aim to link the composition of stars with solar mass and luminosity with the composition of the hosted planets. For this purpose, we study the three most important elemental ratios that control the internal structure of a planet: Fe/Si, Mg/Si, and C/O. Methods: A set of 18 different observed stellar compositions was used to cover a wide range of these elemental ratios. The Gibbs energy minimization assumption was used to derive the composition of planets, taking stellar abundances as proxies for nebular abundances, and to generate planets in a self-consistent planet formation model. We computed the elemental ratios Fe/Si, Mg/Si and C/O in three types of planets (rocky, icy, and giant planets) formed in different protoplanetary discs, and compared them to stellar abundances. Results: We show that the elemental ratios Mg/Si and Fe/Si in planets are essentially identical to those in the star. Some deviations are shown for planets that formed in specific regions of the disc, but the relationship remains valid within the ranges encompassed in our study. The C/O ratio shows only a very weak dependence on the stellar value. Appendix A is available in electronic form at http://www.aanda.org

  3. Observational Constraints on Planet Nine: Astrometry of Pluto and Other Trans-Neptunian Objects

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Payne, Matthew J.

    2016-10-01

    We use astrometry of Pluto and other trans-neptunian objects to constrain the sky location, distance, and mass of the possible additional planet (Planet Nine) hypothesized by Batygin & Brown. We find that over broad regions of the sky, the inclusion of a massive, distant planet degrades the fits to the observations. However, in other regions, the fits are significantly improved by the addition of such a planet. Our best fits suggest a planet that is either more massive or closer than argued for by Batygin & Brown based on the orbital distribution of distant trans-neptunian objects (or by Fienga et al. based on range measured to the Cassini spacecraft). The trend to favor larger and closer perturbing planets is driven by the residuals to the astrometry of Pluto, remeasured from photographic plates using modern stellar catalogs, which show a clear trend in decl. over the course of two decades, that drive a preference for large perturbations. Although this trend may be the result of systematic errors of unknown origin in the observations, a possible resolution is that the decl. trend may be due to perturbations from a body, in addition to Planet Nine, that is closer to Pluto but less massive than Planet Nine.

  4. Progress in extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1991-01-01

    Progress in extra-solar planet detection is reviewed. The following subject areas are covered: (1) the definition of a planet; (2) the weakness of planet signals; (3) direct techniques - imaging and spectral detection; and (4) indirect techniques - reflex motion and occultations.

  5. The Use of Planisphere to Locate Planets

    ERIC Educational Resources Information Center

    Kwok, Ping-Wai

    2013-01-01

    Planisphere is a simple and useful tool in locating constellations of the night sky at a specific time, date and geographic location. However it does not show the planet positions because planets are not fixed on the celestial sphere. It is known that the planet orbital planes are nearly coplanar and close to the ecliptic plane. By making…

  6. Tidal Downsizing model - IV. Destructive feedback in planets

    NASA Astrophysics Data System (ADS)

    Nayakshin, Sergei

    2016-09-01

    The role of negative feedback from a massive solid core on its massive gas envelope in the Tidal Downsizing scenario of planet formation is investigated via one-dimensional planet evolution models followed by population synthesis calculations. It is shown that cores more massive than ˜10 M⊕ release enough energy to reverse contraction of their parent gas envelopes, culminating in their destruction. This process may help to explain why observed gas giant planets are so rare, why massive cores are so ubiquitous, and why there is a sharp rollover in the core mass function above ˜20 M⊕. Additionally, the short time-scales with which these massive cores are assembled in TD may help explain formation route of Uranus, Neptune and the suspected HL Tau planets. Given the negative role of cores in assembly of gas giants in the model, an antimony is found between massive cores and gas giants: cores in survived gas giant planets are on average less massive than cores free of massive envelopes. In rare circumstances when core feedback self-regulates, extremely metal-rich gas giants, such as CoRoT-20b, a gas giant made of heavy elements by up to ˜50 per cent, can be made.

  7. eXtreme Adaptive Optics Planet Imager: Overview and status

    SciTech Connect

    Macintosh, B A; Bauman, B; Evans, J W; Graham, J; Lockwood, C; Poyneer, L; Dillon, D; Gavel, D; Green, J; Lloyd, J; Makidon, R; Olivier, S; Palmer, D; Perrin, M; Severson, S; Sheinis, A; Sivaramakrishnan, A; Sommargren, G; Soumer, R; Troy, M; Wallace, K; Wishnow, E

    2004-08-18

    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An 'extreme' adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10{sup 7} at angular separations of 0.2-1'. ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade.

  8. Type I planet migration in nearly laminar disks

    SciTech Connect

    Li, Hui; Li, Shengtai; Lubow, S H; Lin, D

    2008-01-01

    We describe two-dimensional hydrodynamic simulations of the migration of low-mass planets ({<=}30 M{sub {circle_plus}}) in nearly laminar disks (viscosity parameter {alpha} < 10{sup -3}) over timescales of several thousand orbit periods. We consider disk masses of 1, 2, and 5 times the minimum mass solar nebula, disk thickness parameters of H/r = 0.035 and 0.05, and a variety of {alpha} values and planet masses. Disk self-gravity is fully included. Previous analytic work has suggested that Type I planet migration can be halted in disks of sufficiently low turbulent viscosity, for {alpha} {approx} 10{sup -4}. The halting is due to a feedback effect of breaking density waves that results in a slight mass redistribution and consequently an increased outward torque contribution. The simulations confirm the existence of a critical mass (M{sub {alpha}} {approx} 10M{sub {circle_plus}}) beyond which migration halts in nearly laminar disks. For {alpha} {approx}> 10{sup -3}, density feedback effects are washed out and Type I migration persists. The critical masses are in good agreement with the analytic model of Rafikov. In addition, for {alpha} {approx}> 10{sup -4} steep density gradients produce a vortex instability, resulting in a small time-varying eccentricity in the planet's orbit and a slight outward migration. Migration in nearly laminar disks may be sufficiently slow to reconcile the timescales of migration theory with those of giant planet formation in the core accretion model.

  9. Outwards migration for planets in stellar irradiated 3D discs

    NASA Astrophysics Data System (ADS)

    Lega, E.; Morbidelli, A.; Bitsch, B.; Crida, A.; Szulágyi, J.

    2015-09-01

    For the very first time we present 3D simulations of planets embedded in stellar irradiated discs. It is well known that thermal effects could reverse the direction of planetary migration from inwards to outwards, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. When considering stellar irradiation in addition to viscous friction as a source of heating, the outer disc changes from a shadowed to a flared structure. Using a suited analytical formula it has been shown that in the flared part of the disc the migration is inwards; planets can migrate outwards only in shadowed regions of the disc, because the radial gradient of entropy is stronger there. In order to confirm this result numerically, we have computed the total torque acting on planets held on fixed orbits embedded in stellar irradiated 3D discs using the hydrodynamical code FARGOCA. We find qualitatively good agreement between the total torque obtained with numerical simulations and the one predicted by the analytical formula. For large masses (>20 M⊕) we find quantitative agreement, and we obtain outwards migration regions for planets up to 60 M⊕ in the early stages of accretional discs. We find nevertheless that the agreement with the analytic formula is quite fortuitous because the formula underestimates the size of the horseshoe region; this error is compensated by imperfect estimates of other terms, most likely the cooling rate and the saturation.

  10. The Disk and Planets of Solar Analogue τCeti

    NASA Astrophysics Data System (ADS)

    Lawler, S. M.; Francesco, J. Di; Kennedy, G.; Sibthorpe, B.; Booth, M.; Vandenbussche, B.; Matthews, B.; Tuomi, M.

    2015-01-01

    τ Ceti is a nearby, mature star very similar to our Sun, with a massive Kuiper belt analogue tep{Greavesetal2004} and possible multiplanet system tep{Tuomietal2013} that has been compared to our Solar System. We present infrared and submillimeter observations of the debris disk from the Herschel Space Observatory and the James Clerk Maxwell Telescope (JCMT). We find the best model of the disk is a wide annulus ranging from 5-55 AU, inclined from face-on by 30°. tet{Tuomietal2013} report five possible super-Earths tightly nestled inside 1.4 AU, and we model this planetary system and place dynamical constraints on the inner edge of the disk. We find that due to the low masses and fairly circular orbits of the planets, the disk could reach as close to the star as 1.5 AU, with some stable orbits even possible between the two outermost planets. The photometric modelling cannot rule out a disk inner edge as close to the star as 1 AU, though 5-10 AU produces a better fit to the data. Dynamical modelling shows that the 5 planet system is stable with the addition of a Saturn-mass planet on an orbit outside 5 AU, where the Tuomi et al. analysis would not have detected a planet of this mass.

  11. Orbital dynamics of multi-planet systems with eccentricity diversity

    SciTech Connect

    Kane, Stephen R.; Raymond, Sean N.

    2014-04-01

    Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals. We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.

  12. KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE

    SciTech Connect

    Nesvorný, David; Terrell, Dirk; Kipping, David; Hartman, Joel; Bakos, Gáspár Á.; Buchhave, Lars A.

    2013-11-01

    The transit timing variations (TTVs) can be used as a diagnostic of gravitational interactions between planets in a multi-planet system. Many Kepler Objects of Interest (KOIs) exhibit significant TTVs, but KOI-142.01 stands out among them with an unrivaled ≅12 hr TTV amplitude. Here we report a thorough analysis of KOI-142.01's transits. We discover periodic transit duration variations (TDVs) of KOI-142.01 that are nearly in phase with the observed TTVs. We show that KOI-142.01's TTVs and TDVs uniquely detect a non-transiting companion with a mass ≅0.63 that of Jupiter (KOI-142c). KOI-142.01's mass inferred from the transit variations is consistent with the measured transit depth, suggesting a Neptune-class planet (KOI-142b). The orbital period ratio P{sub c} /P{sub b} = 2.03 indicates that the two planets are just wide of the 2:1 resonance. The present dynamics of this system, characterized here in detail, can be used to test various formation theories that have been proposed to explain the near-resonant pairs of exoplanets.

  13. ARE THE KEPLER NEAR-RESONANCE PLANET PAIRS DUE TO TIDAL DISSIPATION?

    SciTech Connect

    Lee, Man Hoi; Fabrycky, D.; Lin, D. N. C. E-mail: daniel.fabrycky@gmail.com

    2013-09-01

    The multiple-planet systems discovered by the Kepler mission show an excess of planet pairs with period ratios just wide of exact commensurability for first-order resonances like 2:1 and 3:2. In principle, these planet pairs could have both resonance angles associated with the resonance librating if the orbital eccentricities are sufficiently small, because the width of first-order resonances diverges in the limit of vanishingly small eccentricity. We consider a widely held scenario in which pairs of planets were captured into first-order resonances by migration due to planet-disk interactions, and subsequently became detached from the resonances, due to tidal dissipation in the planets. In the context of this scenario, we find a constraint on the ratio of the planet's tidal dissipation function and Love number that implies that some of the Kepler planets are likely solid. However, tides are not strong enough to move many of the planet pairs to the observed separations, suggesting that additional dissipative processes are at play.

  14. Formation of terrestrial planets in eccentric and inclined giant-planet systems

    NASA Astrophysics Data System (ADS)

    Sotiriadis, Sotiris; Libert, Anne-Sophie; Raymond, Sean

    2016-10-01

    The orbits of extrasolar planets are more various than the circular and coplanar ones of the Solar system. We study the impact of inclined and eccentric massive giant planets on the terrestrial planet formation process. The physical and orbital parameters of the giant planets considered in this study arise from n-body simulations of three giant planets in the late stage of the gas disc, under the combined action of Type II migration and planet-planet scattering. At the dispersal of the gas disc, the two- and three-planet systems interact then with an inner disc of planetesimals and planetary embryos. We discuss the mass and orbital parameters of the terrestrial planets formed by our simulations, as well as their water content. We also investigate how the disc of planetesimals and planetary embryos modifies the eccentric and inclined orbits of the giant planets.

  15. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  16. Evolution and magnitudes of candidate Planet Nine

    NASA Astrophysics Data System (ADS)

    Linder, Esther F.; Mordasini, Christoph

    2016-05-01

    Context. The recently renewed interest in a possible additional major body in the outer solar system prompted us to study the thermodynamic evolution of such an object. We assumed that it is a smaller version of Uranus and Neptune. Aims: We modeled the temporal evolution of the radius, temperature, intrinsic luminosity, and the blackbody spectrum of distant ice giant planets. The aim is also to provide estimates of the magnitudes in different bands to assess whether the object might be detectable. Methods: Simulations of the cooling and contraction were conducted for ice giants with masses of 5, 10, 20, and 50 M⊕ that are located at 280, 700, and 1120 AU from the Sun. The core composition, the fraction of H/He, the efficiency of energy transport, and the initial luminosity were varied. The atmospheric opacity was set to 1, 50, and 100 times solar metallicity. Results: We find for a nominal 10 M⊕ planet at 700 AU at the current age of the solar system an effective temperature of 47 K, much higher than the equilibrium temperature of about 10 K, a radius of 3.7 R⊕, and an intrinsic luminosity of 0.006 L♃. It has estimated apparent magnitudes of Johnson V, R, I, L, N, Q of 21.7, 21.4, 21.0, 20.1, 19.9, and 10.7, and WISE W1-W4 magnitudes of 20.1, 20.1, 18.6, and 10.2. The Q and W4 band and other observations longward of about 13 μm pick up the intrinsic flux. Conclusions: If candidate Planet 9 has a significant H/He layer and an efficient energy transport in the interior, then its luminosity is dominated by the intrinsic contribution, making it a self-luminous planet. At a likely position on its orbit near aphelion, we estimate for a mass of 5, 10, 20, and 50 M⊕ a V magnitude from the reflected light of 24.3, 23.7, 23.3, and 22.6 and a Q magnitude from the intrinsic radiation of 14.6, 11.7, 9.2, and 5.8. The latter would probably have been detected by past surveys.

  17. Uranus, towards the planet's pole of rotation.

    NASA Technical Reports Server (NTRS)

    1986-01-01

    These two pictures of Uranus were compiled from images recorded by Voyager 2 on Jan. 1O, 1986, when the NASA spacecraft was 18 million kilometers (11 million miles) from the planet. The images were obtained by Voyager's narrow-angle camera; the view is toward the planet's pole of rotation, which lies just left of center. The picture on the left has been processed to show Uranus as human eyes would see it from the vantage point of the spacecraft. The second picture is an exaggerated false-color view that reveals details not visible in the true-color view -- including indications of what could be a polar haze of smog-like particles. The true-color picture was made by combining pictures taken through blue, green and orange filters. The dark shading of the upper right edge of the disk is the terminator, or day-night boundary. The blue-green appearance of Uranus results from methane in the atmosphere; this gas absorbs red wavelengths from the incoming sunlight, leaving the predominant bluish color seen here. The picture on the right uses false color and contrast enhancement to bring out subtle details in the polar region of the atmosphere. Images shuttered through different color filters were added and manipulated by computer, greatly enhancing the low-contrast details in the original images. Ultraviolet, violet- and orange-filtered images were displayed, respectively, as blue, green and red to produce this false-color picture. The planet reveals a dark polar hood surrounded by a series of progressively lighter convective bands. The banded structure is real, though exaggerated here. The brownish color near the center of the planet could be explained as being caused by a thin haze concentrated over the pole -- perhaps the product of chemical reactions powered by ultraviolet light from the Sun. One such reaction produces acetylene from methane -- acetylene has been detected on Uranus by an Earth-orbiting spacecraft -- and further reactions involving acetylene are known to

  18. Planet Detection Algorithms for the Terrestrial Planet Finder-C

    NASA Astrophysics Data System (ADS)

    Kasdin, N. J.; Braems, I.

    2005-12-01

    Critical to mission planning for the terrestrial planet finder coronagraph (TPF-C) is the ability to estimate integration times for planet detection. This detection is complicated by the presence of background noise due to local and exo-zodiacal dust, by residual speckle due optical errors, and by the dependence of the PSF shape on the specific coronagraph. In this paper we examine in detail the use of PSF fitting (matched filtering) for planet detection, derive probabilistic bounds for the signal-to-noise ratio by balancing missed detection and false alarm rates, and demonstrate that this is close to the optimal linear detection technique. We then compare to a Bayesian detection approach and show that for very low background the Bayesian method offers integration time improvements, but rapidly approaches the PSF fitting result for reasonable levels of background noise. We confirm via monte-carlo simulations. This work was supported under a grant from the Jet Propulsion Laboratory and by a fellowship from the Institut National de Recherche en Informatique et Automatique (INRIA).

  19. Hot Jupiters from secular planet-planet interactions.

    PubMed

    Naoz, Smadar; Farr, Will M; Lithwick, Yoram; Rasio, Frederic A; Teyssandier, Jean

    2011-05-12

    About 25 per cent of 'hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter. PMID:21562558

  20. Hot Jupiters from secular planet-planet interactions.

    PubMed

    Naoz, Smadar; Farr, Will M; Lithwick, Yoram; Rasio, Frederic A; Teyssandier, Jean

    2011-05-12

    About 25 per cent of 'hot Jupiters' (extrasolar Jovian-mass planets with close-in orbits) are actually orbiting counter to the spin direction of the star. Perturbations from a distant binary star companion can produce high inclinations, but cannot explain orbits that are retrograde with respect to the total angular momentum of the system. Such orbits in a stellar context can be produced through secular (that is, long term) perturbations in hierarchical triple-star systems. Here we report a similar analysis of planetary bodies, including both octupole-order effects and tidal friction, and find that we can produce hot Jupiters in orbits that are retrograde with respect to the total angular momentum. With distant stellar mass perturbers, such an outcome is not possible. With planetary perturbers, the inner orbit's angular momentum component parallel to the total angular momentum need not be constant. In fact, as we show here, it can even change sign, leading to a retrograde orbit. A brief excursion to very high eccentricity during the chaotic evolution of the inner orbit allows planet-star tidal interactions to rapidly circularize that orbit, decoupling the planets and forming a retrograde hot Jupiter.

  1. A re-analysis of planet candidates common to the HARPS and Anglo-Australian Planet Search

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Wright, Duncan

    2015-01-01

    We present a re-analysis of HARPS spectra using a new extraction technique that includes a 2-dimensional description of the PSF. Additionally, to compute our Doppler velocities we use a spectrum matching technique that builds a reference spectrum from the observations of the target star. This method allows the breaking up of the spectrum into small chunks that can be treated independently and provide a more reliable estimate of the velocity error. The independently-derived HARPS velocities are combined with data from the 16-year Anglo-Australian Planet Search to confirm the claims of planets for selected targets common to both surveys. Our new Keplerian solutions refine the orbits of some planetary systems and cast doubt on the veracity of other planet candidates.

  2. Proceedings of Protostars and Planets V

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Oral presentation sessions in this conference include: Clouds and cores; Star formation and protostars; Binaries and multiples; Newborn massive stars; jets and outflows; Clusters and associations; T Tauri stars and disks; Brown dwarfs; Planet formation and evolution; Extrasolar planets; Dust and protoplanetary disks; Early solar system and Astrobiology. Poster presentations included: Clouds and Cores. Collapse and Protostars, Binaries and Multiples, Clusters, Associations, and the IMF, Jets and Outflows, T Tauri Stars and Other Young Stars, Disks and Disk Accretion, Brown Dwarfs, Herbig Ae/Be Stars and Massive Stars, Solar System Objects, Planet Formation, Extrasolar Planets and Planet Detection, Properties of Protoplanetary Disks, Migration and Planetary Orbits and Meteoritics and Astrobiology

  3. Terraforming the Planets and Climate Change Mitigation on Earth

    NASA Astrophysics Data System (ADS)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  4. Detection of extrasolar planets via microlensing and occultation

    NASA Astrophysics Data System (ADS)

    Safizadeh, Neda

    2001-07-01

    As recently as five years ago, no extrasolar planetary companions of main sequence stars had been identified. The discovery 51 Peg b by Mayor & Queloz [49], was the first of many planetary detections. Since then, over fifty other planets have been found, all with the radial velocity technique. Here, we give an overview of various detection strategies for planets. We discuss studies in three separate areas of searching for extrasolar planets; high magnification and astrometric deviations during a microlensing event given a lens with a planetary companion, and the observational progress of a planet transit survey. We study the effects of a planetary companion to the lens during a microlensing event with numerical methods. By studying the photometric light curve of a microlensing event during its peak amplification, we find that a planetary signature can be definitively detected in the lensing zone (0.6-1.6 Einstein Ring Radii or RE) for masses greater than Jupiter's. The probability remains substantial for Saturn and even 10 Earth masses. The peak of the event can be predicted in advance, allowing for extrasolar planet detection with a relatively small use of resources over a short period of time. We introduce a new method of searching for extrasolar planets by monitoring the astrometric deviations of the source star during a microlensing event. We show that astrometric deviation curves can give information about the presence of a planet and allow for parameter extraction. By monitoring the center-of-light motion of microlensing alerts using high precision astrometric instruments, the probability of detecting a planet orbiting the lens is high. The addition of astrometric information to the photometric microlensing light curve greatly helps in determining the planetary mass and projected separation. We introduce a new numerical method for calculating astrometric motion and detecting probabilities. Lastly, we search for planet transits in old, relatively metal rich

  5. MESSENGER: Exploring the Innermost Planet

    NASA Astrophysics Data System (ADS)

    Solomon, S. C.

