Science.gov

Sample records for additional ozone season

  1. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...

  2. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...

  3. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...

  4. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...

  5. 40 CFR 75.75 - Additional ozone season calculation procedures for special circumstances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Additional ozone season calculation... § 75.75 Additional ozone season calculation procedures for special circumstances. (a) The owner or operator of a unit that is required to calculate ozone season heat input for purposes of providing...

  6. Ozone measurements in Amazonia: Dry season versus wet season

    SciTech Connect

    Kirchhoff, V.W.J.H. ); Da Silva, I.M.O. ); Browell, E.V. )

    1990-09-20

    Observations were made almost continuously at the surface, and in addition, 20 ozone profiles were obtained in the troposphere and stratosphere. These ozone measurements were part of a field expedition to the Brazilian Amazon region, the ABLE 2B mission, a joint American-Brazilian effort to measure local concentrations of several species relevant to atmospheric chemistry. The time period of this expedition was April-May 1987, during the local wet season. For the surface ozone data the measurement technique sued was UV absorption. Ozone profiles were obtained with electrochemical concentration cell sondes, launched on balloons. The major site of operation was set up near Manaus (3{degree}S, 60{degree}W). The results are presented and compared with a previous dry season experiment. Surface ozone mixing ratios show diurnal variations that have maxima in the daytime and minima at night. The diurnal maximum at noontime, considered very low (12 ppbv) in the dry season was even lower in this wet season period (6 ppbv). A significant difference can be seen between clearing and forest data, and between different height levels above the surface, showing the existence of a large positive gradient of ozone with height. The ozone profiles in the troposphere show that there is less ozone not only at the surface but in the whole troposphere, with the wet season average showing between 6 and 12 ppbv less ozone. This difference is much smaller in the stratosphere, where there is slightly more ozone in the region of the peak, during the wet season. An isolated shower or thunderstorm in the dry season could produce transient ozone variations (mixing ratio increases or decreases) that were not observed in the wet season.

  7. Ozone measurements in Amazonia - Dry season versus wet season

    NASA Technical Reports Server (NTRS)

    Kirchhoff, V. W. J. H.; Da Silva, I. M. O.; Browell, Edward V.

    1990-01-01

    Recent ozone measurements taken in the Amazonian rain forest environment during the wet season (April-May 1987) are described, revealling new aspects of the regional atmospheric chemistry. The measurements were part of the Amazon Boundary Layer Experiment (ABLE 2B) mission and utilized UV absorption as a measurement technique to obtain surface ozone data; 20 ozonesondes were launched in order to obtain vertical ozone profiles used to describe the upper troposphere and stratosphere. The major differences in comparison to a previous dry season experiment, which found ozone concentrations to be lower in the whole troposphere by nearly a factor of 2, are stressed.

  8. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  9. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  10. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  11. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  12. 40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone...

  13. Seasonal ozone variations in the upper mesosphere

    SciTech Connect

    Thomas, R.J. )

    1990-05-20

    The global daytime ozone was measured by the Solar Mesosphere Explorer satellite (SME) for 5 years. The measurements extend through the mesosphere, covering from 50 km to over 90 km. The ozone in the upper mesosphere varies annually by up to a factor of 3. The observed seasonal variations may be summarized in several different ways. From year to year there is a great deal of repeatability of these variations. This repeatability occurs in most of the upper mesosphere outside the tropics. Near 0.01 mbar (80 km) the mid- and high-latitude mixing ratio peaks each year in mid-April. A secondary maximum in the altitude profile of ozone density usually occurs near 85 km. Changes in this structure are directly related to the April maximum and other seasonal changes seen at 0.01 mbar. The changing seasonal structure produces a bump at the ozone mixing ratio minimum that is largest just after spring equinox. This perturbation to the mixing ratio profile seems to move upward during the first half of the year. The seasonal changes of ozone were analyzed in terms of annual and semiannual structure. The variations generally have both an annual and semiannual component depending on altitude and latitude. The phases of the variations change quickly with both altitude and latitude. The semiannual component peaks in April, over most of the upper mesosphere.

  14. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  15. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  16. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  17. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  18. 40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388...

  19. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR...

  20. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR...

  1. 40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR...

  2. Seasonal variations of troposheric ozone at Natal, Brazil

    NASA Technical Reports Server (NTRS)

    Logan, J. A.; Kirchhoff, V. W. J. H.

    1986-01-01

    An analysis of ozone measurements from Natal, Brazil (6 deg S, 35 W), with a focus on the seasonal behavior in the troposphere, is presented. The amplitude of seasonal cycle at Natal is much larger than at Panama (9 deg N), the only other tropical site for which similar data are available. Concentrations of ozone in the middle troposphere in the southern spring are unexpectedly high, 60-70 ppb, similar to values found at northern midlatitudes in summer, and larger by 20-30 ppb than values found at Panama and at southern midlatitudes. It is suggested that photochemical production of ozone associated with emissions of CO, hydrocarbons, and NO(x) from biomass burning may contribute significantly to the high values of ozone, but note that stratospheric intrusions could also play a role. The data available at present do not permit a definitive evaluation of the relative importance of these two sources of ozone. The data from Natal, in combination with recent aircraft and surface data, show that tropical ozone exhibits strong spatial and temporal inhomogeneities. The distribution of tropospheric ozone appears to be considerably more complex than the traditional view, which suggested a northern midlatitude maximum and north/-south hemispheric asymmetry. The seasonal cycle in the total column of ozone at Natal appears to mirror the behavior of the tropospheric contribution to the ozone column rather than the stratospheric contribution, and this may account for differences in the annual cycle of the total column at Natal versus other tropical locations.

  3. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season...

  4. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season...

  5. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season...

  6. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations...

  7. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations...

  8. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season...

  9. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  10. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season...

  11. 40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season...

  12. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season...

  13. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season...

  14. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season...

  15. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  16. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  17. 40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season...

  18. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  19. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season...

  20. 40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season...

  1. 40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in...

  2. 40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to...

  3. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season...

  4. 40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season...

  5. 40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season...

  6. 40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted...

  7. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may...

  8. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may...

  9. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may...

  10. 40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted...

  11. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may...

  12. 40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted...

  13. 40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may...

  14. The characteristics of tropospheric ozone seasonality observed from ozone soundings at Pohang, Korea.

    PubMed

    Kim, Jae H; Lee, H J; Lee, S H

    2006-07-01

    This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.

  15. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the...

  16. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the...

  17. 40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the...

  18. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  19. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  20. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  1. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  2. 40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone...

  3. Seasonal Characteristics of Tropical Ozone Profiles using the SHADOZ Ozonesonde Data Set: Comparisons with TOMS Tropical Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Witte, J. C.; Thompson, A. M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Advances in tropospheric ozone data products being developed for tropical and subtropical regions using TOMS (Total Ozone Mapping Spectrometer) and other satellites are motivating efforts to renew and expand the collection of balloon-borne ozonesonde observations. The SHADOZ (Southern Hemisphere ADditional OZonesondes) project is a web-based archive established since 1998. It's goals are to support validation of TOMS and SBUV (Solar Backscatter UV) satellite ozone measurements and to improve remote sensing techniques for estimating tropical and subtropical ozone. Profile data are taken from balloon-borne ozonesondes, currently at 11 stations coordinating weekly to bi-weekly launches. Station data are publically available at a central location via the internet: . Since the start of the project, the SHADOZ archive has accumulated over 1500 ozonesonde profiles. Data also includes measurements from various SHADOZ supported field campaigns, such as, the Indian Ocean Experiment (INDOEX), Sounding of Ozone and Water in the Equatorial Region (SOWER) and Aerosols99 Atlantic Cruise. Using data from the archive, profile climatologies from selected stations will be shown to 1/characterize the variability of tropospheric tropical ozone among stations, 2/illustrate the seasonal offsets with respect to the tropical profile used in the TOMS v7 algorithm, and 3/estimate the potential error in TOMS retrieval estimates of the tropospheric portion of the atmosphere.

  4. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a...

  5. 40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of...

  6. 40 CFR 96.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Ozone Season Trading... PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V...

  7. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record...

  8. 40 CFR 97.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Ozone Season Trading... TRADING PROGRAMS Permits § 97.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V operating permit or required,...

  9. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a...

  10. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a...

  11. 40 CFR 97.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false General CAIR NOX Ozone Season Trading... TRADING PROGRAMS Permits § 97.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V operating permit or required,...

  12. 40 CFR 96.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false General CAIR NOX Ozone Season Trading... PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V...

  13. 40 CFR 97.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Ozone Season Trading... TRADING PROGRAMS Permits § 97.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V operating permit or required,...

  14. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record...

  15. 40 CFR 96.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false General CAIR NOX Ozone Season Trading... PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V...

  16. 40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of...

  17. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record...

  18. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a...

  19. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record...

  20. 40 CFR 75.74 - Annual and ozone season monitoring and reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Annual and ozone season monitoring and... Annual and ozone season monitoring and reporting requirements. (a) Annual monitoring requirement. (1) The... during the entire calendar year. (b) Ozone season monitoring requirements. The owner or operator of...

  1. 40 CFR 96.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Ozone Season Trading... PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V...

  2. 40 CFR 96.353 - Recordation of CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Tracking System § 96.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record...

  3. 40 CFR 97.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false General CAIR NOX Ozone Season Trading... TRADING PROGRAMS Permits § 97.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V operating permit or required,...

  4. 40 CFR 97.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Ozone Season Trading... TRADING PROGRAMS Permits § 97.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V operating permit or required,...

  5. 40 CFR 96.360 - Submission of CAIR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Transfers § 96.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a...

  6. 40 CFR 96.320 - General CAIR NOX Ozone Season Trading Program permit requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false General CAIR NOX Ozone Season Trading... PROGRAMS FOR STATE IMPLEMENTATION PLANS Permits § 96.320 General CAIR NOX Ozone Season Trading Program permit requirements. (a) For each CAIR NOX Ozone Season source required to have a title V...

  7. Seasonal Variation of Ozone in the Tropical Lower Stratosphere: Southern Tropics are Different from Northern Tropics

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-01-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  8. Seasonal variation of ozone in the tropical lower stratosphere: Southern tropics are different from northern tropics

    NASA Astrophysics Data System (ADS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-05-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  9. Diagnostic model study of the seasonal variation of global ozone and the Antarctic ozone hole

    SciTech Connect

    Akiyoshi, H. ); Uryu, M. )

    1992-12-20

    A simple two-dimensional model is constructed to simulate and gain an understanding of the global distribution of ozone and its seasonal variation. In the model the Chapman cycle parameterized by Hartmann (1978) is used. The time dependence of the diffusion coefficients is neglected, except in the polar regions. The effects of the meridional circulation, consisting of the following three components, are taken into account: (1) an annually varying component due to the annual variation in the heating of ozone, oxygen, and water vapor, which is assumed to be anti-symmetric (symmetric with a 6 month shift) about the equator; (2) a nonseasonal, steady component of the transport circulation with ascending air in the tropics and descending air in the middle and high latitudes of both hemispheres; and (3) an annually varying component of the transport circulation which represents planetary wave activity, strong convection in the tropics, and other seasonally variable factors. Although the employed circulations and diffusion coefficients are ad hoc, the simple model simulates the main features of the global distribution of ozone and its seasonal variation. The Antarctic ozone hole is discussed from a global point of view. The possibility of a weak October minimum in the Antarctic total ozone amount, without introducing chlorine chemistry is suggested. 46 refs., 15 figs., 2 tabs.

  10. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting...

  11. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting...

  12. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX...

  13. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX...

  14. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX...

  15. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX...

  16. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting...

  17. 40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX...

  18. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting...

  19. 40 CFR 96.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for CAIR NOX Ozone... PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) By October 31, 2006, the permitting...

  20. 40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... days of recordation of a TR NOX Ozone Season allowance transfer under paragraphs (a) and (b) of the... transferee accounts. (e) Within 10 business days of receipt of a TR NOX Ozone Season allowance transfer that... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Ozone...

  1. 40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... days of recordation of a TR NOX Ozone Season allowance transfer under paragraphs (a) and (b) of the... transferee accounts. (e) Within 10 business days of receipt of a TR NOX Ozone Season allowance transfer that... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Ozone...

  2. 40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... days of recordation of a TR NOX Ozone Season allowance transfer under paragraphs (a) and (b) of the... transferee accounts. (e) Within 10 business days of receipt of a TR NOX Ozone Season allowance transfer that... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Ozone...

  3. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  4. Tropospheric ozone variability during the monsoon season in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahamad, Fatimah; Latif, Mohd Talib

    2013-11-01

    Vertical ozone (O3) profiles obtained from ozonesondes launched at Kuala Lumpur International Airport (KLIA), Malaysia were analyzed. Results of soundings between January to March 2011 and July to September 2011 are presented along with meteorological parameters (temperature and relative humidity (RH)). The overall O3 concentration range between the soundings made during the northeast monsoon (January - March) and the southwest monsoon (July - September) were not far from each other for altitudes below 8 km. However O3 variability is less pronounced between 2 km and 12 km during the southwest monsoon compared to the northeast monsoon season.

  5. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 2. Tropospheric variability and the zonal wave-one

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, FrançOise; Coetzee, Gert J. R.; Hoegger, Bruno; Kawakami, Shuji; Ogawa, Toshihiro; Fortuin, J. P. F.; Kelder, H. M.

    2003-01-01

    The first view of stratospheric and tropospheric ozone variability in the Southern Hemisphere tropics is provided by a 3-year record of ozone soundings from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network (http://croc.gsfc.nasa.gov/shadoz). Observations covering 1998-2000 were made over Ascension Island, Nairobi (Kenya), Irene (South Africa), Réunion Island, Watukosek (Java), Fiji, Tahiti, American Samoa, San Cristóbal (Galapagos), and Natal (Brazil). Total, stratospheric, and tropospheric column ozone amounts usually peak between August and November. Other features are a persistent zonal wave-one pattern in total column ozone and signatures of the quasi-biennial oscillation (QBO) in stratospheric ozone. The wave-one is due to a greater concentration of free tropospheric ozone over the tropical Atlantic than the Pacific and appears to be associated with tropical general circulation and seasonal pollution from biomass burning. Tropospheric ozone over the Indian and Pacific Oceans displays influences of the waning 1997-1998 El Niño, seasonal convection, and pollution transport from Africa. The most distinctive feature of SHADOZ tropospheric ozone is variability in the data, e.g., a factor of 3 in column amount at 8 of 10 stations. Seasonal and monthly means may not be robust quantities because statistics are frequently not Gaussian even at sites that are always in tropical air. Models and satellite retrievals should be evaluated on their capability for reproducing tropospheric variability and fine structure. A 1999-2000 ozone record from Paramaribo, Surinam (6°N, 55°W) (also in SHADOZ) shows a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone (ITCZ). A more representative tropospheric ozone climatology for models and satellite retrievals requires additional Northern Hemisphere tropical data.

  6. Seasonal Variability in Tropospheric Ozone Distribution Over Qatar

    NASA Astrophysics Data System (ADS)

    Ayoub, Mohammed; Ackermann, Luis

    2015-04-01

    We report on the vertical distribution and seasonal variability in tropospheric ozone over the Middle East through one year of weekly ozonesondes launched from Doha, Qatar during 2014. A total of 49 2Z-V7 DMT/EN-SCI Electrochemical Concentration Cell (ECC) ozonesondes employing a 1% buffered potassium iodide solution (KI), coupled with iMet-1-RS GPS radiosondes were launched around 1300 local time. The authors used the SkySonde telemetry software (developed by CIRES and NOAA/ESRL) and developed robust in-house data quality assurance and validation methodologies. The average height of the thermal tropopause is between 15-17.5 km (125-85 hPa). Monthly average relative humidity around the tropopause shows an enhancement during the months of June through the beginning of October. Monthly average temperature profiles show the development of the subtropical subsidence inversion around 5-6 km (450-520 hPa) between the months of April through October. The subsidence inversion is strongest during the months of June and July and is accompanied by a sharp drop in relative humidity over a 100-300 m in the vertical. The monthly average ozone background concentration between the Planetary Boundary Layer (PBL) height and the subsidence inversion increases from 50 ppb in the winter to almost 80 ppb in the summer months. An enhancement of up to 50% in the average ozone in the mid-to-upper troposphere (above the subsidence inversion) is strongest during the summer months (June through September) and results in average concentrations between 80-100 ppb. In the upper troposphere (above 13 km/200 hPa) ozone concentrations are highest during the spring and summer months. This is coupled with a drop in the average height of the tropopause. HYSPLIT back-trajectory analysis shows the enhancement in mid-to-upper tropospheric ozone in the summer is due to persistent high pressure over the Middle East between the months of June through September. Evidence of Stratosphere-Troposphere Exchange

  7. An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.

    PubMed

    Panek, Jeanne A; Kurpius, Meredith R; Goldstein, Allen H

    2002-01-01

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions. PMID:11843543

  8. Insights into Tropical Tropospheric Ozone from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Data Record

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Volker, W.; Kirchhoff, J. H.; Posny, Franaoise; Gert, J.; Coetzee, R.; Hoegger, Bruno; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We describe the first overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropics based on a three year, ten site record of ozone soundings from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, are at an archive: http://code9l6. gsfc.nasa.gov/Data_services/shadoz. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts usually peak between August and November and are lowest in the first half of the year. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the waning 1997-1998 Indian Ocean Dipole and ENSO (El Nino / Southern Oscillation), seasonal convection and pollution transport from Africa. Tropospheric ozone over the Atlantic Basin reflects regional subsidence and recirculation as well as pollution ozone from biomass burning.

  9. Insights Into Tropical Tropospheric Ozone From The 1998-2000 Shadoz (southern Hemisphere Additional Ozonesondes) Data Record

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Witte, J. C.; Oltmans, S. J.; Schmidlin, F. J.; Kirchhoff, V. W. J. H.; Posny, F.; Coetzee, G. J. R.; Hoegger, B.; Kawakami, S.; Ogawa, T.

    We describe the first overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropics based on a 3-year, 10-site record of ozone soundings from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. Ob- servations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Réunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristóbal, Galapagos; Natal, Brazil. The ozone data, with simultaneous tem- perature profiles to 7 hPa and relative humidity to 200 hPa, are at an archive: . Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) col- umn ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts usually peak be- tween August and November and are lowest in the first half of the year. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the wan- ing 1997-1998 Indian Ocean Dipole and ENSO, seasonal convection and pollution transport from Africa. Tropospheric ozone over the Atlantic Basin reflects regional subsidence and recirculation as well as pollution ozone from biomass burning.

  10. Seasonal variations of tertiary and secondary ozone maxima observed by JEM/SMILES

    NASA Astrophysics Data System (ADS)

    Mahani, Mona; Sagawa, Hideo; Murata, Isao; Kasaba, Yasumasa; Kasai, Yasuko

    2013-04-01

    We represent seasonal variations of the tertiary and secondary peaks of ozone according to the SMILES (Superconducting sub-Millimeter Limb Emission Sounder) observation. The tertiary ozone maximum is typically known to form around high-latitude winter mesosphere at an altitude of 70 km. The reason would be the decrease of odd-oxygen losses due to the lower concentrations of odd-hydrogen. The secondary ozone peak exists in upper mesosphere lower thermosphere (MLT) (90-105 km) near the location of atomic oxygen maximum density. Although there are still database limitations for night time ozone measurements in the mesosphere - day and night time ozone measurements should be separated because of the strong diurnal variation of ozone in mesospheric region - , SMILES sub-millimeter passive sensor was able to observe the atmosphere during day and night time. SMILES is a highly sensitive radiometer to observe atmospheric compositions located at the Japanese Experiment Module (JEM) on board the International Space Station (ISS) with the latitudinal coverage of 38S to 65N. It successfully measured vertical distributions and diurnal variations of ozone from upper troposphere to MLT region during its operational period October 2009 to April 2010. The precision of SMILES mesospheric ozone is less than 10-30%. We depict monthly latitudinal distributions of the ozone mixing ratio profiles, as well as the seasonal variations of profiles at several latitudes. At northern polar region, the altitudes of the mesospheric ozone maxima are determined at 70 and 90 km for tertiary and secondary peaks respectively. The ozone concentrations of tertiary and secondary ozone layers were shown to vary seasonally around 50%. The ozone minimum is shown below 80 km with the daily means lower than 0.25 ppm. As a near future perspective to expand our understanding of mesospheric ozone, we aim to compare the mesospheric profiles with GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone

  11. SHADOZ (Southern Hemisphere ADditional Ozonesondes): A Look at the First Three Years' (1998-2000) Tropospheric Ozone Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan K. (Technical Monitor)

    2001-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natai, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at an open archive: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, ENSO, and Madden-Julian circulation on convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude.

  12. 40 CFR 97.343 - Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ozone Season allowances by permitting authority. 97.343 Section 97.343 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.343 Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority. (a) Notwithstanding §§ 97.341,...

  13. 40 CFR 97.343 - Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ozone Season allowances by permitting authority. 97.343 Section 97.343 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.343 Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority. (a) Notwithstanding §§ 97.341,...

  14. 40 CFR 97.343 - Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ozone Season allowances by permitting authority. 97.343 Section 97.343 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.343 Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority. (a) Notwithstanding §§ 97.341,...

  15. 40 CFR 97.343 - Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ozone Season allowances by permitting authority. 97.343 Section 97.343 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.343 Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority. (a) Notwithstanding §§ 97.341,...

  16. 40 CFR 97.343 - Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ozone Season allowances by permitting authority. 97.343 Section 97.343 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.343 Alternative of allocation of CAIR NOX Ozone Season allowances by permitting authority. (a) Notwithstanding §§ 97.341,...

  17. Elevated ozone in boreal fire plumes - the 2013 smoke season

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-05-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about three weeks. In addition, some of the lower-tropospheric components of these layers were analyzed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America have a much stronger impact on the Central European atmosphere than the multitude of fires in the United States. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions over remote high latitude regions obviously picking up the aerosol on their way across Canada. In one case subsidence from the stratosphere over Siberia over as many as 15 to 20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  18. Effects of chronic doses of ozone on loblolly pine: Photosynthetic characteristics in the third growing season

    SciTech Connect

    Sasek, T.W.; Richardson, C.J. )

    1989-09-01

    Gas exchange characteristics of loblolly pine seedlings were measured in the third growing season of ozone fumigations to determine the effects of long-term ozone exposure on photosynthetic capacity. Light and CO{sub 2} response curves indicated significant decreases of 21% and 27%, respectively, in light-saturated and CO{sub 2}-saturated photosynthetic capacities at 2 {times} ambient ozone compared to charcoal-filtered (CF) air, approximately 0.5 {times} ambient ozone. Differences in the response curves suggest changes in light-harvesting and biochemical efficiencies as well as changes in the activity of RuBP carboxylase and the regeneration rate of RuBP. Chlorophyll and carotenoid conditions per unit leaf area were decreased at the high ozone treatment in older flushes. Stomatal resistance limited photosynthesis by about 29% in both CF and 2 {times} ambient ozone treated plants, suggesting that chronic ozone exposure did not affect stomatal control in loblolly pine.

  19. The 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Tropical Ozone Climatology. 2; Stratospheric and Tropospheric Ozone Variability and the Zonal Wave-One

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gert J. R.; Hoegger, Bruno; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at () are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.

  20. Variability in Ozone in the Tropical Tropopause Region from the 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; Oltmans, S. J.; Schmidlin, F. J.

    2002-01-01

    The first view of stratospheric and tropospheric ozone variability in the southern hemisphere tropics is provided by a 3-year, 10-site record of ozone soundings from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the TTL (tropical tropopause layer) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to-week and seasonal basis. The TTL layer is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern is apparent in column-integrated TTL ozone because ozone mixing ratios are greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean. The wave-one persists all year with varying magnitude and appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  1. Variability in Ozone in the Tropical Tropopause Region from the 1998-2000 SHADOZ (Southern Hemisphere ADditional OZonesondes) Data

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Witte, J. C.; Oltmans, S. J.; Schmidlin, F. J.

    2002-05-01

    The first view of stratospheric and tropospheric ozone variability in the southern hemisphere tropics is provided by a 3-year, 10-site record of ozone soundings from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: (http://code916.gsfc.nasa.gov/Data_services/shadoz). Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Réunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristóbal, Galapagos; Natal, Brazil. Taking the TTL (tropical tropopause layer) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to-week and seasonal basis. The TTL layer is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern is apparent in column-integrated TTL ozone because ozone mixing ratios are greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean. The wave-one persists all year with varying magnitude and appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Réunion Island.

  2. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    SciTech Connect

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  3. Influence of isentropic transport on seasonal ozone variations in the lower stratosphere and subtropical upper troposphere

    NASA Technical Reports Server (NTRS)

    Jing, P.; Cunnold, D. M.; Yang, E.-S.; Wang, H.-J.

