Science.gov

Sample records for additional observational constraints

  1. The Probabilistic Admissible Region with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Roscoe, C.; Hussein, I.; Wilkins, M.; Schumacher, P.

    The admissible region, in the space surveillance field, is defined as the set of physically acceptable orbits (e.g., orbits with negative energies) consistent with one or more observations of a space object. Given additional constraints on orbital semimajor axis, eccentricity, etc., the admissible region can be constrained, resulting in the constrained admissible region (CAR). Based on known statistics of the measurement process, one can replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilistic admissible region (PAR), which can be used for orbit initiation in Bayesian tracking and prioritization of tracks in a multiple hypothesis tracking framework. The PAR concept was introduced by the authors at the 2014 AMOS conference. In that paper, a Monte Carlo approach was used to show how to construct the PAR in the range/range-rate space based on known statistics of the measurement, semimajor axis, and eccentricity. An expectation-maximization algorithm was proposed to convert the particle cloud into a Gaussian Mixture Model (GMM) representation of the PAR. This GMM can be used to initialize a Bayesian filter. The PAR was found to be significantly non-uniform, invalidating an assumption frequently made in CAR-based filtering approaches. Using the GMM or particle cloud representations of the PAR, orbits can be prioritized for propagation in a multiple hypothesis tracking (MHT) framework. In this paper, the authors focus on expanding the PAR methodology to allow additional constraints, such as a constraint on perigee altitude, to be modeled in the PAR. This requires re-expressing the joint probability density function for the attributable vector as well as the (constrained) orbital parameters and range and range-rate. The final PAR is derived by accounting for any interdependencies between the parameters. Noting that the concepts presented are general and can be applied to any measurement scenario, the idea

  2. Observational constraints on exponential gravity

    SciTech Connect

    Yang, Louis; Lee, Chung-Chi; Luo, Ling-Wei; Geng, Chao-Qiang

    2010-11-15

    We study the observational constraints on the exponential gravity model of f(R)=-{beta}R{sub s}(1-e{sup -R/R}{sub s}). We use the latest observational data including Supernova Cosmology Project Union2 compilation, Two-Degree Field Galaxy Redshift Survey, Sloan Digital Sky Survey Data Release 7, and Seven-Year Wilkinson Microwave Anisotropy Probe in our analysis. From these observations, we obtain a lower bound on the model parameter {beta} at 1.27 (95% C.L.) but no appreciable upper bound. The constraint on the present matter density parameter is 0.245<{Omega}{sub m}{sup 0}<0.311 (95% C.L.). We also find out the best-fit value of model parameters on several cases.

  3. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  4. Observational Constraints on Planet Nine

    NASA Astrophysics Data System (ADS)

    Payne, Matthew John; Holman, Matthew J.

    2016-10-01

    Recent publications from Batygin & Brown have rekindled interest in the possibility that there is a large (~10 Earth-Mass) planet lurking unseen in a distant (a~500 AU) orbit at the edge of the Solar System. Such a massive planet would tidally distort the orbits of the other planets in the Solar System.These distortions can potentially be measured and/or constrained through precise observations of the orbits of the outer planets and distant trans-Neptunian objects. I will discuss our recent (and ongoing) attempts to observationally constrain the possible location of Planet Nine via (a) measurements of the orbit of Pluto, and (b) measurements of the orbit of Saturn derived from the Cassini spacecraft.

  5. Observational constraints on circumstellar dust

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1986-01-01

    There is an enormous range in the properties of stars that are losing mass. The red giants responsible for injecting roughly half or more of the material into the interstellar medium are reviewed. The physical properties are described for the out flowing gases. Broadband observation constaints on the dust are described by use of spectrum analysis. Circumstellar dust is identified by carbon-carbon and carbon-hydrogen bonds.

  6. Observational constraints on undulant cosmologies

    SciTech Connect

    Barenboim, Gabriela; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2005-10-01

    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.

  7. Improvement of MEM-deconvolution by an additional constraint

    NASA Astrophysics Data System (ADS)

    Reiter, J.; Pfleiderer, J.

    1986-09-01

    An attempt is made to improve existing versions of the maximum entropy method (MEM) and their understanding. Additional constraints are discussed, especially the T-statistic which can significantly reduce the correlation between residuals and model. An implementation of the T constraint into MEM requires a new numerical algorithm, which is made to work most efficiently on modern vector-processing computers. The entropy functional is derived from simple mathematical assumptions. The new MEM version is tested with radio data of NGC 6946 and optical data from M 87.

  8. Observational Constraints on Planet Nine: Cassini Range Observations

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Payne, Matthew J.

    2016-10-01

    We examine the tidal perturbations induced by a possible additional, distant planet in the solar system on the distance between the Earth and the Cassini spacecraft. We find that measured range residuals alone can significantly constrain the sky position, distance, and mass of the perturbing planet to sections of the sky essentially orthogonal to the orbit of Saturn. When we combine these constraints from tidal perturbations with the dynamical constraints from Batygin & Brown and Brown & Batygin, we further constrain the allowed location of the perturbing planet to a region of the sky approximately centered on (R.A., decl.) = (40°, -15°) and extending ˜20° in all directions.

  9. Observational constraints on assisted k-inflation

    SciTech Connect

    Ohashi, Junko; Tsujikawa, Shinji

    2011-05-15

    We study observational constraints on the assisted k-inflation models in which multiple scalar fields join an attractor characterized by an effective single field {phi}. This effective single-field system is described by the Lagrangian P=Xg(Y), where X is the kinetic energy of {phi}, {lambda} is a constant, and g is an arbitrary function in terms of Y=Xe{sup {lambda}{phi}}. Our analysis covers a wide variety of k-inflation models such as dilatonic ghost condensate, Dirac-Born-Infeld field, and tachyon, as well as the canonical field with an exponential potential. We place observational bounds on the parameters of each model from the WMAP 7yr data combined with baryon acoustic oscillations and the Hubble constant measurement. Using the observational constraints of the equilateral non-Gaussianity parameter f{sub NL}{sup equil}, we further restrict the allowed parameter space of dilatonic ghost condensate and Dirac-Born-Infeld models. We extend the analysis to more general models with several different choices of g(Y) and show that the models such as g(Y)=c{sub 0}+c{sub p}Y{sup p} (p{>=}3) are excluded by the joint data analysis of the scalar/tensor spectra and primordial non-Gaussianities.

  10. Observational constraints on assisted k-inflation

    NASA Astrophysics Data System (ADS)

    Ohashi, Junko; Tsujikawa, Shinji

    2011-05-01

    We study observational constraints on the assisted k-inflation models in which multiple scalar fields join an attractor characterized by an effective single field ϕ. This effective single-field system is described by the Lagrangian P=Xg(Y), where X is the kinetic energy of ϕ, λ is a constant, and g is an arbitrary function in terms of Y=Xeλϕ. Our analysis covers a wide variety of k-inflation models such as dilatonic ghost condensate, Dirac-Born-Infeld field, and tachyon, as well as the canonical field with an exponential potential. We place observational bounds on the parameters of each model from the WMAP 7yr data combined with baryon acoustic oscillations and the Hubble constant measurement. Using the observational constraints of the equilateral non-Gaussianity parameter fNLequil, we further restrict the allowed parameter space of dilatonic ghost condensate and Dirac-Born-Infeld models. We extend the analysis to more general models with several different choices of g(Y) and show that the models such as g(Y)=c0+cpYp (p≥3) are excluded by the joint data analysis of the scalar/tensor spectra and primordial non-Gaussianities.

  11. Observational constraints on finite scale factor singularities

    SciTech Connect

    Denkiewicz, Tomasz

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is an allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.

  12. Observational constraints on gauge field production in axion inflation

    SciTech Connect

    Meerburg, P.D.; Pajer, E. E-mail: enrico.pajer@gmail.com

    2013-02-01

    Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling φF F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from μ-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.

  13. Additional constraints on circumstellar disks in the Trapezium Cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Prosser, Charles F.; Hartmann, Lee; Mccaughrean, Mark J.

    1994-01-01

    We discuss new constraints on the population of compact ionized sources in the Trapezium Cluster thought to arise from the ionization by the central OB stars of circumstellar disks around low-mass pre-main sequence stars. We present new HST Planetary Camera observations of two of these candidate disk sources, resolving extended nebulosity around them. One source shows a small-scale (greater than 100 AU) bow-shock structure, previously seen on larger scales by O'Dell et al. We show that the circumstellar disk model is the most likely one for the majority of sources, although it remains plausible that some of the larger objects could be equilibrium globules. We combine the most complete censuses of compact radio sources and stars in the core region to derive the fraction of the stellar population that may be associated with a circumstellar disk. Our estimate of 25-75 percent is comparable to that found for PMS stars in the Taurus-Auriga dark clouds, indicating that the dense cluster environment of the Trapezium has not drastically reduced the frequency of disks seen around pre-main sequence stars.

  14. Models Constraints from Observations of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Riffel, R.; Pastoriza, M. G.; Rodríguez-Ardila, A.; Dametto, N. Z.; Ruschel-Dutra, D.; Riffel, R. A.; Storchi-Bergmann, T.; Martins, L. P.; Mason, R.; Ho, L. C.; Palomar XD Team

    2015-08-01

    Studying the unresolved stellar content of galaxies generally involves disentangling the various components contributing to the spectral energy distribution (SED), and fitting a combination of simple stellar populations (SSPs) to derive information about age, metallicity, and star formation history. In the near-infrared (NIR, 0.85-2.5 μm), the thermally pulsing asymptotic giant branch (TP-AGB) phase - the last stage of the evolution of intermediate-mass (M ≲ 6 M⊙) stars - is a particularly important component of the SSP models. These stars can dominate the emission of stellar populations with ages ˜ 0.2-2 Gyr, being responsible for roughly half of the luminosity in the K band. In addition, when trying to describe the continuum observed in active galactic nuclei, the signatures of the central engine and from the dusty torus cannot be ignored. Over the past several years we have developed a method to disentangle these three components. Our synthesis shows significant differences between Seyfert 1 (Sy 1) and Seyfert 2 (Sy 2) galaxies. The central few hundred parsecs of our galaxy sample contain a substantial fraction of intermediate-age populations with a mean metallicity near solar. Two-dimensional mapping of the near-infrared stellar population of the nuclear region of active galaxies suggests that there is a spatial correlation between the intermediate-age stellar population and a partial ring of low stellar velocity dispersion (σ*). Such an age is consistent with a scenario in which the origin of the low-σ* rings is a past event which triggered an inflow of gas and formed stars which still keep the colder kinematics of the gas from which they have formed. We also discuss the fingerprints of features attributed to TP-AGB stars in the spectra of the nuclear regions of nearby galaxies.

  15. Constraints on Crustal Viscosity from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Houseman, Gregory

    2015-04-01

    Laboratory measurements of the ductile deformation of crustal rocks demonstrate a range of crystal deformation mechanisms that may be represented by a viscous deformation law, albeit one in which the effective viscosity may vary by orders of magnitude, depending on temperature, stress, grain size, water content and other factors. In such measurements these factors can be separately controlled and effective viscosities can be estimated more or less accurately, though the measured deformation occurs on much shorter time scales and length scales than are typical of geological deformation. To obtain bulk measures of the in situ crustal viscosity law for actual geological processes, estimated stress differences are balanced against measured surface displacement or strain rates: at the continental scale, surface displacement and strain rates can be effectively measured using GPS, and stress differences can be estimated from the distribution of gravitational potential energy; this method has provided constraints on a depth-averaged effective viscosity for the lithosphere as a whole in regions that are actively deforming. Another technique measures the post-seismic displacements that are interpreted to occur in the aftermath of a large crustal earthquake. Stress-differences here are basically constrained by the co-seismic deformation and the elastic rigidity (obtained from seismic velocity) and the strain rates are again provided by GPS. In this technique the strain is a strong function of position relative to the fault, so in general the interpretation of this type of data depends on a complex calculation in which various simplifying assumptions must be made. The spatial variation of displacement history on the surface in this case contains information about the spatial variation of viscosity within the crust. Recent post-seismic studies have shown the potential for obtaining measurements of both depth variation and lateral variation of viscosity in the crust beneath

  16. Observational constraints on Tachyon and DBI inflation

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Liddle, Andrew R.

    2014-03-01

    We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert Script W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed cs2 ~ 1) and relativistic behaviour (cs2 ll 1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic cs2 ~ 1 case, determined by the competition of model parameters, while for the relativistic case cs2 → 0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.

  17. Infrared spectroscopy of exoplanets: observational constraints.

    PubMed

    Encrenaz, Thérèse

    2014-04-28

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations.

  18. Infrared spectroscopy of exoplanets: observational constraints

    PubMed Central

    Encrenaz, Thérèse

    2014-01-01

    The exploration of transiting extrasolar planets is an exploding research area in astronomy. With more than 400 transiting exoplanets identified so far, these discoveries have made possible the development of a new research field, the spectroscopic characterization of exoplanets' atmospheres, using both primary and secondary transits. However, these observations have been so far limited to a small number of targets. In this paper, we first review the advantages and limitations of both primary and secondary transit methods. Then, we analyse what kind of infrared spectra can be expected for different types of planets and discuss how to optimize the spectral range and the resolving power of the observations. Finally, we propose a list of favourable targets for present and future ground-based observations. PMID:24664918

  19. Observational constraints on massive-star evolution

    NASA Astrophysics Data System (ADS)

    Schulte-Ladbeck, Regina

    1997-07-01

    Massive stars are important constitutents of galaxies and are increasingly used as probes of galaxy evolution out to high redshifts. Yet, a very basic problem remains in understanding the distribution of massive stars across the Hertzsprung- Russell Diagram. This is known as the problem of the blue-to- red supergiant ratios in galaxies of different metallicities, a very sensitive indicator of the evolutionary paths that massive stars in different chemical environments appear to follow. Observations suggest a trend that the numbers of red supergiants increase with decreasing metallicity, but stellar- evolution models predict the opposite. We discuss various limitations of ground-based observations which have so far restricted accurate star counts to a few, nearby galaxies. We then argue that the HST archive contains a perfect set of photometric data to determine number counts of red supergiants in galaxies out to 5 Mpc. We propose to analyze WFPC2 observations in F555W {V} and F814W {I} filters to derive color-magnitude diagrams and complete luminosity functions of the red supergiant populations in 6 galaxies spanning a factor of 60 in metallicity. This systematic approach will put the functional form of the blue-to-red supergiant ratio with metallicity on firm observational footing.

  20. Observational constraints on Tachyon and DBI inflation

    SciTech Connect

    Li, Sheng; Liddle, Andrew R. E-mail: arl@roe.ac.uk

    2014-03-01

    We present a systematic method for evaluation of perturbation observables in non-canonical single-field inflation models within the slow-roll approximation, which allied with field redefinitions enables predictions to be established for a wide range of models. We use this to investigate various non-canonical inflation models, including Tachyon inflation and DBI inflation. The Lambert W function will be used extensively in our method for the evaluation of observables. In the Tachyon case, in the slow-roll approximation the model can be approximated by a canonical field with a redefined potential, which yields predictions in better agreement with observations than the canonical equivalents. For DBI inflation models we consider contributions from both the scalar potential and the warp geometry. In the case of a quartic potential, we find a formula for the observables under both non-relativistic (sound speed c{sub s}{sup 2} ∼ 1) and relativistic behaviour (c{sub s}{sup 2} || 1) of the scalar DBI inflaton. For a quadratic potential we find two branches in the non-relativistic c{sub s}{sup 2} ∼ 1 case, determined by the competition of model parameters, while for the relativistic case c{sub s}{sup 2} → 0, we find consistency with results already in the literature. We present a comparison to the latest Planck satellite observations. Most of the non-canonical models we investigate, including the Tachyon, are better fits to data than canonical models with the same potential, but we find that DBI models in the slow-roll regime have difficulty in matching the data.

  1. Subduction dynamics: Constraints from gravity field observations

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.

    1985-01-01

    Satellite systems do the best job of resolving the long wavelength components of the Earth's gravity field. Over the oceans, satellite-borne radar altimeters such as SEASAT provide the best resolution observations of the intermediate wavelength components. Satellite observations of gravity contributed to the understanding of the dynamics of subduction. Large, long wavelength geoidal highs generally occur over subduction zones. These highs are attributed to the superposition of two effects of subduction: (1) the positive mass anomalies of subducting slabs themselves; and (2) the surface deformations such as the trenches convectively inducted by these slabs as they sink into the mantle. Models of this subduction process suggest that the mantle behaves as a nonNewtonian fluid, its effective viscosity increases significantly with depth, and that large positive mass anomalies may occur beneath the seismically defined Benioff zones.

  2. Observational constraints on loop quantum cosmology.

    PubMed

    Bojowald, Martin; Calcagni, Gianluca; Tsujikawa, Shinji

    2011-11-18

    In the inflationary scenario of loop quantum cosmology in the presence of inverse-volume corrections, we give analytic formulas for the power spectra of scalar and tensor perturbations convenient to compare with observations. Since inverse-volume corrections can provide strong contributions to the running spectral indices, inclusion of terms higher than the second-order runnings in the power spectra is crucially important. Using the recent data of cosmic microwave background and other cosmological experiments, we place bounds on the quantum corrections.

  3. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-01-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxide radical (C2H5O2) with itself and with the methyl peroxide radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition to land (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions estimated at a factor of three may contribute to the 50% model underestimate of observations in the North American boundary layer. Furthermore, current levels of ethanol measured in remote atmospheres are an order of magnitude larger than those explained by surface sources or by in-situ atmospheric production from observed precursor hydrocarbons in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and other VOCs are a critical step towards assessing the impacts of increasing use of ethanol as a fuel.

  4. Observational constraints on the global atmospheric budget of ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A.; de Gouw, J. A.; Millet, D. B.; Goldan, P. D.; Kuster, W. C.; Goldstein, A.

    2010-06-01

    Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC), as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors) are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr-1 from industrial sources and biofuels, 9.2 Tg yr-1 from terrestrial plants, ~0.5 Tg yr-1 from biomass burning, and 0.05 Tg yr-1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2) with itself and with the methyl peroxy radical (CH3O2). The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH) is the primary global sink of ethanol in the model (65%), followed by dry deposition (25%), and wet deposition (10%). Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  5. Transition redshift in f (T ) cosmology and observational constraints

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Luongo, Orlando; Saridakis, Emmanuel N.

    2015-06-01

    We extract constraints on the transition redshift ztr , determining the onset of cosmic acceleration, predicted by an effective cosmographic construction, in the framework of f (T ) gravity. In particular, employing cosmography we obtain bounds on the viable f (T ) forms and their derivatives. Since this procedure is model independent, as long as the scalar curvature is fixed, we are able to determine intervals for ztr . In this way we guarantee that the Solar-System constraints are preserved and, moreover, we extract bounds on the transition time and the free parameters of the scenario. We find that the transition redshifts predicted by f (T ) cosmology, although compatible with the standard Λ CDM predictions, are slightly smaller. Finally, in order to obtain observational constraints on f (T ) cosmology, we perform a Monte Carlo fitting using supernova data, involving the most recent Union 2.1 data set.

  6. Constraints on surface evapotranspiration: implications for modeling and observations

    NASA Astrophysics Data System (ADS)

    Gentine, P.

    2015-12-01

    The continental hydrological cycle and especially evapotranspiration are constrained by additional factors such as the energy availability and the carbon cycle. As a results trying to understand and predict the surface hydrologic cycle in isolation might be highly unreliable. We present two examples were constraints induced by 1) radiation control through cloud albedo feedback and 2) carbon control on the surface water use efficiency are essential to correctly predict the seasonal hydrologic cycle. In the first example we show that correctly modeling diurnal and seasonal convection and the associated cloud-albedo feedback (through land-atmosphere and convection-large-scale circulation feedbacks) is essential to correctly model the surface hydrologic cycle in the Amazon, and to correct biases observed in all general circulation models. This calls for improved modeling of convection to correctly predict the tropical continental hydrologic cycle.In the second example we show that typical drought index based only on energy want water availability misses vegetation physiological and carbon feedback and cannot correctly represent the seasonal cycle of soil moisture stress. The typical Palmer Drought Stress Index is shown to be incapable of rejecting water stress in the future. This calls for new drought assessment metrics that may include vegetation and carbon feedback.

  7. Observational Constraints on the Global Budget of Ethanol

    NASA Astrophysics Data System (ADS)

    Naik, V.; Fiore, A. M.; Horowitz, L. W.; Singh, H. B.; Wiedinmyer, C.; Guenther, A. B.; de Gouw, J.; Millet, D.; Levy, H.; Oppenheimer, M.

    2007-12-01

    Ethanol, an oxygenated volatile organic compound (OVOC), is used extensively as a motor fuel and fuel additive to promote clean combustion. Ethanol can affect the oxidizing capacity and the ozone-forming potential of the atmosphere. Limited available atmospheric observations suggest a global background atmospheric ethanol mixing ratio of about 20 pptv, with values up to 3 ppbv near source regions; however, the atmospheric distribution and budget of ethanol remain poorly understood. Here, we use the global three-dimensional chemical transport model MOZART-4 to investigate the global ethanol distribution and budget, and place constraints on the budget by evaluating the model with atmospheric observations. We implement a global ethanol source of 14.7 Tg yr-1 in the model consisting of biogenic emissions (9.2 Tg yr-1), industrial/anthropogenic emissions (3.2 Tg yr-1), emissions from biofuels (1.8 Tg yr-1), biomass burning emissions (0.5 Tg yr-1), and a secondary source from atmospheric production (0.056 Tg yr-1). Gas-phase oxidation by the hydroxyl radical accounts for 66% of the global sink of ethanol in the model, dry deposition 9%, and wet scavenging 25%. The simulation yields a global mean ethanol burden of 0.11 Tg and an atmospheric lifetime of 3 days. The simulated boundary layer mean ethanol concentrations underestimate observations from field campaigns over the United States by 50%, downwind of Asia by 76% and over the remote Pacific Ocean by 86%. Because of the short lifetime of ethanol, the model discrepancy over remote tropical regions cannot be attributed to an underestimate of surface emissions over continents. In these regions, the dominant model source is secondary atmospheric production, from the reaction of the ethyl peroxy radical (C2H5O2) either with itself or with the methyl peroxy radical (CH3O2). A ~500-fold increase in this diffuse source (to ~30 Tg yr-1) distributed uniformly throughout the troposphere would largely correct the observation

  8. Observational constraints on varying neutrino-mass cosmology

    SciTech Connect

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N. E-mail: g9522545@oz.nthu.edu.tw E-mail: sami@iucaa.ernet.in

    2016-01-01

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  9. Observational constraints imposed by Brans-Dicke cosmologies.

    NASA Technical Reports Server (NTRS)

    Morganstern, R. E.

    1973-01-01

    Flat-space Brans-Dicke (BD) cosmologies previously found are analyzed in more detail. It is shown that the observed values of the matter density, the Hubble age, the ages of objects in the universe, the deceleration parameter, and the bound on the (unobserved) fractional time variation of the gravitational constant are too inaccurate to distinguish between the BD and Einstein-Friedmann cosmologies. An attempt is made to argue that because of the great degree of latitude in the observational constraints imposed by the BD cosmologies, efforts to improve the bound on the fractional time variation of G alone are not sufficient to rule out the BD theory.

  10. Stereoscopic correspondence by applying physical constraints and statistical observations to dissimilarity map

    NASA Astrophysics Data System (ADS)

    Chao, Tsi Y.; Wang, Sheng-Jyh; Hang, Hsueh-Ming

    2000-05-01

    To deal with the correspondence problem in stereo imaging, a new approach is presented to find the disparity information on a newly defined dissimilarity map (DSMP). Base don an image formation model of stereo images and some statistical observations, two constraints and four assumptions are adopted. In addition, a few heuristic criteria are developed to define a unique solution. All these constraints, assumptions and criteria are applied to the DSMP to find the correspondence. At first, the Epipolar Constraint, the Valid Pairing Constraint and the Lambertian Surface Assumption are applied to DSMP to locate the Low Dissimilarity Zones (LDZs). Then, the Opaque Assumption and the Minimum Occlusion Assumption are applied to LDZs to obtain the admissible LDZ sets. Finally, the Depth Smoothness Assumption and some other criteria are applied to the admissible LDZ sets to produce the final answer. The focus of this paper is to find the constraints and assumptions in the stereo correspondence problem and then properly convert these constraints and assumptions into executable procedures on the DSMP. In addition to its ability in estimating occlusion accurately, this approach works well even when the commonly used monotonic ordering assumption is violated. The simulation results show that occlusions can be properly handled and the disparity map can be calculated with a fairly high degree of accuracy.

  11. Observational constraints on cosmic neutrinos and dark energy revisited

    SciTech Connect

    Wang, Xin; Meng, Xiao-Lei; Zhang, Tong-Jie; Shan, HuanYuan; Tao, Charling; Gong, Yan; Chen, Xuelei; Huang, Y.F. E-mail: mlwx@mail.bnu.edu.cn E-mail: shanhuany@gmail.com E-mail: tao@cppm.in2p3.fr E-mail: hyf@nju.edu.cn

    2012-11-01

    Using several cosmological observations, i.e. the cosmic microwave background anisotropies (WMAP), the weak gravitational lensing (CFHTLS), the measurements of baryon acoustic oscillations (SDSS+WiggleZ), the most recent observational Hubble parameter data, the Union2.1 compilation of type Ia supernovae, and the HST prior, we impose constraints on the sum of neutrino masses (m{sub ν}), the effective number of neutrino species (N{sub eff}) and dark energy equation of state (w), individually and collectively. We find that a tight upper limit on m{sub ν} can be extracted from the full data combination, if N{sub eff} and w are fixed. However this upper bound is severely weakened if N{sub eff} and w are allowed to vary. This result naturally raises questions on the robustness of previous strict upper bounds on m{sub ν}, ever reported in the literature. The best-fit values from our most generalized constraint read m{sub ν} = 0.556{sup +0.231}{sub −0.288} eV, N{sub eff} = 3.839±0.452, and w = −1.058±0.088 at 68% confidence level, which shows a firm lower limit on total neutrino mass, favors an extra light degree of freedom, and supports the cosmological constant model. The current weak lensing data are already helpful in constraining cosmological model parameters for fixed w. The dataset of Hubble parameter gains numerous advantages over supernovae when w = −1, particularly its illuminating power in constraining N{sub eff}. As long as w is included as a free parameter, it is still the standardizable candles of type Ia supernovae that play the most dominant role in the parameter constraints.

  12. Observational and Theoretical Constraints on Plume Activity at Europa

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Pappalardo, R.; Cuzzi, J.

    2007-12-01

    The recently-detected plume activity on Enceladus [1] has raised the question of whether Europa, too, might be active. The few Galileo images devoted to searches for plumes yielded no detections; comparisons between Voyager and Galileo images suggest that less than ~1mm of resurfacing has happened in the past 20 years over lengthscales of a few km [2]. Cassini observations of Europa's oxygen torus [3] suggest a column abundance and loss rate roughly consistent with modelled O sputtering rates [4,5]. However, the tenuous atmosphere does appear to be spatially non- uniform [6]. The observations suggest that plumes or other non-sputtering sources produce vapour at rates less than roughly 10~kg/s, or less than 10% of the Enceladus plume rate [1]. One possible source of vapour on Europa is shear heating [7,8]. For nominal Europa parameters the predicted rate of vapour production is roughly 1~kg/s per km of fault and the vapour exit velocity is ~450~m/s, much less than Europa's escape velocity. These results suggest that the bulk of the vapour will reimpact the surface after forming a plume approximately 70~km high. The resulting thermal anomaly due to vapour recondensation is ~2~K. To generate a total vapour production rate of 10~kg/s requires roughly 10~km of active faults. If there is a single plume, the local resurfacing rate is ~0.05~mm/yr, compatible with the observational resurfacing constraints [2]. Using a global lineament map [9] and assuming equi-spaced active faults, areas predicted to show most intense shear heating are two regions near the S pole (at ~90° and ~270° longitude) and one smaller patch near the N pole at ~270°. Shear heating, in addition to vapour production, may also cause elevated surface temperatures resulting in thermal segregation of ice [10]. These predictions may be compared with existing observations from Galileo, Cassini, and Earth-based telescopes [e.g. 6], and may assist in the planning of potential future spacecraft missions. [1

  13. Viscosity of the Earth's inner core: constraints from nutation observations

    NASA Astrophysics Data System (ADS)

    Koot, L.; Dumberry, M.

    2010-12-01

    Nutations are the variations in the orientation of the Earth’s rotation axis in a space-fixed reference frame. This motion shows two important normal modes, the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN), of which the frequencies and damping depend directly on the Earth’s interior structure and dynamics. The FICN is characterized by a differential rotation of the inner core relative to the mantle and outer core. Its natural frequency is thus directly affected both by the strength of the mechanical coupling at the inner core boundary (ICB) and by the way the inner core deforms due to centrifugal forces. Similarly, the damping of the mode reflects the energy dissipated both through the coupling at the ICB and through inner core deformation. Estimations of the ICB coupling strength and dissipation have been obtained previously from nutation observations by assuming a purely elastic inner core (Mathews et al. 2002, Koot et al. 2010). When interpreted in terms of a visco-magnetic coupling, these estimations lead to values of the magnetic field at the ICB around 6-7 mT and to a kinematic viscosity of the fluid core close to the ICB in the range of 10-30 m2 s-1. This value of the ICB fluid core viscosity is orders of magnitude larger than what is expected from laboratory measurements and ‘ab initio’ computations. In this work, we show that a visco-elastic inner core is able to reconcile the estimation of the outer core kinematic viscosity with that of laboratory measurements and ab initio computations. This reconciliation is achieved for a very narrow range of values of the inner core viscosity, which can be considered as a nutation constraint on this physical quantity. Finally, we show that this nutation constraint is in very good agreement with seismic observations of shear waves attenuation in the inner core.

  14. Constraints on PSC Particle Microphysics Derived From Lidar Observations

    NASA Technical Reports Server (NTRS)

    Liu, Li; Mishchenko, Michael I.

    2001-01-01

    Based on extensive T-matrix computations of light scattering by polydispersions of randomly oriented, rotationally symmetric nonspherical particles, we analyze existing lidar observations of polar stratospheric clouds (PSCs) and derive several constraints on PSC particle microphysical properties. We show that sharp-edged nonspherical particles (finite circular cylinders) exhibit less variability of lidar backscattering characteristics with particle size and aspect ratio than particles with smooth surfaces (spheroids). For PSC particles significantly smaller than the wavelength, the backscatter color index Alpha and the depolarization color index Beta are essentially shape-independent. Observations for type Ia PSCs can be reproduced by spheroids with aspect ratios larger than 1.2, oblate cylinders with diameter-to-length ratios greater than 1.6, and prolate cylinders with length-to-diameter ratios greater than 1.4. The effective equal-volume-sphere radius for type la PSCs is about 0.8 microns or larger. Type Ib PSCs are likely to be composed of spheres or nearly spherical particles with effective radii smaller than 0.8 microns. Observations for type II PSCs are consistent with large ice crystals (effective radius greater than 1 micron modeled as cylinders or prolate spheroids.

  15. Constraints on decaying early modified gravity from cosmological observations

    NASA Astrophysics Data System (ADS)

    Lima, Nelson A.; Smer-Barreto, Vanessa; Lombriser, Lucas

    2016-10-01

    Most of the information on our cosmos stems from either late-time observations or the imprint of early-time inhomogeneities on the cosmic microwave background. We explore to what extent early modifications of gravity, which become significant after recombination but then decay toward the present, can be constrained by current cosmological observations. For the evolution of the gravitational modification, we adopt the decaying mode of a hybrid metric-Palatini f (R ) gravity model which is designed to reproduce the standard cosmological background expansion history and due to the decay of the modification is naturally compatible with Solar System tests. We embed the model in the effective field theory description of Horndeski scalar-tensor gravity with an early-time decoupling of the gravitational modification. Since the quasistatic approximation for the perturbations in the model breaks down at high redshifts, where modifications remain relevant, we introduce a computationally efficient correction to describe the evolution of the scalar field fluctuation in this regime. We compare the decaying early-time modification against geometric probes and recent Planck measurements and find no evidence for such effects in the observations. Current data constrains the scalar field value at |fR(z =zon)|≲10-2 for modifications introduced at redshifts zon˜(500 - 1000 ) with the present-day value |fR 0|≲10-8. Finally, we comment on constraints that will be achievable with future 21-cm surveys and gravitational wave experiments.

  16. Observational constraints on unified dark matter including Hubble parameter data

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Cao, Shuo; Wang, Jun; Gong, Xiaolong; Zhu, Zong-Hong

    2012-03-01

    We constrain a unified dark matter (UDM) model from the latest observational data. This model assumes that the dark sector is degenerate. Dark energy and dark matter are the same component. It can be described by an affine equation of state PX=p0+αρX. Our data set contains the newly revised H(z) data, type Ia supernovae (SNe Ia) from Union2 set, baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample, as well as the cosmic microwave background (CMB) observation from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) results. By using the Markov Chain Monte Carlo (MCMC) method, we obtain the results in a flat universe: ΩΛ=0.719-0.0305+0.0264(1σ)-0.0458+0.0380(2σ), α=1.72-4.79+3.92(1σ)-7.30+5.47(2σ)(×10-3), Ωbh2=0.0226-0.0011+0.0011(1σ)-0.0015+0.0016(2σ). Moreover, when considering a non-flat universe, ΩΛ=0.722-0.0447+0.0362(1σ)-0.0634+0.0479(2σ), α=0.242-0.775+0.787(1σ)-1.03+1.10(2σ)(×10-2), Ωbh2=0.0227-0.0014+0.0015(1σ)-0.0018+0.0021(2σ), Ωk=-0.194-1.85+2.02(1σ)-2.57+2.75(2σ)(×10-2). These give a more stringent results than before. We also give the results from other combinations of these data for comparison. The observational Hubble parameter data can give a more stringent constraint than SNe Ia. From the constraint results, we can see the parameters α and Ωk are very close to zero, which means a flat universe is strongly supported and the speed of sound of the dark sector seems to be zero.

  17. Carbon chemistry in dense molecular clouds: Theory and observational constraints

    NASA Technical Reports Server (NTRS)

    Blake, Geoffrey A.

    1990-01-01

    For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species.

  18. Observational and modeling constraints on global anthropogenic enrichment of mercury.

    PubMed

    Amos, Helen M; Sonke, Jeroen E; Obrist, Daniel; Robins, Nicholas; Hagan, Nicole; Horowitz, Hannah M; Mason, Robert P; Witt, Melanie; Hedgecock, Ian M; Corbitt, Elizabeth S; Sunderland, Elsie M

    2015-04-07

    Centuries of anthropogenic releases have resulted in a global legacy of mercury (Hg) contamination. Here we use a global model to quantify the impact of uncertainty in Hg atmospheric emissions and cycling on anthropogenic enrichment and discuss implications for future Hg levels. The plausibility of sensitivity simulations is evaluated against multiple independent lines of observation, including natural archives and direct measurements of present-day environmental Hg concentrations. It has been previously reported that pre-industrial enrichment recorded in sediment and peat disagree by more than a factor of 10. We find this difference is largely erroneous and caused by comparing peat and sediment against different reference time periods. After correcting this inconsistency, median enrichment in Hg accumulation since pre-industrial 1760 to 1880 is a factor of 4.3 for peat and 3.0 for sediment. Pre-industrial accumulation in peat and sediment is a factor of ∼ 5 greater than the precolonial era (3000 BC to 1550 AD). Model scenarios that omit atmospheric emissions of Hg from early mining are inconsistent with observational constraints on the present-day atmospheric, oceanic, and soil Hg reservoirs, as well as the magnitude of enrichment in archives. Future reductions in anthropogenic emissions will initiate a decline in atmospheric concentrations within 1 year, but stabilization of subsurface and deep ocean Hg levels requires aggressive controls. These findings are robust to the ranges of uncertainty in past emissions and Hg cycling.

  19. Observational Constraints on a Pluto Torus of Circumsolar Neutral Gas

    NASA Astrophysics Data System (ADS)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Smith, H. T.; Bagenal, F.; Brown, L. E.; Elliott, H. A.; Haggerty, D. K.; Horanyi, M.; Krimigis, S. M.; Kusterer, M. B.; Lisse, C. M.; McComas, D. J.; Piquette, M. R.; Sidrow, E. J.; Strobel, D. F.; Szalay, J.; Vandegriff, J. D.; Zirnstein, E.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Stern, S. A.

    2015-12-01

    We present the concept of a neutral gas torus surrounding the Sun, aligned with Pluto's orbit, and place observational constraints based primarily on comparison of New Horizons (NH) measurements with a 3-D Monte Carlo model adapted from analogous satellite tori surrounding Saturn and Jupiter. Such a torus, or perhaps partial torus, should result from neutral N2 escaping from Pluto's exosphere. Unlike other more massive planets closer to the Sun, neutrals escape Pluto readily owing, e.g., to the high thermal speed relative to the escape velocity. Importantly, escaped neutrals have a long lifetime due to the great distance from the Sun, ~100 years for photoionization of N2 and ~180 years for photoionization of N, which results from disassociated N2. Despite the lengthy 248-year orbit, these long e-folding lifetimes may allow an enhanced neutral population to form an extended gas cloud that modifies the N2 spatial profile near Pluto. These neutrals are not directly observable by NH but once ionized N2+ or N+ are picked up by the solar wind, reaching ~50 keV, making these pickup ions (PUIs) detectable by NH's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. PEPSSI observations analyzed to date may constrain the N2 density; the remaining ~95% of the encounter data, scheduled for downlink in August along with similarly anticipated data from the Solar Wind Around Pluto (SWAP) experiment, should help determine the Pluto outgassing rates. Measurements from SWAP include the solar wind speed, a quantity that greatly enhances PUI studies by enabling us to directly account for the PUI distribution's sensitive dependence on plasma speed. Note that anomalous cosmic ray Si observed at Voyager is overabundant by a factor of ~3000 relative to interstellar composition. This might be related to "outer source" PUIs, but the fact that N2 and Si are indistinguishable in many instruments could mean that N2 is actually driving this apparent Si discrepancy.

  20. Viscosity of the Earth's inner core: Constraints from nutation observations

    NASA Astrophysics Data System (ADS)

    Koot, Laurence; Dumberry, Mathieu

    2011-08-01

    The gravitational torque applied on the Earth by the other celestial bodies generates periodic variations in the orientation of the Earth's rotation axis in space which are called nutations. Observations of Earth's nutations allow for insights into the physical properties of the inner core because of the presence of a normal mode, the Free Inner Core Nutation (FICN), which is characterized by a tilt of the inner core figure and rotation axes with respect to the mantle and outer core. The frequency of the FICN is controlled by the strength of the mechanical coupling acting at the inner core boundary (ICB) and by the ability of the inner core to deform under the action of centrifugal and gravitational forces. Attenuation of the FICN reflects energy dissipated by electromagnetic (EM) and viscous friction at the ICB and through viscous relaxation of the inner core. Here, we show that it is possible to explain the observed frequency and damping of the FICN by a combination of EM coupling at the ICB and viscoelastic deformation of the inner core. This imposes a strong constraint on the viscosity of the inner core which has to be in the range ~ 2-7 × 10 14 Pa s. We also obtain an estimate of the RMS strength of the radial magnetic field at the ICB, which has to be between 4.5 and 6.7 mT. Interestingly, if a viscoelastic Maxwell rheology is assumed for the inner core, our estimated inner core viscosity is in very good agreement with the shear quality factor inferred from seismic normal modes observations. This suggests that the viscous deformation of the inner core at the nutation (diurnal) time scale and at the seismic normal modes time scale may be due to the same physical mechanisms.

  1. Observational constraints on transverse gravity: A generalization of unimodular gravity

    NASA Astrophysics Data System (ADS)

    Lopez-Villarejo, J. J.

    2010-04-01

    We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change xμ → xμ + ξμ(x) is transverse, i.e., δμξμ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a "transverse scalar", so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.

  2. OBSERVATIONAL CONSTRAINTS ON THE DEGENERATE MASS-RADIUS RELATION

    SciTech Connect

    Holberg, J. B.; Oswalt, T. D.; Barstow, M. A. E-mail: toswalt@fit.edu

    2012-03-15

    The white dwarf mass-radius relationship is fundamental to modern astrophysics. It is central to routine estimation of DA white dwarf masses derived from spectroscopic temperatures and gravities. It is also the basis for observational determinations of the white dwarf initial-final-mass relation. Nevertheless, definitive and detailed observational confirmations of the mass-radius relation (MRR) remain elusive owing to a lack of sufficiently accurate white dwarf masses and radii. Current best estimates of masses and radii allow only broad conclusions about the expected inverse relation between masses and radii in degenerate stars. In this paper, we examine a restricted set of 12 DA white dwarf binary systems for which accurate (1) trigonometric parallaxes, (2) spectroscopic effective temperatures and gravities, and (3) gravitational redshifts are available. We consider these three independent constraints on mass and radius in comparison with an appropriate evolved MRR for each star. For the best-determined systems it is found that the DA white dwarfs conform to evolve theoretical MRRs at the 1{sigma} to 2{sigma} level. For the white dwarf 40 Eri B (WD 0413-077) we find strong evidence for the existence of a 'thin' hydrogen envelope. For other stars improved parallaxes will be necessary before meaningful comparisons are possible. For several systems current parallaxes approach the precision required for the state-of-the-art mass and radius determinations that will be obtained routinely from the Gaia mission. It is demonstrated here how these anticipated results can be used to firmly constrain details of theoretical mass-radius determinations.

  3. OBSERVATIONAL CONSTRAINTS ON RED AND BLUE HELIUM BURNING SEQUENCES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Dolphin, Andrew E.; Holtzman, Jon

    2011-10-10

    We derive the optical luminosity, colors, and ratios of the blue and red helium burning (HeB) stellar populations from archival Hubble Space Telescope observations of nineteen starburst dwarf galaxies and compare them with theoretical isochrones from Padova stellar evolution models across metallicities from Z = 0.001 to 0.009. We find that the observational data and the theoretical isochrones for both blue and red HeB populations overlap in optical luminosities and colors and the observed and predicted blue to red HeB ratios agree for stars older than 50 Myr over the time bins studied. These findings confirm the usefulness of applying isochrones to interpret observations of HeB populations. However, there are significant differences, especially for the red HeB population. Specifically, we find (1) offsets in color between the observations and theoretical isochrones of order 0.15 mag (0.5 mag) for the blue (red) HeB populations brighter than M{sub V} {approx} -4 mag, which cannot be solely due to differential extinction; (2) blue HeB stars fainter than M{sub V} {approx} -3 mag are bluer than predicted; (3) the slope of the red HeB sequence is shallower than predicted by a factor of {approx}3; and (4) the models overpredict the ratio of the most luminous blue to red HeB stars corresponding to ages {approx}< 50 Myr. Additionally, we find that for the more metal-rich galaxies in our sample (Z {approx}> 0.5 Z{sub sun}), the red HeB stars overlap with the red giant branch stars in the color-magnitude diagrams, thus reducing their usefulness as indicators of star formation for ages {approx}> 100 Myr.

  4. Observational constraints on biogenic VOC emission model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2013-12-01

    Chemistry and transport models require accurate estimates of biogenic volatile organic compound (BVOC) emissions in order to simulate the atmospheric constituents controlling air quality and climate, such as ozone and particles, and so the uncertainties associated with BVOC estimates may be limiting the development of effective air quality and climate management strategies. BVOC emission models include driving variables and algorithms that span scales from the leaf level to entire landscapes. While considerable effort has been made to improve BVOC emission models in the past decades, there have been relatively few attempts to quantify the uncertainties associated with these estimates or to rigorously assess emission modeling approaches. This presentation will summarize the availability of observations that can be used to constrain BVOC emission models including flux measurements (leaf enclosure, above canopy tower, and aircraft platforms) and ambient concentrations of BVOC and their products. Results from studies targeting specific BVOC emission processes (e.g., the response of isoprene emission to drought and the response of monoterpene emissions to bark beetle attack) will be shown and the application of these observations for BVOC model evaluation will be discussed. In addition, the results from multi-scale BVOC emission studies (leaf enclosure, whole canopy flux tower, regional aircraft eddy covariance) will be presented and a approach for incorporating these observations into a community model testbed will be described and used to evaluate regional BVOC emission models.

  5. New observational constraints on hydrocarbon chemistry in Saturn's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Moses, Julianne I.; West, Robert; Guerlet, Sandrine; Jouchoux, Alain

    2016-10-01

    Until now there have been only a few observations of hydrocarbons and photochemical haze in the region where they are produced in Saturn's upper atmosphere. We present new results on hydrocarbon abundances and atmospheric structure based on more than 40 stellar occultations observed by the Cassini/UVIS instrument that we have combined with results from Cassini/CIRS to generate full atmosphere structure models. In addition to detecting CH4, C2H2, C2H4 and C2H6, we detect benzene (C6H6) in UVIS occultations that probe different latitudes and present the first vertical abundance profiles for this species in its production region. Benzene is the simplest ring polyaromatic hydrocarbon (PAH) and a stepping stone to the formation of more complex molecules that are believed to form stratospheric haze. Our calculations show that the observed abundances of benzene can be explained by solar-driven ion chemistry that is enhanced by high-latitude auroral production at least in the northern spring hemisphere. Condensation of benzene and heavier hydrocarbons is possible in the cold polar night of the southern winter where we detect evidence for high altitude haze. We also report on substantial variability in the CH4 profiles that arise from dynamics and affects the minor hydrocarbon abundances. Our results demonstrate the importance of hydrocarbon ion chemistry and coupled models of chemistry and dynamics for future studies of Saturn's upper atmosphere.

  6. Observational constraints on the structure and evolution of quasars

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.

    2008-01-01

    I use X-ray and optical data to investigate the structure of quasars, and its dependence on luminosity, redshift, black hole mass, and Eddington ratio. In order to facilitate my work, I develop new statistical methods of accounting for measurement error, non-detections, and survey selection functions. The main results of this thesis follow. (1) The statistical uncertainty in the broad line mass estimates can lead to significant artificial broadening of the observed distribution of black hole mass. (2) The z = 0.2 broad line quasar black hole mass function falls off approximately as a power law with slope ~ 2 for M BH [Special characters omitted.] 10 8 [Special characters omitted.] . (3) Radio-quiet quasars become more X-ray quiet as their optical/UV luminosity, black hole mass, or Eddington ratio increase, and more X-ray loud at higher redshift. These correlations imply that quasars emit a larger fraction of their bolometric luminosity through the accretion disk component, as compared to the corona component, as black hole mass and Eddington ratio increase. (4) The X- ray spectral slopes of radio-quiet quasars display a non-monotonic trend with Eddington ratio, where the X-ray continuum softens with increasing Eddington ratio until L/L Edd ~ 0.3, and then begins to harden. This observed non- monotonic trend may be caused by a change in the structure of the disk/corona system at L/L Edd ~ 0.3, possibly due to increased radiation pressure. (5) The characteristic time scales of quasar optical flux variations increase with increasing M BH , and are consistent with disk orbital or thermal time scales. In addition the amplitude of short time scale variability decreases with increasing M BH . I interpret quasar optical light curves as being driven by thermal fluctuations, which in turn are driven by some other underlying stochastic process with characteristic time scale long compared to the disk thermal time scale. The stochastic model I use is able to explain both short

  7. Observational constraints on planet formation and migration timescales

    NASA Astrophysics Data System (ADS)

    David, Trevor J.

    2017-01-01

    Short-period planets have the power to unlock many of the mysteries of planet formation and, fortunately, they are abundant. There is growing evidence that high-eccentricity migration channels are not responsible for all short-period planets; this notion is supported by the recent discovery of K2-33 b, a short-period, Neptune-sized exoplanet transiting a 5-10 Myr old star in the Upper Scorpius association. While in situ formation of K2-33 b can not be conclusively ruled out, the planet is parked just interior to the corotation radius, where theory predicts inwardly migrating planets are halted; this may be interpreted as tantalizing evidence of disk-driven migration. Occurrence rate studies of all clusters observed by K2 will allow for robust conclusions about the predominant modes of planet migration. Moreover, K2-33 b is likely still contracting, and should eventually join the populous class of close-in sub-Neptunes. In addition to K2-33 b, the Kepler/K2 mission has enabled the discovery of planets in the intermediate age Hyades and Praesepe clusters. Many of these close-in planets exhibit radii that are large given their semi-major axes and host star characteristics. It is possible that, even at ages of several hundred Myr, these planets have not finished contracting or are undergoing atmospheric mass loss. If this is the case, we are directly constraining the evolutionary timescales of short-period planets. Finally, the characteristic timescales of protoplanetary disk evolution (and thus giant planet formation) and debris disk evolution can be refined with new fundamental calibrators for pre-main sequence evolutionary models and modern catalogs of homogeneous stellar ages, respectively.

  8. Accelerated Source-Encoding Full-Waveform Inversion with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Boehm, C.; Fichtner, A.; Ulbrich, M.

    2014-12-01

    We present a flexible framework of Newton-type methods for constrained full-waveform inversion in the time domain. Our main goal is (1) to incorporate additional prior knowledge by using general constraints on the model parameters and (2) to reduce the computational costs of solving the inverse problem by tailoring source-encoding strategies to Newton-type methods.In particular, we apply the Moreau-Yosida regularization to handle the constraints and use a continuation strategy to adjust the regularization parameter. Furthermore, we propose a semismooth Newton method with a trust-region globalization that relies on second-order adjoints to compute the Newton system with a matrix-free preconditioned conjugate gradient solver. The costs of conventional FWI approaches scale proportionally with the number of seismic sources. Here, source-encoding strategies that trigger different sources simultaneously have been proven to be a successful tool to trade a small loss of information for huge savings of computational time to solve the inverse problem. This is particularly interesting for our setting as one iteration of Newton's methods using the full Hessian is considerably more expensive than quasi-Newton methods like L-BFGS. To this end, we discuss a sample average approximation model that is accelerated by using inexact Hessian information based on mini-batches of the samples. Furthermore, we compare its performance with stochastic descent schemes. Here, the classical stochastic gradient method is accelerated by an L-BFGS preconditioner and moreover, the stability of this stochastic preconditioner is enhanced by using the Hessian instead of only gradient information.Numerical results are presented for problems in geophysical exploration on reservoir-scale.

  9. Observational constraints of Polar Ice Deposits on Mars Atmospheric GCMs

    NASA Astrophysics Data System (ADS)

    Teodoro, L. F. A.; Elphic, R. C.; Hollingsworth, J. L.; Haberle, R. M.; Kahre, M. A.; Eke, V. R.; Roush, T. L.; Marzo, G. A.; Brown, A. J.; Feldman, W. C.; Maurice, S.

    2012-04-01

    Much of our current knowledge about Mars' climate and atmospheric global circulation stems from measurements taken by landers and orbiters. Thus for many years the details of the atmospheric circulation were studied using numerical global circulation models (GCMs) that have been successful in reproducing most of the available observations [1]. More than ever, GCMs will play a central role in analyzing the existing data and in planning and execution of upcoming missions. The Mars Odyssey Neutron Spectrometer (MONS) has enabled a comprehensive study of the overall distribution of hydrogen in the surface of Mars [2]. Deposits ranging between 20% and 100% Water-Equivalent Hydrogen (WEH) by mass are found pole-ward of 55 deg. latitude, while less H-rich deposits are found at lower latitudes. These results assume that the H distribution is uniform in the top meter of the martian soil. The Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) has identified numerous locations on Mars where hydrous minerals occur [3]. The information collected by MRO-CRISM samples the top few mm's to cm's of the surface. This independent information can impose additional constrains on the 3-D H distribution inferred from the MONS data. For instance, the absence of a correlation between WEH wt% drawn from the MONS and CRISM data at a location where the neutron data indicate high WEH implies the presence of a 3-D structure that is characterized by a top layer with a low abundance of water, either ice or hydrated minerals, and some buried layers where the concentration of H is higher than that expected in a uniformly mixed layer. However, the spatial resolution of MONS and MRO-CRISM are ~550 km and ~20-200m, respectively. Hence, one must assure the MRO-CRISM and MONS data are on the same scales. The MRO-CRISM data can be re-binned to lower resolution, but additionally the MONS instrumental smearing must be properly understood and removed. Usually, in the

  10. Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints

    SciTech Connect

    Doligez, B.; Eschard, R.; Geffroy, F.

    1997-08-01

    The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

  11. Observational constraints on dark energy with a fast varying equation of state

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Nesseris, Savvas; Tsujikawa, Shinji

    2012-05-01

    We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the Λ-Cold-Dark-Matter (ΛCDM) model, these models are not favored over ΛCDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.

  12. Observational constraint on Pluto's atmospheric CO with ASTE

    NASA Astrophysics Data System (ADS)

    Iino, Takahiro; Hirahara, Yasuhiro; Hidemori, Takehiro; Tsukagoshi, Takashi; Nakajima, Taku; Nakamoto, Satoru; Kato, Chihaya

    2016-02-01

    To confirm the previous observational results of Pluto's atmospheric CO in the J = 2-1 rotational transition, we conducted a new observation of CO (J = 3-2) in Pluto's atmosphere in 2014 August with the Atacama Submillimeter Telescope Experiment 10 m single-dish telescope. In contrast to the previous observational result obtained with the James Clerk Maxwell Telescope in 2009 and 2010 by using the J = 2-1 transition, no emission structure was observed near the rest frequency in our attempt. Possible explanations for the nondetection result of the J = 3-2 transition are discussed.

  13. Constraints provided by ground gravity observations on geocentre motions

    NASA Astrophysics Data System (ADS)

    Rogister, Y.; Mémin, A.; Rosat, S.; Hinderer, J.; Calvo, M.

    2016-08-01

    The geocentre motion is the motion of the centre of mass of the entire Earth, considered an isolated system, in a terrestrial system of reference. We first derive a formula relating the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic degree-1 vertical displacement of the station and the displacement of the whole Earth's centre of mass. The relationship is independent of the nature of the Earth deformation and is valid for any source of deformation. We impose no constraint on the system of reference, except that its origin must initially coincide with the centre of mass of the spherically symmetric Earth model. Next, we consider the geocentre motion caused by surface loading. In a system of reference whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between the gravity variation at the surface, the geocentre displacement and the load Love number h^' }_1, which demands the Earth's structure and rheological behaviour be known. For various networks of real or fictitious stations, we invert synthetic signals of surface gravity variations caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select six well-distributed stations of the Global Geodynamics Project, which is a world network of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and determine the geocentre displacement between the end of 2004 and the beginning of 2012, assuming it to be due to surface loading. We find annual and semi-annual displacements with amplitude 0.5-2.3 mm.

  14. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  15. Observational constraints on the global atmospheric CO sub 2 budget

    SciTech Connect

    Tans, P.P. ); Fung, I.Y. ); Takahashi, Taro )

    1990-03-23

    Observed atmospheric concentrations of CO{sub 2} and data on the partial pressures of CO{sub 2} in surface ocean waters are combined to identify globally significant sources and sinks of CO{sub 2}. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO{sub 2} are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO{sub 2} in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO{sub 2}. Therefore, a large amount of the CO{sub 2} is apparently absorbed on the continents by terrestrial ecosystems. 39 refs., 5 figs., 4 tabs.

  16. Constraints on the dark matter annihilation from Fermi-LAT observation of M31

    NASA Astrophysics Data System (ADS)

    Li, Zhengwei; Huang, Xiaoyuan; Yuan, Qiang; Xu, Yupeng

    2016-12-01

    Gamma-ray is a good probe of dark matter (DM) particles in the Universe. We search for the DM annihilation signals in the direction of the Andromeda galaxy (M31) using 7.5 year Fermi-LAT pass 8 data. Similar to Pshirkov et al. (2016), we find that there is residual excess emission from the direction of M31 if only the galactic disk as traced by the far infrared emission is considered. Adding a point-like source will improve the fitting effectively, although additional slight improvements can be found if an extended component such as a uniform disk or two bubbles is added instead. Taking the far infrared disk plus a point source as the background model, we search for the DM annihilation signals in the data. We find that there is strong degeneracy between the emission from the galaxy and that from 10s GeV mass DM annihilation in the main halo with quark final state. However, the required DM annihilation cross section is about 10-25-10-24 cm3s-1, orders of magnitude larger than the constraints from observations of dwarf spheroidal galaxies, indicating a non-DM origin of the emission. If DM subhalos are taken into account, the degeneracy is broken. When considering the enhancement from DM subhalos, the constraints on DM model parameters are comparable to (or slightly weaker than) those from the population of dwarf spheroidal galaxies. We also discuss the inverse Compton scattering component from DM annihilation induced electrons/positrons. For the first time we include an energy dependent template of the inverse Compton emission (i.e., a template cube) in the data analysis to take into account the effect of diffusion of charged particles. We find a significant improvement of the constraints in the high mass range of DM particles after considering the inverse Compton emission.

  17. Observational constraints on late-time {lambda}(t) cosmology

    SciTech Connect

    Carneiro, S.; Pigozzo, C.; Dantas, M. A.; Alcaniz, J. S.

    2008-04-15

    The cosmological constant {lambda}, i.e., the energy density stored in the true vacuum state of all existing fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic acceleration. However, despite its observational successes, such a possibility exacerbates the well-known {lambda} problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum energy density decays linearly with the Hubble parameter, {lambda}{proportional_to}H. We test the viability of this scenario and study a possible way to distinguish it from the current standard cosmological model by using recent observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the baryonic acoustic oscillation from the Sloan Digital Sky Survey, and the position of the first peak of the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave Anisotropy Probe.

  18. Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state

    NASA Astrophysics Data System (ADS)

    Sharov, G. S.

    2016-06-01

    Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H(z) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale rs(zd). Among the considered models the best value of χ2 is achieved for the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.

  19. Recent observational constraints on generalized Chaplygin gas in UDME scenario

    NASA Astrophysics Data System (ADS)

    Thakur, P.

    2017-03-01

    Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matter energy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter ( H 0 t 0) and (ii) the observed Hubble ( H( z)- z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwave background (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters H 0, A s and α ( A s and α are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD + BAO + CMB + Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe ( t 0) and the present Hubble parameter ( H 0) have been estimated with 1 σ confidence level. Best-fit values of deceleration parameter ( q), squared sound speed (cs2) and EoS parameter ( ω) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.

  20. Rastall’s cosmology and its observational constraints

    SciTech Connect

    Fabris, Júulio C.; Piattella, Oliver F.; Rodrigues, Davi C.; Daouda, Mahamadou H.

    2015-03-26

    The Rastall’s theory is a modification of General Relativity touching one of the cornestone of gravity theory: the conservation laws. In Rastall’s theory, the energy-momentum tensor is not conserved anymore, depending now on the gradient of the Ricci curvature. In this sense, this theory can be seen as a classical implementation of quantum effects in a curved background space-time. We exploit this structure in order to reproduce some results of an effective theory of quantum loop cosmology. Later, we propose a model for the dark sector of the universe. In this case, the corresponding ΛCDM model appears as the only model consistent with observational data.

  1. Constraints on cosmic-ray observation of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    Barnhill, M. V., III; Gaisser, T. K.; Stanev, T.; Halzen, F.

    1985-01-01

    Two experimental groups working at different minimum energies have reported underground muons coming from the direction of Cygnus X-3 with rates that vary in synchrony with its binary period. At the Mont Blanc detector the events are, within statistics, uniformly spread over a 5 degree circle around the position of Cygnus X-3, even though the angular resolution is significantly better than this. The ratio of events in the phase peak to total muons observed rises as a function of minimum muon energy. An experiment also sees an excess in the number of pairs of codirectional multiple muon events arriving within about 5000 seconds of each other, the excess events coming from a direction about 20 degrees away from Cygnus X-3.

  2. Constraints on Lithospheric Rheology from Observations of Coronae on Venus

    NASA Astrophysics Data System (ADS)

    O'Rourke, Joseph G.; Smrekar, Suzanne; Moresi, Louis N.