    2011-12-01

    One of Earth's closest planetary neighbors, Mercury remained comparatively unexplored for the more than three decades that followed the three flybys of the innermost planet by the Mariner 10 spacecraft in 1974-75. Mariner 10 imaged 45% of Mercury's surface at about 1 km/pixel average resolution, confirmed Mercury's anomalously high bulk density and implied large fractional core size, discovered Mercury's internal magnetic field, documented that H and He are present in the planet's tenuous exosphere, and made the first exploration of Mercury's magnetosphere and solar wind environment. Ground-based astronomers later reported Na, K, and Ca in Mercury's exosphere; the presence of deposits in the floors of polar craters having radar characteristics best matched by water ice; and strong evidence from the planet's forced libration amplitude that Mercury has a fluid outer core. Spacecraft exploration of Mercury resumed with the selection for flight, under NASA's Discovery Program, of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. Launched in 2004, MESSENGER flew by the innermost planet three times in 2008-2009 en route to becoming the first spacecraft to orbit Mercury in March of this year. MESSENGER's first chemical remote sensing measurements of Mercury's surface indicate that the planet's bulk silicate fraction differs from those of the other inner planets, with a low-Fe surface composition intermediate between basalts and ultramafic rocks and best matched among terrestrial rocks by komatiites. Moreover, surface materials are richer in the volatile constituents S and K than predicted by most planetary formation models. Global image mosaics and targeted high-resolution images (to resolutions of 10 m/pixel) reveal that Mercury experienced globally extensive volcanism, including large expanses of plains emplaced as flood lavas and widespread examples of pyroclastic deposits likely emplaced during explosive eruptions of volatile

  6. Interrelationships among the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Rao, A. S. P.

    1985-01-01

    The spatial distribution of mass in the solar system provides invaluable clues pertaining to the condensation history of the solar nebula, to the sequence of condensation of minerals and metal alloys in different P-T Regimes in the nebula and to the time sequence in the nucleation of planetary iron cores. Massive planets (Earth & Venus) were due to the twin processes of early nucleation of iron into massive cores and late termination of accretion processes which resulted in the accretion of volatile rich materials also. This paper maintains that the accretionary features (High-lands, basins/craters) are present on all the planets and the thermally controlled tectonic styles (Rifts, fracture zones, volcanic plains, Canyons, trenches, domes, etc.) are essentially of same origin but are of different magnitude and the interactions of degassed volatiles (atmosphere together with hydrosphere) with the lithosphere are dictating and diversifying the tectonic style on the Earth.

  7. The pulsar planet production process

    NASA Technical Reports Server (NTRS)

    Phinney, E. S.; Hansen, B. M. S.

    1993-01-01

    Most plausible scenarios for the formation of planets around pulsars end with a disk of gas around the pulsar. The supplicant author then points to the solar system to bolster faith in the miraculous transfiguration of gas into planets. We here investigate this process of transfiguration. We derive analytic sequences of quasi-static disks which give good approximations to exact solutions of the disk diffusion equation with realistic opacity tables. These allow quick and efficient surveys of parameter space. We discuss the outward transfer of mass in accretion disks and the resulting timescale constraints, the effects of illumination by the central source on the disk and dust within it, and the effects of the widely different elemental compositions of the disks in the various scenarios, and their extensions to globular clusters. We point out where significant uncertainties exist in the appropriate grain opacities, and in the effect of illumination and winds from the neutron star.

  8. Security for a Smarter Planet

    NASA Astrophysics Data System (ADS)

    Nagaratnam, Nataraj

    Bit by bit, our planet is getting smarter. By this, we mean the systems that run, the way we live and work as a society. Three things have brought this about - the world is becoming instrumented, interconnected and intelligent. Given the planet is becoming instrumented and interconnected, this opens up more risks that need to be managed. Escalating security and privacy concerns along with a renewed focus on organizational oversight are driving governance, risk management and compliance (GRC) to the forefront of the business. Compliance regulations have increasingly played a larger role by attempting to establish processes and controls that mitigate the internal and external risks organizations have today. To effectively meet the requirements of GRC, companies must prove that they have strong and consistent controls over who has access to critical applications and data.

  9. Formation of Giant Planets and Brown Dwarves

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.

    2003-01-01

    According to the prevailing core instability model, giant planets begin their growth by the accumulation of small solid bodies, as do terrestrial planets. However, unlike terrestrial planets, the growing giant planet cores become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Models predict that rocky planets should form in orbit about most stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. Ongoing theoretical modeling of accretion of giant planet atmospheres, as well as observations of protoplanetary disks, will help decide this issue. Observations of extrasolar planets around main sequence stars can only provide a lower limit on giant planet formation frequency . This is because after giant planets form, gravitational interactions with material within the protoplanetary disk may cause them to migrat inwards and be lost to the central star. The core instability model can only produce planets greater than a few jovian masses within protoplanetary disks that are more viscous than most such disks are believed to be. Thus, few brown dwarves (objects massive enough to undergo substantial deuterium fusion, estimated to occur above approximately 13 jovian masses) are likely to be formed in this manner. Most brown dwarves, as well as an unknown number of free-floating objects of planetary mass, are probably formed as are stars, by the collapse of extended gas/dust clouds into more compact objects.

  10. Electrodynamics on extrasolar giant planets

    SciTech Connect

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be

  11. Astrometeric Science with SIM PlanetQuest

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Unwin, Stephen

    2006-01-01

    This viewgraph presentation reviews Astrometry with the Space Interferometry Mission (SIM) PlanetQuest. The topics include: 1) SIM PlanetQuest - the World's First Long- Baseline Optical Interferometer in Space; 2) National Academy of Sciences / NRC endorses SIM PlanetQuest; 3) SIM Planet Search; 4) Planetary System Architectures & Diversity; 5) SIM Search for 110 M(sub Earth) Planets Around Nearby Stars; 6) Deep Search of 120 nearby stars; 7) Planets around Young Stars; 8) SIM PlanetQuest Science Team; 9) Dark Halo of our Galaxy; 10) Dynamics of Galaxy Groups within 5 Mpc; 11) Probing Active Galactic Nuclei with Astrometry; 12) Snapshot Observing Mode: Astrometry for the masses; 13) SIM Technology Development is Complete; and 14) SIM Hardware, Tested for Flight.

  12. Studying planet populations by gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Dominik, Martin

    2010-09-01

    The ‘most curious’ effect of the bending of light by the gravity of stars has evolved into a successful technique unlike any other for studying planets within the Milky Way and even other galaxies. With a sensitivity to cool planets around low-mass stars even below the mass of Earth, gravitational microlensing fits in between other planet search techniques to form a complete picture of planet parameter space, which is required to understand their origin in general, that of habitable planets more particularly, and that of planet Earth especially. Current campaigns need to evolve from first detections to obtaining a sample with well-understood selection bias that allows to draw firm conclusions about the planet populations. With planetary signals being a transient phenomenon, gravitational microlensing is a driver for new technologies in scheduling and management of non-proprietary heterogeneous telescope networks, and can serve to demonstrate forefront science live to the general public.

  13. Interactions between planets and evolved stars

    NASA Astrophysics Data System (ADS)

    Shengbang, Qian; Zhongtao, Han; Fernández Lajús, E.; liying, Zhu; Wenping, Liao; Miloslav, Zejda; Linjia, Li; Voloshina, Irina; Liang, Liu; Jiajia., He

    2016-07-01

    Searching for planetary companions to evolved stars (e.g., white dwarfs (WD) and Cataclysmic Variables (CV)) can provide insight into the interaction between planets and evolved stars as well as on the ultimate fate of planets. We have monitored decades of CVs and their progenitors including some detached WD binaries since 2006 to search for planets orbiting these systems. In the present paper, we will show some observational results of circumbinary planets in orbits around CVs and their progenitors. Some of our findings include planets with the shortest distance to the central evolved binaries and a few multiple planetary systems orbiting binary stars. Finally, by comparing the observational properties of planetary companions to single WDs and WD binaries, the interaction between planets and evolved stars and the ultimate fate of planets are discussed.

  14. DETECTING VOLCANISM ON EXTRASOLAR PLANETS

    SciTech Connect

    Kaltenegger, L.; Sasselov, D. D.; Henning, W. G.

    2010-11-15

    The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

  15. Looking for a habitable planet

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid

    Only very favorable combination of many physical parameters may provide the necessary con-ditions for unicellular organisms to evolve into multicellular animals. The main factors of the planet, that is critical for the evolution and existence of life, form a peculiar labyrinth with many impasses. Most important are mass and temperature conditions on the planet. The planet that meets RNA/ DNA life requirements must have: •a mass about 5E27 g; •some zones with a favorable thermal conditions (273-340K); •an atmosphere that is able to absorb an external hard radiation but transparent for photons with 1-3 eV energy; •a sufficient den-sity of a stellar radiation; •presence of other sources of energy, e.g. of oxidation species in the atmosphere; •a moderate gravitation; •open water with big islands or continents; •a moderate rotation period; •a moderate eccentricity of the orbit; •a moderate inclination of equator plane to the orbit plane; •an intensive meteoritic impacts or other cosmic catastrophes that stimulate evolution of the most perfect beings; •one or more massive satellites; •an intensive volcanism and/or plate tectonics.

  16. Observational biases for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Sandford, Emily

    2016-09-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 AU of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  17. The Giant Planet Satellite Exospheres

    NASA Technical Reports Server (NTRS)

    McGrath, Melissa A.

    2014-01-01

    Exospheres are relatively common in the outer solar system among the moons of the gas giant planets. They span the range from very tenuous, surface-bounded exospheres (e.g., Rhea, Dione) to quite robust exospheres with exobase above the surface (e.g., lo, Triton), and include many intermediate cases (e.g., Europa, Ganymede, Enceladus). The exospheres of these moons exhibit an interesting variety of sources, from surface sputtering, to frost sublimation, to active plumes, and also well illustrate another common characteristic of the outer planet satellite exospheres, namely, that the primary species often exists both as a gas in atmosphere, and a condensate (frost or ice) on the surface. As described by Yelle et al. (1995) for Triton, "The interchange of matter between gas and solid phases on these bodies has profound effects on the physical state of the surface and the structure of the atmosphere." A brief overview of the exospheres of the outer planet satellites will be presented, including an inter-comparison of these satellites exospheres with each other, and with the exospheres of the Moon and Mercury.

  18. Celestial mechanics of planet shells

    NASA Astrophysics Data System (ADS)

    Barkin, Yu V.; Vilke, V. G.

    2004-06-01

    The motion of a planet consisting of an external shell (mantle) and a core (rigid body), which are connected by a visco-elastic layer and mutually gravitationally interact with each other and with an external celestial body (considered as a material point), is studied (Barkin, 1999, 2002a,b; Vilke, 2004). Relative motions of the core and mantle are studied on the assumption that the centres of mass of the planet and external body move on unperturbed Keplerian orbits around the general centre of mass of the system. The core and mantle of the planet have axial symmetry and have different principal moments of inertia. The differential action of the external body on the core and mantle cause the periodic relative displacements of their centres of mass and their relative turns. An approximate solution of the problem was obtained on the basis of the linearization, averaging and small-parameter methods. The obtained analytical results are applied to the study of the possible relative displacements of the core and mantle of the Earth under the gravitational action of the Moon. For the suggested two-body Earth model and in the simple case of a circular (model) lunar orbit the new phenomenon of periodic translatory-rotary oscillations of the core with a fortnightly period the mantle was observed. The more remarkable phenomenon is the cyclic rotation with the same period (13.7 days) of the core relative to the mantle with a ‘large’ amplitude of 152 m (at the core surface).The results obtained confirm the general concept described by Barkin (1999, 2002a,b) that induced relative shell oscillations can control and dictate the cyclic and secular processes of energization of the planets and satellites in definite rhythms and on different time scales.The results obtained mean that giant moments and forces produce energy which causes in particular deformations of the viscoelastic layer between planet shells. This process is realized with different intensities on different time

  19. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    NASA Astrophysics Data System (ADS)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  20. The Gemini Deep Planet Survey

    NASA Astrophysics Data System (ADS)

    Lafrenière, David; Doyon, René; Marois, Christian; Nadeau, Daniel; Oppenheimer, Ben R.; Roche, Patrick F.; Rigaut, François; Graham, James R.; Jayawardhana, Ray; Johnstone, Doug; Kalas, Paul G.; Macintosh, Bruce; Racine, René

    2007-12-01

    We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around 85 nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope, and angular differential imaging was used to suppress the speckle noise of the central star. Typically, the observations are sensitive to angular separations beyond 0.5" with 5 σ contrast sensitivities in magnitude difference at 1.6 μm of 9.5 at 0.5", 12.9 at 1", 15.0 at 2", and 16.5 at 5". These sensitivities are sufficient to detect planets more massive than 2 MJ with a projected separation in the range 40-200 AU around a typical target. Second-epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results is presented. Assuming a planet mass distribution dn/dm~m-1.2 and a semimajor-axis distribution dn/da~a-1, the 95% credible upper limits on the fraction of stars with at least one planet of mass 0.5-13 MJ are 0.28 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.093 for 50-250 AU; this result is weakly dependent on the semimajor-axis distribution power-law index. The 95% credible interval for the fraction of stars with at least one brown dwarf companion having a semimajor axis in the range 25-250 AU is 0.019+0.083-0.015, irrespective of any assumption on the mass and semimajor-axis distributions. The observations made as part of this survey have resolved the stars HD 14802, HD 166181, and HD 213845 into binaries for the first time. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National

  1. Outer Planet Assessment Group (OPAG) Recommended Exploration Strategy for the Outer Planets 2013-2022

    NASA Astrophysics Data System (ADS)

    McKinnon, William B.; Steering Committee, Opag; Planets Community, Outer

    2010-05-01

    The Outer Solar System provides critical clues to how solar systems form and evolve, how planetary systems become habitable, and how life has evolved in our solar system. NASA's Outer Planets Assessment Group (OPAG) was established to identify scientific priorities and pathways for Outer Solar System exploration. Fundamental new discoveries are best made with a mixture of mission sizes that includes large (flagship) missions, and medium-sized and smaller-sized (as practical) missions, along with vigorous support for basic research, data analysis, and technology development — a balanced strategy most efficiently implemented as an Outer Planets Exploration Program. Missions to the Outer Solar System are major undertakings, requiring large and expensive launch vehicles, long mission durations, highly reliable (frequently radiation hard) and autonomous spacecraft, and radioisotope power sources in most cases. OPAG has recommended to the US National Research Council Planetary Science Decadal Survey to explore the possibilities for ‘small flagship' class missions to be considered, providing a greater range of choice and capabilities in the mix to balance program size and science return. With the Galileo mission concluded, the Cassini equinox mission in progress, and Juno in development, OPAG has strongly endorsed the competitive selection by NASA of the Jupiter Europa Orbiter (JEO) as the next Outer Planets Flagship and as part of the Europa Jupiter System Mission (EJSM) with ESA, a collaboration that includes a Ganymede orbiter and an increased focus on Jupiter science; OPAG has strongly recommended support of JEO and EJSM in the Decadal Survey. In addition, OPAG has strongly endorsed approval by NASA of the Cassini Solstice Mission, including the Juno-like end-of-mission scenario, given the likely phenomenal return on investment. OPAG also advocates the need for a focused technology program for the next Outer Planet Flagship Mission after EJSM, in order to be ready

  2. Beta Pictoris planet finally imaged?

    NASA Astrophysics Data System (ADS)

    2008-11-01

    A team of French astronomers using ESO's Very Large Telescope have discovered an object located very close to the star Beta Pictoris, and which apparently lies inside its disc. With a projected distance from the star of only 8 times the Earth-Sun distance, this object is most likely the giant planet suspected from the peculiar shape of the disc and the previously observed infall of comets onto the star. It would then be the first image of a planet that is as close to its host star as Saturn is to the Sun. Sharpening Up Jupiter ESO PR Photo 42a/08 Beta Pictoris as seen in infrared light The hot star Beta Pictoris is one of the best-known examples of stars surrounded by a dusty 'debris' disc. Debris discs are composed of dust resulting from collisions among larger bodies like planetary embryos or asteroids. They are a bigger version of the zodiacal dust in our Solar System. Its disc was the first to be imaged -- as early as 1984 -- and remains the best-studied system. Earlier observations showed a warp of the disc, a secondary inclined disc and infalling comets onto the star. "These are indirect, but tell-tale signs that strongly suggest the presence of a massive planet lying between 5 and 10 times the mean Earth-Sun distance from its host star," says team leader Anne-Marie Lagrange. "However, probing the very inner region of the disc, so close to the glowing star, is a most challenging task." In 2003, the French team used the NAOS-CONICA instrument (or NACO [1]), mounted on one of the 8.2 m Unit Telescopes of ESO's Very Large Telescope (VLT), to benefit from both the high image quality provided by the Adaptive Optics system at infrared wavelengths and the good dynamics offered by the detector, in order to study the immediate surroundings of Beta Pictoris. Recently, a member of the team re-analysed the data in a different way to seek the trace of a companion to the star. Infrared wavelengths are indeed very well suited for such searches. "For this, the real challenge

  3. Secular Orbital Dynamics of Hierarchical Two-planet Systems

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Ford, Eric B.

    2010-06-01

    The discovery of multi-planet extrasolar systems has kindled interest in using their orbital evolution as a probe of planet formation. Accurate descriptions of planetary orbits identify systems that could hide additional planets or be in a special dynamical state, and inform targeted follow-up observations. We combine published radial velocity data with Markov Chain Monte Carlo analyses in order to obtain an ensemble of masses, semimajor axes, eccentricities, and orbital angles for each of the five dynamically active multi-planet systems: HD 11964, HD 38529, HD 108874, HD 168443, and HD 190360. We dynamically evolve these systems using 52,000 long-term N-body integrations that sample the full range of possible line-of-sight and relative inclinations, and we report on the system stability, secular evolution, and the extent of the resonant interactions. We find that planetary orbits in hierarchical systems exhibit complex dynamics and can become highly eccentric and maybe significantly inclined. Additionally, we incorporate the effects of general relativity in the long-term simulations and demonstrate that it can qualitatively affect the dynamics of some systems with high relative inclinations. The simulations quantify the likelihood of different dynamical regimes for each system and highlight the dangers of restricting simulation phase space to a single set of initial conditions or coplanar orbits.

  4. Close encounters involving free-floating planets in star clusters

    NASA Astrophysics Data System (ADS)

    Wang, Long; Kouwenhoven, M. B. N.; Zheng, Xiaochen; Church, Ross P.; Davies, Melvyn B.