    2005-01-01

    The isentropic cross-tropopause ozone transport has been estimated in both hemispheres in 1999 based on the potential vorticity mapping of Stratospheric Aerosol and Gas Experiment 11 ozone measurements and contour advection calculations using the NASA Goddard Space Flight Center Global and Modeling Assimilation Office analysis. The estimated net isentropic stratosphere-to-troposphere ozone flux is approx.118 +/- 61 x 10(exp9)kg/yr globally within the layer between 330 and 370 K in 1999; 60% of it is found in the Northern Hemisphere, and 40% is found in the Southern Hemisphere. The monthly average ozone fluxes are strongest in summer and weakest in winter in both hemispheres. The seasonal variations of ozone in the lower stratosphere (LS) and upper troposphere (UT) have been analyzed using ozonesonde observations from ozonesonde stations in the extratropics and subtropics, respectively. It is shown that observed ozone levels increase in the UT over subtropical ozonesonde stations and decrease in the LS over extratropical stations in late spring/early summer and that the ozone increases in the summertime subtropical UT are unlikely to be explained by photochemical ozone production and diabatic transport alone. We conclude that isentropic transport is a significant contributor to ozone levels in the subtropical upper troposphere, especially in summer.

  4. Model analysis of seasonal variations in tropospheric ozone and carbon monoxide over East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Lijie; Zhang, Meigen; Han, Zhiwei

    2009-03-01

    Temporal-spatial variations in tropospheric ozone concentrations over East Asia in the period from 1 January 2000 to 31 December 2004 were simulated by using the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system with meteorological fields calculated by the Regional Atmospheric Modeling System (RAMS). The simulated concentrations of ozone and carbon monoxide were compared with ground level observations at two remote sites, Ryori (39.03°N, 141.82°E) and Yonagunijima (24.47°N, 123.02°E). The comparison shows that the model reproduces their seasonal variation patterns reasonably well, and simulated ozone levels are generally in good agreement with the observed ones, but carbon monoxide concentrations are underestimated. Analysis of horizontal distributions of monthly averaged ozone mixing ratios in the surface layer indicates that ozone concentrations have noticeable differences among the four seasons; they are generally higher in the spring and summer while lower in the winter, reflecting the seasonal variation of solar intensity and photochemical activity and the fact that the monsoons over East Asia are playing an important role in ozone distributions.

  5. Seasonal variation in the acute effects of ozone on premature mortality among elderly Japanese.

    PubMed

    Ng, Chris Fook Sheng; Ueda, Kayo; Nitta, Hiroshi; Takeuchi, Ayano

    2013-10-01

    We conducted a multicity time-series study using monitoring data to assess seasonal patterns of short-term ozone-mortality association among elderly aged 65 years and over in Japan. Daily exposure to ambient ozone was computed using hourly measurements of photochemical oxidants available at multiple monitoring stations in each city. Effects of ozone on daily all-cause non-accidental, cardiovascular, and respiratory mortality were estimated using distributed lag linear models, controlling for confounding by temporal, day of the week, temperature, and flu epidemics. City-level effect estimates were combined using inverse variance meta-analysis. In spring and autumn, a 10-ppbv increase of daily maximum 8-h average ozone concentration in the previous 3 days was associated with 0.69 % (95 % confidence interval (CI): 0.27-1.10), 1.07 % (0.34-1.82), and 1.77 % (0.78-2.77) increases in daily all-cause, cardiovascular, and respiratory mortality, respectively. Forward displacement of respiratory mortality was large during the cold season despite lower ozone concentration. Results were generally independent of fine particulate matter and nitrogen dioxide. Findings suggest significant mortality effects of short-term ozone exposure among the elderly during the moderate season. Those with underlying respiratory diseases were susceptible, even during winter.

  6. Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone

    SciTech Connect

    Zhao, Yan; Tishchenko, Oksana; Gour, Jeffrey R.; Li, Wei; Lutz, Jesse; Piecuch, Piotr; Truhlar, Donald G.

    2009-05-14

    The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals

  7. SHADOZ (Southern Hemisphere ADditional Ozonesondes): What Have We Learned About Tropical Tropospheric Ozone from the First Three Years' (1998-2000) Data?

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; RCunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  8. SHADOZ (Southern Hemisphere ADditional Ozonesondes}: What Have We Learned About Tropical Tropospheric Ozone from the First Three Years (1998-2000) Data

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on an Trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approximately 7 hPa and relative humidity to approximately 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone in 1998-2000. Prominent features are highly variable tropospheric ozone, a zonal wave-one pattern in total (and tropospheric) column ozone, and signatures of the Quasi-Biennial Oscillation (QBO) in stratospheric ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole, and convective mixing. Pollution transport from Africa, South American and the Maritime Continent is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  9. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... output of the enclosed device comprising the compressor, combustor, and turbine multiplied by 3,413 Btu/k... baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under... heat input for 2000 through 2004, with the adjusted control period heat input for each year...

  10. 40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... output of the enclosed device comprising the compressor, combustor, and turbine multiplied by 3,413 Btu/k... baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under... heat input for 2000 through 2004, with the adjusted control period heat input for each year...

  11. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... through the sequential use of energy, the control period gross electrical output of the enclosed device... allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance... control period heat input for 2000 through 2004, with the adjusted control period heat input for each...

  12. 40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... through the sequential use of energy, the control period gross electrical output of the enclosed device... allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance... control period heat input for 2000 through 2004, with the adjusted control period heat input for each...

  13. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units A Appendix A to Subpart IIII of Part...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units 1. The following States have...

  14. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units A Appendix A to Subpart IIII of Part...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units 1. The following States have...

  15. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units A Appendix A to Subpart IIII of Part...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units 1. The following States have...

  16. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units A Appendix A to Subpart IIII of Part...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units 1. The following States have...

  17. 40 CFR Appendix A to Subpart IIIi... - States With Approved State Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units A Appendix A to Subpart IIII of Part...) FEDERAL NOX BUDGET TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in... Implementation Plan Revisions Concerning CAIR NOX Ozone Season Opt-in Units 1. The following States have...

  18. Integrated assessment modeling of atmospheric pollutants in the Southern Appalachian Mountains. Part I: hourly and seasonal ozone.

    PubMed

    Boylan, James W; Odman, Mehmet T; Wilkinson, James G; Russell, Armistead G; Doty, Kevin G; Norris, William B; McNider, Richard T

    2005-07-01

    Recently, a comprehensive air quality modeling system was developed as part of the Southern Appalachians Mountains Initiative (SAMI) with the ability to simulate meteorology, emissions, ozone, size- and composition-resolved particulate matter, and pollutant deposition fluxes. As part of SAMI, the RAMS/EMS-95/URM-1ATM modeling system was used to evaluate potential emission control strategies to reduce atmospheric pollutant levels at Class I areas located in the Southern Appalachians Mountains. This article discusses the details of the ozone model performance and the methodology that was used to scale discrete episodic pollutant levels to seasonal and annual averages. The daily mean normalized bias and error for 1-hr and 8-hr ozone were within U.S. Environment Protection Agency guidance criteria for urban-scale modeling. The model typically showed a systematic overestimation for low ozone levels and an underestimation for high levels. Because SAMI was primarily interested in simulating the growing season ozone levels in Class I areas, daily and seasonal cumulative ozone exposure, as characterized by the W126 index, were also evaluated. The daily ozone W126 performance was not as good as the hourly ozone performance; however, the seasonal ozone W126 scaled up from daily values was within 17% of the observations at two typical Class I areas of the SAMI region. The overall ozone performance of the model was deemed acceptable for the purposes of SAMI's assessment. PMID:16111143

  19. Biofiltration of high formaldehyde loads with ozone additions in long-term operation.

    PubMed

    Maldonado-Diaz, G; Arriaga, S

    2015-01-01

    Formaldehyde (FA) biofiltration was evaluated over 310 days with and without ozone addition. Without ozone, the biofilter was able to treat formaldehyde at inlet loads (ILs) lower than 40 g m(-3) h(-1), maintaining, under this condition, an average removal efficiency (RE) of 88 % for a few days before collapsing to zero. The continuous addition of ozone (90 ppbv) helped to recover the RE from zero to 98 ± 2 % and made it possible to operate at an IL of 40 g m(-3) h(-1) for long periods of operation (107 days). Furthermore, the ozone addition aided in operating the biofilter at a formaldehyde IL of up to 120 g m(-3) h(-1) values that have never before been reached. GC-mass spectrometry (MS) analysis showed that dimethoxymethane was the common compound in leachate during the performance decay. Also, the addition of ozone aided in maintaining an optimal pH in the biofilter with values between 7.5 and 8.2, due to the carbonate species formed during the ozone reactions with formaldehyde and its by-products. Thus, the pH control was confirmed and the alkalinity of the biofilter increased from 334.1 ± 100.3 to 1450 ± 127 mg CaCO3 L(-1) when ozone was added. Ozone addition diminished the exopolymeric substances (EPS) content of biofilm and biofilm thickness without affecting cell viability. Kinetic parameters suggested that the best conditions for carrying out FA biofiltration were reached under ozone addition. The addition of ozone during formaldehyde biofiltration could be a good strategy to maintain the pH and the steady state of the system under high ILs and for long periods of operation.

  20. Antarctic ozone decrease: Possible impact on the seasonal and latitudinal distribution of total ozone as simulated by a 2-D model

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien-Dak; Weisenstein, Debra K.; Rodriguez, Jose M.

    1988-01-01

    Satellite borne instruments, the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet spectrometer (SBUV), show that total column ozone has decreased by more than 5 percent in the neighborhood of 60 S at all seasons since 1979. This is considerably larger than the decrease calculated by 2-D models which take into account solar flux variation and increases of trace gas concentrations over the same period. The meteorological conditions (warmer temperature and the apparent lack of polar stratospheric clouds) at these latitudes do not seem to favor heterogeneous chemistry as the direct cause for the observed ozone reduction. A mechanism involving the seasonal transport of ozone-poor air mass from within the polar vortex to lower latitudes (the so-called dilution effect) is proposed as a possible explanation for the observed year-round ozone reduction in regions away from the vortex.

  1. How Seasonal Variations of High Latitude Total Ozone are Controlled by Transport Barriers

    NASA Astrophysics Data System (ADS)

    Gille, J. C.; Karol, S. I.; Kinnison, D. E.; Yudin, V. A.; Lamarque, J. F.

    2014-12-01

    Total ozone in northern mid- and high- latitudes has a large maximum at the end of the northern winter, and minimum at the end of the summer. Data from the High Resolution Dynamics Limb Sounder (HIRDLS) experiment on Aura provide profiles of ozone and temperature with high vertical and along track resolution that extends down into the upper troposphere. Displaying ozone isopleths in a potential temperature - equivalent latitude coordinate system shows the downward advection by the Brewer-Dobson circulation during fall and winter, but also the existence of barriers to transport around 35° N below 500 K. These are in the locations predicted by Nakamura's [1996] effective diffusivity formulation, and are not present above 500 K, or during summer. The major component of the total column change is due to the ozone buildup behind the winter barrier below 500 K, which disappears as a result of mixing in summer. The seasonal variation of total ozone is in very good agreement with direct measurements by the Ozone Monitoring Instrument (OMI), also on Aura. Calculations using the Whole Atmosphere Community Climate Model (WACCM) suggest that in a warming world mid-latitude barriers will be stronger, mid latitude gradients will be steeper and high latitude winter mixing ratios and total column amounts will be noticeably larger.

  2. New Insights on Tropical Ozone from SHADOZ (Southern Hemisphere Additional Ozonesondes) Profiles

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the website, , for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island, Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Key results from SHADOZ will be described from among the following: 1) By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement was achieved; 2) Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian; most stations vary up to a factor of 3 in tropospheric column over the course of a year; 3) Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; this causes a "zonal wave-one" feature in total ozone. 4) The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone; 5) Indian Ocean region pollution may contribute up to half of the excess ozone observed in the south tropical Atlantic paradox in the December-January-February period of the year.

  3. Seasonal budgets of ozone and oxidant precursors in an industrial coastal area of northern Italy

    NASA Technical Reports Server (NTRS)

    Georgiadis, T.; Alberti, L.; Bonasoni, P.; Fortezza, F.; Giovanelli, G.; Strocchi, V.

    1994-01-01

    The seasonal budgets and evolution of photochemical oxidants reported for greater Ravenna's urban-industrial area in the present study were calculated using the combined data from on-site systematic surveys (1978-1989) and from the monitoring network of the local environmental authorities. The notable differences in the concentrations of ozone and nitrogen oxides depended on season, and meteorological variables showed a marked correlation to the seasonal budget of trace constituents. The weak local circulation, the land-sea breeze system, and high solar radiation in summer, which may persist at length because of the anticyclonic conditions, can produce episodes of intense photochemical reactions. In winter, by contrast, low solar radiation and the absence of the breeze system results in very different evolutions of both pollutant concentrations and their seasonal budget.

  4. Relationship between ozone and temperature trends in the lower stratosphere: Latitude and seasonal dependences

    NASA Technical Reports Server (NTRS)

    Mccormack, John P.; Hood, Lon L.

    1994-01-01

    A one-dimensional radiative transfer model with fixed dynamical heating is used to calculate the approximate latitude and seasonal dependences of lower stratospheric temperature changes associated with observed ozone trends. The spatial and temporal distribution of ozone profile trends in the lower stratosphere is estimated from a combination of Nimbus 7 Solar Backscattered Ultraviolet (SBUV) global measurements of the ozone column below 32 mbar for the period 1979-1990 and balloon ozonesonde profile trends at northern middle latitudes. The calculated temperature trends near 100 mbar compare favorably with those recently derived by Randel and Cobb (1994) using data from Channel 4 of the Microwave Sounding Unit (MSU) on the NOAA operational satellites, although a number of quantitative differences are found. An independent analysis reported here of 100 mbar temperatures derived from northern hemisphere radiosonde data at the Free University of Berlin (FUB) supports the validity of the satellite-derived lower stratospheric temperature trends. These results are therefore generally consistent with the hypothesis that observed lower stratospheric cooling trends are predominantly determined by reductions in radiative heating associated with stratospheric ozone depletion.

  5. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2014 and thereafter is 3,731 tons. (v) The NOX ozone season new unit set-aside for 2014 and thereafter... is 36,567 and for 2013 is 21,835 tons. (ii) The NOX ozone season new unit set-aside for 2012 is 731... for 2013 is 22,694 tons. (ii) The NOX ozone season new unit set-aside for 2012 is 731 tons and...

  6. Ozone and aerosol distributions over the Amazon basin during the wet season

    SciTech Connect

    Browell, E.V.; Gregory, G.L. ); Harriss, R.C. ); Kirchhoff, V.W.J.H. )

    1990-09-20

    Measurements of ozone (O{sub 3}) and aerosols were made over the tropical rain forest of Brazil during the wet season in April-May 1987 as part of the NASA Global Tropospheric Experiment to study the Amazon boundary layer. Remote and in situ measurements of O{sub 3} and aerosols were made from aircraft on flights over Brazil in the vicinity of Manaus and between Manaus and Belem. Ozonesonde data were also obtained near Manaus. Ozone mixing ratios of <12 ppbv were found in the mixed layer during the wet season with no significant evidence of O{sub 3} produced from biomass burning or photochemistry. These values are lower than those found during the 1985 dry season by 6-8 ppbv. These low O{sub 3} mixing ratios indicate a strong removal process near the surface during the wet season. The region from the mixed layer top to 3 km in altitude had a slowly increasing O{sub 3} profile from 12 to 20 ppbv. On long-range flights between Manaus and Belem, no significant difference was found in the distribution of O{sub 3} above the mixed layer between the inland tropical rain forest and the marine conditions near the coast. Within the mixed layer, there was a definite trend to lower O{sub 3} levels above the forest compared to over the ocean. This reflects the marked difference in the sinks for O{sub 3} over these two regions. The rate of growth of the mixed layer over the rain forest in the wet season was found to be {approximately}9 cm s{sup {minus}1}, which is within the 7-10 cm s{sup {minus}1} range found for the dry season. There was no evidence of the trade wind inversion that was seen during the dry season, and due to frequent precipitation, the background aerosol loading was lower in the wet season than in the dry season.

  7. Ozone

    MedlinePlus

    ... reactive form of oxygen. In the upper atmosphere, ozone forms a protective layer that shields us from the sun’s ultraviolet rays. At ground level, ozone is a harmful air pollutant and a primary ...

  8. Trend Analysis of Tropical Ozone From the Southern Hemisphere Additional Ozonesondes (SHADOZ) Data

    NASA Astrophysics Data System (ADS)

    Morioka, H.; Fujiwara, M.; Shiotani, M.; Thompson, A. M.; Witte, J. C.; Oltmans, S. J.

    2007-12-01

    Linear trends of ozone for 1998-2007 are estimated for the troposphere through the lower stratosphere at ten tropical ozonesonde stations participating in the Southern Hemisphere Additional Ozonesondes (SHADOZ) project. Most stations cover the period from early 1998 to the end of 2006, but some stations have a shorter or longer record. Soundings are made once to four times per month, varying for station and year, but cover basically all seasons. The total sounding number ranges from 102 for Malindi to 429 for Ascension Island. Trends are calculated for vertically averaged values in each 1-km bin from 0-1 km to 30-31 km, and expressed as percent per year. Statistical test is also made. Around the tropopause, between 15 and 20 km, negative trends are seen for most stations. At San Cristobal (in the eastern Pacific) at 16-17 km, the trend is -4.3 ± 3.0 percent per year, and at Watukosek (in Indonesia) at 17-18 km, it is -4.8 ± 3.9 percent per year, both statistically significant. However, at Ascension (in the Atlantic) and at Natal (in South America), the tropopause trend is near zero and not statistically significant. At Natal at 12-13 km, the trend is +3.7 ± 3.0 percent per year, and at Malindi (in Africa) at 11-12 km, it is +5.0 ± 4.6 percent per year, both statistically significant. Generally in the free troposphere, positive trends are seen, but are statistically not significant for most regions. In the planetary boundary layer, statistically significant positive trends are seen at Kuala Lumpur (in Southeast Asia) and at Fiji (in the southwestern Pacific), and a statistically significant negative trend is seen at Paramaribo (in South America). The trend analysis is also made for four different seasons. Around the tropopause, seasonality in trend is small for all stations. In the upper troposphere, at Fiji and at Samoa, negative trends are seen in SON, but positive trends are seen in DJF.

  9. Ozone

    MedlinePlus

    Ozone is a gas. It can be good or bad, depending on where it is. "Good" ozone occurs naturally about 10 to 30 miles above ... the sun's ultraviolet rays. Part of the good ozone layer is gone. Man-made chemicals have destroyed ...

  10. Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Climatology (2005-2009): Tropospheric and Tropical Tropopause Layer (TTL) Profiles with Comparisons to Omi-based Ozone Products

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Miller, Sonya K.; Tilmes, Simone; Kollonige, Debra W.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Johnson, Brian J.; Fujiwara, Masatomo; Schmidlin, F. J.; Coetzee, G. J. R.; Komala, Ninong; Maata, Matakite; bt Mohammad, Maznorizan; Nguyo, J.; Mutai, C.; Ogino, S-Y; Da Silva, F. Raimundo; Paes Leme, N. M.; Posny, Francoise; Scheele, Rinus; Selkirk, Henry B.; Shiotani, Masato; Stubi, Rene; Levrat, Gilbert; Calpini, Bertrand; Thouret, Valerie; Tsuruta, Haruo; Canossa, Jessica Valverde; Voemel, Holger; Yonemura, S.; Andres Diaz, Jorge; Tan Thanh, Nguyen T.; Thuy Ha, Hoang T.

    2012-01-01

    We present a regional and seasonal climatology of SHADOZ ozone profiles in the troposphere and tropical tropopause layer (TTL) based on measurements taken during the first five years of Aura, 2005-2009, when new stations joined the network at Hanoi, Vietnam; Hilo, Hawaii; Alajuela Heredia, Costa Rica; Cotonou, Benin. In all, 15 stations operated during that period. A west-to-east progression of decreasing convective influence and increasing pollution leads to distinct tropospheric ozone profiles in three regions: (1) western Pacific eastern Indian Ocean; (2) equatorial Americas (San Cristobal, Alajuela, Paramaribo); (3) Atlantic and Africa. Comparisons in total ozone column from soundings, the Ozone Monitoring Instrument (OMI, on Aura, 2004-) satellite and ground-based instrumentation are presented. Most stations show better agreement with OMI than they did for EPTOMS comparisons (1998-2004; Earth-ProbeTotal Ozone Mapping Spectrometer), partly due to a revised above-burst ozone climatology. Possible station biases in the stratospheric segment of the ozone measurement noted in the first 7 years of SHADOZ ozone profiles are re-examined. High stratospheric bias observed during the TOMS period appears to persist at one station. Comparisons of SHADOZ tropospheric ozone and the daily Trajectory-enhanced Tropospheric Ozone Residual (TTOR) product (based on OMIMLS) show that the satellite-derived column amount averages 25 low. Correlations between TTOR and the SHADOZ sondes are quite good (typical r2 0.5-0.8), however, which may account for why some published residual-based OMI products capture tropospheric interannual variability fairly realistically. On the other hand, no clear explanations emerge for why TTOR-sonde discrepancies vary over a wide range at most SHADOZ sites.

  11. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Cerniglia, Mark C.; Sparling, Lynn C.; Nielsen, J. Eric

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The

  12. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... budget for 2014 and thereafter is 3,731 tons. (v) The NOX ozone season new unit set-aside for 2014 and... unit set-aside for 2012 is 731 tons and for 2013 is 454 tons. (iii) (iv) The NOX ozone season trading..., new unit set-asides, Indian country new unit set-aside, and variability limits. 97.510 Section...

  13. 40 CFR 97.510 - State NOX Ozone Season trading budgets, new unit set-asides, Indian country new unit set-aside...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... budget for 2014 and thereafter is 3,731 tons. (v) The NOX ozone season new unit set-aside for 2014 and... unit set-aside for 2012 is 731 tons and for 2013 is 454 tons. (iii) (iv) The NOX ozone season trading..., new unit set-asides, Indian country new unit set-aside, and variability limits. 97.510 Section...

  14. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH). Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives

  15. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    PubMed

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events.

  16. Ground-Level Ozone Following Astrophysical Ionizing Radiation Events: An Additional Biological Hazard?

    PubMed

    Thomas, Brian C; Goracke, Byron D

    2016-01-01

    Astrophysical ionizing radiation events such as supernovae, gamma-ray bursts, and solar proton events have been recognized as a potential threat to life on Earth, primarily through depletion of stratospheric ozone and subsequent increase in solar UV radiation at Earth's surface and in the upper levels of the ocean. Other work has also considered the potential impact of nitric acid rainout, concluding that no significant threat is likely. Not yet studied to date is the potential impact of ozone produced in the lower atmosphere following an ionizing radiation event. Ozone is a known irritant to organisms on land and in water and therefore may be a significant additional hazard. Using previously completed atmospheric chemistry modeling, we examined the amount of ozone produced in the lower atmosphere for the case of a gamma-ray burst and found that the values are too small to pose a significant additional threat to the biosphere. These results may be extended to other ionizing radiation events, including supernovae and extreme solar proton events. PMID:26745353

  17. Ozone and daily mortality rate in 21 cities of East Asia: how does season modify the association?

    PubMed

    Chen, Renjie; Cai, Jing; Meng, Xia; Kim, Ho; Honda, Yasushi; Guo, Yue Leon; Samoli, Evangelia; Yang, Xin; Kan, Haidong

    2014-10-01

    Previous studies in East Asia have revealed that the short-term associations between tropospheric ozone and daily mortality rate were strongest in winter, which is opposite to the findings in North America and Western Europe. Therefore, we investigated the season-varying association between ozone and daily mortality rate in 21 cities of East Asia from 1979 to 2010. Time-series Poisson regression models were used to analyze the association between ozone and daily nonaccidental mortality rate in each city, testing for different temperature lags. The best-fitting model was obtained after adjustment for temperature in the previous 2 weeks. Bayesian hierarchical models were applied to pool the city-specific estimates. An interquartile-range increase of the moving average concentrations of same-day and previous-day ozone was associated with an increase of 1.44% (95% posterior interval (PI): 1.08%, 1.80%) in daily total mortality rate after adjustment for temperature in the previous 2 weeks. The corresponding increases were 0.62% (95% PI: 0.08%, 1.16%) in winter, 1.46% (95% PI: 0.89%, 2.03%) in spring, 1.60% (95% PI: 1.03%, 2.17%) in summer, and 1.12% (95% PI: 0.73%, 1.51%) in fall. We found significant associations between short-term exposure to ozone and higher mortality rate in East Asia that varied considerably from season to season with a significant trough in winter.

  18. Seasonal and species-specific response of VOC emissions by Mediterranean woody plant to elevated ozone concentrations

    NASA Astrophysics Data System (ADS)

    Llusià, J.; Peñuelas, J.; Gimeno, B. S.