    2016-10-01

    Coronae are enigmatic, quasi-circular features found in myriad geological environments. They are primarily distinguished as rings of concentric fractures superimposed on various topographic profiles with at least small-scale volcanism. Mantle plumes may produce coronae with interior rises, whereas coronae with central depressions are often attributed to downwellings like Rayleigh-Taylor instabilities. For almost three decades, modelers have attempted to reproduce the topographic and gravity profiles measured at coronae. Until recently, few studies also considered tectonic deformation and melt production. In particular, "Type 2" coronae have complete topographic rims but arcs of fractures extending less than 180°, signifying both brittle and ductile deformation. Only a narrow range of rheological parameters like temperature and volatile content may be compatible with these observations. Ultimately, identifying how lithospheric properties differ between Earth and Venus is critical to understanding what factors permit plate tectonics on rocky, Earth-sized planets.Here we present a hierarchical approach to study the formation of coronae. First, we discuss an observational survey enabled by a new digital elevation model derived from stereo topography for ~20% of the surface of Venus, which offers an order-of-magnitude improvement over the horizontal resolution (10 to 20 kilometers) of altimetry data from NASA's Magellan mission. Next, we search this new dataset for signs of lithospheric flexure around small coronae. Simple, thin-elastic plate models were fit to topographic profiles of larger coronae in previous studies, but data resolution impeded efforts to apply this method to the entire coronae population. Finally, we show simulations of the formation of coronae using Underworld II, an open-source code adaptable to a variety of geodynamical problems. We benchmark our code using models of pure Rayleigh-Taylor instabilities and then investigate the influence of

  3. OBSERVATIONAL CONSTRAINTS ON METHANOL PRODUCTION IN INTERSTELLAR AND PREPLANETARY ICES

    SciTech Connect

    Whittet, D. C. B.; Cook, A. M.; Herbst, Eric; Chiar, J. E.; Shenoy, S. S.

    2011-11-20

    Methanol (CH{sub 3}OH) is thought to be an important link in the chain of chemical evolution that leads from simple diatomic interstellar molecules to complex organic species in protoplanetary disks that may be delivered to the surfaces of Earthlike planets. Previous research has shown that CH{sub 3}OH forms in the interstellar medium predominantly on the surfaces of dust grains. To enhance our understanding of the conditions that lead to its efficient production, we assemble a homogenized catalog of published detections and limiting values in interstellar and preplanetary ices for both CH{sub 3}OH and the other commonly observed C- and O-bearing species, H{sub 2}O, CO, and CO{sub 2}. We use this catalog to investigate the abundance of ice-phase CH{sub 3}OH in environments ranging from dense molecular clouds to circumstellar envelopes around newly born stars of low and high mass. Results show that CH{sub 3}OH production arises during the CO freezeout phase of ice-mantle growth in the clouds, after an ice layer rich in H{sub 2}O and CO{sub 2} is already in place on the dust, in agreement with current astrochemical models. The abundance of solid-phase CH{sub 3}OH in this environment is sufficient to account for observed gas-phase abundances when the ices are subsequently desorbed in the vicinity of embedded stars. CH{sub 3}OH concentrations in the ices toward embedded stars show order-of-magnitude object-to-object variations, even in a sample restricted to stars of low mass associated with ices lacking evidence of thermal processing. We hypothesize that the efficiency of CH{sub 3}OH production in dense cores and protostellar envelopes is mediated by the degree of prior CO depletion.

  4. Constraints on Chariklo's rings from HST and VLT observations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Buie, Marc W.; Benedetti-Rossi, Gustavo; Braga-Ribas, Felipe; Bueno de Camargo, Julio I.; Duffard, Rene; Ortiz, Jose Luis; Gratadour, Damien; Dumas, Christophe

    2015-11-01

    In June 2013, a stellar occultation revealed for the first time ever the presence of two dense and narrow rings around a small object of the solar system, the Centaur (10199) Chariklo (Braga-Ribas et al., Nature 508, 72, 2014). This body follows an eccentric orbit between Saturn and Uranus, with perihelion and aphelion distances of 13.1 and 18.5 AU. Due to Uranus perturbations, its orbit is unstable on the very short time scale of ~10 Myr (Horner at al. MNRAS 354, 798, 2004). The two rings (C1R and C2R, respectively) have orbital radii aC1R= 390.6±3.3 km and aC2R= 404.8±3.3 km, and typical widths WC1R ~6.5 km and WC2R ~2 km, optical depths τC1R ~ 0.4 and τC1R ~ 0.06, with a gap of ~9 km between the two. Chariklo's radius, RC~ 120 km (Duffard et al. AA 568, A79, 2014 Fornasier et al. AA 518, L11, 2014), implies that the ring system lies at 3.3-3.4 RC, farther away than the classical Roche limit of 2.4 RC that would be obtained for spherical ring particles with the same density as Chariklo.To better understand Chariklo's surroundings, and thus the origin of the rings, direct imaging of Chariklo has been performed using HST and VLT, with respectively 3 visits and 2 runs performed between April and August 2015. The HST images were obtained with the WFC3/UVIS camera with filters F300X (250-350 nm), F475X (400-650 nm) and F350LP (300-1000 nm), and typical PSF size of 30 milli-arcsec (mas), corresponding to about 300~km at Chariklo. Conversely, the SPHERE high contrast instrument at ESO VLT provided images in the near IR (Y, J and H bands), with typical expected PSF sizes of 30-40 mas (300-400~km at Chariklo). The main goals of those observations were: (1) obtain direct images of the rings, confirming their geometry and their orientation, (2) derive multi-wavelength photometry, thus constraining their composition (concerning in particular the presence of water ice), (3) perform a deep search of small satellites (down to a few km in diameter), (4) faint dusty rings

  5. Giant Planets in Open Clusters and Binaries: Observational Constraints on Migration

    NASA Astrophysics Data System (ADS)

    Quinn, Samuel N.; White, Russel J.; Latham, David W.; Buchhave, Lars A.; Torres, Guillermo

    2016-01-01

    Some giant planets migrate from their birthplace beyond the ice line to short-period orbits just a fraction of an AU from their host stars. Though many theories have been proposed, it is not yet clear which mechanism is most important for migration, and by extension, in which types of planetary system we can expect a greater prevalence of disruptive gas giant migration. One way to constrain this process is to observe the orbital properties of migrating planets, which are expected to be shaped according to the mode of migration: in general, interaction with the gas disk should produce circular, coplanar orbits, while multi-body processes stir up eccentricities and inclinations. Unfortunately, tidal and magnetic interactions between hot Jupiters and their host stars can obscure these differences by damping eccentricities and inclinations over time, so the most direct constraints will come from difficult-to-observe young systems. Additional constraints on migration can be obtained by observing the architectures of systems containing short-period giant planets: if an outer companion is often responsible for driving migration, there should be a higher incidence of massive companions on wide orbits in hot Jupiter systems than in systems not hosting a short-period giant planet. Further, the properties of these outer companions can help differentiate between multi-body migration mechanisms. We describe two complementary surveys that we have carried out to address these problems. The first, a precise radial-velocity survey in nearby adolescent (100-600 Myr) open clusters, characterizes the orbits of giant planets soon after migration. The second, an adaptive optics imaging survey of hot Jupiter host stars, constrains the population of wide companions in hot Jupiter systems. We present the results from these two surveys and discuss the orbital properties and system architectures of our discoveries in the context of giant planet migration.

  6. Observational constraints on EoS parameters of emergent universe

    NASA Astrophysics Data System (ADS)

    Paul, Bikash Chandra; Thakur, Prasenjit

    2017-04-01

    We investigate emergent universe model using recent observational data of the background as well as the growth tests. The flat emergent universe model obtained by Mukherjee et al. is permitted with a non-linear equation of state (in short, EoS) (p=Aρ -B ρ^{1/2}), where A and B are constants (here in our analysis A=0 is considered). We carried out analysis considering the Wang-Steinhardt ansatz for growth index (γ ) and growth function (f defined as f=Ωm^{γ } (a)). The best-fit values of the EoS and growth parameters are determined making use of chi-square minimization technique. Here we specifically determined the best-fit value and the range of value of the present matter density (Ω m) and Hubble parameter (H0). The best-fit values of the EoS parameters are used to study the evolution of the growth function f, growth index γ , state parameter ω and deceleration parameter (q) for different red shift parameter z. The late accelerating phase of the universe in the EU model is accommodated satisfactorily.

  7. Constraints on Cumulus Parameterization from Simulations of Observed MJO Events

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Wu, Jingbo; Wolf, Audrey B.; Chen, Yonghua; Yao, Mao-Sung; Kim, Daehyun

    2015-01-01

    Two recent activities offer an opportunity to test general circulation model (GCM) convection and its interaction with large-scale dynamics for observed Madden-Julian oscillation (MJO) events. This study evaluates the sensitivity of the Goddard Institute for Space Studies (GISS) GCM to entrainment, rain evaporation, downdrafts, and cold pools. Single Column Model versions that restrict weakly entraining convection produce the most realistic dependence of convection depth on column water vapor (CWV) during the Atmospheric Radiation Measurement MJO Investigation Experiment at Gan Island. Differences among models are primarily at intermediate CWV where the transition from shallow to deeper convection occurs. GCM 20-day hindcasts during the Year of Tropical Convection that best capture the shallow–deep transition also produce strong MJOs, with significant predictability compared to Tropical Rainfall Measuring Mission data. The dry anomaly east of the disturbance on hindcast day 1 is a good predictor of MJO onset and evolution. Initial CWV there is near the shallow–deep transition point, implicating premature onset of deep convection as a predictor of a poor MJO simulation. Convection weakly moistens the dry region in good MJO simulations in the first week; weakening of large-scale subsidence over this time may also affect MJO onset. Longwave radiation anomalies are weakest in the worst model version, consistent with previous analyses of cloud/moisture greenhouse enhancement as the primary MJO energy source. The authors’ results suggest that both cloud-/moisture-radiative interactions and convection–moisture sensitivity are required to produce a successful MJO simulation.

  8. An observational radiative constraint on hydrologic cycle intensification

    NASA Astrophysics Data System (ADS)

    Hall, A. D.; DeAngelis, A. M.; Qu, X.; Zelinka, M. D.

    2015-12-01

    Hydrologic cycle intensification is a key dimension of climate change, with significant impacts on human and natural systems. A basic measure of hydrologic cycle intensification, the increase in global-mean precipitation per unit surface warming, varies by a factor of three in current-generation climate models (~1-3 % K-1). We show that a substantial portion of this spread can be traced to intermodel variations in the atmospheric shortwave absorption response to greenhouse-gas-induced warming. As climate warms, increases in shortwave absorption suppress the precipitation increase by reducing the latent heating required to balance the atmospheric energy budget. Spread in the shortwave absorption response can be explained by differences in the sensitivity of solar absorption to variations in column precipitable water. An observational estimate suggests that in many models, this sensitivity is too small, and that the shortwave absorption response to warming is too weak. Spread in the simulated sensitivity of solar absorption to varying water vapor concentration is linked to differences in radiative transfer parameterizations. Attaining accurate shortwave absorption responses through radiative transfer scheme improvement could reduce spread in global precipitation increase per unit warming at the end of the 21st century by ~35%, and produce an ensemble-mean increase that is almost 40% smaller.

  9. Observational constraints on atmospheric radiaitve feedbacks: absolute accuracy and next-generation observing systems

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Hanssen, L. M.; Mekhontsev, S.; Anderson, J.

    2012-12-01

    The central role of atmospheric radiative feedbacks to understanding and projecting climate change calls for a robust observational system. Recent studies have shown the value of space-based measurements for putting quantitative constraints on a range of radiative feedback processes through a fingerprinting method applied to long-term observational records. More recent work has suggested the value of demonstrably accurate measurements to disentangle model error from observational uncertainties within reanalysis systems, potentially yielding improved representations of feedback processes within just a few years. Both of these methods rely on space-based measurements that can be objectively tested for accuracy on-orbit. A new class of mission has been proposed that incorporates the same type of empirical tests for accuracy as used in the laboratory into a space-based sensor. One example of such a mission is the Climate Absolute Radiance and Refractivity Observatory (CLARREO), a new mission suggested by the 2006 National Research Council Decadal Survey. CLARREO includes three sensor types: thermal infrared, microwave, and reflected shortwave. This paper presents a laboratory demonstration of prototype systems for testing the on-orbit accuracy of a thermal infrared sensor for CLARREO. These systems utilize infrared lasers to provide monochromatic light sources to quantitatively determine the optical properties of materials. These infrared optical properties are major determinants of the on-orbit radiometric performance of a thermal infrared sensor. For this reason, reliable quantitative information (including uncertainty) that tracks any changes in relevant infrared materials over the mission lifetime is essential to objective assessment of instrument accuracy. The practicality of mid-infrared lasers for these applications is due to the availability and continued evolution of compact, high-efficiency Quantum Cascade Lasers (QCLs). These lasers can provide over 100 m

  10. Direct observation of lubricant additives using tomography techniques

    NASA Astrophysics Data System (ADS)

    Chen, Yunyun; Sanchez, Carlos; Parkinson, Dilworth Y.; Liang, Hong

    2016-07-01

    Lubricants play important roles in daily activities such as driving, walking, and cooking. The current understanding of mechanisms of lubrication, particularly in mechanical systems, has been limited by the lack of capability in direct observation. Here, we report an in situ approach to directly observe the motion of additive particles in grease under the influence of shear. Using the K-edge tomography technique, it is possible to detect particular additives in a grease and observe their distribution through 3D visualization. A commercial grease as a reference was studied with and without an inorganic additive of Fe3O4 microparticles. The results showed that it was possible to identify these particles and track their movement. Under a shear stress, Fe3O4 particles were found to adhere to the edge of calcium complex thickeners commonly used in grease. Due to sliding, the grease formed a film with increased density. This approach enables in-line monitoring of a lubricant and future investigation in mechanisms of lubrication.

  11. Constraints on parameterized dark energy properties from new observations with principal component analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Li, Hong

    2017-01-01

    For dark energy, the equation of state (EoS) is a critical parameter to depict its physical properties. In this paper, we mainly give constraints on the EoS of dark energy w with the latest observations of cosmic microwave background radiation (CMB) from Planck satellite, JLA Type Ia supernovae (SNIa) sample, baryon acoustic oscillation (BAO) and Hubble parameter measurements. We introduce a kind of parameterized dark energy model called "constant bin - w ", in which the whole redshift range is divided into several bins, and EoS w in each bin is assumed as an independent constant. The results show that EoS in all of the redshift bins are comparable with ΛCDM in the 2σ confidence regions, but some weak deviations from w = - 1 are still indicated. In particular, in the framework of 7 bins, a slight oscillation behavior is shown in the redshift 0 < z < 0.75, especially around the range of 4th bin (0.25 < z < 0.35) and 5th bin (0.35 < z < 0.51). Additionally, we adopt the principal component analysis (PCA) method to do the model-independent analysis, which includes normal PCA and localized PCA methods. By implementing so called normal PCA method, the original oscillation behavior of EoS indicated in the framework of 7 bins becomes more significant after the best reconstruction, but such result still supports ΛCDM within the margin of 2σ errors. To further reduce the errors of constraints on EoS, and confirm such deviations from the cosmological constant scenario, we hope for more precise observational data in the future.

  12. Constraints on Lorentz Invariance Violation from Fermi -Large Area Telescope Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.

    2013-01-01

    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)

  13. Additional Constraints on the Shallow Seismic Velocity Structure of the Atlantis Massif Oceanic Core Complex

    NASA Astrophysics Data System (ADS)

    Henig, A. S.; Blackman, D. K.; Harding, A. J.; Kent, G. M.; Canales, J. P.

    2008-12-01

    We investigate the detailed structure of the uppermost ~km of Atlantis Massif, an oceanic core complex at 30°N on the Mid Atlantic Ridge, using pre-existing multichannel seismic data. The Synthetic On- Bottom Experiment (SOBE) method that we employ downward continues both the shots and receivers to a depth just above the seafloor. This allows us to pick refracted arrivals recorded on the streamer at very-near offset, providing constraints from rays that are received within the 300-2000 m range that was unavailable to earlier studies where standard shot gathers had been analyzed. Thus, we can better model the upper few hundred meters of the section which, in turn, adds confidence for determining the deeper (400-1500 m) structure. New work on a ridge-parallel line has been added to last year's work on a cross-axis line over the Central Dome of the massif. Tomographic results are similar for these crossing lines: a thin (100-150 m) low velocity (< 3 km/s) layer caps the dome; high horizontal gradients (>1.25 s-1) occur in local (1-2 km wide) regions within these 6-8 km long subsections of the MCS lines analyzed to date; and very high vertical velocity gradients, greater than 3.75 s-1, occur within the km just below the exposed detachment in these areas. We obtain general agreement with Canales et al., 2008, results over the Central Dome but our models suggest a finer scale lateral heterogeneity. We have begun analysis of additional and extended MCS lines over the domal core of the massif and our priority for this presentation is to assess the detailed structure of the Southern Ridge. In at least some areas the thin, low velocity layer contrasts sufficiently with underlying material that a clear refracted arrival is visible in supergathers. We will determine whether the low velocity layer persists over the whole dome or if it is restricted to the Central Dome. An important question is whether its thickness on the Southern Ridge, if it exists there, differs from that

  14. Rare Potassium-Bearing Mica in Allan Hills 84001: Additional Constraints on Carbonate Formation

    NASA Technical Reports Server (NTRS)

    Brearley, A. J.

    1998-01-01

    There have been presented several intriguing observations suggesting evidence of fossil life in martian orthopyroxenite ALH 84001. These exciting and controversial observations have stimulated extensive debate over the origin and history of ALH 84001, but many issues still remain unresolved. Among the most important is the question of the temperature at which the carbonates, which host the putative microfossils, formed. Oxygen- isotopic data, while showing that the carbonates are generally out of isotopic equilibria with the host rock, cannot constrain their temperature of formation. Both low- and high-temperature scenarios are plausible depending on whether carbonate growth occurred in an open or closed system. Petrographic arguments have generally been used to support a high-temperature origin but these appear to be suspect because they assume equilibrium between carbonate compositions that are not in contact. Some observations appear to be consistent with shock mobilization and growth from immiscible silicate-carbonate melts at high temperatures. Proponents of a low-temperature origin for the carbonates are hampered by the fact that there is currently no evidence of hydrous phases that would indicate low temperatures and the presence of a hydrous fluid during the formation of the carbonates. However, the absence of hydrous phases does not rule out carbonate formation at low temperatures, because the carbonate forming fluids may have been extremely CO2 rich, such that hydrous phases would not have been stabilized. In this study, I have carried out additional Transmission electron microscopy (TEM) studies of ALH-84001 and have found evidence of very rare phyllosilicates, which appear to be convincingly of pre-terrestrial origin. At present these observations are limited to one occurrence: further studies are in progress to determine if the phyllosilicates are more widespread.

  15. Balancing cognitive control: how observed movements influence motor performance in a task with balance constraints.

    PubMed

    Verrel, Julius; Lisofsky, Nina; Kühn, Simone

    2014-07-01

    We investigated the influence of observed movements on executed movements in a task requiring lifting one foot from the floor while maintaining whole-body balance. Sixteen young participants (20-30 years) performed foot lift movements, which were either cued symbolically by a letter (L/R, indicating to lift the left/right foot) or by a short movie showing a foot lift movement. In the symbol cue condition, stimuli from the movie cue condition were used as distractors, and vice versa. Anticipatory postural adjustments (APAs) and actual foot lifts were recorded using force plates and optical motion capture. Foot lift responses were generally faster in response to the movie compared to the symbol cue condition. Moreover, incongruent movement distractors interfered with performance in the symbol cue condition, as shown by longer response times and increased number of APAs. Latencies of the first (potentially wrong) APA in a trial were shorter for movie compared to symbol cues but were not affected by cue-distractor congruency. Amplitude of the first APA was smaller when it was followed by additional APAs compared to trials with a single APA. Our results show that automatic imitation tendencies are integrated with postural control in a task with balance constraints. Analysis of the number, timing and amplitude of APAs indicates that conflicts between intended and observed movements are not resolved at a purely cognitive level but directly influence overt motor performance, emphasizing the intimate link between perception, cognition and action.

  16. Planetary nebulae as observational constraints in chemical evolution models for NGC 6822

    NASA Astrophysics Data System (ADS)

    Hernández-Martínez, L.; Carigi, L.; Peña, M.; Peimbert, M.

    2011-11-01

    Aims: Chemical evolution models are useful for understanding the formation and evolution of stars and galaxies. Model predictions will be more robust when more observational constraints are used. We present chemical evolution models for the dwarf irregular galaxy NGC 6822 using chemical abundances of old and young planetary nebulae (PNe) and H ii regions as observational constraints. We use two sets of chemical abundances, one derived from collisionally excited lines (CELs) and one from recombination lines (RLs). We use our models as a tool to distinguish between both procedures for abundance determinations. Methods: In our chemical evolution code the chemical contribution of low and intermediate mass stars is time-delayed, while for the massive stars the chemical contribution follows the instantaneous recycling approximation. Our models have two main free parameters: the mass-loss rate of a well-mixed outflow and the upper mass limit, Mup, of the initial mass function (IMF). To reproduce the gaseous mass and the present-day O/H value we need to vary the outflow rate and the Mup value. Results: We calculate two models with different Mup values that reproduce the constraints adequately. The abundances of old PNe agree with our models and support the star-formation history derived independently from photometric data. Both require an early well-mixed wind, lasting 5.3 Gyr, to reproduce the observed gaseous mass in the galaxy. In addition, by assuming a fraction of binaries producing SNIa of 1%, the models fit the Fe/H abundance ratio as derived from A supergiants. The first model (M4C), which assumes Mup = 40 M⊙, fits within errors smaller than 2σ the O/H, Ne/H, S/H, Ar/H and Cl/H abundances obtained from CELs for old and young PNe and H ii regions. The second model (M1R), which adopts Mup = 80 M⊙, reproduces within 2σ errors the O/H, C/H, Ne/H and S/H abundances adopted from RLs. Both models reproduce the increase of the O, Ne, S, and Ar elements during the

  17. Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.

    2003-01-01

    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general

  18. Constraints on the Recent Rate of Lunar Regolith Accumulation from Diviner Observations

    NASA Technical Reports Server (NTRS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.

    2012-01-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances pre dicted to be covered by continuous ejecta. However, most of these sur faces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrar ed observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperat ures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highla nds), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth . Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differen ces in the thickness of accumulated regolith. However, away from youn g craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculat ed H values for young craters show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42, abstract 2437). This method could, in principle, be extended to other

  19. Improved linear kinetic Sunyaev-Zel'dovich effect constraints on the observed Local Void

    NASA Astrophysics Data System (ADS)

    Hoscheit, Benjamin L.; Barger, Amy J.

    2017-01-01

    A class of large, gigaparsec (Gpc)-scale local void models has been ruled out by linear kinetic Sunyaev-Zel'dovich (kSZ) effect constraints from the South Pole Telescope and the Atacama Cosmology Telescope. However, there is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe may be under-dense on scales of several hundred Megaparsecs. Theoretically, a small void model would relieve tension in observational challenges to the standard Friedmann-Lemaître-Robertson-Walker (FLRW) cosmological model. Thus, we decided to test whether a small void described by a parameterization of the observational data could be ruled out by the latest linear kSZ constraints. Instead, we find that the previous linear kSZ constraints as well as new ones from the South Pole Telescope are fully compatible with the existence of a small void of the size suggested by the luminosity density observations. The presence of such a void could have cosmologically significant implications.

  20. Dark matter line emission constraints from NuSTAR observations of the bullet cluster

    DOE PAGES

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; ...

    2015-08-27

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. Here, we present the first search for dark matter line emission in themore » $$3-80\\;\\mathrm{keV}$$ range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at $$3.5\\;\\mathrm{keV}$$, but improves on the constraints for energies of $$10-25\\;\\mathrm{keV}$$.« less

  1. Dark matter line emission constraints from NuSTAR observations of the bullet cluster

    SciTech Connect

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; Molendi, S.; Gastaldello, F.; Harrison, F. A.; Craig, W. W.; Hailey, C. J.; Boggs, S. E.; Christensen, F. E.; Stern, D.; Zhang, W. W.; Hornstrup, A.

    2015-08-27

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. Here, we present the first search for dark matter line emission in the $3-80\\;\\mathrm{keV}$ range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at $3.5\\;\\mathrm{keV}$, but improves on the constraints for energies of $10-25\\;\\mathrm{keV}$.

  2. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters

    SciTech Connect

    Dugger, Leanna; Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2010-12-01

    We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.

  3. The Disciplinary Constraints of SLA and TESOL: Additive Bilingualism and Second Language Acquisition, Teaching and Learning

    ERIC Educational Resources Information Center

    May, Stephen

    2011-01-01

    For over 15 years now, various commentators have highlighted the 'monolingual bias' inherent in SLA and TESOL research, which invariably constructs bi/multilingualism in deficit terms. In contrast, these critics have advocated an additive bilingual approach to SLA and TESOL, albeit, not as yet to any great effect. In this paper, I explore why so…

  4. Improved Techniques for Targeting Additional Observations to Improve Forecast Skill

    DTIC Science & Technology

    2016-06-07

    T oulouse F rance Grant Num ber: N00014{99{1{0755 LONG-TERM GOAL This project aims to improv e ensemble forecast and adaptive observ ation tec...be studied. It will be assessed whether the assimilation system can be geared to more readily accept adaptive observations made in currently data

  5. Constraints on scalar-tensor models of dark energy from observational and local gravity tests

    SciTech Connect

    Tsujikawa, Shinji; Uddin, Kotub; Tavakol, Reza; Mizuno, Shuntaro; Yokoyama, Jun'ichi

    2008-05-15

    We construct a family of viable scalar-tensor models of dark energy (DE) which possess a phase of late-time acceleration preceded by a standard matter era, while at the same time satisfying the local gravity constraints (LGC). The coupling Q between the scalar field and the nonrelativistic matter in the Einstein frame is assumed to be constant in our scenario, which is a generalization of f(R) gravity theories corresponding to the coupling Q=-1/{radical}(6). We find that these models can be made compatible with local gravity constraints even when |Q| is of the order of unity through a chameleon mechanism, if the scalar-field potential is chosen to have a sufficiently large mass in the high-curvature regions. We show that these models generally lead to the divergence of the equation of state of DE, which occurs at smaller redshifts as the deviation from the {lambda}CDM model becomes more significant. We also study the evolution of matter density perturbations and employ them to place bounds on the coupling |Q| as well as model parameters of the field potential from observations of the matter power spectrum and the cosmic microwave background (CMB) anisotropies. We find that, as long as |Q| is smaller than the order of unity, there exist allowed parameter regions that are consistent with both observational and local gravity constraints.

  6. Neutron stars as sources of gamma-ray bursts: Constraints from X-ray observations of source locations

    NASA Technical Reports Server (NTRS)

    Pizzichini, G.; Cline, T. L.; Desai, U.; Teegarden, B. J.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.

    1982-01-01

    Results for three burst locations observed with the imaging proportional counter of the Einstein Observatory are given. The observations are used to determine temperature and accretion constraints for the burst source.

  7. PID Controller Design Based on Global Optimization Technique with Additional Constraints

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Docekal, Tomas

    2016-05-01

    This paper deals with design of PID controller with the use of methods of global optimization implemented in Matlab environment and Optimization Toolbox. It is based on minimization of a chosen integral criterion with respect to additional requirements on control quality such as overshoot, phase margin and limits for manipulated value. The objective function also respects user-defined weigh coefficients for its particular terms for a different penalization of individual requirements that often clash each other such as for example overshoot and phase margin. The described solution is designated for continuous linear time-invariant static systems up to 4th order and thus efficient for the most of real control processes in practice.

  8. Constraints on the recent rate of lunar regolith accumulation from Diviner observations

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Hayne, P. O.; Bandfield, J. L.; Campbell, B. A.; Carter, L. M.; Allen, C.; Paige, D. A.

    2012-12-01

    Many large craters on the lunar nearside show radar CPR signatures consistent with the presence of blocky ejecta blankets, to distances predicted to be covered by continuous ejecta. However, most of these surfaces show limited enhancements in both derived rock abundance and rock-free regolith temperatures calculated from Diviner nighttime infrared observations. This indicates that the surface rocks are covered by a layer of thermally insulating regolith material. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we have constrained the thermophysical properties of the upper regolith, and the thickness of regolith overlying proximal ejecta. We find that for all of the regions surveyed (all in the nearside highlands), the nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a linear mixture of rocks and regolith fines, with increasing rock content with depth. Our results show significant spatial variations in the density e-folding depth, H, among young crater ejecta regions, indicating differences in the thickness of accumulated regolith. However, away from young craters, the average regional "equilibrium" value of H (Heq) is remarkably consistent, and is on the order of 5 cm. As expected, near-rim ejecta associated with young craters show lower values of H, indicating a high rock content in the shallow subsurface; for older craters, the average value of H approaches the regional value of Heq. Calculated H values for young craters (Giordano Bruno, Moore F, Byrgius A, Necho, Tycho, Jackson, King, and Copernicus) show a clear correlation with published ages, providing the first observational constraint on the recent rate of lunar regolith accumulation. In addition, this result may help to resolve the apparent discrepancy between ages calculated from small crater counts on melt ponds versus counts on continuous ejecta (e.g., King crater; Ashley et al., 2011, LPSC 42

  9. Constraints on kinematic model from recent cosmic observations: SN Ia, BAO and observational Hubble data

    SciTech Connect

    Xu, Lixin; Li, Wenbo; Lu, Jianbo E-mail: liwenbo10@yahoo.com.cn

    2009-07-01

    In this paper, linear first order expansion of deceleration parameter q(z) = q{sub 0}+q{sub 1}(1−a) (M{sub 1}), constant jerk j = j{sub 0} (M{sub 2}) and third order expansion of luminosity distance (M{sub 3}) are confronted with cosmic observations: SCP 307 SN Ia, BAO and observational Hubble data (OHD). Likelihood is implemented to find the best fit model parameters. All these models give the same prediction of the evolution of the universe which is undergoing accelerated expansion currently and experiences a transition from decelerated expansion to accelerated expansion. But, the transition redshift depends on the concrete parameterized form of the model assumed. M{sub 1} and M{sub 2} give value of transition redshift about z{sub t} ∼ 0.6. M{sub 3} gives a larger one, say z{sub t} ∼ 1. The χ{sup 2}/dof implies almost the same goodness of the models. But, for its badness of evolution of deceleration parameter at high redshift z > 1, M{sub 3} can not be reliable. M{sub 1} and M{sub 2} are compatible with ΛCDM model at the 2σ and 1σ confidence levels respectively. M{sub 3} is not compatible with ΛCDM model at 2σ confidence level. From M{sub 1} and M{sub 2} models, one can conclude that the cosmic data favor a cosmological model having j{sub 0} < −1.

  10. Constraints on Solar Wind Acceleration Mechanisms from Ulysses Plasma Observations: The First Polar Pass

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron; Gazis, Paul R.; Phillips, John L.

    1995-01-01

    The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport.

  11. Dynamical and observational constraints on satellites in the inner Pluto-Charon system

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Parker, Joel William; Duncan, Martin J.; Snowdall, J. Clark, Jr.; Levison, Harold F.

    1994-01-01

    It is not known if Pluto has other satellites besides its massive partner Charon. In the past, searches for additional satellites in the Pluto-Charon system have extended from the solar-tidal stability boundary (approximately 90 arcsec from Pluto) inward to about 1 arcsec from Pluto. Here we further explore the inner (i.e., less than 10 arcsec) region of the Pluto-Charon system to determine where additional satellites might lie. In particular, we report on (1) dynamical simulations to delineate the region where unstable orbits lie around Charon, (2) dynamical simulations which use the low orbital eccentricity of Charon to constrain the mass of any third body near Pluto, and (3) analysis of Hubble Space Telescope (HST) archival images to search for satellites in the inner Pluto-Charon system. Although no objects were found, significant new constraints on bodies orbiting in the inner Pluto-Charon system were obtained.

  12. New observational constraints on the growth of the first supermassive black holes

    SciTech Connect

    Treister, E.; Schawinski, K.; Volonteri, M.; Natarajan, P.

    2013-12-01

    We constrain the total accreted mass density in supermassive black holes at z > 6, inferred via the upper limit derived from the integrated X-ray emission from a sample of photometrically selected galaxy candidates. Studying galaxies obtained from the deepest Hubble Space Telescope images combined with the Chandra 4 Ms observations of the Chandra Deep Field-South, we achieve the most restrictive constraints on total black hole growth in the early universe. We estimate an accreted mass density <1000 M {sub ☉} Mpc{sup –3} at z ∼ 6, significantly lower than the previous predictions from some existing models of early black hole growth and earlier prior observations. These results place interesting constraints on early black hole growth and mass assembly by accretion and imply one or more of the following: (1) only a fraction of the luminous galaxies at this epoch contain active black holes; (2) most black hole growth at early epochs happens in dusty and/or less massive—as yet undetected—host galaxies; (3) there is a significant fraction of low-z interlopers in the galaxy sample; (4) early black hole growth is radiatively inefficient, heavily obscured, and/or due to black hole mergers as opposed to accretion; or (5) the bulk of the black hole growth occurs at late times. All of these possibilities have important implications for our understanding of high-redshift seed formation models.

  13. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    SciTech Connect

    Finke, Justin D.; Reyes, Luis C.; Reynolds, Kaeleigh; Georganopoulos, Markos; McCann, Kevin; Ajello, Marco; Fegan, Stephen J. E-mail: lreyes04@calpoly.edu

    2015-11-20

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (L{sub B}). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10{sup −19} G for L{sub B} ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  14. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars

    NASA Astrophysics Data System (ADS)

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; Reynolds, Kaeleigh; Ajello, Marco; Fegan, Stephen J.; McCann, Kevin

    2015-11-01

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10-19 G for LB ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  15. HEATING OF THE MAGNETIC CHROMOSPHERE: OBSERVATIONAL CONSTRAINTS FROM Ca II {lambda}8542 SPECTRA

    SciTech Connect

    De la Cruz Rodriguez, J.; De Pontieu, B.; Carlsson, M.; Rouppe van der Voort, L. H. M.

    2013-02-10

    The heating of the Sun's chromosphere remains poorly understood. While progress has been made on understanding what drives the quiet-Sun internetwork chromosphere, chromospheric heating in strong magnetic field regions continues to present a difficult challenge, mostly because of a lack of observational constraints. We use high-resolution spectropolarimetric data from the Swedish 1 m Solar Telescope to identify the location and spatio-temporal properties of heating in the magnetic chromosphere. In particular, we report the existence of raised-core spectral line profiles in the Ca II {lambda}8542 line. These profiles are characterized by the absence of an absorption line core, showing a quasi-flat profile between {lambda} Almost-Equal-To {+-}0.5 A, and are abundant close to magnetic bright points and plage. Comparison with three-dimensional MHD simulations indicates that such profiles occur when the line of sight goes through an ''elevated temperature canopy'' associated with the expansion with height of the magnetic field of flux concentrations. This temperature canopy in the simulations is caused by ohmic dissipation where there are strong magnetic field gradients. The raised-core profiles are thus indicators of locations of increased chromospheric heating. We characterize the location and temporal and spatial properties of such profiles in our observations, thus providing much stricter constraints on theoretical models of chromospheric heating mechanisms than before.

  16. Beyond the model democracy: observational constraints indicate risk of drying in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Shiogama, Hideo; Emori, Seita; Hanasaki, Naota; Abe, Manabu; Masutomi, Yuji; Takahashi, Kiyoshi; Nozawa, Toru

    2013-04-01

    Climate warming due to human activities will be accompanied by hydrological cycle changes. Economies, societies and ecosystems in South America (SA) are vulnerable to such water resource changes. Hence, water resource impact assessments for SA, and corresponding adaptation and mitigation policies, have attracted increased attention. However, substantial uncertainties remain in the current water resource assessments that are based on multiple coupled Atmosphere Ocean General Circulation models. This uncertainty varies from significant wetting to catastrophic drying. By applying a statistical method, we characterised the uncertainty and identified global-scale metrics for measuring the reliability of water resource assessments in SA. Here we show that, whereas the ensemble mean assessment suggested wetting across most of SA, the observational constraints indicate a higher probability of drying in the Amazon basin. Naive over-reliance on the consensus of models can lead to inappropriate decision making. Reference: Shiogama, H. et al. Observational constraints indicate risk of drying in the Amazon basin. Nature Communications 2:253 doi: 10.1038/ncomms1252 (2011).

  17. New Constraints on Quantum Gravity from X-Ray and Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Perlman, E. S.; Rappaport, S. A.; Christiansen, W. A.; Ng, Y. J.; DeVore, J.; Pooley, D.

    2015-05-01

    One aspect of the quantum nature of spacetime is its “foaminess” at very small scales. Many models for spacetime foam are defined by the accumulation power α, which parameterizes the rate at which Planck-scale spatial uncertainties (and the phase shifts they produce) may accumulate over large path lengths. Here α is defined by the expression for the path-length fluctuations, δ \\ell , of a source at distance ℓ, wherein δ \\ell ≃ {{\\ell }1-α }\\ell Pα , with {{\\ell }P} being the Planck length. We reassess previous proposals to use astronomical observations of distant quasars and active galactic nuclei to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from Chandra to set the constraint α ≳ 0.58, which rules out the random-walk model (with α =1/2). Much firmer constraints can be set by utilizing detections of quasars at GeV energies with Fermi and at TeV energies with ground-based Cerenkov telescopes: α ≳ 0.67 and α ≳ 0.72, respectively. These limits on α seem to rule out α =2/3, the model of some physical interest.

  18. Structure Formation in a Variable Dark Energy Model and Observational Constraints

    NASA Astrophysics Data System (ADS)

    Arbabi-Bidgoli, S.; Movahed, M. S.

    The interpretation of a vast number of cosmological observations in the framework of FRW models suggests that the major part of the energy density of the universe is in form of dark energy with still unknown physical nature. In some models for dark energy, which are motivated by particle physics theory, the equation of state and the contribution of dark energy to the energy density of the universe can be variable. Here we study structure formation in a parameterized dark energy model, and compare its predictions with recent observational data, from the Supernova Ia gold sample and the parameters of large scale structure determined by the 2-degree Field Galaxy Redshift Survey (2dFGRS), and put some constraints on the free parameters of this model.

  19. Observational constraints on multimessenger sources of gravitational waves and high-energy neutrinos.

    PubMed

    Bartos, Imre; Finley, Chad; Corsi, Alessandra; Márka, Szabolcs

    2011-12-16

    Many astronomical sources of intense bursts of photons are also predicted to be strong emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). Moreover some suspected classes, e.g., choked gamma-ray bursts, may only be identifiable via nonphoton messengers. Here we explore the reach of current and planned experiments to address this question. We derive constraints on the rate of GW and HEN bursts based on independent observations by the initial LIGO and Virgo GW detectors and the partially completed IceCube (40-string) HEN detector. We then estimate the reach of joint GW+HEN searches using advanced GW detectors and the completed km(3) IceCube detector to probe the joint parameter space. We show that searches undertaken by advanced detectors will be capable of detecting, constraining, or excluding, several existing models with 1 yr of observation.

  20. Space-based observational constraints for 1-D fire smoke plume-rise models

    NASA Astrophysics Data System (ADS)

    Val Martin, Maria; Kahn, Ralph A.; Logan, Jennifer A.; Paugam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-11-01

    We use a plume height climatology derived from space-based Multiangle Imaging Spectroradiometer (MISR) observations to evaluate the performance of a widely used plume-rise model. We initialize the model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to constrain, and we test the model with four estimates each of active fire area and total heat flux, obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power (FRP) thermal anomalies available for each MISR plume and other empirical data. We demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux) and atmospheric stability structure influence plume rise, although entrainment and possibly other less well constrained factors are also likely to be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined below the boundary layer, consistent with earlier results. However, over the diversity of conditions studied, the model simulations generally underestimate the plume height dynamic range observed by MISR and do not reliably identify plumes injected into the free troposphere, key information needed for atmospheric models to simulate smoke dispersion. We conclude that embedding in large-scale atmospheric studies an advanced plume-rise model using currently available fire constraints remains a difficult proposition, and we propose a simplified model that crudely constrains plume injection height based on two main physical factors for which some observational constraints often exist. Field experiments aimed at directly measuring fire and smoke

  1. Constraints on axions and axionlike particles from Fermi Large Area Telescope observations of neutron stars

    NASA Astrophysics Data System (ADS)

    Berenji, B.; Gaskins, J.; Meyer, M.

    2016-02-01

    We present constraints on the nature of axions and axionlike particles (ALPs) by analyzing gamma-ray data from neutron stars using the Fermi Large Area Telescope. In addition to axions solving the strong C P problem of particle physics, axions and ALPs are also possible dark matter candidates. We investigate axions and ALPs produced by nucleon-nucleon bremsstrahlung within neutron stars. We derive a phenomenological model for the gamma-ray spectrum arising from subsequent axion decays. By analyzing five years of gamma-ray data (between 60 and 200 MeV) for a sample of four nearby neutron stars, we do not find evidence for an axion or ALP signal; thus we obtain a combined 95% confidence level upper limit on the axion mass of 7.9 ×10-2 eV , which corresponds to a lower limit for the Peccei-Quinn scale fa of 7.6 ×107 GeV . Our constraints are more stringent than previous results probing the same physical process, and are competitive with results probing axions and ALPs by different mechanisms.

  2. New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters

    SciTech Connect

    Mantz, A.; Allen, S.W.; Ebeling, H.; Rapetti, D.

    2007-10-15

    We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} and {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.

  3. Constraint on the early Universe by relic gravitational waves: From pulsar timing observations

    SciTech Connect

    Zhao Wen

    2011-05-15

    Recent pulsar timing observations by the Parkers Pulsar Timing Array (PPTA) and European Pulsar Timing Array (EPTA) teams obtained the constraint on the relic gravitational waves at the frequency f{sub *}=1/yr, which provides the opportunity to constrain H{sub *}, the Hubble parameter, when these waves crossed the horizon during inflation. In this paper, we investigate this constraint by considering the general scenario for the early Universe: we assume that the effective (average) equation-of-state w before the big bang nucleosynthesis stage is a free parameter. In the standard hot big-bang scenario with w=1/3, we find that the current PPTA result follows a bound H{sub *{<=}}1.15x10{sup -1}m{sub Pl}, and the EPTA result follows H{sub *{<=}}6.92x10{sup -2}m{sub Pl}. We also find that these bounds become much tighter in the nonstandard scenarios with w>1/3. When w=1, the bounds become H{sub *{<=}}5.89x10{sup -3}m{sub Pl} for the current PPTA and H{sub *{<=}}3.39x10{sup -3}m{sub Pl} for the current EPTA. In contrast, in the nonstandard scenario with w=0, the bound becomes H{sub *{<=}}7.76m{sub Pl} for the current PPTA.

  4. Joint Inversion of Mantle Viscosity and Thermal Structure: Applications of the Adjoint of Mantle Convection with Observational Constraints

    NASA Astrophysics Data System (ADS)

    Liu, L.; Gurnis, M.

    2007-12-01

    The adjoint method widely used in meteorology and oceanography was introduced into mantle convection by Bunge et al (2003) and Ismail et al (2004). We implemented the adjoint method in CitcomS, a finite-element code that solves for thermal convection within a spherical shell. This method constrains the initial condition by minimizing the mismatch of prediction to observation. Since the present day mantle thermal structure is inferred from seismic tomography, we converted seismic velocity to temperature, an uncertain conversion. Moreover, since mantle viscosity is also uncertain, the inference of mantle initial conditions from tomography is not unique. We have developed a method that incorporates dynamic topography as an additional constraint and are able to jointly invert for mantle viscosity and the seismic to thermal scaling. We assume the thermal structure of present day mantle has the same ¡°pattern¡± as inferred from tomography, but leave the scaling to temperature as an unknown. The other constraint is the evolving dynamic topography recorded at specific points on earth's surface. From the governing equations of mantle convection, we derive the relations between dynamic topography, thermal anomaly and mantle viscosities. These relations allow a two- layer looping algorithm that inverts for viscosity and thermal anomaly: the inner loop takes the tomographic image as a constraint and the outer loop takes dynamic topography and its rate of change. Starting with incorrect values of thermal anomaly and viscosities, we show with synthetic experiments that all variables converge to their correct values after a finite number of iterations. Our method is examined both in a uniformly viscous mantle and a mantle with depth- and temperature-dependent viscosity. The method has been applied to the descent of the Farallon slab beneath North America.

  5. Constraints on the Variability of the Tropospheric Methane Abundance on Titan from Cassini VIMS Observations

    NASA Astrophysics Data System (ADS)

    Paulo, Penteado F.; Griffith, C.; VIMS Team

    2006-09-01

    Titan's methane cycles between the atmosphere and the surface, similarly to the hydrological cycle on Earth, as its frequently observed clouds and surface fluvial features indicate. With the constant loss of methane due to photolysis, a surface source is needed to preserve the current high methane abundance in the atmosphere. However, no liquid surfaces or active volcanism have been identified so far, so that the surface branch of Titan's hydrological cycle and its interaction with the atmosphere are yet largely unconstrained. The lack of large liquid surfaces and the preferential occurence of the methane clouds in small areas in the south suggest that the methane distribution on Titan's troposphere might be highly variable, confining the clouds to regions near the surface sources. We present Cassini VIMS (Visual and Infrared Mapping Spectrometer) observations of the 0.64µm methane band, and the constraints on the spatial variation of methane abundance derived from it. The depth of the band is sensitive to the methane as well as the scattering of light by the haze, which increases the apparent methane optical depth. In order to separate the effect of variation in the methane abundance to that of the haze, we compare the methane band depth to the haze optical depth. We find that the band increases to the south of Titan's equator, independently from the haze variation. To quantify the methane variation, we reproduce the observed spectra with radiative transfer models based on the haze properties and vertical distribution at the equatorial region derived by the Huygens DISR (Descent Imager and Spectral Radiometer) team. We find that the band is most sensitive to the higher troposphere and the methane abundance at 20-40 km altitude. We present constraints on the latitudinal distribution of haze, tropospheric methane, and discuss their uncertainties.

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. New observational constraints on f(R) gravity from cosmic chronometers

    NASA Astrophysics Data System (ADS)

    Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.; Abreu, Everton M. C.

    2017-01-01

    We use the recently released cosmic chronometer data and the latest measured value of the local Hubble parameter, combined with the latest joint light curves of Supernovae Type Ia, and Baryon Acoustic Oscillation distance measurements, in order to impose constraints on the viable and most used f(R) gravity models. We consider four f(R) models, namely the Hu-Sawicki, the Starobinsky, the Tsujikawa, and the exponential one, and we parametrize them introducing a distortion parameter b that quantifies the deviation from ΛCDM cosmology. Our analysis reveals that a small but non-zero deviation from ΛCDM cosmology is slightly favored, with the corresponding fittings exhibiting very efficient AIC and BIC Information Criteria values. Clearly, f(R) gravity is consistent with observations, and it can serve as a candidate for modified gravity.

  8. Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints

    SciTech Connect

    Akarsu, Özgür; Kumar, Suresh; Myrzakulov, R.; Sami, M.; Xu, Lixin E-mail: sukuyd@gmail.com E-mail: samijamia@gmail.com

    2014-01-01

    In this paper, we consider a simple form of expansion history of Universe referred to as the hybrid expansion law - a product of power-law and exponential type of functions. The ansatz by construction mimics the power-law and de Sitter cosmologies as special cases but also provides an elegant description of the transition from deceleration to cosmic acceleration. We point out the Brans-Dicke realization of the cosmic history under consideration. We construct potentials for quintessence, phantom and tachyon fields, which can give rise to the hybrid expansion law in general relativity. We investigate observational constraints on the model with hybrid expansion law applied to late time acceleration as well as to early Universe a la nucleosynthesis.

  9. NO OBSERVATIONAL CONSTRAINTS FROM HYPOTHETICAL COLLISIONS OF HYPOTHETICAL DARK HALO PRIMORDIAL BLACK HOLES WITH GALACTIC OBJECTS

    SciTech Connect

    Abramowicz, Marek A.; Becker, Julia K.; Garzilli, Antonella; Johansson, Fredrik; Biermann, Peter L.; Qian Lei

    2009-11-01

    It was suggested by several authors that hypothetical primordial black holes (PBHs) may contribute to the dark matter (DM) in our Galaxy. There are strong constraints based on the Hawking evaporation that practically exclude PBHs with masses m{sub pbh} approx 10{sup 15}to10{sup 16} g and smaller as significant contributors to the Galactic DM. Similarly, PBHs with masses greater than about 10{sup 26} g are practically excluded by the gravitational lensing observation. The mass range between 10{sup 16} g observational signatures in the unexplored mass range, investigating hypothetical collisions of PBHs with main-sequence stars, red giants, white dwarfs, and neutron stars in our Galaxy. This has previously been discussed as possibly leading to an observable photon eruption due to shock production during the encounter. We find that such collisions are either too rare to be observed (if the PBH masses are typically larger than about 10{sup 20} g), or produce too little power to be detected (if the masses are smaller than about 10{sup 20} g).

  10. Acceleration of cosmic rays at supernova remnant shocks: constraints from gamma-ray observations

    NASA Astrophysics Data System (ADS)

    Lemoine-Goumard, Marianne

    2016-06-01

    Supernova remnants (SNRs) are thought to be the primary sources of the bulk of Galactic cosmicray (CR) protons observed at Earth, up to the knee energy at ˜3 PeV. Our understanding of CR acceleration in SNRs mainly relies on the Diffusive Shock Acceleration theory which is commonly invoked to explain several observational (though, indirect) lines of evidence for efficient particle acceleration at the SNR forward shocks up to very high energies. In particular, recent observations of young SNRs in the high-energy (HE; 0.1 < E < 100 GeV) gamma-ray domains have raised several questions and triggered numerous theoretical investigations. However, these detections still do not constitute a conclusive proof that supernova remnants accelerate the bulk of Galactic cosmic-rays, mainly due to the difficulty of disentangling the hadronic and leptonic contributions to the observed gamma-ray emission. In my presentation, I will review the most relevant results of gamma ray astronomy on supernova remnants (shell-type and middle-age interacting with molecular clouds) and the constraints derived concerning their efficiency to accelerate cosmic-rays.

  11. The depths of clouds on Jupiter: Observational constraints on the O/H ratio

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Bjoraker, G. L.; De Pater, I.; Adamkovics, M.

    2015-12-01

    The oxygen abundance in Jupiter is an important constraint on planet formation and conditions in protoplanetary disks. Oxygen, in the form of water, is also dynamically significant in Jupiter's atmosphere: as a tracer of circulation and as a carrier of latent heat. We have developed a technique to measure the depth of opaque cloud tops in Jupiter's atmosphere (Bjoraker et al. 2015; this meeting; also Astrophysical Journal in press). We measure resolved CH3D line shapes in the 5-μm window of Jupiter's spectrum to distinguish between cloud-top pressure levels of about 3 to 10 bars. We will use the retrieved cloud top pressure levels to place lower limits on the O/H ratio in Jupiter, based on Keck/NIRSPEC spectra acquired in January 2013. Since our spectra do not directly give the temperature/pressure profile in the cloud layer, constraining the O/H ratio requires independent atmospheric structure data. We will review observational and theoretical constraints on Jupiter's thermal structure, which lead to uncertainty bounds on the O/H ratio we derive. Preliminary work to date suggests that our technique may be able to determine whether or not the Galileo Probe Mass Spectrometer O/H measurement can be representative of the planet's bulk abundance, and whether O is supersolar in Jupiter like the other volatile elements C, N, and S. If we can distinguish between O/H lower limits of 10x and 3x solar, we will be able to test the hypothesis that Jupiter's volatiles must have been delivered via water ice clathrates. [This conference abstract is supported by NASA grant NNX11AM55G issued through the Outer Planets Research Program, and by grants NNX11AJ47G, NNX14AJ43G, and NNX1AJ41G through the Planetary Astronomy and Solar System Observations Programs.

  12. A SEARCH FOR ADDITIONAL PLANETS IN THE NASA EPOXI OBSERVATIONS OF THE EXOPLANET SYSTEM GJ 436

    SciTech Connect

    Ballard, Sarah; Christiansen, Jessie L.; Charbonneau, David; Holman, Matthew J.; Fabrycky, Daniel; Deming, Drake; Barry, Richard K.; Kuchner, Marc J.; Livengood, Timothy A.; Hewagama, Tilak; A'Hearn, Michael F.; Wellnitz, Dennis D.; Sunshine, Jessica M.; Hampton, Don L.; Lisse, Carey M.; Seager, Sara; Veverka, Joseph F.

    2010-06-20

    We present time series photometry of the M dwarf transiting exoplanet system GJ 436 obtained with the Extrasolar Planet Observation and Characterization (EPOCh) component of the NASA EPOXI mission. We conduct a search of the high-precision time series for additional planets around GJ 436, which could be revealed either directly through their photometric transits or indirectly through the variations these second planets induce on the transits of the previously known planet. In the case of GJ 436, the presence of a second planet is perhaps indicated by the residual orbital eccentricity of the known hot Neptune companion. We find no candidate transits with significance higher than our detection limit. From Monte Carlo tests of the time series, we rule out transiting planets larger than 1.5 R{sub +} interior to GJ 436b with 95% confidence and larger than 1.25 R{sub +} with 80% confidence. Assuming coplanarity of additional planets with the orbit of GJ 436b, we cannot expect that putative planets with orbital periods longer than about 3.4 days will transit. However, if such a planet were to transit, we would rule out planets larger than 2.0 R{sub +} with orbital periods less than 8.5 days with 95% confidence. We also place dynamical constraints on additional bodies in the GJ 436 system, independent of radial velocity measurements. Our analysis should serve as a useful guide for similar analyses of transiting exoplanets for which radial velocity measurements are not available, such as those discovered by the Kepler mission. From the lack of observed secular perturbations, we set upper limits on the mass of a second planet as small as 10 M{sub +} in coplanar orbits and 1 M{sub +} in non-coplanar orbits close to GJ 436b. We present refined estimates of the system parameters for GJ 436. We find P = 2.64389579 {+-} 0.00000080 d, R{sub *} = 0.437 {+-} 0.016 R{sub sun}, and R{sub p} = 3.880 {+-} 0.147 R{sub +}. We also report a sinusoidal modulation in the GJ 436 light curve

  13. LV wall segmentation using the variational level set method (LSM) with additional shape constraint for oedema quantification

    NASA Astrophysics Data System (ADS)

    Kadir, K.; Gao, H.; Payne, A.; Soraghan, J.; Berry, C.

    2012-10-01

    In this paper an automatic algorithm for the left ventricle (LV) wall segmentation and oedema quantification from T2-weighted cardiac magnetic resonance (CMR) images is presented. The extent of myocardial oedema delineates the ischaemic area-at-risk (AAR) after myocardial infarction (MI). Since AAR can be used to estimate the amount of salvageable myocardial post-MI, oedema imaging has potential clinical utility in the management of acute MI patients. This paper presents a new scheme based on the variational level set method (LSM) with additional shape constraint for the segmentation of T2-weighted CMR image. In our approach, shape information of the myocardial wall is utilized to introduce a shape feature of the myocardial wall into the variational level set formulation. The performance of the method is tested using real CMR images (12 patients) and the results of the automatic system are compared to manual segmentation. The mean perpendicular distances between the automatic and manual LV wall boundaries are in the range of 1-2 mm. Bland-Altman analysis on LV wall area indicates there is no consistent bias as a function of LV wall area, with a mean bias of -121 mm2 between individual investigator one (IV1) and LSM, and -122 mm2 between individual investigator two (IV2) and LSM when compared to two investigators. Furthermore, the oedema quantification demonstrates good correlation when compared to an expert with an average error of 9.3% for 69 slices of short axis CMR image from 12 patients.

  14. New constraints on the observable inflaton potential from WMAP and SDSS

    SciTech Connect

    Lesgourgues, Julien; Valkenburg, Wessel

    2007-06-15

    We derive some new constraints on single-field inflation from the Wilkinson Microwave Anisotropy Probe 3-year data combined with the Sloan Luminous Red Galaxy survey. Our work differs from previous analyses by focusing only on the observable part of the inflaton potential, or in other words, by making absolutely no assumption about extrapolation of the potential from its observable region to its minimum (i.e., about the branch of the potential responsible for the last {approx}50 inflationary e-folds). We only assume that inflation starts at least a few e-folds before the observable Universe leaves the Hubble radius, and that the inflaton rolls down a monotonic and regular potential, with no sharp features or phase transitions. We Taylor-expand the inflaton potential at order v=2, 3 or 4 in the vicinity of the pivot scale, compute the primordial spectra of scalar and tensor perturbations numerically and fit the data. For v>2, a large fraction of the allowed models is found to produce a large negative running of the scalar tilt, and to fall in a region of parameter space where the second-order slow-roll formalism is strongly inaccurate. We release a code for the computation of inflationary perturbations which is compatible with cosmomc.

  15. Constraints on Eurasian ship NOx emissions using OMI NO2 observations and GEOS-Chem

    NASA Astrophysics Data System (ADS)

    Vinken, Geert C. M.; Boersma, Folkert; van Donkelaar, Aaron; Zhang, Lin

    2013-04-01

    Ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Ships burn low-grade marine heavy fuel due to the limited regulations that exist for the maritime sector in international waters. Previous studies showed that global ship NOx emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NOx emissions), with most emissions close to land and affecting air quality in densely populated coastal regions. Bottom-up inventories depend on the extrapolation of a relatively small number of measurements that are often unable to capture annual emission changes and can suffer from large uncertainties. Satellites provide long-term, high-resolution retrievals that can be used to improve emission estimates. In this study we provide top-down constraints on ship NOx emissions in major European ship routes, using observed NO2 columns from the Ozone Monitoring Instrument (OMI) and NO2 columns simulated with the nested (0.5°×0.67°) version of the GEOS-Chem chemistry transport model. We use a plume-in-grid treatment of ship NOx emissions to account for in-plume chemistry in our model. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO2 profiles as a priori. We find evidence that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km and biased high by a factor of 4 as compared to the most recent (EMEP) ship emission inventory. Better agreement is found over the shipping lane between Spain and the English Channel. We extend our approach and also provide constraints for major ship routes in the Red Sea and Indian Ocean. Using the full benefit of the long-term retrieval record of OMI, we present a new Eurasian ship emission inventory for the years 2005 to 2010, based on the EMEP and AMVER-ICOADS inventories, and top-down constraints from the satellite retrievals. Our work shows that satellite retrievals can

  16. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    SciTech Connect

    Fogli, G.L.; Lisi, E.; Marrone, A.; Palazzo, A.; Melchiorri, A.; Serra, P.; Silk, J.

    2004-12-01

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta-decay (m{sub {beta}}); the effective Majorana neutrino mass in neutrinoless double beta-decay (m{sub {beta}}{sub {beta}}); and the sum of neutrino masses in cosmology ({sigma}). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m{sub {beta}} by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m{sub {beta}}{sub {beta}} from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on {sigma} from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the two degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-{alpha} forest data from the Sloan Digital Sky Survey (SDSS), in models with a nonzero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m{sub {beta}},m{sub {beta}}{sub {beta}},{sigma}) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between {sigma} and m{sub {beta}}{sub {beta}} constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and nonoscillatory) can further probe the currently allowed regions.

  17. Dependences of posterior pdf on observational constraint and model errors in nonlinear data assimilation.

    NASA Astrophysics Data System (ADS)

    Beechler, B. E.; Vukicevic, T.; Weiss, J. B.