    2015-06-01

    Instabilities in planetary systems can result in the ejection of planets from their host system, resulting in free-floating planets (FFPs). If this occurs in a star cluster, the FFP may remain bound to the star cluster for some time and interact with the other cluster members until it is ejected. Here, we use N-body simulations to characterize close star-planet and planet-planet encounters and the dynamical fate of the FFP population in star clusters containing 500-2000 single or binary star members. We find that FFPs ejected from their planetary system at low velocities typically leave the star cluster 40 per cent earlier than their host stars, and experience tens of close (<1000 au) encounters with other stars and planets before they escape. The fraction of FFPs that experiences a close encounter depends on both the stellar density and the initial velocity distribution of the FFPs. Approximately half of the close encounters occur within the first 30 Myr, and only 10 per cent occur after 100 Myr. The periastron velocity distribution for all encounters is well described by a modified Maxwell-Bolzmann distribution, and the periastron distance distribution is linear over almost the entire range of distances considered, and flattens off for very close encounters due to strong gravitational focusing. Close encounters with FFPs can perturb existing planetary systems and their debris structures, and they can result in re-capture of FFPs. In addition, these FFP populations may be observed in young star clusters in imaging surveys; a comparison between observations and dynamical predictions may provide clues to the early phases of stellar and planetary dynamics in star clusters.

  5. Kepler-9: a system of multiple planets transiting a Sun-like star, confirmed by timing variations.

    PubMed

    Holman, Matthew J; Fabrycky, Daniel C; Ragozzine, Darin; Ford, Eric B; Steffen, Jason H; Welsh, William F; Lissauer, Jack J; Latham, David W; Marcy, Geoffrey W; Walkowicz, Lucianne M; Batalha, Natalie M; Jenkins, Jon M; Rowe, Jason F; Cochran, William D; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A; Sasselov, Dimitar D; Borucki, William J; Koch, David G; Basri, Gibor; Brown, Timothy M; Caldwell, Douglas A; Charbonneau, David; Dunham, Edward W; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Howell, Steve B; Ciardi, David R; Endl, Michael; Fischer, Debra; Fürész, Gábor; Hartman, Joel D; Isaacson, Howard; Johnson, John A; MacQueen, Phillip J; Moorhead, Althea V; Morehead, Robert C; Orosz, Jerome A

    2010-10-01

    The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

  6. Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Fabrycky, Daniel C.; Ragozzine, Darin; Ford, Eric B.; Steffen, Jason H.; Welsh, William F.; Lissauer, Jack J.; Latham, David W.; Marcy, Geoffrey W.; Walkowicz, Lucianne M.; Batalha, Natalie M.; Jenkins, Jon M.; Rowe, Jason F.; Cochran, William D.; Fressin, Francois; Torres, Guillermo; Buchhave, Lars A.; Sasselov, Dimitar D.; Borucki, William J.; Koch, David G.; Basri, Gibor; Brown, Timothy M.; Caldwell, Douglas A.; Charbonneau, David; Dunham, Edward W.; Gautier, Thomas N.; Geary, John C.; Gilliland, Ronald L.; Haas, Michael R.; Howell, Steve B.; Ciardi, David R.; Endl, Michael; Fischer, Debra; Fürész, Gábor; Hartman, Joel D.; Isaacson, Howard; Johnson, John A.; MacQueen, Phillip J.; Moorhead, Althea V.; Morehead, Robert C.; Orosz, Jerome A.

    2010-10-01

    The Kepler spacecraft is monitoring more than 150,000 stars for evidence of planets transiting those stars. We report the detection of two Saturn-size planets that transit the same Sun-like star, based on 7 months of Kepler observations. Their 19.2- and 38.9-day periods are presently increasing and decreasing at respective average rates of 4 and 39 minutes per orbit; in addition, the transit times of the inner body display an alternating variation of smaller amplitude. These signatures are characteristic of gravitational interaction of two planets near a 2:1 orbital resonance. Six radial-velocity observations show that these two planets are the most massive objects orbiting close to the star and substantially improve the estimates of their masses. After removing the signal of the two confirmed giant planets, we identified an additional transiting super-Earth-size planet candidate with a period of 1.6 days.

  7. Relativistic perturbations for all the planets

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Bretagnon, P.

    1982-01-01

    The relativistic perturbations in the osculating elements of all the planets, due to the theory of General Relativity, are presented where only the gravitational field of the sun is taken into account and the effects are calculated in the post-Newtonian approximation. The relativistic effects are calculated with the requirement that an accuracy of 5 x 10 to the -12th UA be kept over an interval of 1000 years, and are expressed in series form depending on the dynamical time in the isotropic coordinate and standard coordinate systems. The method uses equations derived from the equations of Gauss for the relativistic acceleration. A theory of the motion of Mercury is derived through the addition of the relativistic perturbations to the third-order Newtonian theory of Bretagnon (1981). It is noted that the computer programs used allow any values for the physical parameters Gamma and Beta of the Eddigton-Robertson metric.

  8. Kepler constraints on planets near hot Jupiters

    SciTech Connect

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; /Caltech /Harvard-Smithsonian Ctr. Astrophys.

    2012-05-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  9. Kepler constraints on planets near hot Jupiters

    PubMed Central

    Steffen, Jason H.; Ragozzine, Darin; Fabrycky, Daniel C.; Carter, Joshua A.; Ford, Eric B.; Holman, Matthew J.; Rowe, Jason F.; Welsh, William F.; Borucki, William J.; Boss, Alan P.; Ciardi, David R.; Quinn, Samuel N.

    2012-01-01

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2∶1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history. PMID:22566651

  10. Host Star Evolution for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-04-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  11. Host Star Evolution for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Charbonnel, Corinne; Amard, Louis

    2016-11-01

    With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.

  12. Setting the Stage for Habitable Planets

    PubMed Central

    Gonzalez, Guillermo

    2014-01-01

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe. PMID:25370028

  13. Setting the stage for habitable planets.

    PubMed

    Gonzalez, Guillermo

    2014-01-01

    Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe. PMID:25370028

  14. Kepler constraints on planets near hot Jupiters.

    PubMed

    Steffen, Jason H; Ragozzine, Darin; Fabrycky, Daniel C; Carter, Joshua A; Ford, Eric B; Holman, Matthew J; Rowe, Jason F; Welsh, William F; Borucki, William J; Boss, Alan P; Ciardi, David R; Quinn, Samuel N

    2012-05-22

    We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 d) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 21 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly two-thirds to five times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.

  15. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  16. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-01

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets. PMID:16960000

  17. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  18. Planets migrating into stars: Rates and Signature

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-01-01

    New measurements of the occurrence distribution of planets (POD) make it possible to make the first determination of the rate of planet migration into stars as a function of the strength of stellar tidal dissipation. We show how the period at which there is falloff in the POD due to planets migrating into the star can be used to calculate this rate. We show that it does not take extremely weak tidal dissipation for this rate to be low enough to be supplied by a reasonable number of planets being scattered into the lowest period region. The presence of the shortest period giant planets can be better explained by the ongoing migration of giant planets into stars. The presence of giant planets in period on the order of a day and less had prompted some to conclude that tidal dissipation in stars must necessarily be much weaker for planet mass than for binary star mass companions. However, a flow of less than one planet per thousand stars per gigayear could explain their presence without requiring as much of a difference in tidal dissipation strength in stars for planetary than for stellar mass companions. We show several new analytical expressions describing the rate of evolution of the falloff in the POD, as well as the rate of planet. The question of how strong is the tidal dissipation (the quality factor 'Q') for planet-mass companions may be answered within a few years by a measurable time shift in the transit period. We show that the distribution of remaining planet lifetimes indicates a mass-dependence of the stellar tidal dissipation. The possibility of regular merger of planets with stars has led us to find several correlations of iron abundance in stars with planet parameters, starting with the iron-eccentricity correlation (Taylor 2012, Dawson & Murray-Clay 2013). These correlations change in the presence of a stellar companion. We show that the distribution of planets of iron-rich planets is significantly different from the distribution of iron poor stars in

  19. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  20. Stability of habitable exomoons of circumbinary planets

    NASA Astrophysics Data System (ADS)

    Satyal, Suman; Haghighipour, Nader; Quarles, Billy

    2015-12-01

    Among the currently known Kepler circumbinary planets, three, namely Kepler-453b, Kepler-16b, and Kepler-47c are in the binary habitable zone (HZ). Given the large sizes of these planets, it is unlikely that they would be habitable. However, similar to the giant planets in our solar system, these planets may have large moons, which orbit their host planets while in the HZ. These exomoons, if exist, present viable candidates for habitability. As a condition for habitability, the planet-moon system has to maintain its orbital stability for long time. Usually, the empirical formula by Holeman & Wiegert (1999) is used as a measure of orbital stability in circumbinary systems. However, this formula was obtained by assuming planets to be test particles and therefore does not include possible perturbation of the planet on the binary. In this work, we present results of more realistic calculations of stability of circumbinary planets where the interactions between planets and their central binaries are taken into account. We map the region of stability, which in this case will be specific to each system, and determine the range of the orbital parameters of the moons for which their orbits will be long-term stable.

  1. A Planet Detection Tutorial and Simulator

    NASA Astrophysics Data System (ADS)

    Koch, D.

    2000-12-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional "flat" presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  2. Disc-planet interactions in subkeplerian discs

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2009-11-01

    Context: One class of protoplanetary disc models, the X-wind model, predicts strongly subkeplerian orbital gas velocities, a configuration that can be sustained by magnetic tension. Aims: We investigate disc-planet interactions in these subkeplerian discs, focusing on orbital migration for low-mass planets and gap formation for high-mass planets. Methods: We use linear calculations and nonlinear hydrodynamical simulations to measure the torque and look at gap formation. In both cases, the subkeplerian nature of the disc is treated as a fixed external constraint. Results: We show that, depending on the degree to which the disc is subkeplerian, the torque on low-mass planets varies between the usual type I torque and the one-sided outer Lindblad torque, which is also negative but an order of magnitude stronger. In strongly subkeplerian discs, corotation effects can be ignored, making migration fast and inward. Gap formation near the planet's orbit is more difficult in such discs, since there are no resonances close to the planet accommodating angular momentum transport. The location of the gap is shifted inwards with respect to the planet, leaving the planet on the outside of a surface density depression. Conclusions: Depending on the degree to which a protoplanetary disc is subkeplerian, disc-planet interactions can be very different from the usual Keplerian picture, making these discs in general more hazardous for young planets.

  3. A Planet Detection Tutorial and Simulator

    NASA Technical Reports Server (NTRS)

    Knoch, David; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Detection of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections (currently at about 50) has only heightened the interest in the topic. School children are particularly interested in learning about recent astronomical discoveries. Scientists have the knowledge and responsibility to present this information in both an understandable and interesting format. Most classrooms and homes are now connected to the internet, which can be utilized to provide more than a traditional 'flat' presentation. An interactive software package on planet detection has been developed. The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Terrestrial Planets"; and "A Planet Detection Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program. One can determine the orbit and planet size, the planet's temperature and surface gravity, and finally determine if the planet is habitable. Originally developed for the Macintosh, a web based browser version is being developed.

  4. Characterization and Validation of Transiting Planets in the Kepler and TESS Pipelines

    NASA Astrophysics Data System (ADS)

    Twicken, Joseph; Brownston, Lee; Catanzarite, Joseph; Clarke, Bruce; Cote, Miles; Girouard, Forrest; Li, Jie; McCauliff, Sean; Seader, Shawn; Tenenbaum, Peter; Wohler, Bill; Jenkins, Jon Michael; Batalha, Natalie; Bryson, Steve; Burke, Christopher; Caldwell, Douglas

    2015-08-01

    Light curves for Kepler targets are searched for transiting planet signatures in the Transiting Planet Search (TPS) component of the Science Operations Center (SOC) Processing Pipeline. Targets for which the detection threshold is exceeded are subsequently processed in the Data Validation (DV) Pipeline component. The primary functions of DV are to (1) characterize planets identified in the transiting planet search, (2) search for additional transiting planet signatures in light curves after modeled transit signatures have been removed, and (3) perform a comprehensive suite of diagnostic tests to aid in discrimination between true transiting planets and false positive detections. DV output products include extensive reports by target, one-page report summaries by planet candidate, and tabulated planet model fit and diagnostic test results. The DV products are employed by humans and automated systems to vet planet candidates identified in the pipeline. The final revision of the Kepler SOC codebase (9.3) was released in March 2015. It will be utilized to reprocess the complete Q1-Q17 data set later this year. At the same time, the SOC Pipeline codebase is being ported to support the Transiting Exoplanet Survey Satellite (TESS) Mission. TESS is expected to launch in 2017 and survey the entire sky for transiting exoplanets over a period of two years. We describe the final revision of the Kepler Data Validation component with emphasis on the diagnostic tests and reports. This revision also serves as the DV baseline for TESS. The diagnostic tests exploit the flux (i.e., light curve), centroid and pixel time series associated with each target to facilitate the determination of the true origin of each purported transiting planet signature. Candidate planet detections and DV products for Kepler are delivered to the Exoplanet Archive at the NASA Exoplanet Science Institute (NExScI). The Exoplanet Archive is located at exoplanetarchive.ipac.caltech.edu. Funding for the Kepler

  5. Biases In A Magnitude Limited Versus A Distant Limited Planet Search

    NASA Technical Reports Server (NTRS)

    Koch, David; Borucki, William; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    All methods utilized to conduct a search or survey inevitably have some built-in biases. These biases are often traced to some limitation of the instrument used or some inherent character of the signal being recorded. We address these limitations for various methods used or proposed for planet detection: spectroscopy, astrometry, interferometry, and photometry. For spectroscopy, the turbulence in the photosphere limits the minimum measurable dossier velocity to 3 m/s and hence the minimum planet to star mass ratio, thereby favoring massive close-in planets. Limited available observing time will necessarily introduce additional selection biases in the targets observed and telescope aperture will limit the faintest magnitude stars to be measured; For astrometry, the angular resolution of the instrument along with motions in the photometric center of the star limit the furthest distance for which giant planets can be detected to about 10 pc and favor massive outer orbit planets around low mass non-solar like stars; For imaging interferometry, the minimum angular size of the central null limits both the distance to the star and closeness of the planet to the host star to about 1 AU at 10 pc and thus to the very few solar-like stars within 10 pc. Solar and extra-solar zodiacal emission will limit the minimum size of the detectable planet. For photometry, the inherent variability of the star does not limit the minimum planet size until earth-sized or smaller planets are considered around solar-like stars. The telescope aperture limits the faintest stars that can be monitored. As with spectroscopy, there is no inherent distant limit to the method. After addressing the limiting factors of each method, an estimate is made of the number of planets of various sizes that could be found for each stellar type based on the detection probability and the number of stars that can be searched for planets.

  6. DETECTING THE WIND-DRIVEN SHAPES OF EXTRASOLAR GIANT PLANETS FROM TRANSIT PHOTOMETRY

    SciTech Connect

    Barnes, Jason W.; Cooper, Curtis S.; Showman, Adam P.; Hubbard, William B.

    2009-11-20

    Several processes can cause the shape of an extrasolar giant planet's shadow, as viewed in transit, to depart from circular. In addition to rotational effects, cloud formation, non-homogenous haze production and movement, and dynamical effects (winds) could also be important. When such a planet transits its host star as seen from the Earth, the asphericity will introduce a deviation in the transit light curve relative to the transit of a perfectly spherical (or perfectly oblate) planet. We develop a theoretical framework to interpret planetary shapes. We then generate predictions for transiting planet shapes based on a published theoretical dynamical model of HD189733b. Using these shape models we show that planet shapes are unlikely to introduce detectable light-curve deviations (those >1 x 10{sup -5} of the host star), but that the shapes may lead to astrophysical sources of systematic error when measuring planetary oblateness, transit time, and impact parameter.

  7. Exceptional Stars Origins, Companions, Masses and Planets

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Hansen, Bradley M. S.; Phinney, Sterl; vanKerkwijk, Martin H.; Vasisht, Gautam

    2004-01-01

    As SIM Interdisciplinary Scientist, we will study the formation, nature and planetary companions of the exotic endpoints of stellar evolution. Our science begins with stars evolving from asymptotic branch giants into white dwarfs. We will determine the parallax and orbital inclination of several iron-deficient post-AGB stars, who peculiar abundances and infrared excesses are evidence that they are accreting gas depleted of dust from a circumbinary disk. Measurement of the orbital inclination, companion mass arid parallax will provide critical constraints. One of these stars is a prime candidate for trying nulling observations, which should reveal light reflected from both the circumbinary and Roche disks. The circumbinary disks seem favorable sites for planet formation. Next, we will search for planets around white dwarfs, both survivors froni the main-sequence stage, and ones newly formed from the circumbinary disks of post-AGB binaries or in white dwarf mergers. Moving up in mass, we will measure the orbital reflex of OB/Be companions to pulsars, determine natal kicks and presupernova orbits, and expand the sample of well-determined neutron star masses. We will obtain the parallax of a transient X-ray binary, whose quiescent emission may be thermal emission from the neutron star, aiming for precise measurement of the neutron star radius. Finally, black holes. We will measure the reflex motions of the companion of what appear to be the most massive stellar black holes. The visual orbits will determine natal kicks, and test the assumptions underlying mass estimates made from the radial velocity curves, projected rotation, and ellipsoidal variations. In addition, we will attempt to observe the visual orbit of SS 433, as well as the proper motion of the emission line clumps in its relativistic jets. Additional information is included in the original document.

  8. Characterization of the KOI-94 system with transit timing variation analysis: Implication for the planet-planet eclipse

    SciTech Connect

    Masuda, Kento; Taruya, Atsushi; Suto, Yasushi; Hirano, Teruyuki; Nagasawa, Makiko

    2013-12-01

    The KOI-94 system is a closely packed, multi-transiting planetary system discovered by the Kepler space telescope. It is known as the first system that exhibited a rare event called a 'planet-planet eclipse (PPE)', in which two planets partially overlap with each other in their double-transit phase. In this paper, we constrain the parameters of the KOI-94 system with an analysis of the transit timing variations (TTVs). Such constraints are independent of the radial velocity (RV) analysis recently performed by Weiss and coworkers, and valuable in examining the reliability of the parameter estimate using TTVs. We numerically fit the observed TTVs of KOI-94c, KOI-94d, and KOI-94e for their masses, eccentricities, and longitudes of periastrons, and obtain the best-fit parameters including m{sub c}=9.4{sub −2.1}{sup +2.4} M{sub ⊕}, m{sub d}=52.1{sub −7.1}{sup +6.9} M{sub ⊕}, m{sub e}=13.0{sub −2.1}{sup +2.5} M{sub ⊕}, and e ≲ 0.1 for all the three planets. While these values are mostly in agreement with the RV result, the mass of KOI-94d estimated from the TTV is significantly smaller than the RV value m {sub d} = 106 ± 11 M {sub ⊕}. In addition, we find that the TTV of the outermost planet KOI-94e is not well reproduced in the current modeling. We also present analytic modeling of the PPE and derive a simple formula to reconstruct the mutual inclination of the two planets from the observed height, central time, and duration of the brightening caused by the PPE. Based on this model, the implication of the results of TTV analysis for the time of the next PPE is discussed.

  9. Characterization of the KOI-94 System with Transit Timing Variation Analysis: Implication for the Planet-Planet Eclipse

    NASA Astrophysics Data System (ADS)

    Masuda, Kento; Hirano, Teruyuki; Taruya, Atsushi; Nagasawa, Makiko; Suto, Yasushi

    2013-12-01

    The KOI-94 system is a closely packed, multi-transiting planetary system discovered by the Kepler space telescope. It is known as the first system that exhibited a rare event called a "planet-planet eclipse (PPE)," in which two planets partially overlap with each other in their double-transit phase. In this paper, we constrain the parameters of the KOI-94 system with an analysis of the transit timing variations (TTVs). Such constraints are independent of the radial velocity (RV) analysis recently performed by Weiss and coworkers, and valuable in examining the reliability of the parameter estimate using TTVs. We numerically fit the observed TTVs of KOI-94c, KOI-94d, and KOI-94e for their masses, eccentricities, and longitudes of periastrons, and obtain the best-fit parameters including m_c = 9.4_{-2.1}^{+2.4}\\, M_{\\oplus }, m_d = 52.1_{-7.1}^{+6.9}\\, M_{\\oplus }, m_e = 13.0_{-2.1}^{+2.5}\\, M_{\\oplus }, and e <~ 0.1 for all the three planets. While these values are mostly in agreement with the RV result, the mass of KOI-94d estimated from the TTV is significantly smaller than the RV value m d = 106 ± 11 M ⊕. In addition, we find that the TTV of the outermost planet KOI-94e is not well reproduced in the current modeling. We also present analytic modeling of the PPE and derive a simple formula to reconstruct the mutual inclination of the two planets from the observed height, central time, and duration of the brightening caused by the PPE. Based on this model, the implication of the results of TTV analysis for the time of the next PPE is discussed.