    Although certain factors controlling plant emission rates of volatile organic compounds (VOCs) are reasonably well understood, the influence of elevated ozone concentrations as abiotic stress is mostly unknown. Therefore, we studied the effects of ozone concentrations on seasonal biogenic volatile organic compound (BVOC) emissions by different Mediterranean plant species in open top chambers (OTC). Three ozone treatments were established: filtered air (F), non-filtered air (NF), and fumigated air (NF+) adding 40 nl l -1 of ozone over NF. We studied the response of VOC emission in saplings of four Mediterranean woody plant species and subspecies: Ceratonia siliqua L., Olea europaea L., Quercus ilex spp. ilex L., and Quercus ilex spp. rotundifolia L. as representative of natural Mediterranean vegetation. No visible symptoms were detected on the leaves. No significant effect was found on net photosynthetic rates or stomatal conductance except for an increase in net photosynthetic rates in Quercus ilex ilex in spring and summer and an overall slight increase in Quercus ilex rotundifolia. Emissions of the total VOCs from Ceratonia siliqua in summer, and from Olea europaea and Quercus ilex rotundifolia in spring increased in ozone fumigated OTC in comparison with F or NF OTC. Decreased emissions were found in Quercus ilex rotundifolia in summer. There were no significant differences between ozone fumigation treatments for the other plant species and seasons. When considering particular VOCs, the results were also variable among species and time of the year. While α-pinene emissions decreased with ozone fumigation in Olea europaea, α-pinene and limonene emissions increased in Quercus ilex ilex. The responses of these particular VOCs did not always match the responses of total VOCs. In spite of this strong variability, when considering overall annual data for all species and seasons, there were increased net photosynthetic rates (37%) and limonene (95%) and total VOC (45

  19. Repeated laboratory ozone exposures of volunteer Los Angeles residents: an apparent seasonal variation in response

    SciTech Connect

    Linn, W.S.; Avol, E.L.; Shamoo, D.A.; Peng, R.C.; Valencia, L.M.; Little, D.E.; Hackney, J.D.

    1988-12-01

    This study was intended to help explain individual differences in susceptibility to irritant effects of ozone (O3), by determining whether prior ambient O3 exposures and/or recent acute respiratory illness modified response to laboratory O3 exposures. Response was measured in terms of lung function changes and irritant symptoms. Initially, 59 adult volunteer Los Angeles area residents underwent screening exposures in spring, before the season of frequent high ambient O3 levels. Unusually responsive and nonresponsive individuals (N = 12 and 13 respectively) underwent followup exposures in autumn (late in the high-O3 season) and in winter (low-O3 season). All exposures were to 0.18 ppm O3 for 2 hr with intermittent heavy exercise at 31 degrees C and 35% relative humidity. Nonresponders tended to remain nonresponsive throughout. In fall, responders had lost much of their reactivity, as if they had adapted to summer ambient O3 exposures. They did not regain reactivity by winter. Clinical laboratory findings suggestive of acute respiratory illness did not appear to correlate with O3 response. Eight responders and 9 nonresponders underwent another followup exposure in spring, about 1 yr after screening. By that time most responders had regained their reactivity; individual function changes were significantly correlated with changes 1 yr earlier. These results suggest that response to O3 is a persistent individual characteristic, but can be modified by repeated ambient exposures.

  20. Influence of the heterogeneous reaction HCL + HOCl on an ozone hole model with hydrocarbon additions

    SciTech Connect

    Elliott, S.; Cicerone, R.J.; Turco, R.P.

    1994-02-20

    Injection of ethane or propane has been suggested as a means for reducing ozone loss within the Antarctic vortex because alkanes can convert active chlorine radicals into hydrochloric acid. In kinetic models of vortex chemistry including as heterogeneous processes only the hydrolysis and HCl reactions of ClONO{sub 2} and N{sub 2}O{sub 5}, parts per billion by volume levels of the light alkanes counteract ozone depletion by sequestering chlorine atoms. Introduction of the surface reaction of HCl with HOCl causes ethane to deepen baseline ozone holes and generally works to impede any mitigation by hydrocarbons. The increased depletion occurs because HCl + HOCl can be driven by HO{sub x} radicals released during organic oxidation. Following initial hydrogen abstraction by chlorine, alkane breakdown leads to a net hydrochloric acid activation as the remaining hydrogen atoms enter the photochemical system. Lowering the rate constant for reactions of organic peroxy radicals with ClO to 10{sup {minus}13} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} does not alter results, and the major conclusions are insensitive to the timing of the ethane additions. Ignoring the organic peroxy radical plus ClO reactions entirely restores remediation capabilities by allowing HO{sub x} removal independent of HCl. Remediation also returns if early evaporation of polar stratospheric clouds leaves hydrogen atoms trapped in aldehyde intermediates, but real ozone losses are small in such cases. 95 refs., 4 figs., 7 tabs.

  1. A season of heat, water vapor, total hydrocarbon, and ozone fluxes at a subarctic fen

    NASA Technical Reports Server (NTRS)

    Moore, Kathleen E.; Fitzjarrald, David R.; Wofsy, Steven C.; Daube, Bruce C.; Munger, J. William; Bakwin, Peter S.; Crill, Patrick

    1994-01-01

    High-latitude environments are thought to play several critical roles in the global balance of radiatively active trace gases. Adequate documentation of the source and sink strengths for trace gases requires long time series of detailed measurements, including heat and moisture budgets. A fen near Schefferville, Quebec, was instrumented during the summer of 1990 for the measurement of the surface energy, radiation, and moisture balances as well as for eddy correlation estimates of ozone and methane flux. Despite the limited fetch at this site, analysis of the tower flux 'footprint' indicates that at least 80% of the flux observed originates from sources within the fen. Sensible heat fluxes averaged 25% of the daytime net radiation at the site, while the latent heat flux, determined from the energy balance, was 63%; the Bowen ratio varied from 0.2 to 0.8 from day to day, without a seasonal trend to the variation. The competing effects of rooted macrophyte development (with concomitant effects on roughness and transpiration) and the normal shift in synoptic pattern around day 200 to warm, dry conditions results in a lack of net seasonal effect on the energy partitioning. Over the period from days 170 to 230, the evaporation (167 mm) was double the rainfall, while the decline in water level was 107 mm, leaving a net runoff of 0.44 mm/d. The total hydrocarbon flux was 75-120 mg m(exp -2)/d, following a diurnal pattern similar to heat or moisture flux, while the daytime ozone flux was about -1.11 x 10(exp 11) molecules cm(exp -2)/s. A period near the end of the experiment, during week 30, produced the strongest total hydrocarbon flux, associated with warmer deep (1 m) soil temperatures, lower fen water levels, and the late summer shift in wind direction at that time. An early summer 'flush' of total hydrocarbon was not observed.

  2. Effects of temperature and chemical addition on the formation of bromoorganic DBPs during ozonation.

    PubMed

    Zhang, Xiangru; Echigo, Shinya; Lei, Hongxia; Smith, Michael E; Minear, Roger A; Talley, Jeffrey W

    2005-01-01

    The effects of temperature and addition of OH radical scavengers/enhancers or HOBr scavenger on the formation of bromoorganic disinfection byproducts (DBPs) from ozonation of six raw waters were studied in true batch reactors. The formation of bromoorganic DBPs during ozonation generally increased with the increase of temperature, but might also decrease for the waters with somewhat higher values of specific UV absorbance (SUVA). The addition of hydrogen peroxide, ethanol, or ammonium dramatically decreased the formation of bromoorganic DBPs; t-butanol addition significantly increased the formation of bromoorganic DBPs; bicarbonate addition might increase or decrease bromoorganic DBP formation depending on the water source. For all the waters treated with the chemical addition, the level of total organic bromine (TOBr) varied with the same pace as that of ozone exposure (CT), which suggests that TOBr formed during ozonation may be used to estimate the CT, a measure for the achieved degree of disinfection. The results demonstrate that for each water, the correlation between TOBr and CT was less affected by the change of chemical composition of the water than that between BrO(3)(-) and CT; for a given chemical composition and temperature of a water, there generally were well-defined relationships between TOBr and CT, and bromoform and CT just as that between BrO(3)(-) and CT. The possible mechanisms behind the linear functions of TOBr or BrO(3)(-) versus CT were given. Further study is needed to examine whether the trends found in this research can be applicable for the high SUVA waters.

  3. Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2000 tropical ozone climatology 1. Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Witte, Jacquelyn C.; McPeters, Richard D.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatomo; Kirchhoff, Volker W. J. H.; Posny, FrançOise; Coetzee, Gert J. R.; Hoegger, Bruno; Kawakami, Shuji; Ogawa, Toshihiro; Johnson, Bryan J.; VöMel, Holger; Labow, Gordon

    2003-01-01

    A network of 10 southern hemisphere tropical and subtropical stations, designated the Southern Hemisphere Additional Ozonesondes (SHADOZ) project and established from operational sites, provided over 1000 ozone profiles during the period 1998-2000. Balloon-borne electrochemical concentration cell (ECC) ozonesondes, combined with standard radiosondes for pressure, temperature, and relative humidity measurements, collected profiles in the troposphere and lower to midstratosphere at: Ascension Island; Nairobi, Kenya; Irene, South Africa; Réunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristóbal, Galapagos; and Natal, Brazil. The archived data are available at: . In this paper, uncertainties and accuracies within the SHADOZ ozone data set are evaluated by analyzing: (1) imprecisions in profiles and in methods of extrapolating ozone above balloon burst; (2) comparisons of column-integrated total ozone from sondes with total ozone from the Earth-Probe/Total Ozone Mapping Spectrometer (TOMS) satellite and ground-based instruments; and (3) possible biases from station to station due to variations in ozonesonde characteristics. The key results are the following: (1) Ozonesonde precision is 5%. (2) Integrated total ozone column amounts from the sondes are usually to within 5% of independent measurements from ground-based instruments at five SHADOZ sites and overpass measurements from the TOMS satellite (version 7 data). (3) Systematic variations in TOMS-sonde offsets and in ground-based-sonde offsets from station to station reflect biases in sonde technique as well as in satellite retrieval. Discrepancies are present in both stratospheric and tropospheric ozone. (4) There is evidence for a zonal wave-one pattern in total and tropospheric ozone, but not in stratospheric ozone.

  4. Stratospheric ozone in boreal fire plumes - the 2013 smoke season over central Europe

    NASA Astrophysics Data System (ADS)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-08-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about 3 weeks. In addition, some of the lower-tropospheric components of these layers were analysed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America lead to much stronger signatures in the central European atmosphere than the multitude of fires in the USA. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions descending from remote high-latitude regions, obviously picking up the aerosol on their way across Canada. In one case, subsidence from the stratosphere over Siberia over as many as 15-20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  5. Projecting Policy-Relevant Metrics to Characterize Changing Ozone Extremes over the US: Variations by Region, Season and Scenario

    NASA Astrophysics Data System (ADS)

    Rieder, H. E.; Fiore, A. M.; Correa, G. J. P.; Clifton, O.; Horowitz, L. W.; Naik, V.

    2014-12-01

    Nitrogen oxide (NOx) emission controls have led to improved air quality (particularly in the Eastern US) over the past two decades, but concerns have been raised that climate warming may offset some of these gains in the coming decades. Here we address these concerns by analyzing the effect of projected future changes of emissions and climate, in isolation and combination, on US surface ozone (O3) during the 21st century in an ensemble of simulations (3 members per scenario) performed with the GFDL chemistry-climate model CM3. We analyze two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. Under both scenarios, NOx emissions decrease by ~80% over North America by 2100. In additional 3-member ensemble simulations, termed RCP4.5_WMGG and RCP8.5_WMGG, well-mixed greenhouse gases follow the respective RCP but O3 and aerosol precursor emissions are held at 2005 levels. These simulations enable us to isolate the role of well-mixed greenhouse gas induced climate change from that of emission reductions. Another set of simulations, following RCP8.5 but with methane (CH4) held fixed at 2005 levels, termed RCP8.5_2005CH4, allows us to quantify the background influence of CH4 on O3. For each season, we examine changes in the surface O3 distribution over the US during the 21st century, calculating policy relevant statistics: days above the current national ambient air quality standard (NAAQS) of 75 ppb and other proposed future levels, as well as the probabilistic 1-year return levels for maximum daily 8-hour average ozone (MDA8 O3), within each model grid cell. Specifically, we analyze: (i) regional and seasonal changes in the frequency and return level of high O3 pollution events during the 21st century, as well as (ii) differences among the RCPs by the middle and end of the 21st century. We find that the response of surface O3 to changes in emissions and climate varies strongly, seasonally and spatially, with certain regions more prone to a 'climate

  6. Projecting policy-relevant metrics to characterize changing ozone extremes over the US: Variations by region, season and scenario

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Fiore, Arlene M.; Correa, Gus; Clifton, Olivia; Horrowitz, Larry W.; Naik, Vaishali

    2015-04-01

    Nitrogen oxide (NOx) emission controls have led to improved air quality (particularly in the Eastern US) over the past two decades, but concerns have been raised that climate warming may offset some of these gains in the coming decades. Here we address these concerns by analyzing the effect of projected future changes of emissions and climate, in isolation and combination, on US surface ozone (O3) during the 21st century in an ensemble of simulations (3 members per scenario) performed with the GFDL chemistry-climate model CM3. We analyze two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. Under both scenarios, NOx emissions decrease by ~80% over North America by 2100. In additional 3-member ensemble simulations, termed RCP4.5_WMGG and RCP8.5_WMGG, well-mixed greenhouse gases follow the respective RCP but O3 and aerosol precursor emissions are held at 2005 levels. These simulations enable us to isolate the role of well-mixed greenhouse gas induced climate change from that of emission reductions. Another set of simulations, following RCP8.5 but with methane (CH4) held fixed at 2005 levels, termed RCP8.5_2005CH4, allows us to quantify the background influence of CH4 on O3. For each season, we examine changes in the surface O3 distribution over the US during the 21st century, calculating policy relevant statistics: days above the current national ambient air quality standard (NAAQS) of 75 ppb and other proposed future levels, as well as the probabilistic 1-year return levels for maximum daily 8-hour average ozone (MDA8 O3), within each model grid cell. Specifically, we analyze: (i) regional and seasonal changes in the frequency and return level of high O3 pollution events during the 21st century, as well as (ii) differences among the RCPs by the middle and end of the 21st century. We find that the response of surface O3 to changes in emissions and climate varies strongly, seasonally and spatially, with certain regions more prone to a 'climate

  7. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997-2012

    NASA Astrophysics Data System (ADS)

    Assareh, Nosha; Prabamroong, Thayukorn; Manomaiphiboon, Kasemsan; Theramongkol, Phunsak; Leungsakul, Sirakarn; Mitrjit, Nawarat; Rachiwong, Jintarat

    2016-09-01

    This study analyzed observed surface ozone (O3) in the dry season over a long-term period of 1997-2012 for the eastern region of Thailand and incorporated several technical tools or methods in investigating different aspects of O3. The focus was the urbanized and industrialized coastal areas recently recognized as most O3-polluted areas. It was found that O3 is intensified most in the dry-season months when meteorological conditions are favorable to O3 development. The diurnal variations of O3 and its precursors show the general patterns of urban background. From observational O3 isopleth diagrams and morning ratios of non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx), the chemical regime of O3 formation was identified as VOC-sensitive, and the degree of VOC sensitivity tends to increase over the years, suggesting emission control on VOC to be suitable for O3 management. Both total oxidant analysis and back-trajectory modeling (together with K-means clustering) indicate the potential role of regional transport or influence in enhancing surface O3 level over the study areas. A meteorological adjustment with generalized linear modeling was performed to statistically exclude meteorological effects on the variability of O3. Local air-mass recirculation factor was included in the modeling to support the coastal application. The derived trends in O3 based on the meteorological adjustment were found to be significantly positive using a Mann-Kendall test with block bootstrapping.

  8. Variability in Ozone in the Tropical Upper Troposphere-Lower Stratosphere from the 1998-2000 SHADOZ (Southern Hemisphere Additional Ozonesondes) Data

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; McPeters, R. D.; Schmidlin, F. J.; Oltmans, S. J.; Kirchhoff, V. W. J. H.; Coetzee, G. J. R.; Posny, F.; Kawakami, S.; Ogawa, T.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3-year, 10-site record from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: . Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere- lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to-week and seasonal basis. The tropopause is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  9. Variability in Ozone in the Tropical Upper Troposphere-Lower Stratosphere from the 1998 - 200 SHADOZ (Southern Hemisphere ADditional Ozonesondes) Data

    NASA Astrophysics Data System (ADS)

    Thompson, A.; Witte, J.; Oltmans, S.; Coetzee, G.; Kawakami, S.; Ogawa, T.

    The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3 year, 10-site record from the Southern Hemisphere ADditional- OZonesondes (SHADOZ) network: . Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Crist"bal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere-lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week- to- week and seasonal basis. The tropopause is lower in September-October-November than in March-April- May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  10. Discoveries about Tropical Tropospheric Ozone from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes) and a Future Perspective on NASA's Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    We have been producing near-real tropical tropospheric ozone ('TTO') data from TOMS since 1997 with Prof. Hudson and students at the University of Maryland. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: . We also have archived 'TTO' data from the Nimbus 7/TOMS satellite (1979-1992). The tropics is a region strongly influenced by natural variability and anthropogenic activity and the satellite data have been used to track biomass burning pollution and to detect interannual variability and climate signals in ozone. We look forward to future ozone sensors from NASA; four will be launched in 2004 as part of the EOS AURA Mission. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center, NOAA's Climate Monitoring and Diagnostics Laboratory (CMDL) and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches at selected sites and provides a public archive of ozonesonde data from twelve tropical and subtropical stations at http://croc.nsfc.nasa.gov/shadoz. The stations are: Ascension Island; Nairobi, Kenya; Irene, South Africa; R,union Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil, Malindi, Kenya; Paramaribo, Surinam. From the first 3-4 years of data (presently greater than 1700 sondes), the following features emerge: (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) tropospheric ozone variability over the Indian and Pacific Ocean displays strong convective signatures.

  11. A Status Report on the SHADOZ (Southern Hemisphere Additional Ozonesondes) Project and Some Issues Affecting Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; McPeters, R. D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    SHADOZ aims to support the study of local and global patterns in stratospheric and tropospheric ozone and to provide a data set for the validation for satellite products and model calculations of ozone. Southern hemispheric tropical ozone is of particular interest because this region appears to have complex interplay among photochemical ozone formation (from biomass burning and lightning), stratospheric dynamics, convection and possibly cross-hemispheric transport. Balloon-borne ozone instrumentation (ozonesondes), joined with standard radiosondes for measurement of pressure, temperature and relative humidity, is used to collect profiles throughout the troposphere and lower- to mid-stratosphere. A network of 10 southern hemisphere tropical and subtropical stations, called the Southern Hemisphere ADditional OZonesondes (SHADOZ) project, has been established from operational sites to assemble sonde data for 1998-2000. A status report on the archive, with station operating characteristics, will be given, along with some operational issues that may affect data analysis and interpretation.

  12. Ozone

    SciTech Connect

    Not Available

    1988-06-01

    The author discusses the debate over whether concern about a hole in the ozone layer in Antarctic is real or science fiction. There is a growing consensus that efforts must be taken to protect the ozone layer. The issue now is not whether chlorofluorocarbons (CFCs) should be controlled and regulated but how much and how soon. The United States has urged that the production of dangerous CFCs, and any other chemicals that affect the ozone layer, be restricted immediately to current levels and that their use be reduced 95 percent over the next decade. The American position was too strong for many European nations and the Japanese. Negotiations at an international conference on the matter broke down. The breakdown is due in part to a more acute concern for environmental matters in the United States than exists in many countries. Meanwhile CFCs are linked to another environmental problem that equally threatens the world - the Greenhouse Effect. The earth is in a natural warming period, but man could be causing it to become even warmer. The Greenhouse Effect could have a catastrophic impact on mankind, although nothing has been proven yet.

  13. The Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998-2002 Tropical Ozone Climatology. 3; Instrumentation and Station-to-Station Variability

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacqueline C.; Smit, Herman G. J.; Oltmans, Samuel J.; Johnson, Bryan J.; Kirchhoff, Volker W. J. H.; Schmidlin, Francis J.

    2004-01-01

    Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.

  14. Analysis of seasonal ozone budget and spring ozone latitudinal gradient variation in the boundary layer of the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Hou, Xuewei; Zhu, Bin; Kang, Hanqing; Gao, Jinhui

    2014-09-01

    The ozone (O3) budget in the boundary layer of the Asia-Pacific region (AP) was studied from 2001 to 2007 using the output of Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The model-simulated O3 data agree well with observed values. O3 budget analysis using the model output confirms that the dominant factor controlling seasonal variation of O3 differs by region. Photochemistry was found to play a critical role over Japan, the Korean Peninsula and Eastern China. Over the northwestern Pacific Ocean, advective flux was found to drive the seasonal variation of O3 concentrations. The large latitudinal gradient in O3 with a maximum of 52 ppbv over the marine boundary layer around 35°N during the spring was mainly due to chemistry; meanwhile, advection was found to weaken the gradient. The contribution of stratospheric O3 was ranked second (20%) to the local contribution (25%) in Japan and the Korean Peninsula near 35°N. The rate of O3 export from China's boundary layer was the highest (approximately 30%) in low latitudes and decreased with increasing latitude, while the contribution of North America and Europe increased with increasing latitude, from 10% in lower latitudes to 24% in higher latitudes.

  15. AN EVALUATION OF OZONE EXPOSURE METRICS FOR A SEASONALLY DROUGHT STRESSED PONDEROSA PINE ECOSYSTEM. (R826601)

    EPA Science Inventory

    Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at ...

  16. The seasonal variation of water vapor and ozone in the upper mesosphere - Implications for vertical transport and ozone photochemistry

    NASA Technical Reports Server (NTRS)

    Bevilacqua, Richard M.; Summers, Michael E.; Strobel, Darrell F.; Olivero, John J.; Allen, Mark

    1990-01-01

    This paper reviews the data base supplied by ground-based microwave measurements of water vapor in the mesosphere obtained in three separate experiments over an eight-year period. These measurements indicate that the seasonal variation of water vapor in the mesosphere is dominated by an annual component with low values in winter and high values in summer, suggesting that the seasonal variation of water vapor in the mesosphere (below 80 km) is controlled by advective rather than diffusive processes. Both the seasonal variation and the absolute magnitude of the water vapor mixing ratios obtained in microwave measurements were corroborated by measurements obtained in the Spacelab GRILLE and ATMOS experiments, and were found to be consistent with several recent mesospheric dynamics studies.

  17. Seasonal variation of gas exchange and pigmentation in branches of three grafted clones of mature ponderosa pine exposed to ozone and acid rain.

    PubMed

    Anderson, P D; Houpis, J L; Helms, J A; Momen, B

    1997-01-01

    Gas exchange and pigmentation responses of mature ponderosa pine (Pinus ponderosa Laws.) branches to ozone and acid rain exposure were investigated using three grafted clones growing in a managed seed orchard. Exposure of one-year-old foliage to twice ambient ozone (2 x AMB) resulted in significant decreases in net photosynthesis (Pn), stomatal conductance (gsw) and pigmentation relative to charcoal-filtered (CF) and ambient (AMB) ozone treatments. Ozone effects on gas exchange and pigmentation were most pronounced during late-season and differed significantly among clones. Environmental parameters (e.g. light, vapor pressure deficit, and temperature) accounted for more variation in Pn than did cumulative ozone exposure. Minimal differences in gsw and Pn among ozone treatments occurred during seasonal periods of high temperature and evaporative demand. Negative effects of 2 x AMB ozone on gsw and pigmentation were greatest for the clones having highest and lowest phenotypic vigor under ambient conditions; the clone of moderate phenotypic vigor under ambient conditions was least sensitive to ozone. Application of simulated acid rain of pH 3.0, pH 5.1 or no rain (NR) had little impact on gas exchange or pigmentation.

  18. Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Putero, D.; Cristofanelli, P.; Marinoni, A.; Adhikary, B.; Duchi, R.; Shrestha, S. D.; Verza, G. P.; Landi, T. C.; Calzolari, F.; Busetto, M.; Agrillo, G.; Biancofiore, F.; Di Carlo, P.; Panday, A. K.; Rupakheti, M.; Bonasoni, P.

    2015-08-01

    The Kathmandu Valley in South Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation and high population growth. In this paper, we present the first full year (February 2013-January 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e. ozone (O3) and equivalent black carbon (hereinafter noted as BC) and aerosol number concentration at Paknajol, in the center of the Kathmandu metropolitan city. The diurnal behavior of equivalent black carbon (BC) and aerosol number concentration indicated that local pollution sources represent the major contributions to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) and wind play important roles in determining O3 variability, as suggested by the analysis of seasonal diurnal cycle and correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were found during the afternoon/evening; this could be related to mixing and entrainment processes between upper residual layers and the PBL. The high O3 concentrations, in particular during pre-monsoon, appeared well related to the impact of major open vegetation fires occurring at regional scale. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may be useful for implementing control measures to mitigate the occurrence of acute pollution levels in the Kathmandu Valley and surrounding area.

  19. Seasonal variation of ozone and black carbon observed at Paknajol, an urban site in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Putero, D.; Cristofanelli, P.; Marinoni, A.; Adhikary, B.; Duchi, R.; Shrestha, S. D.; Verza, G. P.; Landi, T. C.; Calzolari, F.; Busetto, M.; Agrillo, G.; Biancofiore, F.; Di Carlo, P.; Panday, A. K.; Rupakheti, M.; Bonasoni, P.

    2015-12-01

    The Kathmandu Valley in south Asia is considered as one of the global "hot spots" in terms of urban air pollution. It is facing severe air quality problems as a result of rapid urbanization and land use change, socioeconomic transformation, and high population growth. In this paper, we present the first full year (February 2013-January 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e., ozone (O3) and equivalent black carbon (hereinafter noted as BC) and aerosol number concentration at Paknajol, in the city center of Kathmandu. The diurnal behavior of equivalent BC and aerosol number concentration indicated that local pollution sources represent the major contributions to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) and wind play important roles in determining O3 variability, as suggested by the analysis of seasonal changes of the diurnal cycles and the correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were found during the afternoon/evening. This could be related to mixing and entrainment processes between upper residual layers and the PBL. The high O3 concentrations, in particular during pre-monsoon, appeared well related to the impact of major open vegetation fires occurring at the regional scale. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may be useful for implementing control measures to mitigate the occurrence of acute pollution levels in the Kathmandu Valley and surrounding area.