    2008-12-01

    In this study, the relationship between data assimilation solutions and nonlinear model properties together with observational constraint is analyzed using a numerical technique based on the inverse problem theory formulated by Mosegaard and Tarantola. By this theory, the inverse problem and solution are defined via convolution and conjunction of probability density functions (pdfs) that represent stochastic information obtained from the model, observations and prior knowledge in a joint multidimensional space. This theory provides an explicit analysis of the nonlinear model function, together with information about uncertainties in the model, observations, and prior knowledge through construction of the joint probability density, from which marginal posterior solution functions can then be evaluated. The numerical analysis technique derived from the theory computes the component probability density functions in discretized form via a combination of function mapping on a discrete grid in the model and observation phase space, and sampling from known parametric distributions. This numerical diagnostic analysis technique was first demonstrated in Vukicevic and Posselt (2008) on examples of two well known simplified models of Atmospheric physics: Damped oscillations and Lorenz' 3-component model of dry cellular convection. In the current study the diagnostic analysis of the controls of posterior pdf in data assimilation is performed using a beta plane quasi- geostrophic numerical model. The control parameter space in the model consists of coefficients of two- dimensional Fourier decomposition of stream function fields within regions of unstable dynamical modes. The impact of assumed modeling errors and spatial and temporal distribution of observations on the posterior multi dimensional pdf is studied to evaluate conditions which render this pdf uni-modal. The validity of the Gaussian approximation is then evaluated.

  18. CONSTRAINTS ON LEMAITRE-TOLMAN-BONDI MODELS FROM OBSERVATIONAL HUBBLE PARAMETER DATA

    SciTech Connect

    Wang Hao; Zhang Tongjie

    2012-04-01

    We use the observational Hubble parameter data (OHD), both the latest observational data set (Stern et al.; referred to as SJVKS) and the simulated data sets, to constrain Lemaitre-Tolman-Bondi (LTB) void models. The necessity of the consistency check on OHD itself in the LTB cosmology is stressed. Three voids are chosen as test models and are constrained using the Union2 data set of SN Ia as well as OHD. Despite their different parameterization, the results from our test models show some similarities; e.g., the best-fit voids obtained from OHD are all considerably broader than those from SN Ia. Due to the small size of the SJVKS data set, the constraints are not conclusive. The constraining power of the future OHD observations are therefore investigated through a figure of merit (FoM) analysis based on the Monte Carlo simulated data. We found that, in the case that the future OHD become more consistent with SN Ia, the results from the test models are almost unanimous: (1) as many as 32 OHD data points at the SJVKS-like uncertainty level are needed to give a higher FoM than the Union2 data set of SN Ia, (2) precise observation helps reduce this required number, (3) increasing the survey depth does not always increase the FoM. On the other hand, if the future OHD and the Union2 data set keep favoring different voids, in a similar manner as they do at present, the 1{sigma} confidence regions obtained from the two probes should finally separate. We test this conjecture and find that the minimum observational requirement (the size of the data set, the uncertainty level, and the survey depth) for this inconsistency to emerge depends strongly on the void model.

  19. Constraints on binary neutron star merger product from short GRB observations

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing; Lü, Hou-Jun

    2016-02-01

    Binary neutron star (NS) mergers are strong gravitational-wave (GW) sources and the leading candidates to interpret short-duration gamma-ray bursts (SGRBs). Under the assumptions that SGRBs are produced by double neutron star mergers and that the x-ray plateau followed by a steep decay as observed in SGRB x-ray light curves marks the collapse of a supramassive neutron star to a black hole (BH), we use the statistical observational properties of Swift SGRBs and the mass distribution of Galactic double neutron star systems to place constraints on the neutron star equation of state (EoS) and the properties of the post-merger product. We show that current observations already impose the following interesting constraints. (1) A neutron star EoS with a maximum mass close to a parametrization of Mmax=2.37 M⊙(1 +1.58 ×10-10P-2.84) is favored. (2) The fractions for the several outcomes of NS-NS mergers are as follows: ˜40 % prompt BHs, ˜30 % supramassive NSs that collapse to BHs in a range of delay time scales, and ˜30 % stable NSs that never collapse. (3) The initial spin of the newly born supramassive NSs should be near the breakup limit (Pi˜1 ms ), which is consistent with the merger scenario. (4) The surface magnetic field of the merger products is typically ˜1015 G . (5) The ellipticity of the supramassive NSs is ɛ ˜(0.004 -0.007 ), so that strong GW radiation is released after the merger. (6) Even though the initial spin energy of the merger product is similar, the final energy output of the merger product that goes into the electromagnetic channel varies in a wide range from several 1049 to several 1052 erg , since a good fraction of the spin energy is either released in the form of GWs or falls into the black hole as the supramassive NS collapses.

  20. Space-based Observational Constraints for 1-D Plume Rise Models

    NASA Technical Reports Server (NTRS)

    Martin, Maria Val; Kahn, Ralph A.; Logan, Jennifer A.; Paguam, Ronan; Wooster, Martin; Ichoku, Charles

    2012-01-01

    We use a space-based plume height climatology derived from observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the NASA Terra satellite to evaluate the ability of a plume-rise model currently embedded in several atmospheric chemical transport models (CTMs) to produce accurate smoke injection heights. We initialize the plume-rise model with assimilated meteorological fields from the NASA Goddard Earth Observing System and estimated fuel moisture content at the location and time of the MISR measurements. Fire properties that drive the plume-rise model are difficult to estimate and we test the model with four estimates for active fire area and four for total heat flux, obtained using empirical data and Moderate Resolution Imaging Spectroradiometer (MODIS) re radiative power (FRP) thermal anomalies available for each MISR plume. We show that the model is not able to reproduce the plume heights observed by MISR over the range of conditions studied (maximum r2 obtained in all configurations is 0.3). The model also fails to determine which plumes are in the free troposphere (according to MISR), key information needed for atmospheric models to simulate properly smoke dispersion. We conclude that embedding a plume-rise model using currently available re constraints in large-scale atmospheric studies remains a difficult proposition. However, we demonstrate the degree to which the fire dynamical heat flux (related to active fire area and sensible heat flux), and atmospheric stability structure influence plume rise, although other factors less well constrained (e.g., entrainment) may also be significant. Using atmospheric stability conditions, MODIS FRP, and MISR plume heights, we offer some constraints on the main physical factors that drive smoke plume rise. We find that smoke plumes reaching high altitudes are characterized by higher FRP and weaker atmospheric stability conditions than those at low altitude, which tend to remain confined

  1. Investigations into Generalization of Constraint-Based Scheduling Theories with Applications to Space Telescope Observation Scheduling

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Smith, Steven S.

    1996-01-01

    This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.

  2. Developing Vs30 site-condition maps by combining observations with geologic and topographic constraints

    USGS Publications Warehouse

    Thompson, E.M.; Wald, D.J.

    2012-01-01

    Despite obvious limitations as a proxy for site amplification, the use of time-averaged shear-wave velocity over the top 30 m (VS30) remains widely practiced, most notably through its use as an explanatory variable in ground motion prediction equations (and thus hazard maps and ShakeMaps, among other applications). As such, we are developing an improved strategy for producing VS30 maps given the common observational constraints. Using the abundant VS30 measurements in Taiwan, we compare alternative mapping methods that combine topographic slope, surface geology, and spatial correlation structure. The different VS30 mapping algorithms are distinguished by the way that slope and geology are combined to define a spatial model of VS30. We consider the globally applicable slope-only model as a baseline to which we compare two methods of combining both slope and geology. For both hybrid approaches, we model spatial correlation structure of the residuals using the kriging-with-a-trend technique, which brings the map into closer agreement with the observations. Cross validation indicates that we can reduce the uncertainty of the VS30 map by up to 16% relative to the slope-only approach.

  3. Inverse optimization of the land surface model JSBACH using multiple constraints and long term observations

    NASA Astrophysics Data System (ADS)

    Carvalhais, N.; Zaehle, S.; Schürmann, G. J.; Beer, C.; Granier, A.; Loustau, D.; Papale, D.; Reick, C.; Reichstein, M.

    2012-04-01

    Terrestrial ecosystems play a key role in the global carbon cycle. The characterization and understanding of ecosystem level responses to climatic drivers is essential for diagnostic purposes as well as improving the representation of land-atmosphere feedbacks in climate projections of coupled carbon-cycle climate models. The combination of biogeochemical models with multiple observations of ecosystem carbon and water fluxes through a model-data integration framework enables the recognition of potential limitations of modeling approaches. Here, we evaluate the performance of the land surface scheme (JSBACH 2.0) of the Max Planck Institute Earth System Model (MPI-ESM) to simulate ecosystem carbon and water fluxes for two forest sites monitored using the eddy covariance technique since 1996: a beech (Hesse) and a pine (Le Bray) forest. An inverse optimization approach was performed considering daily carbon and water fluxes, as well as observations of vegetation and soil carbon stocks. Our results show that multiple-constraints approaches including information about ecosystem states and ecosystem carbon and water fluxes provide a significant support in evaluating model structures as opposed to assimilation approaches only considering ecosystem flux measurements. Further, this work emphasizes the relevance of long time series to address the model performance of inter annual variability.

  4. Observational constraints on the response function of Southern Ocean SST to SAM forcing

    NASA Astrophysics Data System (ADS)

    Hausmann, U.; Ferreira, D.; Marshall, J.

    2015-12-01

    Recent coupled model studies of the polar Southern Ocean (SO) revealed an initial (fast) cooling, but longer-term (slow) and equilibrium warming, of sea surface temperature (SST) in response to stratospheric ozone depletion and the concurrent shift of the Southern Annular Mode (SAM) to its positive phase. Yet there is much spread across models in the amplitude and time scale of the equilibration, so that even the sign of the implied recent-decade SST response to ozone depletion is not robust. Here we use the framework of a simple layered model (representing mixed layer, seasonal thermocline and upper permanent thermocline of the SO south of the polar front) combined with observations of the SO, to derive constraints on the equilibrium response of the real-world SO to annually-repeating seasonal SAM forcing. We obtain simple expressions for the equilibrium response in terms of the SAM-induced air-sea fluxes of heat and momentum and the SO horizontal and vertical temperature stratifications. These are then evaluated using satellite observations and atmospheric reanalysis data, as well as in-situ ocean climatologies. Our estimates suggest that, for observed characteristics (mixed layer depths, stratification, phasing of the SAM-forcing in season and space), the well-documented surface-forced fast SO SST cooling is large in comparison to the dynamically-induced subsurface-forced warming, and thus also largely sets the sign and amplitude of the equilibrium response.Exploration of the parameter space of coupled model versus observed ratios of horizontal to vertical stratifications provides a rationale for the discrepant equilibrium responses.

  5. Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex

    NASA Astrophysics Data System (ADS)

    Graf, Hans-F.; Zanchettin, Davide; Timmreck, Claudia; Bittner, Matthias

    2014-12-01

    A composite analysis of Northern Hemisphere's mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.

  6. The negative shortwave cloud feedback at high latitudes: mechanisms and observational constraints

    NASA Astrophysics Data System (ADS)

    Ceppi, Paulo; McCoy, Daniel; Hartmann, Dennis; Webb, Mark

    2016-04-01

    Climate models agree on a negative shortwave cloud feedback at high latitudes, driven by increases in cloud optical depth and liquid water path (LWP), but the mechanisms remain uncertain. We assess the importance of microphysical processes for the negative optical depth feedback by perturbing temperature in the microphysics schemes of two aquaplanet models, both of which have separate prognostic equations for liquid water and ice. We find that most of the LWP increase with warming is caused by a suppression of ice microphysical processes in mixed-phase clouds, resulting in reduced conversion efficiencies of liquid water to ice and precipitation, and yielding an enhanced reservoir of cloud liquid water. Hence, in climate models, the suppression of ice-phase microphysics that deplete cloud liquid water is a key mechanism of the LWP increase with warming and of the associated negative shortwave cloud feedback in cold clouds. In support of these findings, we show the existence of a very robust positive relationship between monthly-mean LWP and temperature in CMIP5 models and observations in mixed-phase cloud regions only. In models, the historical LWP sensitivity to temperature is a good predictor of the forced global warming response poleward of about 45°, although models appear to overestimate the LWP response to warming compared to observations. Historical cloud optical depth-temperature relationships are shown to provide an observational constraint on the modeled cloud feedback, and support the prediction of a negative cloud feedback at high latitudes. Because optical thickening with warming is supported by simple temperature-dependent mechanisms and dominates over cloud amount changes, we conclude that the shortwave cloud feedback is very likely negative in mid to high latitudes.

  7. Observational constraints on earthquake source scaling: Understanding the limits in resolution

    USGS Publications Warehouse

    Hough, S.E.

    1996-01-01

    I examine the resolution of the type of stress drop estimates that have been used to place observational constraints on the scaling of earthquake source processes. I first show that apparent stress and Brune stress drop are equivalent to within a constant given any source spectral decay between ??1.5 and ??3 (i.e., any plausible value) and so consistent scaling is expected for the two estimates. I then discuss the resolution and scaling of Brune stress drop estimates, in the context of empirical Green's function results from recent earthquake sequences, including the 1992 Joshua Tree, California, mainshock and its aftershocks. I show that no definitive scaling of stress drop with moment is revealed over the moment range 1019-1025; within this sequence, however, there is a tendency for moderate-sized (M 4-5) events to be characterized by high stress drops. However, well-resolved results for recent M > 6 events are inconsistent with any extrapolated stress increase with moment for the aftershocks. Focusing on comer frequency estimates for smaller (M < 3.5) events, I show that resolution is extremely limited even after empirical Green's function deconvolutions. A fundamental limitation to resolution is the paucity of good signal-to-noise at frequencies above 60 Hz, a limitation that will affect nearly all surficial recordings of ground motion in California and many other regions. Thus, while the best available observational results support a constant stress drop for moderate-to large-sized events, very little robust observational evidence exists to constrain the quantities that bear most critically on our understanding of source processes: stress drop values and stress drop scaling for small events.

  8. Observational constraints on upper tropospheric NOx emissions, lifetime, and oxidative products

    NASA Astrophysics Data System (ADS)

    Nault, Benjamin Albert

    the thermal decomposition of CH3O2NO2 during sampling. I show that CH3O2NO2 is ubiquitous in the upper troposphere and is as important NOx oxidative product as HNO3. Then, using observations from one quasi-Lagrangian flight during DC3, I derive constraints on the daytime NOx oxidative rate constants for the reactions that remove upper tropospheric NOx. The reactions include the production of CH3O2NO 2, HO2NO2, PAN, PPN, alkyl and multifunctional nitrates, and HNO3. These constraints indicate that NOx lifetime is longer than currently believe due to the daytime HNO3 and HO2NO2 production rate constants being 30 -- 50% slower than currently assumed. Finally, the implications of the longer lifetime are used to show that lightning NOx emission rates are at least 33% larger than current estimates. As a consequence, model predictions indicate O3 in the upper troposphere increase by 5 -- 10% with a resulting increase in radiative forcing.

  9. Constraints on CME Evolution from in situ Observations of Ionic Charge States

    NASA Technical Reports Server (NTRS)

    Gruesbeck, Jacob R.; Lepri, Susan T.; Zurbuchen, Thomas H.; Antiochos, Spiro K.

    2010-01-01

    We present a novel procedure for deriving the physical properties of Coronal Mass Ejections (CMES) in the corona. Our methodology uses in-situ measurements of ionic charge states of C, O, Si and Fe in the heliosphere and interprets them in the context of a model for the early evolution of ICME plasma, between 2 - 5 R-solar. We find that the data can be fit only by an evolution that consists of an initial heating of the plasma, followed by an expansion that ultimately results in cooling. The heating profile is consistent with a compression of coronal plasma due to flare reconnect ion jets and an expansion cooling due to the ejection, as expected from the standard CME/flare model. The observed frozen-in ionic charge states reflect this time-history and, therefore, provide important constraints for the heating and expansion time-scales, as well as the maximum temperature the CME plasma is heated to during its eruption. Furthermore, our analysis places severe limits on the possible density of CME plasma in the corona. We discuss the implications of our results for CME models and for future analysis of ICME plasma composition.

  10. A MODEL OF MAGNETIC BRAKING OF SOLAR ROTATION THAT SATISFIES OBSERVATIONAL CONSTRAINTS

    SciTech Connect

    Denissenkov, Pavel A.

    2010-08-10

    The model of magnetic braking of solar rotation considered by Charbonneau and MacGregor has been modified so that it is able to reproduce for the first time the rotational evolution of both the fastest and slowest rotators among solar-type stars in open clusters of different ages, without coming into conflict with other observational constraints, such as the time evolution of the atmospheric Li abundance in solar twins and the thinness of the solar tachocline. This new model assumes that rotation-driven turbulent diffusion, which is thought to amplify the viscosity and magnetic diffusivity in stellar radiative zones, is strongly anisotropic with the horizontal components of the transport coefficients strongly dominating over those in the vertical direction. Also taken into account is the poloidal field decay that helps to confine the width of the tachocline at the solar age. The model's properties are investigated by numerically solving the azimuthal components of the coupled momentum and magnetic induction equations in two dimensions using a finite element method.

  11. Isolating wetland CH4 emissions using the additional constraints of δ13CH4, and C2H6 in a inverse modeling framework

    NASA Astrophysics Data System (ADS)

    Guillermo Nuñez Ramirez, Tonatiuh; Marshall, Julia; Houweling, Sander; Dlugokencky, Edward J.; Worthy, Douglas E. J.; Vaughn, Bruce; Simpson, Isobel; White, James; Brand, Willi A.; Sasakawa, Motoki; Nichol, Silvia; Ramonet, Michel; Tyler, Stanley C.; Hueber, Jacques; Helmig, Detlev; Read, Katie; Punjabi, Schalini; Vanni Gatti, Luciana; Krummel, Paul; Heimann, Martin

    2015-04-01

    Wetlands are the largest single source of atmospheric methane (CH_4). However, estimates of their relative contribution to the atmospheric CH4 budget are highly uncertain. Models of CH4 fluxes from wetlands, which reflect our understanding of the processes driving these fluxes, disagree strongly in their estimates of the total contribution of wetlands to the CH4 budget and in the variability of the fluxes in space and time. Atmospheric CH4 observations can provide a top-down constraint on wetland CH4 flux estimates. Results from atmospheric inverse modeling studies highlight the importance of tropical wetlands in driving interannual variability of atmospheric CH_4. Nevertheless, atmospheric observations in the tropics are scarce, with large areas of strong emissions not covered by the atmospheric observation network. Furthermore, the Bayesian framework, often used in atmospheric inverse modeling, preferentially projects signals onto spatiotemporal regions with large a-priori uncertainty, which is the case of tropical wetlands. Since a large lack of knowledge exists as well for other non-wetland sources of atmospheric CH_4, signals from these could be wrongly allocated to tropical wetlands. The CH4 stable carbon isotope signal (δ13CH_4) and co-emitted species such as ethane (C_2H_6) can provide additional constraints which may be use to discriminate wetland from non-wetland CH4 emissions. We describe the set-up of an inverse modeling framework based on the Jena Inversion System and the TM3 transport model that optimizes CH4 fluxes to fit the observed atmospheric CH_4, δ13CH_4, and C_2H6 signals. The fluxes are optimized with the constraint that each source process was assigned a characteristic range of δ13CH4 signals and methane-to-ethane ratios (MERs). An additional characteristic of our set-up is that no seasonal or interannual variability was included in the wetland a-priori estimate to ensure that all variability is derived exclusively from observations. A

  12. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    NASA Astrophysics Data System (ADS)

    Vinken, G. C.; Boersma, F.; van Donkelaar, A.; Zhang, L.

    2012-12-01

    Strong emissions of gases and particulate matter by ships affect the composition of the marine boundary layer, with important consequences for climate change, air quality and public health. Because hardly any regulations for the maritime sector exist in international waters, ships are still allowed to burn low-grade marine heavy fuel. As a result, ships emit large quantities of nitrogen oxides (NO x = NO + NO 2), important precursors for ozone (O 3) and particulate matter formation. Previous studies showed that global ship NO x emission inventories amount to 3.0-10.4 Tg N per year (15-30% of total NO x emissions), with most of these emissions within 400 km of the densely populated coastal regions. However, as individual measurements of ship emissions are sparse, and these few measurements are extrapolated, these bottom-up inventories suffer from large uncertainties. In this study we provide top-down constraints on ship NO x emissions in major European ship routes, using observed NO 2 columns from the Ozone Monitoring Instrument (OMI) and NO 2 columns simulated with the nested (0.5o×0.67o) version of the GEOS-Chem chemistry transport model. Two simulations were performed using a plume-in-grid treatment of ship NO x emissions: (1) using EMEP and (2) using AMVER-ICOADS as ship emission inventory. We ensure consistency between the retrievals and model simulations by using the high-resolution GEOS-Chem NO 2 profiles as a priori. The OMI observations suggest that NO x emissions from the (2001) AMVER-ICOADS inventory are too low by a factor of 16 over the ship lane between Spain and the English Channel, and a factor of 10 over the lane between Cairo and Sicily. When comparing the OMI observations against the more recent (2005) EMEP inventory, our method unambiguously shows that ship emissions in the Mediterranean Sea are geographically misplaced by up to 150 km. EMEP emission totals however agree reasonably well with our OMI-constrained emissions over the eastern

  13. Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints

    NASA Astrophysics Data System (ADS)

    Frusciante, Noemi; Raveri, Marco; Vernieri, Daniele; Hu, Bin; Silvestri, Alessandra

    2016-09-01

    We consider Hořava gravity within the framework of the effective field theory (EFT) of dark energy and modified gravity. We work out a complete mapping of the theory into the EFT language for an action including all the operators which are relevant for linear perturbations with up to sixth order spatial derivatives. We then employ an updated version of the EFTCAMB/EFTCosmoMC package to study the cosmology of the low-energy limit of Hořava gravity and place constraints on its parameters using several cosmological data sets. In particular we use cosmic microwave background (CMB) temperature-temperature and lensing power spectra by Planck 2013, WMAP low- ℓ polarization spectra, WiggleZ galaxy power spectrum, local Hubble measurements, Supernovae data from SNLS, SDSS and HST and the baryon acoustic oscillations measurements from BOSS, SDSS and 6dFGS. We get improved upper bounds, with respect to those from Big Bang Nucleosynthesis, on the deviation of the cosmological gravitational constant from the local Newtonian one. At the level of the background phenomenology, we find a relevant rescaling of the Hubble rate at all epoch, which has a strong impact on the cosmological observables; at the level of perturbations, we discuss in details all the relevant effects on the observables and find that in general the quasi-static approximation is not safe to describe the evolution of perturbations. Overall we find that the effects of the modifications induced by the low-energy Hořava gravity action are quite dramatic and current data place tight bounds on the theory parameters.

  14. SUBARU AND GEMINI OBSERVATIONS OF SS 433: NEW CONSTRAINT ON THE MASS OF THE COMPACT OBJECT

    SciTech Connect

    Kubota, K.; Ueda, Y.; Fabrika, S.; Barsukova, E. A.; Sholukhova, O.; Medvedev, A.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 A. This region is selected to avoid 'strong' absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig and Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 +- 3.8 km s{sup -1} with a systemic velocity of 59.2 +- 2.5 km s{sup -1}. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M{sub O} = 12.4 +- 1.9 M{sub sun} and M{sub X} = 4.3 +- 0.6 M{sub sun}, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 +- 5 km s{sup -1} in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M{sub O} = 10.4{sup +2.3}{sub -1.9} M{sub sun} and M{sub X} = 2.5{sup +0.7}{sub -0.6} M{sub sun}. Our final constraint, 1.9 M{sub sun} <=M{sub X}<= 4.9 M{sub sun}, indicates that the compact object in SS 433 is most likely a

  15. A relative humidity profile retrieval from Megha-Tropiques observations without explicit thermodynamical constraints

    NASA Astrophysics Data System (ADS)

    Sivira, R. G.; Brogniez, H.; Mallet, C.; Oussar, Y.

    2014-09-01

    A statistical method trained and optimized to retrieve relative humidity (RH) profiles is presented and evaluated with measurements from radiosoundings. The method makes use of the microwave payload of the Megha-Tropiques plateform, namely the SAPHIR sounder and the MADRAS imager. The approach, based on a Generalized Additive Model (GAM), embeds both the physical and statistical characteritics of the inverse problem in the training phase and no explicit thermodynamical constraint, such as a temperature profile or an integrated water vapor content, is provided to the model at the stage of retrieval. The model is built for cloud-free conditions in order to avoid the cases of scattering of the microwave radiation in the 18.7-183.31 GHz range covered by the payload. Two instrumental configurations are tested: a SAPHIR-MADRAS scheme and a SAPHIR-only scheme, to deal with the stop of data acquisition of MADRAS in January 2013 for technical reasons. A comparison to retrievals based on the Multi-Layer Perceptron (MLP) technique and on the Least Square-Support Vector Machines (LS-SVM) shows equivalent performance over a large realistic set, promising low errors (bias < 2.2%) and scatters (correlation > 0.8) throughout the troposphere (150-900 hPa). A comparison to radiosounding measurements performed during the international field experiment CINDY/DYNAMO/AMIE of winter 2011-2012 confirms these results for the mid-tropospheric layers (correlation between 0.6 and 0.92), with an expected degradation of the quality of the estimates at the surface and top layers. Finally a rapid insight of the large-scale RH field from Megha-Tropiques is discussed and compared to ERA-Interim.

  16. Constraints on the structure and dynamics of the Earth's deep interior inferred from nutation observations

    NASA Astrophysics Data System (ADS)

    Koot, L.

    2012-12-01

    The gravitational torque applied on the Earth by the other celestial bodies generates periodic variations in the orientation of the Earth's rotation axis in space which are called nutations. This motion has two normal modes, the Free Core Nutation (FCN) and the Free Inner Core Nutation (FICN), of which the frequencies and dampings depend directly on the Earth's interior structure and dynamics (e.g. Mathews et al. 1991a, 1991b, Mathews & Shapiro 1992). Both normal modes are characterized by differential rotations of the inner core, the outer core, and the mantle. Their natural frequencies are thus directly affected both by the strength of the mechanical coupling at the outer core boundaries and by the way the three regions deform due to the action of centrifugal forces. Similarly, the damping of the modes reflects the energy dissipated both through the couplings at the outer core boundaries and through anelastic deformation. The mechanical coupling can be of several physical origins such as gravitational, electromagnetic, viscous, or pressure/topographic couplings. Due to the high precision of the nutation observations, obtained from the Very Long Baseline Interferometry (VLBI) technique, the frequency and damping of the normal modes can be estimated from the resonance effect they induce on the forced nutations (Mathews et al. 2002, Koot et al. 2008, 2010). Interpretation of these estimated natural frequencies and dampings allows then for insights into the deep Earth's physical properties. In this talk, we review the constraints that have been inferred from nutation observations on deep Earth's properties such as the intensity of the magnetic field at the outer core boundaries (Buffett et al. 2002, Koot et al. 2010, Buffett 2010a), the viscosity of the core fluid close to those boundaries (Mathews & Guo 2005, Deleplace & Cardin 2006, Koot et al. 2010), the chemical stratification at the top of the core (Buffett 2010b), and the viscosity of the inner core (Koot

  17. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    NASA Astrophysics Data System (ADS)

    Vinken, G. C. M.; Boersma, K. F.

    2012-04-01

    About 90% of world trade is transported by oceangoing ships, and seaborne trade has been shown to have increased by about 5% per year in the past decade. Global ship traffic is currently not regulated under international treaties (e.g. Kyoto protocol) and ships are still allowed to burn low-grade bunker fuel. As a result, ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Previous studies indicated that the global NOx emissions from shipping are in the range 3.0-10.4 Tg N per year (15-30% of total global NOx emissions). Because most ships sail within 400 km of the coast, it is important to understand the contribution of ship emissions to atmospheric composition in the densely populated coastal regions. Chemistry Transport Models (CTMs), in combination with emission inventories, are used to simulate atmospheric concentrations of air pollutants to assess the impact of ship emissions. However, these bottom-up inventories, based on extrapolation of a few engine measurements and strong assumptions, suffer from large uncertainties. In this study we provide top-down constraints on ship NOx emissions in Europe using satellite observations of NO2 columns. We use the nested version of the GEOS-Chem model (0.5°-0.667°) to simulate tropospheric NO2 columns over Europe for the years 2005-2006, using our plume-in-grid treatment of ship NOx emissions. We improve the NO2 retrievals from the Ozone Monitoring Instrument (OMI v2.0) by replacing the coarse a priori (TM4) vertical NO2 profiles (2°-3°) with the high-resolution GEOS-Chem profiles. This ensures consistency between the retrievals and model simulations. GEOS-Chem simulations of tropospheric NO2 columns show remarkable quantitative agreement with the observed OMI columns over Europe (R2=0.89, RMS difference < 0.2-1015 molec. cm-2), providing confidence in the ability of the model to simulate NO2 pollution over the European mainland. We

  18. Constraints on Enceladus' Interior from Cassini Observations - Requirements for Future Geophysical Investigations

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, J. C.; Matson, D. L.; Johnson, T. V.; Lunine, J. I.

    2006-12-01

    We review the constraints on Enceladus' interior inferred from multi-instrument observations by the Cassini Orbiter. Available surface temperature mapping, shape data and geological imaging indicate that the body presents large lateral variations in internal viscoelastic properties, which makes it greatly non-hydrostatic. We will present geophysical evidence that the satellite is differentiated and that there cannot be a global ocean inside Enceladus, but that most probably liquid is located under young surfaces only. Temperature measurements and geyser modeling indicate that the water ice melting point could be reached a few tens meters under the South pole surface (Spencer et al. 2006; Porco et al. 2006). However, this is not enough to conclude that there is a liquid layer immediately below the surface. Water ice could be at the melting point. Different models in development show that a hotspot localized under the South pole, at a temperature close to the water ice melting point may be able to explain the power radiated from the "South pole area" (e.g., Tobie and Cadek, Europlanet Conference 2006; Castillo et al., submitted) and why this exceptional region is located at the South pole (Nimmo and Pappalardo, Nature 441, 614, 2006). The models provide a basis for specifying measurements needed for further investigation of Enceladus' interior from an orbiter and/or a lander. Gravity measurements from Doppler tracking and ranging are necessary to provide information on the distribution of density. The degree-two component J¬2 ranges from 5.2x10e-3 to 7.8x10e-3 as a function of the degree of differentiation and the silicate density, assuming the satellite is in hydrostatic equilibrium. The dynamical term of the degree-two gravity component (function of the potential tidal Love number k2) is ~10e-7. If Enceladus' shape deviates from hydrostatic equilibrium by 1 or 2 km, it is going to make gravity observations difficult to interpret. Assuming that the South pole is

  19. Observational Constraints on Planet Nine: Astrometry of Pluto and Other Trans-Neptunian Objects

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Payne, Matthew J.

    2016-10-01

    We use astrometry of Pluto and other trans-neptunian objects to constrain the sky location, distance, and mass of the possible additional planet (Planet Nine) hypothesized by Batygin & Brown. We find that over broad regions of the sky, the inclusion of a massive, distant planet degrades the fits to the observations. However, in other regions, the fits are significantly improved by the addition of such a planet. Our best fits suggest a planet that is either more massive or closer than argued for by Batygin & Brown based on the orbital distribution of distant trans-neptunian objects (or by Fienga et al. based on range measured to the Cassini spacecraft). The trend to favor larger and closer perturbing planets is driven by the residuals to the astrometry of Pluto, remeasured from photographic plates using modern stellar catalogs, which show a clear trend in decl. over the course of two decades, that drive a preference for large perturbations. Although this trend may be the result of systematic errors of unknown origin in the observations, a possible resolution is that the decl. trend may be due to perturbations from a body, in addition to Planet Nine, that is closer to Pluto but less massive than Planet Nine.

  20. Cosmology with non-minimal derivative couplings: perturbation analysis and observational constraints

    SciTech Connect

    Dent, James B.; Dutta, Sourish; Saridakis, Emmanuel N.; Xia, Jun-Qing E-mail: sourish.d@gmail.com E-mail: xiajq@ihep.ac.cn

    2013-11-01

    We perform a combined perturbation and observational investigation of the scenario of non-minimal derivative coupling between a scalar field and curvature. First we extract the necessary condition that ensures the absence of instabilities, which is fulfilled more sufficiently for smaller coupling values. Then using Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations, we show that, contrary to its significant effects on inflation, the non-minimal derivative coupling term has a negligible effect on the universe acceleration, since it is driven solely by the usual scalar-field potential. Therefore, the scenario can provide a unified picture of early and late time cosmology, with the non-minimal derivative coupling term responsible for inflation, and the usual potential responsible for late-time acceleration. Additionally, the fact that the necessary coupling term does not need to be large, improves the model behavior against instabilities.

  1. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

    SciTech Connect

    Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi E-mail: kohri@post.kek.jp

    2016-02-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array with a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.

  2. Observational constraints on star cluster formation theory. I. The mass-radius relation

    NASA Astrophysics Data System (ADS)

    Pfalzner, S.; Kirk, H.; Sills, A.; Urquhart, J. S.; Kauffmann, J.; Kuhn, M. A.; Bhandare, A.; Menten, K. M.

    2016-02-01

    Context. Stars form predominantly in groups usually denoted as clusters or associations. The observed stellar groups display a broad spectrum of masses, sizes, and other properties, so it is often assumed that there is no underlying structure in this diversity. Aims: Here we show that the assumption of an unstructured multitude of cluster or association types might be misleading. Current data compilations of clusters in the solar neighbourhood show correlations among cluster mass, size, age, maximum stellar mass, etc. In this first paper we take a closer look at the correlation of cluster mass and radius. Methods: We use literature data to explore relations in cluster and molecular core properties in the solar neighbourhood. Results: We show that for embedded clusters in the solar neighbourhood a clear correlation exists between cluster mass and half-mass radius of the form Mc = CRcγ with γ = 1.7 ± 0.2. This correlation holds for infrared K-band data, as well as for X-ray sources and clusters containing a hundred stars up to those consisting of a few tens of thousands of stars. The correlation is difficult to verify for clusters containing fewer than 30 stars owing to low-number statistics. Dense clumps of gas are the progenitors of the embedded clusters. We find almost the same slope for the mass-size relation of dense, massive clumps as for the embedded star clusters. This might point to a direct translation from gas to stellar mass: however, it is difficult to relate size measurements for clusters (stars) to those for gas profiles. Taking multiple paths for clump mass into cluster mass into account, we obtain an average star-formation efficiency of 18%+9.3-5.7 for the embedded clusters in the solar neighbourhood. Conclusions: The derived mass-radius relation gives constraints for the theory of clustered star formation. Analytical models and simulations of clustered star formation have to reproduce this relation in order to be realistic.

  3. A New Ionosphere Tomography Algorithm with Two-Grids Virtual Observations Constraints and 3D Velocity Profile

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Shum, Che-Kwan

    2014-05-01

    Due to the sparsity of world's GNSS stations and limitations of projection angles, GNSS-based ionosphere tomography is a typical ill-posed problem. There are two main ways to solve this problem. Firstly the joint inversion method combining multi-source data is one of the effective ways. Secondly using a priori or reference ionosphere models, e.g., IRI or GIM models, as the constraints to improve the state of normal equation is another effective approach. The traditional way for adding constraints with virtual observations can only solve the problem of sparse stations but the virtual observations still lack horizontal grid constraints therefore unable to fundamentally improve the near-singularity characteristic of the normal equation. In this paper, we impose a priori constraints by increasing the virtual observations in n-dimensional space, which can greatly reduce the condition number of the normal equation. Then after the inversion region is gridded, we can form a stable structure among the grids with loose constraints. We then further consider that the ionosphere indeed changes within certain temporal scale, e.g., two hours. In order to establish a more sophisticated and realistic ionosphere model and obtain the real time ionosphere electron density velocity (IEDV) information, we introduce the grid electron density velocity parameters, which can be estimated with electron density parameters simultaneously. The velocity parameters not only can enhance the temporal resolution of the ionosphere model thereby reflecting more elaborate structure (short-term disturbances) under ionosphere disturbances status, but also provide a new way for the real-time detection and prediction of ionosphere 3D changes. We applied the new algorithm to the GNSS data collected in Europe for tomography inversion for ionosphere electron density and velocity at 2-hour resolutions, which are consistent throughout the whole day variation. We then validate the resulting tomography model

  4. Galaxy clusters as reservoirs of heavy dark matter and high-energy cosmic rays: constraints from neutrino observations

    SciTech Connect

    Murase, Kohta; Beacom, John F. E-mail: beacom.7@osu.edu

    2013-02-01

    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at ∼>10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for dark matter annihilation channels like χχ→μ{sup +}μ{sup −}, where the neutrino signals are larger than the gamma-ray signals, and for hadronic instead of electronic CRs, because only the first leads to neutrinos. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs.

  5. Observational constraints on ozone radiative forcing from the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Bowman, K.; Shindell, D.; Worden, H.; Lamarque, J. F.; Young, P. J.; Stevenson, D.; Qu, Z.; de la Torre, M.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Doherty, R.; Dalsøren, S.; Faluvegi, G.; Folberth, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I.; Myhre, G.; Nagashima, T.; Naik, V.; Plummer, D.; Rumbold, S.; Skeie, R.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.; Kulawik, S.; Worden, J.

    2012-09-01

    We use simultaneous observations of ozone and outgoing longwave radiation (OLR) from the Tropospheric Emission Spectrometer (TES) to evaluate ozone distributions and radiative forcing simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES for 2005-2010. These biases lead to substantial differences in ozone instantaneous radiative forcing between TES and the ACCMIP simulations. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean has a low bias in the SH tropics of up to 100 m W m-2 locally and a global low bias of 35 ± 44 m W m-2 relative to TES. Combining ACCMIP preindustrial ozone and the TES present-day ozone, we calculate an observationally constrained estimate of tropospheric ozone radiative forcing (RF) of 399 ± 70 m W m-2, which is about 7% higher than using the ACCMIP models alone but with the same standard deviation (Stevenson et al., 2012). In addition, we explore an alternate approach to constraining radiative forcing estimates by choosing a subset of models that best match TES ozone, which leads to an ozone RF of 369 ± 42 m W m-2. This estimate is closer to the ACCMIP ensemble mean RF but about a 40% reduction in standard deviation. These results point towards a profitable direction of combining observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

  6. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  7. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  8. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  9. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  10. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  11. Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Aizawa, Koki; Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel A.; Yokoo, Akihiko; Dingwell, Donald B.; Iguchi, Masato

    2016-06-01

    The lightning generated by explosive volcanic eruptions is of interest not only as a promising technique for monitoring volcanic activity, but also for its broader implications and possible role in the origin of life on Earth, and its impact on the atmosphere and biosphere of the planet. However, at present the genetic mechanisms and physical properties of volcanic lightning remain poorly understood, as compared to our understanding of thundercloud lightning. Here, we present joint magnetotelluric (MT) data and video imagery that were used to investigate the physical properties of electrical discharges generated during explosive activity at Sakurajima volcano, Japan, and we compare these data with the characteristics of thundercloud lightning. Using two weeks of high-sensitivity, high-sample-rate MT data recorded in 2013, we detected weak electromagnetic signals radiated by volcanic lightning close to the crater. By carefully inspecting all MT waveforms that synchronized with visible flashes, and comparing with high-speed (3000 frame/s) and normal-speed (30 frame/s) videos, we identified two types of discharges. The first type consists of impulses (Type A) and is interpreted as cloud-to-ground (CG) lightning. The second type is characterized by weak electromagnetic variations with multiple peaks (Type B), and is interpreted as intra-cloud (IC) lightning. In addition, we observed a hybrid MT event wherein a continuous weak current accompanied Type A discharge. The observed features of volcanic lightning are similar to thunderstorm lightning, and the physical characteristics show that volcanic lightning can be treated as a miniature version of thunderstorm lightning in many respects. The overall duration, length, inter-stroke interval, peak current, and charge transfer all exhibit values 1-2 orders of magnitude smaller than those of thunderstorm lightning, thus suggesting a scaling relation between volcanic and thunderstorm lightning parameters that is independent of

  12. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy

    SciTech Connect

    Zhang Xin

    2009-05-15

    In this work, we consider the cosmological constraints on the holographic Ricci dark energy proposed by Gao et al.[Phys. Rev. D 79, 043511 (2009)], by using the observational data currently available. The main characteristic of holographic Ricci dark energy is governed by a positive numerical parameter {alpha} in the model. When {alpha}<1/2, the holographic Ricci dark energy will exhibit a quintomlike behavior; i.e., its equation of state will evolve across the cosmological-constant boundary w=-1. The parameter {alpha} can be determined only by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the Universe, it is of extraordinary importance to constrain the parameter {alpha} by using the observational data. In this paper, we derive constraints on the holographic Ricci dark energy model from the latest observational data including the Union sample of 307 type Ia supernovae, the shift parameter of the cosmic microwave background given by the five-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey. The joint analysis gives the best-fit results (with 1{sigma} uncertainty): {alpha}=0.359{sub -0.025}{sup +0.024} and {omega}{sub m0}=0.318{sub -0.024}{sup +0.026}. That is to say, according to the observations, the holographic Ricci dark energy takes on the quintom feature. Finally, in light of the results of the cosmological constraints, we discuss the issue of the scalar-field dark energy reconstruction, based on the scenario of the holographic Ricci vacuum energy.

  13. Constraints on axino warm dark matter from X-ray observation at the Chandra telescope and SPI

    SciTech Connect

    Dey, Paramita; Mukhopadhyaya, Biswarup; Roy, Sourov; Vempati, Sudhir K. E-mail: biswarup@hri.res.in E-mail: vempati@cts.iisc.ernet.in

    2012-05-01

    A sufficiently long lived warm dark matter could be a source of X-rays observed by satellite based X-ray telescopes. We consider axinos and gravitinos with masses between 1 keV and 100 keV in supersymmetric models with small R-parity violation. We show that axino dark matter receives significant constraints from X-ray observations of Chandra and SPI, especially for the lower end of the allowed range of the axino decay constant f{sub a}, while the gravitino dark matter remains unconstrained.

  14. Constraint on Additional Planets in Planetary Systems Discovered Through the Channel of High-magnification Gravitational Microlensing Events

    NASA Astrophysics Data System (ADS)

    Shin, I.-G.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y.-K.; Park, H.

    2015-04-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events, for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with {Δ }{{χ }2}\\lt 80 for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with {Δ }{{χ }2}∼ 143. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter space. For this purpose, we construct exclusion diagrams showing the confidence levels excluding the existence of an additional planet as a function of its separation and mass ratio. We also present the exclusion ranges of additional planets with 90% confidence level for Jupiter-, Saturn-, and Uranus-mass planets.

  15. Structural observations from the Canavese Fault west of Valle d'Ossola (Piemonte) and some time constraints

    NASA Astrophysics Data System (ADS)

    Pleuger, Jan; Mancktelow, Neil

    2010-05-01

    The Canavese Fault (CF) is the SW part of the most important fault system in the Alps, the Periadriatic Fault. The CF has a complex kinematic history involving an older stage of NW-side-up faulting and a younger stage of SE-side-up plus dextral faulting in the area of Valle d'Ossola (Schmid et al. 1987). There, shearing occurred under greenschist-facies conditions and the fault is a c. 1 km thick mylonite zone. Toward SW, faulting took place under progressively lower temperatures and the volume of rocks affected by S-side-up plus dextral shearing becomes larger at the expense of the N-side-up mylonites. S of Valle Sesia, brittle fault rocks dominate over mylonites. Still further SW, close to the Serra d'Ivrea, the CF splits into two branches, the Internal Canavese Fault (ICF) and the External Canavese Fault (ECF). S-side-up plus dextral faulting is localised along the ICF while the observed displacement senses at the ECF are mostly, though not always, N-side-up and sinistral. Age constraints for faulting along the CF are mostly derived from absolute ages of magmatic rocks exposed alongside or within the fault. In the section around Biella, NW-side-up faulting cannot have lasted longer than until 31±2 Ma (Scheuring et al. 1974) because this is the age of andesites overlying the basement of the Penninic Sesia Zone. However, some additional uplift of the Sesia Zone with respect to the South Alpine Ivrea Zone was accommodated by down-to-the-SE tilting of the Sesia zone around a roughly NNE-SSW-trending subhorizontal axis which is evidenced by palaeomagnetic data (Lanza 1977). As a result of that, the Early Oligocene Biella Pluton (c. 31 Ma, Romer et al. 1996) today occupies a similar altitude level as the andesites of the same age. Post-31-Ma uplift of the Ivrea Zone with respect to the andesites is evidenced by the Early Oligocene (29-33 Ma, Carraro & Ferrara 1968) Miagliano Pluton which is hosted by the Ivrea Zone rocks and exposed at the present topographic surface

  16. Constraints on the Detection of the Solar Nebula's Oxidation State Through Asteroid Observations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Hardersen, P. S.

    2005-01-01

    Introduction: Asteroids represent the only in situ surviving population of planetesimals from the formation of the inner solar system and therefore include materials from the very earliest stages of solar system formation. Hence, these bodies can provide constraints on the processes and conditions that were present during this epoch and can be used to test current models and theories describing the late solar nebula, the early solar system and subsequent planetary accretion. From detailed knowledge of asteroid mineralogic compositions the probable starting materials, thermal histories, and oxidation states of asteroid parent bodies can be inferred. If such data can be obtained from specific mainbelt source regions, then this information can be used to map out the formation conditions of the late solar nebula within the inner solar system and possibly distinguish any trends in oxidation state that may be present.

  17. Observational Constraints on the Nature of the Dark Energy: First Cosmological Results From the ESSENCE Supernova Survey

    SciTech Connect

    Wood-Vasey, W.Michael; Miknaitis, G.; Stubbs, C.W.; Jha, S.; Riess, A.G.; Garnavich, P.M.; Kirshner, R.P.; Aguilera, C.; Becker, A.C.; Blackman, J.W.; Blondin, S.; Challis, P.; Clocchiatti, A.; Conley, A.; Covarrubias, R.; Davis, T.M.; Filippenko, A.V.; Foley, R.J.; Garg, A.; Hicken, M.; Krisciunas, K.; /Harvard-Smithsonian Ctr. Astrophys. /Fermilab /Harvard U. /UC, Berkeley, Astron. Dept. /KIPAC, Menlo Park /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Notre Dame U. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Res. Sch. Astron. Astrophys., Weston Creek /Chile U., Catolica /Toronto U., Astron. Dept. /Bohr Inst. /Stockholm U. /Texas A-M /European Southern Observ. /NOAO, Tucson /Ohio State U., Dept. Astron. /Inst. Astron., Honolulu

    2007-01-05

    We present constraints on the dark energy equation-of-state parameter, w = P/({rho}c{sup 2}), using 60 Type Ia supernovae (SNe Ia) from the ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat Universe. By including constraints on ({Omega}{sub M}, w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1.05{sub -0.12}{sup +0.13} (stat 1{sigma}) {+-} 0.13 (sys) and {Omega}{sub M} = 0.274{sub -0.020}{sup +0.033} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.96. These results are consistent with those reported by the Super-Nova Legacy Survey in a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic currently with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the SuperNova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1.07{sub -0.09}{sup +0.09} (stat 1{sigma}) {+-} 0.13 (sys), {Omega}{sub M} = 0.267{sub -0.018}{sup +0.028} (stat 1{sigma}) with a best-fit {chi}{sup 2}/DoF of 0.91. The current SNe Ia data are fully consistent with a cosmological constant.

  18. Modeling the chemistry of the dense interstellar clouds. I - Observational constraints for the chemistry

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.

    1990-01-01

    A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.

  19. New observations regarding deterministic, time-reversible thermostats and Gauss's principle of least constraint.

    PubMed

    Bright, Joanne N; Evans, Denis J; Searles, Debra J

    2005-05-15

    Deterministic thermostats are frequently employed in nonequilibrium molecular dynamics simulations in order to remove the heat produced irreversibly over the course of such simulations. The simplest thermostat is the Gaussian thermostat, which satisfies Gauss's principle of least constraint and fixes the peculiar kinetic energy. There are of course infinitely many ways to thermostat systems, e.g., by fixing sigma(i)/p(i)/mu+l. In the present paper we provide, for the first time, convincing arguments as to why the conventional Gaussian isokinetic thermostat (mu = 1) is unique in this class. We show that this thermostat minimizes the phase space compression and is the only thermostat for which the conjugate pairing rule holds. Moreover, it is shown that for finite sized systems in the absence of an applied dissipative field, all other thermostats (mu not = 1) perform work on the system in the same manner as a dissipative field while simultaneously removing the dissipative heat so generated. All other thermostats (mu not = 1) are thus autodissipative. Among all mu, thermostats, only the mu = 1 Gaussian thermostat permits an equilibrium state.

  20. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Luan, Y.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R.; Steele, L. P.; Kort, E. A.; Wofsy, S. C.; Umezawa, T.

    2015-10-01

    We describe a new 4D-Var inversion framework for nitrous oxide (N2O) based on the GEOS-Chem chemical transport model and its adjoint, and apply it in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples onboard a commercial aircraft (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container; CARIBIC), and quasi-continuous measurements from the airborne HIAPER Pole-to-Pole Observations (HIPPO) campaigns. For a 2-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the 2-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a

  1. Comet 67P/Churyumov-Gerasimenko: Constraints on its origin from OSIRIS observations

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Marchi, S.; A'Hearn, M. F.; Barbieri, C.; El-Maarry, M. R.; Güttler, C.; Ip, W.-H.; Keller, H. U.; Lamy, P.; Marzari, F.; Massironi, M.; Naletto, G.; Pajola, M.; Sierks, H.; Koschny, D.; Rodrigo, R.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Fornasier, S.; Fulle, M.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Jorda, L.; Knollenberg, J.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez Moreno, J. J.; Michalik, H.; Sabau, L.; Thomas, N.; Vincent, J.-B.; Wenzel, K.-P.

    2015-11-01

    Context. One of the main aims of the ESA Rosetta mission is to study the origin of the solar system by exploring comet 67P/Churyumov-Gerasimenko at close range. Aims: In this paper we discuss the origin and evolution of comet 67P/Churyumov-Gerasimenko in relation to that of comets in general and in the framework of current solar system formation models. Methods: We use data from the OSIRIS scientific cameras as basic constraints. In particular, we discuss the overall bi-lobate shape and the presence of key geological features, such as layers and fractures. We also treat the problem of collisional evolution of comet nuclei by a particle-in-a-box calculation for an estimate of the probability of survival for 67P/Churyumov-Gerasimenko during the early epochs of the solar system. Results: We argue that the two lobes of the 67P/Churyumov-Gerasimenko nucleus are derived from two distinct objects that have formed a contact binary via a gentle merger. The lobes are separate bodies, though sufficiently similar to have formed in the same environment. An estimate of the collisional rate in the primordial, trans-planetary disk shows that most comets of similar size to 67P/Churyumov-Gerasimenko are likely collisional fragments, although survival of primordial planetesimals cannot be excluded. Conclusions: A collisional origin of the contact binary is suggested, and the low bulk density of the aggregate and abundance of volatile species show that a very gentle merger must have occurred. We thus consider two main scenarios: the primordial accretion of planetesimals, and the re-accretion of fragments after an energetic impact onto a larger parent body. We point to the primordial signatures exhibited by 67P/Churyumov-Gerasimenko and other comet nuclei as critical tests of the collisional evolution.

  2. Observational Constraints on the Age-Metallicity Relation from White Dwarf-Main Sequence Binaries

    NASA Astrophysics Data System (ADS)

    Rebassa-Mansergas, A.; Anguiano, B.; García-Berro, E.; Freeman, K. C.; Cojocaru, R.; Manser, C. J.; Pala, A. F.; Gänsicke, B. T.; Liu, X.-W.

    2017-03-01

    The age-metallicity relation (AMR) is a fundamental observational property to understand how the Galactic disc formed and evolved chemically in time. However, there is not yet a consensus on the observed properties of the AMR for the solar neighbourhood. This is due primarily to the difficulty of obtaining precise stellar ages for individual field stars. We have started an observational campaign to provide the much needed observational AMR by using white dwarf-main sequence (WDMS) binaries. White dwarfs are natural clocks and can be used to derive accurate ages. Metallicities can be obtained from the main sequence companions. Since white dwarfs and main sequence stars in these binary systems are coeval, these binaries provide an unique opportunity to observationally determine in a robust way the AMR. Here we present the AMR derived from the analysis of a sample of 23 WDMS binaries.

  3. Simulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Luan, Y.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R.; Steele, L. P.; Kort, E. A.; Wofsy, S. C.; Umezawa, T.

    2015-07-01

    We describe a new 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint, and apply this framework in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasi-continuous N2O measurements (hourly averages used) from several long-term monitoring networks, N2O measurements collected from discrete air samples aboard a commercial aircraft (CARIBIC), and quasi-continuous measurements from an airborne pole-to-pole sampling campaign (HIPPO). For a two-year inversion, we find that the surface and HIPPO observations can accurately resolve a uniform bias in emissions during the first year; CARIBIC data provide a somewhat weaker constraint. Variable emission errors are much more difficult to resolve given the long lifetime of N2O, and major parts of the world lack significant constraints on the seasonal cycle of fluxes. Current observations can largely correct a global bias in the stratospheric sink of N2O if emissions are known, but do not provide information on the temporal and spatial distribution of the sink. However, for the more realistic scenario where source and sink are both uncertain, we find that simultaneously optimizing both would require unrealistically small errors in model transport. Regardless, a bias in the magnitude of the N2O sink would not affect the a posteriori N2O emissions for the two-year timescale used here, given realistic initial conditions, due to the timescale required for stratosphere-troposphere exchange (STE). The same does not apply to model errors in the rate of STE itself, which we show exerts a larger influence on the tropospheric burden of N2O than does the chemical loss rate over short (< 3 year) timescales. We use a stochastic estimate of the inverse Hessian for the inversion to evaluate the spatial resolution of emission

  4. In situ observations of meteor smoke particles (MSP) during the Geminids 2010: constraints on MSP size, work function and composition

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Plane, J. M. C.; Strelnikov, B.; Stober, G.; Ernst, S.; Hedin, J.; Friedrich, M.; Hoppe, U.-P.

    2012-12-01

    We present in situ observations of meteoric smoke particles (MSP) obtained during three sounding rocket flights in December 2010 in the frame of the final campaign of the Norwegian-German ECOMA project (ECOMA = Existence and Charge state Of meteoric smoke particles in the Middle Atmosphere). The flights were conducted before, at the maximum activity, and after the decline of the Geminids which is one of the major meteor showers over the year. Measurements with the ECOMA particle detector yield both profiles of naturally charged particles (Faraday cup measurement) as well as profiles of photoelectrons emitted by the MSPs due to their irradiation by photons of a xenon-flash lamp. The column density of negatively charged MSPs decreased steadily from flight to flight which is in agreement with a corresponding decrease of the sporadic meteor flux recorded during the same period. This implies that the sporadic meteors are a major source of MSPs while the additional influx due to the shower meteors apparently did not play any significant role. Surprisingly, the profiles of photoelectrons are only partly compatible with this observation: while the photoelectron current profiles obtained during the first and third flight of the campaign showed a qualitatively similar behaviour as the MSP charge density data, the profile from the second flight (i.e., at the peak of the Geminids) shows much smaller photoelectron currents. This may tentatively be interpreted as a different MSP composition (and, hence, different photoelectric properties) during this second flight, but at this stage we are not in a position to conclude that there is a cause and effect relation between the Geminids and this observation. Finally, the ECOMA particle detector used during the first and third flight employed three instead of only one xenon flash lamp where each of the three lamps used for one flight had a different window material resulting in different cut off wavelengths for these three lamp types

  5. Evaluating Observational Constraints on N2O Emissions via Information Content Analysis Using GEOS-Chem and its Adjoint

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R. L.; Steele, P.

    2015-12-01

    Nitrous oxide (N2O) is a long-lived greenhouse gas with a global warming potential approximately 300 times that of CO2, and plays a key role in stratospheric ozone depletion. Human perturbation of the nitrogen cycle has led to a rise in atmospheric N2O, but large uncertainties exist in the spatial and temporal distribution of its emissions. Here we employ a 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint to derive new constraints on the space-time distribution of global land and ocean N2O fluxes. Based on an ensemble of global surface measurements, we find that emissions are overestimated over Northern Hemisphere land areas and underestimated in the Southern Hemisphere. Assigning these biases to particular land or ocean regions is more difficult given the long lifetime of N2O. To quantitatively evaluate where the current N2O observing network provides local and regional emission constraints, we apply a new, efficient information content analysis technique involving radial basis functions. The technique yields optimal state vector dimensions for N2O source inversions, with model grid cells grouped in space and time according to the resolution that can actually be provided by the network of global observations. We then use these optimal state vectors in an analytical inversion to refine current top-down emission estimates.

  6. How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Freymueller, Jeffrey T.; Sun, Wenke

    2016-09-01

    Various geophysical observations, including seismological and magnetotelluric imaging, have implied that the deep crust beneath eastern Tibet may be partially melted and flowing faster than the brittle upper crust. However, it is still unclear how much faster the deep crust is flowing. Geodetic observations, which are more sensitive to dynamic changes, provide constraints on the flow rate of the middle and lower crust (MLC). Three-dimensional GPS velocities show that deformation within the brittle upper crust contributes little (0.02 ± 0.02 mm/yr) to the overall surface uplift (2.7 ± 0.3 mm/yr). Therefore, two plausible models for the surface uplift are discussed, which are consistent with the geodetic constraints. In the deep crustal flow model, crustal thickening requires the horizontal flow rate of the MLC to be 330%-710% of the rate of motion of the upper crust, and the deepening of the Moho is only up to 35% of that required to maintain isostatic balance; isostasy may not be maintained over the geodetic timescale. In the hybrid model of deep crustal flow and convective lithospheric detachment, the Moho is uprising, and only weak or moderate (130%-250%) deep crustal flow is required, which results in moderate present-day crustal thickening beneath eastern Tibet. This result improves our understanding of the plateau construction and dynamics and also offers advice for numerical simulations.

  7. Observational Constraints of Red-shift Parametrization Parameters of Dark Energy in Horava-Lifshitz Gravity

    NASA Astrophysics Data System (ADS)

    Biswas, Ritabrata; Debnath, Ujjal

    2015-02-01

    We have assumed that the FRW universe filled with baryonic matter, radiation and dark matter along with dark energy in the frame-work of Horava-Lifshitz gravity. Here three parameterizations like Linear, CPL and JBP for the dark energy have been assumed for the variations of EOS parameter w( z). The observational data analysis by χ 2 minimum test have been analyzed for our models. From Stern, Stern+BAO and Stern+BAO+CMB joint data analysis, we have obtained the bounds of the arbitrary parameters w 0 and w 1. The best fit values of the parameters w 0 and w 1 for these three models and the minimum values of χ 2 have been obtained by observational data analysis. Also the bounds of the parameters w 0 and w 1 are obtained by 66 %, 90 % and 99 % confidence levels for linear, CPL and JBP models. Next red shift-magnitude observational data points from type Ia supernovae have been considered and which contains 557 data points. From this observation, the distance modulus μ( z) against red shift z has been investigated for our predicted theoretical model (three DE models) for the best fit values of the parameters and the observed SNe Ia Union2 data sample. Finally, we have investigated that our predicted theoretical three models permitted the observational data sets.

  8. Constraints on galactic distributions of gamma-ray burst sources from BATSE observations

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.; Pendleton, Geoffrey N.; Fishman, Gerald J.; Wilson, Robert B.; Paciesas, William S.; Brock, Martin N.; Horack, John M.