  10. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c

    NASA Astrophysics Data System (ADS)

    Bennett, D. P.; Rhie, S. H.; Udalski, A.; Gould, A.; Tsapras, Y.; Kubas, D.; Bond, I. A.; Greenhill, J.; Cassan, A.; Rattenbury, N. J.; Boyajian, T. S.; Luhn, J.; Penny, M. T.; Anderson, J.; Abe, F.; Bhattacharya, A.; Botzler, C. S.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Perrott, Y. C.; Saito, To.; Sharan, A.; Sullivan, D. J.; Sumi, T.; Suzuki, D.; Tristram, P. J.; Yonehara, A.; Yock, P. C. M.; (The MOA Collaboration; Szymański, M. K.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; The OGLE Collaboration; Allen, W.; DePoy, D.; Gal-Yam, A.; Gaudi, B. S.; Han, C.; Monard, I. A. G.; Ofek, E.; Pogge, R. W.; (The μFUN Collaboration; Street, R. A.; Bramich, D. M.; Dominik, M.; Horne, K.; Snodgrass, C.; Steele, I. A.; (The Robonet Collaboration; Albrow, M. D.; Bachelet, E.; Batista, V.; Beaulieu, J.-P.; Brillant, S.; Caldwell, J. A. R.; Cole, A.; Coutures, C.; Dieters, S.; Dominis Prester, D.; Donatowicz, J.; Fouqué, P.; Hundertmark, M.; Jørgensen, U. G.; Kains, N.; Kane, S. R.; Marquette, J.-B.; Menzies, J.; Pollard, K. R.; Ranc, C.; Sahu, K. C.; Wambsganss, J.; Williams, A.; Zub, M.; (The PLANET Collaboration

    2016-11-01

    We present the analysis of the first circumbinary planet microlensing event, OGLE-2007-BLG-349. This event has a strong planetary signal that is best fit with a mass ratio of q ≈ 3.4 × 10‑4, but there is an additional signal due to an additional lens mass, either another planet or another star. We find acceptable light-curve fits with two classes of models: two-planet models (with a single host star) and circumbinary planet models. The light curve also reveals a significant microlensing parallax effect, which constrains the mass of the lens system to be M L ≈ 0.7 {M}ȯ . Hubble Space Telescope (HST) images resolve the lens and source stars from their neighbors and indicate excess flux due to the star(s) in the lens system. This is consistent with the predicted flux from the circumbinary models, where the lens mass is shared between two stars, but there is not enough flux to be consistent with the two-planet, one-star models. So, only the circumbinary models are consistent with the HST data. They indicate a planet of mass m c = 80 ± 13 {M}\\oplus , orbiting a pair of M dwarfs with masses of M A = 0.41 ± 0.07 and M B = 0.30 ± 0.07, which makes this the lowest-mass circumbinary planet system known. The ratio of the separation between the planet and the center of mass to the separation of the two stars is ∼40, so unlike most of the circumbinary planets found by Kepler, the planet does not orbit near the stability limit.

  11. Securing the Extremely Low-Densities of Low-Mass Planets Characterized by Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2015-12-01

    Transit timing variations (TTVs) provide an excellent tool to characterize the masses and orbits of dozens of small planets, including many at orbital periods beyond the reach of both Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified low-mass planets with surprisingly large radii and low densities (e.g., Kepler-79d, Jontof-Hutter et al. 2014; Kepler-51, Masuda 2014; Kepler-87c, Ofir et al. 2014). Additional low-density, low-mass planets will likely become public before ESS III (Jontof-Hutter et al. in prep). Collectively, these results suggest that very low density planets with masses of 2-6 MEarth are not uncommon in compact multiple planet systems. Some astronomers have questioned whether there could be an alternative interpretation of the TTV observations. Indeed, extraordinary claims require extraordinary evidence. While the physics of TTVs is rock solid, the statistical analysis of Kepler observations can be challenging, due to the complex interactions between model parameters and high-dimensional parameter spaces that must be explored. We summarize recent advances in computational statistics that enable robust characterization of planetary systems using TTVs. We present updated analyses of a few particularly interesting systems and discuss the implications for the robustness of extremely low densities for low-mass planets. Such planets pose an interesting challenge for planet formation theory and are motivating detailed theoretical studies (e.g., Lee & Chiang 2015 and associated ESS III abstracts).

  12. Educational And Public Outreach Software On Planet Detection For The Macintosh (TM)

    NASA Technical Reports Server (NTRS)

    Koch, David; Brady, Victoria; Cannara, Rachel; Witteborn, Fred C. (Technical Monitor)

    1996-01-01

    The possibility of extra-solar planets has been a very popular topic with the general public for years. Considerable media coverage of recent detections has only heightened the interest in the topic. School children are particularly interested in learning about space. Astronomers have the knowledge and responsibility to present this information in both an understandable and interesting format. Since most classrooms and homes are now equipped with computers this media can be utilized to provide more than a traditional "flat" presentation. An interactive "stack" has been developed using Hyperstudio (TM). The major topics include: "1996 - The Break Through Year In Planet Detection"; "What Determines If A Planet Is Habitable?"; "How Can We Find Other Planets (Search Methods)"; "All About the Kepler Mission: How To Find Earth-Sized Planets"; and "A Mission Simulator". Using the simulator, the student records simulated observations and then analyzes and interprets the data within the program stacks to determine the orbit and planet size, the planet's temperature and surface gravity, and finally determines if the planet is habitable. Additional related sections are also included. Many of the figures are animated to assist in comprehension of the material. A set of a dozen lesson plans for the middle school has also been drafted.

  13. Planetary Candidates Observed by Kepler IV: Planet Sample from Q1-Q8 (22 Months)

    NASA Astrophysics Data System (ADS)

    Burke, Christopher J.; Bryson, Stephen T.; Mullally, F.; Rowe, Jason F.; Christiansen, Jessie L.; Thompson, Susan E.; Coughlin, Jeffrey L.; Haas, Michael R.; Batalha, Natalie M.; Caldwell, Douglas A.; Jenkins, Jon M.; Still, Martin; Barclay, Thomas; Borucki, William J.; Chaplin, William J.; Ciardi, David R.; Clarke, Bruce D.; Cochran, William D.; Demory, Brice-Olivier; Esquerdo, Gilbert A.; Gautier, Thomas N., III; Gilliland, Ronald L.; Girouard, Forrest R.; Havel, Mathieu; Henze, Christopher E.; Howell, Steve B.; Huber, Daniel; Latham, David W.; Li, Jie; Morehead, Robert C.; Morton, Timothy D.; Pepper, Joshua; Quintana, Elisa; Ragozzine, Darin; Seader, Shawn E.; Shah, Yash; Shporer, Avi; Tenenbaum, Peter; Twicken, Joseph D.; Wolfgang, Angie

    2014-02-01

    We provide updates to the Kepler planet candidate sample based upon nearly two years of high-precision photometry (i.e., Q1-Q8). From an initial list of nearly 13,400 threshold crossing events, 480 new host stars are identified from their flux time series as consistent with hosting transiting planets. Potential transit signals are subjected to further analysis using the pixel-level data, which allows background eclipsing binaries to be identified through small image position shifts during transit. We also re-evaluate Kepler Objects of Interest (KOIs) 1-1609, which were identified early in the mission, using substantially more data to test for background false positives and to find additional multiple systems. Combining the new and previous KOI samples, we provide updated parameters for 2738 Kepler planet candidates distributed across 2017 host stars. From the combined Kepler planet candidates, 472 are new from the Q1-Q8 data examined in this study. The new Kepler planet candidates represent ~40% of the sample with R P ~ 1 R ⊕ and represent ~40% of the low equilibrium temperature (T eq < 300 K) sample. We review the known biases in the current sample of Kepler planet candidates relevant to evaluating planet population statistics with the current Kepler planet candidate sample.

  14. Equilibrium figures of dwarf planets

    NASA Astrophysics Data System (ADS)

    Rambaux, Nicolas; Chambat, Frederic; Castillo-Rogez, Julie; Baguet, Daniel

    2016-10-01

    Dwarf planets including transneptunian objects (TNO) and Ceres are >500 km large and display a spheroidal shape. These protoplanets are left over from the formation of the solar System about 4.6 billion years ago and their study could improve our knowledge of the early solar system. They could be formed in-situ or migrated to their current positions as a consequence of large-scale solar system dynamical evolution. Quantifying their internal composition would bring constraints on their accretion environment and migration history. That information may be inferred from studying their global shapes from stellar occultations or thermal infrared imaging. Here we model the equilibrium shapes of isolated dwarf planets under the assumption of hydrostatic equilibrium that forms the basis for interpreting shape data in terms of interior structure. Deviations from hydrostaticity can shed light on the thermal and geophysical history of the bodies. The dwarf planets are generally fast rotators spinning in few hours, so their shape modeling requires numerically integration with Clairaut's equations of rotational equilibrium expanded up to third order in a small parameter m, the geodetic parameter, to reach an accuracy better than a few kilometers depending on the spin velocity and mean density. We also show that the difference between a 500-km radius homogeneous model described by a MacLaurin ellipsoid and a stratified model assuming silicate and ice layers can reach several kilometers in the long and short axes, which could be measurable. This type of modeling will be instrumental in assessing hydrostaticity and thus detecting large non-hydrostatic contributions in the observed shapes.

  15. Volatile components and continental material of planets

    NASA Technical Reports Server (NTRS)

    Florenskiy, K. P.; Nikolayeva, O. V.

    1986-01-01

    It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.

  16. Solar Obliquity Induced by Planet Nine

    NASA Astrophysics Data System (ADS)

    Bailey, Elizabeth; Batygin, Konstantin; Brown, Michael E.

    2016-10-01

    The six-degree obliquity of the sun suggests that either an asymmetry was present in the solar system's formation environment, or an external torque has misaligned the angular momentum vectors of the sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin and Brown (2016) have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a m9 = 10-20 mEarth planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of q9 ˜ 250 AU. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the sun's spin axis. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin-orbit misalignment of the solar system.

  17. Our Solar System Features Eight Planets

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Our solar system features eight planets, seen in this artist's diagram. Although there is some debate within the science community as to whether Pluto should be classified as a Planet or a dwarf planet, the International Astronomical Union has decided on the term plutoid as a name for dwarf planets like Pluto.

    This representation is intentionally fanciful, as the planets are depicted far closer together than they really are. Similarly, the bodies' relative sizes are inaccurate. This is done for the purpose of being able to depict the solar system and still represent the bodies with some detail. (Otherwise the Sun would be a mere speck, and the planets even the majestic Jupiter would be far too small to be seen.)

  18. Basaltic volcanism - The importance of planet size

    NASA Technical Reports Server (NTRS)

    Walker, D.; Stolper, E. M.; Hays, J. F.

    1979-01-01

    The volumetrically abundant basalts on the earth, its moon, and the eucrite parent planet all have chemical compositions that are controlled to a large extent by dry, low-pressure, crystal-liquid equilibria. Since this generalization is valid for these three planetary bodies, we infer that it may also apply to the other unsampled terrestrial planets. Other characteristics of basaltic volcanism show variations which appear to be related to planet size: the eruption temperatures, degrees of fractionation, and chemical variety of basalts and the endurance of basaltic volcanism all increase with planet size. Although the processes responsible for chemical differences between basalt suites are known, no simple systematization of the chemical differences between basalts from planet to planet has emerged.

  19. Solar Obliquity Induced by Planet Nine

    NASA Astrophysics Data System (ADS)

    Bailey, Elizabeth; Batygin, Konstantin; Brown, Michael E.

    2016-11-01

    The six-degree obliquity of the Sun suggests that either an asymmetry was present in the solar system’s formation environment, or an external torque has misaligned the angular momentum vectors of the Sun and the planets. However, the exact origin of this obliquity remains an open question. Batygin & Brown have recently shown that the physical alignment of distant Kuiper Belt orbits can be explained by a 5{--}20 {m}\\oplus planet on a distant, eccentric, and inclined orbit, with an approximate perihelion distance of ∼250 au. Using an analytic model for secular interactions between Planet Nine and the remaining giant planets, here, we show that a planet with similar parameters can naturally generate the observed obliquity as well as the specific pole position of the Sun’s spin axis, from a nearly aligned initial state. Thus, Planet Nine offers a testable explanation for the otherwise mysterious spin–orbit misalignment of the solar system.

  20. The SIM PlanetQuest Science Program

    NASA Technical Reports Server (NTRS)

    Edberg, Stephen J.; Traub, Wesley A.; Unwin, Stephen C.; Marr, James C., IV

    2007-01-01

    SIM PlanetQuest (hereafter, just SIM) is a NASA mission to measure the angular positions of stars with unprecedented accuracy. We outline the main astrophysical science programs planned for SIM, and related opportunities for community participation. We focus especially on SIM's ability to detect exoplanets as small as the Earth around nearby stars. The planned synergy between SIM and other planet-finding missions including Kepler and GAIA, and planet-characterizing missions including the James Webb Space Telescope (JWST), Terrestrial Planet Finder--Coronagraph (TPF-C), and Terrestrial Planet Finder--Interferometer (TPF-I), is a key element in NASA's Navigator Program to find Earth-like planets, determine their habitability, and search for signs of life in the universe. SIM's technology development is now complete and the project is proceeding towards a launch in the next decade.

  1. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-10

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M{sub +} from 10 to 20 AU. For large planet masses (M {approx}> M{sub Sat}), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a {approx}< 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence-which is in the opposite sense from that predicted by the simplest scattering models-as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity

  2. Infrared imaging of extrasolar planets

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Tubbs, Eldred F.; Gaiser, Steven L.; Korechoff, Robert P.

    1991-01-01

    An optical system for direct detection, in the infrared, of planets orbiting other stars is described. The proposed system consists of a large aperture (about 16 m) space-based telescope to which is attached a specialized imaging instrument containing a set of optical signal processing elements to suppress diffracted light from the central star. Starlight suppression is accomplished using coronagraphic apodization combined with rotational shearing interferometry. The possibility of designing the large telescope aperture to be of a deployable, multiarm configuration is examined, and it is shown that there is some sacrifice in performance relative to a filled, circular aperture.

  3. Magnetospheres of the outer planets

    SciTech Connect

    Cheng, A.F.

    1986-12-01

    The magnetospheres of the outer planets have been shown by Voyager explorations to strongly interact with the surfaces and atmospheres of their planetary satellites and rings. In the cases of Jupiter, Saturn and Uranus, the processes of charged particle sputtering, neutral gas cloud formation, and rapid plasma injection from the ionization of the neutral clouds, have important implications both for the magnetospheres as a whole and for the surfaces and atmospheres of their satellites. The general methodology employed in these researches has involved comparisons of the planetary magnetospheres in order to identify common physical processes. 16 references.

  4. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  5. Four new planets around giant stars and the mass-metallicity correlation of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Jenkins, J. S.; Brahm, R.; Wittenmyer, R. A.; Olivares E., F.; Melo, C. H. F.; Rojo, P.; Jordán, A.; Drass, H.; Butler, R. P.; Wang, L.

    2016-05-01

    Context. Exoplanet searches have revealed interesting correlations between the stellar properties and the occurrence rate of planets. In particular, different independent surveys have demonstrated that giant planets are preferentially found around metal-rich stars and that their fraction increases with the stellar mass. Aims: During the past six years we have conducted a radial velocity follow-up program of 166 giant stars to detect substellar companions and to characterize their orbital properties. Using this information, we aim to study the role of the stellar evolution in the orbital parameters of the companions and to unveil possible correlations between the stellar properties and the occurrence rate of giant planets. Methods: We took multi-epoch spectra using FEROS and CHIRON for all of our targets, from which we computed precision radial velocities and derived atmospheric and physical parameters. Additionally, velocities computed from UCLES spectra are presented here. By studying the periodic radial velocity signals, we detected the presence of several substellar companions. Results: We present four new planetary systems around the giant stars HIP 8541, HIP 74890, HIP 84056, and HIP 95124. Additionally, we study the correlation between the occurrence rate of giant planets with the stellar mass and metallicity of our targets. We find that giant planets are more frequent around metal-rich stars, reaching a peak in the detection of f = 16.7+15.5-5.9% around stars with [Fe/H] ~ 0.35 dex. Similarly, we observe a positive correlation of the planet occurrence rate with the stellar mass, between M⋆ ~ 1.0 and 2.1 M⊙, with a maximum of f = 13.0+10.1-4.2% at M⋆ = 2.1 M⊙. Conclusions: We conclude that giant planets are preferentially formed around metal-rich stars. In addition, we conclude that they are more efficiently formed around more massive stars, in the stellar mass range of ~1.0-2.1 M⊙. These observational results confirm previous findings for solar

  6. Minor planets: the discovery of minor satellites.

    PubMed

    Binzel, R P; VAN Flandern, T C

    1979-03-01

    The recent confirmation of the discovery of a satellite of the minor planet 532 Herculina indicates that other similar anomalous sightings are probably also due to satellites, which must therefore be numerous and commonplace. There are now 23 candidate satellites for eight minor planets, and no one of these minor planets occulting a star has failed to show evidence of at least one secondary event. Such companions are gravitationally stable but apparently have rapid tidal evolution rates.

  7. Infrared and the search for extrasolar planets

    NASA Technical Reports Server (NTRS)

    Meinel, Aden B.; Meinel, Marjorie P.

    1991-01-01

    Search for evidence concerning the existence of extrasolar planets will involve both indirect detection as well as direct (imaging). Indirect detection may be possible using ground based instrumentation on the Keck telescope, Imaging probably will require an orbiting system. Characterizing other planets for complex molecules will require a large orbiting or lunar-based telescope or inteferometer. Cryogenic infrared techniques appear to be necessary. Planning for a NASA ground and space-based program, Toward Other Planet Systems (TOPS), is proceeding.

  8. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-09-01

    Recent observations of debris discs (DDs), believed to be made up of remnant planetesimals, brought a number of surprises. DD presence does not correlate with the host star's metallicity, and may anticorrelate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here, we explore predictions of the alternative tidal downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high-metallicity stars but release more debris per disruption than their low [M/H] analogues. This predicts no simple relation between DD presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long-term evolution and multifragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  9. Disk's Spiral Arms Point to Possible Planets

    NASA Video Gallery

    Simulations of young stellar systems suggest that planets embedded in a circumstellar disk can produce many distinctive structures, including rings, gaps and spiral arms. This video compares comput...

  10. Detecting Planets Outside The Solar System

    NASA Technical Reports Server (NTRS)

    Pravdo, Steven H.; Terrile, Richard J.; Ftaclas, Christ; Gatewood, George

    1993-01-01

    Report describes proposed Astrometric Imaging Telescope, used to detect planets in orbit around distant stars. Includes executive summary and statement of scientific objectives of Astrometric Imaging Telescope program.

  11. THE STATISTICAL MECHANICS OF PLANET ORBITS

    SciTech Connect

    Tremaine, Scott

    2015-07-10

    The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region of phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.

  12. Direct Imaging of Warm Extrasolar Planets

    SciTech Connect

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  13. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet

  14. Lithium Depletion in Solar Type stars: Lithium and Planet Presence

    NASA Astrophysics Data System (ADS)

    Sousa, S. G.; Santos, N. C.; Israelian, G.; Delgado Mena, E.; Fernandes, J.; Mayor, M.; Udry, S.; Domínguez Cerdeña, C.; Rebolo, R.; Randich, S.

    2011-12-01

    The lithium (Li) abundance measured in the solar atmosphere is 140 times smaller than expected considering the proto-solar value. Furthermore, measurements of Li abundance made for many stars similar to the Sun reveal a large dispersion. These observations have defied the models of light element depletion for decades. We present a strong evidence for a correlation between Li depletion and the presence of planets. This result comes from the analysis of an unbiased sample of solar-analogue stars with and without planets detected, and for which precise spectroscopic stellar parameters were derived in an uniform way. Planet host stars are found to have typically only 1% of the primordial Li abundance while about 50% of the solar analogues without detected planets have on average ten times more Li. In addition, stellar evolutionary models were used to show that differences in stellar mass and age cannot be responsible for the observed correlation. These results suggest that the observed lithium difference is likely linked to some process related to the formation and evolution of planetary systems.