  20. Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation

    NASA Astrophysics Data System (ADS)

    Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo

    2010-10-01

    A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.

  1. Seasonal variation of ozone and black carbon observed at Paknajol, an urban area in the Kathmandu Valley, Nepal

    NASA Astrophysics Data System (ADS)

    Putero, Davide; Cristofanelli, Paolo; Marinoni, Angela; Adhikary, Bhupesh; Duchi, Rocco; Das Shrestha, Sunil; Pietro Verza, Gian; Landi, Tony Christian; Calzolari, Francescopiero; Busetto, Maurizio; Agrillo, Giacomo; Biancofiore, Fabio; Di Carlo, Piero; Panday, Arnico; Rupakheti, Maheswar; Bonasoni, Paolo

    2016-04-01

    The Kathmandu Valley in the Himalayan foothills, considered as one of the global "hot spots" for what concerns air pollution, is currently facing severe air quality problems due to rapid urbanization processes, dramatic land use changes, socioeconomic transformation and high population growth. In this work, we present the first full year (February 2013 - February 2014) analysis of simultaneous measurements of two short-lived climate forcers/pollutants (SLCF/P), i.e. ozone (O3) and equivalent black carbon (BC), and aerosol number concentration at Paknajol (27°43'4'' N, 85°18'32'' E, 1380 m a.s.l.), in the city center of Kathmandu. These observations were carried out in the framework of the SusKat-ABC (A Sustainable Atmosphere for the Kathmandu Valley - Atmospheric Brown Cloud) campaign in Nepal. The diurnal behavior of BC and aerosol number concentration indicated that local pollution sources represent the major contribution to air pollution in this city. In addition to photochemistry, the planetary boundary layer (PBL) dynamic plays an important role in determining O3 variability, as suggested by the analysis of seasonal changes of the diurnal cycles and the correlation with meteorological parameters and aerosol properties. Especially during pre-monsoon, high values of O3 were observed during the afternoon/evening. This could be related to mixing and entrainment processes between upper residual layers and the PBL. During this season, the high O3 appeared well related to the impact of major open vegetation fires occurring in Nepal. On a synoptic-scale perspective, westerly and regional atmospheric circulations appeared to be especially conducive for the occurrence of the high BC and O3 values. The very high values of the SLCF/P, detected during the whole measurement period, indicated persisting adverse air quality conditions, dangerous for the health of over 3 million residents of the Kathmandu Valley, and the environment. Consequently, all of this information may

  2. Modeling the influence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan

    NASA Astrophysics Data System (ADS)

    Bao, Hai; Shrestha, Kundan Lal; Kondo, Akira; Kaga, Akikazu; Inoue, Yoshio

    2010-01-01

    Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area.

  3. 75 FR 69036 - Notice of Data Availability Regarding Potential Changes to Required Ozone Monitoring Seasons for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... to Network Design Requirements? On July 16, 2009, EPA published a proposed rule (74 FR 34525) to... record to the Proposed Rule--Ambient Ozone Monitoring Regulations: Revisions to Network Design... Monitoring Regulations: Revisions to Network Design Requirements (Docket ID No....

  4. Seasonal/Diurnal Mapping of Ozone and Water in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Novak, R. E.; Mumma, M. J.; DiSanti, M. A.; DelloRusso, N.; Magee-Sauer, K.; Bonev, B.

    2003-01-01

    Ozone and water are key species for understanding the stability and evolution of Mars atmosphere; they are closely linked (along with CO, H, OH, and O) through photochemistry. Photolysis of water produces the OH radical (thought to catalyze reformation of CO2 from CO and O2) and atomic hydrogen (which reacts with O3 forming OH and O2). Atomic hydrogen also reacts with O2 (forming HO2), thereby reducing the amount of O2 available to reform O3 from collisions between O and O2. Hence ozone and water should be anti-correlated on Mars. Photolysis of O3 produces O2(a(sup 1) delta g) with 90% efficiency, and the resulting emission band system near 1.27 mm traces the presence and abundance of ozone. This approach was initially used to study ozone on Earth and then applied to Mars. In 1997, we measured several lines of the O2(a(sup 1) delta g) emission using CSHELL at the NASA IRTF; the O2(a(sup 1) delta g) state is also quenched by collisions with CO2. This quenching dominates at lower altitudes so that the detected emissions are used to detect ozone column densities above 20 km. The slit was positioned N-S along Mars' central meridian resulting in a one-dimensional map of ozone. Nearly simultaneous maps may be made of water using CSHELL by detecting the v1 fundamental band of HDO near 3.67 microns and using the D/H ratio for Mars. This technique was used by DiSanti and Mumma. With CSHELL, measurements for both O2(a(sup 1) delta g) emissions and HDO absorptions can be made during the day or night. Since January, 1997, we have repeated these measurements at different times during the Martian year. For all of these dates, we have positioned the slit N-S along the central meridian; for some of these dates, we have also stepped the slit across the planet at 1 arc-sec intervals generating a 2-dimensional map. We have also positioned the slit E-W on Mars thus providing diurnal variations of ozone and water along the slit.

  5. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula x Populus tremuloides) clones.

    PubMed

    Häikiö, Elina; Freiwald, Vera; Julkunen-Tiitto, Riitta; Beuker, Egbert; Holopainen, Toini; Oksanen, Elina

    2009-01-01

    The authors analyzed a suite of leaf characteristics that might help to explain the difference between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones. An open-field experiment comprising ambient ozone and 1.5x ambient ozone concentration (about 35 ppb) and two soil nitrogen regimes (60 and 140 kg N ha(-1) year(-1)) was conducted over two growing seasons on potted plants of eight hybrid aspen clones. Four of the clones had previously been determined to be ozone sensitive based on impaired growth in response to elevated ozone concentration. Photosynthetic rate, chlorophyll fluorescence, and concentrations of chlorophyll, protein and carbohydrates were analyzed three times during the second growing season, and foliar phenolic concentrations were measured at the end of the second growing season. Nitrogen amendment counteracted the effects of ozone, but had no effect on growth-related ozone sensitivity of the clones. Ozone-sensitive clones had higher photosynthetic capacity and higher concentrations of Rubisco and phenolics than ozone-tolerant clones, but the effects of ozone were similar in the sensitive and tolerant groups. Nitrogen addition had no effect on phenolic concentration, but elevated ozone concentration increased the concentrations of chlorogenic acid and (+)-catechin. This study suggests that condensed tannins and catechin, but not salicylates or flavonol glycosides, play a role in the ozone tolerance of hybrid aspen.

  6. Seasonal Ozone Variations in the Isentropic Layer between 330 and 380 K as Observed by SAGE 2: Implications of Extratropical Cross-Tropopause Transport

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Cunnold, Derek M.; Zawodny, Joseph M.; Pierce, R. Bradley; Olson, Jennifer R.; Kent, Geoffrey S.; Skeens, Kristi, M.

    1998-01-01

    To provide observational evidence on the extratropical cross-tropopause transport between the stratosphere and the troposphere via quasi-isentropic processes in the middleworld (the part of the atmosphere in which the isentropic surfaces intersect the tropopause), this report presents an analysis of the seasonal variations of the ozone latitudinal distribution in the isentropic layer between 330 K and 380 K based on the measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II. The results from SAGE II data analysis are consistent with (1) the buildup of ozone-rich air in the extratropical middleworld through the large-scale descending mass circulation during winter, (2) the spread of ozone-rich air in the isentropic layer from midlatitudes to subtropics via quasi-isentropic transport during spring, (3) significant photochemical ozone removal and the absence of an ozone-rich supply of air to the layer during summer, and (4) air mass exchange between the subtropics and the extratropics during the summer monsoon period. Thus the SAGE II observed ozone seasonal variations in the middleworld are consistent with the existing model calculated annual cycle of the diabatic circulation as well as the conceptual role of the eddy quasi-adiabatic transport in the stratosphere-troposphere exchange reported in the literature.

  7. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Ling; Ting, Chien-Chung; Wang, Jia-Lin; Wingenter, Oliver W.; Chan, Chang-Chuan

    Hourly measurement of 56 ozone precursors was conducted by a monitoring station located in a metropolitan area in central Taiwan. After nearly a year of continuous operation at this urban site, both diurnal and seasonal cycles of non-methane hydrocarbons (NMHCs) were clearly observed, which were caused by the interplay between source, chemical loss, and meteorology. Selected species representing three different types of major sources, namely, the household fuel leakage, vehicular exhaust and gasoline evaporation, as well as biogenic emissions exhibit dramatic diurnal or seasonal cycles with each displaying its own unique characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases (LPG), showed concentrations elevating throughout the night and early morning, but began to decrease toward noon as the nocturnal temperature inversion elevated. Because of the lower chemical reactivity and somewhat more constant emissions than other measured target compounds, their diurnal cycles were presumably the direct reflection of the mixing height over the metropolitan area. For compounds originating from vehicular plus evaporative emissions such as benzene, which accounts for most of the monitored compounds, their diurnal cycles were also largely controlled by the variation in the height of temperature inversion. Of all the 56 species monitored, isoprene, an abundant biogenic species largely released by plants, showed distinct diurnal and seasonal cycles different from the other measured NMHCs. Its concentration usually peaked at noon in summer and fell when temperature and solar radiation reached their maximum levels, demonstrating the close relationship of isoprene with photosynthesis. Seasonal variation was also clearly observed for the other NMHCs quantified. With the exception of isoprene, most species show higher average concentration in winter and lower average concentration in summer with the fall values being the

  8. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Kuang-Ling; Ting, Chien-Chung; Wang, Jia-Lin; Wingenter, Oliver W.; Chan, Chang-Chuan

    Hourly measurement of 56 ozone precursors was conducted by a monitoring station located in a metropolitan area in central Taiwan. After nearly a year of continuous operation at this urban site, both diurnal and seasonal cycles of nonmethane hydrocarbons (NMHCs) were clearly observed, which was caused by the interplay between source, chemical loss, and meteorology. Selected species representing three different types of major sources namely the household fuel leakage, vehicular exhaust and gasoline evaporation, as well as biogenic emissions exhibit dramatic diurnal or seasonal cycles with each displaying its own unique characteristics. Ethane and propane, largely originated from leakage of natural gas or liquefied petroleum gases (LPG), showed concentrations elevating throughout the night and early morning, but began to decrease towards noon as the nocturnal temperature inversion elevated. Because of the lower chemical reactivity and somewhat more constant emissions than other measured target compounds, their diurnal cycles were presumably the direct reflection of the mixing height over the metropolitan area. For compounds originating from vehicular plus evaporative emissions such as benzene, which accounts for most of the monitored compounds, their diurnal cycles were also largely controlled by the variation in the height of temperature inversion. Of all the 56 species monitored, isoprene, an abundant biogenic species largely released by plants, showed distinct diurnal and seasonal cycles different from the other measured NMHCs. Its concentration usually peaked at noon in summer and fall when temperature and solar radiation reached their maximum level, demonstrating the close relationship of isoprene with photosynthesis. Seasonal variation was also clearly observed for the other NMHCs quantified. With the exception of isoprene, most species show higher average concentration in winter and lower in summer with the fall values being the intermediate, which presumably

  9. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-exposure in Rats

    EPA Science Inventory

    BackgroundThe potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscio...

  10. Seasonal variation of nitrogen oxides, ozone and biogenic volatile organic compound concentrations and fluxes at Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar

    2015-04-01

    Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their

  11. El Nino impacts on seasonal high ozone levels in the lower troposphere

    SciTech Connect

    Linse, E.W. Jr.

    1996-12-31

    The purpose of this paper is to clarify one difficulty in evaluating the control strategies for ozone concentrations. El Nino years may be mistakenly interpreted as periods having improved air quality because of those control programs. In fact, the differences in atmospheric stability and mixing have made some years especially benign for air quality. Improvements or the effectiveness of control programs can only be effectively reviewed if the meteorological signature is removed. It may not be generally known how large the impacts of the El Nino conditions can be.

  12. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California

    NASA Astrophysics Data System (ADS)

    Granados-Muñoz, Maria Jose; Leblanc, Thierry

    2016-07-01

    A combined surface and tropospheric ozone climatology and interannual variability study was performed for the first time using co-located ozone photometer measurements (2013-2015) and tropospheric ozone differential absorption lidar measurements (2000-2015) at the Jet Propulsion Laboratory Table Mountain Facility (TMF; elev. 2285 m), in California. The surface time series were investigated both in terms of seasonal and diurnal variability. The observed surface ozone is typical of high-elevation remote sites, with small amplitude of the seasonal and diurnal cycles, and high ozone values, compared to neighboring lower altitude stations representative of urban boundary layer conditions. The ozone mixing ratio ranges from 45 ppbv in the winter morning hours to 65 ppbv in the spring and summer afternoon hours. At the time of the lidar measurements (early night), the seasonal cycle observed at the surface is similar to that observed by lidar between 3.5 and 9 km. Above 9 km, the local tropopause height variation with time and season impacts significantly the ozone lidar observations. The frequent tropopause folds found in the vicinity of TMF (27 % of the time, mostly in winter and spring) produce a dual-peak vertical structure in ozone within the fold layer, characterized by higher-than-average values in the bottom half of the fold (12-14 km), and lower-than-averaged values in the top half of the fold (14-18 km). This structure is consistent with the expected origin of the air parcels within the fold, i.e., mid-latitude stratospheric air folding down below the upper tropospheric sub-tropical air. The influence of the tropopause folds extends down to 5 km, increasing the ozone content in the troposphere. No significant signature of interannual variability could be observed on the 2000-2015 de-seasonalized lidar time series, with only a statistically non-significant positive anomaly during the years 2003-2007. Our trend analysis reveals however an overall statistically

  13. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign

    NASA Astrophysics Data System (ADS)

    Jaimes-Palomera, Mónica; Retama, Armando; Elias-Castro, Gabriel; Neria-Hernández, Angélica; Rivera-Hernández, Olivia; Velasco, Erik

    2016-05-01

    With the aim to strengthen the verification capabilities of the local air quality management, the air quality monitoring network of Mexico City has started the monitoring of selected non-methane hydrocarbons (NMHCs). Previous information on the NMHC characterization had been obtained through individual studies and comprehensive intensive field campaigns, in both cases restricted to sampling periods of short duration. This new initiative will address the NMHC pollution problem during longer monitoring periods and provide robust information to evaluate the effectiveness of new control measures. The article introduces the design of the monitoring network and presents results from the first campaign carried out during the first six months of 2012 covering the ozone-season (Mar-May). Using as reference data collected in 2003, results show reductions during the morning rush hour (6-9 h) in the mixing ratios of light alkanes associated with the consumption and distribution of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents, in contrast to olefins from vehicular traffic. The increase in mixing ratios of reactive olefins is of relevance to understand the moderate success in the ozone and fine aerosols abatement in recent years in comparison to other criteria pollutants. In the case of isoprene, the typical afternoon peak triggered by biogenic emissions was clearly observed for the first time within the city. The diurnal profiles of the monitored compounds are analyzed in terms of the energy balance throughout the day as a surrogate of the boundary layer evolution. Particular features of the diurnal profiles and correlation between individual NMHCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here highlight the importance of monitoring NMHCs to better understand the drivers and impacts of air pollution in large cities like Mexico City.

  14. The 1998-2000 SHADOZ (Southern Hemisphere ADditional Ozonesondes) Tropical Ozone Climatology: Comparison with TOMS and Ground-Based Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn; McPeters, Richard D.; Oltmans, Samuel J.; Schmidlin, Francis J.; Logan, Jennifer A.; Fujiwara, Masatormo; Kirchhoff, Volker W. J. H.; Posny, Francoise; Coetzee, Gerhard J. R.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    A network of 10 southern hemisphere tropical and Subtropical stations, designated the Southern Hemisphere ADditional OZonesondes, (SHADOZ) project and established from operational sites, provided over 1000 ozone profiles during the period 1998-2000. Balloon-borne electrochemical concentration cell (ECC) ozonesondes, combined with standard radiosondes for pressure, temperature and relative humidity measurements, collected profiles in the troposphere and lower- to mid-stratosphere at: Ascension Island; Nairobi, Kenya; Irene, South Africa: Reunion Island, Watukosek Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil.

  15. Interannual Variability of Ozone in the Polar Vortex during the Fall Season

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Kawa, S. R.; Newman, P. A.; Schoeberl, M. R.; Stolarski, R. S.; Bevilacqua, R.

    2002-01-01

    Previous analysis has shown that the distribution of O3 at high northern latitudes in the lower-to-middle stratosphere at the beginning of the winter season has a characteristic distribution, which is consistent between in situ and satellite measurements. Initial O3 profiles in the vortex are similar to each other and are quite different from outside the vortex at the same latitude and also from a zonal mean climatology. In the vortex, O3 is nearly constant from 500 to above 800 K with a value near 3 ppmv. Values outside the vortex are up to a factor of 2 higher and increase significantly with potential temperature. Model analysis indicates that the characteristic vortex O3 profiles arise from a combination of seasonally accelerated photochemical loss at high latitudes and minimal transport of air from lower latitudes. Analysis of the relatively high-resolution POAM data shows that these characteristic O3 distributions are consistent from year to year and between the hemispheres. Here we emphasize analysis of the 24-year time series of O3 data from SBUV in the lower-to-middle stratosphere at high latitudes in the fall vortex. We find that the variability of O3 from SBUV is relatively small in this regime and no significant trend is detectable. The implications of the findings for stratospheric O3 chemistry and transport will be explored.

  16. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C..; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE] on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [about 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  17. Seasonal Variability of Middle Latitude Ozone in the Lowermost Stratosphere Derived from Probability Distribution Functions

    NASA Technical Reports Server (NTRS)

    Cerniglia, M. C.; Douglass, A. R.; Rood, R. B.; Sparling, L. C.; Nielsen, J. E.

    1999-01-01

    We present a study of the distribution of ozone in the lowermost stratosphere with the goal of understanding the relative contribution to the observations of air of either distinctly tropospheric or stratospheric origin. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High [low] potential vorticity at 300 hPa suggests that the tropopause is low [high], and the identification of the two groups helps to account for dynamic variability. Conditional probability distribution functions are used to define the statistics of the mix from both observations and model simulations. Two data sources are chosen. First, several years of ozonesonde observations are used to exploit the high vertical resolution. Second, observations made by the Halogen Occultation Experiment [HALOE) on the Upper Atmosphere Research Satellite [UARS] are used to understand the impact on the results of the spatial limitations of the ozonesonde network. The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause [approximately 380K]. Despite the differences in spatial and temporal sampling, the probability distribution functions are similar for the two data sources. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. By using the model, possible mechanisms for the maintenance of mix of air in the lowermost stratosphere are revealed. The relevance of the results to the assessment of the environmental impact of aircraft effluence is discussed.

  18. Is There an Arctic Ozone Hole?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2000-01-01

    Total ozone observations from the Total Ozone Mapping Spectrometer (TOMS) instruments during March 1997 revealed an extensive region of low column densities in the Arctic region centered near the north pole. Values were below 250 Dobson units for nearly a two week period during this period, and were correlated with the position of the northern lower stratospheric polar vortex. The March 1997 average total ozone column densities were more than 30% lower than the average of column densities observed during the 1979-1982 March period. Both the northern spring seasons of 1998 and 1999 have shown much higher levels of total ozone. In this presentation, we will discuss the causes of the low total ozone values in 1997 and contrast those low values with the higher 1998 and 1999 observations. I will additionally discuss the just completed SOLVE campaign and the March 2000 ozone values.

  19. Insights into the Electronic Structure of Ozone and Sulfur Dioxide from Generalized Valence Bond Theory: Addition of Hydrogen Atoms.

    PubMed

    Lindquist, Beth A; Takeshita, Tyler Y; Dunning, Thom H

    2016-05-01

    Ozone (O3) and sulfur dioxide (SO2) are valence isoelectronic species, yet their properties and reactivities differ dramatically. In particular, O3 is highly reactive, whereas SO2 is chemically relatively stable. In this paper, we investigate serial addition of hydrogen atoms to both the terminal atoms of O3 and SO2 and to the central atom of these species. It is well-known that the terminal atoms of O3 are much more amenable to bond formation than those of SO2. We show that the differences in the electronic structure of the π systems in the parent triatomic species account for the differences in the addition of hydrogen atoms to the terminal atoms of O3 and SO2. Further, we find that the π system in SO2, which is a recoupled pair bond dyad, facilitates the addition of hydrogen atoms to the sulfur atom, resulting in stable HSO2 and H2SO2 species.

  20. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    USGS Publications Warehouse

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  1. Modeling Stomatal Conductance to Estimate Seasonal Uptake in the Ozone-Sensitive Bioindicator Plant Common Milkweed (A. syriaca L.)

    NASA Astrophysics Data System (ADS)

    Bergweiler, C.

    2008-12-01

    The US EPA National Ambient Air Quality Standard (NAAQS) was not conceived to nor does it provide an accurate definition of the absorbed ozone dose or baseline exposure level to protect vegetation. This research presents a multiplicative modeling approach based not only on atmospheric, but on equally important physiological, phenological, and environmental parameters. Physiological constraints on ozone uptake demonstrate that actual absorption is substantially lower than that assumed by a simple interpretation of hourly atmospheric ozone concentrations. Coupled with development of foliar injury expression this provides evidence that tropospheric ozone is more toxic to vegetation than is currently understood.

  2. Intercontinental Transport of Tropical Ozone from Biomass Burning: Views from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes)

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Guam, H.

    2003-01-01

    There has been interest in the connection between tropical fires and ozone since about 1980. Photochemically reactive gases released by fires (e.g. NO, CO, volatile organic carbon) interact as they do in an urban environment to form ozone. Interacting with chemical sources, tropical meteorology plays a part in tropospheric ozone distributions in the tropics, through large-scale circulation, deep convection, and regional phenomena like the West African and Asian monsoons. An overview of observations, taken from satellite and from ozone soundings, illustrates regional influences and intercontinental- range ozone transport in the tropics. One of the most striking findings is evidence for impacts of Indian Ocean pollution on the south Atlantic ozone maximum referred to as the "ozone paradox" [Thompson et al., GRL, 2000; JGR, 2003; Chatfield et al., GRL, 20031.

  3. 5-year analysis of background surface ozone and carbon dioxide variations during summer seasons at Terra Nova Bay (Antarctica)

    NASA Astrophysics Data System (ADS)

    Cristofanelli, Paolo; Bonasoni, Paolo; Bonafe', Ubaldo; Calzolari, Frencescopiero; Duchi, Rocco; Lanconelli, Christian; Lupi, Angelo; Vitale, Vito; Colombo, Tiziano

    2010-05-01

    Carbon dioxide (CO2) and tropospheric ozone (O3) play important roles in determining the radiative budget of the atmosphere. While CO2 is considered the most important anthropogenic greenhouse gas, O3 is evaluated as the third most powerful greenhouse gas since pre-industrial ages and, by influencing the lifetime of others greenhouse gases, it provides also an indirect impact on climate. Within the framework of the Italian National Programme of Antarctic Researches (PNRA), continuous measurements of CO2, O3 as well as meteorological parameters have been conducted at the clean-air facility of Icaro Camp at the "Mario Zucchelli" Station (74.7 S, 164.1 E, 41 m a.s.l., hereinafter MZS-IC) during five experimental summer campaigns from November 2001 to February 2006. At MZS-IC, average O3 background concentrations ranged from 18.5 +/- 4.6 ppbv (summer 2005 - 2006) to 22.0 +/- 4.3 ppbv (summer 2003 - 2004). For CO2, in good agreement with the global trend observed for the period 2001-2006, background concentrations showed an average growth rate of 2.12 ppmv/year ranging from 369.28 +/- 0.18 ppmv during the summer 2001 - 2002 to 377.76 +/- 0.26 ppmv during the summer 2005 - 2006. On average, over the five summer campaigns, the O3 behaviour showed a decreasing trend with highest values in November and a minimum in January, while a broad December-January minimum characterised CO2, well tracing the typical O3 and CO2 high-latitude seasonal cycles in the Southern Hemisphere.

  4. Analysis of the seasonal ozone budget and the impact of the summer monsoon on the northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Hou, Xuewei; Kang, Hanqing

    2016-02-01

    Seasonal variations in ozone (O3) and the impact of the East Asian summer monsoon at Mount Waliguan (WLG) in the northeastern Qinghai-Tibetan Plateau (TP) and in the surrounding regions were analyzed for 1997-2007 using a global chemical transport model coupled with O3 tagging simulations. The model-simulated O3 and its precursors agreed well with observed values. An O3 budget analysis combined with O3 tagging results implied that photochemistry over the TP and long-range transport of O3 from East Asia, Europe, and Africa were responsible for the surface O3 summer maximum at WLG. In June, the contribution of O3 from the TP was 11.8 ppbv, and the total contribution of O3 transport from eastern China, Japan, Korean Peninsula, Europe, and Africa was 22.7 ppbv. At 400 mb, the O3 exports from the stratosphere, Europe, Africa, and the Americas seemed to be the main sources of O3 at WLG. The contributions to surface O3 from deep convection process and lightning-induced photochemistry at WLG were both low in summer and are unlikely to be the key processes or contributors for the O3 peak. At several mountain sites in southeast East Asia, the increasing summer monsoon index was related to a decreasing trend for O3 from spring onward at Mount Tai and Mount Huang. At Mount Hua and WLG, regional O3 accumulated over the monsoon's northernmost marginal zone under the influence of the East Asian summer monsoon and TP thermal circulation; this is most likely a key reason for the O3 summer maxima.