    1994-01-01

    The paradigm that gamma-ray bursts originate from Galactic sources is studied in detail using the angular and intensity distributions observed by the Burst and Transient Source Experiment (BATSE) on NASA's Compton Gamma Ray Observatory (CGRO). Monte Carlo models of gamma-ray burst spatial distributions and luminosity functions are used to simulate bursts, which are then folded through mathematical models of BATSE selection effects. The observed and computed angular intensity distributions are analyzed using modifications of standard statistical homogeneity and isotropy studies. Analysis of the BATSE angular and intensity distributions greatly constrains the origins and luminosities of burst sources. In particular, it appears that no single population of sources confined to a Galactic disk, halo, or localized spiral arm satisfactorily explains BATSE observations and that effects of the burst luminosity function are secondary when considering such models. One family of models that still satisfies BATSE observations comprises sources located in an extended spherical Galactic corona. Coronal models are limited to small ranges of burst luminosity and core radius, and the allowed parameter space for such models shrinks with each new burst BATSE observes. Multiple-population models of bursts are found to work only if (1) the primary population accounts for the general isotropy and inhomogeneity seen in the BATSE observations and (2) secondary populations either have characteristics similar to the primary population or contain numbers that are small relative to the primary population.

  9. Top or Bottom-Heavy? Observational Constraints on the Vertical Structure of the Eastern Pacific ITCZ

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Huaman, L.

    2015-12-01

    The Intertropical Convergence Zone (ITCZ) is a key component of the eastern Pacific ocean-atmosphere system and its variability on seasonal to inter-annual and longer time scales. This feature is generally misrepresented in climate models, which show an excessively strong branch south of the equator. On the other hand, there is debate on what is the structure of the ITCZ in nature, particularly whether the latent heating and vertical velocity profiles are top or bottom-heavy. This knowledge is probably key to validate and improve the models. Most methods for estimating the vertical structure of the rate of latent heating
rely on profiles from field campaigns in other regions, combined with convective/stratiform fractions from the TRMM satellite.
In this study we use the precipitation profiles from the TRMM Precipitation Radar (PR), with approximations to the moisture conservation equation and the first law of thermodynamic, to directly estimate the vertical profiles of latent heating and vertical air velocity, respectively, in the ITCZ for the period 1998-2010. Due to limitations in the PR sensitivity and the inability to quantify solid precipitation, our results are restricted to the layer between the altitudes of 2 and 2.75 km. Nevertheless, we show that our results provide a strong constraint on the profiles and help determine which of the other estimates are more realistic. Our preliminary results for the northern hemisphere ITCZ in austral winter/spring are closer to the top-heavy estimations using TRMM-based algorithms (CSH, SLH and PRH) than to the bottom-heavy atmospheric reanalysis (ERA Interim and NCEP-NCAR), providing indirect evidence for a top-heavy profile. However, using the meridional wind measurements during the EPIC field campaign we find evidence that shallow ascent does exist below 2 km, consistent with the previously reported shallow meridional circulation but not as strong as the Reanalysis products indicate. Thus, our results support the

  10. Observational Constraints on the Identification of Shallow Lunar Magmatism: Insights from Floor-Fractured Craters

    NASA Technical Reports Server (NTRS)

    Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.

    2016-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.

  11. Observational constraints on the identification of shallow lunar magmatism: Insights from floor-fractured craters

    NASA Astrophysics Data System (ADS)

    Jozwiak, L. M.; Head, J. W., III; Neumann, G. A.; Wilson, L.

    2017-02-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity solution from GRAIL and also a degree 100-600 band-filtered Bouguer gravity solution. The low-magnitude of anomalies arising from shallow magmatic intrusions makes identification using unfiltered Bouguer gravity solutions inconclusive. The observed anomalies in the degree 100-600 Bouguer gravity solution are spatially heterogeneous, although there is spatial correlation between volcanic surface morphologies and positive Bouguer anomalies. We interpret these observations to mean that the spatial heterogeneity observed in the Bouguer signal is the result of variable degrees of magmatic degassing within the intrusions.

  12. Structure and composition of the distant lunar exosphere: Constraints from ARTEMIS observations of ion acceleration in time-varying fields

    NASA Astrophysics Data System (ADS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-06-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes ~3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  13. Structure and Composition of the Distant Lunar Exosphere: Constraints from ARTEMIS Observations of Ion Acceleration in Time-Varying Fields

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Poppe, A. R.; Farrell, W. M.; McFadden, J. P.

    2016-01-01

    By analyzing the trajectories of ionized constituents of the lunar exosphere in time-varying electromagnetic fields, we can place constraints on the composition, structure, and dynamics of the lunar exosphere. Heavy ions travel slower than light ions in the same fields, so by observing the lag between field rotations and the response of ions from the lunar exosphere, we can place constraints on the composition of the ions. Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) provides an ideal platform to utilize such an analysis, since its two-probe vantage allows precise timing of the propagation of field discontinuities in the solar wind, and its sensitive plasma instruments can detect the ion response. We demonstrate the utility of this technique by using fully time-dependent charged particle tracing to analyze several minutes of ion observations taken by the two ARTEMIS probes 3000-5000 km above the dusk terminator on 25 January 2014. The observations from this time period allow us to reach several interesting conclusions. The ion production at altitudes of a few hundred kilometers above the sunlit surface of the Moon has an unexpectedly significant contribution from species with masses of 40 amu or greater. The inferred distribution of the neutral source population has a large scale height, suggesting that micrometeorite impact vaporization and/or sputtering play an important role in the production of neutrals from the surface. Our observations also suggest an asymmetry in ion production, consistent with either a compositional variation in neutral vapor production or a local reduction in solar wind sputtering in magnetic regions of the surface.

  14. Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.; Lijowski, M.; Mewaldt, R. A.; Stone, E. C.; Strong, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.; Yanasak, N. E.

    2007-01-01

    The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

  15. Observations of the Li, Be, and B isotopes and Constraints on Cosmic-ray Propagation

    SciTech Connect

    de Nolfo, Georgia A.; Moskalenko, I.V.; Binns, W.R.; Christian, E.R.; Cummings, A.C.; Davis, A.J.; George, J.S.; Hink, P.L.; Israel, M.H.; Leske, R.A.; Lijowski, M.; Mewaldt, R.A.; Stone, E.C.; Strong, A.W.; von Rosenvinge, T.T.; Wiedenbeck, M.E.; Yanasak, N.E.; /NASA, Goddard /Stanford U., HEPL /Washington U., St. Louis /NASA, Headquarters /Caltech, SRL /Aerospace Corp. /Garching, Max Planck Inst., MPE /Caltech, JPL

    2006-11-15

    The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A {approx}15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

  16. Light scalar field constraints from gravitational-wave observations of compact binaries

    NASA Astrophysics Data System (ADS)

    Berti, Emanuele; Gualtieri, Leonardo; Horbatsch, Michael; Alsing, Justin

    2012-06-01

    Scalar-tensor theories are among the simplest extensions of general relativity. In theories with light scalars, deviations from Einstein’s theory of gravity are determined by the scalar mass ms and by a Brans-Dicke-like coupling parameter ωBD. We show that gravitational-wave observations of nonspinning neutron star-black hole binary inspirals can be used to set lower bounds on ωBD and upper bounds on the combination ms/ωBD. We estimate via a Fisher matrix analysis that individual observations with signal-to-noise ratio ρ would yield (ms/ωBD)(ρ/10)≲10-15, 10-16, and 10-19eV for Advanced LIGO, ET, and eLISA, respectively. A statistical combination of multiple observations may further improve these bounds.

  17. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Dolphin, Andrew E.; Cannon, John M.; Holtzman, Jon

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  18. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network

    PubMed Central

    Kirsch, Louise P.; Cross, Emily S.

    2015-01-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation. PMID:26209850

  19. Additive Routes to Action Learning: Layering Experience Shapes Engagement of the Action Observation Network.

    PubMed

    Kirsch, Louise P; Cross, Emily S

    2015-12-01

    The way in which we perceive others in action is biased by one's prior experience with an observed action. For example, we can have auditory, visual, or motor experience with actions we observe others perform. How action experience via 1, 2, or all 3 of these modalities shapes action perception remains unclear. Here, we combine pre- and post-training functional magnetic resonance imaging measures with a dance training manipulation to address how building experience (from auditory to audiovisual to audiovisual plus motor) with a complex action shapes subsequent action perception. Results indicate that layering experience across these 3 modalities activates a number of sensorimotor cortical regions associated with the action observation network (AON) in such a way that the more modalities through which one experiences an action, the greater the response is within these AON regions during action perception. Moreover, a correlation between left premotor activity and participants' scores for reproducing an action suggests that the better an observer can perform an observed action, the stronger the neural response is. The findings suggest that the number of modalities through which an observer experiences an action impacts AON activity additively, and that premotor cortical activity might serve as an index of embodiment during action observation.

  20. A Practical Solution to Optimizing the Reliability of Teaching Observation Measures under Budget Constraints

    ERIC Educational Resources Information Center

    Meyer, J. Patrick; Liu, Xiang; Mashburn, Andrew J.

    2014-01-01

    Researchers often use generalizability theory to estimate relative error variance and reliability in teaching observation measures. They also use it to plan future studies and design the best possible measurement procedures. However, designing the best possible measurement procedure comes at a cost, and researchers must stay within their budget…

  1. Observational Constraints on the Link Between the Intracluster Medium and Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Fogarty, Kevin; Postman, Marc; Donahue, Megan; CLASH

    2017-01-01

    We use data from Chandra, HST, Spitzer, and Herschel to study the nature of feedback in the brightest cluster galaxies (BCGs) of cool core galaxy clusters. Using the 16-band photometry HST available with CLASH in combination with observations taken with Spitzer, Herschel, and Chandra, we study the nature of the feedback mechanism required to offset cooling. While a great deal of progress has been made on this front, there is still much to learn from the feedback-affected stellar populations of cool core BCGs and X-ray observations of the intracluster medium (ICM).With UV through FIR SED fitting, we estimate the star formation rate, dust content, and starburst duration in UV-bright cool core BCGs in CLASH, and examine relationships between these findings and ICM cooling time and free-fall time profiles derived from Chandra X-ray imaging. We present observational evidence constraining the duration of feedback episodes and find a very tight relationship between the BCG star formation rate and the ratio of ICM cooling time to free-fall time (tcool/tff). Our observational results are fully consistent with a scenario where condensation of a depleting supply of thermally instable overdensities of the ICM gas are fueling long-duration (> 1 Gyr) BCG starbursts. We discuss the implications of our findings for theoretical models of BCG-ICM interaction.

  2. Direct atmosphere opacity observations from CALIPSO provide new constraints on cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Guzman, R.; Chepfer, H.; Noel, V.; Vaillant de Guélis, T.; Kay, J. E.; Raberanto, P.; Cesana, G.; Vaughan, M. A.; Winker, D. M.

    2017-01-01

    The spaceborne lidar CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) directly measures atmospheric opacity. In 8 years of CALIPSO observations, we find that 69% of vertical profiles penetrate through the complete atmosphere. The remaining 31% do not reach the surface, due to opaque clouds. The global mean altitude of full attenuation of the lidar beam (z_opaque) is 3.2 km, but there are large regional variations in this altitude. Of relevance to cloud-climate studies, the annual zonal mean longwave cloud radiative effect and annual zonal mean z_opaque weighted by opaque cloud cover are highly correlated (0.94). The annual zonal mean shortwave cloud radiative effect and annual zonal mean opaque cloud cover are also correlated (-0.95). The new diagnostics introduced here are implemented within a simulator framework to enable scale-aware and definition-aware evaluation of the LMDZ5B global climate model. The evaluation shows that the model overestimates opaque cloud cover (31% obs. versus 38% model) and z_opaque (3.2 km obs. versus 5.1 km model). In contrast, the model underestimates thin cloud cover (35% obs. versus 14% model). Further assessment shows that reasonable agreement between modeled and observed longwave cloud radiative effects results from compensating errors between insufficient warming by thin clouds and excessive warming due to overestimating both z_opaque and opaque cloud cover. This work shows the power of spaceborne lidar observations to directly constrain cloud-radiation interactions in both observations and models.

  3. BeppoSAX Observation of NGC 7582: Constraints on the X-Ray Absorber

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Fiore, F.; Perola, G. C.; Matt, G.; George, I. M.; Piro, L.; Bassani, L.

    1999-01-01

    This paper presents a BeppoSAX observation of NGC 7582 made during 1998 November and an optical spectrum taken in 1998 October. The new X-ray data reveal a previously unknown hard X-ray component in NGC 7582, peaking close to 20 keV. Rapid variability is observed with correlated changes in the 5-10 and 13-60 keV bands indicating that a single continuum component, produced by the active nucleus, provides the, dominant flux across both bands. Comparison between RXTE and BeppoSAX data reveals changes in the 2 - 10 keV flux on timescales of months. Changes in the nuclear X-ray flux appear unrelated to the gradual decline in optical flux noted since the high-state in 1998 July. The 0.5 - 2 keV flux of NGC 7582 is not significantly variable within the BeppoSAX observation, but has brightened by a factor of approximately 2 since the ASCA observation of 1994. While there is some concern about contamination from spatially-unresolved sources, the long-term variability in soft X-ray flux seems most likely associated with the nucleus or an event within the host galaxy of NGC 7582. The 2 - 100 keV spectrum is well fit by a powerlaw of photon index Gamma = 1.95(sup +0.09, sub -0.18) steeper by Delta.Gamma approximately equal 0.40 than the index during the 1994 ASCA observation. The X-ray continuum is attenuated by a thick absorber of N(H) approximately 1.6 x10(exp 24)/sq cm covering approximately 60(sup +10%, sub -14%) of the nucleus plus a screen with N(sub H) approximately 1.4 x 10(exp 23)/ sq cm covering the entire nucleus. Comparison of the BeppoSAX and ASCA spectra shows an increase in the full screen by Delta.N(sub H) approximately equal 7 x 10(exp 22)/sq cm since 1994, confirming the absorption variability found by Xue et al. The increase in soft X-ray flux between 1994 and 1998 is consistent with the appearance of holes in the full screen allowing approximately < 1% of the nuclear flux to escape, and producing some clear lines-of-sight to the broad-line-region. The data

  4. Inflationary spectra with inverse-volume corrections in loop quantum cosmology and their observational constraints from Planck 2015 data

    SciTech Connect

    Zhu, Tao; Wang, Anzhong; Wu, Qiang; Kirsten, Klaus; Sheng, Qin; Cleaver, Gerald E-mail: anzhong_wang@baylor.edu E-mail: gerald_cleaver@baylor.edu E-mail: wuq@zjut.edu.cn

    2016-03-01

    We first derive the primordial power spectra, spectral indices and runnings of both scalar and tensor perturbations of a flat inflationary universe to the second-order approximations of the slow-roll parameters, in the framework of loop quantum cosmology with the inverse-volume quantum corrections. This represents an extension of our previous work in which the parameter σ was assumed to be an integer, where σ characterizes the quantum corrections and in general can take any of values from the range σ  element of  (0, 6]. Restricting to the first-order approximations of the slow-roll parameters, we find corrections to the results obtained previously in the literature, and point out the causes for such errors. To our best knowledge, these represent the most accurate calculations of scalar and tensor perturbations given so far in the literature. Then, fitting the perturbations to the recently released data by Planck (2015), we obtain the most severe constraints for various values of σ. Using these constraints as our referring point, we discuss whether these quantum gravitational corrections can lead to measurable signatures in the future cosmological observations. We show that, depending on the value of σ, the scale-dependent contributions to the relativistic inflationary spectra due to the inverse-volume corrections could be well within the range of the detectability of the forthcoming generations of experiments, such as the Stage IV experiments.

  5. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    SciTech Connect

    Fryer, Chris L. Even, Wesley; Grefenstette, Brian W.; Wong, Tsing-Wai

    2014-04-15

    Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  6. Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations

    NASA Technical Reports Server (NTRS)

    Zimmer, Christophe; Khurana, Krishan K.; Kivelson, Margaret G.

    2000-01-01

    Galileo measured the magnetic field perturbations of Europa and Callisto, which are consistent with dipole fields created by temporal variations of the surrounding jovian magnetospheric field. These fields almost match those expected for perfectly conducting moons. Using a simple shell model, we analyze the implications of these observations for the electrical structure for the interiors of the moons. It is discovered that Europa and Callisto must possess areas where the conductivity exceeds 0.06 and 0.02 S/m at a depth of no more than 200 and 300 km below the surface, respectively. This conductivity is not attainable in ice or silicates, unless large temperature gradients can be maintained below the ice or the ice layer is at least partially molten. A cloud of pick-up ions or an ionosphere are probably insufficiently conductive. Global Earth-like oceans under the surface of both moons could explain the observations if they are at least a few kilometers thick.

  7. Overall observational constraints on the running parameter λ of Hořava-Lifshitz gravity

    SciTech Connect

    Dutta, Sourish; Saridakis, Emmanuel N. E-mail: msaridak@phys.uoa.gr

    2010-05-01

    We use observational data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB), along with requirements of Big Bang Nucleosynthesis (BBN), to constrain the running parameter λ of Hořava-Lifshitz gravity, which determines the flow between the Ultra-Violet and the Infra-Red. We consider both the detailed and non-detailed balance versions of the gravitational sector, and we include the matter and radiation sectors. Allowing for variation of all the parameters of the theory, we construct the likelihood contours and we conclude that in 1σ confidence λ is restricted to |λ−1|∼<0.02, while its best fit value is |λ{sub b.f}−1| ≈ 0.002. Although this observational analysis restricts the running parameter λ very close to its IR value 1, it does not enlighten the discussion about the theory's possible conceptual and theoretical problems.

  8. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route.

    PubMed

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-11-20

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR.

  9. Additional Arctic observations improve weather and sea-ice forecasts for the Northern Sea Route

    PubMed Central

    Inoue, Jun; Yamazaki, Akira; Ono, Jun; Dethloff, Klaus; Maturilli, Marion; Neuber, Roland; Edwards, Patti; Yamaguchi, Hajime

    2015-01-01

    During ice-free periods, the Northern Sea Route (NSR) could be an attractive shipping route. The decline in Arctic sea-ice extent, however, could be associated with an increase in the frequency of the causes of severe weather phenomena, and high wind-driven waves and the advection of sea ice could make ship navigation along the NSR difficult. Accurate forecasts of weather and sea ice are desirable for safe navigation, but large uncertainties exist in current forecasts, partly owing to the sparse observational network over the Arctic Ocean. Here, we show that the incorporation of additional Arctic observations improves the initial analysis and enhances the skill of weather and sea-ice forecasts, the application of which has socioeconomic benefits. Comparison of 63-member ensemble atmospheric forecasts, using different initial data sets, revealed that additional Arctic radiosonde observations were useful for predicting a persistent strong wind event. The sea-ice forecast, initialised by the wind fields that included the effects of the observations, skilfully predicted rapid wind-driven sea-ice advection along the NSR. PMID:26585690

  10. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes

  11. Tropospheric methanol observations from space: Retrieval evaluation and constraints on the seasonality of biogenic emissions

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Hu, L.; Cady-Pereira, K. E.; Xiao, Y.; Shephard, M. W.; Clerbaux, C. L.; Clarisse, L.; Coheur, P.-F.; Apel, E. C.; de Gouw, J.; Warneke, C.; Singh, H. B.; Goldstein, A. H.; Sive, B. C.

    2012-04-01

    Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS > 0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 1.0, 0.05 and 8.6 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.75 for expanding canopies with leaf area index < 2.0) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of IASI, TES, and ground-based measurements.

  12. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Hu, L.; Cady-Pereira, K. E.; Xiao, Y.; Shephard, M. W.; Clerbaux, C. L.; Clarisse, L.; Coheur, P.-F.; Apel, E. C.; de Gouw, J.; Warneke, C.; Singh, H. B.; Goldstein, A. H.; Sive, B. C.

    2012-02-01

    Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model : TES regressions are generally consistent with the model : aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS > 0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 1.0, 0.05 and 8.6 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.75 for expanding canopies with leaf area index < 2.0) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of IASI, TES, and ground-based measurements.

  13. Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Hu, L.; Cady-Pereira, K. E.; Xiao, Y.; Shephard, M. W.; Clerbaux, C. L.; Clarisse, L.; Coheur, P.-F.; Apel, E. C.; de Gouw, J.; Warneke, C.; Singh, H. B.; Goldstein, A. H.; Sive, B. C.

    2012-07-01

    Methanol retrievals from nadir-viewing space-based sensors offer powerful new information for quantifying methanol emissions on a global scale. Here we apply an ensemble of aircraft observations over North America to evaluate new methanol measurements from the Tropospheric Emission Spectrometer (TES) on the Aura satellite, and combine the TES data with observations from the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite to investigate the seasonality of methanol emissions from northern midlatitude ecosystems. Using the GEOS-Chem chemical transport model as an intercomparison platform, we find that the TES retrieval performs well when the degrees of freedom for signal (DOFS) are above 0.5, in which case the model:TES regressions are generally consistent with the model:aircraft comparisons. Including retrievals with DOFS below 0.5 degrades the comparisons, as these are excessively influenced by the a priori. The comparisons suggest DOFS >0.5 as a minimum threshold for interpreting retrievals of trace gases with a weak tropospheric signal. We analyze one full year of satellite observations and find that GEOS-Chem, driven with MEGANv2.1 biogenic emissions, underestimates observed methanol concentrations throughout the midlatitudes in springtime, with the timing of the seasonal peak in model emissions 1-2 months too late. We attribute this discrepancy to an underestimate of emissions from new leaves in MEGAN, and apply the satellite data to better quantify the seasonal change in methanol emissions for midlatitude ecosystems. The derived parameters (relative emission factors of 11.0, 0.26, 0.12 and 3.0 for new, growing, mature, and old leaves, respectively, plus a leaf area index activity factor of 0.5 for expanding canopies with leaf area index <1.2) provide a more realistic simulation of seasonal methanol concentrations in midlatitudes on the basis of both the IASI and TES measurements.

  14. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    NASA Astrophysics Data System (ADS)

    Kanazawa, Koichi; Koike, Yuji; Metz, Andreas; Pitonyak, Daniel; Schlegel, Marc

    2016-03-01

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN →h X . With the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.

  15. Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations

    NASA Astrophysics Data System (ADS)

    Paulot, F.; Jacob, D. J.; Johnson, M. T.; Bell, T. G.; Baker, A. R.; Keene, W. C.; Lima, I. D.; Doney, S. C.; Stock, C. A.

    2015-08-01

    Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a-1, much lower than current literature values (7-23 TgN a-1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a-1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2-5 TgN a-1, comparable in magnitude to other natural sources from open fires and soils.

  16. Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

    SciTech Connect

    Scholten, O; Bacelar, J; Braun, R; de Bruyn, A G; Falcke, H; Singh, K; Stappers, B; Strom, R G; al Yahyaoui, R

    2010-04-02

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHEneutrino flux. Methods. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrow band radio interference is digitally filtered out and the dispersive effect of the Earth?s ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  17. Tropospheric methanol observations from space: constraints on the seasonality of biogenic emissions

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Millet, D. B.; Cady-Pereira, K. E.; Shephard, M. W.; Xiao, Y.; Razavi, A.; Clerbaux, C.

    2011-12-01

    Methanol is the most abundant non-methane organic compound in the atmosphere, and is an important precursor of atmospheric pollutants such as CO and formaldehyde. The recent development of methanol retrievals from nadir-viewing satellite-based platforms offers powerful new information for quantifying methanol emissions on a global scale. This study uses methanol observations from the Tropospheric Emission Spectrometer (TES) on the Aura satellite and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite, in conjunction with aircraft data, to investigate methanol emissions from major plant functional types in the GEOS-Chem global chemical transport model (driven with MEGAN biogenic emissions). We first evaluate the TES methanol retrievals by comparing to simulation results and flight observations from several North American field campaigns. Results show that the retrieval performs well when the degrees of freedom for signal are above 0.5. We analyze one full year of TES and IASI observations and find a persistent model underestimate in springtime, and make recommendations for an improved seasonal distribution of biogenic methanol emissions over temperate regions of the globe.

  18. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    DOE PAGES

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; ...

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relationsmore » for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.« less

  19. Operator constraints for twist-3 functions and Lorentz invariance properties of twist-3 observables

    SciTech Connect

    Kanazawa, Koichi; Pitonyak, Daniel; Koike, Yuji; Metz, Andreas; Schlegel, Marc

    2016-03-14

    We investigate the behavior under Lorentz transformations of perturbative coefficient functions in a collinear twist-3 formalism relevant for high-energy observables including transverse polarization of hadrons. We argue that those perturbative coefficient functions can, a priori, acquire quite different yet Lorentz-invariant forms in various frames. This somewhat surprising difference can be traced back to a general dependence of the perturbative coefficient functions on light cone vectors which are introduced by the twist-3 factorization formulas and which are frame-dependent. One can remove this spurious frame dependence by invoking so-called Lorentz invariance relations (LIRs) between twist-3 parton correlation functions. Some of those relations for twist-3 distribution functions were discussed in the literature before. In this paper we derive the corresponding LIRs for twist-3 fragmentation functions. We explicitly demonstrate that these LIRs remove the light cone vector dependence by considering transverse spin observables in the single-inclusive production of hadrons in lepton-nucleon collisions, ℓN→hX. Furthermore, with the LIRs in hand, we also show that twist-3 observables in general can be written solely in terms of three-parton correlation functions.

  20. Observational Constraints on Radio Transient Emissions from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Joanna; Dispoto, D.; Cardena, B.; Kavic, M.; Ellingson, S.; Simonetti, J.; Cutchin, S.; Patterson, C.

    2012-01-01

    The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequency and will disperse as it transverses the interstellar medium arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The Eight-meter-wavelength Transient Array (ETA) telescope is a low-frequency radio telescope initially located at the Pisgah Astronomical Research Institute (PARI), which is sensitive to a frequency range of 29-47 MHz. It is being upgraded and relocated to western Virginia where it will continue to conduct low frequency observations. This instrument is an all-sky instrument designed to detect astronomical sources of radio transients. Using a series of observations taken during the ETA's first science run, we were able to constrain the rate of such merger events to <1.3 x 10-5 Mpc-3/yr.

  1. Constraints on the flux of ultra-high energy neutrinos from Westerbork Synthesis Radio Telescope observations

    NASA Astrophysics Data System (ADS)

    Buitink, S.; Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Singh, K.; Stappers, B.; Strom, R. G.; Yahyaoui, R. Al

    2010-10-01

    Context. Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moon's surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. Aims: By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. Methods: The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earth's ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. Results: With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

  2. Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots

    SciTech Connect

    Cheung, C.C.Teddy; Stawarz, L.; Harris, D.E.; Ostrowski, M.

    2007-10-15

    We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s {approx} 1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the 'canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.

  3. XMM-Newton Observations of MBM 12: More Constraints on the Solar Wind Charge Exchange and Local Bubble Emissions

    NASA Technical Reports Server (NTRS)

    Koutroumpa, Dimitra; Smith, Randall K.; Edgar, Richard J.; Kuntz, Kip D.; Plucinsky, Paul P.; Snowden, Steven L.

    2010-01-01

    We present the first analysis of an XMM-Newton observation of the nearby molecular cloud MBM 12. We find that in the direction of MBM 12 the total O VII (0.57 keV) triplet emission is 1.8(+0.5/-0.6) photons/sq cm/s/sr (or Line Units - LU) while for the O VIII (0.65 keV) line emission we find a 3(sigma) upper limit of <1 LU. We also use a heliospheric model to calculate the O VII and O VIII emission generated by Solar Wind Charge-eXchange (SWCX) which we compare to the XMM-Newton observations. This comparison provides new constraints on the relative heliospheric and Local Bubble contributions to the local diffuse X-ray background. The heliospheric SWCX model predicts 0.82 LU for O VII, which accounts for approx. 46+/-15% of the observed value, and 0.33 LU for the O VIII line emission consistent with the XMM-Newton observed value. We discuss our results in combination with previous observations of the MBM 12 with CHANDRA and Suzaku.

  4. Constraints on Lithosphere Rheology from Observations of Volcano-induced Deformation

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2011-12-01

    Mantle rheology at lithospheric conditions (i.e., temperature < 1200 oC) is important for understanding fundamental geodynamic problems including the dynamics of plate tectonics, subducted slabs, and lithosphere-mantle interaction. Laboratory studies suggest that the rheology at lithospheric conditions can be approximately divided into three different regimes: brittle or frictional sliding, semi-brittle, and plastic flow. In this study, we seek to constrain lithospheric rheology, using observations of deformation at seamounts and oceanic islands caused by volcanic loading. Volcano-induced surface deformation depends critically on lithospheric rheology at the time of seamount and oceanic island emplacement and while it changes rapidly on short time-scales it does not change significantly on long time-scales. In an earlier study [Watts and Zhong, 2000], we used the effective elastic thickness at seamounts and oceanic islands inferred from the observations of deformation and gravity to determine an effective activation energy of 120 KJ/mol for lithospheric mantle with Newtonian rheology. We have now expanded this study to incorporate non-Newtonian power-law and frictional sliding rheologies, and more importantly, to include realistic 3-D volcanic load geometries. We use the Hawaiian Islands as an example. We construct 3-D loads for the Hawaiian Islands by applying an appropriate median filter to remove Hawaiian swell topography and correcting for lithospheric age effect on the bathymetry. The loads are then used in 3-D finite element loading models with viscoelastic, non-Newtonian and frictional sliding rheologies to determine the lithospheric response including surface vertical motions and lithospheric stresses. Comparisons of our new model predictions to observations suggest that the activation energy of lithospheric mantle is significantly smaller than most experimentally determined values for olivine at high temperatures, but may be consistent with more recent

  5. Charon's radius and atmospheric constraints from observations of a stellar occultation

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Elliot, J. L.; Person, M. J.; Adams, E. R.; Babcock, B. A.; Emilio, M.; Gangestad, J. W.; Kern, S. D.; Kramer, E. A.; Osip, D. J.; Pasachoff, J. M.; Souza, S. P.; Tuvikene, T.

    2006-01-01

    The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600km (ref. 3) (later refined to 601.5km ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600-650km (ref. 5), corresponding to a density of 1.56 +/- 0.22gcm-3 (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 +/- 8km, a bulk density of 1.72 +/- 0.15gcm-3, and rock-mass fraction 0.63 +/- 0.05. We do not detect a significant atmosphere and place 3σ upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto-Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.

  6. Observational Constraints on Mixed-Phase Clouds Imply Higher Climate Sensitivity

    NASA Astrophysics Data System (ADS)

    Tan, I.; Storelvmo, T.; Zelinka, M. D.

    2015-12-01

    Mixed-phase clouds are ubiquitous in all regions of Earth, yet are poorly constrained due to difficulty in obtaining observations of these clouds. Many models underestimate the supercooled liquid proportion of mixed-phase clouds, which biases estimates of the Earth's radiation budget due to the contrasting optical properties of liquid droplets and ice crystals. Using global satellite observations obtained by NASA's CALIOP instrument, mixed-phase clouds simulated by NCAR's global climate model, CESM, are constrained by tuning various microphysical parameters relevant to mixed-phase clouds processes in its atmospheric model component, CAM5. The equilibrium climate sensitivity estimates of the satellite-constrained simulations range from 5 to 5.3 degrees Celsius, which is up to 1.3 degrees Celsius greater than the standard simulation and 2.1 degrees Celsius greater than the CMIP archive ensemble mean. The higher equilibrium climate sensitivity estimates are linked to a weakened negative cloud phase feedback that depends on the supercooled liquid proportion of its mixed-phase clouds in the initial state. Climate models that underestimate the supercooled liquid proportion in the initial state are shown to exhibit an unrealistically strongly negative cloud phase feedback that counteracts warming that would otherwise occur.

  7. Hand gesture recognition in confined spaces with partial observability and occultation constraints

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2016-05-01

    Human activity detection and recognition capabilities have broad applications for military and homeland security. These tasks are very complicated, however, especially when multiple persons are performing concurrent activities in confined spaces that impose significant obstruction, occultation, and observability uncertainty. In this paper, our primary contribution is to present a dedicated taxonomy and kinematic ontology that are developed for in-vehicle group human activities (IVGA). Secondly, we describe a set of hand-observable patterns that represents certain IVGA examples. Thirdly, we propose two classifiers for hand gesture recognition and compare their performance individually and jointly. Finally, we present a variant of Hidden Markov Model for Bayesian tracking, recognition, and annotation of hand motions, which enables spatiotemporal inference to human group activity perception and understanding. To validate our approach, synthetic (graphical data from virtual environment) and real physical environment video imagery are employed to verify the performance of these hand gesture classifiers, while measuring their efficiency and effectiveness based on the proposed Hidden Markov Model for tracking and interpreting dynamic spatiotemporal IVGA scenarios.

  8. Observational constraints on the atmospheres of Uranus and Neptune from new measurements near 10 micrometers

    SciTech Connect

    Tokunaga, A.T.; Caldwell, J.

    1983-10-01

    Uranus was detected at 10.3, 11.6 and 12.5 micrometers approximately 1 micrometer spectral bandpasses, with respective brightness temperatures of 74.0 + 0.9 or -1.1, 67.6 + 0.5 or -0.7, and 65.5 + 0.6 or -0.7 K and the first detection of Neptune at 10.3 micrometers with a brightness temperature of 77.5 + 0.7 or -0.9 K. We also detected Neptune at 11.36 micrometers with 2 percent spectral resolution at 81.0 + 0.8 or -0.9 K. The 10 micrometers continuous of both Uranus and Neptune may in part be due to reflected solar radiation as well as thermal emission. If all of the observed flux is reflected light, then the maximum geometric albedo of Uranus is 0.115 + or - 0.020, and that of Neptune is 0.229 + or - 0.043. In the context of previous observations in this region, the maximum stratospheric C2H6 mixing ratio is found to be 3 x 10 to the -8 power for Uranus and 3 x 10 to the -6 power for Neptune. A value for the maximum mixing ratio in the stratosphere of Neptune on the order of 1 - 0.004 appears to be consistent with the available data. Previously announced in STAR as N83-29155.

  9. Observational constraints on the atmospheres of Uranus and Neptune from new measurements near 10 micron

    SciTech Connect

    Orton, G.S.; Tokunaga, A.T.

    1982-01-01

    Uranus was detected at 10.3, 11.6 and 12.5 micrometers approximately 1 micrometer spectral bandpasses, with respective brightness temperatures of 74.0 + 0.9 or -1.1, 67.6 + 0.5 or -0.7, and 65.5 + 0.6 or -0.7 K and the first detection of Neptune at 10.3 micrometers with a brightness temperature of 77.5 + 0.7 or -0.9 K. We also detected Neptune at 11.36 micrometers with 2% spectral resolution at 81.0 + 0.8 or -0.9 K. The 10 micrometers continuous of both Uranus and Neptune may in part be due to reflected solar radiation as well as thermal emission. If all of the observed flux is reflected light, then the maximum geometric albedo of Uranus is 0.115 + or - 0.020, and that of Neptune is 0.229 + or - 0.043. In the context of previous observations in this region, the maximum stratospheric C2H6 mixing ratio is found to be 3 x 10 to the -8 power for Uranus and 3 x 10 to the -6 power for Neptune. A value for the maximum mixing ratio in the stratosphere of Neptune on the order of 1 - 0.004 appears to be consistent with the available data.

  10. Charon's radius and atmospheric constraints from observations of a stellar occultation.

    PubMed

    Gulbis, A A S; Elliot, J L; Person, M J; Adams, E R; Babcock, B A; Emilio, M; Gangestad, J W; Kern, S D; Kramer, E A; Osip, D J; Pasachoff, J M; Souza, S P; Tuvikene, T

    2006-01-05

    The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600-650 km (ref. 5), corresponding to a density of 1.56 +/- 0.22 g cm(-3) (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 +/- 8 km, a bulk density of 1.72 +/- 0.15 g cm(-3), and rock-mass fraction 0.63 +/- 0.05. We do not detect a significant atmosphere and place 3sigma upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto-Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.

  11. Global Scale Observation of Scattered Energy from the Core: Seismic Constraints on the F-Layer

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.; Adam, J.

    2014-12-01

    We have collected a global dataset of several thousands of high quality records of PKPbc, PKPbc-diff and PKPdf phase arrivals in the distance range 149-178 degrees. Within this collection, we have identified an energy packet that arrives 5-20 seconds after the PKPbc (or PKPbc-diff) and represents a coda that is not predicted by 1D reference seismic models. The origin of this scattered energy is unclear and may provide valuable information about structure in the core. We use array analysis techniques to enhance the signal of theses scatterers and try and locate them. Our results show that the scattered energy originates along the great-circle path in a consistent range of arrival times and narrow range of ray parameter. There are no obvious variations with source or station location, in particular the depth of the source. After exploration of possible location for these scatterers, we show that their origin is most likely at the base of the outer-core, in the F-layer. To assess our interpretation, we model synthetic seismograms and test velocity profiles in the F-layer. We suggest that such a layer may be responsible for the scattering in the PKP coda as observed in the data. The detection and observation of this scattered energy enables us to constrain physical properties of the F-layer that play an important role in the investigation of the geodynamo modelisation and core evolution.

  12. Constraints on the Observed Zonal Flows from the Magnetic Fields in Giant Planets

    NASA Astrophysics Data System (ADS)

    Liu, J. J.; Stevenson, D. J.

    2003-05-01

    The zonal winds on the surface of the giant planets are very strong ( 100m/s ) and stable (on a decadal time scale). Observations by the Galileo probe suggest that the zonal flow might be deep seated. However, the magnitude of the zonal flow must be reduced to a small value in the interior of the giant planets because the flow is defined relative to the magnetic field frame of reference (System III) and very large zonal flows can not be tolerated in a high conductivity region. The mechanisms for reducing the magnitude of the zonal flow and the coupling between the zonal flow and magnetic field are unclear. Here we use a coupled Navier-Stokes equation and the magnetic induction equation in steady state to study this. From Navier-Stokes, we find that the zonal flow vth can be expressed in three parts: vth(s,z) = a(s) + Bth2/4μ0ρ Ω s + F(grad(ρ ),Bth)/4μ0ρ Ω s, where a(s) is an arbitrary function of cylindrical radius (s) only, z is the coordinate parallel to the rotation axis, Bth is the toroidal field, μ 0 is the permeability of free space, ρ (s,z) is the density, Ω is the planetary rotation and F is a function of the density gradient (grad(ρ )) and the toroidal magnetic field. The first part is the geostrophic flow consistent with the Taylor-Proudman theorem. The second part is due to the tensile force that arises from the curvature of the toroidal field, and always leads a prograde flow. The third part comes from the density variation and meridional gradient of the toroidal field, and may lead to the prograde flow or the retrograde flow. Whether the flow observed on the surface could be reduced to small values in the interior will depend on the direction of the flow, the density gradient and also the structure of the toroidal magnetic field. It can also be shown that the magnitude of the generated toroidal magnetic field in the interior of the giant planets is very large and around 10 Tesla for consistency with the observed zonal flow on the surface of

  13. Observational and theoretical constraints for an Hα-halo around the Crab nebula

    NASA Astrophysics Data System (ADS)

    Tziamtzis, A.; Schirmer, M.; Lundqvist, P.; Sollerman, J.

    2009-04-01

    Aims: We searched for a fast moving Hα shell around the Crab nebula. Such a shell could account for this supernova remnant's missing mass, and carry enough kinetic energy to make SN 1054 a normal type II event. Methods: Deep Hα images were obtained with WFI at the 2.2 m MPG/ESO telescope and with MOSCA at the 2.56 m NOT. The data are compared with theoretical expectations derived from shell models with ballistic gas motion, constant temperature, constant degree of ionisation, and a power law for the density profile. Results: We reach a surface brightness limit of 5 × 10-8 erg s-1 cm-2 sr-1. A halo is detected, but at a much higher surface brightness than our models of recombination emission and dust scattering predict. Only collisional excitation of Lyβ with partial de-excitation to Hα could explain such amplitudes. We show that the halo seen is caused by PSF scattering and thus not related to a real shell. We also investigated the feasibility of a spectroscopic detection of high-velocity Hα gas towards the centre of the Crab nebula. Modelling the emission spectra shows that such gas easily evades detection in the complex spectral environment of the Hα-line. Conclusions: PSF scattering significantly contaminates our data, preventing a detection of the predicted fast shell. A real halo with observed peak flux of about 2 × 10-7 erg s-1 cm-2 sr-1 could still be accomodated within our error bars, but our models predict a factor 4 lower surface brightness. Eight meters class telescopes could detect such fluxes unambiguously, provided that a sufficiently accurate PSF model is available. Finally, we note that PSF scattering also affects other research areas where faint haloes are searched for around bright and extended targets. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile (ESO Programmes 66.D-0489, 68.D-0096 and 170.A-0519). Based on observations made with the Nordic Optical Telescope, operated on the island of La

  14. The deep structure of the Western Pyrenees: constraints from tomographic imaging, field and marine geological observations

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Chevrot, Sébastien; Mohn, Geoffroy

    2015-04-01

    Knowledge of magma-poor rifted margin architecture has significantly evolved over the past decades. Refraction seismic data combined with drill-hole observations unravelled the velocity structure and lithological assemblages of the most distal part of continental rifted margins. Present-day models of continental rifted margins include the occurrence of hyperextended domains consisting in extremely thinned continental crust and/or exhumed subcontinental mantle as described at many rifted margins. Studies in mountain belts revealed that remnants of hyperextended domains could also be identified in internal parts of collisional orogens. Integrating recent developments in the understanding of rifted margins in the study of mountain building processes, in particular the importance of the reactivation of inherited rift structures is therefore essential and may result in alternative interpretations of the lithospheric scale structure of collisional orogens. In this contribution, we focus on the western part of the Pyrenean orogen that resulted from the inversion of a complex Late Jurassic to Mid Cretaceous rift system. The transition from preserved oceanic and rift domains to the west (in the offshore Bay of Biscay) to their complete inversion in the east provides simultaneous access to seismically imaged and exposed parts of a hyperextended rift system. Based on a multi-scale dataset that combines sub-surface data (field and drill-hole observations) with tomographic imaging (PYROPE experiment) and integrating new concepts derived from the study of present-day rifted margins, we investigate the lithospheric-scale architecture of the Western Pyrenees. Our results suggest that the imaged north-dipping crustal root may correspond to the former exhumed mantle and hyperthinned domains that have been subducted/underthrust at the onset of convergence. This interpretation contrasts with the classical assumption that the crustal root is made of lower crustal rocks. This

  15. Observational constraints on mixed-phase clouds imply higher climate sensitivity.

    PubMed

    Tan, Ivy; Storelvmo, Trude; Zelinka, Mark D

    2016-04-08

    Global climate model (GCM) estimates of the equilibrium global mean surface temperature response to a doubling of atmospheric CO2, measured by the equilibrium climate sensitivity (ECS), range from 2.0° to 4.6°C. Clouds are among the leading causes of this uncertainty. Here we show that the ECS can be up to 1.3°C higher in simulations where mixed-phase clouds consisting of ice crystals and supercooled liquid droplets are constrained by global satellite observations. The higher ECS estimates are directly linked to a weakened cloud-phase feedback arising from a decreased cloud glaciation rate in a warmer climate. We point out the need for realistic representations of the supercooled liquid fraction in mixed-phase clouds in GCMs, given the sensitivity of the ECS to the cloud-phase feedback.

  16. Observational constraints on water sublimation from 24 Themis and 1 Ceres

    NASA Astrophysics Data System (ADS)

    McKay, Adam J.; Bodewits, Dennis; Li, Jian-Yang

    2017-04-01

    Recent observations have suggested that there is water ice present on the surfaces of 24 Themis and 1 Ceres. We present upper limits on the H2O production rate on these bodies derived using a search for [O I]6300 Å emission. For Themis, the water production is less than 4.5 × 1027 mol s-1 , while for Ceres our derived upper limit is 4.6 × 1028 mol s-1. The derived limits imply a very low fraction of the surface area of each asteroid is active (< 2 ×10-4), though this estimate varies by as much as an order of magnitude depending on thermal properties of the surface. This is much lower than seen for comets, which have active areas of 10-2-10-1. We discuss possible implications for our findings on the nature of water ice on Themis and Ceres.

  17. Observational and Modeling Constraints on Evapotranspiration and Water Vapor in the Upper Midwest, United States

    NASA Astrophysics Data System (ADS)

    Griffis, T. J.

    2014-12-01

    Increases in atmospheric water vapor concentrations and convective precipitation over land provide evidence of intensification of the global hydrologic cycle in response to surface warming. The extent to which terrestrial ecosystems modulate these two components of the hydrologic cycle is important to understanding biophysical feedbacks in the climate system and the availability of water resources. Here, we use a multi-year oxygen-18 and deuterium isotope record of liquid water (precipitation, soil, and plants), atmospheric vapor, tall tower flux measurements, and Stochastic Time-Inverted Lagrangian (STILT) modeling to constrain the importance of evapotranspiration, and other source terms, in the humidification of the planetary boundary layer (PBL). Using an isotope tracer approach we estimated that mid-continental water vapor in the PBL can be derived from as much as 75% local evaporation during the growing season. This result is supported using an inverse modeling approach for cases of extreme dew-point events that have a strong agricultural fingerprint. The isotope observations of water vapor and precipitation were combined with a Monte-Carlo simulation to help constrain a mixing model to estimate the fraction of evaporated terrestrial water in precipitation. The results indicate that growing season precipitation has a median recycling signature of about 30% and is used to help diagnose recycling ratios in mesoscale models. Our land surface modeling results highlight that regional evaporation has changed little over the last 50 years and that the expansion of agricultural crops in the US Midwest has likely reduced the local annual contribution to atmospheric water vapor. These findings are consistent with observed increases in the regional stream-flow data. The compressed growing season of agricultural crops and their high transpiration rates may amplify precipitation intensity and runoff.

  18. Deformation history of Pinatubo peridotite xenoliths: constraints from microstructural observation and determination of olivine slip systems

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takafumi; Ando, Jun-ichi; Tomioka, Naotaka; Kobayashi, Tetsuo

    2016-11-01

    The deformation history of the Pinatubo peridotite xenoliths was estimated on the basis of the microstructural observations and the determination of olivine slip systems. The latter was performed by using three methods: lattice-preferred orientation (LPO), crystallographic analysis of subgrain boundaries, and direct characterization of dislocations. The Pinatubo peridotites are composed of coarse olivine grains containing numerous fluid inclusions and some fine aggregates of orthopyroxene and amphibole grains, which implies intense fluid-rock interaction. The development of euhedral fine recrystallized olivine grains along the healed cracks within the coarse olivine grains suggests that the strain-free grains were nucleated and grew during static recovery. The LPO patterns and the analyses of subgrain boundaries indicate the activation of a [100]{0kl} slip system that developed under high temperature, low pressure, and dry deformation conditions. Although dislocations showing the [100]{0kl} slip system are dominantly observed, the other slip systems which could be formed by the deformation under moderate-high water content and lower-temperature conditions are also developed. The discrepancy between the results of dislocation characterization and the other two methods might have been caused by fulfilling the von Mises criterion or overprinting dislocation microstructures. Either way, the possible deformation history of the Pinatubo peridotites can be explained by the following scenario. The peridotites plastically moved from the back-arc to the fore-arc adjacent region, where CO2-rich saline fluid was trapped, by the corner flow of a mantle wedge. They were then annealed and metasomatized during entrapment of the upwelling magma.

  19. AMPLITUDES OF SOLAR-LIKE OSCILLATIONS: CONSTRAINTS FROM RED GIANTS IN OPEN CLUSTERS OBSERVED BY KEPLER

    SciTech Connect

    Stello, Dennis; Huber, Daniel; Bedding, Timothy R.; Benomar, Othman; Kallinger, Thomas; Basu, Sarbani; Mosser, BenoIt; Hekker, Saskia; Mathur, Savita; GarcIa, Rafael A.; Gilliland, Ronald L.; Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne P.; Meibom, Soeren; Molenda-Zakowicz, Joanna; Szabo, Robert

    2011-08-10

    Scaling relations that link asteroseismic quantities to global stellar properties are important for gaining understanding of the intricate physics that underpins stellar pulsations. The common notion that all stars in an open cluster have essentially the same distance, age, and initial composition implies that the stellar parameters can be measured to much higher precision than what is usually achievable for single stars. This makes clusters ideal for exploring the relation between the mode amplitude of solar-like oscillations and the global stellar properties. We have analyzed data obtained with NASA's Kepler space telescope to study solar-like oscillations in 100 red giant stars located in either of the three open clusters, NGC 6791, NGC 6819, and NGC 6811. By fitting the measured amplitudes to predictions from simple scaling relations that depend on luminosity, mass, and effective temperature, we find that the data cannot be described by any power of the luminosity-to-mass ratio as previously assumed. As a result we provide a new improved empirical relation which treats luminosity and mass separately. This relation turns out to also work remarkably well for main-sequence and subgiant stars. In addition, the measured amplitudes reveal the potential presence of a number of previously unknown unresolved binaries in the red clump in NGC 6791 and NGC 6819, pointing to an interesting new application for asteroseismology as a probe into the formation history of open clusters.

  20. Constraints on supermassive black hole spins from observations of active galaxy jets

    NASA Astrophysics Data System (ADS)

    Kun, E.; Wiita, P. J.; Gergely, L. Á.; Keresztes, Z.; Gopal-Krishna; Biermann, P. L.

    2013-11-01

    We discuss the origin of the low-energy cutoff, or LEC, seen in the radio spectra of many extragalactic jets and relate this to the spin of the supermassive black holes that presumably power them. Pion decay via proton-proton collisions is a possible mechanism to supply a secondary positron population with a low energy limit. We expect that pion production would occur in advection dominated accretion flows or ADAFs. In radiatively inefficient ADAFs the heat energy of the accreting gas is unable to radiate in less than the accretion time and the particle temperature could be high enough so that thermal protons can yield such pion production. Strong starbursts are another option for the injection of a truncated particle population into the jet. The role of both mechanisms is discussed with respect to the black hole spin estimate. The energy demanded to produce the pion decay process involves a minimum threshold for kinetic energy of the interacting protons. Therefore the mean proton speed in the flow can determine whether a LEC is generated. In ADAFs the random velocity of the protons can exceed the minimum speed limit of pion production around the jet launching region in the innermost part of the flow. Finally we summarize the additional work needed to put the model assumptions on a more rigorous basis.

  1. Constraints on the pMSSM from LAT Observations of Dwarf Spheroidal Galaxies

    SciTech Connect

    Cotta, R.C.; Drlica-Wagner, A.; Murgia, S.; Bloom, E.D.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2012-03-15

    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of {approx}71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (mLSP < 50 GeV) annihilating into {tau}-pairs and heavier LSPs annihilating into b{bar b}. Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.

  2. Constraints on the pMSSM from LAT observations of dwarf spheroidal galaxies

    SciTech Connect

    Cotta, R.C.; Hewett, J.L.; Rizzo, T.G.; Drlica-Wagner, A.; Murgia, S.; Bloom, E.D. E-mail: kadrlica@stanford.edu E-mail: elliott@slac.stanford.edu E-mail: rizzo@slac.stanford.edu

    2012-04-01

    We examine the ability for the Large Area Telescope (LAT) to constrain Minimal Supersymmetric Standard Model (MSSM) dark matter through a combined analysis of Milky Way dwarf spheroidal galaxies. We examine the Lightest Supersymmetric Particles (LSPs) for a set of ∼ 71k experimentally valid supersymmetric models derived from the phenomenological-MSSM (pMSSM). We find that none of these models can be excluded at 95% confidence by the current analysis; nevertheless, many lie within the predicted reach of future LAT analyses. With two years of data, we find that the LAT is currently most sensitive to light LSPs (m{sub LSP} < 50GeV) annihilating into τ-pairs and heavier LSPs annihilating into b b-bar . Additionally, we find that future LAT analyses will be able to probe some LSPs that form a sub-dominant component of dark matter. We directly compare the LAT results to direct detection experiments and show the complementarity of these search methods.

  3. Plumes and Jets: Constraints on Vents and Eruption Dynamics from Observations and Models

    NASA Astrophysics Data System (ADS)

    Schmidt, J.

    2014-12-01

    Plume activity of Enceladus has been monitored by Cassini for nearly one decade after their discovery (see Science, 2006, 311, special issue). Thus, crucial properties of the vapor dust plumes are constrained in a fairly detailed manner. In this paper I discuss implications for vent geometries, gas and grain dynamics and condensation in the vents. Vapor source rates on the order of 100 to 1000kg/s were derived from remote and in-situ data [2, 3, 4, 1, 17] and distortions in the B field [10, 15]). Gas ejection speeds from 500m/s to 1000m/s [18, 4] (escape speed 240m/s) indicate supersonic gas flow. Evidence for supersonic gas jets is directly seen in UVIS data [3]. Dust production rates between 5 to 50kg/s have been inferred [16, 8]. These do not yet include mass in jets of very fine nano-grains [9, 8, 7]. The dust plume exhibits scale heights that suggest ejection speeds on the order of 100m/s [13, 16, 6], i.e. well below the escape velocity. Larger grains have smaller ejection spees populating the lower parts of the plume [6, 16]. Salt has been identified in grains on the percent level [14] so that they cannot form alone by condensation from vapor. The detailed distribution of dust sources and jet orientations on the south polar terrain was derived from images and compared to temperature distributions and to the expected tidal stress pattern from modelling [12]. A recent observations show that plume brightness varies roughly by a factor of three with the orbital period of Enceladus, suggesting that ejection strength is tidally controlled [11, 5]. A similar variation in the gas discharge is expected but has not yet been observed to date. Remarkably, there is no such correlation of orbital phase and the observed scale height of dust jets. [1] Dong et al, JGR, 116, 2011[2] Hansen et al, Science, 311, 2006. [3] Hansen et al, Nature, 456, 2008.[4] Hansen et al, GRL, 38, 2011.[5] Hedman et al, Nature, 2013.[6] Hedman et al, ApJ, 693, 2009.[7] Hill et al, JGR, 117, 2012

  4. Gas expulsion in massive star clusters?. Constraints from observations of young and gas-free objects

    NASA Astrophysics Data System (ADS)

    Krause, Martin G. H.; Charbonnel, Corinne; Bastian, Nate; Diehl, Roland

    2016-03-01

    Context. Gas expulsion is a central concept in some of the models for multiple populations and the light-element anti-correlations in globular clusters. If the star formation efficiency was around 30 per cent and the gas expulsion happened on the crossing timescale, this process could preferentially expel stars born with the chemical composition of the proto-cluster gas, while stars with special composition born in the centre would remain bound. Recently, a sample of extragalactic, gas-free, young massive clusters has been identified that has the potential to test the conditions for gas expulsion. Aims: We investigate the conditions required for residual gas expulsion on the crossing timescale. We consider a standard initial mass function and different models for the energy production in the cluster: metallicity-dependent stellar winds, radiation, supernovae and more energetic events, such as hypernovae, which are related to gamma ray bursts. The latter may be more energetic than supernovae by up to two orders of magnitude. Methods: We computed a large number of thin-shell models for the gas dynamics, and calculated whether the Rayleigh-Taylor instability is able to disrupt the shell before it reaches the escape speed. Results: We show that the success of gas expulsion depends on the compactness index of a star cluster C5 ≡ (M∗/ 105 M⊙)/(rh/ pc), with initial stellar mass M∗ and half-mass radius rh. For given C5, a certain critical, local star formation efficiency is required to remove the rest of the gas. Common stellar feedback processes may not lead to gas expulsion with significant loss of stars above C5 ≈ 1. Considering pulsar winds and hypernovae, the limit increases to C5 ≈ 30. If successful, gas expulsion generally takes place on the crossing timescale. Some observed young massive clusters have 1

  5. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    NASA Astrophysics Data System (ADS)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  6. Observations of martian gullies and constraints on potential formation mechanisms. II. The northern hemisphere

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Carlsson, Ella; Johansson, Henrik; Mellon, Michael T.; Toon, Owen B.

    2007-06-01

    The formation process(es) responsible for creating the observed geologically recent gully features on Mars has remained the subject of intense debate since their discovery. We present new data and analysis of northern hemisphere gullies from Mars Global Surveyor data which is used to test the various proposed mechanisms of gully formation. We located 137 Mars Orbiter Camera (MOC) images in the northern hemisphere that contain clear evidence of gully landforms and analyzed these images in combination with Mars Orbiter Laser Altimeter (MOLA) and Thermal Emission Spectrometer (TES) data to provide quantitative measurements of numerous gully characteristics. Parameters we measured include apparent source depth and distribution, vertical and horizontal dimensions, slopes, orientations, and present-day characteristics that affect local ground temperatures. Northern hemisphere gullies are clustered in Arcadia Planitia, Tempe Terra, Acidalia Planitia, and Utopia Planitia. These gullies form in craters (84%), knobby terrain (4%), valleys (3%), other/unknown terrains (9%) and are found on all slope orientations although the majority of gullies are equator-facing. Most gullies (63%) are associated with competent rock strata, 26% are not associated with strata, and 11% are ambiguous. Assuming thermal conductivities derived from TES measurements as well as modeled surface temperatures, we find that 95% of the gully alcove bases with adequate data coverage lie at depths where subsurface temperatures are greater than 273 K and 5% of the alcove bases lie within the solid water regime. The average alcove length is 470 m and the average channel length is 690 m. Based on a comparison of measured gully features with predictions from the various models of gully formation, we find that models involving carbon dioxide, melting ground ice in the upper few meters of the soil, dry landslide, and surface snowmelt are the least likely to describe the formation of the martian gullies. Although

  7. Observational constraints on a Yang-Mills condensate dark energy model

    NASA Astrophysics Data System (ADS)

    Fu, Z. W.; Zhang, Y.; Tong, M. L.

    2011-11-01

    Using the recently released Union2 compilation with 557 Type Ia supernovae, the shift parameter of the cosmic microwave background given by the WMAP7 observations and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform the χ2 analysis on the 1-loop Yang-Mills condensate (YMC) dark energy model. The analysis has been made for both non-coupling and coupling models with Ωm0 and w0 being treated as free parameters. It is found that χ2min = 542.870 at Ωm0 = 0.2701 and w0 = -0.9945 for the non-coupling model, and χ2min = 542.790 at γ = -0.015, Ωm0 = 0.2715 and w0 = -0.9969 for the coupling model. Comparing with the ΛCDM model, the YMC model has a smaller χ2min, but it has greater values of the Bayesian and Akaike information criteria. Overall, YMC is as robust as ΛCDM.

  8. Crossing w = -1 by a single scalar field coupling with matter and the observational constraints

    NASA Astrophysics Data System (ADS)

    Tong, M. L.; Zhang, Y.; Fu, Z. W.

    2011-03-01

    Motivated by the Yang-Mills dark energy model, we propose a new model by introducing a logarithmic correction. We find that this model can avoid the coincidence problem naturally and gives an equation of state w smoothly crossing -1 if an interaction between dark energy and dark matter exists. It has a stable tracker solution as well. To confront with observations based on the combined data of SN Ia, BAO, CMB and Hubble parameter, we obtain the best-fit values of the parameters with 1σ, 2σ, 3σ errors for the non-coupled model: Ωm = 0.276 ± 0.008 + 0.016 + 0.024- 0.015 - 0.022, h = 0.699 ± 0.003 ± 0.006 ± 0.008, and for the coupled model with a decaying rate γ = 0.2: Ωm = 0.291 ± 0.004+0.008 + 0.012- 0.007 - 0.011, h = 0.701 ± 0.002 ± 0.005 ± 0.007. In particular, it is found that the non-coupled model has a dynamic evolution almost indistinguishable to ΛCDM at the late-time Universe.

  9. Constraints on reconstructed dark energy model from SN Ia and BAO/CMB observations

    NASA Astrophysics Data System (ADS)

    Mamon, Abdulla Al; Bamba, Kazuharu; Das, Sudipta

    2017-01-01

    The motivation of the present work is to reconstruct a dark energy model through the dimensionless dark energy function X( z), which is the dark energy density in units of its present value. In this paper, we have shown that a scalar field φ having a phenomenologically chosen X( z) can give rise to a transition from a decelerated to an accelerated phase of expansion for the universe. We have examined the possibility of constraining various cosmological parameters (such as the deceleration parameter and the effective equation of state parameter) by comparing our theoretical model with the latest Type Ia Supernova (SN Ia), Baryon Acoustic Oscillations (BAO) and Cosmic Microwave Background (CMB) radiation observations. Using the joint analysis of the SN Ia+BAO/CMB dataset, we have also reconstructed the scalar potential from the parametrized X( z). The relevant potential is found, a polynomial in φ . From our analysis, it has been found that the present model favors the standard Λ CDM model within 1σ confidence level.