  15. Planet-B: A Japanese Mars aeronomy observer

    NASA Technical Reports Server (NTRS)

    Tsuruda, K.

    1992-01-01

    An introduction is given to a Japanese Mars mission (Planet-B) which is being planned at the Institute of Space and Aeronautical Science (ISAS), Japan. Planet-B aims to study the upper atmosphere of Mars and its interaction with the solar wind. The launch of Planet-B is planned for 1996 on a new launcher, M-L, which is being developed at ISAS. In addition to the interaction with the solar wind, the structure of the Martian upper atmosphere is thought to be controlled by the meteorological condition in the lower atmosphere. The orbit of Planet-B was chosen so that it will pass two important regions, the region where the solar wind interacts with the Martian upper atmosphere and the tail region where ion acceleration is taking place. Considering the drag due to the Martian atmosphere, the periapsis altitude of 150 km and apoapsis of 10 Martian radii are planned. The orbit plane will be nearly parallel to the ecliptic plane. The altitude of the spacecraft will be spin stabilized and its spin axis will be controlled to the point of the earth. The dry weight of the spacecraft will be about 250 kg, including the scientific payload which consists of a magnetometer, plasma instruments, HF sounder, UV imaging spectrometer, and lower atmosphere monitor.

  16. A SYSTEMATIC SEARCH FOR TROJAN PLANETS IN THE KEPLER DATA

    SciTech Connect

    Janson, Markus

    2013-09-10

    Trojans are circumstellar bodies that reside in characteristic 1:1 orbital resonances with planets. While all the trojans in our solar system are small ({approx}<100 km), stable planet-size trojans may exist in extrasolar planetary systems, and the Kepler telescope constitutes a formidable tool to search for them. Here we report on a systematic search for extrasolar trojan companions to 2244 known Kepler Objects of Interest (KOIs), with epicyclic orbital characteristics similar to those of the Jovian trojan families. No convincing trojan candidates are found, despite a typical sensitivity down to Earth-size objects. This fact, however, cannot be used to stringently exclude the existence of trojans in this size range, since stable trojans need not necessarily share the same orbital plane as the planet, and thus may not transit. Following this reasoning, we note that if Earth-sized trojans exist at all, they are almost certainly both present and in principle detectable in the full set of Kepler data, although a very substantial computational effort would be required to detect them. Additionally, we also note that some of the existing KOIs could in principle be trojans themselves, with a primary planet orbiting outside of the transiting plane. A few examples are given for which this is a readily testable scenario.

  17. Stellar rotational periods in the planet hosting open cluster Praesepe

    NASA Astrophysics Data System (ADS)

    Kovács, Géza; Hartman, Joel D.; Bakos, Gáspár Á.; Quinn, Samuel N.; Penev, Kaloyan; Latham, David W.; Bhatti, Waqas; Csubry, Zoltán; de Val-Borro, Miguel

    2014-08-01

    By using the dense coverage of the extrasolar planet survey project HATNet (Hungarian-made Automated Telescope Network), we Fourier analyse 381 high-probability members of the nearby open cluster Praesepe (Beehive/M44/NGC 2632). In addition to the detection of 10 variables (of δ Scuti and other types), we identify 180 rotational variables (including the two known planet hosts). This sample increases the number of known rotational variables in this cluster for spectral classes earlier than M by more than a factor of 3. These stars closely follow a colour/magnitude-period relation from early F to late K stars. We approximate this relation by polynomials for an easier reference to the rotational characteristics in different colours. The total (peak-to-peak) amplitudes of the large majority (94 per cent) of these variables span the range of 0.005-0.04 mag. The periods cover a range from 2.5 to 15 d. These data strongly confirm that Praesepe and the Hyades have the same gyrochronological ages. Regarding the two planet hosts, Pr0211 (the one with the shorter orbital period) has a rotational period that is ˜2 d shorter than the one expected from the main rotational pattern in this cluster. This, together with other examples discussed in the paper, may hint that star-planet interaction via tidal dissipation can be significant in some cases in the rotational evolution of stars hosting hot Jupiters.

  18. Nearby Red Dwarfs are Sexy for Planets and Life

    NASA Astrophysics Data System (ADS)

    Henry, T. J.; Jao, W.-C.; Subasavage, J. P.; RECONS Team

    2005-12-01

    The RECONS group continues to discover many nearby red dwarfs in the southern sky through a combination of proper motion surveys, literature review, and ultimately, our parallax program CTIOPI. Already, we have measured the first accurate parallaxes for 11 of the nearest 100 stellar systems, including four within 5 parsecs of the Sun. These nearby red dwarfs are prime candidates for NASA's Space Interferometry Mission (SIM) because the astrometric perturbations are largest for planets orbiting stars of low mass that are nearby. In addition, new multiple red dwarf systems can be targeted for mass determinations, thereby providing points on a comprehensive mass-luminosity relation for the most populous members of the Galaxy. Recent atmospheric modeling of planets orbiting red dwarfs indicates that even if the planets are tidally locked, heat distribution is highly effective in keeping the worlds balmy over the entire surface. Red dwarfs are therefore "back on the table" as viable hosts of life-bearing planets. Given their ubiquity, red dwarfs are being seriously considered as prime SETI targets, and will allow us to answer not only the question "Are We Alone?" but "Just How Alone Are We?" This work has been supported by the National Science Foundation, NASA's Space Interferometry Mission, and Georgia State University.

  19. Searching for Planets with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen

    2000-01-01

    The Space Interferometry Mission (SIM) will be the first space-based long baseline Michelson interferometer designed for precision astrometry. It will address a wide range of problems in stellar astrophysics and Galactic structure, delivering precision astrometry of stars down to 20 magnitude throughout the entire Galaxy. SIM uses a 10-m Michelson interferometer in Earth-trailing solar orbit to provide 4 microarcsecond (gas) precision astrometry. With a 5-year mission lifetime, SIM will be a powerful tool for discovering planets around nearby stars, through detection of the stellar reflex motion. The astrometric method complements the radial velocity technique which as already yielded many new planets, with an important benefit of directly measuring planetary masses. SIM will have a single-measurement precision of 1 microarcsecond in a frame defined by nearby reference stars, enabling searches for planets with masses as small as a few earth masses around the nearest stars. More massive planets will be detectable to much larger distances. In addition to precision astrometry SIM will also serve an important role as a technology precursor for future astrophysics missions using interferometers. Two technologies demonstrated will be high dynamic-range aperture synthesis imaging at 10-milliarcsec resolution in the optical, and fringe nulling to 10 (exp -4).

  20. Short-period terrestrial planets and radial velocity stellar jitter.

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar jitter is the main limitation to ultra-precise radial velocity (RV) measurements. It currently precludes our ability to detect a planet like the Earth. Short-period terrestrial planets present first the advantage of inducing a stronger RV signal. In addition, the signal produced by these planets have a period completely different than stellar activity. This allows us, when the observational strategy is adequate, to decorrelate the planetary signal from the jitter induced by the star using filtering techniques. I will show the examples of Kepler-78b and Corot-7b, where the amplitude of the planetary signal can be detected, despite the stellar activity jitter that is 5 and 3 times larger, respectively. The cases of Alpha Cen Bb will also be reviewed, with a new reduction of the published data that increases the significance of the planetary signal.This project is funded by ETAEARTH, a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of extrasolar planets can only be fully exploited when analyzed together.

  1. Miscibility Calculations for Water and Hydrogen in Giant Planets

    NASA Astrophysics Data System (ADS)

    Soubiran, François; Militzer, Burkhard

    2015-06-01

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.

  2. MISCIBILITY CALCULATIONS FOR WATER AND HYDROGEN IN GIANT PLANETS

    SciTech Connect

    Soubiran, François; Militzer, Burkhard

    2015-06-20

    We present results from ab initio simulations of liquid water–hydrogen mixtures in the range from 2 to 70 GPa and from 1000 to 6000 K, covering conditions in the interiors of ice giant planets and parts of the outer envelope of gas giant planets. In addition to computing the pressure and the internal energy, we derive the Gibbs free energy by performing a thermodynamic integration. For all conditions under consideration, our simulations predict hydrogen and water to mix in all proportions. The thermodynamic behavior of the mixture can be well described with an ideal mixing approximation. We suggest that a substantial fraction of water and hydrogen in giant planets may occur in homogeneously mixed form rather than in separate layers. The extent of mixing depends on the planet’s interior dynamics and its conditions of formation, in particular on how much hydrogen was present when icy planetesimals were delivered. Based on our results, we do not predict water–hydrogen mixtures to phase separate during any stage of the evolution of giant planets. We also show that the hydrogen content of an exoplanet is much higher if the mixed interior is assumed.

  3. DISENTANGLING PLANETS AND STELLAR ACTIVITY FOR GLIESE 667C

    SciTech Connect

    Robertson, Paul; Mahadevan, Suvrath

    2014-10-01

    Gliese 667C is an M1.5V star with a multi-planet system, including planet candidates in the habitable zone. The exact number of planets in the system is unclear, because the existing radial velocity (RV) measurements are known to contain contributions from stellar magnetic activity. Following our analysis of Gliese 581, we have analyzed the effect of stellar activity on the HARPS/HARPS-TERRA RVs of GJ 667C, finding a significant RV-activity correlation when using the width (FWHM) of the HARPS cross-correlation function to trace the magnetic activity. When we correct for this correlation, we confirm the detections of the previously observed planets b and c in the system, while simultaneously ascribing the RV signal near 90 days ({sup p}lanet d{sup )} to an artifact of the stellar rotation. We are unable to confirm the existence of the additional RV periodicities described in Anglada-Escudé et al. in our activity-corrected data.

  4. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems.

  5. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems. PMID:23604071

  6. Searching for Earth Type Planets

    NASA Astrophysics Data System (ADS)

    Mayor, Michel

    2007-08-01

    In the last twelve years, more than 200 exoplanets have been detected. These discoveries have revealed the impressive diversity of exoplanet orbital properties. The past twelve years have also witnessed a remarkable improvement of the precision of radial velocity measurements with a gain of about a factor 100.Thanks to the HARPS spectrograph installed in 2003 at La Silla Observatory numerous planets with masses as small as a few earth-masses have been detected. Several statistical properties are already emerging and help constraining the formation mechanisms of these systems. Is it possible to expect further significant progresses of Doppler measurements? Such a possibility could be of interest to permit radial velocity follow-up measurements of planetary transit candidates expected from the COROT and KEPLER space missions: the goal being to get a precise determination of mass-radius relations from terrestrial planets to brown dwarfs. Recently, we have been able to get a first insight in the internal composition of a Neptune analogue, from ground based observations. A radial velocity precision at the level of 0.1 m/s does not seem out of reach. With an observing strategy adapted to minimize the influence of the stellar intrinsic variability (magnetic activity, acoustic modes) we should be in position to explore statistical properties of terrestrial planetary systems.

  7. All for the Planet, the Planet for everyone!

    NASA Astrophysics Data System (ADS)

    Drndarski, Marina

    2014-05-01

    The Eco-Musketeers are unique voluntary group of students. They have been established in Belgrade, in Primary school 'Drinka Pavlović'. Since the founding in year 2000, Eco-Musketeers have been involved in peer and citizens education guided by motto: All for the planet, the planet for all! Main goals of this group are spreading and popularization of environmental approach as well as gaining knowledge through collaborative projects and research. A great number of students from other schools in Serbia have joined Eco-Musketeers in observations aiming to better understand the problem of global climate change. In the past several years Eco-Musketeers have also participated in many national and international projects related to the active citizenship and rising the awareness of the importance of biodiversity and environment for sustainable development of society. In this presentation we will show some of the main activities, eco-performances and actions of our organization related to the environment, biodiversity, conservation and recycling, such as: spring cleaning the streets of Belgrade, cleaning the Sava and the Danube river banks, removing insect moth pupae in the area of Lipovica forest near Belgrade. Also, Eco-Musketeers worked on education of employees of Coca-Cola HBC Serbia about energy efficiency. All the time, we have working on raising public awareness of the harmful effects of plastic bags on the environment, too. In order to draw attention on rare and endangered species in Serbia and around the globe, there were several performing street-plays about biodiversity and also the plays about the water ecological footprint. Eco-Musketeers also participated in international projects Greenwave-signs of spring (Fibonacci project), European Schools For A Living Planet (WWF Austria and Erste stiftung) and Eco Schools. The eco dream of Eco-Musketeers is to influence the Government of the Republic of Serbia to determine and declare a 'green habits week'. This should

  8. The Discovery of Extrasolar Planets via Transits

    NASA Astrophysics Data System (ADS)

    Dunham, Edward W.; Borucki, W. J.; Jenkins, J. M.; Batalha, N. M.; Caldwell, D. A.; Mandushev, G.

    2014-01-01

    The goal of detecting extrasolar planets has been part of human thought for many centuries and several plausible approaches for detecting them have been discussed for many decades. At this point in history the two most successful approaches have been the reflex radial velocity and transit approaches. These each have the additional merit of corroborating a discovery by the other approach, at least in some cases, thereby producing very convincing detections of objects that can't be seen. In the transit detection realm the key enabling technical factors were development of: - high quality large area electronic detectors - practical fast optics with wide fields of view - automated telescope systems - analysis algorithms to correct for inadequacies in the instrumentation - computing capability sufficient to cope with all of this This part of the equation is relatively straightforward. The more important part is subliminal, namely what went on in the minds of the proponents and detractors of the transit approach as events unfolded. Three major paradigm shifts had to happen. First, we had to come to understand that not all solar systems look like ours. The motivating effect of the hot Jupiter class of planet was profound. Second, the fact that CCD detectors can be much more stable than anybody imagined had to be understood. Finally, the ability of analysis methods to correct the data sufficiently well for the differential photometry task at hand had to be understood by proponents and detractors alike. The problem of capturing this changing mind-set in a collection of artifacts is a difficult one but is essential for a proper presentation of this bit of history.

  9. Factors Affecting the Habitability of Earth-like Planets

    NASA Astrophysics Data System (ADS)

    Meadows, Victoria; NAI-Virtual Planetary Laboratory Team

    2014-03-01

    Habitability is a measure of an environment's potential to support life. For exoplanets, the concept of habitability can be used broadly - to inform our calculations of the possibility and distribution of life elsewhere - or as a practical tool to inform mission designs and to prioritize specific targets in the search for extrasolar life. Although a planet's habitability does depend critically on the effect of stellar type and planetary semi-major axis on climate balance, work in the interdisciplinary field of astrobiology has identified many additional factors that can affect a planet's environment and its potential ability to support life. Life requires material for metabolism and structures, a liquid medium for chemical transport, and an energy source to drive metabolism and other life processes. Whether a planet's surface or sub-surface can provide these requirements is the result of numerous planetary and astrophysical processes that affect the planet's formation and evolution. Many of these factors are interdependent, and fall into three main categories: stellar effects, planetary effects and planetary system effects. Key abiotic processes affecting the resultant planetary environment include photochemistry (e.g. Segura et al., 2003; 2005), stellar effects on climate balance (e.g. Joshii et al., 2012; Shields et al., 2013), atmospheric loss (e.g. Lopez and Fortney, 2013), and gravitational interactions with the star (e.g. Barnes et al., 2013). In many cases, the effect of these processes is strongly dependent on a specific planet's existing environmental properties. Examples include the resultant UV flux at a planetary surface as a product of stellar activity and the strength of a planet's atmospheric UV shield (Segura et al., 2010); and the amount of tidal energy available to a planet to drive plate tectonics and heat the surface (Barnes et al., 2009), which is in turn due to a combination of stellar mass, planetary mass and composition, planetary orbital

  10. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  11. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  12. Pre-history of planet detections: Focus on transits 1620 - 1995

    NASA Astrophysics Data System (ADS)

    Briot, D.; Schneider, J.; François, P.

    2015-10-01

    The discovery of 51 Peg b has been a wonderful scientific discovery, answering a multi-secular question and opening a extended new domain of astronomical research. We want to recall some old studies, some of them quite forgotten, which have used the same methods that those for planet detection, emphasizing transit method. In addition to an overview of planet search pre-history, some searchs for unknown planets in the Solar System since the seventeenth century will be evoked, as well as the search for exoplanet transits during the nineteenth and the twentieth century. The conclusion will be back to the future.

  13. The Planet in the HR 7162 Binary System Discovered by PHASES Astrometry

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Shao, M.; Hartkopf, W. I.; Boss, A. P.; O'Connell, J.; Fekel, F. C.; Wiktorowicz, S. J.

    2011-01-01

    The now-completed Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) used phase-referenced long-baseline interferometry to monitor 51 binary systems with 35 micro-arcsecond measurement precision, resulting in the high-confidence detection of a planet in the HR 7162 system. The 1.5 Jupiter mass planet is in a 2 AU orbit around one of the stars, whereas the binary itself has a separation of only 19 AU. Despite the close stellar companion, this configuration is expected to be stable, based on dynamic simulations. In the context of our solar system, this is analogous to a Jovian planet just outside of Mars' orbit, with a second star at the distance of Uranus. If this configuration were present during the period of planet formation, the complex gravitational environment created by the stars would seem to disrupt planet formation mechanisms that require long times to complete (thousands of years or more). While it is possible the arrangement resulted from the planet being formed in another environment (a single star or wider binary) after which the system reached its current state via dynamic interactions (star-planet exchange with a binary, or the binary orbit shrinking by interacting with a passing star), the frequency of such interactions is very low. Because the PHASES search only had the sensitivity to rule out Jovian mass companions in 11 of our 51 systems, yet one such system was found, the result indicates either extreme luck or that there is a high frequency of 20 AU binaries hosting planets. The latter interpretation is supported by previous detections of planets in 5-6 additional 20 AU binaries in other surveys (though with less control over the statistics for determining frequency of occurrence). Thus, there is observational support suggesting that a mechanism for rapid Jovian planet formation occurs in nature.

  14. Vetting Kepler planet candidates in the sub-Jovian desert with multiband photometry

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.; Morehead, Robert C.; Ford, Eric B.

    2015-09-01

    We present new multiband transit photometry of three small (Rp ≲ 6 R⊕), short-period (P ≲ 6 d) Kepler planet candidates acquired with the Gran Telescopio Canarias. These observations supplement the results presented in Colón & Ford and Colón, Ford & Morehead, where we used multicolour transit photometry of five Kepler planet candidates to search for wavelength-dependent transit depths and either validate planet candidates or identify eclipsing binary false positives within our sample. In those previous studies, we provided evidence that three targets were false positives and two targets were planets. Here, we present observations that provide evidence supporting a planetary nature for Kepler Object of Interest (KOI) 439.01 and KOI 732.01, and we find that KOI 531.01, a 6 R⊕ planet candidate around an M dwarf, is likely a false positive. We also present a discussion of the purported `sub-Jovian desert' in the orbital period-planet radius plane, which cannot be easily explained by observational bias. Both KOI 439.01 and KOI 732.01 are likely planets located within the so-called desert and should be investigated with further follow-up observations. As only ˜30 of the ˜3600 currently active Kepler planet candidates are located within the sub-Jovian desert, it will be interesting to see if these candidates also survive the vetting process and fill in the gap in the period-radius plane. Confirming planets in this regime will be important for understanding planetary migration and evolution processes, and we urge additional follow-up observations of these planet candidates to confirm their nature.

  15. Planet Candidate Validation and Spin-Orbit Misalignments from Doppler Tomography

    NASA Astrophysics Data System (ADS)

    Johnson, Marshall C.