  5. Sources of seasonal variability in tropical upper troposphere and lower stratosphere water vapor and ozone: Inferences from the Ticosonde data set at Costa Rica

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark R.; Selkirk, Henry B.; Vömel, Holger; Douglass, Anne R.

    2015-09-01

    We present an analysis of joint balloonsonde profiles of water vapor and ozone made at Costa Rica from 2005 to 2011 using compositing techniques, tracer-tracer diagrams, and back trajectory methods. Our analysis reveals important seasonal differences in structure in the upper troposphere and lower stratosphere. Water vapor amounts in boreal winter at Costa Rica are much lower than expected from local ice saturation temperatures. The boreal summer data show both higher average water vapor amounts and a much higher level of variability than the winter data. To understand this seasonal contrast, we consider three sources of tracer variability: wave-induced vertical motion across strong vertical gradients ("wave variability"), differences in source air masses resulting from horizontal transport ("source variability"), and changes induced along parcel paths due to physical processes ("path variability"). The winter and summer seasons show different mixes of these three sources of variability with more air originating in the tropical western Pacific during winter.

  6. Projecting Future Changes in Seasonal Vegetative Exposure to Ozone in the Western US Using GEOS-Chem Adjoint

    NASA Astrophysics Data System (ADS)

    Lapina, K.; Henze, D. K.; Milford, J. B.

    2014-12-01

    Frequent exposure to elevated levels of ozone leads to negative impacts on ecosystems including the loss of ozone-sensitive tree species and agricultural crops in many regions of the United States. Information on emission sources contributing to these losses is crucial for developing a successful strategy to mitigate the negative effects of ozone on vegetation. A cumulative ozone exposure metric, W126, has been considered by the US EPA for use as secondary ozone standard. The rural West of the US has been demonstrated to have an especially great potential for disconnect between attaining primary versus W126-based ozone standards. In this work we separate the relative impact of emissions sources for the W126 in the Western US using forward and adjoint simulations with the global chemical transport model GEOS-Chem. The obtained source contributions are separated by different locations, species, and sectors and are combined with representative concentration pathway (RCP) anthropogenic emission scenarios to project future changes in W126 through 2050. Focusing on the foreign influences we find that the change in Chinese emissions alone is projected to lead to up to 20% increase in the W126 levels in the West and is strongly dependent on the RCP scenario. We further use concentration-response functions based on the W126 index to estimate the loss of four ozone-sensitive species in the West - ponderosa pine, Douglas Fir, red alder and quacking aspen.

  7. Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season.

    PubMed

    Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter

    2013-01-01

    Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms.

  8. Molecular and Immunological Characterization of Ragweed (Ambrosia artemisiifolia L.) Pollen after Exposure of the Plants to Elevated Ozone over a Whole Growing Season

    PubMed Central

    Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J. Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter

    2013-01-01

    Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms. PMID:23637846

  9. Tropospheric Vertical Distribution of Tropical Atlantic Ozone Observed by TES during the Northern African Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Jourdain, L.; Worden, H. M.; Worden, J. R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S. S.; Osterman, G.; Boersma, K. F.; Fisher, B.; Rinsland, C. P.; Beer, R.; Gunson, M.

    2007-01-01

    We present vertical distributions of ozone from the Tropospheric Emission Spectrometer (TES) over the tropical Atlantic Ocean during January 2005. Between 10N and 20S, TES ozone retrievals have Degrees of Freedom for signal (DOF) around 0.7 - 0.8 each for tropospheric altitudes above and below 500 hPa. As a result, TES is able to capture for the first time from space a distribution characterized by two maxima: one in the lower troposphere north of the ITCZ and one in the middle and upper troposphere south of the ITCZ. We focus our analysis on the north tropical Atlantic Ocean, where most of previous satellite observations showed discrepancies with in-situ ozone observations and models. Trajectory analyses and a sensitivity study using the GEOS-Chem model confirm the influence of northern Africa biomass burning on the elevated ozone mixing ratios observed by TES over this region.

  10. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  11. Ozone Gardens for the Citizen Scientist

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret; Reilly, Gay; Rodjom, Abbey; Malick, Emily

    2016-01-01

    NASA Langley partnered with the Virginia Living Museum and two schools to create ozone bio-indicator gardens for citizen scientists of all ages. The garden at the Marshall Learning Center is part of a community vegetable garden designed to teach young children where food comes from and pollution in their area, since most of the children have asthma. The Mt. Carmel garden is located at a K-8 school. Different ozone sensitive and ozone tolerant species are growing and being monitored for leaf injury. In addition, CairClip ozone monitors were placed in the gardens and data are compared to ozone levels at the NASA Langley Chemistry and Physics Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, VA. Leaf observations and plant measurements are made two to three times a week throughout the growing season.

  12. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C.

  13. Surface ozone in the urban area of Manaus, Amazonas, Brazil

    NASA Astrophysics Data System (ADS)

    Souza, R. A. F. D.; Costa, P. S.; Silva, C.; Godoi, R. M.; Martin, S. T.; Tota, J.; Barbosa, H. M.; Pauliquevis, T.; Ferreira De Brito, J.; Artaxo, P.; Manzi, A. O.; Wolf, S. A.; Cirino, G. G.

    2014-12-01

    When nitrogen oxides from vehicle and industrial emissions mix with volatile organic compounds from trees and plants with exposure to sunlight, a chemical reaction occurs contributing to ground-level ozone pollution. The preliminary results of the surface ozone study in urban area of Manaus, Amazonas State, Brazil, are presented for the first intensive operating period (IOP1) of the GoAmazon experiment (February/March 2014). Photochemical ozone production was found to be a regular process, with an afternoon maximum of the ozone mixing ratio of lower than 20 ppbv for cloudy days or clear sky weather. Typical ozone concentrations at mid-day were low (about 10 ppb). On the other hand, several high-value ozone episodes with surface ozone mixing ratios up to three times larger were registered during the dry season of 2013 (September/October). At the beginning of the wet season, the ozone concentration in Manaus decreased significantly, but diurnal variations can be found during the days with rainfall and other fast changes of meteorological conditions. Possible explanations of the nature of pulsations are discussed. Photochemical ozone production by local urban plumes of Manaus is named as a first possible source of the ozone concentration and biomass burning or power plant emissions are suggested as an alternative or an additional source.

  14. Intercontinental Transport of Tropical Ozone from Biomass Burning: Views from Satellite and SHADOZ (Southern Hemisphere Additional Ozonesondes) Soundings

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2003-01-01

    The atmospheric impacts of tropical fires came to attention in the 1970's and there has been interest in the connection between these fires and ozone since about 1980. Photochemically reactive gases released by fires (e.g. NO, CO, volatile organic carbon) interact as they do in an urban environment to form ozone. Tropical meteorology also plays a part in tropospheric ozone distributions in the tropics - through large-scale circulation, deep convection, regional phenomena (West African and Asian monsoon) - and variations associated with El-Nino and the Quasi- biennial Oscillation have been reported. This Poster is an overview of observations, taken from satellite and from ozone soundings, that illustrate regional influences and intercontinental-range ozone transport in the tropics.

  15. Microbial evolution during storage of seasoned olives prepared with organic acids with potassium sorbate, sodium benzoate, and ozone used as preservatives.

    PubMed

    Arroyo López, F N; Durán Quintana, M C; Garrido Fernández, A

    2006-06-01

    The effect of potassium sorbate, sodium benzoate, and ozone in combination with citric, lactic, and acetic acids on the microbial population of seasoned table olives of the olive 'Aloreña' cultivar was studied in both fresh (FF) and stored fruits (SF). The inactivation/growth curves were modeled and the biological parameters estimated, with yeast used as the target microorganism. Regardless of the acid added, potassium sorbate showed a general inactivation effect on yeasts in the products prepared from both FF and SE Sodium benzoate had a rapid inactivation effect with FF, but with SF, it was effective only in the presence of acetic acid. A strain of Issatchenkia occidentalis was found that was resistant to the combination of this preservative with citric or lactic acids. In FF, ozone showed an initial marked inhibition against yeasts, but later, yeasts were again able to grow. In SF, ozone was a strong inactivating agent when it replaced any of the traditional preservatives. Lactic acid bacteria were always absent in products prepared from FF, and apparently were not affected by the different preservative agents in those prepared from SF. The behavior of yeasts and lactic acid bacteria populations in commercial products were similar to those found in experimental treatments.

  16. Climatic Zones, Soil Moisture Seasonality and Biomass Burning and Their Influence On Ozone Precursor Concentrations Over West Africa as Retrieved from Satellites

    NASA Astrophysics Data System (ADS)

    Onojeghuo, A. R.; Balzter, H.; Monks, P. S.

    2015-12-01

    West Africa is a region with six different climatic zones including a rich savannah affected by biomass burning annually, the Niger delta oil producing region with major gas flaring sites and a long coastline. Research on atmospheric pollution using remotely sensed data over West Africa has mostly been conducted at regional scale or for individual countries, with little emphasis on the dynamics of climatic zones and the diversity of land cover types. This study analyses annual seasonal dynamics of emissions of two ozone precursors stratified by climatic zone: nitrogen dioxide (NO2) from OMI and carbon monoxide (CO) from TES. The different sources of these pollutants and their seasonality are explicitly considered. Results indicate that the highest annual wet season NO2 column concentrations were in the semi-arid zone (1.33 x 1015 molecules cm-2) after prolonged periods of low soil moisture while the highest dry season were observed in the wet sub-humid zone (2.62 x 1015 molecules cm-2) where the savannah fires occur annually. The highest annual CO concentrations (> 3.1 x 1018 molecules cm-2) were from the Niger Delta, located in the humid zone. There were indications of atmospheric transport of CO from the southern hemisphere in the west season. Climate change induced soil moisture variability was most prominent in the dry sub-humid and semi-arid climatic zones (±0.015m3m-3) . The causal effects of soil moisture variability on NO2 emissions and their seasonal cycles were tested using the Granger causality test. Causal effects of inter-zonal exchanges/transport of NO2 and CO emissions respectively were inferred using Directed Acyclic Graphs. The results indicate that NO2, CO and their seasonal ratios are strongly affected by changes in soil moisture.

  17. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    PubMed

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  18. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field.

    PubMed

    Liang, Guopeng; Houssou, Albert A; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013-2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha(-1) year(-1) (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013-2014 and 2014-2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013-2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014-2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration.

  19. Seasonal Patterns of Soil Respiration and Related Soil Biochemical Properties under Nitrogen Addition in Winter Wheat Field

    PubMed Central

    Liang, Guopeng; Houssou, Albert A.; Wu, Huijun; Cai, Dianxiong; Wu, Xueping; Gao, Lili; Li, Jing; Wang, Bisheng; Li, Shengping

    2015-01-01

    Understanding the changes of soil respiration under increasing N fertilizer in cropland ecosystems is crucial to accurately predicting global warming. This study explored seasonal variations of soil respiration and its controlling biochemical properties under a gradient of Nitrogen addition during two consecutive winter wheat growing seasons (2013–2015). N was applied at four different levels: 0, 120, 180 and 240 kg N ha-1 year-1 (denoted as N0, N12, N18 and N24, respectively). Soil respiration exhibited significant seasonal variation and was significantly affected by soil temperature with Q10 ranging from 2.04 to 2.46 and from 1.49 to 1.53 during 2013–2014 and 2014–2015 winter wheat growing season, respectively. Soil moisture had no significant effect on soil respiration during 2013–2014 winter wheat growing season but showed a significant and negative correlation with soil respiration during 2014–2015 winter wheat growing season. Soil respiration under N24 treatment was significantly higher than N0 treatment. Averaged over the two growing seasons, N12, N18 and N24 significantly increased soil respiration by 13.4, 16.4 and 25.4% compared with N0, respectively. N addition also significantly increased easily extractable glomalin-related soil protein (EEG), soil organic carbon (SOC), total N, ammonium N and nitrate N contents. In addition, soil respiration was significantly and positively correlated with β-glucosidase activity, EEG, SOC, total N, ammonium N and nitrate N contents. The results indicated that high N fertilization improved soil chemical properties, but significantly increased soil respiration. PMID:26629695

  20. SEASONAL CHANGES IN ROOT AND SOIL RESPIRATION OF OZONE-EXPOSED PONDEROSA PINE (PINUS PONDEROSA) GROWN IN DIFFERENT SUBSTRATES

    EPA Science Inventory

    Exposure to(ozone 0-3)has been shown to decrease the allocation of carbon to tree roots. Decreased allocation of carbon to roots might disrupt root metabolism and rhizosphere organisms. The effects of soil type and shoot 0, exposure on below-ground respiration and soil microbial ...

  1. Brewer Umkehr ozone profile retrievals

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Disterhoft, P.; Lantz, K. O.; Bhartia, P. K.; McPeters, R. D.; Flynn, L. E.; Oltmans, S. J.; Johnson, B. J.; Stanek, M.

    2011-12-01

    The Dobson Umkehr network has been a key data set for stratospheric ozone trend calculations (WMO Ozone assessments) and has earned its place as a benchmark network for stratospheric ozone profile observations. The Umkehr data has also been used to provide a long-term reference to the merging of the satellite ozone records (MOD), estimate the seasonal influence of an 11-year solar signal in the vertical distribution of stratospheric ozone, and to assess the ability of several remote and in-situ sensing systems in capturing ozone variability. It was found that Dobson Umkehr measurement errors were often comparable to errors derived for satellite and ozone-sounding methods. The Umkehr measurements are also available from the Brewer spectrophotometers [McElroy et al., 1995]. In 2005, the Dobson Umkehr algorithm (UMK04) was modified to retrieve ozone profile data from Brewer Umkehr measurements taken at two spectral channels [Petropavlovskikh et al, 2011]. The PC version of the Brewer algorithm was developed by M. Stanek (IOC, Canada and Czech Republic Meteorological Institute) in close collaboration with I. Petropavlovskikh. It was implemented at the NEUBrew network for operational processing of Umkehr data retrieved daily for all operational sites. The most recently developed Brewer ozone retrieval algorithm (MSBU) utilizes measurements that are currently available from the operational Brewer instruments. Umkehr measurements at multiple wavelength channels (similar to the satellite BUV method) and significantly reduced range of solar zenith angle are used for the twice a day operational ozone profile retrievals. Intercomparisons against ozone climatology, sounding, satellite overpasses and Dobson ozone datasets for NOASA/Goddard, Boulder, CO and MLO, HI sites are presented in this paper. The MSBU algorithm reduces noise in the intra-annual variability of the Brewer retrieved ozone as compared to the single pair ozone retrieval. Tropospheric ozone retrievals also

  2. Ozone temporal variations at Whiteface Mountain and processes responsible for these variations

    NASA Astrophysics Data System (ADS)

    Su, Xiujuan

    1998-12-01

    A 22-year-record of hourly ozone concentrations measured at Whiteface Mountain (WFM), New York, is analyzed and possible processes impacting ozone temporal variations as seasonal, interannual, and long term trends are discussed. As a rural mountain site, ozone is not produced locally but is transported from upwind areas. The seasonal variation accounts for 91% of the total variance, with broad peak from April and August. The peak time of ozone seasonal cycle for the air masses from clean areas occurs between March and May while the peak time of ozone seasonal cycle for the air masses from polluted areas occurs between May and August. Ozone concentrations for air masses from polluted areas in summer and fall are higher than those for air masses from clean area. The findings of this study and other suggest that upwind photochemical production and stratospheric intrusion are major processes for shaping this type of seasonal cycle at Whiteface Mountain. There are considerable interannual variations of ozone at Whiteface Mountain, characterized as two peaks and one minimum. Six dominant cycles, 132, 88, 66, 53, 44, and 29 months are identified in the interannual variations of ozone. The possible links between ozone and ENSO and solar cycle are weak and cannot be proven in this study. The long term trends of ozone at Whiteface Mountain change temporally, depending on time periods and season. The greatest increase rate occurs in 1970s and there is a decrease rate in 1990s (but not statistically significant). The facts that there is a similarity between ozone and NOx emission trends and synoptic systems have little influence on ozone changes may suggest that NOx emission is a major process for ozone changes over years. Most high ozone episodes with 1-hour ozone concentration exceeding 120 ppb or 80 ppb occur before 1980s when synoptic system are favorable to photochemical production. In additions, the air masses for these high ozone episodes are mostly advected from

  3. Role of long-range transport and local meteorology in seasonal variation of surface ozone and its precursors at an urban site in India

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi; Sahu, L. K.; Beig, G.; Jaaffrey, S. N. A.

    2016-07-01

    This study is based on the continuous measurements of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) at a semi-arid urban site in Udaipur, India during the years 2011-2012. The mixing ratios of trace gases show strong and weak diurnal variations during the winter and monsoon seasons, respectively. The temporal changes in local emission and PBL depth play an important role in the diurnal variation of trace gases. The daily means of O3, CO and NOx were in the ranges of 5-53 ppbv, 121-842 ppbv and 3-29 ppbv, respectively. The mixing ratios of trace gases were highest and lowest during the winter/pre-monsoon and monsoon seasons, respectively. In the winter season, the lowest of O3 during night-morning hours was caused by the efficient loss due to titration and deposition compared to other seasons. During the winter to the pre-monsoon period, higher levels of trace gases were due to regional biomass burning and long-range transport of continental pollutants. However, strong convection, rainfall and transport of oceanic air resulted in the lowest concentrations of trace gases during the monsoon season. The O3min values tend to increase slightly with increasing values of Tmin while COmax and NOxmax decrease rapidly with increasing values of Tmin. The levels of CO and NOx decreased with increasing wind speed, while O3 tends to increase with wind speed. The rates of change of O3 (dO3/dt) were about 3.7 ppbv h- 1 and - 4.5 ppbv h- 1 during the morning and evening hours, respectively. Exceptionally high levels of trace gases during the Diwali (festival) period were due to extensive use of firecrackers from evening till morning hours. The enhancements of O3, CO and NOx compared to normal days were about 61%, 62% and 23%, respectively.

  4. Lidar-derived Correlations Between Lower-tropospheric Column and Surface Ozone: Implications for Satellite Observations

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Alvarez, R. J. _II, II; Kirgis, G.; Choukulkar, A.; Brewer, A.; Banta, R. M.; Weickmann, A. M.; Sandberg, S.; Olson, E.

    2015-12-01

    One of the data products that will be provided by the TEMPO satellite mission is 0-2 km ozone column concentration. To make inferences about surface air quality from this data product, the relationship between lower-tropospheric column and surface ozone concentrations and their diurnal, seasonal, and spatial variations have to be well understood. To characterize these relationships, we have used ozone profile observations obtained with NOAA's truck-based, scanning TOPAZ ozone lidar from several recent field campaigns including Discover-AQ Houston and Colorado, the Uintah Basin Wintertime Ozone Study (UBWOS), and the Las Vegas Ozone Study (LVOS). The TOPAZ lidar is ideally suited for this kind of study because it provides ozone profiles from about 15 m above ground level (AGL) up to 3 km AGL at high spatial and temporal resolution. We have used the lidar observations closest to the ground as a proxy for surface ozone and compared them to the 0-2 km AGL average column ozone concentrations measured with the lidar. Results from the Discover-AQ Colorado campaign show that in the afternoon, when the boundary layer (BL) was deep and well mixed, ozone column and surface concentrations agreed quite well. However, during the morning hours, ozone column concentrations were significantly higher than those at the surface, because ozone was depleted in a shallow surface layer due to titration and deposition, whereas ozone levels in the residual layer aloft remained moderately high. The analysis of column and surface ozone correlations using ozone lidar observations from the Discover-AQ Houston, UBWOS and LVOS campaigns is currently underway. The results from these studies will provide additional insights into the relationship between column and surface ozone, in particular their variation as a function of measurement location and season, and their dependence on BL processes such as mixed layer height evolution, land-sea breeze circulation, and terrain-induced flows.

  5. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  6. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space

    NASA Astrophysics Data System (ADS)

    Choi, Yunsoo; Souri, Amir Hossein

    2015-04-01

    To identify spatial and temporal variations over the Iranian region, this study analyzed tropospheric formaldehyde (HCHO) and nitrogen dioxide (NO2) columns from Ozone Monitoring Instrument (OMI), carbon monoxide (CO) columns from the Measurement of Pollution in the Troposphere (MOPITT), and tropospheric column O3 (TCO) from OMI/MLS (Microwave Limb Sounder) satellites from 2005 to 2012. The study discovered high levels of HCHO (∼12 × 1015 molec./cm2) from plant isoprene emissions in the air above parts of the northern forest of Iran during the summer and from the oxidation of HCHO precursors emitted from petrochemical industrial facilities and biomass burning in South West Iran. This study showed that maximum NO2 levels (∼18 × 1015 molec./cm2) were concentrated in urban cities, indicating the predominance of anthropogenic sources. The results indicate that maximum concentrations were found in the winter, mainly because of weaker local winds and higher heating fuel consumption, in addition to lower hydroxyl radicals (OH). The high CO concentrations (∼2 × 1018 molec./cm2) in the early spring were inferred to mainly originate from a strong continental air mass from anthropogenic CO "hotspots" including regions around Caspian Sea, Europe, and North America, although the external sources of CO were partly suppressed by the Arabian anticyclone and topographic barriers. Variations in the TCO were seen to peak during the summer (∼40 DU), due to intensive solar radiation and stratospheric sources. This study also examined long-term trends in TCO and its precursors over a period of eight years in five urban cities in Iran. To perform the analysis, we estimated seasonal changes and inter-seasonal variations using least-squares harmonic estimation (LS-HE), which reduced uncertainty in the trend by 5-15%. The results showed significant increases in the levels of HCHO (∼0.08 ± 0.06 × 1015 molec./cm2 yr-1), NO2 (∼0.08 ± 0.02 × 1015 molec./cm2 yr-1), and peak

  7. Ozone and the stratosphere

    NASA Technical Reports Server (NTRS)

    Shimazaki, Tatsuo

    1987-01-01

    It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.

  8. Variation of the Meridional Wind at 95 km with Season and Local Solar Time from Observations of the 11.072 GHz Ozone line and 557.7 nm Oxygen line

    NASA Astrophysics Data System (ADS)

    Alam, O. B.; Rogers, A.; Erickson, P. J.; Goncharenko, L. P.; Noto, J.

    2015-12-01

    Ground-based spectrometers have been deployed to measure the concentration, velocity, and temperature of ozone in the mesosphere and lower thermosphere (MLT) using low-cost satellite television electronics to observe the 11.072 GHz line of ozone. The ozone line was observed at an altitude near 95 km and latitude of 38 degrees north using three spectrometers located at the MIT Haystack Observatory (Westford, MA), Chelmsford High School (Chelmsford, MA), and Union College (Schenectady, NY) pointed south at 8 degrees. Observations from 2009 through 2014 are used to derive the nightly-averaged seasonal variation in meridional velocity, as well as the seasonally-averaged variation with local solar time. The results indicate a seasonal trend in which the winds at 95 km come from the north at about 10 m/s in the summer of the northern hemisphere, and from the south at about 10 m/s in the winter. Nighttime data from -5 to +5 local solar time show a gradual transition of the meridional wind velocity from about -20 m/s to 20 m/s. These two trends correlate with nighttime wind measurements from the Millstone Hill High-Resolution Fabry-Perot Interferometer (FPI) in Westford, MA. The FPI uses the 557.7 nm green line nightglow from atomic oxygen that occupies the same region of the mesosphere as the ozone centered at 95 km. The results have also been compared with average meridional winds measured with meteor radar.

  9. Surface layer ozone and nitric oxides in the Arctic: The inuence of boundary layer dynamics, snowpack chemistry, surface exchanges, and seasonality

    NASA Astrophysics Data System (ADS)

    Van Dam, Brie A.

    The snowpack is a region of active chemistry. Aqueous chemistry in a quasi-liquid layer on snow grains and gas-phase chemical reactions in snow interstitial air can lead to the production or destruction of important trace gases. Physical transport parameters such as wind pumping and diffusion affect the vertical distribution of gases within the snowpack. The resulting emission or uptake of trace gases at the atmosphere-snowpack interface can have significant in uence on the chemistry of the lower atmosphere. In this work the dynamic interactions between the snowpack and atmosphere are examined from multiple perspectives. The primary focus is on ozone (O3) and nitrogen oxides (NOx) in the Arctic, a region undergoing widespread environmental change. To investigate an ice-sheet location with year round snow cover, data from a two-year campaign at Summit, Greenland are implemented. At Summit this study examines (1) the processes contributing to vigorous chemistry in snow interstitial air, and (2) the role of the boundary layer over snow in determining surface layer NOx. Physical and chemical processes are shown to contribute to distinct seasonal and diurnal cycles of O3, NO, and NO2 in the snowpack. Boundary layer depths estimated from sonic anemometer turbulence quantities are used alongside sodar-derived values to show that the depth of the stable to weakly stable boundary layer at Summit was not a primary factor in determining NO x in early summer. Motivated by observations of an increase in the length of the snow-free season in the Arctic in recent decades, data from a one-year experiment at the seasonally-snow covered location of Toolik Lake, AK are also incorporated. This study shows the first observations of springtime ozone depletion events at a location over 200 km from the coast in the Arctic. FLEXPART analysis is used to illustrate that these inland events are linked to transport conditions. Lastly at this location, eddy-covariance O3 uxes were calculated to

  10. Evaluation of the kriging method to predict 7-h seasonal mean ozone concentrations for estimating crop losses

    SciTech Connect

    Lefohn, A.S.; Knudsen, H.P.; Logan, J.A.; Simpson, J.; Bhumralkar, C.