  10. Constraints on the origin of the Moon's atmosphere from observations during a lunar eclipse.

    PubMed

    Mendillo, M; Baumgardner, J

    1995-10-05

    The properties of the Moon's rarefied atmosphere, which can be traced through observations of sodium and potassium, provide important insights into the formation and maintenance of atmospheres on other primitive Solar System bodies. The lunar atmosphere is believed to be composed of atoms from the surface rocks and soil, which might have been sputtered by micrometeorites, by ions in the solar wind, or by photons. It might also form by the evaporation of atoms from the hot, illuminated surface. Here we report the detection of sodium emission from the Moon's atmosphere during a total lunar eclipse (which occurs when the Moon is full). The sodium atmosphere is considerably more extended at full Moon than expected--it extends to at least nine lunar radii--and its brightness distribution is incompatible with sources involving either solar-wind or micrometeorite sputtering. This leaves photon sputtering or thermal desorption as the preferred explanations for the lunar atmosphere, and suggests that sunlight might also be responsible for the transient atmospheres of other primitive bodies (such as Mercury).

  11. Observations and model calculations of an additional layer in the topside ionosphere above Fortaleza, Brazil

    NASA Astrophysics Data System (ADS)

    Jenkins, B.; Bailey, G. J.; Abdu, M. A.; Batista, I. S.; Balan, N.

    1997-06-01

    Calculations using the Sheffield University plasmasphere ionosphere model have shown that under certain conditions an additional layer can form in the low latitude topside ionosphere. This layer (the F3 layer) has subsequently been observed in ionograms recorded at Fortaleza in Brazil. It has not been observed in ionograms recorded at the neighbouring station São Luis. Model calculations have shown that the F3 layer is most likely to form in summer at Fortaleza due to a combination of the neutral wind and the E×B drift acting to raise the plasma. At the location of São Luis, almost on the geomagnetic equator, the neutral wind has a smaller vertical component so the F3 layer does not form.

  12. OVRO N2H+ Observations of Class 0 Protostars: Constraints on the Formation of Binary Stars

    NASA Astrophysics Data System (ADS)

    Chen, Xuepeng; Launhardt, Ralf; Henning, Thomas

    2007-11-01

    We present the results of an interferometric study of the N2H+ (1-0) emission from nine nearby, isolated, low-mass protostellar cores, using the Owens Valley Radio Observatory (OVRO) millimeter array. The main goal of this study is the kinematic characterization of the cores in terms of rotation, turbulence, and fragmentation. Eight of the nine objects have compact N2H+ cores with FWHM radii of 1200-3500 AU, spatially coinciding with the thermal dust continuum emission. The one more evolved (Class I) object in the sample (CB 188) shows only faint and extended N2H+ emission. The mean N2H+ line width was found to be 0.37 km s-1. Estimated virial masses range from 0.3 to 1.2 Msolar. We find that thermal and turbulent energy support are about equally important in these cores, while rotational support is negligible. The measured velocity gradients across the cores range from 6 to 24 km s-1 pc-1. Assuming these gradients are produced by bulk rotation, we find that the specific angular momenta of the observed Class 0 protostellar cores are intermediate between those of dense (prestellar) molecular cloud cores and the orbital angular momenta of wide pre-main-sequence (PMS) binary systems. There appears to be no evolution (decrease) of angular momentum from the smallest prestellar cores via protostellar cores to wide PMS binary systems. In the context that most protostellar cores are assumed to fragment and form binary stars, this means that most of the angular momentum contained in the collapse region is transformed into orbital angular momentum of the resulting stellar binary systems.

  13. Does atmospheric scattering increase or decrease terrestrial photosynthesis? Strong constraints from sunlight observations

    NASA Astrophysics Data System (ADS)

    Stine, A.; Huybers, P. J.; Swann, A. L.

    2013-12-01

    Diffuse light tends to be more efficient than direct shortwave radiation in driving photosynthesis in closed canopy environments because it will penetrate more evenly into the forest canopy illuminating a greater effective surface area of leaves. Increased atmospheric column scattering will tend to both decrease the total light reaching the surface, and to convert direct light to diffuse light. These two mechanisms have opposing effects on the sensitivity of terrestrial photosynthesis to changes in atmospheric scattering. A debate exists in the literature as to which effect generally dominates on planetary scales, particularly in the context of interpretation of the anomalously large northern hemisphere summer draw-down in atmospheric carbon dioxide in 1991 -- the year of the Mount Pinatubo eruption. Here we take a fresh approach to this problem and directly examine a broad spatial network of surface observations of direct and diffuse solar radiation. We estimate the sensitivity of direct, diffuse and photosynthetically effective radiation (PER), which we define as direct + α*diffuse, to changes in scattering on a site-by-site basis from over 100 spatially distributed time series of radiation. We find that PER generally decreases with increasing intensity of diffusive light, even when assuming the upper range of published α values, from which we infer that increased scattering generally decreases PER. Positive sensitivity of PER to increases in scattering, again using high values for α, are primarily confined to relatively cloud-free arid regions -- regions which do not support a closed canopy and almost certainly actually have a lower α. This supports conclusions that other mechanisms than Pinatubo's direct influence on diffuse fractions likely accounted for the 1991 CO2 drawdown anomaly. We examine the implication of this result for modeling the response of the carbon cycle to atmospheric scattering in the context of a global carbon cycle model.

  14. Observational Constraints on the Oxidation of NOx in the Upper Troposphere.

    PubMed

    Nault, Benjamin A; Garland, Charity; Wooldridge, Paul J; Brune, William H; Campuzano-Jost, Pedro; Crounse, John D; Day, Douglas A; Dibb, Jack; Hall, Samuel R; Huey, L Gregory; Jimenez, José L; Liu, Xiaoxi; Mao, Jingqiu; Mikoviny, Tomas; Peischl, Jeff; Pollack, Ilana B; Ren, Xinrong; Ryerson, Thomas B; Scheuer, Eric; Ullmann, Kirk; Wennberg, Paul O; Wisthaler, Armin; Zhang, Li; Cohen, Ronald C

    2016-03-10

    NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

  15. Slow slip pulses driven by thermal pressurization of pore fluid: theory and observational constraints

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2012-12-01

    We discuss recently developed solutions for steadily propagating self-healing slip pulses driven by thermal pressurization (TP) of pore fluid [Garagash, 2012] on a fault with a constant sliding friction. These pulses are characterized by initial stage of undrained weakening of the fault (when fluid/heat can not yet escape the frictionally heated shear zone), which gives way to partial restrengthening due to increasing hydrothermal diffusion under conditions of diminished rate of heating, leading to eventual locking of the slip. The rupture speed of these pulses is decreasing function of the thickness (h) of the principal shear zone. We find that "thick" shear zones, h >> hdyna, where hdyna = (μ/τ0) (ρc/fΛ)(4α/cs), can support aseismic TP pulses propagating at a fraction hdyna/h of the shear wave speed cs, while "thin" shear zones, h˜hdyna or thinner, can only harbor seismic slip. (Here μ - shear modulus, τ0 - the nominal fault strength, f - sliding friction, ρc - the heat capacity of the fault gouge, Λ - the fluid thermal pressurization factor, α - hydrothermal diffusivity parameter of the gouge). For plausible range of fault parameters, hdyna is between 10s to 100s of micrometers, suggesting that slow slip transients propagating at 1 to 10 km/day may occur in the form of a TP slip pulse accommodated by a meter-thick shear zone. We verify that this is, indeed, a possibility by contrasting the predictions for aseismic, small-slip TP pulses operating at seismologically-constrained, near-lithostatic pore pressure (effective normal stress ≈ 3 to 10 MPa) with the observations (slip duration at a given fault location ≈ week, propagation speed ≈ 15 km/day, and the inferred total slip ≈ 2 to 3 cm) for along-strike propagation of the North Cascadia slow slip events of '98-99 [Dragert et al., 2001, 2004]. Furthermore, we show that the effect of thermal pressurization on the strength of the subduction interface is comparable to or exceeds that of the rate

  16. Constraints on the Binary Properties of Mid- to Late T Dwarfs from Hubble Space Telescope WFC3 Observations

    NASA Astrophysics Data System (ADS)

    Aberasturi, M.; Burgasser, A. J.; Mora, A.; Solano, E.; Martín, E. L.; Reid, I. N.; Looper, D.

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (<=20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy Inc., under NASA contract NAS 5-26555. These observations are associated with programs 11631 and 11666.

  17. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    NASA Astrophysics Data System (ADS)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2006-07-01

    Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive chemical potential

  18. Additive genetic variation in resistance traits of an exotic pine species: little evidence for constraints on evolution of resistance against native herbivores.

    PubMed

    Moreira, X; Zas, R; Sampedro, L

    2013-05-01

    The apparent failure of invasions by alien pines in Europe has been explained by the co-occurrence of native pine congeners supporting herbivores that might easily recognize the new plants as hosts. Previous studies have reported that exotic pines show reduced tolerance and capacity to induce resistance to those native herbivores. We hypothesize that limited genetic variation in resistance to native herbivores and the existence of evolutionary trade-offs between growth and resistance could represent additional potential constraints on the evolution of invasiveness of exotic pines outside their natural range. In this paper, we examined genetic variation for constitutive and induced chemical defences (measured as non-volatile resin in the stem and total phenolics in the needles) and resistance to two major native generalist herbivores of pines in cafeteria bioassays (the phloem-feeder Hylobius abietis and the defoliator Thaumetopoea pityocampa) using half-sib families drawn from a sample of the population of Pinus radiata introduced to Spain in the mid-19th century. We found (i) significant genetic variation, with moderate-to-high narrow-sense heritabilities for both the production of constitutive non-volatile resin and induced total phenolics, and for constitutive resistance against T. pityocampa in bioassays, (ii) no evolutionary trade-offs between plant resistance and growth traits or between the production of different quantitative chemical defences and (iii) a positive genetic correlation between constitutive resistance to the two studied herbivores. Overall, results of our study indicate that the exotic pine P. radiata has limited genetic constraints on the evolution of resistance against herbivores in its introduced range, suggesting that, at least in terms of interactions with these enemies, this pine species has potential to become invasive in the future.

  19. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  20. Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints

    NASA Astrophysics Data System (ADS)

    Lombardozzi, Danica L.; Zeppel, Melanie J. B.; Fisher, Rosie A.; Tawfik, Ahmed

    2017-01-01

    The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land-surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land-surface models typically reduce stomatal conductance to nearly zero at night. Here, we test the sensitivity of carbon and water budgets in a global land-surface model, the Community Land Model (CLM) version 4.5, to three different methods of incorporating observed nighttime stomatal conductance values. We find that our modifications increase transpiration by up to 5 % globally, reduce modeled available soil moisture by up to 50 % in semi-arid regions, and increase the importance of the land surface in modulating energy fluxes. Carbon gain declines by up to ˜ 4 % globally and > 25 % in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.

  1. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    SciTech Connect

    Ackermann, M.; et al.

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma-ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma-ray flux upper limits between 500 MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical Standard Model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma-ray background modeling, and assumed dark matter density profile.

  2. Constraints on the Dust Size Distribution of 46P/Wirtanen from In-Situ and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Fulle, M.

    1999-01-01

    The ESA Rosetta mission is planned to orbit around the nucleus of comet 46P/Wirtanen for years during the comet approach to its perihelion. All the probe operations will heavily depend on the dust environment of the comet, which will determine the possibility of close approaches to the nucleus, the pollution to the experiments, the good sampling of collecting dust experiments, the orbit perturbations due to the dust flux on the solar panels, and so on. A sufficiently realistic model of the dust environment requires detailed information on the nucleus surface and topography, which determines the 3D gas flux dragging the dust towards the spacecraft. Therefore, complex models of the nucleus surface and of the gas expansion are required to properly predict the environment characteristics inside which the probe will operate. These models depend on many parameters, whose most probable ranges can be determined by past in-situ measurements and available and/or future ground-based observations. We review present information about crucial parameters describing cometary dust environments, and in particular the available constraints on poorly known dust parameters, such as the dust size distribution, bulk density and loss rates provided by in-situ and ground-based observations. In particular, the most probable power index of the dust size distribution ranges bewteen -4 and -3

  3. Constraints on the dust size distribution of 46P/wirtanen from in-situ and ground-based observations

    NASA Astrophysics Data System (ADS)

    Fulle, M.

    1999-01-01

    The ESA Rosetta mission is planned to orbit around the nucleus of comet 46P/Wirtanen for years during the comet approach to its perihelion. All the probe operations will heavily depend on the dust environment of the comet, which will determine the possibility of close approaches to the nucleus, the pollution to the experiments, the good sampling of collecting dust experiments, the orbit perturbations due to the dust flux on the solar panels, and so on. A sufficiently realistic model of the dust environment requires detailed information on the nucleus surface and topography, which determines the 3D gas flux dragging the dust towards the spacecraft. Therefore, complex models of the nucleus surface and of the gas expansion are required to properly predict the environment characteristics inside which the probe will operate. These models depend on many parameters, whose most probable ranges can be determined by past in-situ measurements and available and/or future ground-based observations. We review present information about crucial parameters describing cometary dust environments, and in particular the available constraints on poorly known dust parameters, such as the dust size distribution, bulk density and loss rates provided by in-situ and ground-based observations. In particular, the most probable power index of the dust size distribution ranges between -4 and -3.

  4. Photochemical modeling of the Antarctic stratosphere: Observational constraints from the airborne Antarctic ozone experiment and implications for ozone behavior

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Sze, Nien-Dak; Ko, Malcolm K. W.

    1988-01-01

    The rapid decrease in O3 column densities observed during Antarctic spring has been attributed to several chemical mechanisms involving nitrogen, bromine, or chlorine species, to dynamical mechanisms, or to a combination of the above. Chlorine-related theories, in particular, predict greatly elevated concentrations of ClO and OClO and suppressed abundances of NO2 below 22 km. The heterogeneous reactions and phase transitions proposed by these theories could also impact the concentrations of HCl, ClNO3 and HNO3 in this region. Observations of the above species have been carried out from the ground by the National Ozone Expedition (NOZE-I, 1986, and NOZE-II, 1987), and from aircrafts by the Airborne Antarctic Ozone Experiment (AAOE) during the austral spring of 1987. Observations of aerosol concentrations, size distribution and backscattering ratio from AAOE, and of aerosol extinction coefficients from the SAM-II satellite can also be used to deduce the altitude and temporal behavior of surfaces which catalyze heterogeneous mechanisms. All these observations provide important constraints on the photochemical processes suggested for the spring Antarctic stratosphere. Results are presented for the concentrations and time development of key trace gases in the Antarctic stratosphere, utilizing the AER photochemical model. This model includes complete gas-phase photochemistry, as well as heterogeneous reactions. Heterogeneous chemistry is parameterized in terms of surface concentrations of aerosols, collision frequencies between gas molecules and aerosol surfaces, concentrations of HCl/H2O in the frozen particles, and probability of reaction per collision (gamma). Values of gamma are taken from the latest laboratory measurements. The heterogeneous chemistry and phase transitions are assumed to occur between 12 and 22 km. The behavior of trace species at higher altitudes is calculated by the AER 2-D model without heterogeneous chemistry. Calculations are performed for

  5. Constraints on values of biological parameters by observed turbulence in a quasi-2D phytoplankton model of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hahn-Woernle, Lisa; Dijkstra, Henk A.; van der Woerd, Hans J.

    2013-04-01

    Constraints on values of biological parameters by observed turbulence in a quasi-2D phytoplankton model of the North Atlantic Session and Session Number: Scaling and complex Physical and Biogeophysical Processes in the Atmosphere, Ocean and climate (NP3.1) Preferred Mode of Presentation: Oral Lisa Hahn-Woernle¹, Henk A. Dijkstra¹ & Hans J. van der Woerd² 1. Institute for Marine and Atmospheric research Utrecht, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands. 2. Institute for Environmental Studies, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands. During the STRATIPHYT cruises in Summer 2009 and Spring 2011 in-situ plankton and nutrient concentrations as well as upper-ocean turbulence characteristics were measured from Las Palmas to Reykjavik [1,2]. The measurements agree with previous findings that the incoming light intensity and the stratification of the upper ocean set important conditions for the initiation of the phytoplankton bloom close to the surface and also for a possible shift to a deep chlorophyll maximum below the mixed layer. These strong characteristic spatial patterns and temporal cycles of phytoplankton surface concentration are also observed in satellite images of chlorophyll-a concentration in the Northern Atlantic. To understand the meridional depth (upper 200 m) variation of the phytoplankton distributions, a quasi-2D phytoplankton model was used. The results indicate that with the given profiles of the turbulent vertical mixing coefficient, only a very limited interval for the biological model parameters leads to the observed depth of the phytoplankton maximum. [1] E. Jurado, H. van der Woerd and H. A. Dijkstra, Microstructure measurements along a quasi-meridional transect in the North Atlantic, J. Geophysical Res. Oceans, 117, C04016, doi:10.1029/2011JC007137, (2012). [2] E. Jurado, H. A. Dijkstra and H. van der Woerd, Microstructure observations during the spring 2011 STRATIPHYT-II cruise in the

  6. Observations and modelling of CO and [C i] in protoplanetary disks. First detections of [C i] and constraints on the carbon abundance

    NASA Astrophysics Data System (ADS)

    Kama, M.; Bruderer, S.; Carney, M.; Hogerheijde, M.; van Dishoeck, E. F.; Fedele, D.; Baryshev, A.; Boland, W.; Güsten, R.; Aikutalp, A.; Choi, Y.; Endo, A.; Frieswijk, W.; Karska, A.; Klaassen, P.; Koumpia, E.; Kristensen, L.; Leurini, S.; Nagy, Z.; Perez Beaupuits, J.-P.; Risacher, C.; van der Marel, N.; van Kempen, T. A.; van Weeren, R. J.; Wyrowski, F.; Yıldız, U. A.

    2016-04-01

    Context. The gas-solid budget of carbon in protoplanetary disks is related to the composition of the cores and atmospheres of the planets forming in them. The principal gas-phase carbon carriers CO, C0, and C+ can now be observed regularly in disks. Aims: The gas-phase carbon abundance in disks has thus far not been well characterized observationally. We obtain new constraints on the [C]/[H] ratio in a large sample of disks, and compile an overview of the strength of [C i] and warm CO emission. Methods: We carried out a survey of the CO 6-5 line and the [C i] 1-0 and 2-1 lines towards 37 disks with the APEX telescope, and supplemented it with [C ii] data from the literature. The data are interpreted using a grid of models produced with the DALI disk code. We also investigate how well the gas-phase carbon abundance can be determined in light of parameter uncertainties. Results: The CO 6-5 line is detected in 13 out of 33 sources, [C i] 1-0 in 6 out of 12, and [C i] 2-1 in 1 out of 33. With separate deep integrations, the first unambiguous detections of the [C i] 1-0 line in disks are obtained, in TW Hya and HD 100546. Conclusions: Gas-phase carbon abundance reductions of a factor of 5-10 or more can be identified robustly based on CO and [C i] detections, assuming reasonable constraints on other parameters. The atomic carbon detection towards TW Hya confirms a factor of 100 reduction of [C]/[H]gas in that disk, while the data are consistent with an ISM-like carbon abundance for HD 100546. In addition, BP Tau, T Cha, HD 139614, HD 141569, and HD 100453 are either carbon-depleted or gas-poor disks. The low [C i] 2-1 detection rates in the survey mostly reflect insufficient sensitivity for T Tauri disks. The Herbig Ae/Be disks with CO and [C ii] upper limits below the models are debris-disk-like systems. An increase in sensitivity of roughly order of magnitude compared to our survey is required to obtain useful constraints on the gas-phase [C]/[H] ratio in most of the

  7. The efficacy of combining satellite water storage and soil moisture observations as constraints on water balance estimation

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; van Dijk, Albert; Renzullo, Luigi; Tregoning, Paul; Walker, Jeffrey; Pauwels, Valentijn

    2016-04-01

    improves estimation of the soil moisture profile (0 -1 m) but has little impact on TWS. The assimilation of TWS data significantly improves the deep soil moisture and groundwater dynamics, but causes a slight degradation of SSM estimation. Analysis showed that both observations can be jointly assimilated without imparting conflicting constraints and there is clear advantage in integrating them to ensure accurate estimates of both SSM and TWS.

  8. Use of Multiple-Angle Snow Camera (MASC) Observations as a Constraint on Radar-Based Retrievals of Snowfall Rate

    NASA Astrophysics Data System (ADS)

    Cooper, S.; Garrett, T. J.; Wood, N.; L'Ecuyer, T. S.

    2015-12-01

    We use a combination of Ka-band Zenith Radar (KaZR) and Multiple-Angle Snow Camera (MASC) observations at the ARM North Slope Alaska Climate Facility Site at Barrow to quantify snowfall. The optimal-estimation framework is used to combine information from the KaZR and MASC into a common retrieval scheme, where retrieved estimates of snowfall are compared to observations at a nearby NWS measurement site for evaluation. Modified from the operational CloudSat algorithm, the retrieval scheme returns estimates of the vertical profile of exponential PSD slope parameter with a constant number density. These values, in turn, can be used to calculate surface snowrate (liquid equivalent) given knowledge of snowflake microphysical properties and fallspeeds. We exploit scattering models for a variety of ice crystal shapes including aggregates developed specifically from observations of snowfall properties at high-latitudes, as well as more pristine crystal shapes involving sector plates, bullet rosettes, and hexagonal columns. As expected, initial retrievals suggest large differences (300% for some events) in estimated snowfall accumulations given the use of the different ice crystal assumptions. The complex problem of how we can more quantitatively link MASC snowflake images to specific radar scattering properties is an ongoing line of research. Here, however, we do quantify the use of MASC observations of fallspeed and PSD parameters as constraint on our optimal-estimation retrieval approach. In terms of fallspeed, we find differences in estimated snowfall of nearly 50% arising from the use of MASC observed fallspeeds relative to those derived from traditional fallspeed parameterizations. In terms of snowflake PSD, we find differences of nearly 25% arising from the use of MASC observed slope parameters relative to those derived from field campaign observations of high-altitude snow events. Of course, these different sources of error conspire to make the estimate of snowfall

  9. A State-of-the-Science Hg Redox Mechanism for Atmospheric Models: Constraints from Observations and Global Implications

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Jacob, D. J.; Amos, H. M.; Streets, D. G.; Zhang, Y.; Dibble, T. S.; Slemr, F.; Sunderland, E. M.

    2015-12-01

    Mercury (Hg) in the atmosphere cycles between two redox forms, Hg0 and HgII. Hg0 has a lifetime of ~1 year allowing near-global transport, while HgII is efficiently removed by deposition within weeks. Understanding atmospheric Hg redox chemistry is critical to determining the patterns of deposition to the surface, where Hg can be transformed to the bioaccumulative neurotoxin, methylmercury. We present a state-of-the-science redox mechanism for use in atmospheric models, with new theoretical data, which we implement in a global 3-D chemical transport model (GEOS-Chem). We evaluate our simulation against atmospheric observations and examine implications for Hg deposition. Modeled HgII wet deposition depends on the oxidation of anthropogenic, ocean, and soil Hg0 emissions and the reduction of emitted anthropogenic HgII. We present a new global anthropogenic atmospheric Hg emissions inventory for 1990 - 2010 with improved speciation of power plant emissions and regional commercial Hg emissions. The seasonal cycle of ocean evasion is also critical to atmospheric Hg variability. We present an advance in our ability to model atmosphere-ocean exchange of Hg, through more realistic ocean circulation from the 3-D MITgcm. Our results suggest Br is the dominant oxidant in the stratosphere, consistent with constraints from aircraft observations of the Hg gradient with depth into the stratosphere. The proposed redox mechanism leads to increased HgII deposition to the Tropics, with implications for tropical surface ocean enrichment, and decreased deposition to the Southern Ocean. Within the uncertainty of Hg0 oxidation rates, we find atmospheric HgII reduction is still needed. We find changes in speciated Hg emissions due to emissions controls can explain recent observed regional trends in atmospheric Hg. These have shifted power plant impacts to relatively more global than local Hg deposition. Coupling to the more realistic 3-D ocean model improves simulated atmospheric Hg

  10. Spectroscopic analyses of subluminous B stars: observational constraints for the theory of stellar evolution, pulsation, and diffusion

    NASA Astrophysics Data System (ADS)

    Edelmann, Heinz

    2003-06-01

    This thesis deals with quantitative spectroscopic analyses of large samples of subluminous B stars in order to find constraints the theory of stellar evolution, pulsation, and diffusion. Subluminous B stars, also known as subdwarf B (sdB) stars, are very important in several respects: They dominate the population of faint blue stars in high galactic latitudes, and are found both in the field and in globular clusters. Therefore, sdB stars are important to understand the structure and evolution of our galaxy. From the cosmological point of view, they are candidate progenitors of supernovae of type Ia due to their membership in close binary systems. In the context of stellar astrophysics, subdwarf B stars play an important role because several of them are discovered to show non-radial pulsations, which allows to probe their interior by asteroseismology. Last but not least, sdB stars show very peculiar element abundance patterns, probably caused by diffusion processes. Subluminous B stars are generally considered to be core helium-burning stars with extremely thin hydrogen envelopes (< 0.02M) and masses around 0.5M. In the Hertzsprung-Russell diagram they populate a very narrow area which lies on a blue-ward extension of the horizontal branch (HB), the so called "Extreme Horizontal Branch" (EHB). Due to their thin hydrogen-rich envelope, they cannot sustain a hydrogen-burning shell. This means that the sdB stars cannot ascend the asymptotic giant branch after the end of the helium-core burning, but should evolve directly to the white dwarf graveyard. However, according to standard stellar evolution theory, subdwarf B stars should not exist. Their evolution is still unclear and several scenarios are under debate. For all these investigations, knowledge of the stellar parameters (effective temperature, gravity and chemical composition) is very important to verify or discard theoretical models and predictions. Numerous observing runs have been performed mostly by myself

  11. Constraints on Λ(t)CDM models as holographic and agegraphic dark energy with the observational Hubble parameter data

    SciTech Connect

    Zhai, Zhong-Xu; Liu, Wen-Biao; Zhang, Tong-Jie E-mail: tjzhang@bnu.edu.cn

    2011-08-01

    The newly released observational H(z) data (OHD) is used to constrain Λ(t)CDM models as holographic and agegraphic dark energy. By the use of the length scale and time scale as the IR cut-off including Hubble horizon (HH), future event horizon (FEH), age of the universe (AU), and conformal time (CT), we achieve four different Λ(t)CDM models which can describe the present cosmological acceleration respectively. In order to get a comparison between such Λ(t)CDM models and standard ΛCDM model, we use the information criteria (IC), Om(z) diagnostic, and statefinder diagnostic to measure the deviations. Furthermore, by simulating a larger Hubble parameter data sample in the redshift range of 0.1 < z < 2.0, we get the improved constraints and more sufficient comparison. We show that OHD is not only able to play almost the same role in constraining cosmological parameters as SNe Ia does but also provides the effective measurement of the deviation of the DE models from standard ΛCDM model. In the holographic and agegraphic scenarios, the results indicate that the FEH is more preferable than HH scenario. However, both two time scenarios show better approximations to ΛCDM model than the length scenarios.

  12. Constraints on the binary properties of mid- to late T dwarfs from Hubble space telescope WFC3 observations

    SciTech Connect

    Aberasturi, M.; Solano, E.; Burgasser, A. J.; Mora, A.; Martín, E. L.; Reid, I. N.; Looper, D.

    2014-12-01

    We used Hubble Space Telescope/Wide Field Camera 3 (WFC3) observations of a sample of 26 nearby (≤20 pc) mid- to late T dwarfs to search for cooler companions and measure the multiplicity statistics of brown dwarfs (BDs). Tightly separated companions were searched for using a double point-spread-function-fitting algorithm. We also compared our detection limits based on simulations to other prior T5+ BD binary programs. No new wide or tight companions were identified, which is consistent with the number of known T5+ binary systems and the resolution limits of WFC3. We use our results to add new constraints to the binary fraction (BF) of T-type BDs. Modeling selection effects and adopting previously derived separation and mass ratio distributions, we find an upper limit total BF of <16% and <25% assuming power law and flat mass ratio distributions, respectively, which are consistent with previous results. We also characterize a handful of targets around the L/T transition.

  13. Observation of Emerging Photoinitiator Additives in Household Environment and Sewage Sludge in China.

    PubMed

    Liu, Runzeng; Lin, Yongfeng; Hu, Fanbao; Liu, Ruirui; Ruan, Ting; Jiang, Guibin

    2016-01-05

    Photoinitiators (PIs) are widely used additives in industrial polymerization process, the contamination of which through migration into foodstuffs has been subjected to increasing public scrutiny. Nevertheless, little attention has been paid to the PI residue levels and potential exposure pathways from other environmental compartments. In the present study, the occurrence of PI additives with discrete molecular structures, that is, nine benzophenones (BZPs), four thioxanthones (TXs), and eight amine co-initiators (ACIs), was investigated in commercial products, indoor dust and sewage sludge samples. Nine PI compounds were positively detected in ultraviolet curable resins with concentrations of ∑PIs (sum of the detected PIs) up to 2.51 × 10(4) ng/g, and 20 PIs can be found in food contact materials with concentrations of ∑PIs varying from 65.9 to 6.93 × 10(3) ng/g. The wide usage of PIs in commercial products led to the occurrence of 19 PIs in indoor dust, with concentrations of ∑PIs in the range of 245-5.68 × 10(3) ng/g. Meanwhile, all 21 targeted PIs could be identified in the sewage sludge, with concentrations from 67.6 to 2.03 × 10(3) ng/g. Distinct PI composition profiles were observed in different investigated compartments, and BZPs were the dominant homologues in all samples. Most of the target PIs were further identified as class III chemicals by toxic hazard estimation algorithm (Toxtree), which indicates the compounds might be of significant toxicity or have reactive functional groups.

  14. Detection of Solar-like Oscillations, Observational Constraints, and Stellar Models for θ Cyg, the Brightest Star Observed By the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Guzik, J. A.; Houdek, G.; Chaplin, W. J.; Smalley, B.; Kurtz, D. W.; Gilliland, R. L.; Mullally, F.; Rowe, J. F.; Bryson, S. T.; Still, M. D.; Antoci, V.; Appourchaux, T.; Basu, S.; Bedding, T. R.; Benomar, O.; Garcia, R. A.; Huber, D.; Kjeldsen, H.; Latham, D. W.; Metcalfe, T. S.; Pápics, P. I.; White, T. R.; Aerts, C.; Ballot, J.; Boyajian, T. S.; Briquet, M.; Bruntt, H.; Buchhave, L. A.; Campante, T. L.; Catanzaro, G.; Christensen-Dalsgaard, J.; Davies, G. R.; Doğan, G.; Dragomir, D.; Doyle, A. P.; Elsworth, Y.; Frasca, A.; Gaulme, P.; Gruberbauer, M.; Handberg, R.; Hekker, S.; Karoff, C.; Lehmann, H.; Mathias, P.; Mathur, S.; Miglio, A.; Molenda-Żakowicz, J.; Mosser, B.; Murphy, S. J.; Régulo, C.; Ripepi, V.; Salabert, D.; Sousa, S. G.; Stello, D.; Uytterhoeven, K.

    2016-11-01

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June-September) and subsequently in Quarters 8 and 12-17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000-2700 μHz, a large frequency separation of 83.9 ± 0.4 μHz, and maximum oscillation amplitude at frequency ν max = 1829 ± 54 μHz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T eff = 6697 ± 78 K, radius 1.49 ± 0.03 R ⊙, [Fe/H] = -0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35-1.39 M ⊙ and ages of 1.0-1.6 Gyr. θ Cyg’s T eff and log g place it cooler than the red edge of the γ Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. The pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1-3 cycles per day (11 to 33 μHz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μHz) may be attributable to a faint, possibly background, binary.

  15. Sulfate specifications as a constraint to gypsum addition to cement and possible replacement of gypsum as an additive. Phase I. Final quarterly technical progress report, December 1979-January-February 1980

    SciTech Connect

    Kantro, D.L.

    1980-04-01

    The results obtained during this quarter indicate that, based on x ray diffraction observations, rapid uptake of sulfate can be effected in low C/sub 3/A systems. This uptake is of sulfate accompanying akali and is by the aluminoferrite phase. Expansion studies indicate low expansions by low C/sub 3/A systems. Further reductions in expansion occur with the use of admixtures. The lowest expansions occur in high alkai sulfate containing systems. This result is consistent with the observation of rapid sulfate uptake in such systems. Carbonate addition results indicate that increasing carbonate content decreases rate and extent of outside sulfate attack. With respect to compressive strength, there appears to be an optimum value for carbonate addition to a high akali-high C/sub 3/A clinker. Addition of ground dolomite gives results similar to those for limestone. Use of a high-fineness limestone has a strength-enhancing effect and no adverse effect on flow.

  16. Constraints on interseismic locking along the southern Cascadia subduction zone from historic and recent leveling and sea level observations

    NASA Astrophysics Data System (ADS)

    Burgette, R. J.; Weldon, R. J.; Schmidt, D. A.; Williams, T. B.

    2012-12-01

    . We will also present our analysis of the existing NGS historical dataset on the southern edge of the subduction domain. Preliminary analysis of the major north-south and east-west leveling routes through northwestern California suggest that the Humboldt Bay area is experiencing tectonic subsidence at rates of up to 2 mm/yr. This is consistent with the rapid (~ 4 mm/yr) rate of relative sea level rise observed at the North Spit tide gauge. The northern California leveling data show a peak in uplift inland, in contrast to central and northern Cascadia, where the peak in uplift is near the coast or offshore. Interseismic subsidence of the coast in the Humboldt area is consistent with the locked zone extending east of the coastline, in contrast to what is observed in Oregon where the locked zone is offshore, and corresponds to an area of active onshore thrust faults. With a complete archive of the NGS data for this area, we will present refined estimates of vertical deformation rates tied to an absolute sea level reference at the North Spit tide gauge. These improved datasets will better resolve the distribution of locking along the Cascadia margin as we integrate the vertical observations with GPS-derived constraints of horizontal strain rates in an elastic model of interseismic subduction deformation.

  17. Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations

    NASA Astrophysics Data System (ADS)

    Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh; Kenworthy, Matthew; Meyer, Michael; Miller, Douglas

    2010-05-01

    We present the observational results of an L'- and M-band adaptive optics imaging survey of 54 nearby, Sun-like stars for extrasolar planets, carried out using the Clio camera on the MMT. We have concentrated more strongly than all other planet-imaging surveys to date on very nearby F, G, and K stars, prioritizing stellar proximity higher than youth. Ours is also the first survey to include extensive observations in the M band, which supplement the primary L' observations. Models predict much better planet/star flux ratios at the L' and M bands than at more commonly used shorter wavelengths (i.e., the H band). We have carried out extensive blind simulations with fake planets inserted into the raw data to verify our sensitivity, and to establish a definitive relationship between source significance in σ and survey completeness. We find 97% confident-detection completeness for 10σ sources, but only 46% for 7σ sources—raising concerns about the standard procedure of assuming high completeness at 5σ, and demonstrating that blind sensitivity tests to establish the significance-completeness relation are an important analysis step for all planet-imaging surveys. We discovered a previously unknown ~0.15 M sun stellar companion to the F9 star GJ 3876, at a projected separation of about 80 AU. Twelve additional candidate faint companions are detected around other stars. Of these, 11 are confirmed to be background stars and one is a previously known brown dwarf. We obtained sensitivity to planetary-mass objects around almost all of our target stars, with sensitivity to objects below 3 M Jup in the best cases. Constraints on planet populations based on this null result are presented in our Modeling Results paper. Observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution.

  18. Far-UV Eclipse Observations of Ganymede's Atmosphere with New Horizons Alice: New Constraints to the Atomic Oxygen Component

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Steffl, A. J.; Spencer, J. R.; Gladstone, R.; Roth, L.; Saur, J.; Strobel, D. F.; Stern, S. A.; Parker, J. W.; Versteeg, M. H.; Davis, M. W.; Cunningham, N. J.; McGrath, M. A.

    2014-12-01

    Ganymede's atmosphere is a surface-bounded-exosphere composed mainly of molecular oxygen. The bulk density of the O2 atmosphere is inferred from the diagnostic ratio between far-UV auroral emission line brightnesses observed with the Hubble Space Telescope (HST), but this measurement is relatively uncertain owing to a lack of information available for the energies of the electrons in Ganymede's magnetosphere that dissociatively excite the OI 130.4 nm and 135.6 nm emissions. Only a few other species such as H have been detected, and the abundance of atomic oxygen has been constrained only in relation to lower limits for the O2 density based on the line ratios. The New Horizons (NH) spacecraft observed Ganymede with the Pluto-Alice (P-Alice) instrument during the Jupiter flyby in spring of 2007. HST Advanced Camera for Surveys (ACS) far-UV images of Ganymede complement the P-Alice far-UV spectroscopy at this time. OI 130.4 nm and 135.6 nm emissions were detected in both data sets. The ACS Ganymede images are consistent with previous Space Telescope Imaging Spectrograph (STIS) imaging. P-Alice observed two Ganymede eclipse events, viewing the sunlit sub-Jupiter and nightside anti-Jupiter hemispheres, separately, from before ingress through after egress. Through comparisons of the P-Alice spectra in sunlight to those in eclipse we are able to disentangle the component of the OI 130.4 nm emission line brightness attributed to processes other than electron impact dissociation of O2, namely a combination of solar reflectance and solar resonant scattering by atomic oxygen atoms. The CII 133.5 nm solar emission feature in the sunlit hemisphere dataset also disappears in eclipse and was not detected in the nightside hemisphere spectra, as expected, providing distinct fits to the solar reflectance component. We thereby provide the first meaningful constraint on the atomic oxygen atmosphere revealed through the solar resonant scattering emission source. We briefly discuss the

  19. Detection of Solar-Like Oscillations, Observational Constraints, and Stellar Models for θ Cyg, the Brightest Star Observed by the Kepler Mission

    DOE PAGES

    Guzik, Joyce Ann; Houdek, G.; Chaplin, W. J.; ...

    2016-10-21

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June–September) and subsequently in Quarters 8 and 12–17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000–2700 μHz, a large frequency separation of 83.9 ± 0.4 μHz, and maximum oscillation amplitude at frequency νmax = 1829 ± 54 μHz. We also presentmore » analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T eff = 6697 ± 78 K, radius 1.49 ± 0.03 R ⊙, [Fe/H] = $-$0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35–1.39 M ⊙ and ages of 1.0–1.6 Gyr. θ Cyg's T eff and log g place it cooler than the red edge of the γ Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. Lastly, the pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1–3 cycles per day (11 to 33 μHz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μHz) may be attributable to a faint, possibly background, binary.« less

  20. Detection of Solar-Like Oscillations, Observational Constraints, and Stellar Models for θ Cyg, the Brightest Star Observed by the Kepler Mission

    SciTech Connect

    Guzik, Joyce Ann; Houdek, G.; Chaplin, W. J.; Smalley, B.; Kurtz, D. W.; Gilliland, R. L.; Mullally, F.; Rowe, J. F.; Bryson, S. T.; Still, M. D.; Antoci, V.; Appourchaux, T.; Basu, S.; Bedding, T.R.; Benomar, O.; Garcia, R.A.; Huber, D.; Kjeldsen, H.; Latham, D.; Metcalfe, T. S.; Papics, P. I.; White, T. R.; Aerts, C.; Ballot, J.; Boyajian, T.S.; Briquet, M.; Bruntt, H.; Buchhave, L.A.; Campante, T.L.; Catanzaro, G.; Christensen-Dalsgaard, J.; Davies, G.R.; Dogan, G.; Dragomir, D.; Doyle, A.P.; Elsworth, Y.; Frasca, A.; Gaulme, P.; Gruberbauer, M.; Handberg, R.; Hekker, S.; Karoff, C.; Lehmann, H.; Mathias, P.; Mathur, S.; Miglio, A.; Molenda-Zakowicz, J.; Mosser, B.; Murphy, S. J.; Regulo, C.; Ripepi, V.; Salabert, D.; Sousa, S.; Stello, D.; Uytterhoeven, K.

    2016-10-21

    θ Cygni is an F3 spectral type magnitude V = 4.48 main-sequence star that was the brightest star observed by the original Kepler spacecraft mission. Short-cadence (58.8 s) photometric data using a custom aperture were first obtained during Quarter 6 (2010 June–September) and subsequently in Quarters 8 and 12–17. We present analyses of solar-like oscillations based on Q6 and Q8 data, identifying angular degree l = 0, 1, and 2 modes with frequencies of 1000–2700 μHz, a large frequency separation of 83.9 ± 0.4 μHz, and maximum oscillation amplitude at frequency νmax = 1829 ± 54 μHz. We also present analyses of new ground-based spectroscopic observations, which, combined with interferometric angular diameter measurements, give T eff = 6697 ± 78 K, radius 1.49 ± 0.03 R , [Fe/H] = $-$0.02 ± 0.06 dex, and log g = 4.23 ± 0.03. We calculate stellar models matching these constraints using the Yale Rotating Evolution Code and the Asteroseismic Modeling Portal. The best-fit models have masses of 1.35–1.39 M and ages of 1.0–1.6 Gyr. θ Cyg's T eff and log g place it cooler than the red edge of the γ Doradus instability region established from pre-Kepler ground-based observations, but just at the red edge derived from pulsation modeling. Lastly, the pulsation models show γ Dor gravity modes driven by the convective blocking mechanism, with frequencies of 1–3 cycles per day (11 to 33 μHz). However, gravity modes were not seen in Kepler data; one signal at 1.776 cycles per day (20.56 μHz) may be attributable to a faint, possibly background, binary.

  1. Additional Evidence for the Accuracy of Biographical Data: Long-Term Retest and Observer Ratings.

    ERIC Educational Resources Information Center

    Shaffer, Garnett Stokes; And Others

    1986-01-01

    Investigated accuracy of responses to biodata questionnaire using a test-retest design and informed external observers for verification. Responses from 237 subjects and 200 observers provided evidence that many responses to biodata questionnaire were accurate. Assessed sources of inaccuracy, including social desirability effects, and noted…

  2. The GC-MS Observation of Intermediates in a Stepwise Grignard Addition Reaction

    ERIC Educational Resources Information Center

    Latimer, Devin

    2007-01-01

    Preparation of phenylmagnesium bromide described by Eckert, addition of three equivalents of Grignard reagent to diethyl carbonate to form triphenylmethanol and a series of GC-MS procedures that form intermediates. The analysis is consistent with a gas chromatogram and mass spectrum for each of the expected intermediates and final product of the…

  3. Analysis of R-band observations of an outburst of Comet 29P/Schwassmann-Wachmann 1 to place constraints on the nucleus' rotation state

    NASA Astrophysics Data System (ADS)

    Schambeau, Charles A.; Fernández, Yanga R.; Samarasinha, Nalin H.; Mueller, Beatrice E. A.; Woodney, Laura M.

    2017-03-01

    We present analysis of five nights of R-band observations of Comet 29P/Schwassmann-Wachmann 1 (SW1) taken on September 2008 which show the comet undergoing an outburst. Coma morphology shows a projected asymmetric shell of material expanding radially and four linear features on the northern side of the coma at position angles 37°, 78°, 300°, and 353°. Using the measured projected radial outflow velocity of 0.11 ±0.02 km/s for the shell material, we calculate an outburst time of UT 2008-09-21.03 ±0.95 days. By tracking the inner and outer extent of the northern linear features, we found that the features are fully contained within the expanding shell of material. This suggested both shell and linear features originated during the same event and activity originating from different regions on the nuclear surface are not necessary to generate both types of morphological structure observed. A 3-D Monte Carlo coma model was used to model the outburst. Morphological features present in the observations were modeled allowing constraints to be placed on the spin state of SW1's nucleus. The evolution of morphological features allows constraints on the rotation period P assuming an outburst duration Δt and the spin period constraints are expressed in terms of their ratio P/Δt. Since the spin-pole orientation could not be constrained, four spin-pole orientations were chosen for modeling the coma. Spin-period constraints for each assumed pole orientation are discussed. Overall, modeling suggested either a spin period on the order of days, a spin-pole orientation nearly along the sub-Earth direction, or a combination of both. To place an independent constraint on the outburst duration, radial surface-brightness profiles of the observations were compared with profiles from synthetic models, giving an upper-limit of Δt ≤ 1.5 days. Longer outbursts resulted in a higher number of dust grains in close proximity to the nucleus during the observations and a profile slope too

  4. Observation of additional low-degree 5-min modes of solar oscillation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.; Christensen-Dalsgaard, J.; Gough, D.

    1982-01-01

    High-order solar oscillations with degrees l=3, 4, and 5 could be detected. The observations were made by measuring the difference between the shifts in the Fe 5,124 spectrum line from light integrated from a central circular portion of the solar disk and from an annular portion exterior to it. The frequencies of the octupole modes agree well with the values obtained from whole-disk measurements at the South Pole. A least-squares fit of the observed frequencies to values interpolated between and extrapolated from the predictions of a sequence of solar models with different chemical compositions selects two models. One, a helium-rich solution, agrees with that of similar analyses of whole-disk data. The extrapolated solution has a relatively deep convection zone, and is thus consistent with analyses of 5-min oscillations of high degree.

  5. Observational Estimates of Wave Heating and Momentum Addition in the Outer Corona

    NASA Astrophysics Data System (ADS)

    Spangler, S. R.; Kortenkamp, P. S.

    2004-05-01

    Theoretical models of the outer solar corona and inner solar wind require heating and acceleration by turbulence to achieve the observed flow speed and plasma temperature at 1 astronomical unit. Observational tests of these models require knowledge of the turbulent magnetic field amplitude as a function of heliocentric distance (r), but direct measurements are not available. In this paper, we present a new method of estimating the spatial power spectrum and fluctuation amplitude of magnetic field fluctuations in the solar wind acceleration region. We utilize a set of 38 measurements of density fluctuations in the slow solar wind, for heliocentric distances in the range 5 - 60 R⊙. These data result from VLBI phase scintillation measurements made between 1991 and 2002. These observations give the density fluctuation parameter CN2(r). We also utilize a recent result on the relative magnitude of density and magnetic field fluctuations in slow solar wind turbulence at 1 a.u. (Spangler and Spitler, Physics of Plasmas, May 2004). We can then estimate the magnetic field fluctuation parameter CB2 and the magnetic field fluctuation amplitude as a function of heliocentric distance. These estimates of turbulence amplitudes are compared with those required by slow solar wind models. For illustration, the estimated turbulent energy flux at a heliocentric distance of 16 R⊙ is 6 - 23 % of the kinetic energy flux. The higher portion of this range is consistent with a significant dynamical role for turbulence. Future improvements in this technique will utilize global MHD models of the solar wind at the times of observations. This work was supported by the National Science Foundation via grants ATM99-86887 and ATM-0311825.

  6. Additional Observations of Actively Forming Lava Tubes and Associated Structures, Hawaii

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1972-01-01

    Extensive changes occurred after the initial observations (Greeley, 1971) of lava tube and channel formation associated with the eruption of Mauna Ulu. Individual vents, which apparently acted somewhat independently, merged by collapse of intervening sections to form an elongate trench. Lava erupted from the summit vent flowed down the trench to the lower end and drained through lava tubes into Alae lava lake. Alae lava lake is in turn drained occasionally by other lava tubes and lava tube networks.

  7. Additional observations and notes on the natural history of the prairie rattlesnake (Crotalus viridis) in Colorado.

    PubMed

    Fitzgerald, Kevin T; Shipley, Bryon K; Newquist, Kristin L; Vera, Rebecca; Flood, Aryn A

    2013-11-01

    On account of their unique anatomy, physiology, natural history, ecology, and behavior, rattlesnakes make ideal subjects for a variety of different scientific disciplines. The prairie rattlesnake (Crotalus viridis) in Colorado was selected for investigation of its relationship to colonies of black-tailed prairie dogs (Cynomys ludovicianus) with regard to spatial ecology. A total of 31 snakes were anesthetized and had radiotransmitters surgically implanted. In addition, at the time of their capture, all snakes underwent the following: (1) they had bacterial culture taken from their mouths for potential isolation of pathogenic bacteria; (2) similarly, they had cloacal bacterial cultures taken to assess potentially harmful bacteria passed in the feces; and (3) they had blood samples drawn to investigate the presence of any zoonotic agents in the serum of the snakes. The results of the study and their implications are discussed here. Traditionally, a low incidence of bacterial wound infection has been reported following snakebite. Nevertheless, the oral cavity of snakes has long been known to house a wide variety of bacterial flora. In our study, 10 different bacterial species were isolated from the mouths of the rattlesnakes, 6 of which are capable of being zoonotic pathogens and inducing human disease. More studies are necessary to see why more rattlesnake bites do not become infected despite the presence of such pathogenic bacteria. The results of fecal bacteria isolated revealed 13 bacterial species, 12 of which can cause disease in humans. Of the snakes whose samples were cultured, 26% were positive for the presence of the pathogen Salmonella arizonae, one of the causative agents of reptile-related salmonellosis in humans. It has long been reported that captive reptiles have a much higher incidence than wild, free-ranging species. This study shows the incidence of Salmonella in a wild, free-ranging population of rattlesnakes. In addition, Stenotrophomonas

  8. Observation of an additional electronic level of the EL2 defect

    NASA Astrophysics Data System (ADS)

    Stiévenard, D.; Delerue, C.; von Bardeleben, H. J.; Bourgoin, J. C.; Guillot, G.; Brémond, G.; Azoulay, R.

    1991-07-01

    Using deep-level transient spectroscopy (DLTS), we have studied the properties of the EL2 defect in the alloy system Ga1-xAlxAs grown by metal-organic chemical-vapor deposition, with x=0.145. We have observed the stable state of the defect, i.e., its quench under a 1.18-eV illumination and a different DLTS peak, associated with EL2. The study of the behavior of this peak versus the illumination and thermal treatment allows us to associate this peak with a different electronic level of EL2: the (-/0) level if EL2 is an isolated antisite AsGa or the (0/+) level if EL2 is associated with the (AsGa-As+i) pair.

  9. New Constraints on Dark Energy from Chandra X-rayObservations of the Largest Relaxed Galaxy Clusters

    SciTech Connect

    Allen, S.W.; Rapetti, D.A.; Schmidt, R.W.; Ebeling, H.; Morris, G.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2007-06-06

    We present constraints on the mean matter density, {Omega}{sub m}, dark energy density, {Omega}{sub DE}, and the dark energy equation of state parameter, w, using Chandra measurements of the X-ray gas mass fraction (fgas) in 42 hot (kT > 5keV), X-ray luminous, dynamically relaxed galaxy clusters spanning the redshift range 0.05 < z < 1.1. Using only the fgas data for the 6 lowest redshift clusters at z < 0.15, for which dark energy has a negligible effect on the measurements, we measure {Omega}{sub m}=0.28{+-}0.06 (68% confidence, using standard priors on the Hubble Constant, H{sub 0}, and mean baryon density, {Omega}{sub b}h{sup 2}). Analyzing the data for all 42 clusters, employing only weak priors on H{sub 0} and {Omega}{sub b}h{sup 2}, we obtain a similar result on {Omega}{sub m} and detect the effects of dark energy on the distances to the clusters at {approx}99.99% confidence, with {Omega}{sub DE}=0.86{+-}0.21 for a non-flat LCDM model. The detection of dark energy is comparable in significance to recent SNIa studies and represents strong, independent evidence for cosmic acceleration. Systematic scatter remains undetected in the f{sub gas} data, despite a weighted mean statistical scatter in the distance measurements of only {approx}5%. For a flat cosmology with constant w, we measure {Omega}{sub m}=0.28{+-}0.06 and w=-1.14{+-}0.31. Combining the fgas data with independent constraints from CMB and SNIa studies removes the need for priors on {Omega}{sub b}h{sup 2} and H{sub 0} and leads to tighter constraints: {Omega}{sub m}=0.253{+-}0.021 and w=-0.98{+-}0.07 for the same constant-w model. More general analyses in which we relax the assumption of flatness and/or allow evolution in w remain consistent with the cosmological constant paradigm. Our analysis includes conservative allowances for systematic uncertainties. The small systematic scatter and tight constraints bode well for future dark energy studies using the f{sub gas} method.

  10. Observational Constraints on Terpene Oxidation with and without Anthropogenic Influence in the Amazon using Speciated Measurements from SV-TAG

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Kreisberg, N. M.; Liu, Y.; McKinney, K. A.; de Sá, S. S.; Martin, S. T.; Alexander, M. L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Viegas, J.; Springston, S. R.; Wurm, F.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Machado, L.; Longo, K.; Oliveira, M. B.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) from the Amazon forest represent the largest regional source of organic carbon emissions to the atmosphere. These BVOC emissions dominantly consist of volatile and semi-volatile terpenoid compounds that undergo chemical transformations in the atmosphere to form oxygenated condensable gases and secondary organic aerosol (SOA). However, the oxidation pathways of these compounds are still not well understood, and are expected to differ significantly between "pristine" conditions, as is common in Amazonia, and polluted conditions caused by emissions from growing cities. Our focus is to elucidate how anthropogenic emissions influence BVOC chemistry and BSOA formation through speciated measurements of their oxidation products. We have deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) at the rural T3 site located west of the urban center of Manaus, Brazil as part of the Green Ocean Amazon (GoAmazon) 2014 field campaign to measure hourly concentrations of semi-volatile BVOCs and their oxidation products during the wet and dry seasons. Primary BVOC concentrations measured by the SV-TAG include sesquiterpenes and diterpenes, which have rarely been speciated with high time-resolution. We observe sesquiterpenes to be anti-correlated with ozone, indicative of sesquiterpene oxidation playing a major role in the regional oxidant budget. The role of sesquiterpenes in atmospheric SOA formation are of interest due to their high aerosol yields and high reactivity with ozone, relative to more commonly measured BVOCs (e.g. monoterpenes). We explore relative concentrations of sesquiterpenes and monoterpenes and their roles as precursors to SOA formation by combining SV-TAG measurements with those from an additional suite of VOC and particle measurements deployed in the Amazon. We also report the first ever hourly observations of the gas-particle partitioning of speciated terpene oxidation products in the Amazon

  11. Observational constraints on glyoxal production from isoprene oxidation and its contribution to organic aerosol over the Southeast United States

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Mao, Jingqiu; Min, Kyung-Eun; Washenfelder, Rebecca A.; Brown, Steven S.; Kaiser, Jennifer; Keutsch, Frank N.; Volkamer, Rainer; Wolfe, Glenn M.; Hanisco, Thomas F.; Pollack, Ilana B.; Ryerson, Thomas B.; Graus, Martin; Gilman, Jessica B.; Lerner, Brian M.; Warneke, Carsten; Gouw, Joost A.; Middlebrook, Ann M.; Liao, Jin; Welti, André; Henderson, Barron H.; McNeill, V. Faye; Hall, Samuel R.; Ullmann, Kirk; Donner, Leo J.; Paulot, Fabien; Horowitz, Larry W.

    2016-08-01

    We use a 0-D photochemical box model and a 3-D global chemistry-climate model, combined with observations from the NOAA Southeast Nexus (SENEX) aircraft campaign, to understand the sources and sinks of glyoxal over the Southeast United States. Box model simulations suggest a large difference in glyoxal production among three isoprene oxidation mechanisms (AM3ST, AM3B, and Master Chemical Mechanism (MCM) v3.3.1). These mechanisms are then implemented into a 3-D global chemistry-climate model. Comparison with field observations shows that the average vertical profile of glyoxal is best reproduced by AM3ST with an effective reactive uptake coefficient γglyx of 2 × 10-3 and AM3B without heterogeneous loss of glyoxal. The two mechanisms lead to 0-0.8 µg m-3 secondary organic aerosol (SOA) from glyoxal in the boundary layer of the Southeast U.S. in summer. We consider this to be the lower limit for the contribution of glyoxal to SOA, as other sources of glyoxal other than isoprene are not included in our model. In addition, we find that AM3B shows better agreement on both formaldehyde and the correlation between glyoxal and formaldehyde (RGF = [GLYX]/[HCHO]), resulting from the suppression of δ-isoprene peroxy radicals. We also find that MCM v3.3.1 may underestimate glyoxal production from isoprene oxidation, in part due to an underestimated yield from the reaction of isoprene epoxydiol (IEPOX) peroxy radicals with HO2. Our work highlights that the gas-phase production of glyoxal represents a large uncertainty in quantifying its contribution to SOA.

  12. The Issue of Stochastic Constraints Used for Zwd Estimation from GPS Observations: The Case of Tropical Regions

    NASA Astrophysics Data System (ADS)

    Nahmani, S.; Bock, O.

    2014-12-01

    A better understanding of tropical weather processes is necessary to improve numerical weather models, which are not fully satisfactory in tropical regions. Water vapor plays a key role in humid atmospheric processes and precipitable water vapor (PWV) is a widely employed quantity to study these processes and compute water budgets. PWV can be retrieved with an accuracy of about 1-2 kg.m-2from the zenithal wet delays (ZWD) estimated during GPS data processing. In that perspective, six permanent GPS stations were deployed in West Africa within the framework of the African Monsoon Multidisciplinary Analysis (AMMA) project. The current quality level of PWV could be reached thanks to successive improvements of the mapping functions used (NMF → GMF → VMF1) and of the a priori ZHD retrieved from meteorological models. However, standard GPS data processing does still not optimally take into account the climatic variability across stations and time: the stochastic constraints used for ZWD estimation are generally the same regardless of the station and of its local weather. This non-optimal modelling of GPS data affects the accuracy of GPS-derived PWV and is therefore one limiting factor for weather and climate studies. The purpose of this study is to quantify the influence of the stochastic constraints in the tropospheric model on ZWD and PWV estimates for tropical GPS stations. Possible improvements are suggested.

  13. Constraints on scattering amplitudes in multistate Landau-Zener theory

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-01

    We derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  14. Constraints on scattering amplitudes in multistate Landau-Zener theory

    DOE PAGES

    Sinitsyn, Nikolai A.; Lin, Jeffmin; Chernyak, Vladimir Y.

    2017-01-30

    Here, we derive a set of constraints, which we will call hierarchy constraints, on scattering amplitudes of an arbitrary multistate Landau-Zener model (MLZM). The presence of additional symmetries can transform such constraints into nontrivial relations between elements of the transition probability matrix. This observation can be used to derive complete solutions of some MLZMs or, for models that cannot be solved completely, to reduce the number of independent elements of the transition probability matrix.

  15. Observational Constraints on Atmospheric and Oceanic Cross-Equatorial Heat Transports: Revisiting the Precipitation Asymmetry Problem in Climate Models

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wang, H.; Cheng, A.; Kato, S.; Fasullo, J.; Xu, K. M.; Allan, R. P.