    2016-01-01

    Short-period planets around intermediate-mass (~1.5-2.5 M⊙ A-mid F type) stars are a largely unexplored region of parameter space. These stars' typically rapid rotation and rotationally broadened spectral lines preclude the use of the precise radial velocity measurements that are typically used to discover planets and confirm transiting planet candidates. Nonetheless, exploring this population is important for constraining models of planet formation and migration. I have been using Doppler tomography to investigate this population. As a planet transits a rotating star, it successively obscures regions of the stellar disk with different radial velocities, resulting in a perturbation to the rotationally broadened line profile; this is the Rossiter-McLaughlin effect. In Doppler tomography, I spectroscopically resolve this perturbation and its movement during the transit. This allows me to not only validate transiting planet candidates, as I can show that the transiting object orbits the target star and is not a blended background eclipsing binary, but also to measure the spin-orbit misalignments of these planets. This is the (sky-projected) angle between the stellar spin and planetary orbital angular momentum vectors, and is a statistical probe of planetary migration; different migration mechanisms predict different distributions of spin-orbit misalignments. In this dissertation talk I will discuss my work to validate Kepler planet candidates around rapidly rotating stars using Doppler tomography, and to measure the spin-orbit misalignments of hot Jupiters discovered by ground-based surveys. I will also discuss the use of Doppler tomography to provide additional characterization of planets and their host stars, such as the detection of planetary orbital precession and stellar differential rotation. Finally, I will highlight the potential of current and future missions such as K2 and TESS to expand our knowledge of planets around intermediate-mass stars.

  16. Newly Discovered Planets Orbiting HD 5319, HD 11506, HD 75784 and HD 10442 from the N2K Consortium

    NASA Astrophysics Data System (ADS)

    Giguere, Matthew J.; Fischer, Debra A.; Payne, Matthew J.; Brewer, John M.; Johnson, John Asher; Howard, Andrew W.; Isaacson, Howard T.

    2015-01-01

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M Jup) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days. Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. Keck time has been granted by NOAO and NASA.

  17. NEWLY DISCOVERED PLANETS ORBITING HD 5319, HD 11506, HD 75784 AND HD 10442 FROM THE N2K CONSORTIUM

    SciTech Connect

    Giguere, Matthew J.; Fischer, Debra A.; Brewer, John M.; Payne, Matthew J.; Johnson, John Asher; Howard, Andrew W.; Isaacson, Howard T.

    2015-01-20

    Initially designed to discover short-period planets, the N2K campaign has since evolved to discover new worlds at large separations from their host stars. Detecting such worlds will help determine the giant planet occurrence at semi-major axes beyond the ice line, where gas giants are thought to mostly form. Here we report four newly discovered gas giant planets (with minimum masses ranging from 0.4 to 2.1 M {sub Jup}) orbiting stars monitored as part of the Next 2000 target stars (N2K) Doppler Survey program. Two of these planets orbit stars already known to host planets: HD 5319 and HD 11506. The remaining discoveries reside in previously unknown planetary systems: HD 10442 and HD 75784. The refined orbital period of the inner planet orbiting HD 5319 is 641 days. The newly discovered outer planet orbits in 886 days. The large masses combined with the proximity to a 4:3 mean motion resonance make this system a challenge to explain with current formation and migration theories. HD 11506 has one confirmed planet, and here we confirm a second. The outer planet has an orbital period of 1627.5 days, and the newly discovered inner planet orbits in 223.6 days. A planet has also been discovered orbiting HD 75784 with an orbital period of 341.7 days. There is evidence for a longer period signal; however, several more years of observations are needed to put tight constraints on the Keplerian parameters for the outer planet. Lastly, an additional planet has been detected orbiting HD 10442 with a period of 1043 days.

  18. Improving health aid for a better planet: The planning, monitoring and evaluation tool (PLANET)

    PubMed Central

    Sridhar, Devi; Car, Josip; Chopra, Mickey; Campbell, Harry; Woods, Ngaire; Rudan, Igor

    2015-01-01

    Background International development assistance for health (DAH) quadrupled between 1990 and 2012, from US$ 5.6 billion to US$ 28.1 billion. This generates an increasing need for transparent and replicable tools that could be used to set investment priorities, monitor the distribution of funding in real time, and evaluate the impact of those investments. Methods In this paper we present a methodology that addresses these three challenges. We call this approach PLANET, which stands for planning, monitoring and evaluation tool. Fundamentally, PLANET is based on crowdsourcing approach to obtaining information relevant to deployment of large–scale programs. Information is contributed in real time by a diverse group of participants involved in the program delivery. Findings PLANET relies on real–time information from three levels of participants in large–scale programs: funders, managers and recipients. At each level, information is solicited to assess five key risks that are most relevant to each level of operations. The risks at the level of funders involve systematic neglect of certain areas, focus on donor’s interests over that of program recipients, ineffective co–ordination between donors, questionable mechanisms of delivery and excessive loss of funding to “middle men”. At the level of managers, the risks are corruption, lack of capacity and/or competence, lack of information and /or communication, undue avoidance of governmental structures / preference to non–governmental organizations and exclusion of local expertise. At the level of primary recipients, the risks are corruption, parallel operations / “verticalization”, misalignment with local priorities and lack of community involvement, issues with ethics, equity and/or acceptability, and low likelihood of sustainability beyond the end of the program’s implementation. Interpretation PLANET is intended as an additional tool available to policy–makers to prioritize, monitor and evaluate

  19. STARS DO NOT EAT THEIR YOUNG MIGRATING PLANETS: EMPIRICAL CONSTRAINTS ON PLANET MIGRATION HALTING MECHANISMS

    SciTech Connect

    Plavchan, Peter

    2013-06-01

    The discovery of ''hot Jupiters'' very close to their parent stars confirmed that Jovian planets migrate inward via several potential mechanisms. We present empirical constraints on planet migration halting mechanisms. We compute model density functions of close-in exoplanets in the orbital semi-major axis-stellar mass plane to represent planet migration that is halted via several mechanisms, including the interior 1:2 resonance with the magnetospheric disk truncation radius, the interior 1:2 resonance with the dust sublimation radius, and several scenarios for tidal halting. The models differ in the predicted power-law dependence of the exoplanet orbital semi-major axis as a function of stellar mass, and thus we also include a power-law model with the exponent as a free parameter. We use a Bayesian analysis to assess the model success in reproducing empirical distributions of confirmed exoplanets and Kepler candidates that orbit interior to 0.1 AU. Our results confirm a correlation of the halting distance with stellar mass. Tidal halting provides the best fit to the empirical distribution of confirmed Jovian exoplanets at a statistically robust level, consistent with the Kozai mechanism and the spin-orbit misalignment of a substantial fraction of hot Jupiters. We can rule out migration halting at the interior 1:2 resonances with the magnetospheric disk truncation radius and the interior 1:2 resonance with the dust disk sublimation radius, a uniform random distribution, and a distribution with no dependence on stellar mass. Note that our results do not rule out Type-II migration, but rather eliminate the role of a circumstellar disk in stopping exoplanet migration. For Kepler candidates, which have a more restricted range in stellar mass compared to confirmed planets, we are unable to discern between the tidal dissipation and magnetospheric disk truncation braking mechanisms at a statistically significant level. The power-law model favors exponents in the range of

  20. Can CMB Experiments Find Planet Nine?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent studies have identified signs of an unseen, distant ninth planet in our solar system. How might we find the elusive Planet Nine? A team of scientists suggests the key might be cosmology experiments.AHypothetical PlanetOrbits of six distant Kuiper-belt objects. Their clustered perihelia and orbital orientations suggest they may have been shepherded by a massive object, hypothesized to be Planet Nine. [Caltech/Robert Hurt]Early this year, a study was published that demonstrated that the clustered orbits of distant Kuiper belt objects (and several other features of our solar system) can be explained by the gravitational tug of a yet-undiscovered planet. This hypothetical Planet Nine is predicted to be a giant planet similar to Neptune or Uranus, with a mass of more than ~10 Earthmasses, currently orbiting ~700 AU away.In a recent study, a team of scientists led by Nicolas Cowan (McGill University in Canada) has estimated the blackbody emission expected from Planet Nine. The team proposes how we might be able to search for this distant body using its heat signature.Heat from an Icy WorldCowan and collaborators first estimate Planet Nines effective temperature, based on the solar flux received at ~700 AU and assuming its internal heating is similar to Uranus or Neptune. They find that Planet Nines effective temperature would likely be an icy ~3050 K, corresponding to a blackbody peak at 50100 micrometers.Search space for Planet Nine. Based on its millimeter flux and annual parallax motion, several current and future cosmology experiments may be able to detect it. Experiments resolution ranges are shown with blue boxes. [Cowan et al. 2016]How can we detect an object withemission that peaks in this range? Intriguingly, cosmology experiments monitoring the cosmic microwave background (CMB) radiation are optimized for millimeter flux. At a wavelength of 1mm, Cowan and collaborators estimate that Planet Nine would have a very detectable flux level of ~30 mJy. The

  1. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in

  2. ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS

    SciTech Connect

    Laughlin, Gregory; Crismani, Matteo

    2011-03-01

    We present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii. Our model radii are drawn from previously published calculations of coreless giant planets that have attained their asymptotic radii, and which have been tabulated for a range of planet masses and equilibrium temperatures. (We report a two-dimensional polynomial fitting function that accurately represents the models.) As expected, the model radii provide a statistically significant improvement over a null hypothesis that the sizes of giant planets are completely independent of mass and effective temperature. As is well known, however, fiducial models provide an insufficient explanation; the planetary radius anomalies, R{identical_to}R{sub obs}-R{sub pred}, are strongly correlated with planetary equilibrium temperature. We find that the radius anomalies have a best-fit dependence, R{proportional_to}T{sub eff}{sup {alpha}}, with {alpha} = 1.4 {+-} 0.6. Incorporating this relation into the model radii leads to substantially less scatter in the radius correlation. The extra temperature dependence represents an important constraint on theoretical models for hot Jupiters. Using simple scaling arguments, we find support for the hypothesis of Batygin and Stevenson that this correlation can be attributed to a planetary heating mechanism that is mediated by magnetohydrodynamic coupling between the planetary magnetic field and near-surface flow that is accompanied by ohmic dissipation at adiabatic depth. Additionally, we find that the temperature dependence is likely too strong to admit kinetic heating as the primary source of anomalous energy generation within the majority of the observed transiting planets.

  3. Star-planet connection through metallicity

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Israelian, G.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correi, A. C. M.; Oshagh, M.

    2014-07-01

    We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database (Santos et al. 2013) to study the relation between stellar metallicity and position of planets in the period-mass diagram. Using this large sample we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈ 10 M⊕ to ≈ 4 MJup. Moreover, Earth-like planets orbiting metal-rich stars always show shorter periods (≤20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. Our results suggest that the planets in the P-MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker depending on the metallicity of the respective system. Most probably planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems.

  4. Formation and Dynamics of Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    2016-05-01

    The discovery of more than a dozen transiting circumbinary planets provides new constraints on the planet formation and migration processes in circumbinary disks and also raises a number of puzzles. I will discuss several recent works related to circumbinary planets and disks. (1) New long-duration hydro simulations of circumbinary disks (R.Miranda, D.Lai and D.Munoz 2016). The simulations reveal that the inner circumbinary disk may develop appreciable eccentricity and precesseses coherently -- these features are bound to have a strong impact on planet-disk interaction. (2) The disruption of planetary orbits through evection resonances with an external companion (W.Xu and D.Lai 2016a). This may help explain the lack of transiting planets around very compact stellar binaries (D.Munoz and D.Lai 2015). (3) The stability of mean-motion resonance capture as planets migrate inwards in a circumbinary disk. This relates to the pile-up of planets near the stability limit as observed in the sample of transiting circumbinary planets (W.Xu and D.Lai 2016b).

  5. Habitability of planets around red dwarf stars.

    PubMed

    Heath, M J; Doyle, L R; Joshi, M M; Haberle, R M

    1999-08-01

    Recent models indicate that relatively moderate climates could exist on Earth-sized planets in synchronous rotation around red dwarf stars. Investigation of the global water cycle, availability of photosynthetically active radiation in red dwarf sunlight, and the biological implications of stellar flares, which can be frequent for red dwarfs, suggests that higher plant habitability of red dwarf planets may be possible.

  6. The planets Uranus, Neptune, and Pluto (1971)

    NASA Technical Reports Server (NTRS)

    Palluconi, F. D.

    1972-01-01

    Design criteria relating to spacecraft intended to investigate the planets of Uranus, Neptune, and Pluto are presented. Assessments were made of the potential effects of environmental properties on vehicle performance. Pertinent data on the mass, radius, shape, mean density, rotational pole location, and mean orbital elements for the three planets are given in graphs and tables.

  7. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  8. Our Planets at a Glance. Information Summaries.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch.

    People have gazed up at the cosmos for thousands of years and wondered about the wanderers of the heavens: the planets. The past 20 years have been the golden age of planetary exploration because of many expeditions, most notably the Voyager and other unmanned space craft. This document is a summary of the information known about the planets of…

  9. THE STATISTICS OF MULTI-PLANET SYSTEMS

    SciTech Connect

    Tremaine, Scott; Dong Subo

    2012-04-15

    We describe statistical methods for measuring the exoplanet multiplicity function (the fraction of host stars containing a given number of planets) and inclination distribution from transit and radial-velocity (RV) surveys. The analysis is based on the approximation of separability-that the distribution of planetary parameters in an n-planet system is the product of identical 1-planet distributions. We review the evidence that separability is a valid approximation for exoplanets and conclude that it captures many, but not all, of the known characteristics of multi-planet systems. We show how to relate the observable multiplicity function in surveys with similar host-star populations but different sensitivities. We also show how to correct for geometrical selection effects to derive the multiplicity function from transit surveys if the distribution of relative inclinations is known. Applying these tools to the Kepler transit survey and to RV surveys, we find that (1) the Kepler data alone do not constrain the mean inclination of multi-planet systems; even spherical distributions are allowed by the data but only if a small fraction of host stars contain large planet populations ({approx}> 30); (2) comparing the Kepler and RV surveys shows that the mean inclination of multi-planet systems is less than 5 Degree-Sign ; and (3) the multiplicity function of the Kepler planets is not well determined by the present data.

  10. PLANETS NEAR MEAN-MOTION RESONANCES

    SciTech Connect

    Petrovich, Cristobal; Malhotra, Renu; Tremaine, Scott E-mail: renu@lpl.arizona.edu

    2013-06-10

    The multiple-planet systems discovered by the Kepler mission exhibit the following feature: planet pairs near first-order mean-motion resonances prefer orbits just outside the nominal resonance, while avoiding those just inside the resonance. We explore an extremely simple dynamical model for planet formation, in which planets grow in mass at a prescribed rate without orbital migration or dissipation. We develop an analytic version of this model for two-planet systems in two limiting cases: the planet mass grows quickly or slowly relative to the characteristic resonant libration time. In both cases, the distribution of systems in period ratio develops a characteristic asymmetric peak-trough structure around the resonance, qualitatively similar to that observed in the Kepler sample. We verify this result with numerical integrations of the three-body problem. We show that for the 3 : 2 resonance, where the observed peak-trough structure is strongest, our simple model is consistent with the observations for a range of mean planet masses 20-100 M{sub Circled-Plus }. This predicted mass range is higher-by at least a factor of three-than the range expected from the few Kepler planets with measured masses, but part of this discrepancy could be due to oversimplifications in the dynamical model or uncertainties in the planetary mass-radius relation.

  11. Observations of Extrasolar Planet Transits: What's next?

    NASA Astrophysics Data System (ADS)

    Rauer, H.

    2014-03-01

    Transits of extrasolar planets are a goldmine for our understanding of the physical nature of planets beyond the Solar System. Measurements of radii from transit observations combined with mass determinations from radial velocity spectroscopy, or transit timing variations, have provided the first indications to the planetary composition and interior structure. It turns out that planets show a much richer diversity than found in our own planetary system, considering e.g. the so-called 'super-Earths', 'mini-Neptunes', and inflated giant planets. Transiting exoplanets also allow for spectroscopic observations of their atmospheres, either during transit or near secondary eclipse. Exoplanets showing transits have therefore been identified as key observables, not only for planet detection, but in particular for investigating further planetary nature. As a result, a new generation of instruments (space- and groundbased) for exoplanet transit observations is already in the construction phase and is planned for the near future. Most of these target specifically stars bright enough for spectroscopic follow-up observations, a èlesson learned' from past transit surveys. A clear goal for future investigations of habitable planets is the detection and characterization of terrestrial planets which potentially could harbor life. This talk will review the status and in particular the future of transit observations, with a focus on rocky planets in the habitable zone of their host stars.

  12. Rocky Planet Formation: Quick and Neat

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Najita, Joan R.; Bromley, Benjamin C.

    2016-11-01

    We reconsider the commonly held assumption that warm debris disks are tracers of terrestrial planet formation. The high occurrence rate inferred for Earth-mass planets around mature solar-type stars based on exoplanet surveys (∼20%) stands in stark contrast to the low incidence rate (≤2%–3%) of warm dusty debris around solar-type stars during the expected epoch of terrestrial planet assembly (∼10 Myr). If Earth-mass planets at au distances are a common outcome of the planet formation process, this discrepancy suggests that rocky planet formation occurs more quickly and/or is much neater than traditionally believed, leaving behind little in the way of a dust signature. Alternatively, the incidence rate of terrestrial planets has been overestimated, or some previously unrecognized physical mechanism removes warm dust efficiently from the terrestrial planet region. A promising removal mechanism is gas drag in a residual gaseous disk with a surface density ≳10‑5 of the minimum-mass solar nebula.

  13. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    the Earth's motion can be excluded. A second complication arises from the fact that for Earth-bound telescopes, the visibility of a particular star changes in the course of the year. This creates `windows of opportunity', i.e. certain times when a given star can best be observed. That leads to a tendency to observe and re-observe the star when the planet is in the same part of its orbit. The full variation in radial velocity will therefore only be revealed after a sufficiently long time span has elapsed, covering several revolutions of the planet around the central star. More planets in the iota Hor system? The comparatively high scatter of the data points from the best fitting radial velocity curve presents an additional puzzle. While the accuracy of these measurements was determined as ± 17 m/sec (for other, similar stars, with and without known planets, an even higher precision of ± 14 m/sec was found with the same instrument), the scatter of the measurements around the mean velocity curve is higher, about ± 27 m/sec. This indicates that the discovered planet cannot be the whole story. There are two possible explanations for this additional variability. Either there is a second planet with another period in the same system, or activity on the surface of the star causes slight changes in its spectrum, influencing the velocity measurements. There are in fact indications that iota Hor is more active than the Sun, hence making the second explanation quite plausible. If so, it appears that the new planet is orbiting around a relatively young star, since such stars are typically more active than older ones like the Sun. Follow-up observations One of the next steps during the investigation of iota Hor will therefore be to get clues to its age. In any case, it is important to learn more about the properties of planetary orbits around young stars, in order to improve the theory of star and planet formation. After an upgrade to a spectral resolution more than twice as

  14. Faint Satellites of Outer Planets

    NASA Astrophysics Data System (ADS)

    Veillet, C.

    1982-03-01

    In astronomy, as in other matters, the charm 01 novelty is one of the important lactors that govern the choice 01 the observations. How many objects saw suddenly many eyes or kinds of detectors looking at them, before linding again, some months or years later, their sidereal quietness! ... However, it is often after a long time of regular observations that they confide a (small) part 01 their secrets. The laint satellites 01 planets don't transgress this fortunately approximative rule. The deliciency in observations during many consecutive years makes the determination 01 their motion very difficult, and it is olten too late to make up lor lost time. We shall try to i1lustrate this lact in the next lines using the observations of the systems of Saturn, Uranus and Neptune we made in April 1981 on the DanishESO 1.5-m reflector.

  15. Journey to a Star Rich with Planets

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Journey to a Star Rich with Planets

    This artist's animation takes us on a journey to 55 Cancri, a star with a family of five known planets - the most planets discovered so far around a star besides our own.

    The animation begins on Earth, with a view of the night sky and 55 Cancri (flashing dot), located 41 light-years away in the constellation Cancer. It then zooms through our solar system, passing our asteroids and planets, until finally arriving at the outskirts of 55 Cancri.

    The first planet to appear is the farthest out from the star -- a giant planet, probably made of gas, with a mass four times that of Jupiter. This planet orbits its star every 14 years, similar to Jupiter's 11.9-year orbit.