    1987-05-01

    Using kriging, a statistical technique, the National Crop Loss Assessment Network (NCLAN) program estimated growing season 5-month (May-September) ambient 7-h mean O3 concentrations for each of the major crop growing areas of the US for 1978-1982. The O3 estimates were used to predict economic benefits anticipated by lowering O3 levels in the US. This paper reviews NCLAN's use of kriging to estimate 7-h seasonal mean O3 concentrations for crop growing regions. Although the original kriging program used by NCLAN incorrectly calculated the diagonal elements of the kriging equations, this omission did not result in significant errors in the predicted estimates. Most of the data used in estimating the 7-h seasonal values were obtained from urban areas; the use of these data tended to underestimate the 7-h seasonal O3 concentrations in rural areas. It is recommended that only O3 data that are representative of agricultural areas and have been collected under accepted quality assurance programs be used in future kriging efforts.

  11. Evaluation of the kriging method to predict 7-h seasonal mean ozone concentrations for estimating crop losses (journal version)

    SciTech Connect

    Lefohn, A.S.; Knudsen, H.P.; Logan, J.A.; Simpson, J.; Bhumralkar, C.

    1987-01-01

    Using kriging, a statistical technique, the National Crop Loss Assessment Network (NCLAN) program estimated growing season 5-month (May-September) ambient 7-h mean O/sub 3/ concentrations for each of the major crop growing areas of the United States for 1978-1982. The O/sub 3/ estimates were used to predict economic benefits anticipated by lowering O/sub 3/ levels in the United States. This paper reviews NCLAN's use of kriging to estimate 7-h seasonal mean O/sub 3/ concentrations for crop growing regions. Although the original kriging program used by NCLAN incorrectly calculated the diagonal elements of the kriging equations, this omission did not result in significant errors in the predicted estimates. Most of the data used in estimating the 7-h seasonal values were obtained from urban areas; the use of these data tended to underestimate the 7-h seasonal O/sub 3/ concentrations in rural areas. It is recommended that only O/sub 3/ data that are representative of agricultural areas and have been collected under accepted quality-assurance programs be used in future kriging efforts.

  12. Use of bioindicators and passive sampling devices to evaluate ambient ozone concentrations in north central Pennsylvania.

    PubMed

    Yuska, D E; Skelly, J M; Ferdinand, J A; Stevenson, R E; Savage, J E; Mulik, J D; Hines, A

    2003-01-01

    Ambient concentrations of tropospheric ozone and ozone-induced injury to black cherry (Prunus serotina) and common milkweed (Asclepias syriaca) were determined in north central Pennsylvania from 29 May to 5 September 2000 and from 28 May to 18 September 2001. Ogawa passive ozone samplers were utilized within openings at 15 forested sites of which six were co-located with TECO model 49 continuous ozone monitors. A significant positive correlation was observed between the Ogawa passive samplers and the TECO model 49 continuous ozone monitors for the 2000 (r=0.959) and 2001 (r=0.979) seasons. In addition, a significant positive correlation existed in 2000 and 2001 between ozone concentration and elevation (r=0.720) and (r=0.802), respectively. Classic ozone-induced symptoms were observed on black cherry and common milkweed. In 2000, initial injury was observed in early June, whereas for the 2001 season, initial injury was initially observed in late June. During both seasons, injury was noted at most sites by mid- to late-July. Soil moisture potential was measured for the 2001 season and a significant positive relationship (P<0.001) showed that injury to black cherry was a function of cumulative ozone concentrations and available soil moisture. PMID:12804829

  13. Ozone hits low levels over Antarctica, U. S

    SciTech Connect

    Zurer, P.

    1993-10-04

    This year's Antarctic ozone hole is as deep as any ever observed and is approaching the record geographical extent of 1992, according to preliminary satellite data. In addition, both groundbased and satellite observations indicate that ozone concentrations over the U.S. hit record lows earlier this year. For more than a decade, almost all the ozone at certain altitudes over Antarctica has been destroyed as the Sun returns to the polar region in September. This dramatic photochemical depletion, catalyzed by chlorine and bromine from man-made compounds, reaches its nadir in early October. Ozone levels return to near normal later in the season, when the circular pattern of winds that isolates air over Antarctica breaks down, and ozone-rich air pours in from the north.

  14. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  15. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  16. Tropospheric Ozone Over a Tropical Atlantic Station in the Northern Hemisphere: Paramaribo, Surinam (6 deg N, 55 deg W)

    NASA Technical Reports Server (NTRS)

    Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.

    2003-01-01

    We present an analysis of 2.5 years of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6 deg N,55 deg W). This is currently one of only three ozone sounding stations in the northern hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is part of the Southern Hemisphere ADditional Ozone Sounding program (SHADOZ). Due to its position close to the equator, the Inter Tropical Convergence Zone (ITCZ) passes over Paramaribo twice per year, which results in a semi-annual seasonality of many parameters including relative humidity and ozone. The dataset from Paramaribo is used to: (1) evaluate ozone variability relative to precipitation, atmospheric circulation patterns and biomass burning; (2) contrast ozone at the NH equatorial Atlantic with that at nearby southern hemisphere (SH) stations Natal (6 deg S,35 deg W) and Ascension (8 deg S,14 deg W); (3) compare the seasonality of tropospheric ozone with a satellite-derived ozone product: Tropical Tropospheric Ozone Columns from the Modified Residual method (MR-TTOC). We find that Paramaribo is a distinctly Atlantic station. Despite its position north of the equator, it resembles nearby SH stations during most of the year. Transport patterns in the lower and middle troposphere during February and March differ from SH stations, which leads to a seasonality of ozone with two maxima. MR-TTOC over Paramaribo does not match the observed seasonality of ozone due to the use of a SH ozone sonde climatology in the MR method. The Paramaribo ozone record is used to suggest an improvement for northern hemisphere MR-TTOC retrievals. We conclude that station Paramaribo shows unique features in the region, and clearly adds new information to the existing SHADOZ record.

  17. Whole lake addition of cadmium-109: radiotracer accumulation in the mussel population in the first season.

    PubMed

    Malley, D F; Chang, P S; Hesslein, R H

    1989-11-01

    Cadmium with the radiotracer 109Cd was added to the epilimnion of Precambrian Shield Lake 382 in the Experimental Lakes Area, northwestern Ontario to monitor pathways of Cd from water to abiotic and biotic components, to quantify Cd accumulation and distribution in biota and to evaluate adverse biological and ecological effects. This experiment will permit evaluation of the adequacy of the water quality guidelines of 0.2 microgram Cd l-1 in protecting aquatic life in softwater lakes. As part of the whole-lake experiment, we monitored the activities of 109Cd in various body parts of the floater mussel Anodonta grandis grandis to determine accumulation and distribution of Cd. Additions of Cd from 23 June to the end of October 1987 (a total of 900 g Cd and 89 mCi of 109Cd) increased the total [Cd] in the water from 1.6 to about 85 ng l-1. Cadmium-109 was accumulated in body parts of the mussels, in increasing concentration: mantle less than foot less than gill less than visceral mass less than kidney. After 4 months exposure to the increased water [Cd], the mussels had increased body burden of Cd by an estimated 5-9 times. At the latter increase, the population of 7330 +/- 2100 mussels in the lake contained an estimated 0.011-0.020% of the added 109Cd.

  18. Evaluation of Yucca schidigera extract as feed additive on performance of broiler chicks in winter season

    PubMed Central

    Sahoo, Sarada Prasanna; Kaur, Daljeet; Sethi, A. P. S.; Sharma, A.; Chandra, M.

    2015-01-01

    Aim: Yucca schidigera extract has been successfully used as feed additives in the poultry industry. It enhances the growth and productivity in broiler production. Hence, the present study was designed to analyze the effect of Y. schidigera extract in growth, carcass quality and behavior along with its economical utility in broiler rearing. Materials and Methods: Total, 120 numbers of day-old broiler chicks of equal sex ratio were randomly divided into Yucca supplemented treatment and control group, each having 60 birds in three replications of 20 numbers. The feeding management and rearing conditions were similar for all the groups as per the standard except the Yucca supplementation in the treatment group @ 125 mg/kg of feed. The parameters with respect to growth, carcass, behavior, and litter content were recorded as per standard procedures. Results: The Yucca supplementation can effectively enhance growth of 173 g in 6th week by utilizing lesser feed intake than control group, which ultimately proves better feed conversion rate, protein efficiency ratio, and energy efficiency ratio in broiler production. Eviscerated weight of 58.50% for the treatment group was significantly higher (p<0.05) than 54.10% in the control group. The breast meat yield of Yucca group (32.23%) was significantly higher (p<0.05) than control (30.33%). More frequency of agonistic behavioral expressions was noticed in the control group than the treatment group. A profit of 43.68% was received by usage of Yucca supplementation in the diet on live weight basis. Numerically, lower percentage of moisture was present in Yucca treated group than the control. Conclusion: From this study, it can be concluded that Yucca supplementation has an important role in augmenting broiler‘s growth performance, efficiency to utilize feed, protein and energy, and survivability. Hence, use of Yucca powder in broiler ration could be beneficial to maintain the litter quality, which directly enhances the

  19. Simulated Sensitivity of Seasonal Ozone Exposure in the Great Lakes Region to Changes in Anthropogenic Emissions in the Presence of Interannual Variability

    SciTech Connect

    Fast, Jerome D.; Heilman, Warren E.

    2005-09-01

    A coupled meteorological and chemical modeling system with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the Great Lakes region between May and September of 1999 and 2001. Model performance was evaluated using operational surface and upper-air meteorological measurements and surface ozone data. The overall temporal and spatial variations in hourly ozone concentrations and ozone exposure from control simulations agreed reasonably well with the observations at most locations. The simulated ozone exposure was higher during the summer of 1999 than during 2001, similar to the observations. The emission projection simulation that employed the meteorological conditions of 1999 and increased anthropogenic emissions projected for the year 2020 produced increases in ozone exceeding 80 ppb over the lower peninsula of Michigan, the eastern half of the upper peninsula of Michigan, and over Ontario just north of Lake Superior and Lake Huron. Relatively large increases in ozone exceeding 60 ppb were also produced over agricultural regions. Despite the projected increase in anthropogenic emissions for the year 2020, increases in ozone exceeding 60 ppb occurred only over the lake surfaces and in central Michigan when the meteorological conditions of the summer of 2001 were applied. The meteorological conditions during the summer of 2001 were not as favorable for ozone production and did not result in increased ozone. For both summers, increases in anthropogenic emissions projected for the year 2020 decreased ozone exposure in the immediate vicinity of the largest metropolitan areas. The simulated ozone from this study will be used in the near future as input to biological models to assess the response of ozone-sensitive tree species to current and future ozone levels in the Great Lakes region.

  20. Generalized additive mixed models for disentangling long-term trends, local anomalies, and seasonality in fruit tree phenology

    PubMed Central

    Polansky, Leo; Robbins, Martha M

    2013-01-01

    Quantifying temporal patterns of ephemeral plant structures such as leaves, flowers, and fruits gives insight into both plant and animal ecology. Different scales of temporal changes in fruits, for example within- versus across-year variability, are driven by different processes, but are not always easy to disentangle. We apply generalized additive mixed models (GAMMs) to study a long-term fruit presence–absence data set of individual trees collected from a high-altitude Afromontane tropical rain forest site within Bwindi Impenetrable National Park (BINP), Uganda. Our primary aim was to highlight and evaluate GAMM methodology, and quantify both intra- and interannual changes in fruit production. First, we conduct several simulation experiments to study the practical utility of model selection and smooth term estimation relevant for disentangling intra- and interannual variability. These simulations indicate that estimation of nonlinearity and seasonality is generally accurately identified using asymptotic theory. Applied to the empirical data set, we found that the forest-level fruiting variability arises from both regular seasonality and significant interannual variability, with the years 2009–2010 in particular showing a significant increase in the presence of fruits-driven by increased productivity of most species, and a regular annual peak associated occurring at the end of one of the two dry seasons. Our analyses illustrate a statistical framework for disentangling short-term increases/decreases in fruiting effort while pinpointing specific times in which fruiting is atypical, providing a first step for assessing the impacts of regular and irregular (e.g., climate change) abiotic covariates on fruiting phenology. Some consequences of the rich diversity of fruiting patterns observed here for the population biology of frugivores in BINP are also discussed. PMID:24102000

  1. Generalized additive mixed models for disentangling long-term trends, local anomalies, and seasonality in fruit tree phenology.

    PubMed

    Polansky, Leo; Robbins, Martha M

    2013-09-01

    Quantifying temporal patterns of ephemeral plant structures such as leaves, flowers, and fruits gives insight into both plant and animal ecology. Different scales of temporal changes in fruits, for example within- versus across-year variability, are driven by different processes, but are not always easy to disentangle. We apply generalized additive mixed models (GAMMs) to study a long-term fruit presence-absence data set of individual trees collected from a high-altitude Afromontane tropical rain forest site within Bwindi Impenetrable National Park (BINP), Uganda. Our primary aim was to highlight and evaluate GAMM methodology, and quantify both intra- and interannual changes in fruit production. First, we conduct several simulation experiments to study the practical utility of model selection and smooth term estimation relevant for disentangling intra- and interannual variability. These simulations indicate that estimation of nonlinearity and seasonality is generally accurately identified using asymptotic theory. Applied to the empirical data set, we found that the forest-level fruiting variability arises from both regular seasonality and significant interannual variability, with the years 2009-2010 in particular showing a significant increase in the presence of fruits-driven by increased productivity of most species, and a regular annual peak associated occurring at the end of one of the two dry seasons. Our analyses illustrate a statistical framework for disentangling short-term increases/decreases in fruiting effort while pinpointing specific times in which fruiting is atypical, providing a first step for assessing the impacts of regular and irregular (e.g., climate change) abiotic covariates on fruiting phenology. Some consequences of the rich diversity of fruiting patterns observed here for the population biology of frugivores in BINP are also discussed.

  2. Analysis of 2010-2014 Ground-Level Ozone at Trinidad Head, CA

    NASA Astrophysics Data System (ADS)

    Lennartson, E.; McClure-Begley, A.; Petropavlovskikh, I. V.; Leonard, M.

    2015-12-01

    High concentrations of ground-level ozone in the troposphere have negative impacts on human health and other biological organisms. As the US Environmental Protection Agency (EPA) is proposing to lower the National Ambient Air Quality Standard (NAAQS) for ozone from 75 to 65-70 parts per billion (ppb), it is important to further study the relationship between both anthropogenic and natural pollutants that lead to production and accumulation of surface ozone. Ground-level ozone data from Trinidad Head, California (THD) was analyzed from 2010-2014 to investigate the factors contributing to high ground-level ozone events. For this research project, a high ozone event was defined as ground-level ozone readings greater than the 90th percentile of the seasonal ozone variability observed during the 2003-2014 period. The ozone exceedances were also required to last for three continuous hours or more. Meteorological parameters, such as wind speed and synoptic patterns, were taken into account. In addition, impacts related to stratospheric intrusions, Asian pollution transport, and the influence of local forest fires were considered. We show that high ground-level ozone events at THD occur during a dominant wind direction and are highly dependent on the origin of the air mass. This understanding of enhanced ground-level ozone drivers will provide a foundational knowledge of climate adaptation and mitigation with improved scientific understanding of the changing climate and its impacts.

  3. [Ozone decline and UV increase].

    PubMed

    Winkler, P; Trepte, S

    2004-02-01

    The following results have been obtained from long-term observations on the ozone layer and UV at the Meteorological Observatory Hohenpeigenberg:The seasonally varying decline of the ozone layer determines the maximum exposure to UV. Since ozone decline shows the highest rates in the spring months the UV exposure has most strongly increased in this time of the year. This is especially important because in spring the human skin is not adapted to UV exposure. Weather changes from day to day can induce rapid ozone reductions in spring about -30% which in turn is followed by an increase in UV of about 40%. Clouds, especially the transparent cirrus clouds (high clouds consisting of ice particles) have increased in frequency during spring and fall while a decrease is observed in summer. This change in cloudiness reduces the daily UV dose in spring and fall while it is enhanced in summer. With increasing height above sea level UV rises by roughly 10% per 1000 m (rule of thumb). Snow reflects the UV-radiation by up to 80% enhancing the UV-doses at relevant conditions. Strong volcano eruptions destroy ozone in the stratosphere additionally during 1-2 years after the eruption. Therafter the ozone layer recovers. In April 1993, after the eruption of Mt. Pinatubo (1991), the UV burden was still 40% higher than average. Miniholes and streamers can appear unexpected on a short-time scale and cross over Central Europe within 1-2 days, thus enhancing UV irradiation. The human skin reacts to UV exposure depending on the type of skin. The campaign "Sonne(n) mit Verstand" of the Bavarian Ministries for Environment, for Health and for Education informs about the danger of UV radiation (see www.sonne-mit-ver-stand.de). The German Weather Service informs the public on present developments of the ozone layer and relevant topics byits ozone bulletin, which is also available via internet under (www.dwd.de/deFundE/Observator/MOHp/hp2/ozon/bulletin.htm).

  4. [Ozone decline and UV increase].

    PubMed

    Winkler, P; Trepte, S

    2004-02-01

    The following results have been obtained from long-term observations on the ozone layer and UV at the Meteorological Observatory Hohenpeigenberg:The seasonally varying decline of the ozone layer determines the maximum exposure to UV. Since ozone decline shows the highest rates in the spring months the UV exposure has most strongly increased in this time of the year. This is especially important because in spring the human skin is not adapted to UV exposure. Weather changes from day to day can induce rapid ozone reductions in spring about -30% which in turn is followed by an increase in UV of about 40%. Clouds, especially the transparent cirrus clouds (high clouds consisting of ice particles) have increased in frequency during spring and fall while a decrease is observed in summer. This change in cloudiness reduces the daily UV dose in spring and fall while it is enhanced in summer. With increasing height above sea level UV rises by roughly 10% per 1000 m (rule of thumb). Snow reflects the UV-radiation by up to 80% enhancing the UV-doses at relevant conditions. Strong volcano eruptions destroy ozone in the stratosphere additionally during 1-2 years after the eruption. Therafter the ozone layer recovers. In April 1993, after the eruption of Mt. Pinatubo (1991), the UV burden was still 40% higher than average. Miniholes and streamers can appear unexpected on a short-time scale and cross over Central Europe within 1-2 days, thus enhancing UV irradiation. The human skin reacts to UV exposure depending on the type of skin. The campaign "Sonne(n) mit Verstand" of the Bavarian Ministries for Environment, for Health and for Education informs about the danger of UV radiation (see www.sonne-mit-ver-stand.de). The German Weather Service informs the public on present developments of the ozone layer and relevant topics byits ozone bulletin, which is also available via internet under (www.dwd.de/deFundE/Observator/MOHp/hp2/ozon/bulletin.htm). PMID:14770335

  5. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition

    PubMed Central

    He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  6. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.

    PubMed

    Qian, Yu-Qi; He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer.

  7. Seasonality, Rather than Nutrient Addition or Vegetation Types, Influenced Short-Term Temperature Sensitivity of Soil Organic Carbon Decomposition.

    PubMed

    Qian, Yu-Qi; He, Feng-Peng; Wang, Wei

    2016-01-01

    The response of microbial respiration from soil organic carbon (SOC) decomposition to environmental changes plays a key role in predicting future trends of atmospheric CO2 concentration. However, it remains uncertain whether there is a universal trend in the response of microbial respiration to increased temperature and nutrient addition among different vegetation types. In this study, soils were sampled in spring, summer, autumn and winter from five dominant vegetation types, including pine, larch and birch forest, shrubland, and grassland, in the Saihanba area of northern China. Soil samples from each season were incubated at 1, 10, and 20°C for 5 to 7 days. Nitrogen (N; 0.035 mM as NH4NO3) and phosphorus (P; 0.03 mM as P2O5) were added to soil samples, and the responses of soil microbial respiration to increased temperature and nutrient addition were determined. We found a universal trend that soil microbial respiration increased with increased temperature regardless of sampling season or vegetation type. The temperature sensitivity (indicated by Q10, the increase in respiration rate with a 10°C increase in temperature) of microbial respiration was higher in spring and autumn than in summer and winter, irrespective of vegetation type. The Q10 was significantly positively correlated with microbial biomass and the fungal: bacterial ratio. Microbial respiration (or Q10) did not significantly respond to N or P addition. Our results suggest that short-term nutrient input might not change the SOC decomposition rate or its temperature sensitivity, whereas increased temperature might significantly enhance SOC decomposition in spring and autumn, compared with winter and summer. PMID:27070782

  8. The effect of representing bromine from VSLS on the simulation and evolution of Antarctic ozone

    NASA Astrophysics Data System (ADS)

    Oman, Luke D.; Douglass, Anne R.; Salawitch, Ross J.; Canty, Timothy P.; Ziemke, Jerald R.; Manyin, Michael

    2016-09-01

    We use the Goddard Earth Observing System Chemistry-Climate Model, a contributor to both the 2010 and 2014 World Meteorological Organization Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Bry) from very short lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Bry are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument on NASA's Aura satellite. In addition, the near-zero ozone levels observed in the deep Antarctic lower stratospheric polar vortex are only reproduced in a simulation that includes this Bry source from VSLS.

  9. Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar vortex observed in satellite data

    NASA Astrophysics Data System (ADS)

    Fytterer, T.; Mlynczak, M. G.; Nieder, H.; Pérot, K.; Sinnhuber, M.; Stiller, G.; Urban, J.

    2015-03-01

    Measurements from 2002 to 2011 by three independent satellite instruments, namely MIPAS, SABER, and SMR on board the ENVISAT, TIMED, and Odin satellites are used to investigate the intra-seasonal variability of stratospheric and mesospheric O3 volume mixing ratio (vmr) inside the Antarctic polar vortex due to solar and geomagnetic activity. In this study, we individually analysed the relative O3 vmr variations between maximum and minimum conditions of a number of solar and geomagnetic indices (F10.7 cm solar radio flux, Ap index, ≥ 2 MeV electron flux). The indices are 26-day averages centred at 1 April, 1 May, and 1 June while O3 is based on 26-day running means from 1 April to 1 November at altitudes from 20 to 70 km. During solar quiet time from 2005 to 2010, the composite of all three instruments reveals an apparent negative O3 signal associated to the geomagnetic activity (Ap index) around 1 April, on average reaching amplitudes between -5 and -10% of the respective O3 background. The O3 response exceeds the significance level of 95% and propagates downwards throughout the polar winter from the stratopause down to ~ 25 km. These observed results are in good qualitative agreement with the O3 vmr pattern simulated with a three-dimensional chemistry-transport model, which includes particle impact ionisation.

  10. Atmospheric peroxyacetyl nitrate measurements over the Brazilian Amazon Basin during the wet season - Relationships with nitrogen oxides and ozone

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Herlth, D.; O'Hara, D.; Salas, L.; Torres, A. L.; Gregory, G. L.; Sachse, G. W.

    1990-01-01

    An analysis is presented on the distribution and variability of PAN as well as its relationship with measured chemical and meteorological parameters. The chemicals of most interest for which measurements were available are PAN, NO(x), O3, CO, and C2Cl4. PAN was measured by the electron capture gas chromatographic technique, and the technique for calibrations and measurements are detailed. Data show that significant concentrations of PAN (5-125 ppt) are present during the wet season and this PAN is 1-5 times more abundant than NO(x). PAN levels at different atmospheric locations are discussed, and it is noted that PAN shows evidence of a possible latitudinal gradient in the free troposphere, with values falling rapidly from the northern midlatitudes toward the equator. High correlations between O3 and PAN levels suggest that nonmethane hydrocarbons may contribute significantly to high O3 in the free troposphere. Evidence indicates that virtually all of the NO(x) above 4 km could result from PAN decomposition.

  11. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-04-01

    A regional air quality simulation framework including the Weather Research and Forecasting modelling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitorings, ozone zondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around north eastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  12. [Effects of nitrogen addition on available nitrogen content and acidification in cold-temperate coniferous forest soil in the growing season].