    2015-12-01

    Recent studies have shown strong linkages between hemispheric asymmetries in atmospheric and oceanic energy budgets, tropical precipitation and the mean position of the Intertropical Convergence Zone (ITCZ). The energetics framework has been used to explain why the mean position of the ITCZ is in the Northern Hemisphere and to study large-scale circulation and precipitation responses to changes in the hemispheric distribution of heating. Here, we expand upon these earlier studies by also considering estimates of hemispheric asymmetry in surface and atmospheric radiation budget derived from satellite observations, which enables a decomposition of cross-equatorial heat transport in terms of radiative and non-radiative (i.e., combined latent and sensible heat) components. Satellite observations of top-of-atmosphere (TOA) and surface radiation budget from the Clouds and the Earth's Radiation Budget (CERES) are combined with mass corrected vertically integrated atmospheric energy divergence from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Observed radiative and combined sensible and latent heat contributions to atmospheric and oceanic cross-equatorial heat transports are compared with simulations from 30 models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show that most CMIP5 models that overestimate tropical precipitation in the SH have too much net downward surface radiation and combined latent and sensible heat flux in the SH relative to the NH. In addition, many of the models also underestimate atmospheric radiative cooling in the SH compared to the NH. Consequently, the models have excessive heating of the SH atmosphere and anomalous SH to NH cross-equatorial heat transport. The anomalous northward heat transport occurs via the upper branch of the northern Hadley Cell, while anomalous NH to SH moisture transport occurs in the lower branch of the northern

  16. Constraints on energy release in solar flares from RHESSI and GOES X-ray observations. I. Physical parameters and scalings

    NASA Astrophysics Data System (ADS)

    Warmuth, A.; Mann, G.

    2016-04-01

    component (≈10-25 MK) that is generated by chromospheric evaporation caused by a nonthermal electron beam. In addition, a hotter component (≥25 MK) is only detected by RHESSI; this component is more consistent with direct in situ heating of coronal plasma. With the exception of the early impulsive phase, RHESSI observes a combination of the evaporated and the directly heated component.

  17. Assessment of the improvements in accuracy of aerosol characterization resulted from additions of polarimetric measurements to intensity-only observations using GRASP algorithm (Invited)

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Litvinov, P.; Lapyonok, T.; Herman, M.; Fedorenko, A.; Lopatin, A.; Goloub, P.; Ducos, F.; Aspetsberger, M.; Planer, W.; Federspiel, C.

    2013-12-01

    During last few years we were developing GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm designed for the enhanced characterization of aerosol properties from spectral, multi-angular polarimetric remote sensing observations. The concept of GRASP essentially relies on the accumulated positive research heritage from previous remote sensing aerosol retrieval developments, in particular those from the AERONET and POLDER retrieval activities. The details of the algorithm are described by Dubovik et al. (Atmos. Meas. Tech., 4, 975-1018, 2011). The GRASP retrieves properties of both aerosol and land surface reflectance in cloud-free environments. It is based on highly advanced statistically optimized fitting and deduces nearly 50 unknowns for each observed site. The algorithm derives a similar set of aerosol parameters as AERONET including detailed particle size distribution, the spectrally dependent the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm uses the new multi-pixel retrieval concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle is expected to result in higher consistency and accuracy of aerosol products compare to conventional approaches especially over bright surfaces where information content of satellite observations in respect to aerosol properties is limited. The GRASP is a highly versatile algorithm that allows input from both satellite and ground-based measurements. It also has essential flexibility in measurement processing. For example, if observation data set includes spectral

  18. In Situ Observation of Thiol Michael Addition to a Reversible Covalent Drug in a Crystalline Sponge.

    PubMed

    Duplan, Vincent; Hoshino, Manabu; Li, Wei; Honda, Tadashi; Fujita, Makoto

    2016-04-11

    A reversible Michael addition reaction between thiol nucleophiles and cyanoenones has been previously postulated to be the mechanism-of-action of a new family of reversible covalent drugs. However, the hypothetical Michael adducts in this mechanism have only been detected by spectroscopic methods in solution. Herein, the crystallographic observation of reversible Michael addition with a potent cyanoenone drug candidate by means of the crystalline-sponge method is reported. After inclusion of the cyanoenone substrate, the sponge crystal was treated with a thiol solution. Subsequent crystallographic analysis confirmed the single-crystal-to-single-crystal transformation of the substrate into the impermanent Michael adduct.

  19. Constraints from Airborne (210)Pb Observations on Aerosol Scavenging and Lifetime in a Global Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Zhang, Bo; Liu, Hongyu; Crawford, James H.; Fairlie, Duncan T.; Chen, Gao; Dibb, Jack E.; Shah, Viral; Sulprizio, Melissa P.; Yantosca, Robert M.

    2016-01-01

    Lead-210 distribution and lifetime in the atmosphere are not sensitive to ice in-cloud scavenging in convective updraft. Ice in-cloud scavenging in stratiform clouds reduce tropospheric (210)Pb lifetime by approximately 1 day and results in better agreements with observed surface observations and aircraft measured profiles. However, the process results in significant underestimate of (210)Pb in UT/LS.

  20. Family Income, Parent Education, and Perceived Constraints as Predictors of Observed Program Quality and Parent Rated Program Quality

    ERIC Educational Resources Information Center

    Torquati, Julia C.; Raikes, Helen H.; Huddleston-Casas, Catherine A.; Bovaird, James A.; Harris, Beatrice A.

    2011-01-01

    Observed child care quality and parent perceptions of child care quality received by children in poor (below Federal Poverty Line, FPL), low-income (between FPL and 200% of FPL), and non-low-income families were examined. Observations were completed in 359 center- and home-based child care programs in four Midwestern states and surveys were…

  1. Cosmological constraints from the observed angular cross-power spectrum between Sunyaev-Zel'dovich and X-ray surveys

    NASA Astrophysics Data System (ADS)

    Hurier, G.; Douspis, M.; Aghanim, N.; Pointecouteau, E.; Diego, J. M.; Macias-Perez, J. F.

    2015-04-01

    We present the first detection of the cross-correlation angular power spectrum between the thermal Sunyaev-Zel'dovich (tSZ) effect and the X-ray emission over the full sky. The tSZ effect and X-rays are produced by the same hot gas within groups and clusters of galaxies, which creates a naturally strong correlation between them that can be used to boost the joint signal and derive cosmological parameters. We computed the correlation between the ROSAT All Sky Survey in the 0.5-2 keV energy band and the tSZ effect reconstructed from six Planck all-sky frequency maps between 70 and 545 GHz. We detect a significant correlation over a wide range of angular scales. In the range 50 <ℓ< 2000, the cross-correlation of X-rays to tSZ is detected at an overall significance of 28σ. As part of our systematic study, we performed a multi-frequency modelling of the AGN contamination and the correlation between cosmic infra-red background and X-rays. Taking advantage of the strong dependence of the cross-correlation signal on the amplitude of the power spectrum, we constrained σ8 = 0.804 ± 0.037, where modelling uncertainties dominate statistical and systematic uncertainties. We also derived constraints on the mass indices of scaling relations between the halo mass and X-ray luminosity, L500 - M500, and SZ signal, Y500 - M500, asz + ax = 3.37 ± 0.09, and on the indices of the extra-redshift evolution, βsz + βx = 0.4+0.4_{-0.5}.

  2. Lunar Pickup Ions Observed by ARTEMIS: Spatial and Temporal Distribution and Constraints on Species and Source Locations

    NASA Technical Reports Server (NTRS)

    Halekas, Jasper S.; Poppe, A. R.; Delory, G. T.; Sarantos, M.; Farrell, W. M.; Angelopoulos, V.; McFadden, J. P.

    2012-01-01

    ARTEMIS observes pickup ions around the Moon, at distances of up to 20,000 km from the surface. The observed ions form a plume with a narrow spatial and angular extent, generally seen in a single energy/angle bin of the ESA instrument. Though ARTEMIS has no mass resolution capability, we can utilize the analytically describable characteristics of pickup ion trajectories to constrain the possible ion masses that can reach the spacecraft at the observation location in the correct energy/angle bin. We find that most of the observations are consistent with a mass range of approx. 20-45 amu, with a smaller fraction consistent with higher masses, and very few consistent with masses below 15 amu. With the assumption that the highest fluxes of pickup ions come from near the surface, the observations favor mass ranges of approx. 20-24 and approx. 36-40 amu. Although many of the observations have properties consistent with a surface or near-surface release of ions, some do not, suggesting that at least some of the observed ions have an exospheric source. Of all the proposed sources for ions and neutrals about the Moon, the pickup ion flux measured by ARTEMIS correlates best with the solar wind proton flux, indicating that sputtering plays a key role in either directly producing ions from the surface, or producing neutrals that subsequently become ionized.

  3. Observational constraints on the formation and evolution of the Milky Way nuclear star cluster with Keck and Gemini

    NASA Astrophysics Data System (ADS)

    Do, Tuan; Ghez, Andrea; Morris, Mark; Lu, Jessica; Chappell, Samantha; Feldmeier-Krause, Anja; Kerzendorf, Wolfgang; Martinez, Gregory David; Murray, Norm; Winsor, Nathan

    2017-01-01

    We summarize work on the central parsec of the Galactic center based on imaging and spectroscopic observations at the Keck and Gemini telescopes. These observations include stellar positions in two dimension and the velocity in three dimensions. Spectroscopic observations also enables measurements of the physical properties of individual stars, such as the spectral type and in some cases the effective temperature, metallicity, and surface gravity. These observations show a complex stellar population with a young (4-6 Myr) compact star cluster in the central 0.5 pc embedded in in an older and much more massive nuclear star cluster. Surprisingly, the old late-type giants do not show a cusp profile as long been expected from theoretical work. The majority of the stars have higher than solar metallicity, with only about 6% of the stars having [M/Fe] < -0.5, which is consistent with an origin from the MW disk.

  4. Paraná-Etendeka lithosphere modeling according to GOCE observations and geophysical constraints: improvement of PERLA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizia; Braitenberg, Carla

    2015-04-01

    mineral samples. Also the age of the mantle is included, according to the standard petrological classification of mantle with the percentages of four lead minerals: Olivine, Orthopyroxene, Clinopyroxene and Garnet. Studying the GOCE gravimetric data with the integration of geophysical and also petrological constraints is useful to investigate the lithosphere and to improve the geodynamics of complex geologic areas like LIPs.

  5. One component metal sintering additive for {beta}-SiC based on thermodynamic calculation and experimental observations

    SciTech Connect

    Noviyanto, Alfian; Yoon, Dang-Hyok

    2011-08-15

    Graphical abstract: . Standard Gibbs formation free energies vs. temperature for various metal carbides. The heavy line represents the standard Gibbs free energy for {beta}-SiC. The hatched area denotes the typical liquid phase hot pressing temperature of {beta}-SiC (1973-2123 K). Highlights: {yields} Various metal elements were examined as a sintering additive for {beta}-SiC. {yields} Al and Mg enhanced the density significantly without decomposing {beta}-SiC, as predicted by thermodynamic simulation. {yields} Cr, Fe, Ta, Ti, V and W additives formed metal carbide and/or silicide compounds by decomposing {beta}-SiC. {yields} This approach would be useful for selecting effective sintering additive for high temperature ceramics. -- Abstract: Various types of metals were examined as sintering additives for {beta}-SiC by considering the standard Gibbs formation free energy and vapor pressure under hot pressing conditions (1973-2123 K), particularly for applications in nuclear reactors. Metallic elements having the low long-term activation under neutron irradiation condition, such as Cr, Fe, Ta, Ti, V and W, as well as widely used elements, Al, Mg and B, were considered. The conclusions drawn from thermodynamic considerations were compared with the experimental observations. Al and Mg were found to be effective sintering additives, whereas the others were not due to the formation of metal carbides or silicides from the decomposition of SiC under hot pressing conditions.

  6. Redshift evolution of stellar mass versus gas fraction relation in 0 < z < 2 regime: observational constraint for galaxy formation models

    NASA Astrophysics Data System (ADS)

    Morokuma-Matsui, Kana; Baba, Junichi

    2015-12-01

    We investigate the redshift evolution of molecular gas mass fraction (f_mol = M_mol/M_star +M_mol, where Mmol is molecular gas mass and M⋆ is stellar mass) of galaxies in the redshift range of 0 < z < 2 as a function of the stellar mass by combining carbon monoxide (CO) literature data. We observe a stellar-mass dependence of the fmol evolution where massive galaxies have largely depleted their molecular gas at z = 1, whereas the fmol value of less massive galaxies drastically decreases from z = 1. We compare the observed M⋆ - fmol relation with theoretical predictions from cosmological hydrodynamic simulations and semi-analytical models for galaxy formation. Although the theoretical studies approximately reproduce the observed mass dependence of the fmol evolution, they tend to underestimate the fmol values, particularly of less massive (<1010 M⊙) and massive galaxies (>1011 M⊙) when compared with the observational values. Our result suggests the importance of the feedback models which suppress the star formation while simultaneously preserving the molecular gas in order to reproduce the observed M⋆ - fmol relation.

  7. Miocene to recent ice elevation variations from the interior of the West Antarctic ice sheet: Constraints from geologic observations, cosmogenic nuclides and ice sheet modeling

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sujoy; Ackert, Robert P.; Pope, Allen E.; Pollard, David; DeConto, Robert M.

    2012-07-01

    Observations of long-term West Antarctic Ice Sheet (WAIS) behavior can be used to test and constrain dynamic ice sheet models. Long-term observational constraints are however, rare. Here we present the first constraints on long-term (Miocene-Holocene) WAIS elevation from the interior of the ice sheet near the WAIS divide. We use geologic observations and measurements of cosmogenic 21Ne and 10Be in bedrock surfaces to constrain WAIS elevation variations to <160 m above the present-day ice levels since 7 Ma, and <110 m above present-day ice levels since 5.4 Ma. The cosmogenic nuclide data indicate that bedrock surfaces 35 m above the present-day ice levels had near continuous exposure over the past 3.5 Ma, requiring average interior WAIS elevations to have been similar to, or lower than present, since the beginning of the Pliocene warm period. We use a continental ice sheet model to simulate the history of ice cover at our sampling sites and thereby compute the expected concentration of the cosmogenic nuclides. The ice sheet model indicates that during the past 5 Ma interior WAIS elevations of >65 m above present-day ice levels at the Ohio Range occur only rarely during brief ice sheet highstands, consistent with the observed cosmogenic nuclide data. Furthermore, the model's prediction that highstand elevations have increased on average since the Pliocene is in good agreement with the cosmogenic nuclide data that indicate the highest ice elevation over the past 5 Ma was reached during the highstand at 11 ka. Since the simulated cosmogenic nuclide concentrations derived from the model's ice elevation history are in good agreement with our measurements, we suggest that the model's prediction of more frequent collapsed-WAIS states and smaller WAIS volumes during the Pliocene are also correct.

  8. Controlling factors of rainwater and water vapor isotopes at Bangalore, India: Constraints from observations in 2013 Indian monsoon

    NASA Astrophysics Data System (ADS)

    Rahul, P.; Ghosh, Prosenjit; Bhattacharya, S. K.; Yoshimura, Kei

    2016-12-01

    Isotopic ratios of rainwaters are believed to decrease with the amount of rainfall. However, analyses of the isotopic composition of rainwater and water vapor samples collected from Bangalore during the monsoon period of 2013 fail to show any simple relationship with the local meteorological parameters whereas show good correlation with the regional integrated convective activity. The correlation is particularly high when the averaging is done over the preceding 8 to 15 days, showing the influence of mixing or residence time scale of atmospheric moisture. This observation emphasizes the role of regional atmospheric circulation driving the isotopic values. A comparison between observed isotope ratios in water vapor and rainwater with Isotope-enabled Global Spectral Model shows discrepancies between the two. The observed values are relatively enriched, indicating a systematic bias in the model values. The higher observed values suggest underestimation of the evaporation in the model, which we estimate to be about 28 ± 15% on average. Simultaneous analyses of rainwater and water vapor isotopic composition again show definitive presence of raindrop evaporation (31 ± 14%). We also documented a distinct pattern of isotopic variation in six samples collected at Bangalore due to mixing of vapor from a cyclonic system in close proximity that originated from the Bay of Bengal. It seems that large-scale isotopic depletion occurs during cyclones caused by Rayleigh fractionation due to massive rainout. These results demonstrate the power of rainwater and water vapor isotope monitoring to elucidate the genesis and dynamics of water recycling within synoptic-scale monsoon systems.

  9. Constraints on the upper crustal magma reservoir beneath Yellowstone Caldera inferred from lake-seiche induced strain observations

    USGS Publications Warehouse

    Luttrell, Karen; Mencin, David; Francis, Oliver; Hurwitz, Shaul

    2013-01-01

    Seiche waves in Yellowstone Lake with a ~78-minute period and heights 11 Pa s. These strain observations and models provide independent evidence for the presence of partially molten material in the upper crust, consistent with seismic tomography studies that inferred 10%–30% melt fraction in the upper crust.

  10. An additional layer in the low-latitude ionosphere in Indian longitudes: Total electron content observations and modeling

    NASA Astrophysics Data System (ADS)

    Thampi, Smitha V.; Balan, N.; Ravindran, Sudha; Pant, Tarun Kumar; Devasia, C. V.; Sreelatha, P.; Sridharan, R.; Bailey, G. J.

    2007-06-01

    The paper presents the observations and modeling of an additional layer in the low-latitude ionosphere in Indian longitudes. The signatures of the additional layer are observed as ledges or humps between the equatorial ionization anomaly trough and crest (EIA) in the latitudinal profiles of total electron content (TEC), measured using a single ground-based beacon receiver located at Trivandrum (8.5°N, 77°E, dip 0.5°N) in India. The ground-based ionograms also show the presence of the so-called F3 layer for a short duration corresponding to these signatures, and the layer is found to drift upward to the topside ionosphere. The study provides first observational evidence that the so-called "humps" in the latitudinal variation of TEC are nothing but the upward propagating F3 layer. This conclusion is supported by theoretical modeling using the Sheffield University Plasmasphere Ionosphere Model. It is shown that upward ExB drift and strong equatorward neutral wind (perturbed by atmospheric waves) can produce the humps in the latitudinal variation of TEC through the reduction in the downward diffusion of ionization along geomagnetic field lines. The model results also show that the F3 layer drifts to the topside and forms topside ledges.

  11. Robust constraint on a drifting proton-to-electron mass ratio at z=0.89 from methanol observation at three radio telescopes.

    PubMed

    Bagdonaite, J; Daprà, M; Jansen, P; Bethlem, H L; Ubachs, W; Muller, S; Henkel, C; Menten, K M

    2013-12-06

    A limit on a possible cosmological variation of the proton-to-electron mass ratio μ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(μ) are used to derive a purely statistical 1σ constraint of Δμ/μ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δμ/μ=(-1.0±0.8(stat)±1.0(sys))×10(-7).

  12. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.

    2015-05-01

    Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains

  13. Observational constraint of drizzle properties and processes in large-eddy simulations from two models with size-resolved microphysics

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Remillard, J.; Ackerman, A. S.; Mechem, D. B.; Kollias, P.; Luke, E. P.; Chuang, P. Y.; Witte, M.; Wood, R.

    2015-12-01

    From the CAP-MBL long-term measurement campaign over the Azores, two low-cloud periods are selected via analysis of ISCCP cloud property matrices. Each is a persistent instance of a low-cloud weather state that the GISS climate model severely underpredicts both over the Azores and globally. Meteorologically, one period is characterized by shallow cumulus clouds in a cold-air outbreak behind a cold front, and the other by overcast stratocumulus clouds in a region dominated by a high-pressure system. Observations and MERRA reanalysis are used to derive specifications used for large-eddy simulations (LES) of each period. For both periods, 6-hour and longer simulations with periodic boundary conditions and uniform large-scale forcings over 10 to 100-km domains capture the structural differences between the two low-cloud periods, only modestly influenced by domain size. Simulations of both periods underestimate sub-mesoscale variability, but represent distributions of cloud top, cloud base, and drizzle extents reasonably well in comparison with observations. Simulated mean Doppler velocities as a function of reflectivity also reproduce observed relationships reasonably well; the most notable deviation is lesser-than-observed Doppler velocity where reflectivity exceeds about -10 dBZ, which occurs only in the cumulus case. However, the range of simulated spectral skewness is substantially underestimated in both cases. To help identify likely causes, the overcast stratocumulus case is also simulated with an independent LES code with size-resolved microphysics, which exhibits some similar biases. Although unavailable from CAP-MBL, in situ measurements of drizzle size distribution from two other campaigns are used to gain insight into the biases. Finally, the significance of Doppler moment biases is evaluated in part by deriving autoconversion and accretion parameterization expressions from simulations with varying collision-coalescence kernel assumptions.

  14. Thermal infrared spectroscopic observations of Mars from the Kuiper Airborne Observatory (KAO): Constraints on past climates and weathering products

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Pollack, James B.; Witteborn, Fred C.; Bregman, Jesse D.; Bell, James F., III; Sitton, Bradley

    1995-01-01

    Spectral observations providing evidence for the presence of volatile-bearing minerals on the surface of Mars were obtained in 1988 and 1990 from the KAO. The 1988 data suggest the presence of 1-3 weight percent (wt%) of carbonate/bicarbonate and 10-15 wt% sulfate/bisulfate associated with martian atmospheric dust. Estimates of the optical depths are approximately 0.60 and approximately 0.35 in 1988 and 1990, respectively.

  15. Geophysical observations of Kilauea Volcano, Hawaii, 2. Constraints on the magma supply during November 1975-September 1977

    USGS Publications Warehouse

    Dzurisin, D.; Anderson, L.A.; Eaton, G.P.; Koyanagi, R.Y.; Lipman, P.W.; Lockwood, J.P.; Okamura, R.T.; Puniwai, G.S.; Sako, M.K.; Yamashita, K.M.

    1980-01-01

    Following a 22-month hiatus in eruptive activity, Kilauea volcano extruded roughly 35 ?? 106 m3 of tholeiitic basalt from vents along its middle east rift zone during 13 September-1 October, 1977. The lengthy prelude to this eruption began with a magnitude 7.2 earthquake on 29 November, 1975, and included rapid summit deflation episodes in June, July, and August 1976 and February 1977. Synthesis of seismic, geodetic, gravimetric, and electrical self-potential observations suggests the following model for this atypical Kilauea eruptive cycle. Rapid summit deflation initiated by the November 1975 earthquake reflected substantial migration of magma from beneath the summit region of Kilauea into the east and southwest rift zones. Simultaneous leveling and microgravity observations suggest that 40-90 ?? 106 m3 of void space was created within the summit magma chamber as a result of the earthquake. If this volume was filled by magma from depth before the east rift zone intrusive event of June 1976, the average rate of supply was 6-13 ?? 106 m3/month, a rate that is consistent with the value of 9 ?? 106 m3/month suggested from observations of long-duration Kilauea eruptions. Essentially zero net vertical change was recorded at the summit during the 15-month period beginning with the June 1976 intrusion and ending with the September 1977 eruption. This fact suggests that most magma supplied from depth during this interval was eventually delivered to the east rift zone, at least in part during four rapid summit deflation episodes. Microearthquake epicenters migrated downrift to the middle east rift zone for the first time during the later stages of the February 1977 intrusion, an occurrence presumably reflecting movement of magma into the eventual eruptive zone. This observation was confirmed by tilt surveys in May 1977 that revealed a major inflation center roughly 30 km east of the summit in an area of anomalous steaming and forest kill first noted in March 1976. ?? 1980.

  16. Observational constraints on non-Lorentzian continuum effects in the near-infrared solar spectrum using ARM ARESE data.

    NASA Astrophysics Data System (ADS)

    Vogelmann, A. M.; Ramanathan, V.; Conant, W. C.; Hunter, W. E.

    1998-08-01

    Uncertainties exist in the magnitude of the water vapor continuum at solar wavelengths and many models do not include a solar continuum. The authors assess whether the neglect of the continuum in some models could explain a significant amount of the excess solar absorption found by several studies, in which the observed atmospheric solar absorption is significantly greater than that modelled. Towards this goal, the authors constrain the magnitude of the near-infrared water vapor continuum absorption using observations from the Atmospheric Radiation Measurement (ARM) Enhanced Short-wave Experiment (ARESE). Narrow-band irradiances measured by two independent Multifilter Rotating Shadowband Radiometers (MFRSRs) are used to infer the clear-sky transmission by water vapor in the 0.94 μm band. Over 16000 such observations are compared to non-continuum (i.e. a pure Lorentzian model) and continuum calculations using a correlated-k distribution model, which shows excellent agreement with a line-by-line model and uses coincident measurements of the pressure, temperature and water vapor profiles. Continuum calculations use the CKD super-Lorentzian formulation. The data suggest the need for a far wing continuum in the 0.94 μm band with an absorption that falls between that computed for pure Lorentzian lines and the CKD continuum.

  17. Constraints from the CMB temperature and other common observational data sets on variable dark energy density models

    NASA Astrophysics Data System (ADS)

    Jetzer, Philippe; Tortora, Crescenzo

    2011-08-01

    The thermodynamic and dynamical properties of a variable dark energy model with density scaling as ρx∝(1+z)m, z being the redshift, are discussed following the outline of Jetzer et al. [P. Jetzer, D. Puy, M. Signore, and C. Tortora, Gen. Relativ. Gravit. 43, 1083 (2011).GRGVA80001-770110.1007/s10714-010-1091-4]. These kinds of models are proven to lead to the creation/disruption of matter and radiation, which affect the cosmic evolution of both matter and radiation components in the Universe. In particular, we have concentrated on the temperature-redshift relation of radiation, which has been constrained using a very recent collection of cosmic microwave background (CMB) temperature measurements up to z˜3. For the first time, we have combined this observational probe with a set of independent measurements (Supernovae Ia distance moduli, CMB anisotropy, large-scale structure and observational data for the Hubble parameter), which are commonly adopted to constrain dark energy models. We find that, within the uncertainties, the model is indistinguishable from a cosmological constant which does not exchange any particles with other components. Anyway, while temperature measurements and Supernovae Ia tend to predict slightly decaying models, the contrary happens if CMB data are included. Future observations, in particular, measurements of CMB temperature at large redshift, will allow to give firmer bounds on the effective equation of state parameter weff of this kind of dark energy model.

  18. Limb Observations of Solar Scattered Light by the Imaging Ultraviolet Spectrograph on MAVEN: New Constraints on Martian Mesospheric Cloud Variability

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Siskind, David E.; Evans, Scott; Schneider, Nicholas M.; Stewart, A. Ian F.; Deighan, Justin; Jain, Sonal Kumar; Crismani, Matteo; Stiepen, Arnaud; Chaffin, Michael S.; McClintock, William; Holsclaw, Gregory; Lefevre, Franck; Montmessin, Franck; Lo, Daniel; Clarke, John T.; Jakosky, Bruce

    2016-10-01

    The Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission observed the Martian upper atmosphere in late 2015 (Ls ~ 70) and early 2016 (Ls ~ 150). Although designed to measure the dayglow between 90-200 km IUVS also scans the limb down to 60 km, where solar scattered light dominates the mid-ultraviolet (MUV) signal. Occasionally, this MUV light shows enhanced scattering between 60-90 km indicating the presence of aerosols in the mesosphere. We quantify the solar scattering for each daylight scan obtained between October and December, 2015 and between April and June, 2016. We then identify over 100 scans of enhanced scattering between 60-90 km and assemble them both geographically and diurnally. The geographical distribution of the enhancements in 2015 is preferentially located near the equator, consistent with previous observations of mesospheric clouds for this part of the season. A wave three pattern in equatorial cloud occurrence suggests forcing from a non-migrating tide, possibly linked to the longitudinal variation of Mars surface topography. At the same time, there are indications of a diurnal variation such that the clouds seen in 2015 and 2016 are preferentially observed in the early morning, between 0600-0900 local solar time. This suggests an important role for a migrating temperature tide controlling the formation of Martian mesospheric clouds.

  19. Constraints on the nucleus of comet C/2012 S1 (ISON) from the Hubble Space Telescope observations

    NASA Astrophysics Data System (ADS)

    Lamy, P.; Toth, I.; Li, J.; Weaver, H.

    2014-07-01

    Comet C/2012 S1 (ISON) was both a dynamically new comet, visiting the inner solar system for the first time since being scattered and deeply frozen in the Oort Cloud, and a sungrazing comet. This unique combination made it an attractive target for the Hubble Space Telescope. It was observed on 10 April 2013 when the comet was 4.15 au from the Sun, 4.24 au from the Earth, and at a phase angle of 13.7°, henceforth well before C/ISON crossed the ''snow line'' (2.5--3 au), avoiding strong activity driven by water-ice sublimation and, thus, potentially increasing the chance of detecting its nucleus. The observations were performed over three separate orbits spanning a time interval of 18 hours using the Wide Field Camera 3 (WFC3) UVIS detector to image C/ISON through two broadband filters, the ''wide-V'' F606W and ''blue'' F438W filters (Li at al. 2013). The twelve images obtained with the F606W filter were analyzed using our well-proven technique of fitting a parametric model of the expected surface brightness to the observed images (e.g., Lamy et al. 2006). The model consists of an unresolved point source and a coma specified by a power law, both convolved with the point spread function of the telescope. The nucleus is basically undetected, which imposes an upper limit of its radius of ˜0.3 km. However, the analysis is complicated by the so-called ''breathing'' of the WFC3 camera, an uncontrolled slight defocus which distorts the PSF. We investigated this question in detail and considered various cases of defocus. We will report on this effort and the resulting robust upper limit which we can put on the size of the nucleus of C/ISON.

  20. Constraints on Anthropogenic NOx Emissions from Geostationary Satellite Observations in a Regional Chemical Data Assimilation System: Evaluation Using Observing System Simulation Experiments

    NASA Astrophysics Data System (ADS)

    Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.

    2015-12-01

    Nitrogen oxides (NOx=NO+NO2) control the tropospheric ozone (O3) budget, the abundance of the hydroxyl radical (OH), the formation of organic and inorganic nitrate aerosol, and therefore affect air quality and climate. There remain significant uncertainties in the processes responsible for NOx emissions and subsequent mixing and chemical removal. NOx has a short lifetime and its emissions show high spatiotemporal variability at urban scale. Future geostationary satellite instruments including TEMPO, GEMS and Sentinel-4 will provide hourly time resolution and high spatial resolution observations providing maps of NO2 on diurnal and local scales. Here we determine the extent to which a TEMPO like instrument can quantify urban-scale NOx emissions using a regional data assimilation (DA) system comprising of a chemical transport model, WRF-Chem, a TEMPO simulator and the DART Ensemble Adjustment Kalman Filter. We generate synthetic TEMPO observations by sampling from a nature run on an urban scale domain. We consider the effect of albedo, surface pressure, solar and viewing angles and a priori NO2 profiles on the TEMPO NO2 averaging kernel to achieve scene-dependent instrument sensitivity. We estimate NOx emissions using DART in a state augmentation approach by including NOx emissions in the state vector being analyzed. The ensemble-based statistical estimation of error correlations between concentrations and emissions are critical as they determine the impact of assimilated observations. We describe observing system simulation experiments to explore the optimal approach in the ensemble-based DA system to estimate hourly-resolved NOx emissions from TEMPO NO2 observations. Several case studies will be presented examining the role of covariance localization length and chemical perturbations on the success of the approach.

  1. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2010-04-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (128 Tg a-1, a factor of 4 greater than the previous estimate), with alkanes, alkenes, and ethanol the main precursors. There is also a minor source from isoprene oxidation. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We present a new approach to quantifying the acetaldehyde air-sea flux based on the global distribution of light absorption due to colored dissolved organic matter (CDOM) derived from satellite ocean color observations. The resulting net ocean emission is 57 Tg a-1, the second largest global source of acetaldehyde. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer, with quantitative model evaluation over the ocean complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 23 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However

  2. Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Guenther, A.; Siegel, D. A.; Nelson, N. B.; Singh, H. B.; de Gouw, J. A.; Warneke, C.; Williams, J.; Eerdekens, G.; Sinha, V.; Karl, T.; Flocke, F.; Apel, E.; Riemer, D. D.; Palmer, P. I.; Barkley, M.

    2009-11-01

    We construct a global atmospheric budget for acetaldehyde using a 3-D model of atmospheric chemistry (GEOS-Chem), and use an ensemble of observations to evaluate present understanding of its sources and sinks. Hydrocarbon oxidation provides the largest acetaldehyde source in the model (130 Tg a-1), with alkanes, alkenes, ethanol, and isoprene the main precursors. We use an updated chemical mechanism for GEOS-Chem, and photochemical acetaldehyde yields are consistent with the Master Chemical Mechanism. We apply SeaWiFS satellite observations to define the global distribution of light absorption due to marine dissolved organic matter (DOM), and estimate the corresponding sea-to-air acetaldehyde flux based on measured photoproduction rates from DOM. The resulting net ocean emission is 58 Tg a-1, the second largest global source of acetaldehyde. Quantitative model evaluation over the ocean is complicated by known measurement artifacts in clean air. Simulated concentrations in surface air over the ocean generally agree well with aircraft measurements, though the model tends to overestimate the vertical gradient. PAN:NOx ratios are well-simulated in the marine boundary layer, providing some support for the modeled ocean source. A key uncertainty is the acetaldehyde turnover time in the ocean mixed layer. We introduce the Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) for acetaldehyde and ethanol and use it to quantify their net flux from living terrestrial plants. Including emissions from decaying plants the total direct acetaldehyde source from the land biosphere is 22 Tg a-1. Other terrestrial acetaldehyde sources include biomass burning (3 Tg a-1) and anthropogenic emissions (2 Tg a-1). Simulated concentrations in the continental boundary layer are generally unbiased and capture the spatial gradients seen in observations over North America, Europe, and tropical South America. However, the model underestimates acetaldehyde levels in urban outflow

  3. Observations of 1ES 1101-232 with H.E.S.S. and at lower frequencies: A hard spectrum blazar and constraints on the extragalactic background light

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd; Benbow, Wystan; Costamante, Luigi; Sol, Helene; Boisson, Catherine; Emmanoulopoulos, Dimitrios; Wagner, Stefan; Horns, Dieter; Giebels, Berrie

    VHE observations of the distant (z=0.186) blazar 1ES 1101-232 with H.E.S.S. are used to constrain the extragalactic background light (EBL) in the optical to near infrared band. As the EBL traces the galaxy formation history of the universe, galaxy evolution models can therefore be tested with the data. In order to measure the EBL absorption effect on a blazar spectrum, we assume that usual constraints on the hardness of the intrinsic blazar spectrum are not violated. We present an update of the VHE spectrum obtained with H.E.S.S. and the multifrequency data that were taken simultaneously with the H.E.S.S. measurements. The data verify that the broadband characteristics of 1ES 1101-232 are similar to those of other, more nearby blazars, and strengthen the assumptions that were used to derive the EBL upper limit.

  4. Observational constraints on pulsars: Location of the emission region and pulse shape stability on decade time scales

    SciTech Connect

    Blaskiewicz, M.M.

    1991-01-01

    Twenty years after their discovery, many basic problems in pulsar physics remain unsolved. Plasma flow patterns along with the associated radio emission and energy loss mechanisms remain a mystery. The dynamical behavior of the neutron star spin rate has been explored via timing analyses but the presence of precession or wandering of the spin axis remain largely unconstrained. The possibility of surface activity such as plate tectonics or volcanism remains open. Observational limits are placed on these phenomena. An introduction is given to pulsars, with an emphasis on the aspects relevant to the remainder of the thesis. The implications of polar cap models are explored within the context of special relativity. Under fairly general conditions, it is found that the suppositions of polar cap models imply a time delay between the centroids of the intensity waveform and the polarization profile with the polarization profile lagging the intensity waveform.

  5. New Observational Constraints on the υ Andromedae System with Data from the Hubble Space Telescope and Hobby-Eberly Telescope

    NASA Astrophysics Data System (ADS)

    McArthur, Barbara E.; Benedict, G. Fritz; Barnes, Rory; Martioli, Eder; Korzennik, Sylvain; Nelan, Ed; Butler, R. Paul

    2010-06-01

    We have used high-cadence radial velocity (RV) measurements from the Hobby-Eberly Telescope with existing velocities from the Lick, Elodie, Harlan J. Smith, and Whipple 60'' telescopes combined with astrometric data from the Hubble Space Telescope Fine Guidance Sensors to refine the orbital parameters and determine the orbital inclinations and position angles of the ascending node of components υ And A c and d. With these inclinations and using M * = 1.31M sun as a primary mass, we determine the actual masses of two of the companions: υ And A c is 13.98+2.3 -5.3 M JUP, and υ And A d is 10.25+0.7 -3.3 M JUP. These measurements represent the first astrometric determination of mutual inclination between objects in an extrasolar planetary system, which we find to be 29fdg9 ± 1°. The combined RV measurements also reveal a long-period trend indicating a fourth planet in the system. We investigate the dynamic stability of this system and analyze regions of stability, which suggest a probable mass of υ And A b. Finally, our parallaxes confirm that υ And B is a stellar companion of υ And A. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitt Mnchen, and Georg-August-Universität Göttingen.

  6. Constraints on cold dark matter theories from observations of massive x-ray-luminous clusters of galaxies at high redshift

    NASA Technical Reports Server (NTRS)

    Luppino, G. A.; Gioia, I. M.

    1995-01-01

    During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.

  7. The European-Alpine collision during the last 45Myrs - constraints obtained from comparing 3-D numerical subduction models and tomographic observations

    NASA Astrophysics Data System (ADS)

    Morra, G.; Regenauer-Lieb, K.; Kissling, E.; Lippitsch, R.

    2003-04-01

    We analyze the interaction of Adriatic and the European Plates driven self-consistently by slab pull in order to seperate out the roles of (1) intrinsic dynamics of the slab driven Adriatic microplate system, (2) interaction with the subducting European plate, (3) the pushing African plate and (4) the feedback of slab induced flow within the mantle. The simulation is based on a new three-dimensional solid-fluid solver that we developed for plate tectonics reconstruction. The method embeds a Lagrangian Finite Element model of the lithosphere into a creeping medium (Stokeslet Method see poster) representing the mantle. Density inhomogeneities within the subducting plate are inserted to obtain realistic reconstructions of tomographically observed slab lengths in both the Central Mediterranean and European-Alpine subduction systems. In a first step we analyse the system in the absence of the African convergence. With this asssumption the model is only driven by gravity and thus gives an insight into the internal dynamics of the Central-European microplate evolution. In a second step we add the African convergence as a large scale distributed force. Using this method the mechanical origin of rotation of the Adriatic microplate in the vise of the African-European convergence can be analysed and its impact on the collision in the Alps derived. While our solution space is a first set, the aim of the analysis is to obtain constraints of the history of Adriatic-European collision using the new solver as a toolbox. The method has the potential to act as a filter between geological observation, tomographic data and mechanical constraints within the framework of a dynamic 3-D plate tectonic evolution.

  8. NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T Cha TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED SUBSTELLAR COMPANION

    SciTech Connect

    Sallum, S.; Eisner, J. A.; Close, Laird M.; Hinz, Philip M.; Skemer, Andrew J.; Bailey, Vanessa; Follette, Katherine B.; Males, Jared R.; Morzinski, Katie M.; Briguglio, Runa; Puglisi, Alfio; Xompero, Marco; Rodigas, Timothy J.; Weinberger, Alycia J.

    2015-03-10

    We present multi-epoch non-redundant masking observations of the T Cha transition disk, taken at the Very Large Telescope and Magellan in the H, Ks, and L' bands. T Cha is one of a small number of transition disks that host companion candidates discovered by high-resolution imaging techniques, with a putative companion at a position angle of 78°, separation of 62 mas, and contrast of ΔL' = 5.1 mag. We find comparable binary parameters in our re-reduction of the initial detection images, and similar parameters in the 2011 L', 2013 NaCo L', and 2013 NaCo Ks data sets. We find a close-in companion signal in the 2012 NaCo L' data set that cannot be explained by orbital motion, and a non-detection in the 2013 MagAO/Clio2 L' data. However, Monte Carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2 followup data may be consistent with noise. There is also a significant probability of false non-detections in both of these data sets. We discuss physical scenarios that could cause the best fits, and argue that previous companion and scattering explanations are inconsistent with the results of the much larger data set presented here.

  9. Observational constraints on atmospheric and oceanic cross-equatorial heat transports: revisiting the precipitation asymmetry problem in climate models

    NASA Astrophysics Data System (ADS)

    Loeb, Norman G.; Wang, Hailan; Cheng, Anning; Kato, Seiji; Fasullo, John T.; Xu, Kuan-Man; Allan, Richard P.

    2016-05-01

    Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHTEQ) and ocean (OHTEQ). The contrast in net atmospheric radiation implies an AHTEQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHTEQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHTEQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHTEQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHTEQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.

  10. A Microphysics-Based Black Carbon Aging Scheme in a Global Chemical Transport Model: Constraints from HIPPO Observations

    NASA Astrophysics Data System (ADS)

    He, C.; Li, Q.; Liou, K. N.; Qi, L.; Tao, S.; Schwarz, J. P.

    2015-12-01

    Black carbon (BC) aging significantly affects its distributions and radiative properties, which is an important uncertainty source in estimating BC climatic effects. Global models often use a fixed aging timescale for the hydrophobic-to-hydrophilic BC conversion or a simple parameterization. We have developed and implemented a microphysics-based BC aging scheme that accounts for condensation and coagulation processes into a global 3-D chemical transport model (GEOS-Chem). Model results are systematically evaluated by comparing with the HIPPO observations across the Pacific (67°S-85°N) during 2009-2011. We find that the microphysics-based scheme substantially increases the BC aging rate over source regions as compared with the fixed aging timescale (1.2 days), due to the condensation of sulfate and secondary organic aerosols (SOA) and coagulation with pre-existing hydrophilic aerosols. However, the microphysics-based scheme slows down BC aging over Polar regions where condensation and coagulation are rather weak. We find that BC aging is primarily dominated by condensation process that accounts for ~75% of global BC aging, while the coagulation process is important over source regions where a large amount of pre-existing aerosols are available. Model results show that the fixed aging scheme tends to overestimate BC concentrations over the Pacific throughout the troposphere by a factor of 2-5 at different latitudes, while the microphysics-based scheme reduces the discrepancies by up to a factor of 2, particularly in the middle troposphere. The microphysics-based scheme developed in this work decreases BC column total concentrations at all latitudes and seasons, especially over tropical regions, leading to large improvement in model simulations. We are presently analyzing the impact of this scheme on global BC budget and lifetime, quantifying its uncertainty associated with key parameters, and investigating the effects of heterogeneous chemical oxidation on BC aging.

  11. Could a 1755-Like Tsunami Reach the French Atlantic Coastline? Constraints from Twentieth Century Observations and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Allgeyer, S.; Daubord, C.; Hébert, H.; Loevenbruck, A.; Schindelé, F.; Madariaga, R.

    2013-09-01

    The tsunami generated by the 1 November, 1755 earthquake off the coast of Portugal affected mainly the coastlines of the Iberian Peninsula and Northwest Morocco, but was also observed in some places along the North Atlantic coasts. To determine whether the event could have effected the French coastline, we conducted a study to search for signs of the tsunami in historical records from all tide gauge stations off the French Atlantic coast during the twentieth century, specifically for the 28 February, 1969 and the 26 May, 1975 tsunamis that were recorded by the Portuguese tide gauge network. Because many recordings are available in La Rochelle (located on the southwest coast of France), we focused our study on this harbor. The analysis of the tide gauge data shows no evidence for tsunamis in La Rochelle, neither in 1969 nor in 1975. To confirm this lack of tsunami signals, we used nonlinear, shallow water equations to compute the tsunami propagation to the French Atlantic coastline for both 1969 and 1975 events. Results obtained from these simulations confirm otherwise unnoticeable wave amplitudes at La Rochelle harbor. In a second step, tsunamis from three different scenarios for the 1755 earthquake were modeled to estimate the impact of such a tsunami on the French Atlantic coast, with a focus on La Rochelle harbor. A comparison of the functions of tide configuration was made in order to analyse the difference in impact. The results show that, while the harbor is poorly impacted, several areas (western part of the island of Ré and northern coast of the island of Oléron) may have experienced a moderate impact from 0.5 to 1 m, especially since the tide was high at the time of arrival, possibly causing local inundations in lowland areas.

  12. Observational Constraints on First-Star Nucleosynthesis. II. Spectroscopy of an Ultra metal-poor CEMP-no Star

    NASA Astrophysics Data System (ADS)

    Placco, Vinicius M.; Frebel, Anna; Beers, Timothy C.; Yoon, Jinmi; Chiti, Anirudh; Heger, Alexander; Chan, Conrad; Casey, Andrew R.; Christlieb, Norbert

    2016-12-01

    We report on the first high-resolution spectroscopic analysis of HE 0020-1741, a bright (V = 12.9), ultra metal-poor ([{Fe}/{{H}}] = -4.1), carbon-enhanced ([{{C}}/{Fe}] = +1.7) star selected from the Hamburg/ESO Survey. This star exhibits low abundances of neutron-capture elements ([{Ba}/{Fe}] = -1.1) and an absolute carbon abundance A(C) = 6.1 based on either criterion, HE 0020-1741 is subclassified as a carbon-enhanced metal-poor star without enhancements in neutron-capture elements (CEMP-no). We show that the light-element abundance pattern of HE 0020-1741 is consistent with predicted yields from a massive (M = 21.5 {M}⊙ ), primordial-composition, supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models (covering the mass range 10{--}100 {M}⊙ ), in order to probe the nature of their likely stellar progenitors. Our results suggest that at least two classes of progenitors are required at [{Fe}/{{H}}] \\lt -4.0, as the abundance patterns for more than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile, and the New Technology Telescope (NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.

  13. Observational Constraints on First-star Nucleosynthesis. I. Evidence for Multiple Progenitors of CEMP-No Stars

    NASA Astrophysics Data System (ADS)

    Yoon, Jinmi; Beers, Timothy C.; Placco, Vinicius M.; Rasmussen, Kaitlin C.; Carollo, Daniela; He, Siyu; Hansen, Terese T.; Roederer, Ian U.; Zeanah, Jeff

    2016-12-01

    We investigate anew the distribution of absolute carbon abundance, A(C) = log ɛ(C), for carbon-enhanced metal-poor (CEMP) stars in the halo of the Milky Way, based on high-resolution spectroscopic data for a total sample of 305 CEMP stars. The sample includes 147 CEMP-s (and CEMP-r/s) stars, 127 CEMP-no stars, and 31 CEMP stars that are unclassified, based on the currently employed [Ba/Fe] criterion. We confirm previous claims that the distribution of A(C) for CEMP stars is (at least) bimodal, with newly determined peaks centered on A(C) = 7.96 (the high-C region) and A(C) = 6.28 (the low-C region). A very high fraction of CEMP-s (and CEMP-r/s) stars belongs to the high-C region, while the great majority of CEMP-no stars resides in the low-C region. However, there exists complexity in the morphology of the A(C)-[Fe/H] space for the CEMP-no stars, a first indication that more than one class of first-generation stellar progenitors may be required to account for their observed abundances. The two groups of CEMP-no stars we identify exhibit clearly different locations in the A(Na)-A(C) and A(Mg)-A(C) spaces, also suggesting multiple progenitors. The clear distinction in A(C) between the CEMP-s (and CEMP-r/s) stars and the CEMP-no stars appears to be as successful, and likely more astrophysically fundamental, for the separation of these sub-classes as the previously recommended criterion based on [Ba/Fe] (and [Ba/Eu]) abundance ratios. This result opens the window for its application to present and future large-scale low- and medium-resolution spectroscopic surveys.

  14. Observational constraints on the physics behind the evolution of active galactic nuclei since z˜ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Coil, A. L.; Willmer, C. N. A.; Nandra, K.; Kocevski, D. D.; Cooper, M. C.; Rosario, D. J.; Koo, D. C.; Trump, J. R.; Juneau, S.

    2011-12-01

    We explore the evolution with redshift of the rest-frame colours and space densities of active galactic nuclei (AGN) hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion on to supermassive black holes as a function of cosmic time. Data from serendipitous wide-area XMM surveys of the Sloan Digital Sky Survey (SDSS) footprint (XMM/SDSS; Needles in the Haystack Survey) are combined with Chandra deep observations in the All-wavelength Extended Groth Strip International Survey (AEGIS), GOODS-North and GOODS-South to compile uniformly selected samples of moderate-luminosity X-ray AGN [LX(2-10 keV) = 1041-1044 erg s-1] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z= 0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fuelling supermassive black holes is in operation in the last 5 Gyr of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1 dex since z= 0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate-luminosity AGN since z≈ 1 to changes in the suppermassive black hole accretion mode are not favoured by our results.

  15. A Framework for Dynamic Constraint Reasoning Using Procedural Constraints

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy D.

    1999-01-01

    Many complex real-world decision and control problems contain an underlying constraint reasoning problem. This is particularly evident in a recently developed approach to planning, where almost all planning decisions are represented by constrained variables. This translates a significant part of the planning problem into a constraint network whose consistency determines the validity of the plan candidate. Since higher-level choices about control actions can add or remove variables and constraints, the underlying constraint network is invariably highly dynamic. Arbitrary domain-dependent constraints may be added to the constraint network and the constraint reasoning mechanism must be able to handle such constraints effectively. Additionally, real problems often require handling constraints over continuous variables. These requirements present a number of significant challenges for a constraint reasoning mechanism. In this paper, we introduce a general framework for handling dynamic constraint networks with real-valued variables, by using procedures to represent and effectively reason about general constraints. The framework is based on a sound theoretical foundation, and can be proven to be sound and complete under well-defined conditions. Furthermore, the framework provides hybrid reasoning capabilities, as alternative solution methods like mathematical programming can be incorporated into the framework, in the form of procedures.

  16. CONSTRAINTS ON THE SURFACE MAGNETIC FIELDS AND AGE OF A COOL HYPERGIANT: XMM-NEWTON X-RAY OBSERVATIONS OF VY CMa

    SciTech Connect

    Montez, Rodolfo Jr.; Kastner, Joel H.; Humphreys, Roberta M.; Davidson, Kris; Turok, Rebecca L. E-mail: jhk@cis.rit.edu

    2015-02-10

    The complex circumstellar ejecta of highly evolved, cool hypergiants are indicative of multiple, asymmetric mass-loss events. To explore whether such episodic, non-isotropic mass loss may be driven by surface magnetic activity, we have observed the archetypical cool hypergiant VY CMa with the XMM-Newton X-ray satellite observatory. The hypergiant itself is not detected in these observations. From the upper limit on the X-ray flux from VY CMa at the time of our observations (F {sub X,} {sub UL} ≈ 8 × 10{sup –14} erg cm{sup –2} s{sup –1}, corresponding to log L{sub X} /L {sub bol} ≤ –8), we estimate an average surface magnetic field strength fB ≤ 2 × 10{sup –3} G (where f is the filling factor of magnetically active surface regions). These X-ray results for VY CMa represent the most stringent constraints to date on the magnetic field strength near the surface of a hypergiant. VY CMa's mass loss is episodic, however, and the hypergiant may have been in a state of low surface magnetic activity during the XMM observations. The XMM observations also yield detections of more than 100 X-ray sources within ∼15' of VY CMa, roughly 50 of which have near-infrared counterparts. Analysis of X-ray hardness ratios and IR colors indicates that some of these field sources may be young, late-type stars associated with VY CMa, its adjacent molecular cloud complex, and the young cluster NGC 2362. Further study of the VY CMa field is warranted, given the potential to ascertain the evolutionary timescale of this enigmatic, massive star.

  17. Constraints on the Surface Magnetic Fields and Age of a Cool Hypergiant: XMM-Newton X-Ray Observations of VY CMa

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo, Jr.; Kastner, Joel H.; Humphreys, Roberta M.; Turok, Rebecca L.; Davidson, Kris

    2015-02-01

    The complex circumstellar ejecta of highly evolved, cool hypergiants are indicative of multiple, asymmetric mass-loss events. To explore whether such episodic, non-isotropic mass loss may be driven by surface magnetic activity, we have observed the archetypical cool hypergiant VY CMa with the XMM-Newton X-ray satellite observatory. The hypergiant itself is not detected in these observations. From the upper limit on the X-ray flux from VY CMa at the time of our observations (F X, UL ≈ 8 × 10-14 erg cm-2 s-1, corresponding to log LX /L bol <= -8), we estimate an average surface magnetic field strength fB <= 2 × 10-3 G (where f is the filling factor of magnetically active surface regions). These X-ray results for VY CMa represent the most stringent constraints to date on the magnetic field strength near the surface of a hypergiant. VY CMa's mass loss is episodic, however, and the hypergiant may have been in a state of low surface magnetic activity during the XMM observations. The XMM observations also yield detections of more than 100 X-ray sources within ~15' of VY CMa, roughly 50 of which have near-infrared counterparts. Analysis of X-ray hardness ratios and IR colors indicates that some of these field sources may be young, late-type stars associated with VY CMa, its adjacent molecular cloud complex, and the young cluster NGC 2362. Further study of the VY CMa field is warranted, given the potential to ascertain the evolutionary timescale of this enigmatic, massive star.

  18. The Dynamics of the WASP-47 Planetary System: A Hot Jupiter, Two Additional Planets, and Observable Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Becker, Juliette C.; Vanderburg, Andrew; Rappaport, Saul; Schwengeler, Hans Martin

    2015-12-01

    New data from the K2 mission indicate that WASP-47, a previously known Hot Jupiter host, also hosts two additional transiting planets: a Neptune-sized outer planet and a super-Earth inner companion. The measured period ratios and size ratios for these planets are unusual (extreme) for Hot Jupiter systems. We measure the planetary properties from the K2 light curve and detect transit timing variations, thereby confirming the planetary nature of the outer planet. We performed a large ensemble of numerical simulations to study the dynamical stability of the system and to find the theoretically expected transit timing variations (TTVs). The system is stable provided that the orbital eccentricities are small. The theoretically predicted TTVs are in good agreement with those observed, and we use the TTVs to determine the masses of two planets, and place a limit on the third. The WASP-47 planetary system is important because the companion planets can both be inferred by TTVs and are also detected directly through transit observations. The depth of the Hot Jupiter’s transits make ground-based TTV measurements possible, and the brightness of the host star makes it amenable for precise radial velocity measurements. The system thus serves as a Rosetta Stone for understanding TTVs as a planet detection technique. Moreover, this compact set of planets in nearly circular, coplanar orbits demonstrates that at least a subset of Jupiter-size planets can migrate in close to their host star in a dynamically quiet manner. As final curiosity, WASP-47 hosts one of few extrasolar planetary systems that can observe Earth in transit.

  19. Tandem Solar Cells Using GaAs Nanowires on Si: Design, Fabrication, and Observation of Voltage Addition.

    PubMed

    Yao, Maoqing; Cong, Sen; Arab, Shermin; Huang, Ningfeng; Povinelli, Michelle L; Cronin, Stephen B; Dapkus, P Daniel; Zhou, Chongwu

    2015-11-11

    Multijunction solar cells provide us a viable approach to achieve efficiencies higher than the Shockley-Queisser limit. Due to their unique optical, electrical, and crystallographic features, semiconductor nanowires are good candidates to achieve monolithic integration of solar cell materials that are not lattice-matched. Here, we report the first realization of nanowire-on-Si tandem cells with the observation of voltage addition of the GaAs nanowire top cell and the Si bottom cell with an open circuit voltage of 0.956 V and an efficiency of 11.4%. Our simulation showed that the current-matching condition plays an important role in the overall efficiency. Furthermore, we characterized GaAs nanowire arrays grown on lattice-mismatched Si substrates and estimated the carrier density using photoluminescence. A low-resistance connecting junction was obtained using n(+)-GaAs/p(+)-Si heterojunction. Finally, we demonstrated tandem solar cells based on top GaAs nanowire array solar cells grown on bottom planar Si solar cells. The reported nanowire-on-Si tandem cell opens up great opportunities for high-efficiency, low-cost multijunction solar cells.

  20. Multiwavelength analysis for interferometric (sub-)mm observations of protoplanetary disks. Radial constraints on the dust properties and the disk structure

    NASA Astrophysics Data System (ADS)

    Tazzari, M.; Testi, L.; Ercolano, B.; Natta, A.; Isella, A.; Chandler, C. J.; Pérez, L. M.; Andrews, S.; Wilner, D. J.; Ricci, L.; Henning, T.; Linz, H.; Kwon, W.; Corder, S. A.; Dullemond, C. P.; Carpenter, J. M.; Sargent, A. I.; Mundy, L.; Storm, S.; Calvet, N.; Greaves, J. A.; Lazio, J.; Deller, A. T.

    2016-04-01

    Context. The growth of dust grains from sub-μm to mm and cm sizes is the first step towards the formation of planetesimals. Theoretical models of grain growth predict that dust properties change as a function of disk radius, mass, age, and other physical conditions. High angular resolution observations at several (sub-)mm wavelengths constitute the ideal tool with which to directly probe the bulk of dust grains and to investigate the radial distribution of their properties. Aims: We lay down the methodology for a multiwavelength analysis of (sub-)mm and cm continuum interferometric observations to self-consistently constrain the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. Methods: The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. Results: We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88 mm to ~10 mm is available from SMA, CARMA, and VLA. In these disks we find evidence of a decrease in the maximum dust grain size, amax, with radius. We derive large amax values up to 1 cm in the inner disk 15 AU ≤ R ≤ 30 AU and smaller grains with amax ~ 1 mm in the outer disk (R ≳ 80 AU). Our analysis of the AS 209 protoplanetary disk confirms previous literature results showing amax decreasing with radius. Conclusions: Theoretical studies of planetary formation through grain growth are plagued by the lack of direct information on the radial distribution of the dust grain size. In this paper we develop a multiwavelength analysis that will allow this missing quantity to be

  1. Constraints on the mantle and lithosphere dynamics from the observed geoid with the effect of visco-elasto-plastic rheology in the upper 300 km

    NASA Astrophysics Data System (ADS)

    Osei Tutu, Anthony; Steinberger, Bernhard; Rogozhina, Irina; Sobolev, Stephan

    2015-04-01

    Over the past decades rheological properties of the Earth's mantle and lithosphere have been extensively studied using numerical models calibrated versus a range of surface observations (e.g., free-air-gravity anomaly/geoid, dynamic topography, plate velocity, etc.).The quality of model predictions however strongly depends on the simplifying assumptions, spatial resolution and parameterizations adopted by numerical models. The geoid is largely (Hager & Richards, 1989) determined by both the density anomalies driving the mantle flow and the dynamic topography at the Earth surface and the core-mantle boundary. This is the effect of the convective processes within the Earth's mantle. The remainder is mostly due to strong heterogeneities in the lithospheric mantle and the crust, which also need to be taken into account. The surface topography caused by density anomalies both in the sub-lithospheric mantle and within the lithosphere also depends on the lithosphere rheology. Here we investigate the effects of complex lithosphere rheology on the modelled dynamic topography, geoid and plate motion using a spectral mantle flow code (Hager & O'Connell, 1981) considering radial viscosity distribution and a fully coupled code of the lithosphere and mantle accounting for strong heterogeneities in the upper mantle rheology in the 300 km depths (Popov & Sobolev, 2008). This study is the first step towards linking global mantle dynamics with lithosphere dynamics using the observed geoid as a major constraint. Here we present the results from both codes and compare them with the observed geoid, dynamic topography and plate velocities from GPS measurements. This method allows us to evaluate the effects of plate rheology (e.g., strong plate interiors and weak plate margins) and stiff subducted lithosphere on these observables (i.e. geoid, topography, plate boundary stresses) as well as on plate motion. This effort will also serve as a benchmark of the two existing numerical methods

  2. Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-ray Observations of the Coma Cluster of Galaxies with VERITAS and FERMI

    NASA Technical Reports Server (NTRS)

    Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Collins-Hughes, E.; Connolly, M. P.; Cui, W.; Dickherber, R.; Dumm, J.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Perkins, J. S.