    As the movie continues, the three inner planets are shown, the closest of which is about 10 to 13 times the mass of Earth with an orbital period of less than three days.

    Zooming out, the animation highlights the newest member of the 55 Cancri family - a massive planet, likely made of gas, water and rock, about 45 times the mass of Earth and orbiting the star every 260 days. This planet is the fourth out from the star, and lies in the system's habitable zone (green). A habitable zone is the place around a star where liquid water would persist. Though the newest planet probably has a thick gaseous envelope, astronomers speculate that it could have one or more moons. In our own solar system, moons are common, so it seems likely that they also orbit planets in other solar systems. If such moons do exist, and if they are as large as Mars or Earth, astronomers speculate that they would retain atmospheres and surface liquid water that might make interesting environments for the development of life.

    The animation ends with a comparison between 55 Cancri and our solar system.

    The colors of the illustrated planets were chosen to resemble those of our own solar

  16. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  17. DENSITY AND ECCENTRICITY OF KEPLER PLANETS

    SciTech Connect

    Wu Yanqin; Lithwick, Yoram

    2013-07-20

    We analyze the transit timing variations (TTV) obtained by the Kepler mission for 22 sub-Jovian planet pairs (19 published, 3 new) that lie close to mean motion resonances. We find that the TTV phases for most of these pairs lie close to zero, consistent with an eccentricity distribution that has a very low root-mean-squared value of e {approx} 0.01; but about a quarter of the pairs possess much higher eccentricities, up to e {approx} 0.1-0.4. For the low-eccentricity pairs, we are able to statistically remove the effect of eccentricity to obtain planet masses from TTV data. These masses, together with those measured by radial velocity, yield a best-fit mass-radius relation M {approx} 3 M{sub Circled-Plus }(R/R{sub Circled-Plus }). This corresponds to a constant surface escape velocity of {approx}20 km s{sup -1}. We separate the planets into two distinct groups: ''mid-sized'' (those greater than 3 R{sub Circled-Plus }) and 'compact' (those smaller). All mid-sized planets are found to be less dense than water and therefore must contain extensive H/He envelopes that are comparable in mass to that of their cores. We argue that these planets have been significantly sculpted by photoevaporation. Surprisingly, mid-sized planets, a minority among Kepler candidates, are discovered exclusively around stars more massive than 0.8 M{sub Sun }. The compact planets, on the other hand, are often denser than water. Combining our density measurements with those from radial velocity studies, we find that hotter compact planets tend to be denser, with the hottest ones reaching rock density. Moreover, hotter planets tend to be smaller in size. These results can be explained if the compact planets are made of rocky cores overlaid with a small amount of hydrogen, {<=}1% in mass, with water contributing little to their masses or sizes. Photoevaporation has exposed bare rocky cores in cases of the hottest planets. Our conclusion that these planets are likely not water worlds contrasts

  18. Chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1992-01-01

    Various aspects were studied of past or present chemistry in the atmospheres of the outer planets and their satellites using lab simulations. Three areas were studied: (1) organic chemistry induced by kinetically hot hydrogen atoms in the region of Jupiter's atmosphere containing the ammonia cirrus clouds; (2) the conversion of NH3 into N2 by plasmas associated with entry of meteors and other objects into the atmosphere of early Titan; and (3) the synthesis of simple hydrocarbons and HCN by lightning in mixtures containing N2, CH4, and NH3 representing the atmospheres of Titan and the outer planets. The results showed that: (1) hot H2 atoms formed from the photodissociation of NH3 in Jupiter's atmosphere could account for some of the atmospheric chemistry in the ammonia cirrus cloud region; (2) the thermalization of hot H2 atoms in atmospheres predominated by molecular H is not as rapid as predicted by elastic collision theory; (3) the net quantum loss of NH3 in the presence of a 200 fold excess of H2 is 0.02, much higher than was expected from the amount of H2 present; (4) the conversion of NH3 into N2 in plasmas associated with infalling meteors is very efficient and rapid, and could account for most of the N2 present on Titan; (5) the yields of C2H2 and HCN from lightning induced chemistry in mixtures of CH4 and N2 is consistent with quenched thermodynamic models of the discharge core; and (6) photolysis induced by the UV light emitted by the gases in the hot plasmas may account for some, if not most, of the excess production of C2H6 and the more complex hydrocarbons.

  19. First light of the VLT planet finder SPHERE. IV. Physical and chemical properties of the planets around HR8799

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.; Zurlo, A.; Baudino, J. L.; Lucas, P.; Mesa, D.; Maire, A.-L.; Vigan, A.; Galicher, R.; Homeier, D.; Marocco, F.; Gratton, R.; Chauvin, G.; Allard, F.; Desidera, S.; Kasper, M.; Moutou, C.; Lagrange, A.-M.; Antichi, J.; Baruffolo, A.; Baudrand, J.; Beuzit, J.-L.; Boccaletti, A.; Cantalloube, F.; Carbillet, M.; Charton, J.; Claudi, R. U.; Costille, A.; Dohlen, K.; Dominik, C.; Fantinel, D.; Feautrier, P.; Feldt, M.; Fusco, T.; Gigan, P.; Girard, J. H.; Gluck, L.; Gry, C.; Henning, T.; Janson, M.; Langlois, M.; Madec, F.; Magnard, Y.; Maurel, D.; Mawet, D.; Meyer, M. R.; Milli, J.; Moeller-Nilsson, O.; Mouillet, D.; Pavlov, A.; Perret, D.; Pujet, P.; Quanz, S. P.; Rochat, S.; Rousset, G.; Roux, A.; Salasnich, B.; Salter, G.; Sauvage, J.-F.; Schmid, H. M.; Sevin, A.; Soenke, C.; Stadler, E.; Turatto, M.; Udry, S.; Vakili, F.; Wahhaj, Z.; Wildi, F.

    2016-03-01

    Context. The system of fourplanets discovered around the intermediate-mass star HR8799 offers a unique opportunity to test planet formation theories at large orbital radii and to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R ~ 30) spectra of HR8799 d and e with the SPHERE instrument (Paper III). Aims: In this paper (Paper IV), we aim to use these spectra and available photometry to determine how they compare to known objects, what the planet physical properties are, and how their atmospheres work. Methods: We compare the available spectra, photometry, and spectral energy distribution (SED) of the planets to field dwarfs and young companions. In addition, we use the extinction from corundum, silicate (enstatite and forsterite), or iron grains likely to form in the atmosphere of the planets to try to better understand empirically the peculiarity of their spectrophotometric properties. To conclude, we use three sets of atmospheric models (BT-SETTL14, Cloud-AE60, Exo-REM) to determine which ingredients are critically needed in the models to represent the SED of the objects, and to constrain their atmospheric parameters (Teff, log g, M/H). Results: We find that HR8799d and e properties are well reproduced by those of L6-L8 dusty dwarfs discovered in the field, among which some are candidate members of young nearby associations. No known object reproduces well the properties of planets b and c. Nevertheless, we find that the spectra and WISE photometry of peculiar and/or young early-T dwarfs reddened by submicron grains made of corundum, iron, enstatite, or forsterite successfully reproduce the SED of these planets. Our analysis confirms that only the Exo-REM models with thick clouds fit (within 2σ) the whole set of spectrophotometric datapoints available for HR8799 d and e for Teff = 1200 K, log g in the range 3.0-4.5, and M/H = +0.5. The

  20. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere. PMID:20307182

  1. Dynamics and Chemistry of Planet Construction

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-03-01

    Sophisticated calculations of how planetesimals assembled into the terrestrial planets can be tested by using models of the chemistry of the solar nebula. Jade Bond (previously at University of Arizona and now at the Planetary Science Institute, Tucson, AZ), Dante Lauretta (University of Arizona) and Dave O'Brien (Planetary Sciences Institute) combined planetary accretion simulations done by O'Brien, Alessandro Morbidelli (Observatoire de Nice, France), and Hal Levison (Southwest Research Institute, Boulder) with calculations of the solar nebula chemistry as a function of time and distance from the Sun to determine the overall chemical composition of the planets formed in the simulations. They then compared the simulated planets with the compositions of Earth and Mars. The simulated planets have chemical compositions similar to real planets, indicating that the accretion calculations are reasonable. Questions remain about the accretion of water and other highly volatile compounds, including C and N, which are essential for life.

  2. Subsolidus convective cooling histories of terrestrial planets

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Cassen, P.; Young, R. E.

    1979-01-01

    The subsolidus convective cooling histories of terrestrial planets evolving from hot initial states are investigated quantitatively. A simple analytic model simulating average heat flux from a vigorously convecting mantle and incorporating a mantle viscosity proportional to mantle temperature and a lithosphere which thickens as the planet cools is employed. Heat flux from the convecting mantle is calculated on the basis of a power law relation between Nusselt number and Rayleigh number. The temperature distribution in the lithosphere is assumed to be linear throughout the cooling history of the planet. Cooling histories have been determined for the earth, Mars, Mercury and the moon and the mantle temperature decreases, mantle viscosity increases and decreases of heat flux to the surface and to the base of the lithosphere and of Nusselt and Rayleigh numbers are illustrated for each planet. It is found that primordial heat can contribute substantially to the present surface heat flux of a planet.

  3. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  4. Tidal friction in close-in planets

    NASA Astrophysics Data System (ADS)

    Rodríguez, Adrián; Ferraz-Mello, Sylvio; Hussmann, Hauke

    2008-05-01

    We use Darwin's theory (Darwin, 1880) to derive the main results on the orbital and rotational evolution of a close-in companion (exoplanet or planetary satellite) due to tidal friction. The given results do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tide harmonics (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the study of the synchronization of the planetary rotation in the two possible final states for a non-zero eccentricity : (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) the capture into a 1:1 spin-orbit resonance (true synchronization), which is only possible if an additional torque exists acting in opposition to the tidal torque. Results are given under the assumption that this additional torque is produced by a non-tidal permanent equatorial asymmetry of the planet. The indirect tidal effects and some non-tidal effects due to that asymmetry are considered. For sake of comparison with other works, the results obtained when tidal lags are assumed proportional to the corresponding tidal wave frequencies are also given.

  5. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  6. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  7. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  8. A HIGH-ECCENTRICITY COMPONENT IN THE DOUBLE-PLANET SYSTEM AROUND HD 163607 AND A PLANET AROUND HD 164509

    SciTech Connect

    Giguere, Matthew J.; Fischer, Debra A.; Spronck, Julien; Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard T.; Johnson, John A.; Henry, Gregory W.; Wright, Jason T.; Hou Fengji

    2012-01-01

    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 {+-} 0.02 days, a semi-amplitude of 51.1 {+-} 1.4 m s{sup -1}, an eccentricity of 0.73 {+-} 0.02, and a derived minimum mass of M{sub P} sin i = 0.77 {+-} 0.02 M{sub Jup}. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 {+-} 2.{sup 0}0; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 {+-} 0.02 years, an orbital eccentricity of 0.12 {+-} 0.06, and a semi-amplitude of 40.4 {+-} 1.3 m s{sup -1}. The minimum mass is M{sub P} sin i = 2.29 {+-} 0.16 M{sub Jup}. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 {+-} 3.8 days and an eccentricity of 0.26 {+-} 0.14. The semi-amplitude of 14.2 {+-} 2.7 m s{sup -1} implies a minimum mass of 0.48 {+-} 0.09 M{sub Jup}. The radial velocities (RVs) of HD 164509 also exhibit a residual linear trend of -5.1 {+-} 0.7 m s{sup -1} year{sup -1}, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to submillimagnitude levels on their RV periods. This provides strong support for planetary reflex motion as the cause of the RV variations.

  9. Orbital and physical properties of planets and their hosts: new insights on planet formation and evolution

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Figueira, P.; Santos, N. C.; Mortier, A.; Mordasini, C.; Delgado Mena, E.; Sousa, S. G.; Correia, A. C. M.; Israelian, G.; Oshagh, M.

    2013-12-01

    Aims: We explore the relations between physical and orbital properties of planets and properties of their host stars to identify the main observable signatures of the formation and evolution processes of planetary systems. Methods: We used a large sample of FGK dwarf planet-hosting stars with stellar parameters derived in a homogeneous way from the SWEET-Cat database to study the relation between stellar metallicity and position of planets in the period-mass diagram. We then used all the radial-velocity-detected planets orbiting FGK stars to explore the role of planet-disk and planet-planet interaction on the evolution of orbital properties of planets with masses above 1 MJup. Results: Using a large sample of FGK dwarf hosts we show that planets orbiting metal-poor stars have longer periods than those in metal-rich systems. This trend is valid for masses at least from ≈10 M⊕ to ≈4 MJup. Earth-like planets orbiting metal-rich stars always show shorter periods (fewer than 20 days) than those orbiting metal-poor stars. However, in the short-period regime there are a similar number of planets orbiting metal-poor stars. We also found statistically significant evidence that very high mass giants (with a mass higher than 4 MJup) have on average more eccentric orbits than giant planets with lower mass. Finally, we show that the eccentricity of planets with masses higher than 4 MJup tends to be lower for planets with shorter periods. Conclusions: Our results suggest that the planets in the P - MP diagram are evolving differently because of a mechanism that operates over a wide range of planetary masses. This mechanism is stronger or weaker, depending on the metallicity of the respective system. One possibility is that planets in metal-poor disks form farther out from their central star and/or they form later and do not have time to migrate as far as the planets in metal-rich systems. The trends and dependencies obtained for very high mass planetary systems suggest

  10. THE GEMINI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND DEBRIS DISK STARS

    SciTech Connect

    Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Ftaclas, Christ; Chun, Mark; Biller, Beth A.; Hayward, Thomas L.; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; De Gouveia Dal Pino, Elisabete M.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; and others

    2013-08-20

    We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known {beta} Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a {>=}5 M{sub Jup} planet beyond 80 AU, and <21% of debris disk stars have a {>=}3 M{sub Jup} planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d {sup 2} N/dMda{proportional_to}m {sup {alpha}} a {sup {beta}}, where m is planet mass and a is orbital semi-major axis (with a maximum value of a{sub max}). We find that {beta} < -0.8 and/or {alpha} > 1.7. Likewise, we find that {beta} < -0.8 and/or a{sub max} < 200 AU. For the case where the planet frequency rises sharply with mass ({alpha} > 1.7), this occurs because all the planets detected to date have masses above 5 M{sub Jup}, but planets of lower mass could easily have been detected by our search. If we ignore the {beta} Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a {>=}3 M{sub Jup} planet beyond 10 AU, and {beta} < -0.8 and/or {alpha} < -1.5. Likewise, {beta} < -0.8 and/or a{sub max} < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet

  11. Double Planet Meets Triple Star

    NASA Astrophysics Data System (ADS)

    2002-08-01

    High-Resolution VLT Image of Pluto Event on July 20, 2002 A rare celestial phenomenon involving the distant planet Pluto has occurred twice within the past month. Seen from the Earth, this planet moved in front of two different stars on July 20 and August 21, respectively, providing observers at various observatories in South America and in the Pacific area with a long awaited and most welcome opportunity to learn more about the tenuous atmosphere of that cold planet. On the first date, a series of very sharp images of a small sky field with Pluto and the star was obtained with the NAOS-CONICA (NACO) adaptive optics (AO) camera mounted on the ESO VLT 8.2-m YEPUN telescope at the Paranal Observatory. With a diameter of about 2300 km, Pluto is about six times smaller than the Earth. Like our own planet, it possesses a relatively large moon, Charon , measuring 1200 km across and circling Pluto at a distance of about 19,600 km once every 6.4 days. In fact, because of the similarity of the two bodies, the Pluto-Charon system is often referred to as a double planet . At the current distance of nearly 4,500 million km from the Earth, Pluto's disk subtends a very small angle in the sky, 0.107 arcsec. It is therefore very seldom that Pluto - during its orbital motion - passes exactly in front of a comparatively bright star. Such events are known as "occultations" , and it is difficult to predict exactly when and where on the Earth's surface they are visible. Stellar occultations When Pluto moves in front of a star, it casts a "shadow" on the Earth's surface within which an observer cannot see the star, much like the Earth's Moon hides the Sun during a total solar eclipse. During the occultation event, Pluto's "shadow" also moves across the Earth's surface. The width of this shadow is equal to Pluto's diameter, i.e. about 2300 km. One such occultation event was observed in 1988, and two others were expected to occur in 2002, according to predictions published in 2000 by

  12. Magnetic activity of planet-hosting stars

    NASA Astrophysics Data System (ADS)

    Poppenhaeger, Katja

    2011-05-01

    Magnetic activity in cool stars is a widely observed phenomenon, however it is still far from being understood. How fundamental stellar parameters like mass and rotational period quantitatively cause a stellar magnetic field which manifests itself in features such as spots, flares and high-energy coronal emission is a lively area of research in solar and stellar astrophysics. Especially for planet-hosting stars, stellar activity profiles are very interesting as exoplanets are affected by high-energy radiation, both at the time of planet formation as well as during the further lifetime of a star-planet system. In extreme cases, the atmosphere of a planet very close to its host star can be strongly heated by the stellar X-ray and EUV emission and finally escape the planet's gravitational attraction, so that the atmosphere of the planet evaporates over time. Theoretically, planets can also affect their host star's magnetic activity. In analogy to processes in binary stars which lead to enhanced - both overall and periodically varying - activity levels, also giant planets might influence the stellar activity by tidal or magnetic interaction processes, however on a weaker level than in binaries. Some indications for such interactions exist from chromospheric measurements in stars with Hot Jupiters. In this thesis I investigate the magnetic activity of planet-hosting stars and especially possible effects from star-planet interactions with an emphasis on stellar coronae in X-rays. I tested a complete sample of all known planet-hosting stars within 30 pc distance from the Sun for correlations of stellar X-ray properties with planetary parameters. A significant correlation exists between the stellar X-ray luminosity and the product of planetary mass and inverse semimajor axis. However, this could be traced back to a selection effect introduced by planetary detection methods. For stars in the solar neighborhood, planets are mainly detected by radial velocity shifts in the

  13. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  14. Long-Term Stability of Planets in the Alpha Centauri System

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; Quarles, Billy

    2015-01-01

    The alpha Centauri system is billions of years old, so planets are only expected to be found in regions where their orbits are long-lived. We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales, and we map the positions in the sky plane where planets on stable orbits about either stellar component may appear. We confirm the qualitative results of Wiegert & Holman (Astron. J. 113, 1445, 1997) regarding the approximate size of the regions of stable orbits of a single planet, which are larger for retrograde orbits relative to the binary than for pro-grade orbits. Additionally, we find that mean motion resonances with the binary orbit leave an imprint on the limits of orbital stability, and the effects of the Lidov-Kozai mechanism are also readily apparent. Overall, orbits of a single planet in the habitable zones near the plane of the binary are stable, whereas high-inclination orbits are short-lived. However, even well within regions where single planets are stable, multiple planet systems must be significantly more widely-spaced than they need to be around an isolated star in order to be long-lived.

  15. Planets and Stars under the Magnifying Glass

    SciTech Connect

    Hazi, A U

    2007-02-12

    Looking out to the vastness of the night sky, stargazers often ponder questions about the universe, many wondering if planets like ours can be found somewhere out there. But teasing out the details in astronomical data that point to a possible Earth-like planet is exceedingly difficult. To find an extrasolar planet--a planet that circles a star other than the Sun--astrophysicists have in the past searched for Doppler shifts, changes in the wavelength emitted by an object because of its motion. When an astronomical object moves toward an observer on Earth, the light it emits becomes higher in frequency and shifts to the blue end of the spectrum. When the object moves away from the observer, its light becomes lower in frequency and shifts to the red end. By measuring these changes in wavelength, astrophysicists can precisely calculate how quickly objects are moving toward or away from Earth. When a giant planet orbits a star, the planet's gravitational pull on the star produces a small (meters-per-second) back-and-forth Doppler shift in the star's light. Using the Doppler-shift technique, astrophysicists have identified 179 planets within the Milky Way galaxy. However, most of these are giant gas planets, similar in size to Jupiter and Saturn, and they orbit parent stars that are much closer to them than the Sun is to Earth. Planets similar in size to Earth have also been found, but they, too, are so close to their suns that they would be much hotter than Earth and too hot for life to exist. In 2005, an international collaboration of astronomers working with telescope networks throughout the Southern Hemisphere uncovered clues to a small, rocky or icy planet similar to Earth. The new planet, designated ogLE-2005-BLg-290-Lb, is the farthest planet from our solar system detected to date. The discovery was made by the Probing Lensing Anomalies network (PLAnET) using microlensing--a technique developed nearly two decades ago by Livermore astrophysicists as part of the

  16. The Role of Tides in Known Multi-Planet Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first known extrasolar planet system, upsilon Andromedae, was discovered in 1999. The number of stars known to possess more than one planet has been growing rapidly since then. The dynamical interactions among such planets can be quite strong. These interactions can excite the orbital eccentricities of planets, even planets orbiting very close to their stars. Stellar tides can damp the eccentricities of such close-in planets, removing dynamical energy from the system and ultimately affecting the motions of all of the planets. These and other effects of tides in extrasolar multi-planet systems will be discussed.