    PubMed

    Chen, Gao-Qi; Fu, Wa-Li; Luo, Ya-Chen; Gao, Wen-Long; Li, Sheng-Gong; Yang, Hao

    2014-12-01

    Based on a low-level and multi-form N addition control experiment, this study took cold-temperate coniferous forest in Daxing'an Ling as the research object. After long-term and continuous nitrogen addition in situ, the available nitrogen (NH4(+) -N & NO3(-) -N) contents and pH values of the soil (0-10 cm) were measured in the early growing season (May) and the peak growing season (August) in 2010, 2012 and 2013. The results showed that, the available nitrogen in the early and peak growing seasons was mainly NH4(+) -N which accounted for over 96% of the inorganic nitrogen content, while the content of NO3(-) -N was very low. With the time extension of nitrogen addition, the effects of nitrogen addition on the NH4(+) -N content in 0-10 cm soil were more obvious in the early growing season than that in the peak growing season, and the NH4(+) -N content was mainly affected by the type of nitrogen addition. On the contrary, the NO3(-) -N content in 0-10 cm soil was higher in the peak growing season than that in the early growing season. The effect of N input was obvious on NO3(-) -N content in both early and peak growing seasons, and low nitrogen treatment tended to promote the enrichment of NO3(-) -N. As time went on, the response of NH4(+) -N and NO3(-) -N content to N addition was changed from insignificant in the early stage to significant in the late stage. N addition had a significant impact on the pH value of the 0-10 cm soil in the early and peak growing seasons. The pH values of the soil with low nitrogen treatment and the soil in the peak growing season were relatively lower. With the extension of the nitrogen addition time, the response of pH value also turned from insignificant in the early stage to significant in the late stage. Because of the long-term and continuous nitrogen addition, the 0 - 10 cm soil in this cold-temperate coniferous forest was obviously acidified.

  13. Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data

    NASA Technical Reports Server (NTRS)

    Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.

    2003-01-01

    Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.

  14. Impact of Low-level Jet on Regional Ozone

    NASA Astrophysics Data System (ADS)

    Liu, F.

    2011-12-01

    During spring and summer seasons, the frequent occurrences of nocturnal low-level jet (LLJ) over Great Plains region of the United States are widely recognized. As an important element of the low-level atmospheric circulation this LLJ effectively transports water vapor from the Gulf of Mexico, which in turn affects the development of server weather over the central United States. The LLJ has long been known to be conducive to summer rainfall and widespread flooding over the Great Plains of North America. The LLJ transports more than just moisture. Ozone episodes occur mainly during summer and are influenced by regional transport. Little is known, however,about the interrelation between the Great Plains LLJ and regional ozone transport. In this study, analysis of observational data during 1993-2006 has shown strong influence of the Great Plains LLJ on local and regional ozone distributions. Hourly ozone measurements from Air Quality System (AQS) are compared with wind fields at 850 hPa from the NCEP North American Regional Reanalysis (NARR). It is demonstrated that the low ozone concentrations over Texas in late spring and summer are identified with large LLJ transport of clean marine air mass from the Gulf of Mexico. Significant negative correlations exist between daily ozone concentration and LLJ index (Figure 1), suggesting that lower ozone over Texas is associated with stronger LLJ. On the other hand, positive correlations occur in the Midwest and Northeast, indicating the important role of regional transport of ozone and precursors along the pathway by the wind circulation accompanying the LLJ. In addition, the LLJ is significantly correlated with northerly flows in the eastern Pacific Ocean and the adjacent coast. This relationship explains the coexistence of low ozone concentrations in Texas and southwestern U.S during summer, both attributed to the inland transport of clean marine air. These observed ozone-LLJ patterns are well simulated by the regional CMM5

  15. Root and shoot gas exchange respond additively to moderate ozone and methyl jasmonate without induction of ethylene: ethylene is induced at higher O3 concentrations

    PubMed Central

    Grantz, D.A.; Vu, H.-B.

    2012-01-01

    The available literature is conflicting on the potential protection of plants against ozone (O3) injury by exogenous jasmonates, including methyl jasmonate (MeJA). Protective antagonistic interactions of O3 and MeJA have been observed in some systems and purely additive effects in others. Here it is shown that chronic exposure to low to moderate O3 concentrations (4–114 ppb; 12 h mean) and to MeJA induced additive reductions in carbon assimilation (A n) and root respiration (R r), and in calculated whole plant carbon balance. Neither this chronic O3 regime nor MeJA induced emission of ethylene (ET) from the youngest fully expanded leaves. ET emission was induced by acute 3 h pulse exposure to much higher O3 concentrations (685 ppb). ET emission was further enhanced in plants treated with MeJA. Responses of growth, allocation, photosynthesis, and respiration to moderate O3 concentrations and to MeJA appear to be independent and additive, and not associated with emission of ET. These results suggest that responses of Pima cotton to environmentally relevant O3 are not mediated by signalling pathways associated with ET and MeJA, though these pathways are inducible in this species and exhibit a synergistic O3×MeJA interaction at very high O3 concentrations. PMID:22563119

  16. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  17. Effects of tropospheric ozone on methane and carbon dioxide fluxes from peatland mesocosms

    NASA Astrophysics Data System (ADS)

    Toet, Sylvia; Oliver, Vikki; Helgason, Thorunn; Peacock, Simon; Barnes, Jeremy; Ineson, Phil; Ashmore, Mike

    2010-05-01

    Tropospheric ozone is currently the third most important greenhouse gas, and also the most important gaseous air pollutant globally in terms of effects on vegetation world-wide. At present levels it poses a significant threat to crop yield and forest productivity of sensitive species, while background ozone concentrations are expected to increase further during the next decades. The potential importance of ozone in reducing carbon assimilation, and consequently in increasing atmospheric carbon dioxide concentrations, has been recognised. However, regional modelling studies are based on the impact of ozone on photosynthetic rates and above-ground growth, and do not consider effects of ozone on belowground carbon fluxes. The limited experimental data on the long-term effects of ozone on belowground carbon processes, mainly from arable crop and forest systems, are a major constraint to understanding the impacts of ozone on global carbon fluxes. Very little attention has been paid to ozone effects on peatland carbon dynamics, though northern peatlands store a third of the global soil organic carbon pool and are an important source of atmospheric methane. The aims of this study were to assess the long-term effects of elevated ozone on carbon dioxide and methane fluxes in temperate peatland mesocosms and to identify underlying plant, soil and microbial processes. Mesocosms from a wet heath (Isle of Skye, UK) with vegetation dominated by the peat moss Sphagnum papillosum and the sedge Schoenus nigricans have been exposed to ambient (control) and three elevated levels of ozone in open-top chambers from May 2008. Methane emission, carbon dioxide fluxes and relevant plant and soil variables were measured every 6 weeks (growing season) or 8 weeks (winter). Methane emissions were significantly reduced by elevated ozone over the first 18 months of the experiment. Ecosystem respiration only showed a significant increase in response to ozone in the second growing season, while

  18. Photochemical roles of rapid economic growth and potential abatement strategies on tropospheric ozone over South and East Asia in 2030

    NASA Astrophysics Data System (ADS)

    Chatani, S.; Amann, M.; Goel, A.; Hao, J.; Klimont, Z.; Kumar, A.; Mishra, A.; Sharma, S.; Wang, S. X.; Wang, Y. X.; Zhao, B.

    2014-09-01

    A regional air quality simulation framework including the Weather Research and Forecasting modeling system (WRF), the Community Multi-scale Air Quality modeling system (CMAQ), and precursor emissions to simulate tropospheric ozone over South and East Asia is introduced. Concentrations of tropospheric ozone and related species simulated by the framework are validated by comparing with observation data of surface monitoring, ozonesondes, and satellites obtained in 2010. The simulation demonstrates acceptable performance on tropospheric ozone over South and East Asia at regional scale. Future energy consumption, carbon dioxide (CO2), nitrogen oxides (NOx), and volatile organic compound (VOC) emissions in 2030 under three future scenarios are estimated. One of the scenarios assumes a business-as-usual (BAU) pathway, and other two scenarios consider implementation of additional energy and environmental strategies to reduce energy consumption, CO2, NOx, and VOC emissions in China and India. Future surface ozone under these three scenarios is predicted by the simulation. The simulation indicates future surface ozone significantly increases around India for a whole year and around northeastern China in summer. NOx is a main driver on significant seasonal increase of surface ozone, whereas VOC as well as increasing background ozone and methane is also an important factor on annual average of surface ozone in East Asia. Warmer weather around India is also preferable for significant increase of surface ozone. Additional energy and environmental strategies assumed in future scenarios are expected to be effective to reduce future surface ozone over South and East Asia.

  19. Examining the major contributors and controlling factors of ozone production in a rural area of the Yangtze River Delta region during harvest season

    NASA Astrophysics Data System (ADS)

    Pan, X.; Kanaya, Y.; Tanimoto, H.; Inomata, S.; Wang, Z.; Kudo, S.; Uno, I.

    2014-12-01

    Open biomass burning (OBB) has been reported to emit substantial amounts of non-methane hydrocarbons (NMHCs), and the mixing of OBB with urban plumes could exacerbate regional ozone (O3) pollution. In the present study, an observational field campaign was performed in a rural area at the edge of Yangtze River Delta region (YRDR) during harvest season when intensive open burning of wheat residues was observed. The O3 production rate at the site was calculated using a photochemical box model (Regional Atmospheric Chemical Mechanism, Version 2) constrained by real-time ambient measurements (e.g., O3, volatile organic compounds (VOCs), the sum of NO2 + NO (NOx), J values). During the period impacted by OBB, the O3 concentration frequently exceeded 100 ppbv. Analysis showed that the net O3 production was pronounced, in particular when the site was characterized by a prevailing southerly wind that also brought substantial amounts of NOx emitted from urban areas. At these times, the maximum rate of O3 production was 20 ppbv h-1 with potential production rate of 102 ppbv on a daily basis. The O3 production at the site was typically VOC-sensitive in the morning because NOx dominated the plumes. However, in the afternoon, conditions became NOx-sensitive due to the rapid photochemical consumption of NOx in the production of O3. A positive matrix factorization analysis indicated that solvent usage and OBB were the primary contributors to the mass fraction of ambient NMHCs observed at the study site, and were responsible for 35 and 23% of the total O3 production, respectively. The preferential presence of NOx in the morning inhibited net O3 production; meanwhile O3 built up in the afternoon due to a decrease in NOx concentrations. These results indicated that a joint effort in the regulation of solvent (aromatics) usage and OBB, as well as NOx from on-road vehicle exhaust may be effective in eliminating high-O3 pollution risk in the rural areas of the YRDR.

  20. First results of a general circulation model applied to the SST-NOx problem. [ozone decomposition

    NASA Technical Reports Server (NTRS)

    Cunnold, D. M.; Alyea, F. N.; Phillips, N. A.; Prinn, R. G.

    1974-01-01

    Results of model runs, one using two-dimensional distribution of NO2 in the unperturbed stratosphere and another including an additional localized source of NO2 to approximate the effect of SSTs, are reported. The general circulation model and chemical reactions are described, and corrections in the previous latitudinal and seasonal gradients of total columnar ozone and the diffusion coefficient in the neighborhood of the tropopause are noted. Excellent agreement with previous observations was obtained. Global distributions of ozone and NO2 are described and represented in graphs. Results indicate ozone reduction of approximately 16% in the Northern Hemisphere and approximately 8% in the Southern Hemisphere, with the mid-latitude source of NO2 apparently having a blocking effect on the horizontal transport of ozone, resulting in larger reductions of ozone at high latitudes than at low ones.

  1. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  2. Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; Oltmans, S. J.; Schwab, J.; Shindell, D. T.; Thompson, A. M.; Thouret, V.; Wang, Y.; Zbinden, R. M.

    2014-01-01

    Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.

  3. Impact of Large-scale Circulation Patterns on Surface Ozone Variability in Houston-Galveston-Brazoria

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jia, B.; Xie, Y.

    2015-12-01

    The Bermuda High (BH) is a key driver of large-scale circulation patterns for Southeastern Texas and other Gulf coast states in summer, with the expected influence on surface ozone through its modulation of marine air inflow with lower ozone background from the Gulf of Mexico. We develop a statistical relationship through multiple linear regression (MLR) to quantify the impact of the BH variations on surface ozone variability during the ozone season in the Houston-Galveston-Brazoria (HGB) area, a major ozone nonattainment region on the Gulf Coast. We find that the variability in BH location, represented by a longitude index of the BH west edge (BH-Lon) in the MLR, explains 50-60% of the year-to-year variability in monthly mean ozone over HGB for Jun and July during 1998-2013, and the corresponding figure for Aug and Sep is 20%. Additional 30%-40% of the ozone variability for Aug and Sep can be explained by the variability in BH strength, represented by two BH intensity indices (BHI) in the MLR, but its contribution is only 5% for June and not significant for July. Including a maximum Through stepwise regression based on Akaike Information Criterion (AIC), the MLR model captures 58~72% of monthly ozone variability during Jun-Sep with a cross-validation R2 of 0.5. This observation-derived statistical relationship will be valuable to constrain model simulations of ozone variability attributable to large-scale circulation patterns.

  4. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results.

  5. Linking Horizontal And Vertical Transports of Biomass Fire Emissions to the Tropical Atlantic Ozone Paradox during the Northern Hemisphere Winter Season: II. 1998-1999.

    NASA Technical Reports Server (NTRS)

    Jenkins, Gregory S.; Ryu, Jung-Hee; Thompson, Anne M.; Witte, Jacquelyn C.

    2002-01-01

    The horizontal and vertical transport of biomass fire emissions in West Africa during November 1998 through February 1999, are examined using all available data including wind, fire, aerosol, precipitation, lightning and outgoing longwave radiation. Ozonesonde data from the Aerosols99 Trans-Atlantic cruise are also included with rain and wind analyses. The results here support earlier studies that ozone and ozone precursors associated with biomass burning are confined to the lower troposphere primarily due to the lack of deep convection over land areas. Ozone and its precursors are horizontally transported equatorward or towards the west by winds in the 1000-700 hPa layers. However, rising adiabatic motions associated with the diurnal evolution of the West African n can transport ozone and its precursors vertically into the free troposphere above the marine boundary layer. Moreover, lightning from South America, Central Africa and mesoscale convective systems in the Gulf of Guinea can lead to elevated ozone mixing ratios in the middle and upper troposphere.

  6. Spatial and temporal patterns of ozone in the high elevation ecosystems of the Colorado Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Liptzin, D.; Helmig, D.

    2015-12-01

    Tropospheric ozone is regulated by the US EPA to protect human health and welfare. Because the precursors to ozone formation largely come from transportation and industrial activity, ozone has typically been thought of as an urban pollution problem. However, there is growing concern about increased ozone concentrations in rural areas. Surprisingly high ozone concentrations have been measured in the high elevation Rocky Mountain ecosystems in the Front Range of Colorado. The annual median ozone mixing ratios over the past decade at three high elevation monitoring stations ranged from 47 to 53 ppbv. The hourly ozone mixing ratio typically exceeds 100 ppbv at some point every year at these sites. The number of days where the ozone mixing ratio exceeded the current 8 hour US EPA National Ambient Air Quality Standard of 75 ppb has ranged from 0 to 25 since 1987 at the monitoring site in Rocky Mountain National Park. A comparison with lower elevation sites suggests that ozone mixing ratios generally increase with elevation. In addition, the diurnal and seasonal variability of ozone decreases with elevation. Along an elevational gradient from the plains to the tundra, the tundra site had the highest median values and the least variability of any site. The seasonal pattern at these high elevation sites is also distinct as the maximum mixing ratios occur in the spring in contrast to the summer maximum typically observed in urban areas. While there have been relatively small changes in concentration in the measured data record going back a few decades, modeling suggests that ozone mixing ratios have almost doubled over the last one hundred years in Colorado. A plethora of studies has shown that elevated ozone damages foliage, with sensitive species showing effect at levels exceeding 35-40 ppbv. Since ozone levels in these high elevation ecosystems are clearly above that, we believe that they have been and will continue to be severely affected by elevated ozone. It is not

  7. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules.

  8. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  9. Stratospheric ozone depletion.

    PubMed

    Rowland, F Sherwood

    2006-05-29

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290-320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime-the 'Antarctic ozone hole'. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  10. On the variability of tropospheric ozone in the Tropical Eastern Pacific and its impact on the oxidizing capacity

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, A.; Gomez Martin, J.; Hay, T.; Mahajan, A.; Ordoñez, C.; Parrondo Sempere, M.; Gil, M. J.; Agama Reyes, M.; Paredes Mora, J.; Voemel, H.

    2012-12-01

    Observations of surface ozone, NOx and meteorological variables were made during two ground based field campaigns in the Eastern Pacific marine boundary layer (MBL). The first study was PIQUERO (Primera Investigación de la Química, Evolución y Reparto de Ozono), running from September 2000 to July 2001 in parallel to the Southern Hemisphere ADditional OZonesondes (SHADOZ) in the Galápagos Islands. The second study is the Climate and HAlogen Reactivity tropicaL EXperiment (CHARLEX), running from September 2010 to present. These long-term, high frequency, measurements enable a detailed description of the daily, monthly, seasonal and interannual variability of ozone and help to constrain the MBL and lower free troposphere (FT) ozone budget. In the Equatorial Eastern Pacific "cold season" (August - October), net ozone photochemical destruction of ~ 2 ppb day-1 occurs in the MBL (~30% due to halogens, and the rest to HOx). Ozone recovers by entrainment from aloft at night. The monthly baseline is set by the tropical instability waves (TIW), which also impact the ozone concentration in the lower FT. In the cold phase of the TIWs the MBL is stratified and, apart from higher surface ozone, it may also contain an upper drier layer with higher ozone between ~ 500 m and the main inversion at ~1 km. In the warm phase the buoyant MBL expands upwards (as much as 500 m) and poor ozone air reaches the FT. As the system shifts to the warm season (February- April), the TIWs stop and the sea becomes warmer, increasing evaporation and reducing ozone. The inversion is pushed upwards and finally disappears or becomes very weak. Surface ozone is so low that even at the low background NOx levels observed ozone production balances photochemical destruction, so the daily profile is flat (observed local effects in the populated areas of Galapagos are discussed). In February Galapagos is almost in the doldrums because the Inter-Tropical Convergence Zone (ITCZ) shifts south. In this

  11. Extreme value modeling for the analysis and prediction of time series of extreme tropospheric ozone levels: a case study.

    PubMed

    Escarela, Gabriel

    2012-06-01

    The occurrence of high concentrations of tropospheric ozone is considered as one of the most important issues of air management programs. The prediction of dangerous ozone levels for the public health and the environment, along with the assessment of air quality control programs aimed at reducing their severity, is of considerable interest to the scientific community and to policy makers. The chemical mechanisms of tropospheric ozone formation are complex, and highly variable meteorological conditions contribute additionally to difficulties in accurate study and prediction of high levels of ozone. Statistical methods offer an effective approach to understand the problem and eventually improve the ability to predict maximum levels of ozone. In this paper an extreme value model is developed to study data sets that consist of periodically collected maxima of tropospheric ozone concentrations and meteorological variables. The methods are applied to daily tropospheric ozone maxima in Guadalajara City, Mexico, for the period January 1997 to December 2006. The model adjusts the daily rate of change in ozone for concurrent impacts of seasonality and present and past meteorological conditions, which include surface temperature, wind speed, wind direction, relative humidity, and ozone. The results indicate that trend, annual effects, and key meteorological variables along with some interactions explain the variation in daily ozone maxima. Prediction performance assessments yield reasonably good results. PMID:22788103

  12. Ozone and carbon monoxide at the Ushuaia GAW-WMO global station

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Cupeiro, Manuel; Yela, Margarita; Cuevas, Emilio; Carbajal, Gerardo

    2016-04-01

    Ozone and carbon monoxide have been investigated in the GAW-WMO station of Ushuaia (Argentina), using hourly values during five years (2010-2014). This work has been developed in the framework of HELADO (Halogens in the Antarctic atmosphere and its role in the Ozone distribution) project and under the collaboration between INTA (National Institute for Aerospace Technology - Spain), SMN (National Meteorological Service - Argentina) and AEMET (State Meteorological Agency - Spain). Meteorological features have been analyzed with in-situ observations and meteorological fields from ECMWF 0.5° as spatial resolution model. These fields have been applied to compute back trajectories with HYSPLIT model. Independently of season, mostly atmospheric flows coming from W-SW (South Pacific Ocean), theses westerlies winds are associated with low pressure systems; in addition with lower frequencies are collected winds from South (Antarctic Peninsula and Weddell Sea), polar easterlies. Hourly averages of surface (in-situ) ozone and CO levels were 20±7 and 71±45 ppb respectively, typical values of remote environments. A clear seasonal pattern has been obtained for surface ozone with monthly peaks in winter of 25 ppb and minimum in summer with 12 ppb; a similar behaviour is found for CO, 93 and 48 ppb for maximum and minimum values, respectively. A weak daily cycle has been obtained in both species, amplitude for ozone of 2-4 ppb and 13-20 ppb for CO. The seasonal levels behaviour for surface ozone is also observed in upper levels, approximately from surface up to 5 km. This result has been obtained from 139 ozone profiles launched in the studied period. Since the ozone precursors and carbon monoxide emissions are low in this area, the origin of the values observed could be in the atmospheric transport processes. As hypothesis to explain the behaviour observed, we suggest that in the warm season with solar radiation, the photochemical mechanisms are active, and the elimination

  13. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    . Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.

  14. New Perspectives from Satellite and Profile Observations on Tropospheric Ozone over Africa and the Adjacent Oceans: An Indian-Atlantic Ocean Link to tbe "Ozone Paradox"

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Diab, Roseanne D.; Thouret, Valerie; Sauvage, Bastien; Chatfield, B.; Guan, Hong

    2004-01-01

    In the past few years, tropospheric ozone observations of Africa and its adjacent ocenas have been greatly enhanced by high resolution (spatial and temporal) satellite measurements and profile data from aircraft (MOZAIC) and balloon-borne (SHADOZ) soundings. These views have demonstrated for the first time the complexity of chemical-dynamical interactions over the African continent and the Indian and Atlantic Oceans. The tropical Atlantic "ozone paradax" refers to the observation that during the season of maximum biomass burning in west Africa north of the Intertropical Convergence Zone (ITCZ), the highest tropospheric ozone total column occurs south of the ITCZ over the tropical Atlantic. The longitudinal view of tropospheric ozone in the southern tropics from SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings shown the persistence of a "zonal-wave one" pattern that reinforces the "ozone paradox". These ozone features interact with dynamics over southern and northern Africa where anthropogenic sources include the industrial regions of the South African Highveld and Mideastern-Mediterranean influences, respectively. Our newest studies with satellites and soundings show that up to half the ozone pollution over the Atlantic in the January-March "paradox" period may originate from south Asian pollution. Individual patches of pollurion over the Indian Ocean are transported upward by convective mixing and are enriched by pyrogenic, biogenic sources and lightning as they cross Africa and descend over the Atlantic. In summary, local sources, intercontinental import and export and unique regional transport patterns put Africa at a crossroads of troposheric ozone influences.

  15. Size-mediated foliar response to ozone in black cherry trees.

    PubMed

    Fredericksen, T S; Skelly, J M; Steiner, K C; Kolb, T E; Kouterick, K B

    1996-01-01

    Local ozone concentration and visible foliar injury were measured over the 1994 growing season on open-grown black cherry (Prunus serotina Ehrh.) trees of varying size (age) within forest stands and adjacent openings at a site in north-central Pennsylvania. Relationships were determined between visible ozone injury and ozone exposure, as well as calculated between injury and ozone uptake expressed as the product of stomatal conductance and ozone concentration. In addition, simultaneous measurements of visible symptoms and leaf gas exchange were also conducted to determine the correlation between visible and physiological injury and ozone exposure. By September, the amount of leaf area affected by visible foliar ozone injury was greatest for seedlings (46%), followed by canopy trees (20%) and saplings (15%). A large amount of variability in foliar ozone symptom expression was observed among trees within a size class. Sum40 and Sum60 (ozone concentration > 40 and > 60 nl liter(-1)) cumulative exposure statistics were the most meaningful indices for interpretation of foliar injury response. Seedlings were apparently more sensitive to ozone injury than larger trees because their higher rates of stomatal conductance resulted in higher rates of ozone uptake. Seedlings also had higher rates of early leaf abscission than larger trees with an average of nearly 30% of the leaves on a shoot abscised by 1 September compared to approximately 5% for larger trees. However, per unit ozone uptake into the leaf, larger trees exhibited larger amounts of foliar injury. The amount of visible foliar injury was negatively correlated (r(2) = 0.82) with net photosynthetic rates, but was not related to stomatal conductance. Net photosynthesis and stomatal conductance thus became uncoupled at high levels of visible foliar injury. PMID:15091453

  16. Fine Ambient Particulate and Ozone Co-Exposures in Durham, North Carolina: Influence of Season on Particle Chemistry and Cardiovascular Responses in Rats

    EPA Science Inventory

    Epidemiological studies have shown that the presence of one air pollutant modifies the cardiovascular health effects of another while controlled exposure studies in humans have documented synergistic effects of co-exposure to ambient particulate matter (PM) and ozone (O3) on bloo...

  17. Ozone studies in the Paso del Norte region

    NASA Astrophysics Data System (ADS)

    Becerra-Davila, Fernando

    obtained from this photolysis study demonstrate that the local ground level ozone formation is not only influenced by the strong solar radiation and changing aerosol makeup, but also by other heterogeneous factors and reactions. In addition, this research provided good evidence that the ground level ozone precursor regime in El Paso during the ozone episode of June 2006 was mostly VOC-limited. Much of this estimation was derived from measurements of local ambient VOC/NOx ratios. This finding shows that at least during June 2006, the non-linear surface ozone production increased during weekends compared to workdays in a habitually VOC-limited regime. The seasonal variations of columnar ozone as measured by a Multi-filter Rotating Shadowband instrument installed at the UTEP campus are analyzed for the first time for this region and results are presented. This investigation has addressed the problem of ground-level ozone formation in the Paso del Norte region. Urban ozone is a complex problem with many aspects that are not fully understood. In this investigation, a range of techniques has been used to address the study of local surface ozone episodes with the purpose of acquiring new insights and knowledge that will help understand and remediate the diverse atmospheric pollution events that affect this bi-national region recurrently. Innovative techniques were developed and used, ranging from the use of local ambient atmospheric pollution data to the utilization of complex modeling techniques to achieve the best possible computer results. Finally, the influence of ground level ozone concentrations in admissions to hospitals for this region due to respiratory diseases is analyzed. The comprehensive results obtained in this work will help to better understand ozone formation in the Paso del Norte Region for future policy regulation implementations.