    2012-01-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark

  3. CONSTRAINTS ON COSMIC RAYS, MAGNETIC FIELDS, AND DARK MATTER FROM GAMMA-RAY OBSERVATIONS OF THE COMA CLUSTER OF GALAXIES WITH VERITAS AND FERMI

    SciTech Connect

    Arlen, T.; Aune, T.; Bouvier, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Benbow, W.; Byrum, K.; Cannon, A.; Collins-Hughes, E.; Cesarini, A.; Connolly, M. P.; Ciupik, L.; Cui, W.; Feng, Q.; Finley, J. P.; Dumm, J.; Falcone, A.; Federici, S. E-mail: christoph.pfrommer@h-its.org; and others

    2012-10-01

    Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on the order of (2-5) Multiplication-Sign 10{sup -8} photons m {sup -2} s {sup -1} (VERITAS, >220 GeV) and {approx}2 Multiplication-Sign 10{sup -6} photons m {sup -2} s {sup -1} (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of {approx}(2-5.5) {mu}G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM

  4. Constraints on emissions of hydrocarbons and combustion tracers in the Colorado Front Range using observations of 14CO2 at the Boulder Atmospheric Observatory (BAO)

    NASA Astrophysics Data System (ADS)

    LaFranchi, B. W.; Petron, G.; Miller, J. B.; Lehman, S. J.; Andrews, A. E.; Dlugokencky, E. J.; Miller, B. R.; Montzka, S. A.; Turnbull, J. C.; Tans, P. P.; Guilderson, T. P.

    2011-12-01

    Bottom-up inventories of trace gases formed as a byproduct of fossil fuel combustion have significant uncertainty associated with them because of the difficulty in quantifying the relationship between the mass of fuel consumed and the mass emitted; this is in contrast to the near stoichiometric production of CO2 from the combustion of hydrocarbons. Emissions of species such as CO, CH4, acetylene, and benzene depend greatly on a number of variables including fuel type, combustion temperature, oxidant-to-fuel ratio, and post-combustion tail-pipe or flue-stack "scrubbing". Given the impact of many of these combustion by-products on air quality, human health, and climate, atmospheric observations are necessary in order to critically evaluate bottom-up emissions estimates. Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the near absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to verify bottom-up emissions inventories of fossil fuel CO2 (CO2ff), as well as other co-emitted species. Here we use observations of 14CO2 and a series of hydrocarbons and combustion tracers from the Boulder Atmospheric Observatory (BAO; Lat: 40.050o, Lon: -105.004o) to derive emission ratios of each species to CO2. From these emission ratios, we estimate absolute emission fluxes of these species by using an existing CO2ff inventory. Among the species considered are CO, CH4, acetylene (C2H2), benzene (C6H6), and C3-C5 alkanes. Comparisons of top-down emissions estimates are made to existing inventories of these species for the region, where available, as well as to previous efforts to estimate emissions from atmospheric observations in the Colorado Front Range.We find that CO is overestimated in the NEI 2008 by a factor of ~2; a

  5. Patterns of thermal constraint on ectotherm activity.

    PubMed

    Gunderson, Alex R; Leal, Manuel

    2015-05-01

    Thermal activity constraints play a major role in many aspects of ectotherm ecology, including vulnerability to climate change. Therefore, there is strong interest in developing general models of the temperature dependence of activity. Several models have been put forth (explicitly or implicitly) to describe such constraints; nonetheless, tests of the predictive abilities of these models are lacking. In addition, most models consider activity as a threshold trait instead of considering continuous changes in the vigor of activity among individuals. Using field data for a tropical lizard (Anolis cristatellus) and simulations parameterized by our observations, we determine how well various threshold and continuous-activity models match observed activity patterns. No models accurately predicted activity under all of the thermal conditions that we considered. In addition, simulations showed that the performance of threshold models decreased as temperatures increased, which is a troubling finding given the threat of global climate change. We also find that activity rates are more sensitive to temperature than are the physiological traits often used as a proxy for fitness. We present a model of thermal constraint on activity that integrates aspects of both the threshold model and the continuous-activity model, the general features of which are supported by activity data from other species. Overall, our results demonstrate that greater attention should be given to fine-scale patterns of thermal constraint on activity.

  6. Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2

    NASA Astrophysics Data System (ADS)

    LaFranchi, B. W.; Pétron, G.; Miller, J. B.; Lehman, S. J.; Andrews, A. E.; Dlugokencky, E. J.; Hall, B.; Miller, B. R.; Montzka, S. A.; Neff, W.; Novelli, P. C.; Sweeney, C.; Turnbull, J. C.; Wolfe, D. E.; Tans, P. P.; Gurney, K. R.; Guilderson, T. P.

    2013-11-01

    Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2 (CO2ff), as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of primary hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W) to derive emission ratios of each species with respect to CO2ff. The BAO tower is situated at the boundary of the Denver metropolitan area to the south and a large industrial and agricultural region to the north and east, making it an ideal location to study the contrasting mix of emissions from the activities in each region. The species considered in this analysis are carbon monoxide (CO), methane (CH4), acetylene (C2H2), benzene (C6H6), and C3-C5 alkanes. We estimate emissions for a subset of these species by using the Vulcan high resolution CO2ff emission data product as a reference. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI08) by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. Using a wind-directional analysis of the data, we find enhanced concentrations of CH4, relative to CO2ff, in air influenced by emissions to the north and east of the BAO tower when compared to air influenced by emissions in the Denver metro region to the south. Along with enhanced CH4, the strongest enhancements of the C3-C5 alkanes are also

  7. Constraints on relaxion windows

    NASA Astrophysics Data System (ADS)

    Choi, Kiwoon; Im, Sang Hui

    2016-12-01

    We examine the low energy phenomenology of the relaxion solution to the weak scale hierarchy problem. Assuming that the Hubble friction is responsible for a dissipation of the relaxion energy, we identify the cosmological relaxion window which corresponds to the parameter region compatible with a given value of the acceptable number of inflationary e-foldings. We then discuss a variety of observational constraints on the relaxion window, including those from astrophysical and cosmological considerations. We find that majority of the parameter space with a relaxion mass m ϕ ≳ 100 eV or a relaxion decay constant f ≲107GeV is excluded by existing constraints. There is an interesting parameter region with m ϕ ˜ 0 .2 - 10 GeV and f ˜ few - 200 TeV, which is allowed by existing constraints, but can be probed soon by future beam dump experiments such as the SHiP experiment, or by improved EDM experiments.

  8. Geochemical constraints on Earth's core composition

    NASA Astrophysics Data System (ADS)

    Siebert, Julien

    2016-04-01

    The density of the core as measured from seismic-wave velocities is lower (by 10-15%) than that of pure iron, and therefore the core must also contain some light elements. Geophysical and cosmochemical constraints indicate that obvious candidates for these light elements include silicon, oxygen, and sulfur. These elements have been studied extensively for the past 30 years but a joint solution fulfilling all the requirements imposed by cosmochemistry and geochemistry, seismology, and models of Earth's accretion and core formation is still a highly controversial subject. Here are presented new experimental data in geochemistry used to place constraints on Earth's core composition. Metal-silicate partitioning experiments were performed at pressures and temperatures directly similar to those that prevailed in a deep magma ocean in the early Earth. The results show that core formation can reconcile the observed concentrations of siderophile elements in the silicate mantle with geophysical constraints on light elements in the core. Partitioning results also lead to a core containing less than 1 wt.% of sulfur, inconsistent with a S-rich layer to account for the observed structure of the outer core. Additionally, isotopic fractionations in core formation experiments are presented. This experimental tool merging the fields of experimental petrology and isotope geochemistry represents a promising approach, providing new independent constraints on the nature of light elements in the core.

  9. On the Equivalence of Maximum SNR and MMSE Estimation: Applications to Additive Non-Gaussian Channels and Quantized Observations

    NASA Astrophysics Data System (ADS)

    Rugini, Luca; Banelli, Paolo

    2016-12-01

    The minimum mean-squared error (MMSE) is one of the most popular criteria for Bayesian estimation. Conversely, the signal-to-noise ratio (SNR) is a typical performance criterion in communications, radar, and generally detection theory. In this paper we first formalize an SNR criterion to design an estimator, and then we prove that there exists an equivalence between MMSE and maximum-SNR estimators, for any statistics. We also extend this equivalence to specific classes of suboptimal estimators, which are expressed by a basis expansion model (BEM). Then, by exploiting an orthogonal BEM for the estimator, we derive the MMSE estimator constrained to a given quantization resolution of the noisy observations, and we prove that this suboptimal MMSE estimator tends to the optimal MMSE estimator that uses an infinite resolution of the observation. Besides, we derive closed-form expressions for the mean-squared error (MSE) and for the SNR of the proposed suboptimal estimators, and we show that these expressions constitute tight, asymptotically exact, bounds for the optimal MMSE and maximum SNR.

  10. Addition of Escherichia coli K-12 Growth Observation and Gene Essentiality Data to the EcoCyc Database

    PubMed Central

    Mackie, Amanda; Paley, Suzanne; Keseler, Ingrid M.; Shearer, Alexander; Paulsen, Ian T.

    2014-01-01

    The sets of compounds that can support growth of an organism are defined by the presence of transporters and metabolic pathways that convert nutrient sources into cellular components and energy for growth. A collection of known nutrient sources can therefore serve both as an impetus for investigating new metabolic pathways and transporters and as a reference for computational modeling of known metabolic pathways. To establish such a collection for Escherichia coli K-12, we have integrated data on the growth or nongrowth of E. coli K-12 obtained from published observations using a variety of individual media and from high-throughput phenotype microarrays into the EcoCyc database. The assembled collection revealed a substantial number of discrepancies between the high-throughput data sets, which we investigated where possible using low-throughput growth assays on soft agar and in liquid culture. We also integrated six data sets describing 16,119 observations of the growth of single-gene knockout mutants of E. coli K-12 into EcoCyc, which are relevant to antimicrobial drug design, provide clues regarding the roles of genes of unknown function, and are useful for validating metabolic models. To make this information easily accessible to EcoCyc users, we developed software for capturing, querying, and visualizing cellular growth assays and gene essentiality data. PMID:24363340

  11. Constraints on short-term mantle rheology from the J2 observation and the dispersion of the 18.6 y tidal Love number

    NASA Technical Reports Server (NTRS)

    Sabadini, R.; Yuen, D. A.; Widmer, R.

    1985-01-01

    Information derived from data recently acquired from the LAGEOS satellite is used to place some constraints on the rheological parameters of short-term mantle rheology. The validity of Lambeck and Nakiboglu's (1983) rheological model is assessed by formally developing an expression for the transformed shear modulus using a truncated retardation spectrum. This analytical formula is used to show that the parameters of the above mentioned model are not consistent at all with the amount of anelastic dispersion expected in the Chandler wobble and with the attenuation of seismic normal modes. The feasibility of a standard linear solid (SLS) rheology operating over intermediate timescales between 1 and 100 yr is investigated to determine whether the tidal dispersion at 18.6 yr can be explained by this model. An attempt is made to place some constraints on the parameters of the SLS model and the nature of short-term mantle rheology for timescales of less than 100 yr is discussed.

  12. Spectrophotometry of 25 comets - Post-Halley updates for 17 comets plus new observations for eight additional comets

    NASA Technical Reports Server (NTRS)

    Newburn, Ray L., Jr.; Spinrad, Hyron

    1989-01-01

    The best possible production figures within the current post-Halley framework and available observations are given for H2O, O(1D), CN, C3, C2 and dust in 25 comets. Of these, the three objects with the smallest mixing ratios of all minor species have moderate to little or no dust and appear 'old'. Comets with large amounts of CN are very dusty, and there is a clear correlation of CN with dust, although comets with little or no dust still have some CN. Thus, CN appears to have at least two sources, dust and one or more parent gases. Also, the C2/CN production ratio changes continuously with heliocentric distance in every comet considered, suggesting that C2 production may be a function of coma density as well as parental abundance. Dust production ranges from essentially zero in Comet Sugano-Saigusa-Fujikawa up to 67,000 kg/s for Halley on March 14, 1986.

  13. (abstract) The Distribution of Carbon in the Outer Solar System: New Constraints on Planetary Formation Mechanisms from Groundbased Spectroscopic Observations of Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; Mickelson, M. E.; Larson, L. E.

    1994-01-01

    New limits on the methane mixing ratio within the well-mixed tropospheres of Uranus and Neptune place significant constraints on planetary formation mechanisms within the outer solar system. Our results support the conclusion of other researchers that a nontrivial amount of methane in the outer solar system was incorporated into the planets by dissolution of carbon-bearing planetesimals during the early evolutionary stages of both Uranus and Neptune.

  14. CCD observations of additional interstellar lines in stars associated with the Vela Remnant and Eta Carinae nebulosity

    NASA Technical Reports Server (NTRS)

    Wallerstein, George; Gilroy, Kalpana K.

    1992-01-01

    Nine stars from the Vela Remnant and seven stars in the Eta Carinae complex are examined with CCD spectrograms with high signal-to-noise ratios for data regarding the optical interstellar lines. These data are supplemented by observations of objects with known high-velocity components and substantial interstellar Ti II lines. The CCD spectrograms have signal-to-noise ratios of 100-300, a 2-pixel resolving power of 20,000, and cover features of Na I, Ti II, Ca I, CH(+), and CH in the 3200-4400-A range. The Ca I line confirms the high H density in Vela, and the Ti II lines show evidence of shock-induced grain evaporation. Weak shocks are thought to contribute to the CH(+) component, and a high H I density in some clouds is inferred from the CH line. The high H I density is supported by IUE data on Ca I and on the fine-structure carbon lines. The data point to a significant difference in spectroscopic morphology between the two groups of stars, and the need for theoretical support is underscored.

  15. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-06-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil fuel and biomass burning BC. In addition we develop a global simulation of Brown Carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of two. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in Absorption Aerosol Optical Depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 W m-2 (0.08 W m-2 from anthropogenic sources and 0.05 W m-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 W m-2, with an additional +0.11 W m-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80% / +140%. Our estimates are at the lower end of the 0.2-1.0 W m-2 range from previous studies, and substantially less than the +0.6 W m-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime and the

  16. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Ridley, D. A.; Schwarz, J. P.; Spackman, J. R.; Perring, A. E.; Coe, H.; Liu, D.; Clarke, A. D.

    2014-10-01

    Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the absorption enhancement associated with BC coating and separately treat both the aging and physical properties of fossil-fuel and biomass-burning BC. In addition we develop a global simulation of brown carbon (BrC) from both secondary (aromatic) and primary (biomass burning and biofuel) sources. The global mean lifetime of BC in this simulation (4.4 days) is substantially lower compared to the AeroCom I model means (7.3 days), and as a result, this model captures both the mass concentrations measured in near-source airborne field campaigns (ARCTAS, EUCAARI) and surface sites within 30%, and in remote regions (HIPPO) within a factor of 2. We show that the new BC optical properties together with the inclusion of BrC reduces the model bias in absorption aerosol optical depth (AAOD) at multiple wavelengths by more than 50% at AERONET sites worldwide. However our improved model still underestimates AAOD by a factor of 1.4 to 2.8 regionally, with the largest underestimates in regions influenced by fire. Using the RRTMG model integrated with GEOS-Chem we estimate that the all-sky top-of-atmosphere DRF of BC is +0.13 Wm-2 (0.08 Wm-2 from anthropogenic sources and 0.05 Wm-2 from biomass burning). If we scale our model to match AERONET AAOD observations we estimate the DRF of BC is +0.21 Wm-2, with an additional +0.11 Wm-2 of warming from BrC. Uncertainties in size, optical properties, observations, and emissions suggest an overall uncertainty in BC DRF of -80%/+140%. Our estimates are at the lower end of the 0.2-1.0 Wm-2 range from previous studies, and substantially less than the +0.6 Wm-2 DRF estimated in the IPCC 5th Assessment Report. We suggest that the DRF of BC has previously been overestimated due to the overestimation of the BC lifetime (including the

  17. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust

    NASA Astrophysics Data System (ADS)

    Arnold, J. A.; Glotch, T. D.; Lucey, P. G.; Song, E.; Thomas, I. R.; Bowles, N. E.; Greenhagen, B. T.

    2016-07-01

    We place upper limits on lunar olivine abundance using midinfrared (5-25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3 and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data.

  18. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  19. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  20. New Constraints on ΩM, ΩΛ, and w from an Independent Set of 11 High-Redshift Supernovae Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Knop, R. A.; Aldering, G.; Amanullah, R.; Astier, P.; Blanc, G.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Ellis, R.; Fabbro, S.; Folatelli, G.; Fruchter, A. S.; Garavini, G.; Garmond, S.; Garton, K.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I.; Howell, D. A.; Kim, A. G.; Lee, B. C.; Lidman, C.; Mendez, J.; Nobili, S.; Nugent, P. E.; Pain, R.; Panagia, N.; Pennypacker, C. R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schaefer, B.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Sullivan, M.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2003-11-01

    We report measurements of ΩM, ΩΛ, and w from 11 supernovae (SNe) at z=0.36-0.86 with high-quality light curves measured using WFPC2 on the Hubble Space Telescope (HST). This is an independent set of high-redshift SNe that confirms previous SN evidence for an accelerating universe. The high-quality light curves available from photometry on WFPC2 make it possible for these 11 SNe alone to provide measurements of the cosmological parameters comparable in statistical weight to the previous results. Combined with earlier Supernova Cosmology Project data, the new SNe yield a measurement of the mass density ΩM=0.25+0.07-0.06(statistical)+/-0.04 (identified systematics), or equivalently, a cosmological constant of ΩΛ=0.75+0.06-0.07(statistical)+/-0.04 (identified systematics), under the assumptions of a flat universe and that the dark energy equation-of-state parameter has a constant value w=-1. When the SN results are combined with independent flat-universe measurements of ΩM from cosmic microwave background and galaxy redshift distortion data, they provide a measurement of w=-1.05+0.15-0.20(statistical)+/-0.09 (identified systematic), if w is assumed to be constant in time. In addition to high-precision light-curve measurements, the new data offer greatly improved color measurements of the high-redshift SNe and hence improved host galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host galaxy extinction correction directly for individual SNe without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with P(ΩΛ>0)>0.99, a result consistent with previous and current SN analyses that rely on the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution. Based in part on

  1. Resolving manipulator redundancy under inequality constraints

    SciTech Connect

    Cheng, F.T.; Chen, T.H.; Sun, Y.Y. . Dept. of Electrical Engineering)

    1994-02-01

    Due to hardware limitations, physical constraints such as joint rate bounds, joint angle limits, and joint torque constraints always exist. In this paper, these constraints are considered into the general formulation of the redundant inverse kinematic problem. To take these physical constraints into account, the computationally efficient Compact Quadratic Programming (QP) method is formed to resolve the constrained kinematic redundancy problem. In addition, the Compact-Inverse QP method is also formulated to remedy the unescapable singularity problem with inequality constraints. Two examples are given to demonstrate the generality and superiority of these two methods: to eliminate the drift phenomenon caused by self motion and to remedy saturation-type nonlinearity problem.

  2. First NuSTAR Observations of the BL Lac-type Blazar PKS 2155-304: Constraints on the Jet Content and Distribution of Radiating Particles

    NASA Astrophysics Data System (ADS)

    Madejski, G. M.; Nalewajko, K.; Madsen, K. K.; Chiang, J.; Baloković, M.; Paneque, D.; Furniss, A. K.; Hayashida, M.; Urry, C. M.; Sikora, M.; Ajello, M.; Blandford, R. D.; Harrison, F. A.; Sanchez, D.; Giebels, B.; Stern, D.; Alexander, D. M.; Barret, D.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Forster, K.; Giommi, P.; Grefenstette, B.; Hailey, C.; Hornstrup, A.; Kitaguchi, T.; Koglin, J. E.; Mao, P. H.; Miyasaka, H.; Mori, K.; Perri, M.; Pivovaroff, M. J.; Puccetti, S.; Rana, V.; Westergaard, N. J.; Zhang, W. W.; Zoglauer, A.

    2016-11-01

    We report the first hard X-ray observations with NuSTAR of the BL Lac-type blazar PKS 2155-304, augmented with soft X-ray data from XMM-Newton and γ-ray data from the Fermi Large Area Telescope, obtained in 2013 April when the source was in a very low flux state. A joint NuSTAR and XMM spectrum, covering the energy range 0.5-60 keV, is best described by a model consisting of a log-parabola component with curvature β ={0.3}-0.1+0.2 and a (local) photon index 3.04 ± 0.15 at photon energy of 2 keV, and a hard power-law tail with photon index 2.2 ± 0.4. The hard X-ray tail can be smoothly joined to the quasi-simultaneous γ-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p = 2.2. Assuming that the power-law electron distribution extends down to γ min = 1 and that there is one proton per electron, an unrealistically high total jet power of L p ˜ 1047 erg s-1 is inferred. This can be reduced by two orders of magnitude either by considering a significant presence of electron-positron pairs with lepton-to-proton ratio {n}{{e}+{{e}}-}/{n}{{p}}˜ 30, or by introducing an additional, low-energy break in the electron energy distribution at the electron Lorentz factor γ br1 ˜ 100. In either case, the jet composition is expected to be strongly matter-dominated.

  3. METAL-POOR STARS OBSERVED WITH THE MAGELLAN TELESCOPE. I. CONSTRAINTS ON PROGENITOR MASS AND METALLICITY OF AGB STARS UNDERGOING s-PROCESS NUCLEOSYNTHESIS

    SciTech Connect

    Placco, Vinicius M.; Rossi, Silvia; Frebel, Anna; Beers, Timothy C.; Karakas, Amanda I.; Kennedy, Catherine R.; Christlieb, Norbert; Stancliffe, Richard J.

    2013-06-20

    We present a comprehensive abundance analysis of two newly discovered carbon-enhanced metal-poor (CEMP) stars. HE 2138-3336 is a s-process-rich star with [Fe/H] = -2.79, and has the highest [Pb/Fe] abundance ratio measured thus far, if non-local thermodynamic equilibrium corrections are included ([Pb/Fe] = +3.84). HE 2258-6358, with [Fe/H] = -2.67, exhibits enrichments in both s- and r-process elements. These stars were selected from a sample of candidate metal-poor stars from the Hamburg/ESO objective-prism survey, and followed up with medium-resolution (R {approx} 2000) spectroscopy with GEMINI/GMOS. We report here on derived abundances (or limits) for a total of 34 elements in each star, based on high-resolution (R {approx} 30, 000) spectroscopy obtained with Magellan-Clay/MIKE. Our results are compared to predictions from new theoretical asymptotic giant branch (AGB) nucleosynthesis models of 1.3 M{sub Sun} with [Fe/H] = -2.5 and -2.8, as well as to a set of AGB models of 1.0 to 6.0 M{sub Sun} at [Fe/H] = -2.3. The agreement with the model predictions suggests that the neutron-capture material in HE 2138-3336 originated from mass transfer from a binary companion star that previously went through the AGB phase, whereas for HE 2258-6358, an additional process has to be taken into account to explain its abundance pattern. We find that a narrow range of progenitor masses (1.0 {<=} M(M{sub Sun }) {<=} 1.3) and metallicities (-2.8 {<=} [Fe/H] {<=}-2.5) yield the best agreement with our observed elemental abundance patterns.

  4. Observation

    ERIC Educational Resources Information Center

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  5. (non) Emergent Constraints

    NASA Astrophysics Data System (ADS)

    Jackson, C. S.; Hattab, M. W.; Huerta, G.

    2014-12-01

    Emergent constraints are observable quantities that provide some physical basis for testing or predicting how a climate model will respond to greenhouse gas forcing. Very few such constraints have been identified for the multi-model CMIP archive. Here we explore the question of whether constraints that apply to a single model, a perturbed parameter ensemble (PPE) of the Community Atmosphere Model (CAM3.1), can be applied to predicting the climate sensitivities of models within the CMIP archive. In particular we construct our predictive patterns from multivariate EOFs of the CAM3.1 ensemble control climate. Multiple regressive statistical models were created that do an excellent job of predicting CAM3.1 sensitivity to greenhouse gas forcing. However, these same patterns fail spectacularly to predict sensitivities of models within the CMIP archive. We attribute this failure to several factors. First, and perhaps the most important, is that the structures affecting climate sensitivity in CAM3.1 have a unique signature in the space of our multivariate EOF patterns that are unlike any other climate model. That is to say, we should not expect CAM3.1 to represent the way another models within CMIP archive respond to greenhouse gas forcing. The second, perhaps related, reason is that the CAM3.1 PPE does a poor job of spanning the range of climates and responses found within the CMIP archive. We shall discuss the implications of these results for the prospect of finding emergent constraints within the CMIP archive. We will also discuss what this may mean for establishing uncertainties in climate projections.

  6. Dynamic Constraint Satisfaction with Reasonable Global Constraints

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2003-01-01

    Previously studied theoretical frameworks for dynamic constraint satisfaction problems (DCSPs) employ a small set of primitive operators to modify a problem instance. They do not address the desire to model problems using sophisticated global constraints, and do not address efficiency questions related to incremental constraint enforcement. In this paper, we extend a DCSP framework to incorporate global constraints with flexible scope. A simple approach to incremental propagation after scope modification can be inefficient under some circumstances. We characterize the cases when this inefficiency can occur, and discuss two ways to alleviate this problem: adding rejection variables to the scope of flexible constraints, and adding new features to constraints that permit increased control over incremental propagation.

  7. Constraint monitoring in TOSCA

    NASA Technical Reports Server (NTRS)

    Beck, Howard

    1992-01-01

    The Job-Shop Scheduling Problem (JSSP) deals with the allocation of resources over time to factory operations. Allocations are subject to various constraints (e.g., production precedence relationships, factory capacity constraints, and limits on the allowable number of machine setups) which must be satisfied for a schedule to be valid. The identification of constraint violations and the monitoring of constraint threats plays a vital role in schedule generation in terms of the following: (1) directing the scheduling process; and (2) informing scheduling decisions. This paper describes a general mechanism for identifying constraint violations and monitoring threats to the satisfaction of constraints throughout schedule generation.

  8. Cosmological constraints on a decomposed Chaplygin gas

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Wands, David; Xu, Lixin; De-Santiago, Josue; Hojjati, Alireza

    2013-04-01

    Any unified dark matter cosmology can be decomposed into dark matter interacting with vacuum energy, without introducing any additional degrees of freedom. We present observational constraints on an interacting vacuum plus dark energy corresponding to a generalized Chaplygin gas cosmology. We consider two distinct models for the interaction leading to either a barotropic equation of state or dark matter that follows geodesics, corresponding to a rest-frame sound speed equal to the adiabatic sound speed or zero sound speed, respectively. For the barotropic model, the most stringent constraint on α comes from the combination of CMB+SNIa+LSS(m) gives α<5.66×10-6 at the 95% confidence level, which indicates that the barotropic model must be extremely close to the ΛCDM cosmology. For the case where the dark matter follows geodesics, perturbations have zero sound speed, and CMB+SNIa+gISW then gives the much weaker constraint -0.15<α<0.26 at the 95% confidence level.

  9. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    NASA Astrophysics Data System (ADS)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  10. PHOTOMETRIC CONSTRAINTS ON THE REDSHIFT OF z {approx} 10 CANDIDATE UDFj-39546284 FROM DEEPER WFC3/IR+ACS+IRAC OBSERVATIONS OVER THE HUDF

    SciTech Connect

    Bouwens, R. J.; Labbe, I.; Franx, M.; Smit, R.; Oesch, P. A.; Illingworth, G. D.; Magee, D.; Gonzalez, V.; Brammer, G.; Spitler, L. R.; Trenti, M.; Carollo, C. M.

    2013-03-01

    Ultra-deep WFC3/IR observations on the HUDF from the HUDF09 program revealed just one plausible z {approx} 10 candidate, UDFj-39546284. UDFj-39546284 had all the properties expected of a galaxy at z {approx} 10 showing (1) no detection in the deep ACS+WFC3 imaging data blueward of the F160W band, exhibiting (2) a blue spectral slope redward of the break, and showing (3) no prominent detection in deep IRAC observations. The new, similarly deep WFC3/IR HUDF12 F160W observations over the HUDF09/XDF allow us to further assess this candidate. These observations show that this candidate, previously only detected at {approx}5.9{sigma} in a single band, clearly corresponds to a real source. It is detected at {approx}5.3{sigma} in the new H{sub 160}-band data and at {approx}7.8{sigma} in the full 85-orbit H{sub 160}-band stack. Interestingly, the non-detection of the source (<1{sigma}) in the new F140W observations suggests a higher redshift. Formally, the best-fit redshift of the source utilizing all the WFC3+ACS (and IRAC+K{sub s} -band) observations is 11.8 {+-} 0.3. However, we consider the z {approx} 12 interpretation somewhat unlikely, since the source would either need to be {approx}20 Multiplication-Sign more luminous than expected or show very high-EW Ly{alpha} emission (which seems improbable given the extensive neutral gas prevalent early in the reionization epoch). Lower-redshift solutions fail if only continuum models are allowed. Plausible lower-redshift solutions require that the H{sub 160}-band flux be dominated by line emission such as H{alpha} or [O III] with extreme EWs. The tentative detection of line emission at 1.6 {mu}m in UDFj-39546284 in a companion paper suggests that such emission may have already been found.

  11. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    DOE PAGES

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; ...

    2016-09-19

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguishedmore » between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δcanopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An − gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An − gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination

  12. A 4DVAR System for the Navy Coastal Ocean Model. Part 2: Strong and Weak Constraint Assimilation Experiments with Real Observations in Monterey Bay

    DTIC Science & Technology

    2014-06-01

    systemwas tested in the first part of this study using synthetic surface and subsurface data. Here, a full range of real surface and subsurface data is...well as subsurface observations from gliders deployed during the second Autonomous Ocean SamplingNetwork field experiment in California’sMonterey Bay...day’s steam by research vessel. The real-time analysis and forecast support of the AOSN II field experiment was followed by reanalysis data experiments

  13. Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations

    NASA Astrophysics Data System (ADS)

    Wecht, K. J.; Jacob, D. J.; Sulprizio, M. P.; Santoni, G. W.; Wofsy, S. C.; Parker, R.; Bösch, H.; Worden, J.

    2014-02-01

    We apply a continental-scale inverse modeling system for North America based on the GEOS-Chem model to optimize California methane emissions at 1/2° × 2/3° horizontal resolution using atmospheric observations from the CalNex aircraft campaign (May-June 2010) and from satellites. Inversion of the CalNex data yields a best estimate for total California methane emissions of 2.86 ± 0.21 Tg yr-1, compared with 1.92 Tg yr-1 in the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg yr-1 in the California Air Resources Board (CARB) inventory used for state regulations of greenhouse gas emissions. These results are consistent with a previous Lagrangian inversion of the CalNex data. Our inversion provides 12 independent pieces of information to constrain the geographical distribution of emissions within California. Attribution to individual source types indicates dominant contributions to emissions from landfills/wastewater (1.1 Tg yr-1), livestock (0.87 Tg yr-1), and gas/oil (0.64 Tg yr-1). EDGAR v4.2 underestimates emissions from livestock while CARB underestimates emissions from landfills/wastewater and gas/oil. Current satellite observations from GOSAT can constrain methane emissions in the Los Angeles Basin but are too sparse to constrain emissions quantitatively elsewhere in California (they can still be qualitatively useful to diagnose inventory biases). Los Angeles Basin emissions derived from CalNex and GOSAT inversions are 0.42 ± 0.08 and 0.31 ± 0.08, respectively. An observation system simulation experiment (OSSE) shows that the future TROPOMI satellite instrument (2015 launch) will be able to constrain California methane emissions at a detail comparable to the CalNex aircraft campaign. Geostationary satellite observations offer even greater potential for constraining methane emissions in the future.

  14. Constraint on the Inflow/outflow Rates in Star-forming Galaxies at z ~ 1.4 from Molecular Gas Observations

    NASA Astrophysics Data System (ADS)

    Seko, Akifumi; Ohta, Kouji; Yabe, Kiyoto; Hatsukade, Bunyo; Akiyama, Masayuki; Tamura, Naoyuki; Iwamuro, Fumihide; Dalton, Gavin

    2016-12-01

    We constrain the rate of gas inflow into and outflow from a main-sequence star-forming galaxy at z∼ 1.4 by fitting a simple analytic model for the chemical evolution in a galaxy to the observational data of the stellar mass, metallicity, and molecular gas mass fraction. The molecular gas mass is derived from CO observations with a metallicity-dependent CO-to-H2 conversion factor, and the gas metallicity is derived from the Hα and [N ii]λ 6584 emission line ratio. Using a stacking analysis of CO integrated intensity maps and the emission lines of Hα and [N ii], the relation between stellar mass, metallicity, and gas mass fraction is derived. We constrain the inflow and outflow rates with least-chi-square fitting of a simple analytic chemical evolution model to the observational data. The best-fit inflow and outflow rates are ∼1.7 and ∼0.4 in units of star formation rate (SFR), respectively. The inflow rate is roughly comparable to the sum of the SFR and outflow rate, which supports the equilibrium model for galaxy evolution; i.e., all inflow gas is consumed by star formation and outflow.

  15. Constraints on holographic cosmologies from strong lensing systems

    SciTech Connect

    Cárdenas, Víctor H.; Bonilla, Alexander; Motta, Verónica; Campo, Sergio del E-mail: alex.bonilla@uv.cl E-mail: sdelcamp@ucv.cl

    2013-11-01

    We use strongly gravitationally lensed (SGL) systems to put additional constraints on a set of holographic dark energy models. Data available in the literature (redshift and velocity dispersion) is used to obtain the Einstein radius and compare it with model predictions. We found that the ΛCDM is the best fit to the data. Although a preliminary statistical analysis seems to indicate that two of the holographic models studied show interesting agreement with observations, a stringent test lead us to the result that neither of the holographic models are competitive with the ΛCDM. These results highlight the importance of Strong Lensing measurements to provide additional observational constraints to alternative cosmological models, which are necessary to shed some light into the dark universe.

  16. Composition of gaseous organic carbon during ECOCEM in Beirut, Lebanon: new observational constraints for VOC anthropogenic emission evaluation in the Middle East

    NASA Astrophysics Data System (ADS)

    Salameh, Thérèse; Borbon, Agnès; Afif, Charbel; Sauvage, Stéphane; Leonardis, Thierry; Gaimoz, Cécile; Locoge, Nadine

    2017-01-01

    The relative importance of eastern Mediterranean emissions is suspected to be largely underestimated compared to other regions worldwide. Here we use detailed speciated measurements of volatile organic compounds (VOCs) to evaluate the spatial heterogeneity of VOC urban emission composition and the consistency of regional and global emission inventories downscaled to Lebanon (European Monitoring and Evaluation Programme, EMEP; Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP; and MACCity, Monitoring Atmospheric Composition and Climate and megaCITY Zoom for the Environment). The assessment was conducted through the comparison of the emission ratios (ERs) extracted from the emission inventories to the ones obtained from the hourly observations collected at a suburban site in Beirut, Lebanon, during summer and winter ECOCEM (Emissions and Chemistry of Organic Carbon in the Eastern Mediterranean) campaigns. The observed ERs were calculated using two independent methods. ER values from both methods agree very well and are comparable to the ones of the road transport sector from near-field measurements for more than 80 % of the species. There is no significant seasonality in ER for more than 90 % of the species, unlike the seasonality usually observed in other cities worldwide. Regardless of the season, ERs agree within a factor of 2 between Beirut and other representative cities worldwide, except for the unburned fuel fraction and ethane. ERs of aromatics (except benzene) are higher in Beirut compared to northern post-industrialized countries and even the Middle Eastern city Mecca. The comparison of the observed ER to the ones extracted from the ACCMIP and MACCity global emission inventories suggests that the overall speciation of anthropogenic sources for major hydrocarbons that act as ozone and secondary organic aerosol (SOA) precursors in ACCMIP is better represented than other species. The comparison of the specific road transport ERs, relative

  17. Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations

    NASA Astrophysics Data System (ADS)

    Wecht, K. J.; Jacob, D. J.; Sulprizio, M. P.; Santoni, G. W.; Wofsy, S. C.; Parker, R.; Bösch, H.; Worden, J.

    2014-08-01

    We apply a continental-scale inverse modeling system for North America based on the GEOS-Chem model to optimize California methane emissions at 1/2° × 2/3° horizontal resolution using atmospheric observations from the CalNex aircraft campaign (May-June 2010) and from satellites. Inversion of the CalNex data yields a best estimate for total California methane emissions of 2.86 ± 0.21 Tg a-1, compared with 1.92 Tg a-1 in the EDGAR v4.2 emission inventory used as a priori and 1.51 Tg a-1 in the California Air Resources Board (CARB) inventory used for state regulations of greenhouse gas emissions. These results are consistent with a previous Lagrangian inversion of the CalNex data. Our inversion provides 12 independent pieces of information to constrain the geographical distribution of emissions within California. Attribution to individual source types indicates dominant contributions to emissions from landfills/wastewater (1.1 Tg a-1), livestock (0.87 Tg a-1), and gas/oil (0.64 Tg a-1). EDGAR v4.2 underestimates emissions from livestock, while CARB underestimates emissions from landfills/wastewater and gas/oil. Current satellite observations from GOSAT can constrain methane emissions in the Los Angeles Basin but are too sparse to constrain emissions quantitatively elsewhere in California (they can still be qualitatively useful to diagnose inventory biases). Los Angeles Basin emissions derived from CalNex and GOSAT inversions are 0.42 ± 0.08 and 0.31 ± 0.08 Tg a-1 that the future TROPOMI satellite instrument (2015 launch) will be able to constrain California methane emissions at a detail comparable to the CalNex aircraft campaign. Geostationary satellite observations offer even greater potential for constraining methane emissions in the future.

  18. New constraints on neutron star models of gamma-ray bursts. II - X-ray observations of three gamma-ray burst error boxes

    NASA Technical Reports Server (NTRS)

    Boer, M.; Hurley, K.; Pizzichini, G.; Gottardi, M.

    1991-01-01

    Exosat observations are presented for 3 gamma-ray-burst error boxes, one of which may be associated with an optical flash. No point sources were detected at the 3-sigma level. A comparison with Einstein data (Pizzichini et al., 1986) is made for the March 5b, 1979 source. The data are interpreted in the framework of neutron star models and derive upper limits for the neutron star surface temperatures, accretion rates, and surface densities of an accretion disk. Apart from the March 5b, 1979 source, consistency is found with each model.

  19. New constraints on the sulfur reservoir in the dense interstellar medium provided by Spitzer observations of S I in shocked gas

    SciTech Connect

    Anderson, Dana E.; Bergin, Edwin A.; Maret, Sébastien

    2013-12-20

    We present observations of fine-structure line emission of atomic sulfur, iron, and rotational lines of molecular hydrogen in shocks associated with several Class 0 protostars obtained with the Infrared Spectrograph of the Spitzer Space Telescope. We use these observations to investigate the 'missing sulfur problem', that significantly less sulfur is found in dense regions of the interstellar medium (ISM) than in diffuse regions. For sources where the sulfur fine-structure line emission is co-spatial with the detected molecular hydrogen emission and in the presence of weak iron emission, we derive sulfur and H{sub 2} column densities for the associated molecule-dominated C-shocks. We find the S I abundance to be ≳5%-10% of the cosmic sulfur abundance, indicating that atomic sulfur is a major reservoir of sulfur in shocked gas. This result suggests that in the quiescent dense ISM sulfur is present in some form that is released from grains as atoms, perhaps via sputtering, within the shock.

  20. Ground-based near-UV observations of 15 transiting exoplanets: constraints on their atmospheres and no evidence for asymmetrical transits

    NASA Astrophysics Data System (ADS)

    Turner, Jake D.; Pearson, Kyle A.; Biddle, Lauren I.; Smart, Brianna M.; Zellem, Robert T.; Teske, Johanna K.; Hardegree-Ullman, Kevin K.; Griffith, Caitlin C.; Leiter, Robin M.; Cates, Ian T.; Nieberding, Megan N.; Smith, Carter-Thaxton W.; Thompson, Robert M.; Hofmann, Ryan; Berube, Michael P.; Nguyen, Chi H.; Small, Lindsay C.; Guvenen, Blythe C.; Richardson, Logan; McGraw, Allison; Raphael, Brandon; Crawford, Benjamin E.; Robertson, Amy N.; Tombleson, Ryan; Carleton, Timothy M.; Towner, Allison P. M.; Walker-LaFollette, Amanda M.; Hume, Jeffrey R.; Watson, Zachary T.; Jones, Christen K.; Lichtenberger, Matthew J.; Hoglund, Shelby R.; Cook, Kendall L.; Crossen, Cory A.; Jorgensen, Curtis R.; Romine, James M.; Thompson, Alejandro R.; Villegas, Christian F.; Wilson, Ashley A.; Sanford, Brent; Taylor, Joanna M.; Henz, Triana N.

    2016-06-01

    Transits of exoplanets observed in the near-UV have been used to study the scattering properties of their atmospheres and possible star-planet interactions. We observed the primary transits of 15 exoplanets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-16b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-12b, WASP-33b, WASP-36b, WASP-44b, WASP-48b, and WASP-77Ab) in the near-UV and several optical photometric bands to update their planetary parameters, ephemerides, search for a wavelength dependence in their transit depths to constrain their atmospheres, and determine if asymmetries are visible in their light curves. Here, we present the first ground-based near-UV light curves for 12 of the targets (CoRoT-1b, GJ436b, HAT-P-1b, HAT-P-13b, HAT-P-22b, TrES-2b, TrES-4b, WASP-1b, WASP-33b, WASP-36b, WASP-48b, and WASP-77Ab). We find that none of the near-UV transits exhibit any non-spherical asymmetries, this result is consistent with recent theoretical predictions by Ben-Jaffel et al. and Turner et al. The multiwavelength photometry indicates a constant transit depth from near-UV to optical wavelengths in 10 targets (suggestive of clouds), and a varying transit depth with wavelength in 5 targets (hinting at Rayleigh or aerosol scattering in their atmospheres). We also present the first detection of a smaller near-UV transit depth than that measured in the optical in WASP-1b and a possible opacity source that can cause such radius variations is currently unknown. WASP-36b also exhibits a smaller near-UV transit depth at 2.6σ. Further observations are encouraged to confirm the transit depth variations seen in this study.

  1. Addition and correction: the NF-kappa B-like DNA binding activity observed in Dictyostelium nuclear extracts is due to the GBF transcription factor.

    PubMed

    Traincard, F; Ponte, E; Pun, J; Coukell, B; Veron, M

    2001-10-01

    We have previously reported that a NF-kappa B transduction pathway was likely to be present in the cellular slime mold Dictyostelium discoideum. This conclusion was based on several observations, including the detection of developmentally regulated DNA binding proteins in Dictyostelium nuclear extracts that bound to bona fide kappa B sequences. We have now performed additional experiments which demonstrate that the protein responsible for this NF-kappa B-like DNA binding activity is the Dictyostelium GBF (G box regulatory element binding factor) transcription factor. This result, along with the fact that no sequence with significant similarity to components of the mammalian NF-kappa B pathway can be found in Dictyostelium genome, now almost entirely sequenced, led us to reconsider our previous conclusion on the occurrence of a NF-kappa B signal transduction pathway in Dictyostelium.

  2. A comparison of the cosmic microwave and cosmic X-ray backgrounds - Constraints on local sources of the fluctuations observed by COBE

    NASA Technical Reports Server (NTRS)

    Boughn, S. P.; Jahoda, K.

    1993-01-01

    It has been suggested by Hogan (1992) that the microwave background anisotropy detected by the COBE DMR experiment (Smoot et al., 1992) might be produced by inverse Compton scattering from hot diffuse clouds of electrons in nearby superclusters. If the COBE fluctuations are due to this mechanism, then the absence of anticorrelations between maps of the cosmic microwave and cosmic X-ray backgrounds constrains the temperature (16 keV) and density (less than 2 x 10 exp -6/cu cm) of the ionized supercluster gas. Since the COBE limits on spectral distortion indicate that the temperature of the intergalactic medium is less than 10 keV, we conclude that the fluctuations observed by COBE are probably not produced by this mechanism.

  3. Seeing red in M32: Constraints on the stellar content from near- and mid-infrared observations and applications for studies of more distant galaxies {sup ,} {sup ,}

    SciTech Connect

    Davidge, T. J.

    2014-08-10

    The properties of asymptotic giant branch (AGB) stars in the Local Group galaxy M32 are investigated using ground- and space-based observations that span the 1-8 μm wavelength interval, with the goal of demonstrating the utility of infrared observations as probes of stellar content. Comparisons with isochrones indicate that the brightest resolved stars in M32 have ages of a few gigayears and are younger on average than AGB stars with the same intrinsic brightness in the outer disk of M31. Accounting for stellar variability is shown to be essential for modeling AGB luminosity functions (LFs). Model LFs that assume the star-forming history measured by Monachesi et al. and the variability properties of Galactic AGB stars match both the K and [5.8] LFs of M32. Models also suggest that the slope of the [5.8] LF between M{sub [5.8]} = –8.5 and –10.0 is sensitive to the mix of stellar ages, and a sizeable fraction of the stars in M32 must have an age older than 7 Gyr in order to match the [5.8] LF. The structural properties of M32 in the infrared are also investigated. The effective radii that are computed from near-infrared and mid-infrared isophotes are similar to those measured at visible wavelengths, suggesting that the stellar content of M32 is well mixed. However, isophotes at radii >16'' (>60 pc) in the near- and mid-infrared are flatter than those at visible wavelengths. The coefficient of the fourth-order cosine term in the Fourier expansion of isophotes changes from 'boxy' values at r < 16'' to 'disky' values at r > 48''in [3.6] and [4.5]. The mid-infrared colors near the center of M32 do not vary systematically with radius, providing evidence of a well mixed stellar content in this part of the galaxy.

  4. Seeing Red in M32: Constraints on the Stellar Content from Near- and Mid-infrared Observations and Applications for Studies of More Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2014-08-01

    The properties of asymptotic giant branch (AGB) stars in the Local Group galaxy M32 are investigated using ground- and space-based observations that span the 1-8 μm wavelength interval, with the goal of demonstrating the utility of infrared observations as probes of stellar content. Comparisons with isochrones indicate that the brightest resolved stars in M32 have ages of a few gigayears and are younger on average than AGB stars with the same intrinsic brightness in the outer disk of M31. Accounting for stellar variability is shown to be essential for modeling AGB luminosity functions (LFs). Model LFs that assume the star-forming history measured by Monachesi et al. and the variability properties of Galactic AGB stars match both the K and [5.8] LFs of M32. Models also suggest that the slope of the [5.8] LF between M [5.8] = -8.5 and -10.0 is sensitive to the mix of stellar ages, and a sizeable fraction of the stars in M32 must have an age older than 7 Gyr in order to match the [5.8] LF. The structural properties of M32 in the infrared are also investigated. The effective radii that are computed from near-infrared and mid-infrared isophotes are similar to those measured at visible wavelengths, suggesting that the stellar content of M32 is well mixed. However, isophotes at radii >16'' (>60 pc) in the near- and mid-infrared are flatter than those at visible wavelengths. The coefficient of the fourth-order cosine term in the Fourier expansion of isophotes changes from "boxy" values at r < 16'' to "disky" values at r > 48''in [3.6] and [4.5]. The mid-infrared colors near the center of M32 do not vary systematically with radius, providing evidence of a well mixed stellar content in this part of the galaxy. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  5. Keck and VLT Observations of Super-Damped Lyman-Alpha Absorbers at z 2- 2.5: Constraints on Chemical Compositions and Physical Conditions

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-01

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log NH i ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (˜-1.3 to -1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between NH i, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 - log NH i in the metallicity versus NH i plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230-0334 and Q0743+1421 do not cover H2 absorption lines. For Q1418+0718, some H2 lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log NH i < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230-0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ˜1.6 and ˜0.7 M⊙ yr-1, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log NH i > 21.7 may have somewhat narrower velocity dispersions Δv90 than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas. Includes observations collected during program ESO 93.A-0422 at the European Southern Observatory (ESO) Very Large Telescope (VLT) with the Ultraviolet-Visual Echelle Spectrograph (UVES) on the 8.2 m telescopes operated at the Paranal Observatory, Chile. Some of the data presented herein were

  6. First NuSTAR observations of the BL Lac - type blazar PKS 2155-304: constraints on the jet content and distribution of radiating particles

    NASA Astrophysics Data System (ADS)

    Madejski, Grzegorz; Nalewajko, Krzysztof; Madsen, Kristin; Chiang, James; Balokovic, Mislav; Paneque, David; Furniss, Amy; NuSTAR Team

    2017-01-01

    Current scenarios for emission mechanisms operating in relativistic jets in AGN involve synchrotron emission for the radio through UV spectrum, and inverse Compton for hard X-rays through γ-rays, but the particle content of relativistic jets - whether they are dominated by proton-electron, or e +/e- plasma - has not been established. Our first hard X-ray observations with NuSTAR of the BL Lac type blazar PKS 2155-304, augmented by XMM-Newton data, reveal the 0.5-60 keV spectrum as best-described by a soft power law component dominating below 10 keV (photon index of 3 at 2 keV), and a hard power-law tail (index 2), dominating in the 20-60 keV range. The hard X-ray tail can be smoothly joined to the quasi-simultaneous Fermi/LAT γ-ray spectrum by a synchrotron self-Compton component produced by an electron distribution with index p =2.2. The jet content needs to (globally) obey charge neutrality; assuming that the power-law electron distribution extends down to the Lorentz factor of 1, and one proton per electron, yields an unrealistically high total jet power of 1047 erg/s. This can be reduced by two orders of magnitude by considering a significant presence of e +/e- pairs with lepton-to-proton ratio of at least 30.

  7. Symmetry constraint for foreground extraction.

    PubMed

    Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai

    2014-05-01

    Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.

  8. Shear wave splitting observations across the Juan de Fuca plate system: Ridge- to-trench constraints on mantle flow from 2 years of Cascadia Initiative OBS data

    NASA Astrophysics Data System (ADS)

    Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    We present SKS splitting measurements for the first two years of data collected by the Cascadia Initiative (CI) amphibious array. Our analysis includes observations from over 100 ocean bottom seismometers (OBS), as well as 31 onshore stations, and spans both the Juan de Fuca and Gorda plates. The CI dataset is unique in that it includes several regions that can distinctly influence anisotropic fabric development such as: the upwelling mantle beneath the Juan de Fuca and Gorda ridges, the young evolving oceanic lithosphere of the plate interior, the Blanco transform fault, and the Cascadia subduction zone. For the first time, we are able to analyze these regions with a single dataset, and using a common methodology. Splitting measurements are routinely done on land sites, but have been completed on relatively few OBS stations. This is largely due to the low signal to noise present in OBS data, which can obscure the splitting results. To address that nearly all the OBS data exceeds the global high noise limit at the frequencies used for splitting, we implement a rigorous quality control scheme. Our method specifically takes into account the response of common splitting methods to high noise data and addresses known issues such as cycle skipping, false minima, low transverse energy, and near-null measurements. Individual measurements are filtered at 0.03-0.1 Hz, manually checked for quality, and stacked. Preliminary results show trench perpendicular onshore measurements consistent with previous studies. Oceanic measurements in the plate interior show a coherent fast axis roughly aligned with absolute plate motion. Several measurements near the ridge and trench appear to be rotated in the ridge and trench parallel directions. Continuing work will integrate splitting measurements from the final two years of the CI with these findings, which will be used to characterize the ridge-to-trench mantle flow across the Juan de Fuca plate system.

  9. GOCE observations and geophysical constraints to better understand the lithosphere and geodynamical processes under the Paraná-Etendeka region: preliminary results of PERLA project

    NASA Astrophysics Data System (ADS)

    Mariani, Patrizia; Braitenberg, Carla

    2014-05-01

    In the light of the considerable progress made by the modern geodetic satellite mission GOCE, one of the challenges of the European Space Agency (ESA) is to improve knowledge of physical properties and geodynamic processes of the lithosphere and the Earth deep interior, and their relationship to Earth-surface changes. In this context we propose a study that aims to understand the two pieces of lithosphere underlying the Paraná-Etendeka conjugate margins (Brazil, and Angola-Namibia). It is essential to collect the geological and geophysical information about the thickness and the density of sedimentary layers, crustal thickness and mantle inhomogeneities. Our methodology integrates the geophysical database with the GOCE data, product of the innovative gravity satellite mission, that was concluded November 2013. Crustal thickness was obtained from all available seismological datasets. The density-depth relation of the shallow layers is modeled by geophysical data collected from literature and from the on-shore and off-shore drilling programs. Several compaction laws are used to estimate the density of each layer. This information is necessary to reduce the observations considering the gravity effect of all intracrustal known layers, to resolve the deep crustal structures (e.g. Moho and intracrustal bodies). A positive gravity anomaly is expected due to the magmatic activity of the Paraná-Etendeka province. The smaller-scale and shallow gravity anomaly should be due to the occurrence of the volcanic activity close to the alkaline-carbonatite complexes, while the large-scale anomaly is expected from the underplating of a wide denser body at the depth of the crustal mantle boundary. In the present work some preliminary results of the inversion of the residual gravity anomaly in terms of densities in the middle and shallow lithosphere under the Paraná-Etendeka region will be presented and interpreted.

  10. The Suzaku Observation of the Nucleus of the Radio-loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    NASA Astrophysics Data System (ADS)

    Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J. N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-08-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3-250 keV. The net exposure times after screening were 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD GSO. The hard X-rays are fit by two power laws of the same slope, absorbed by columns of 1.5 and 7×1023 cm-2, respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the subparsec VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial-covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca, and Ni are detected. The Fe Kα line width yields a 200 lt-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  11. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-time Observations, First-light Time, Distance to NGC 4666, and Progenitor Constraints

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Piro, A. L.; Holoien, T. W.-S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Woźniak, P. R.

    2016-08-01

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”) discovered ASASSN-14lp just ˜2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ({{Δ }}{m}15(B)=0.80+/- 0.05), a B-band maximum at 2457015.82 ± 0.03, a rise time of {16.94}-0.10+0.11 days, and moderate host-galaxy extinction (E{(B-V)}{host}=0.33+/- 0.06). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of μ =30.8+/- 0.2, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 {R}⊙ .

  12. Towards New Constraints on the Tropical Ozone Budget: Interannual Variability in Peroxyacetyl Nitrate (PAN) Observations from the Aura Tropospheric Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Payne, V.; Fischer, E. V.; Jiang, Z.; Worden, J.; Alvarado, M. J.

    2014-12-01

    Peroxyacetyl nitrate (PAN) is a thermally unstable reservoir for NOx that allows NOx to be transported large distances, enabling ozone formation far downwind from the original source. Sources of PAN precursors include anthropogenic combustion, biomass burning, lightning and biogenic emissions. PAN chemistry plays a key role in determining the global ozone distribution. Until now, available measurements have been sparse and generally limited to intensive field campaigns. The Tropospheric Emission Spectrometer (TES), flying on the NASA Aura satellite, provides measurements of a range of trace gases that have spectral features in the thermal infrared, including ozone (O3), carbon monoxide (CO) and PAN. PAN can be retrieved from TES spectra for cases where the volume mixing ratio is above ~0.2 ppbv [Payne et al., 2014]. In this work, we present TES retrievals of PAN and CO in the tropics over the ten-year lifetime of the Aura mission. The TES PAN dataset offers an unprecedented insight into the inter-annual variability of PAN in the tropics. We compare TES retrievals of PAN, CO and O3 in the tropics to simulations from the GEOS-Chem global chemical transport model for austral spring (peak burning season) of selected years. In the tropics, GEOS-Chem predicts that the dominant sources of PAN are biomass burning and lightning. The version of GEOS-Chem used in this work has been specifically updated to improve the simulation of PAN [Fischer et al., 2014]. Similarities and differences between the TES measurements and the GEOS-Chem simulations are used to infer causes of inter-annual variability of tropical ozone. References:E. V. Fischer et al., Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution, Atmos. Chem. Phys., 14, 2679-2698, 2014 V. H. Payne et al., Satellite observations of peroxyacetyl nitrate from the Aura Tropospheric Emission Spectrometer, Atmos. Meas. Tech. Discuss., 7, 5347-5379, 2014

  13. The Suzaku Observation of the Nucleus of the Radio Loud Active Galaxy Centaurus A: Constraints on Abundances in the Accreting Material

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Takahashi, T.A; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J. N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-01-01

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The hard X-rays are fit by two power laws, absorbed by columns of 1.5 and 7 x 10(exp 23) per square centimeter. The dual power-laws are consistent with previous suggestions that the powerlaw components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, or are consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature VAPEC model, plus a third power-law component to account for scattered nuclear emission, kpc-scale jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The width of the Fe Ka line yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. K-shell absorption edges due to Fe, Ca, and S are detected. Elemental abundances are constrained via the fluorescent lines strengths, absorption edge depths and the diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.l) of the circumnuclear material compared to that in the metal-poor outer halo suggests that the accreting material could not have originated in the outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  14. The young and bright Type Ia supernova ASASSN-14lp: Discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints

    DOE PAGES

    Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; ...

    2016-07-27

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (more » $${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$$), a B-band maximum at 2457015.82 ± 0.03, a rise time of $${16.94}_{-0.10}^{+0.11}$$ days, and moderate host-galaxy extinction ($$E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $$\\mu =30.8\\pm 0.2$$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 $${R}_{\\odot }$$.« less

  15. The young and bright Type Ia supernova ASASSN-14lp: Discovery, early-time observations, first-light time, distance to NGC 4666, and progenitor constraints

    SciTech Connect

    Shappee, B. J.; Piro, A. L.; Holoien, T. W. -S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Wozniak, P. R.

    2016-07-27

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or "Assassin") discovered ASASSN-14lp just ~2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve (${\\rm{\\Delta }}{m}_{15}(B)=0.80\\pm 0.05$), a B-band maximum at 2457015.82 ± 0.03, a rise time of ${16.94}_{-0.10}^{+0.11}$ days, and moderate host-galaxy extinction ($E{(B-V)}_{\\mathrm{host}}=0.33\\pm 0.06$). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of $\\mu =30.8\\pm 0.2$, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Lastly, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 ${R}_{\\odot }$.

  16. The Suzaku Observation of the Nucleus of theRadio-Loud Active Galaxy Centaurus A: Constraints on Abundances of the Accreting Material

    SciTech Connect

    Markowitz, A.; Takahashi, T.; Watanabe, S.; Nakazawa, K.; Fukazawa, Y.; Kokubun, M.; Makishima, K.; Awaki, H.; Bamba, A.; Isobe, N.; Kataoka, J.; Madejski, G.; Mushotzky, R.; Okajima, T.; Ptak, A.; Reeves, J.N.; Ueda, Y.; Yamasaki, T.; Yaqoob, T.

    2007-06-27

    A Suzaku observation of the nucleus of the radio-loud AGN Centaurus A in 2005 has yielded a broadband spectrum spanning 0.3 to 250 keV. The net exposure times after screening were: 70 ks per X-ray Imaging Spectrometer (XIS) camera, 60.8 ks for the Hard X-ray Detector (HXD) PIN, and 17.1 ks for the HXD-GSO. The hard X-rays are fit by two power-laws of the same slope, absorbed by columns of 1.5 and 7 x 10{sup 23} cm{sup -2} respectively. The spectrum is consistent with previous suggestions that the power-law components are X-ray emission from the sub-pc VLBI jet and from Bondi accretion at the core, but it is also consistent with a partial covering interpretation. The soft band is dominated by thermal emission from the diffuse plasma and is fit well by a two-temperature vapec model, plus a third power-law component to account for scattered nuclear emission, jet emission, and emission from X-ray Binaries and other point sources. Narrow fluorescent emission lines from Fe, Si, S, Ar, Ca and Ni are detected. The Fe K{alpha} line width yields a 200 light-day lower limit on the distance from the black hole to the line-emitting gas. Fe, Ca, and S K-shell absorption edges are detected. Elemental abundances are constrained via absorption edge depths and strengths of the fluorescent and diffuse plasma emission lines. The high metallicity ([Fe/H]=+0.1) of the circumnuclear material suggests that it could not have originated in the relatively metal-poor outer halo unless enrichment by local star formation has occurred. Relative abundances are consistent with enrichment from Type II and Ia supernovae.