  17. Survival of habitable planets in unstable planetary systems

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Davies, Melvyn B.; Johansen, Anders

    2016-09-01

    Many observed giant planets lie on eccentric orbits. Such orbits could be the result of strong scatterings with other giant planets. The same dynamical instability that produces these scatterings may also cause habitable planets in interior orbits to become ejected, destroyed, or be transported out of the habitable zone. We say that a habitable planet has resilient habitability if it is able to avoid ejections and collisions and its orbit remains inside the habitable zone. Here we model the orbital evolution of rocky planets in planetary systems where giant planets become dynamically unstable. We measure the resilience of habitable planets as a function of the observed, present-day masses and orbits of the giant planets. We find that the survival rate of habitable planets depends strongly on the giant planet architecture. Equal-mass planetary systems are far more destructive than systems with giant planets of unequal masses. We also establish a link with observation; we find that giant planets with present-day eccentricities higher than 0.4 almost never have a habitable interior planet. For a giant planet with an present-day eccentricity of 0.2 and semimajor axis of 5 AU orbiting a Sun-like star, 50% of the orbits in the habitable zone are resilient to the instability. As semimajor axis increases and eccentricity decreases, a higher fraction of habitable planets survive and remain habitable. However, if the habitable planet has rocky siblings, there is a significant risk of rocky planet collisions that would sterilize the planet.

  18. Our Magnetic Planet (Arthur Holmes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Laj, Carlo

    2015-04-01

    resolution measurements. With this equipment we intensively worked on sedimentary sequences, focusing on those with high deposition rates. We successively constructed two paleointensity stacks, first NAPIS-75 (from cores in the North Atlantic), then a more global stack, GLOPIS-75. We could show that the main part of the fluctuations in 14C atmospheric concentration arises from changes in the geomagnetic dipole intensity modulating the flux of cosmic rays at the origin of the 14C production in the upper atmosphere. Finally, the GLOPIS record, augmented with volcanic data, has allowed a reconstruction of the absolute geomagnetic field intensity for the last 75 kyr with a unique precision in both the intensity and the age model. This reconstruction shows that the Laschamp and the Mono Lake excursions are two distinct events separated by a period of 7 kyr when the intensity recovered to almost non-transitional values. The present rate of decrease of the Earth dipole appears consistent with an impeding reversal or excursion, rather than with a simple fluctuation not related to a polarity change. Considered together with other results from different authors, this leads to the still unanswered question: are we witnessing the beginning of a polarity change of the geomagnetic field?

  19. Lectures on the planets - The terrestrial planets and life

    NASA Astrophysics Data System (ADS)

    Blamont, J.

    The appearance of life on earth and the question of life on Mars and Venus are considered. The orbital and atmospheric characteristics of the planets are presented in tables, and it is inferred from the contrast between actual and equilibrium concentrations of gases in the earth's atmosphere that biological activity has created and maintained the atmosphere as we know it. The surface temperature and atmosphere of Venus exclude the development of life. The results of Viking biological experiments are discussed in detail, and it is concluded that no active life exists on Mars today. Morphological features and atmospheric models suggest that, for some period about three billion years ago, Mars was completely covered by liquid H2O and had mild surface temperatures maintained by the greenhouse effect of an atmosphere rich in CO2, NH3, and H2O. Hence small life forms may have arisen and could now exist in a dormant state, frozen in ice layers 1-3 km beneath the surface. The reactivation of these hypothetical organisms by the melting of the Martian polar caps could occur in 100,000 years at the earliest (as a result of changes in obliquity), barring human attempts to alter the atmosphere for colonization purposes.

  20. Rocky Planets Basking In The Warmth of Other Suns

    NASA Astrophysics Data System (ADS)

    Johnson, J. A.

    2015-12-01

    Just four years ago the prospect of finding rocky planets around other stars was still the subject of science fiction—none had been found and reasonable estimates put us decades away from such momentous discoveries. All of that has changed very recently on the heels of the extraordinarily successful NASA Kepler mission. I will provide an overview of Kepler science and the new view it has provided us on the demographics of exoplanets throughout the Galaxy. In addition to the statistics of exoplanets, I will also show highlights from the many unusual individual discoveries that have expanded our understanding of planet formation and allowed us to view our Solar System within a much broader context than ever before.

  1. Strategy for exploration of the outer planets: 1986-1996

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past decade COMPLEX has published three strategy reports which, taken together, encompass the entire planetary system and recommend a coherent program of planetary exploration. The highest priority for outer planet exploration during the next decade is intensive study of Saturn (the planet, satellites, rings, and magnetosphere) as a system. The Committee additionally recommends that NASA engage in the following supporting activities: increased support of laboratory and theoretical studies; pursuit of earth-based and earth-orbital observations; commitment to continued operation of productive spacecraft; implementation of the instrument development plan as appropriate for the outer solar system; studies of deep atmospheric probes; development of penetrators or other hard landers; development of radiation-hardened spacecraft; and development of low-thrust propulsion systems. Longer-term objectives include exploration and intensive study of: the Uranus and Neptune systems; planetology of the Galilean satellites and Titan; and the inner Jovian system.

  2. A New Way to Confirm Planet Candidates

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    What was the big deal behind the Kepler news conference yesterday? Its not just that the number of confirmed planets found by Kepler has more than doubled (though thats certainly exciting news!). Whats especially interesting is the way in which these new planets were confirmed.Number of planet discoveries by year since 1995, including previous non-Kepler discoveries (blue), previous Kepler discoveries (light blue) and the newly validated Kepler planets (orange). [NASA Ames/W. Stenzel; Princeton University/T. Morton]No Need for Follow-UpBefore Kepler, the way we confirmed planet candidates was with follow-up observations. The candidate could be validated either by directly imaging (which is rare) or obtaining a large number radial-velocity measurements of the wobble of the planets host star due to the planets orbit. But once Kepler started producing planet candidates, these approaches to validation became less feasible. A lot of Kepler candidates are small and orbit faint stars, making follow-up observations difficult or impossible.This problem is what inspired the development of whats known as probabilistic validation, an analysis technique that involves assessing the likelihood that the candidates signal is caused by various false-positive scenarios. Using this technique allows astronomers to estimate the likelihood of a candidate signal being a true planet detection; if that likelihood is high enough, the planet candidate can be confirmed without the need for follow-up observations.A breakdown of the catalog of Kepler Objects of Interest. Just over half had previously been identified as false positives or confirmed as candidates. 1284 are newly validated, and another 455 have FPP of1090%. [Morton et al. 2016]Probabilistic validation has been used in the past to confirm individual planet candidates in Kepler data, but now Timothy Morton (Princeton University) and collaborators have taken this to a new level: they developed the first code thats designed to do fully

  3. A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star

    NASA Astrophysics Data System (ADS)

    David, Trevor J.

    2016-10-01

    Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals - the building blocks of planets - are produced within the first million years of a star's life. A prominent question is: how early can one find fully formed planets like those frequently detected on short orbital periods around mature stars? Some theories suggest the in situ formation of planets close to their host stars is unlikely and the existence of such planets is evidence for large scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report on a newly-born, transiting planet orbiting its star every 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times Jupiter (at 99.7 per cent confidence), with a true mass likely to be within a factor of several of Neptune's. The 5-10 million year old star has a tenuous dust disk extending outwards from about 2 times the Earth-Sun separation, in addition to the large planet located at less than one-twentieth the Earth-Sun separation.

  4. Survival of planets around shrinking stellar binaries

    NASA Astrophysics Data System (ADS)

    Munoz, Diego Jose; Lai, Dong

    2015-12-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. We present new results (PNAS 112, 30, p 9264) on the orbital evolution of planets around binaries undergoing orbital decay by this "LK+tide" mechanism. From secular and N-body calculations, we show how planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Either outcome can explain these planets' elusiveness to detection. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer specific predictions as to what their orbital configurations should be like.

  5. The size distribution of inhabited planets

    NASA Astrophysics Data System (ADS)

    Simpson, Fergus

    2016-02-01

    Earth-like planets are expected to provide the greatest opportunity for the detection of life beyond the Solar system. However, our planet cannot be considered a fair sample, especially if intelligent life exists elsewhere. Just as a person's country of origin is a biased sample among countries, so too their planet of origin may be a biased sample among planets. The magnitude of this effect can be substantial: over 98 per cent of the world's population live in a country larger than the median. In the context of a simple model where the mean population density is invariant to planet size, we infer that a given inhabited planet (such as our nearest neighbour) has a radius r < 1.2r⊕ (95 per cent confidence bound). We show that this result is likely to hold not only for planets hosting advanced life, but also for those which harbour primitive life forms. Further, inferences may be drawn for any variable which influences population size. For example, since population density is widely observed to decline with increasing body mass, we conclude that most intelligent species are expected to exceed 300 kg.

  6. Detecting planets around stars in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Covone, G.; de Ritis, R.; Dominik, M.; Marino, A. A.

    2000-05-01

    The only way to detect planets around stars at distances gtrsim several kpc is by (photometric or astrometric) microlensing (mu L) observations. In this paper, we show that the capability of photometric mu L extends to the detection of signals caused by planets around stars in nearby galaxies (e.g. M31) and that there is no other method that can achieve this. Due to the large crowding, mu L experiments towards M31 can only observe the high-magnification part of a lensing light curve. Therefore, the dominating channel for mu L signals by planets is in distortions near the peak of high-magnification events as discussed by Griest & Safizadeh (\\cite{GS98}). We calculate the probability to detect planetary anomalies for mu L experiments towards M31 and find that jupiter-like planets around stars in M31 can be detected. Though the characterization of the planet(s) involved in this signal will be difficult, the absence of such signals can yield strong constraints on the abundance of jupiter-like planets.

  7. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  8. Light from Red-Hot Planet

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This figure charts 30 hours of observations taken by NASA's Spitzer Space Telescope of a strongly irradiated exoplanet (an planet orbiting a star beyond our own). Spitzer measured changes in the planet's heat, or infrared light.

    The lower graph shows precise measurements of infrared light with a wavelength of 8 microns coming from the HD 80606 stellar system. The system consists of a sun-like star and a planetary companion on an extremely eccentric, comet-like orbit. The geometry of the planet-star encounter is shown in the upper part of the figure.

    As the planet swung through its closest approach to the star, the Spitzer observations indicated that it experienced very rapid heating (as shown by the red curve). Just before close approach, the planet was eclipsed by the star as seen from Earth, allowing astronomers to determine the amount of energy coming from the planet in comparison to the amount coming from the star.

    The observations were made in Nov. of 2007, using Spitzer's infrared array camera. They represent a significant first for astronomers, opening the door to studying changes in atmospheric conditions of planets far beyond our own solar system.

  9. Biomarkers of extrasolar planets and their observability

    NASA Astrophysics Data System (ADS)

    Selsis, Franck; Paillet, Jimmy; Allard, France

    The first space-borne instruments able to detect and characterize extrasolar terrestrial planets, Darwin (ESA) and TPF-C (Terrestrial Planet Finder-Coronograph, NASA), should be launched at the end of the next decade. Beyond the challenge of planet detection itself, the ability to measure mid-infrared (Darwin) and visible (TPF-C) spectra at low resolution will allow us to characterize the exoplanets discovered. The spectral analysis of these planets will extend the field of planetary science beyond the Solar System to the nearby Universe: It will give access to certain planetary properties (albedo, brightness temperature, radius) and reveal the presence of atmospheric compounds, which, together with the radiative budget of the planet, will provide the keys to understanding how the climate system works on these worlds. If terrestrial planets are sufficiently abundant, these missions will collect data for numerous planetary systems of different ages and orbiting different types of stars. Theories for the formation, evolution and habitability of the terrestrial planets will at last face the test observation. The most fascinating perspective offered by these space observatories is the ability to detect spectral signatures indicating biological activity. In this chapter, we review and discuss the concept of extrasolar biosignatures or biomarkers. We focus mainly on the identification of oxygen-rich atmospheres through the detection of O2 and O3 features, addressing also the case of other possible biomarkers and indicators of habitability.

  10. First light of the Gemini Planet Imager

    DOE PAGES

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; et al

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a singlemore » 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0+0.8–0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.« less

  11. First light of the Gemini Planet Imager

    PubMed Central

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-01-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  12. First light of the Gemini Planet imager.

    PubMed

    Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-09-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017. PMID:24821792

  13. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  14. First light of the Gemini Planet imager.

    PubMed

    Macintosh, Bruce; Graham, James R; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B R; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J Kent; Wiktorowicz, Sloane; Wolff, Schuyler

    2014-09-01

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 10(6) at 0.75 arcseconds and 10(5) at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of [Formula: see text] near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.

  15. First light of the Gemini Planet Imager

    SciTech Connect

    Macintosh, Bruce; Graham, James R.; Ingraham, Patrick; Konopacky, Quinn; Marois, Christian; Perrin, Marshall; Poyneer, Lisa; Bauman, Brian; Barman, Travis; Burrows, Adam S.; Cardwell, Andrew; Chilcote, Jeffrey; De Rosa, Robert J.; Dillon, Daren; Doyon, Rene; Dunn, Jennifer; Erikson, Darren; Fitzgerald, Michael P.; Gavel, Donald; Goodsell, Stephen; Hartung, Markus; Hibon, Pascale; Kalas, Paul; Larkin, James; Maire, Jerome; Marchis, Franck; Marley, Mark S.; McBride, James; Millar-Blanchaer, Max; Morzinski, Katie; Norton, Andrew; Oppenheimer, B. R.; Palmer, David; Patience, Jennifer; Pueyo, Laurent; Rantakyro, Fredrik; Sadakuni, Naru; Saddlemyer, Leslie; Savransky, Dmitry; Serio, Andrew; Soummer, Remi; Sivaramakrishnan, Anand; Song, Inseok; Thomas, Sandrine; Wallace, J. Kent; Wiktorowicz, Stone; Wolff, Schuyler

    2014-05-12

    The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0+0.8–0.4 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. In conclusion, the observations give a 4% probability of a transit of the planet in late 2017.

  16. Extrasolar planets and Their Parent Stars

    NASA Astrophysics Data System (ADS)

    Israelian, Garik

    2010-11-01

    Extrasolar planetas (exoplanets), or planets orbiting stars other than our own Sun, are a relatively new field of the astronomical and planetary sciences. After the discovery of Pluto in 1930, planet-finding activities appeared to have reached an end for the foreseeable future. Several brown dwarfs have been discovered between 1930 and 1993 orbiting other solar-type star. Brown dwarfs (or "failed stars") are low-mass celestial objects (M?10MJUP) that formed by stellar processes but did not obtain the critical mass required to sustain hydrogen burning within their core. Other claims for planetary detections were also made during the period 1944 - 1970 but were never verified or were later shown to be false, produced by timing artifacts or instrumentation errors. The first confirmed detection of an extrasolar planet occurred in 1992 when two bodies were found to be orbiting the millisecond pulsar PSR 1257+12 (Wolszczan and Frail, 1992). The first detection of an extrasolar planet orbiting a solar-type star occurred in 1994 with the claim of a Jupiter-type planet orbiting 51 Pegasi (Mayor and Queloz, 1995). As of January 2010, we currently know of 429 planets orbiting solar-type stars The vast majority of these detections have occurred via the radial velocity method (Udry & Santos 2007), although other methods such as that of transiting photometry and microlensing may become increasingly important in future planet searches as we seek to detect terrestrial-sized planetary bodies and utilize space- based observing programs.

  17. Imagine Moving Off the Planet

    NASA Technical Reports Server (NTRS)

    Elfrey, Priscilla R.

    2006-01-01

    Moving off the planet will be a defining moment of this century as landing on the Moon was in the last. For that to happen for humans to go where humans cannot go-- simulation is the sole solution. NASA supports simulation for life-cycle activities: design, analysis, test, checkout, operations, review and training. We contemplate time spans of a century and more, teams dispersed to different planets and the need for systems that endure or adapt as missions, teams and technology change. Without imagination such goals are impossible. But with imagination we can go outside our present perception of reality to think about and take action on what has been, is and, especially, what might be. Consciously maturing an imagined, possibly workable, idea through framing it to optimization to design, and building the product provides us with a new approach to innovation and simulation fidelity. We address options, analyze, test and make improvements in how we think and work. Each step includes increasingly exact information about costs, schedule, who will be needed, where, when and how. NASA i integrating such thinking into its Exploration Product Realization Hierarchy for simulation and analysis, test and verification, and stimulus response goals. Technically NASA follows a timeline of studies, analysis, definition, design, development and operations with concurrent documentation. We have matched this Product Realization Hierarchy with a continuum from image to realization that incorporates commitment, current and needed research and communication to ensure superior and creative problem solving as well as advances in simulation. One result is a new approach to collaborative systems. Another is a distributed observer network prototyped using game engine technology bringing advanced 3-D simulation of a simulation to the desktop enabling people to develop shared consensus of its meaning. Much of the value of simulation comes from developing in people their ability to make good

  18. SECULAR BEHAVIOR OF EXOPLANETS: SELF-CONSISTENCY AND COMPARISONS WITH THE PLANET-PLANET SCATTERING HYPOTHESIS

    SciTech Connect

    Timpe, Miles; Barnes, Rory; Kopparapu, Ravikumar; Raymond, Sean N.; Greenberg, Richard; Gorelick, Noel

    2013-09-15

    If mutual gravitational scattering among exoplanets occurs, then it may produce unique orbital properties. For example, two-planet systems that lie near the boundary between circulation and libration of their periapses could result if planet-planet scattering ejected a former third planet quickly, leaving one planet on an eccentric orbit and the other on a circular orbit. We first improve upon previous work that examined the apsidal behavior of known multiplanet systems by doubling the sample size and including observational uncertainties. This analysis recovers previous results that demonstrated that many systems lay on the apsidal boundary between libration and circulation. We then performed over 12,000 three-dimensional N-body simulations of hypothetical three-body systems that are unstable, but stabilize to two-body systems after an ejection. Using these synthetic two-planet systems, we test the planet-planet scattering hypothesis by comparing their apsidal behavior, over a range of viewing angles, to that of the observed systems and find that they are statistically consistent regardless of the multiplicity of the observed systems. Finally, we combine our results with previous studies to show that, from the sampled cases, the most likely planetary mass function prior to planet-planet scattering follows a power law with index -1.1. We find that this pre-scattering mass function predicts a mutual inclination frequency distribution that follows an exponential function with an index between -0.06 and -0.1.

  19. THE EFFECT OF PLANET-PLANET SCATTERING ON THE SURVIVAL OF EXOMOONS

    SciTech Connect

    Gong Yanxiang; Zhou Jilin; Xie Jiwei; Wu Xiaomei E-mail: yxgong@nju.edu.cn

    2013-05-20

    Compared to the giant planets in the solar system, exoplanets have many remarkable properties, such as the prevalence of giant planets on eccentric orbits and the presence of hot Jupiters. Planet-planet scattering (PPS) between giant planets is a possible mechanism to interpret the above and other observed properties. If the observed giant planet architectures are indeed outcomes of PPS, such a drastic dynamical process must affect their primordial moon systems. In this Letter, we discuss the effect of PPS on the survival of exoplanets' regular moons. From an observational viewpoint, some preliminary conclusions are drawn from the simulations. (1) PPS is a destructive process to the moon systems; single planets on eccentric orbits are not ideal moon-sea