  17. KECK AND VLT OBSERVATIONS OF SUPER-DAMPED Lyα ABSORBERS AT z ∼ 2–2.5: CONSTRAINTS ON CHEMICAL COMPOSITIONS AND PHYSICAL CONDITIONS

    SciTech Connect

    Kulkarni, Varsha P.; Som, Debopam; Morrison, Sean; Péroux, Celine; Quiret, Samuel; York, Donald G.

    2015-12-10

    We report Keck/Echellette Spectrograph and Imager and Very Large Telescope/Ultraviolet-Visual Echelle Spectrograph observations of three super-damped Lyα quasar absorbers with H i column densities log N{sub H} {sub i} ≥ 21.7 at redshifts 2 ≲ z ≲ 2.5. All three absorbers show similar metallicities (∼−1.3 to −1.5 dex), and dust depletion of Fe, Ni, and Mn. Two of the absorbers show supersolar [S/Zn] and [Si/Zn]. We combine our results with those for other damped Lyα a absorbers (DLAs) to examine trends between N{sub H} {sub i}, metallicity, and dust depletion. A larger fraction of the super-DLAs lie close to or above the line [X/H] = 20.59 − log N{sub H} {sub i} in the metallicity versus N{sub H} {sub i} plot, compared to the less gas-rich DLAs, suggesting that super-DLAs are more likely to be rich in molecules. Unfortunately, our data for Q0230−0334 and Q0743+1421 do not cover H{sub 2} absorption lines. For Q1418+0718, some H{sub 2} lines are covered, but not detected. CO is not detected in any of our absorbers. For DLAs with log N{sub H} {sub i} < 21.7, we confirm strong correlation between metallicity and Fe depletion, and find a correlation between metallicity and Si depletion. For super-DLAs, these correlations are weaker or absent. The absorbers toward Q0230−0334 and Q1418+0718 show potential detections of weak Lyα emission, implying star formation rates of ∼1.6 and ∼0.7 M{sub ⊙} yr{sup −1}, respectively (ignoring dust extinction). Upper limits on the electron densities from C ii*/C ii or Si ii*/Si ii are low, but are higher than the median values in less gas-rich DLAs. Finally, systems with log N{sub H} {sub i} > 21.7 may have somewhat narrower velocity dispersions Δv{sub 90} than the less gas-rich DLAs, and may arise in cooler and/or less turbulent gas.

  18. Neural constraints on learning.

    PubMed

    Sadtler, Patrick T; Quick, Kristin M; Golub, Matthew D; Chase, Steven M; Ryu, Stephen I; Tyler-Kabara, Elizabeth C; Yu, Byron M; Batista, Aaron P

    2014-08-28

    Learning, whether motor, sensory or cognitive, requires networks of neurons to generate new activity patterns. As some behaviours are easier to learn than others, we asked if some neural activity patterns are easier to generate than others. Here we investigate whether an existing network constrains the patterns that a subset of its neurons is capable of exhibiting, and if so, what principles define this constraint. We employed a closed-loop intracortical brain-computer interface learning paradigm in which Rhesus macaques (Macaca mulatta) controlled a computer cursor by modulating neural activity patterns in the primary motor cortex. Using the brain-computer interface paradigm, we could specify and alter how neural activity mapped to cursor velocity. At the start of each session, we observed the characteristic activity patterns of the recorded neural population. The activity of a neural population can be represented in a high-dimensional space (termed the neural space), wherein each dimension corresponds to the activity of one neuron. These characteristic activity patterns comprise a low-dimensional subspace (termed the intrinsic manifold) within the neural space. The intrinsic manifold presumably reflects constraints imposed by the underlying neural circuitry. Here we show that the animals could readily learn to proficiently control the cursor using neural activity patterns that were within the intrinsic manifold. However, animals were less able to learn to proficiently control the cursor using activity patterns that were outside of the intrinsic manifold. These results suggest that the existing structure of a network can shape learning. On a timescale of hours, it seems to be difficult to learn to generate neural activity patterns that are not consistent with the existing network structure. These findings offer a network-level explanation for the observation that we are more readily able to learn new skills when they are related to the skills that we already

  19. Functional constraints on phenomenological coefficients

    NASA Astrophysics Data System (ADS)

    Klika, Václav; Pavelka, Michal; Benziger, Jay B.

    2017-02-01

    Thermodynamic fluxes (diffusion fluxes, heat flux, etc.) are often proportional to thermodynamic forces (gradients of chemical potentials, temperature, etc.) via the matrix of phenomenological coefficients. Onsager's relations imply that the matrix is symmetric, which reduces the number of unknown coefficients is reduced. In this article we demonstrate that for a class of nonequilibrium thermodynamic models in addition to Onsager's relations the phenomenological coefficients must share the same functional dependence on the local thermodynamic state variables. Thermodynamic models and experimental data should be validated through consistency with the functional constraint. We present examples of coupled heat and mass transport (thermodiffusion) and coupled charge and mass transport (electro-osmotic drag). Additionally, these newly identified constraints further reduce the number of experiments needed to describe the phenomenological coefficient.

  20. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  1. Temporal Constraint Reasoning With Preferences

    NASA Technical Reports Server (NTRS)

    Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca

    2001-01-01

    A number of reasoning problems involving the manipulation of temporal information can naturally be viewed as implicitly inducing an ordering of potential local decisions involving time (specifically, associated with durations or orderings of events) on the basis of preferences. For example. a pair of events might be constrained to occur in a certain order, and, in addition. it might be preferable that the delay between them be as large, or as small, as possible. This paper explores problems in which a set of temporal constraints is specified, where each constraint is associated with preference criteria for making local decisions about the events involved in the constraint, and a reasoner must infer a complete solution to the problem such that, to the extent possible, these local preferences are met in the best way. A constraint framework for reasoning about time is generalized to allow for preferences over event distances and durations, and we study the complexity of solving problems in the resulting formalism. It is shown that while in general such problems are NP-hard, some restrictions on the shape of the preference functions, and on the structure of the preference set, can be enforced to achieve tractability. In these cases, a simple generalization of a single-source shortest path algorithm can be used to compute a globally preferred solution in polynomial time.

  2. Astrophysical and cosmological constraints to neutrino properties

    NASA Technical Reports Server (NTRS)

    Kolb, Edward W.; Schramm, David N.; Turner, Michael S.

    1989-01-01

    The astrophysical and cosmological constraints on neutrino properties (masses, lifetimes, numbers of flavors, etc.) are reviewed. The freeze out of neutrinos in the early Universe are discussed and then the cosmological limits on masses for stable neutrinos are derived. The freeze out argument coupled with observational limits is then used to constrain decaying neutrinos as well. The limits to neutrino properties which follow from SN1987A are then reviewed. The constraint from the big bang nucleosynthesis on the number of neutrino flavors is also considered. Astrophysical constraints on neutrino-mixing as well as future observations of relevance to neutrino physics are briefly discussed.

  3. Meteoritic and Asteroidal Constraints on the Identification and Collisional Evolution of Asteroid Families

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.; Kelley, Michael S.; Hardersen, Paul S.

    2002-01-01

    Studies of meteorites and observations of asteroids can provide important constraints on the formation and evolution of asteroid families. The iron meteorites alone require the disruption of 85 differentiated asteroids, and the potential formation of 85 families. Additional information is contained in the original extended abstract.

  4. Integral Constraints and MHD Stability

    NASA Astrophysics Data System (ADS)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  5. On Random Betweenness Constraints

    NASA Astrophysics Data System (ADS)

    Goerdt, Andreas

    Ordering constraints are analogous to instances of the satisfiability problem in conjunctive normalform, but instead of a boolean assignment we consider a linear ordering of the variables in question. A clause becomes true given a linear ordering iff the relative ordering of its variables obeys the constraint considered.

  6. Creating Positive Task Constraints

    ERIC Educational Resources Information Center

    Mally, Kristi K.

    2006-01-01

    Constraints are characteristics of the individual, the task, or the environment that mold and shape movement choices and performances. Constraints can be positive--encouraging proficient movements or negative--discouraging movement or promoting ineffective movements. Physical educators must analyze, evaluate, and determine the effect various…

  7. Credit Constraints in Education

    ERIC Educational Resources Information Center

    Lochner, Lance; Monge-Naranjo, Alexander

    2012-01-01

    We review studies of the impact of credit constraints on the accumulation of human capital. Evidence suggests that credit constraints have recently become important for schooling and other aspects of households' behavior. We highlight the importance of early childhood investments, as their response largely determines the impact of credit…

  8. Constraint Reasoning Over Strings

    NASA Technical Reports Server (NTRS)

    Koga, Dennis (Technical Monitor); Golden, Keith; Pang, Wanlin

    2003-01-01

    This paper discusses an approach to representing and reasoning about constraints over strings. We discuss how many string domains can often be concisely represented using regular languages, and how constraints over strings, and domain operations on sets of strings, can be carried out using this representation.

  9. REPRODUCING THE OBSERVED ABUNDANCES IN RCB AND HdC STARS WITH POST-DOUBLE-DEGENERATE MERGER MODELS-CONSTRAINTS ON MERGER AND POST-MERGER SIMULATIONS AND PHYSICS PROCESSES

    SciTech Connect

    Menon, Athira; Herwig, Falk; Denissenkov, Pavel A.; Clayton, Geoffrey C.; Staff, Jan; Pignatari, Marco; Paxton, Bill

    2013-07-20

    The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, {sup 16}O/{sup 18}O {approx_equal} 1-10, {sup 12}C/{sup 13}C {>=} 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: {sup 16}O/{sup 18}O ratios between 9 and 15, C-isotopic ratios above 100, and {approx}1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease {approx}10{sup 6} yr after the dynamic merger phase before the star enters the RCB phase.

  10. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  11. A compendium of chameleon constraints

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Sakstein, Jeremy

    2016-11-01

    The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f(R) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.

  12. Observation of the Effectiveness of Drama Method in Helping to Acquire the Addition-Subtraction Skills by Children at Preschool Phase

    ERIC Educational Resources Information Center

    Soydan, Sema; Quadir, Seher Ersoy

    2013-01-01

    Principal aim of this study is to show the effectiveness of the program prepared by researchers in order to enable 6 year-old children attending pre-school educational institutions to effectively gain addition subtraction skills through a drama-related method. The work group in the research comprised of 80 kids who continued their education in…

  13. Constraint Theory and Roken Bond Bending Constraints in Oxide Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Min

    The molecular structure of sodium tellurate glasses was established using ^{125}Te absorption and ^{129}I emission Mossbauer spectroscopies, differential scanning calorimetry (DSC), molar volume measurements and powder x-ray diffraction (XRD). The local atomic arrangement in these glasses is found to be different from that in corresponding crystals. This picture does not follow the usual thinking (Ioffe-Regel rule) about glass structure. The experimental evidence for this conclusion derives not only from Mossbauer spectroscopy but also from time-temperature -transformation curve and powder XRD measurements used to examine the crystallization of the bulk glasses. The TTT -curve exhibits both nucleation and growth branches, while XRD scans reveal growth of metastable phases before forming the stable crystalline phases. These results are in harmony with ^{23}Na solid state NMR results that reveal that sodium local environment in a x = 0.20 glass differs qualitatively from that of the crystalline counterpart. Results from DCS and XRD measurements reveal that at x = 0.18 several observables such as, dT_{g}/dx, activation energy for enthalpy relaxation, molar volume and Lamb-Mossbauer f factor, each display a threshold behavior. We believe that the physical origin of this threshold behavior comes from the rigidity percolation threshold. The constraint theory has recently been extended to include one-fold coordinated species and broken bond bending (beta) constraints. The latter was developed and has been applied successfully to many glass systems including the oxides, as we did for the first time in our Science paper, but also to chalcogenides and chalcohalides, etc.. In the experiments, the observed threshold apparently shifts to the over-constrained regime, i.e. > 2.4 in many glass systems. This shift is largely due to broken beta -constraint at some two-fold coordinated atoms, e.g. Se/S in chain segments and oxygen atoms. An example is g-Ge _{x}Se_{1-x } where one

  14. Flux Transfer Events Simultaneously Observed by Polar and Cluster: Flux Rope in the Subsolar Region and Flux Tube Addition to the Polar Cusp

    NASA Technical Reports Server (NTRS)

    Le, G.; Zheng, Y.; Russell, C. T.; Pfaff, R. F.; Lin, N.; Slavin, J. A.; Parks, G.; Wilber, M.; Petrinec, S. M.; Lucek, E. A.; Reme, H.

    2007-01-01

    The phenomenon called flux transfer events (FTEs) is widely accepted as the manifestation of time-dependent reconnection. In this paper, we present observational evidence of a flux transfer event observed simultaneously at low-latitude by Polar and at high-latitude by Cluster. This event occurs on March 21, 2002, when both Cluster and Polar are located near local noon but with a large latitudinal separation. During the event, Cluster is moving outbound from the polar cusp to the magnetosheath, and Polar is in the magnetosheath near the equatorial magnetopause. The observations show that a flux transfer event occurs between the equator and the northern cusp. Polar and Cluster observe the FTE s two open flux tubes: Polar encounters the southward moving flux tube near the equator; and Cluster the northward moving flux tube at high latitude. The low latitude FTE appears to be a flux rope with helical magnetic field lines as it has a strong core field and the magnetic field component in the boundary normal direction exhibits a strong bi-polar variation. Unlike the low-latitude FTE, the high-latitude FTE observed by Cluster does not exhibit the characteristic bi-polar perturbation in the magnetic field. But the plasma data clearly reveal its open flux tube configuration. It shows that the magnetic field lines have straightened inside the FTE and become more aligned to the neighboring flux tubes as it moves to the cusp. Enhanced electrostatic fluctuations have been observed within the FTE core, both at low- and high-latitudes. This event provides a unique opportunity to understand high-latitude FTE signatures and the nature of time-varying reconnection.

  15. Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari; Frank, Jeremy

    2013-01-01

    In this paper we describe Constraint-based Attribute and Interval Planning (CAIP), a paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm, based on temporal intervals and attributes. We then show how the plans are naturally expressed by networks of constraints, and show that the process of planning maps directly to dynamic constraint reasoning. In addition, we de ne compatibilities, a compact mechanism for describing planning domains. We describe how this framework can incorporate the use of constraint reasoning technology to improve planning. Finally, we describe EUROPA, an implementation of the CAIP framework.

  16. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  17. Animal movement constraints improve resource selection inference in the presence of telemetry error

    USGS Publications Warehouse

    Brost, Brian M.; Hooten, Mevin B.; Hanks, Ephraim M.; Small, Robert J.

    2016-01-01

    Multiple factors complicate the analysis of animal telemetry location data. Recent advancements address issues such as temporal autocorrelation and telemetry measurement error, but additional challenges remain. Difficulties introduced by complicated error structures or barriers to animal movement can weaken inference. We propose an approach for obtaining resource selection inference from animal location data that accounts for complicated error structures, movement constraints, and temporally autocorrelated observations. We specify a model for telemetry data observed with error conditional on unobserved true locations that reflects prior knowledge about constraints in the animal movement process. The observed telemetry data are modeled using a flexible distribution that accommodates extreme errors and complicated error structures. Although constraints to movement are often viewed as a nuisance, we use constraints to simultaneously estimate and account for telemetry error. We apply the model to simulated data, showing that it outperforms common ad hoc approaches used when confronted with measurement error and movement constraints. We then apply our framework to an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that is constrained to move within the marine environment and adjacent coastlines.

  18. Distance between homologous chromosomes results from chromosome positioning constraints.

    PubMed

    Heride, Claire; Ricoul, Michelle; Kiêu, Kien; von Hase, Johann; Guillemot, Vincent; Cremer, Christoph; Dubrana, Karine; Sabatier, Laure

    2010-12-01

    The organization of chromosomes is important for various biological processes and is involved in the formation of rearrangements often observed in cancer. In mammals, chromosomes are organized in territories that are radially positioned in the nucleus. However, it remains unclear whether chromosomes are organized relative to each other. Here, we examine the nuclear arrangement of 10 chromosomes in human epithelial cancer cells by three-dimensional FISH analysis. We show that their radial position correlates with the ratio of their gene density to chromosome size. We also observe that inter-homologue distances are generally larger than inter-heterologue distances. Using numerical simulations taking radial position constraints into account, we demonstrate that, for some chromosomes, radial position is enough to justify the inter-homologue distance, whereas for others additional constraints are involved. Among these constraints, we propose that nucleolar organizer regions participate in the internal positioning of the acrocentric chromosome HSA21, possibly through interactions with nucleoli. Maintaining distance between homologous chromosomes in human cells could participate in regulating genome stability and gene expression, both mechanisms that are key players in tumorigenesis.

  19. Constraints in Genetic Programming

    NASA Technical Reports Server (NTRS)

    Janikow, Cezary Z.

    1996-01-01

    Genetic programming refers to a class of genetic algorithms utilizing generic representation in the form of program trees. For a particular application, one needs to provide the set of functions, whose compositions determine the space of program structures being evolved, and the set of terminals, which determine the space of specific instances of those programs. The algorithm searches the space for the best program for a given problem, applying evolutionary mechanisms borrowed from nature. Genetic algorithms have shown great capabilities in approximately solving optimization problems which could not be approximated or solved with other methods. Genetic programming extends their capabilities to deal with a broader variety of problems. However, it also extends the size of the search space, which often becomes too large to be effectively searched even by evolutionary methods. Therefore, our objective is to utilize problem constraints, if such can be identified, to restrict this space. In this publication, we propose a generic constraint specification language, powerful enough for a broad class of problem constraints. This language has two elements -- one reduces only the number of program instances, the other reduces both the space of program structures as well as their instances. With this language, we define the minimal set of complete constraints, and a set of operators guaranteeing offspring validity from valid parents. We also show that these operators are not less efficient than the standard genetic programming operators if one preprocesses the constraints - the necessary mechanisms are identified.

  20. Effects of Rhenium Addition on the Temporal Evolution of the Nanostructure and Chemistry of a Model Ni-Cr-Al Superalloy. 1; Experimental Observations

    NASA Technical Reports Server (NTRS)

    Yoon, Kevin E.; Noebe, Ronald D.; Seidman, David N.

    2006-01-01

    The temporal evolution of the nanostructure and chemistry of a model Ni-8.5 at.% Cr-10 at. % Al alloy, with the addition of 2 at.% Re, aged at 1073 K from 0.25 to 264 h, was studied. Transmission electron microscopy and atom-probe tomography were used to measure the number density and mean radius of the gamma prime (L1(sub 2) structure)-precipitates and the chemistry of the gamma prime-precipitates and the gamma (face-centered cubic)-matrix, including the partitioning behavior of all alloying elements between the gamma- and gamma prime-phases and the segregation behavior at gamma/gamma prime interfaces. The precipitates remained spheroidal for an aging time of up to 264 h and, unlike commercial nickel-based superalloys containing Re, there was not confined (nonmonotonic) Re segregation at the gamma/gamma prime interfaces.

  1. Trajectory constraints in qualitative simulation

    SciTech Connect

    Brajnik, G.; Clancy, D.J.

    1996-12-31

    We present a method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. This capability can be used to focus a simulation, simulate non-autonomous and piecewise-continuous systems, reason about boundary condition problems and incorporate observations into the simulation. The method has been implemented in TeQSIM, a qualitative simulator that combines the expressive power of qualitative differential equations with temporal logic. It interleaves temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.

  2. Regularized Mathematical Programs with Stochastic Equilibrium Constraints: Estimating Structural Demand Models

    DTIC Science & Technology

    2013-07-23

    equilibrium constraints involving only single-valued Lipschitz continuous functions. In addition, sampling has the further effect of replacing the...constraints, based on regularization, that replaces them by equilibrium constraints involving only single-valued Lipschitz continuous functions. In addition...only single-valued Lipschitz continuous functions. In addition, sampling has the further effect of replacing the ‘simplified’ equilibrium constraints by

  3. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  4. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  5. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow.

    PubMed

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.

  6. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow

    PubMed Central

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E.; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao’s index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production. PMID:26295345

  7. Learning and Applying Contextual Constraints in Sentence Comprehension

    DTIC Science & Technology

    1988-06-08

    learns to perform these tasks through practice on Processing example sentence/event pairs. The learning procedure allows the model’to take a long...and to anticipate additional constituents. The network learns to perform these tasks through practice on processing example sentence/event pairs. The...constraints. Together, the constraints lead to a coherent interpretation of the sentence (MacWhinney, 1987). These constraints are not typically all

  8. An Eight-Eyed Version of Hawkins and Shohet's Clinical Supervision Model: The Addition of the Cognitive Analytic Therapy Concept of the "Observing Eye/I" as the "Observing Us"

    ERIC Educational Resources Information Center

    Darongkamas, Jurai; John, Christopher; Walker, Mark James

    2014-01-01

    This paper proposes incorporating the concept of the "observing eye/I", from cognitive analytic therapy (CAT), to Hawkins and Shohet's seven modes of supervision, comprising their transtheoretical model of supervision. Each mode is described alongside explicit examples relating to CAT. This modification using a key idea from CAT (in…

  9. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    DOE PAGES

    Haan, T. de; Benson, B. A.; Bleem, L. E.; ...

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified atmore » $$z\\gt 0.25$$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find $${\\sigma }_{8}=0.784\\pm 0.039$$ and $${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$$, with the parameter combination $${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ($${N}_{\\mathrm{eff}}$$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $$w=-1.023\\pm 0.042$$.« less

  10. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    SciTech Connect

    Haan, T. de; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Linden, A. von der; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at $z\\gt 0.25$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find ${\\sigma }_{8}=0.784\\pm 0.039$ and ${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$, with the parameter combination ${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (${N}_{\\mathrm{eff}}$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $w=-1.023\\pm 0.042$.

  11. Cosmological Constraints from Galaxy Clusters in the 2500 Square-degree SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    de Haan, T.; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev-Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z\\gt 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H 0 and find {σ }8=0.784+/- 0.039 and {{{Ω }}}m=0.289+/- 0.042, with the parameter combination {σ }8{({{{Ω }}}m/0.27)}0.3=0.797+/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ({N}{eff}) are free parameters. When combined with constraints from the Planck CMB, H 0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w=-1.023+/- 0.042.

  12. Precision constraints on extra fermion generations.

    PubMed

    Erler, Jens; Langacker, Paul

    2010-07-16

    There has been recent renewed interest in the possibility of additional fermion generations. At the same time there have been significant changes in the relevant electroweak precision constraints, in particular, in the interpretation of several of the low energy experiments. We summarize the various motivations for extra families and analyze them in view of the latest electroweak precision data.

  13. Adaptive output feedback control for a class of nonlinear systems with full-state constraints

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Jun; Li, Dong-Juan; Tong, Shaocheng

    2014-02-01

    This paper studies an adaptive output-feedback control for a class of nonlinear single-input and single-output (SISO) systems with the full-state constraints. A state observer is designed to estimate those unmeasured states. At present, all the results in the output-feedback area ignore the effects of the full-state constraints. The presence of these constraints results in a complicated procedure and the major difficulties in the design. The barrier Lyapunov function (BLF) and a novel design procedure are given to overcome these difficulties. The adaptation law and the controllers are obtained based on the backstepping design procedure. In addition, only one adjustable parameter needs to be updated, and thus, the online computation burden is alleviated. The stability of the closed-loop system is proven by using the Lyapunov theorem. A simulation example is given to verify the effectiveness of the approach.

  14. Distance and slope constraints: adaptation and variability in golf putting.

    PubMed

    Dias, Gonçalo; Couceiro, Micael S; Barreiros, João; Clemente, Filipe M; Mendes, Rui; Martins, Fernando M

    2014-07-01

    The main objective of this study is to understand the adaptation to external constraints and the effects of variability in a golf putting task. We describe the adaptation of relevant variables of golf putting to the distance to the hole and to the addition of a slope. The sample consisted of 10 adult male (33.80 ± 11.89 years), volunteers, right handed and highly skilled golfers with an average handicap of 10.82. Each player performed 30 putts at distances of 2, 3 and 4 meters (90 trials in Condition 1). The participants also performed 90 trials, at the same distances, with a constraint imposed by a slope (Condition 2). The results indicate that the players change some parameters to adjust to the task constraints, namely the duration of the backswing phase, the speed of the club head and the acceleration at the moment of impact with the ball. The effects of different golf putting distances in the no-slope condition on different kinematic variables suggest a linear adjustment to distance variation that was not observed when in the slope condition.

  15. A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints

    SciTech Connect

    de Leon, M.; de Diego, D.M.

    1997-06-01

    We construct a constraint algorithm for singular Lagrangian systems subjected to nonholonomic constraints which generalizes that of Dirac for constrained Hamiltonian systems. {copyright} {ital 1997 American Institute of Physics.}

  16. A Constraint-based Attribute and Interval Planning

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Jonsson, Ari; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we introduce Constraint-based Attribute and Interval Planning (CAIP), a new paradigm for representing and reasoning about plans. The paradigm enables the description of planning domains with time, resources, concurrent activities, mutual exclusions among sets of activities, disjunctive preconditions and conditional effects. We provide a theoretical foundation for the paradigm using a mapping to first order logic. We also show that CAIP plans are naturally expressed by networks of constraints, and that planning maps directly to dynamic constraint reasoning. In addition, we show how constraint templates are used to provide a compact mechanism for describing planning domains.

  17. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocations for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its applications to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  18. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1991-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  19. Constraint-based scheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte

    1993-01-01

    The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.

  20. Hard and Soft Constraints in Reliability-Based Design Optimization

    NASA Technical Reports Server (NTRS)

    Crespo, L.uis G.; Giesy, Daniel P.; Kenny, Sean P.

    2006-01-01

    This paper proposes a framework for the analysis and design optimization of models subject to parametric uncertainty where design requirements in the form of inequality constraints are present. Emphasis is given to uncertainty models prescribed by norm bounded perturbations from a nominal parameter value and by sets of componentwise bounded uncertain variables. These models, which often arise in engineering problems, allow for a sharp mathematical manipulation. Constraints can be implemented in the hard sense, i.e., constraints must be satisfied for all parameter realizations in the uncertainty model, and in the soft sense, i.e., constraints can be violated by some realizations of the uncertain parameter. In regard to hard constraints, this methodology allows (i) to determine if a hard constraint can be satisfied for a given uncertainty model and constraint structure, (ii) to generate conclusive, formally verifiable reliability assessments that allow for unprejudiced comparisons of competing design alternatives and (iii) to identify the critical combination of uncertain parameters leading to constraint violations. In regard to soft constraints, the methodology allows the designer (i) to use probabilistic uncertainty models, (ii) to calculate upper bounds to the probability of constraint violation, and (iii) to efficiently estimate failure probabilities via a hybrid method. This method integrates the upper bounds, for which closed form expressions are derived, along with conditional sampling. In addition, an l(sub infinity) formulation for the efficient manipulation of hyper-rectangular sets is also proposed.

  1. Structure Constraints in a Constraint-Based Planner

    NASA Technical Reports Server (NTRS)

    Pang, Wan-Lin; Golden, Keith

    2004-01-01

    In this paper we report our work on a new constraint domain, where variables can take structured values. Earth-science data processing (ESDP) is a planning domain that requires the ability to represent and reason about complex constraints over structured data, such as satellite images. This paper reports on a constraint-based planner for ESDP and similar domains. We discuss our approach for translating a planning problem into a constraint satisfaction problem (CSP) and for representing and reasoning about structured objects and constraints over structures.

  2. Compact location problems with budget and communication constraints

    SciTech Connect

    Krumke, S.O.; Noltemeier, H.; Ravi, S.S.; Marathe, M.V.

    1995-05-01

    We consider the problem of placing a specified number p of facilities on the nodes of a given network with two nonnegative edge-weight functions so as to minimize the diameter of the placement with respect to the first distance function under diameter or sum-constraints with respect to the second weight function. Define an ({alpha}, {beta})-approximation algorithm as a polynomial-time algorithm that produces a solution within a times the optimal function value, violating the constraint with respect to the second distance function by a factor of at most {beta}. We observe that in general obtaining an ({alpha}, {beta})-approximation for any fixed {alpha}, {beta} {ge} 1 is NP-hard for any of these problems. We present efficient approximation algorithms for the case, when both edge-weight functions obey the triangle inequality. For the problem of minimizing the diameter under a diameter Constraint with respect to the second weight-function, we provide a (2,2)-approximation algorithm. We. also show that no polynomial time algorithm can provide an ({alpha},2 {minus} {var_epsilon})- or (2 {minus} {var_epsilon},{beta})-approximation for any fixed {var_epsilon} > 0 and {alpha},{beta} {ge} 1, unless P = NP. This result is proved to remain true, even if one fixes {var_epsilon}{prime} > 0 and allows the algorithm to place only 2p/{vert_bar}VI{vert_bar}/{sup 6 {minus} {var_epsilon}{prime}} facilities. Our techniques can be extended to the case, when either the objective or the constraint is of sum-type and also to handle additional weights on the nodes of the graph.

  3. Atom mapping with constraint programming.

    PubMed

    Mann, Martin; Nahar, Feras; Schnorr, Norah; Backofen, Rolf; Stadler, Peter F; Flamm, Christoph

    2014-01-01

    Chemical reactions are rearrangements of chemical bonds. Each atom in an educt molecule thus appears again in a specific position of one of the reaction products. This bijection between educt and product atoms is not reported by chemical reaction databases, however, so that the "Atom Mapping Problem" of finding this bijection is left as an important computational task for many practical applications in computational chemistry and systems biology. Elementary chemical reactions feature a cyclic imaginary transition state (ITS) that imposes additional restrictions on the bijection between educt and product atoms that are not taken into account by previous approaches. We demonstrate that Constraint Programming is well-suited to solving the Atom Mapping Problem in this setting. The performance of our approach is evaluated for a manually curated subset of chemical reactions from the KEGG database featuring various ITS cycle layouts and reaction mechanisms.

  4. q-Virasoro constraints in matrix models

    NASA Astrophysics Data System (ADS)

    Nedelin, Anton; Zabzine, Maxim

    2017-03-01

    The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S 3 × S 1 for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.

  5. The quantum theory of second class constraints: Kinematics

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik; Hurst, C. A.

    1988-03-01

    The problem of second class quantum constraints is here set up in the context of C*-algebras, utilizing the connection with state conditions as given by the heuristic quantization rules. That is, a constraint set is said to be first class if all its members can satisfy the same state condition, and second class otherwise. Several heuristic models are examined, and they all agree with this definition. Given then a second class constraint set, we separate out its first class part as all those constraints which are compatible with the others, and we propose an algebraic construction for imposition of the constraints. This construction reduces to the normal one when the constraints are first class. Moreover, the physical automorphisms (assumed as conserving the constraints) will also respect this construction. The final physical algebra obtained is free of constraints, gauge invariant, unital, and with the right choice, simple. This C*-algebra also contains a factor algebra of the usual observables, i.e. the commutator algebra of the constraints. The general theory is applied to two examples—the elimination of a canonical pair from a boson field theory, as in the two dimensional anomalous chiral Schwinger model of Rajaraman [14], and the imposition of quadratic second class constraints on a linear boson field theory.

  6. Constraints on the tensor-to-scalar ratio for non-power-law models

    NASA Astrophysics Data System (ADS)

    Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M. P.

    2013-08-01

    Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby & Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: rLD = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys.

  7. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    DOE PAGES

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less

  8. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    SciTech Connect

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.

  9. Asteroseismic constraints for Gaia

    NASA Astrophysics Data System (ADS)

    Creevey, O. L.; Thévenin, F.

    2012-12-01

    Distances from the Gaia mission will no doubt improve our understanding of stellar physics by providing an excellent constraint on the luminosity of the star. However, it is also clear that high precision stellar properties from, for example, asteroseismology, will also provide a needed input constraint in order to calibrate the methods that Gaia will use, e.g. stellar models or GSP_Phot. For solar-like stars (F, G, K IV/V), asteroseismic data delivers at the least two very important quantities: (1) the average large frequency separation < Δ ν > and (2) the frequency corresponding to the maximum of the modulated-amplitude spectrum ν_{max}. Both of these quantities are related directly to stellar parameters (radius and mass) and in particular their combination (gravity and density). We show how the precision in < Δ ν >, ν_{max}, and atmospheric parameters T_{eff} and [Fe/H] affect the determination of gravity (log g) for a sample of well-known stars. We find that log g can be determined within less than 0.02 dex accuracy for our sample while considering precisions in the data expected for V˜12 stars from Kepler data. We also derive masses and radii which are accurate to within 1σ of the accepted values. This study validates the subsequent use of all of the available asteroseismic data on solar-like stars from the Kepler field (>500 IV/V stars) in order to provide a very important constraint for Gaia calibration of GSP_Phot} through the use of log g. We note that while we concentrate on IV/V stars, both the CoRoT and Kepler fields contain asteroseismic data on thousands of giant stars which will also provide useful calibration measures.

  10. Genetic effects on infant handedness under spatial constraint conditions.

    PubMed

    Suzuki, Kunitake; Ando, Juko; Satou, Naho

    2009-12-01

    Previous studies have reported a genetic influence on the individual differences in adult handedness; however, relatively little is known about genetic influences on the development of infant hand selection. In the current study, we examined whether genetic influences on handedness are expressed in various spatial locations in infants aged 18 months using the twin method. Infants were asked to respond to targets positioned in left, middle, and right locations using grasping movements. Results showed that similarities in hand selection within monozygotic twin pairs was more than two times higher than that of the dizygotic twin pairs in the middle location. In the left location, similarities in hand selection within monozygotic and dizygotic twin pairs were low. In addition, low individual differences in hand selection in the right location were also observed. These results suggest a non-additive genetic influence on handedness, and that spatial constraint is a crucial factor for the expression of genetic effects on handedness in infants.

  11. Higher derivative theories with constraints: exorcising Ostrogradski's ghost

    SciTech Connect

    Chen, Tai-jun; Lim, Eugene A.; Fasiello, Matteo; Tolley, Andrew J. E-mail: matte@case.edu E-mail: andrew.j.tolley@case.edu

    2013-02-01

    We prove that the linear instability in a non-degenerate higher derivative theory, the Ostrogradski instability, can only be removed by the addition of constraints if the original theory's phase space is reduced.

  12. NuSTAR observations of the X-ray pulsar LMC X-4: A constraint on the magnetic field and tomography of the system in the fluorescent iron line

    NASA Astrophysics Data System (ADS)

    Shtykovsky, A. E.; Lutovinov, A. A.; Arefiev, V. A.; Molkov, S. V.; Tsygankov, S. S.; Revnivtsev, M. G.

    2017-03-01

    We present the results of the spectral and timing analysis of the X-ray pulsar LMC X-4 based on data from the NuSTAR observatory in the broad X-ray energy range 3-79 keV. Along with a detailed analysis of the source's averaged spectrum, high-precision spectra corresponding to different phases of the neutron star spin cycle have been obtained for the first time. The Comptonization model is shown to describe best the source's spectrum, and the evolution of its parameters as a function of the pulse phase has been traced. For all spectra (the averaged and phase-resolved ones) in the energy range 5-55 keV we have searched for the cyclotron absorption line. The derived upper limit on the optical depth of the cyclotron line τ 0.15 (3 σ) points to the absence of this feature in the given energy range, which provides a constraint on the magnetic field of the neutron star: B <3 × 1011 or >6.5 × 1012 G. The latter constraint is consistent with the magnetic field estimate obtained by analyzing the pulsar's power spectrum, B ≅ 3 × 1013 G. Based on our analysis of the phase-resolved spectra, we have determined the delay between the emission peaks and the equivalent width of the fluorescent iron line. This delay depends on the orbital phase and is apparently associated with the travel time of photons between the emitting regions in the vicinity of the neutron star and the region where the flux is reflected (presumably in the inflowing stream or at the place of interaction between the stream and the outer edge of the accretion disk).

  13. Constraint analysis for variational discrete systems

    SciTech Connect

    Dittrich, Bianca; Höhn, Philipp A.

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  14. Redshift drift constraints on holographic dark energy

    NASA Astrophysics Data System (ADS)

    He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin

    2017-03-01

    The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.

  15. Selective constraints in conserved folded RNAs of drosophilid and hominid genomes.

    PubMed

    Piskol, Robert; Stephan, Wolfgang

    2011-04-01

    Small noncoding RNAs as well as folded RNA structures in genic regions are crucial for many cellular processes. They are involved in posttranscriptional gene regulation (microRNAs), RNA modification (small nucleolar RNAs), regulation of splicing, correct localization of proteins, and many other processes. In most cases, a distinct secondary structure of the molecule is necessary for its correct function. Hence, selection should act to retain the structure of the molecule, although the underlying sequence is allowed to vary. Here, we present the first genome-wide estimates of selective constraints in folded RNA molecules in the nuclear genomes of drosophilids and hominids. In comparison to putatively neutrally evolving sites, we observe substantially reduced rates of substitutions at paired and unpaired sites of folded molecules. We estimated evolutionary constraints to be in the ranges of (0.974,0.991) and (0.895,1.000) for paired nucleotides in drosophilids and hominids, respectively. These values are significantly higher than for constraints at nonsynonymous sites of protein-coding genes in both genera. Nonetheless, valleys of only moderately reduced fitness (s ≈ 10(-4)) are sufficient to generate the observed fraction of nucleotide changes that are removed by purifying selection. In addition, a comparison of selective coefficients between drosophilids and hominids revealed significantly higher constraints in drosophilids, which can be attributed to the difference in long-term effective population size between these two groups of species. This difference is particularly apparent at the independently evolving (unpaired) sites.

  16. Observation Scheduling System

    NASA Technical Reports Server (NTRS)

    Chien, Steve A.; Tran, Daniel Q.; Rabideau, Gregg R.; Schaffer, Steven R.

    2011-01-01

    Software has been designed to schedule remote sensing with the Earth Observing One spacecraft. The software attempts to satisfy as many observation requests as possible considering each against spacecraft operation constraints such as data volume, thermal, pointing maneuvers, and others. More complex constraints such as temperature are approximated to enable efficient reasoning while keeping the spacecraft within safe limits. Other constraints are checked using an external software library. For example, an attitude control library is used to determine the feasibility of maneuvering between pairs of observations. This innovation can deal with a wide range of spacecraft constraints and solve large scale scheduling problems like hundreds of observations and thousands of combinations of observation sequences.

  17. Generating Natural Language Under Pragmatic Constraints.

    DTIC Science & Technology

    1987-03-01

    THIS PAGIE (When Dae deureel Due to the flexibility of language , speakers can communicate far more than Just the literal content of tile words they use...flexibility of language , speakers can communicate far more than just the literal content of the words they use; the additional information usually serves...each of three domains, various paragraphs that differ in slant, content , and style. Generating Natural Language Under Pragmatic Constraints A

  18. Output feedback boundary control of an axially moving system with input saturation constraint.

    PubMed

    Zhao, Zhijia; Liu, Yu; Luo, Fei

    2017-02-28

    This paper is concerned with boundary control for an axially moving belt system with high acceleration/deceleration subject to the input saturation constraint. The dynamics of belt system is expressed by a nonhomogeneous hyperbolic partial differential equation coupled with an ordinary differential equation. First, state feedback boundary control is designed for the case that the boundary states of the belt system can be measured. Subsequently, output feedback boundary control is developed when some of the system states can not be accurately obtained. The well-posedness and the uniformly bounded stability of the closed-loop system are achieved through rigorous mathematical analysis. In addition, high-gain observers are utilized to estimate those unmeasurable states, the auxiliary system is introduced to eliminate the constraint effects of the input saturation, and the disturbance observer is adopted to cope with unknown boundary disturbance. Finally, the control performance of the belt system is illustrated by carrying out numerical simulations.

  19. Improving SALT productivity by using the theory of constraints

    NASA Astrophysics Data System (ADS)

    Coetzee, Johannes C.; Väisänen, Petri; O'Donoghue, Darragh E.; Kotze, Paul; Romero Colmenero, Encarni; Miszalski, Brent; Crawford, Steven M.; Kniazev, Alexei; Depagne, Éric; Rabe, Paul; Hettlage, Christian

    2016-07-01

    SALT, the Southern African Large Telescope, is a very cost effective 10 m class telescope. The operations cost per refereed science paper is currently approximately $70,000. To achieve this competitive advantage, specific design tradeoffs had to be made leading to technical constraints. On the other hand, the telescope has many advantages, such as being able to rapidly switch between different instruments and observing modes during the night. We provide details of the technical and operational constraints and how they were dealt with, by applying the theory of constraints, to substantially improve the observation throughput during the last semester.

  20. Constraints on scale-dependent non-Gaussianity

    SciTech Connect

    Shandera, Sarah E.

    2007-11-20

    We review why detection of non-Gaussianity in the spectrum of primordial fluctuations would be an indication of interesting inflationary physics and discuss the observational constraints on a simple type of scale-dependent non-Gaussianity. In particular, if the amount non-Gaussianity increases during inflation then observations on scales smaller than those probed by the Cosmic Microwave Background may provide important constraints. Clusters number counts can be a useful tool in this context.

  1. Microbial diversity arising from thermodynamic constraints

    PubMed Central

    Großkopf, Tobias; Soyer, Orkun S

    2016-01-01

    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilise different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments. PMID:27035705

  2. Credit Constraints for Higher Education

    ERIC Educational Resources Information Center

    Solis, Alex

    2012-01-01

    This paper exploits a natural experiment that produces exogenous variation on credit access to determine the effect on college enrollment. The paper assess how important are credit constraints to explain the gap in college enrollment by family income, and what would be the gap if credit constraints are eliminated. Progress in college and dropout…

  3. On Constraints in Assembly Planning

    SciTech Connect

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  4. Fixed Costs and Hours Constraints

    ERIC Educational Resources Information Center

    Johnson, William R.

    2011-01-01

    Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…

  5. Varying alpha: New constraints from seasonal variations

    SciTech Connect

    Barrow, John D.; Shaw, Douglas J.

    2008-09-15

    We analyze the constraints obtained from new atomic clock data on the possible time variation of the fine structure 'constant' and the electron-proton mass ratio, and show how they are strengthened when the seasonal variation of the Sun's gravitational field at the Earth's surface is taken into account. We compare these bounds with those obtainable from tests of the weak equivalence principle and high redshift observations of quasar absorption spectra.

  6. Astrophysical constraints on extended gravity models

    SciTech Connect

    Lambiase, Gaetano; Stabile, Antonio; Sakellariadou, Mairi; Stabile, Arturo E-mail: mairi.sakellariadou@kcl.ac.uk E-mail: arturo.stabile@gmail.com

    2015-07-01

    We investigate the propagation of gravitational waves in the context of fourth order gravity nonminimally coupled to a massive scalar field. Using the damping of the orbital period of coalescing stellar binary systems, we impose constraints on the free parameters of extended gravity models. In particular, we find that the variation of the orbital period is a function of three mass scales which depend on the free parameters of the model under consideration; we can constrain these mass scales from current observational data.

  7. Generalizing Atoms in Constraint Logic

    NASA Technical Reports Server (NTRS)

    Page, C. David, Jr.; Frisch, Alan M.

    1991-01-01

    This paper studies the generalization of atomic formulas, or atoms, that are augmented with constraints on or among their terms. The atoms may also be viewed as definite clauses whose antecedents express the constraints. Atoms are generalized relative to a body of background information about the constraints. This paper first examines generalization of atoms with only monadic constraints. The paper develops an algorithm for the generalization task and discusses algorithm complexity. It then extends the algorithm to apply to atoms with constraints of arbitrary arity. The paper also presents semantic properties of the generalizations computed by the algorithms, making the algorithms applicable to such problems as abduction, induction, and knowledge base verification. The paper emphasizes the application to induction and presents a pac-learning result for constrained atoms.

  8. Planning constraints of low grazing altitude GEO-LEO laser links based on in-orbit data

    NASA Astrophysics Data System (ADS)

    Sterr, Uwe; Dallmann, Daniel; Heine, Frank; Tröndle, Daniel; Meyer, Rolf; Lutzer, Michael; Benzi, Edoardo

    2016-11-01

    Part of the operational concept for laser communication networks such as the European data relay system is planning constraints. In addition to hard constraints such as angular range of the actuators, there is also the atmosphere, which has a gradual increasing impact as the distance between laser beam path and earth decreases. The shortest distance between the laser beam path and the surface of the earth is called "grazing altitude." The atmosphere impacts spatial acquisition as well as communication performance. In-orbit measurement data of geostationary orbit-low-Earth orbit (GEO-LEO) links between two laser communication terminals (LCT) developed by TESAT-Spacecom, Germany, in the frame of Alphasat TDP1 optical GEO-relay demonstration program are presented. Planning constraint guidelines are formulated based on the observed influence. TESAT-Spacecom's LCTs use a highly sensitive and high-performance coherent transmission technology and a beaconless spatial acquisition system.

  9. A critical reevaluation of radio constraints on annihilating dark matter

    SciTech Connect

    Cholis, Ilias; Hooper, Dan; Linden, Tim

    2015-04-01

    A number of groups have employed radio observations of the Galactic center to derive stringent constraints on the annihilation cross section of weakly interacting dark matter. In this paper, we show that electron energy losses in this region are likely to be dominated by inverse Compton scattering on the interstellar radiation field, rather than by synchrotron, considerably relaxing the constraints on the dark matter annihilation cross section compared to previous works. Strong convective winds, which are well motivated by recent observations, may also significantly weaken synchrotron constraints. After taking these factors into account, we find that radio constraints on annihilating dark matter are orders of magnitude less stringent than previously reported, and are generally weaker than those derived from current gamma-ray observations.

  10. Post-Planck constraints on interacting vacuum energy

    NASA Astrophysics Data System (ADS)

    Wang, Yuting; Wands, David; Zhao, Gong-Bo; Xu, Lixin

    2014-07-01

    We present improved constraints on an interacting vacuum model using updated astronomical observations including the first data release from Planck. We consider a model with one dimensionless parameter, α, describing the interaction between dark matter and vacuum energy (with fixed equation of state w=-1). The background dynamics correspond to a generalized Chaplygin gas cosmology, but the perturbations have a zero sound speed. The tension between the value of the Hubble constant, H0, determined by Planck data plus WMAP polarization (Planck +WP) and that determined by the Hubble Space Telescope (HST) can be alleviated by energy transfer from dark matter to vacuum (α>0). A positive α increases the allowed values of H0 due to parameter degeneracy within the model using only cosmic microwave background data. Combining with additional data sets of including supernova type Ia (SN Ia) and baryon acoustic oscillation (BAO), we can significantly tighten the bounds on α. Redshift-space distortions (RSD), which constrain the linear growth of structure, provide the tightest constraints on vacuum interaction when combined with Planck+WP, and prefer energy transfer from vacuum to dark matter (α<0) which suppresses the growth of structure. Using the combined data sets of Planck +WP+Union2.1+BAO+RSD, we obtain the constraint on α to be -0.083<α<-0.006 (95% C.L.), allowing low H0 consistent with the measurement from 6dF Galaxy survey. This interacting vacuum model can alleviate the tension between RSD and Planck +WP in the ΛCDM model for α <0, or between HST measurements of H0 and Planck+WP for α>0, but not both at the same time.

  11. Fidelity of the protein structure reconstruction from inter-residue proximity constraints.

    PubMed

    Chen, Yiwen; Ding, Feng; Dokholyan, Nikolay V

    2007-06-28

    Inter-residue proximity constraints obtained in such experiments as cross-linking/mass spectrometry are important sources of information for protein structure determination. A central question in structure determination using these constraints is, What is the minimal number of inter-residue constraints needed to determine the fold of a protein? It is also unknown how the different structural aspects of constraints differentiate their ability in determining the native fold and whether there is a rational strategy for selecting constraints that feature higher fidelity in structure determination. To shed light on these questions, we study the fidelity of protein fold determination using theoretical inter-residue proximity constraints derived from protein native structures and the effect of various subsets of such constraints on fold determination. We show that approximately 70% randomly selected constraints are sufficient for determining the fold of a domain (with an average root-mean-square deviation of constraint selection often outperforms the rational strategy that predominantly favors the constraints representing global structural features. To uncover a strategy for constraint selection for the optimal structure determination, we study the role of the topological properties of these constraints. Interestingly, we do not observe any correlation between various simple topological properties of the selected constraints, emphasizing different global and local structural features, and the performance of these constraints, suggesting that accurate protein structure determination relies on a composite of global and local structural information.

  12. Constraints and stability in vector theories with spontaneous Lorentz violation

    SciTech Connect

    Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus; Vrublevskis, Arturs

    2008-06-15

    Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stability of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge.

  13. About some types of constraints in problems of routing

    NASA Astrophysics Data System (ADS)

    Petunin, A. A.; Polishuk, E. G.; Chentsov, A. G.; Chentsov, P. A.; Ukolov, S. S.

    2016-12-01

    Many routing problems arising in different applications can be interpreted as a discrete optimization problem with additional constraints. The latter include generalized travelling salesman problem (GTSP), to which task of tool routing for CNC thermal cutting machines is sometimes reduced. Technological requirements bound to thermal fields distribution during cutting process are of great importance when developing algorithms for this task solution. These requirements give rise to some specific constraints for GTSP. This paper provides a mathematical formulation for the problem of thermal fields calculating during metal sheet thermal cutting. Corresponding algorithm with its programmatic implementation is considered. The mathematical model allowing taking such constraints into account considering other routing problems is discussed either.

  14. QCD constraints on the equation of state for compact stars

    SciTech Connect

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-22

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  15. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-01-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  16. QCD constraints on the equation of state for compact stars

    NASA Astrophysics Data System (ADS)

    Fraga, E. S.; Kurkela, A.; Schaffner-Bielich, J.; Vuorinen, A.

    2016-12-01

    In recent years, there have been several successful attempts to constrain the equation of state of neutron star matter using input from low-energy nuclear physics and observational data. We demonstrate that significant further restrictions can be placed by additionally requiring the pressure to approach that of deconfined quark matter at high densities. Remarkably, the new constraints turn out to be highly insensitive to the amount - or even presence - of quark matter inside the stars. In this framework, we also present a simple effective equation of state for cold quark matter that consistently incorporates the effects of interactions and furthermore includes a built-in estimate of the inherent systematic uncertainties. This goes beyond the MIT bag model description in a crucial way, yet leads to an equation of state that is equally straightforward to use.

  17. Theoretical constraints in the design of multivariable control systems

    NASA Technical Reports Server (NTRS)

    Rynaski, E. G.; Mook, D. Joseph; Depena, Juan

    1991-01-01

    The research being performed under NASA Grant NAG1-1361 involves a more clear understanding and definition of the constraints involved in the pole-zero placement or assignment process for multiple input, multiple output systems. Complete state feedback to more than a single controller under conditions of complete controllability and observability is redundant if pole placement alone is the design objective. The additional feedback gains, above and beyond those required for pole placement can be used for eignevalue assignment or zero placement of individual closed loop transfer functions. Because both poles and zeros of individual closed loop transfer functions strongly affect the dynamic response to a pilot command input, the pole-zero placement problem is important. When fewer controllers than degrees of freedom of motion are available, complete design freedom is not possible, the transmission zeros constrain the regions of possible pole-zero placement. The effect of transmission zero constraints on the design possibilities, selection of transmission zeros and the avoidance of producing non-minimum phase transfer functions is the subject of the research being performed under this grant.

  18. E-ELT constraints on runaway dilaton scenarios

    SciTech Connect

    Martinelli, M.; Calabrese, E.; Martins, C.J.A.P. E-mail: erminia.calabrese@physics.ox.ac.uk

    2015-11-01

    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., α{sub b} = α{sub V} ∼ 0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., α{sub b} ∼> 10{sup −5}−α{sub V} ∼> 0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.

  19. Distance, Growth Factor, and Dark Energy Constraints from Photometric Baryon Acoustic Oscillation and Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hu; Knox, Lloyd; Tyson, J. Anthony

    2009-01-01

    Baryon acoustic oscillations (BAOs) and weak lensing (WL) are complementary probes of cosmology. We explore the distance and growth factor measurements from photometric BAO and WL techniques, and investigate the roles of the distance and growth factor in constraining dark energy. We find for WL that the growth factor has a great impact on dark energy constraints, but is much less powerful than the distance. Dark energy constraints from WL are concentrated in considerably fewer distance eigenmodes than those from BAO, with the largest contributions from modes that are sensitive to the absolute distance. Both techniques have some well-determined distance eigenmodes that are not very sensitive to the dark energy equation-of-state parameters w0 and wa, suggesting that they can accommodate additional parameters for dark energy and for the control of systematic uncertainties. A joint analysis of BAO and WL is far more powerful than either technique alone, and the resulting constraints on the distance and growth factor will be useful for distinguishing dark energy and modified gravity models. The Large Synoptic Survey Telescope (LSST) will yield both WL and angular BAO over a sample of several billion galaxies. Joint LSST BAO and WL can yield 0.5% level precision on ten comoving distances evenly spaced in log(1 + z) between redshift 0.3 and 3 with cosmic microwave background priors from Planck. In addition, since the angular diameter distance, which directly affects the observables, is linked to the comoving distance solely by the curvature radius in the Friedmann-Robertson-Walker metric solution, the LSST can achieve a pure metric constraint of 0.017 on the mean curvature parameter Ω k of the universe simultaneously with the constraints on the comoving distances.

  20. A Hybrid Constraint Representation and Reasoning Framework

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Pang, Wan-Lin

    2003-01-01

    This paper introduces JNET, a novel constraint representation and reasoning framework that supports procedural constraints and constraint attachments, providing a flexible way of integrating the constraint reasoner with a run- time software environment. Attachments in JNET are constraints over arbitrary Java objects, which are defined using Java code, at runtime, with no changes to the JNET source code.

  1. Evolutionary prisoner's dilemma game on graphs and social networks with external constraint.

    PubMed

    Zhang, Hui; Gao, Meng; Wang, Wenting; Liu, Zhiguang

    2014-10-07

    A game-theoretical model is constructed to capture the effect of external constraint on the evolution of cooperation. External constraint describes the case where individuals are forced to cooperate with a given probability in a society. Mathematical analyses are conducted via pair approximation and diffusion approximation methods. The results show that the condition for cooperation to be favored on graphs with constraint is b¯/c¯>k/A¯ (A¯=1+kp/(1-p)), where b¯ and c¯ represent the altruistic benefit and cost, respectively, k is the average degree of the graph and p is the probability of compulsory cooperation by external enforcement. Moreover, numerical simulations are also performed on a repeated game with three strategies, always defect (ALLD), tit-for-tat (TFT) and always cooperate (ALLC). These simulations demonstrate that a slight enforcement of ALLC can only promote cooperation when there is weak network reciprocity, while the catalyst effect of TFT on cooperation is verified. In addition, the interesting phenomenon of stable coexistence of the three strategies can be observed. Our model can represent evolutionary dynamics on a network structure which is disturbed by a specified external constraint.

  2. Constraints on X-ray emissions from the reionization era

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2012-10-01

    We examine the constraints on soft X-ray photon emissions from the reionization era. It is generally assumed that the Universe was reionized by ultraviolet photons radiated from massive stars. However, it has been argued that X-ray photons associated with the death of these stars would have contributed ˜10 per cent to the total number of ionizations via several channels. The parameter space for a significant component of cosmological reionization to be sourced by X-rays is limited by a few observations. We revisit the unresolved soft X-ray background constraint on high-redshift X-ray production and show that soft X-ray background measurements significantly limit the contribution to reionization from several potential sources: X-rays from X-ray binaries, from Compton scattering off supernovae-accelerated electrons, and from the annihilation of dark matter particles. We discuss the additional limits on high-redshift X-ray photon production from (1) z ˜ 3 measurements of metal absorption lines in quasar spectra, (2) the consensus that helium reionization was ending at z ≈ 3 and (3) measurements of the intergalactic medium's thermal history. We show that observations of z ˜ 3 metal lines allow little room for extra coeval soft X-ray emission from a non-standard X-ray sources. In addition, we show that the late reionization of helium makes it quite difficult to also ionize the hydrogen at z > 6 with a single source population (such as quasars) and that it likely requires the spectrum of ionizing emissions to soften with increasing redshift. However, we find that it is difficult to constrain an X-ray contribution to reionization from the intergalactic temperature history. We show that the intergalactic gas would have been heated to a narrower range of temperatures than is typically assumed at reionization, 2-3 × 104 K, with this temperature depending weakly on the ionizing sources' spectra.

  3. Evolutionary constraints or opportunities?

    PubMed Central

    Sharov, Alexei A.

    2014-01-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155

  4. Infrared Kuiper Belt Constraints

    SciTech Connect

    Teplitz, V.L.; Stern, S.A.; Anderson, J.D.; Rosenbaum, D.; Scalise, R.J.; Wentzler, P.

    1999-05-01

    We compute the temperature and IR signal of particles of radius {ital a} and albedo {alpha} at heliocentric distance {ital R}, taking into account the emissivity effect, and give an interpolating formula for the result. We compare with analyses of {ital COBE} DIRBE data by others (including recent detection of the cosmic IR background) for various values of heliocentric distance {ital R}, particle radius {ital a}, and particle albedo {alpha}. We then apply these results to a recently developed picture of the Kuiper belt as a two-sector disk with a nearby, low-density sector (40{lt}R{lt}50{endash}90 AU) and a more distant sector with a higher density. We consider the case in which passage through a molecular cloud essentially cleans the solar system of dust. We apply a simple model of dust production by comet collisions and removal by the Poynting-Robertson effect to find limits on total and dust masses in the near and far sectors as a function of time since such a passage. Finally, we compare Kuiper belt IR spectra for various parameter values. Results of this work include: (1) numerical limits on Kuiper belt dust as a function of ({ital R}, {ital a}, {alpha}) on the basis of four alternative sets of constraints, including those following from recent discovery of the cosmic IR background by Hauser et al.; (2) application to the two-sector Kuiper belt model, finding mass limits and spectrum shape for different values of relevant parameters including dependence on time elapsed since last passage through a molecular cloud cleared the outer solar system of dust; and (3) potential use of spectral information to determine time since last passage of the Sun through a giant molecular cloud. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  5. A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing

    NASA Technical Reports Server (NTRS)

    Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo

    2009-01-01

    The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.

  6. Constraint Embedding Technique for Multibody System Dynamics

    NASA Technical Reports Server (NTRS)

    Woo, Simon S.; Cheng, Michael K.

    2011-01-01

    Multibody dynamics play a critical role in simulation testbeds for space missions. There has been a considerable interest in the development of efficient computational algorithms for solving the dynamics of multibody systems. Mass matrix factorization and inversion techniques and the O(N) class of forward dynamics algorithms developed using a spatial operator algebra stand out as important breakthrough on this front. Techniques such as these provide the efficient algorithms and methods for the application and implementation of such multibody dynamics models. However, these methods are limited only to tree-topology multibody systems. Closed-chain topology systems require different techniques that are not as efficient or as broad as those for tree-topology systems. The closed-chain forward dynamics approach consists of treating the closed-chain topology as a tree-topology system subject to additional closure constraints. The resulting forward dynamics solution consists of: (a) ignoring the closure constraints and using the O(N) algorithm to solve for the free unconstrained accelerations for the system; (b) using the tree-topology solution to compute a correction force to enforce the closure constraints; and (c) correcting the unconstrained accelerations with correction accelerations resulting from the correction forces. This constraint-embedding technique shows how to use direct embedding to eliminate local closure-loops in the system and effectively convert the system back to a tree-topology system. At this point, standard tree-topology techniques can be brought to bear on the problem. The approach uses a spatial operator algebra approach to formulating the equations of motion. The operators are block-partitioned around the local body subgroups to convert them into aggregate bodies. Mass matrix operator factorization and inversion techniques are applied to the reformulated tree-topology system. Thus in essence, the new technique allows conversion of a system with

  7. Laboratory constraints on models of earthquake recurrence

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Tullis, Terry; Junger, Jenni; Kilgore, Brian; Goldsby, David

    2014-12-01

    In this study, rock friction "stick-slip" experiments are used to develop