  18. Observed atmospheric total column ozone distribution from SCIAMACHY over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Chooi, T. K.; San, L. H.; Jafri, M. Z. M.

    2014-02-01

    The increase in atmospheric ozone has received great attention because it degrades air quality and brings hazard to human health and ecosystems. The aim of this study was to assess the seasonal variations of ozone concentrations in Peninsular Malaysia from January 2003 to December 2009 using Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY). Level-2 data of total column ozone WFMD version 1.0 with spatial resolution 1° × 1.25° were acquired through SCIAMACHY. Analysis for trend of five selected sites exhibit strong seasonal variation in atmospheric ozone concentrations, where there is a significant difference between northeast monsoon and southwest monsoon. The highest ozone values occurred over industrial and congested urban zones (280.97 DU) on August at Bayan Lepas. The lowest ozone values were observed during northeast monsoon on December at Subang (233.08 DU). In addition, the local meteorological factors also bring an impact on the atmospheric ozone. During northeast monsoon, with the higher rate of precipitation, higher relative humidity, low temperature, and less sunlight hours let to the lowest ozone concentrations. Inversely, the highest ozone concentrations observed during southwest monsoon, with the low precipitation rate, lower relative humidity, higher temperature, and more sunlight hours. Back trajectories analysis is carried out, in order to trace the path of the air parcels with high ozone concentration event, suggesting cluster of trajectory (from southwest of the study area) caused by the anthropogenic sources associated with biogenic emissions from large tropical forests, which can make important contribution to regional and global pollution.

  19. Upper-Stratospheric Ozone Trends 1979-1998

    NASA Technical Reports Server (NTRS)

    Newchurch, M. J.; Cunnold, Derek; Bishop, Lane; Flynn, Lawrence E.; Godin, Sophie; Frith, Stacey Hollandsworth; Hood, Lon; Miller, Alvin J.; Oltmans, Sam; Randel, William

    2002-01-01

    Extensive analyses of ozone observations between 1978 and 1998 measured by Dobson Umkehr, Stratospheric Aerosol and Gas Experiment (SAGE) I and II, and Solar Backscattered Ultraviolet (SBUV) and (SBUV)/2 indicate continued significant ozone decline throughout the extratropical upper stratosphere from 30-45 km altitude. The maximum annual linear decline of -0.8 +/- 0.2 %/yr(2sigma) occurs at 40 km and is well described in terms of a linear decline modulated by the 11-year solar variation. The minimum decline of -0.110.1% yr-1(2o) occurs at 25 km in midlatitudes, with remarkable symmetry between the Northern and Southern Hemispheres at 40 km altitude. Midlatitude upper-stratospheric zonal trends exhibit significant seasonal variation (+/- 30% in the Northern Hemisphere, +/- 40% in the Southern Hemisphere) with the most negative trends of -1.2%/yr occurring in the winter. Significant seasonal trends of -0.7 to -0.9%/yr occur at 40 km in the tropics between April and September. Subjecting the statistical models used to calculate the ozone trends to intercomparison tests on a variety of common data sets yields results that indicate the standard deviation between trends estimated by 10 different statistical models is less than 0.1%/yr in the annual-mean trend for SAGE data and less than 0.2%/yr in the most demanding conditions (seasons with irregular, sparse data) [World Meteorological Organization (WMO), 1998]. These consistent trend results between statistical models together with extensive consistency between the independent measurement-system trend observations by Dobson Umkehr, SAGE I and II, and SBUV and SBUV/2 provide a high degree of confidence in the accuracy of the declining ozone amounts reported here. Additional details of ozone trend results from 1978 to 1996 (2 years shorter than reported here) along with lower-stratospheric and tropospheric ozone trends, extensive intercomparisons to assess relative instrument drifts, and retrieval algorithm details are

  20. Comparison of seasonal variations of ozone exposure and fluxes in a Mediterranean Holm oak forest between the exceptionally dry 2003 and the following year.

    PubMed

    Gerosa, Giacomo; Finco, Angelo; Mereu, Simone; Vitale, Marcello; Manes, Fausto; Denti, Antonio Ballarin

    2009-05-01

    Ozone and energy fluxes have been measured using the eddy covariance technique, from June to December 2004 in Castelporziano near Rome (Italy), and compared to similar measurements made in the previous year. The studied ecosystem consisted in a typical Mediterranean Holm oak forest. Stomatal fluxes have been calculated using the resistance analogy and by inverting the Penmann-Monteith equation. Results showed that the average stomatal contribution accounts for 42.6% of the total fluxes. Non-stomatal deposition proved to be enhanced by increasing leaf wetness and air humidity during the autumnal months. From a comparison of the two years, it can be inferred that water supply is the most important limiting factor for ozone uptake and that prolonged droughts alter significantly the stomatal conductance, even 2 months after the soil water content is replenished. Ozone exposure, expressed as AOT40, behaves similarly to the cumulated stomatal flux in dry conditions whereas a different behaviour for the two indices appears in wet autumnal conditions. A difference also occurs between the two years.

  1. Chemistry and Dynamics of the Unusual 2015 Antarctic Ozone Hole

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2016-04-01

    The Global Atmosphere Watch of the World Meteorological Organization includes several stations in Antarctica that keep a close eye on the ozone layer during the ozone hole season. Observations made during the unusually large ozone hole of 2015 will be compared to ozone holes from 2003 to 2014 and interpreted in light of the meteorological conditions. Satellite observations will be used to get a more general picture of the size and depth of the ozone hole and will also be used to calculate various metrics for ozone hole severity. In 2003, 2005 and 2006, the ozone hole was relatively large with more ozone loss than normal. This is in particular the case for 2006, which by most ozone hole metrics was the most severe ozone hole on record. On the other hand, the ozone holes of 2004, 2007, 2010 and 2012, 2013 and 2014 were less severe than normal, and only the very special ozone hole of 2002 had less ozone depletion when one regards the ozone holes of the last decade. The South Polar vortex of 2015 was unusually stable and long-lived, so ozone depletion lasted longer than seen in recent years. The ozone hole area, i.e. the area where total ozone is less that 220 DU, averaged over the worst 60 consecutive days was larger in 2015 than in any other year since the beginning of the ozone hole era in the early 1980s.

  2. Tropospheric Enhancement of Ozone over the UAE

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan

    2015-04-01

    We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  3. A new metric for the size and depth of the Antarctic ozone hole

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2014-05-01

    The extent of the seasonal ozone loss in the Antarctic ozone hole has traditionally been quantified by the ozone hole area and the ozone mass deficit. The ozone hole area is defined as the area of the region where total ozone is less than 220 DU. The ozone mass deficit is defined as the mass of ozone that has to be added in order to reach a total column of 220 DU in those areas where total ozone is inferior to this value. Under certain circumstances these metrics can give a wrong impression of the degree of ozone loss. During several of the recent ozone hole seasons there has been transport of ozone rich air from middle latitudes at altitudes above 20 km and that has acted as a lid on top of the ozone depleted region below, typically between 14 and 20 km altitude. In several cases ozonesonde profiles show substantial ozone loss typical of an ozone hole situation, yet total ozone is well above the 220 DU threshold due to the dynamically enhanced amounts of ozone at higher altitudes. The present paper presents an alternative metric to quantify the degree of ozone loss in the Antarctic ozone hole that is not affected by in-flux of ozone rich air at altitudes above 20 km. With such a metric one obtains a more correct comparison of the ozone holes of different years.

  4. The influence of the North Atlantic Oscillation and El Niño-Southern Oscillation on mean and extreme values of column ozone over the United States

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Evans, R.; McConville, G.; Manney, G. L.; Rieder, H. E.

    2014-08-01

    Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States (US) began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter time scales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOcally wEighted Scatterplot Smoothing, LOESS) are used to address temporal variability and trends in the Dobson data. The LOESS-smoothed trend components show a decline of total ozone between the 1970s and 2000s and a "stabilization" at lower levels in recent years, which is also confirmed by linear trend analysis. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation and El Niño Southern Oscillation. A comparison of the "fingerprints" detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more "fingerprints" are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL-decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low and high ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5%, or about twice as large as the overall long-term decadal ozone trends.

  5. Effects of stratospheric ozone recovery on tropospheric chemistry and air quality

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Wang, Y.

    2013-08-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increases by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  6. Impacts of Stratospheric Ozone Change on Tropospheric Chemistry and Air Quality

    NASA Astrophysics Data System (ADS)

    Wu, S.; Zhang, H.

    2013-05-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its Amendments and Adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increased by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  7. Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees.

    PubMed

    Fredericksen, T S; Joyce, B J; Skelly, J M; Steiner, K C; Kolb, T E; Kouterick, K B; Savage, J E; Snyder, K R

    1995-01-01

    Patterns of ozone uptake were related to physiological, morphological, and phenological characteristics of different-sized black cherry trees (Prunus serotina Ehrh.) at a site in central Pennsylvania. Calculated ozone uptake differed among open-grown seedlings, forest gap saplings, and canopy trees and between leaves in the upper and lower crown of saplings and canopy trees. On an instantaneous basis, seedling leaves had the greatest ozone uptake rates of all tree size classes due to greater stomatal conductance and higher concentrations of ozone in their local environment. A pattern of higher stomatal conductance of seedlings was consistent with higher incident photosynthetically-active radiation, stomatal density, and predawn xylem water potentials for seedlings relative to larger trees. However, seedlings displayed an indeterminate pattern of shoot growth, with the majority of their leaves produced after shoot growth had ceased for canopy and sapling trees. Full leaf expansion occurred by mid-June for sapling and canopy trees. Because many of their leaves were exposed to ozone for only part of the growing season, seedlings had a lower relative exposure over the course of the growing season, and subsequently lower cumulative uptake, of ozone than canopy trees and a level of uptake similar to upper canopy leaves of saplings. Visible injury symptoms were not always correlated with patterns in ozone uptake. Visible symptoms were more apparent on seedling leaves in concurrence with their high instantaneous uptake rates. However, visible injury was more prevalent on leaves in the lower versus upper crown of canopy trees and saplings, even though lower crown leaves had less ozone uptake. Lower crown leaves may be more sensitive to ozone per unit uptake than upper crown leaves because of their morphology. In addition, the lower net carbon uptake of lower crown leaves may limit repair and anti-oxidant defense processes. PMID:15091517

  8. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996-2005

    NASA Astrophysics Data System (ADS)

    Wilson, R. C.; Fleming, Z. L.; Monks, P. S.; Clain, G.; Henne, S.; Konovalov, I. B.; Szopa, S.; Menut, L.

    2012-01-01

    National and European legislation over the past 20 yr, and the modernisation or removal of industrial sources, have significantly reduced European ozone precursor emissions. This study quantifies observed and modelled European ozone annual and seasonal linear trends from 158 harmonised rural background monitoring stations over a constant time period of a decade (1996-2005). Mean ozone concentrations are investigated, in addition to the ozone 5th percentiles as a measure of the baseline or background conditions, and the 95th percentiles that are representative of the peak concentration levels. This study aims to characterise and quantify surface European ozone concentrations and trends and assess the impact of the changing anthropogenic emission tracers on the observed and modelled trends. Significant (p<0.1) positive annual trends in ozone mean, 5th and 95th percentiles are observed at 54 %, 52 % and 45 % of sites respectively (85 sites, 82 sites and 71 sites). Spatially, sites in central and north-western Europe tend to display positive annual ozone trends in mean, 5th and 95th percentiles. Significant negative annual trends in ozone mean 5th and 95th percentiles are observed at 11 %, 12 % and 12 % of sites respectively (18 sites, 19 sites and 19 sites) which tend to be located in the eastern and south-western extremities of Europe. European-averaged annual trends have been calculated from the 158 sites in this study. Overall there is a net positive annual trend in observed ozone mean (0.16±0.02 ppbv yr-1 (2σ error)), 5th (0.13±0.02 ppbv yr-1) and 95th (0.16±0.03 ppbv yr-1) percentiles, representative of positive trends in mean, baseline and peak ozone. Assessing the sensitivity of the derived overall trends to the constituent years shows that the European heatwave year of 2003 has significant positive influence and 1998 the converse effect; demonstrating the masking effect of inter-annual variability on decadal based ozone trends. The European scale 3-D CTM

  9. Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?

    ERIC Educational Resources Information Center

    Clearing, 1992

    1992-01-01

    Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…

  10. Trends in total column ozone measurements

    NASA Technical Reports Server (NTRS)

    Rowland, F. S.; Angell, J.; Attmannspacher, W.; Bloomfield, P.; Bojkov, R. D.; Harris, N.; Komhyr, W.; Mcfarland, M.; Mcpeters, R.; Stolarski, R. S.

    1989-01-01

    It is important to ensure the best available data are used in any determination of possible trends in total ozone in order to have the most accurate estimates of any trends and the associated uncertainties. Accordingly, the existing total ozone records were examined in considerable detail. Once the best data set has been produced, the statistical analysis must examine the data for any effects that might indicate changes in the behavior of global total ozone. The changes at any individual measuring station could be local in nature, and herein, particular attention was paid to the seasonal and latitudinal variations of total ozone, because two dimensional photochemical models indicate that any changes in total ozone would be most pronounced at high latitudes during the winter months. The conclusions derived from this detailed examination of available total ozone can be split into two categories, one concerning the quality and the other the statistical analysis of the total ozone record.

  11. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and

  12. The sensitivity of global ozone predictions to dry deposition schemes and their response to climate change

    NASA Astrophysics Data System (ADS)

    Centoni, Federico; Stevenson, David; Fowler, David; Nemitz, Eiko; Coyle, Mhairi

    2015-04-01

    Concentrations of ozone at the surface are strongly affected by deposition to the surface. Deposition processes are very sensitive to temperature and relative humidity at the surface and are expected to respond to global change, with implications for both air quality and ecosystem services. Many studies have shown that ozone stomatal uptake by vegetation typically accounts for 40-60% of total deposition on average and the other part which occurs through non-stomatal pathways is not constant. Flux measurements show that non-stomatal removal increases with temperature and under wet conditions. There are large uncertainties in parameterising the non-stomatal ozone deposition term in climate chemistry models and model predictions vary greatly. In addition, different model treatments of dry deposition constitute a source of inter-model variability in surface ozone predictions. The main features of the original Unified Model-UK Chemistry and Aerosols (UM-UKCA) dry deposition scheme and the Zhang et al. 2003 scheme, which introduces in UM-UKCA a more developed non-stomatal deposition approach, are presented. This study also estimates the relative contributions of ozone flux via stomatal and non-stomatal uptakes at the global scale, and explores the sensitivity of simulated surface ozone and ozone deposition flux by implementing different non-stomatal parameterization terms. With a view to exploring the potential influence of future climate, we present results showing the effects of variations in some meteorological parameters on present day (2000) global ozone predictions. In particular, this study revealed that the implementation of a more mechanistic representation of the non-stomatal deposition in UM-UKCA model along with a decreased stomatal uptake due to the effect of blocking under wet conditions, accounted for a substantial reduction of ozone fluxes to broadleaf trees in the tropics with an increase of annual mean surface ozone. On the contrary, a large increase of

  13. Comparison of GOME-2/MetOp total ozone data with Brewer spectroradiometer data over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Loyola, D.; López, M.; Vilaplana, J. M.; Bañón, M.; Zimmer, W.; Serrano, A.

    2009-04-01

    The main objective of this article is to compare the total ozone data from the new Global Ozone Monitoring Experiment instrument (GOME-2/MetOp) with reliable ground-based measurement recorded by five Brewer spectroradiometers in the Iberian Peninsula. In addition, a similar comparison for the predecessor instrument GOME/ERS-2 is described. The period of study is a whole year from May 2007 to April 2008. The results show that GOME-2/MetOp ozone data already has a very good quality, total ozone columns are on average 3.05% lower than Brewer measurements. This underestimation is higher than that obtained for GOME/ERS-2 (1.46%). However, the relative differences between GOME-2/MetOp and Brewer measurements show significantly lower variability than the differences between GOME/ERS-2 and Brewer data. Dependencies of these relative differences with respect to the satellite solar zenith angle (SZA), the satellite scan angle, the satellite cloud cover fraction (CF), and the ground-based total ozone measurements are analyzed. For both GOME instruments, differences show no significant dependence on SZA. However, GOME-2/MetOp data show a significant dependence on the satellite scan angle (+1.5%). In addition, GOME/ERS-2 differences present a clear dependence with respect to the CF and ground-based total ozone; such differences are minimized for GOME-2/MetOp. The comparison between the daily total ozone values provided by both GOME instruments shows that GOME-2/MetOp ozone data are on average 1.46% lower than GOME/ERS-2 data without any seasonal dependence. Finally, deviations of a priori climatological ozone profile used by the satellite retrieval algorithm from the true ozone profile are analyzed. Although excellent agreement between a priori climatological and measured partial ozone values is found for the middle and high stratosphere, relative differences greater than 15% are common for the troposphere and lower stratosphere.

  14. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996-2005

    NASA Astrophysics Data System (ADS)

    Wilson, R. C.; Fleming, Z. L.; Monks, P. S.; Clain, G.; Henne, S.; Konovalov, I. B.; Szopa, S.; Menut, L.

    2011-06-01

    National and European legislation over the past 20 years, and the modernisation or removal of industrial sources, have significantly reduced European ozone precursor emissions. This study quantifies observed and modelled European ozone annual and seasonal linear trends from 158 harmonised rural background monitoring stations over a constant time period of a decade (1996-2005). Mean ozone concentrations are investigated, in addition to the ozone 5th percentiles as a measure of the baseline or background conditions, and the 95th percentiles that are representative of the peak concentration levels. This study aims to characterise and quantify surface European ozone concentrations and trends and assess the impact of the changing anthropogenic emission tracers on the observed and modelled trends. Significant (p < 0.1) positive annual trends in ozone mean, 5th and 95th percentiles are observed at 54 %, 52 % and 45 % of sites respectively (85 sites, 82 sites and 71 sites). Spatially, sites in Central and Northwestern Europe tend to display positive annual ozone trends in mean, 5th and 95th percentiles. Significant negative annual trends in ozone mean 5th and 95th percentiles are observed at 11 %, 12 % and 12 % of sites respectively (18 sites, 19 sites and 19 sites) which tend to be located in the eastern and south-western extremities of Europe. European-averaged annual trends have been calculated from the 158 sites in this study. Overall there is a net positive annual trend in observed ozone mean (0.16 ± 0.02 ppbv yr-1 2σ error)), 5th (0.13 ± 0.02 ppbv yr-1) and 95th (0.16 ± 0.03 ppbv yr-1) percentiles, representative of positive trends in mean, baseline and peak ozone. Assessing the sensitivity of the derived overall trends to the constituent years shows that the European heatwave year of 2003 has significant positive influence and 1998 the converse effect; demonstrating the masking effect of inter-annual variability on decadal based ozone trends. The European scale

  15. Interactive effects of ambient ozone and climate measured on growth of mature loblolly pine trees

    SciTech Connect

    McLaughlin, S.B.; Downing, D.J.

    1995-02-01

    Analysis of the seasonal growth patterns of mature loblolly pine trees over the interval 1988-1993 has provided the first direct measurement of reductions of stem growth of large forest trees by ambient ozone. Patterns of stem expansion and contraction of 34 trees were examined in eastern Tennessee using serial measurements with sensitive dendrometer bind systems. Study sites varied in soil moisture, soil fertility, and stand density. Levels of ozone, rainfall, and temperature varied widely over the six year study interval. Regression analysis identified statistically and biologically significant influences of ozone on stem growth. Acting either individually or in interaction with high temperature and moisture stress, higher levels of ozone were associated with reduced stem expansion of individual trees within and across years. Observed responses to ozone were relatively rapid, differed widely among trees, and across years, and were significantly amplified by low soil moisture and high air temperatures. Both short term responses, clearly tied to changing stem water status, and longer term cumulative responses were identified. These data indicate that relatively low levels of ambient ozone can significantly reduce growth of mature forest trees and that interactions between ambient ozone and climate are likely to be important modifiers of future forest growth and function. Additional studies of mechanisms of short term response and inter species comparisons are clearly needed.

  16. Tropospheric ozone production regions and the intercontinental origins of surface ozone over Europe

    NASA Astrophysics Data System (ADS)

    Derwent, Richard G.; Utembe, Steven R.; Jenkin, Michael E.; Shallcross, Dudley E.

    2015-07-01

    Ozone tagged labelling schemes have been implemented in a global Lagrangian chemistry-transport model to identify the intercontinental origins of surface ozone in Europe. Stratosphere-troposphere exchange gave rise to between 3 and 5 ppb across Europe, whereas the mid-latitudes of the Middle East, Asia and the Pacific Ocean region contributed 6-8 ppb. Surface ozone levels of 10-16 ppb were associated with the mid-latitudes of North America and the North Atlantic Ocean regions. Appreciable intercontinental ozone production occurred downwind of continental regions and above the surface layer. Intercontinental ozone formation and transport from tropical regions contributed about 4 ppb and was much less efficient compared with that from mid-latitudes. There were approaching 60 chemical processes driving intercontinental ozone formation, of which the HO2 + NO, CH3O2 + NO and CH3COO2 + NO reactions were the most important. Ozone production appeared to be driven by OH oxidation of secondary reaction products rather than the oxidation of primary emitted VOCs. The largest intercontinental ozone contributions amounted to about 20 ppb from North America to European baseline stations, 14 ppb from Asia to North American baseline stations and 10 ppb from Asia to European baseline stations. It is possible that changing intercontinental ozone production and transport could have led to seasonal ozone trends and shifts in seasonal cycles at northern hemisphere mid-latitude baseline ozone monitoring stations.

  17. Rocket ozone sounding network data

    NASA Technical Reports Server (NTRS)

    Wright, D. U.; Krueger, A. J.; Foster, G. M.

    1979-01-01

    During the period March 1977 through May 1977, three regular monthly ozone profiles were measured at Wallops Flight Center and three regular monthly ozone profiles were measured at the Churchill Research Range. One additional flight was conducted at Wallops Flight Center in support of Nimbus 4 SBUV. Data results and flight profiles for the period covered are presented.

  18. The influence of the North Atlantic Oscillation and El Niño-Southern Oscillation on mean and extreme values of column ozone over the United States

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Evans, R.; McConville, G.; Manney, G. L.; Rieder, H. E.

    2015-02-01

    Continuous measurements of total ozone (by Dobson spectrophotometers) across the contiguous United States began in the early 1960s. Here, we analyze temporal and spatial variability and trends in total ozone from the five US sites with long-term records. While similar long-term ozone changes are detected at all five sites, we find differences in the patterns of ozone variability on shorter timescales. In addition to standard evaluation techniques, STL-decomposition methods (Seasonal Trend decomposition of time series based on LOESS (LOcally wEighted Scatterplot Smoothing)) are used to address temporal variability and "fingerprints" of dynamical features in the Dobson data. Methods from statistical extreme value theory (EVT) are used to characterize days with high and low total ozone (termed EHOs and ELOs, respectively) at each station and to analyze temporal changes in the frequency of ozone extremes and their relationship to dynamical features such as the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation. A comparison of the fingerprints detected in the frequency distribution of the extremes with those for standard metrics (i.e., the mean) shows that more fingerprints are found for the extremes, particularly for the positive phase of the NAO, at all five US monitoring sites. Results from the STL decomposition support the findings of the EVT analysis. Finally, we analyze the relative influence of low- and high-ozone events on seasonal mean column ozone at each station. The results show that the influence of ELOs and EHOs on seasonal mean column ozone can be as much as ±5 %, about as large as the overall long-term decadal ozone trends.

  19. Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: seasonal variations and influence of Asian continental outflow.

    PubMed

    Lin, Yu Chi; Lin, Chuan Yao; Lin, Po Hsiung; Engling, Guenter; Lan, Yung-Yao; Kuo, Ten-Ho; Hsu, Wei Ting; Ting, Chia-Chun

    2011-07-15

    Continuous measurements of ozone (O(3)) and carbon monoxide (CO) were carried out at Mei-Feng (24.05°N, 120.10°E, 2269 m above sea level), a remote mountain site in central Taiwan, to investigate the influence of long-range transported air pollution on O(3) and CO variations in the subtropical Pacific region. Data collected from March 2009 to September 2010 revealed average mixing ratios of 37±14 ppb for O(3) and 188±82 ppb for CO at this remote site. Diurnal variations for both O(3) and CO were observed as well in all seasons. The higher levels for O(3) and CO in the afternoon were attributed to transport of boundary layer pollution to the site during daytime upslope flow. Monthly means of both O(3) and CO showed maxima in spring and in the continental air masses from Southeast Asia, coastal China, and Korea/Japan. On the contrary, the lower O(3) and CO levels found in summer were due to the marine air masses originating from the Philippine Sea and Pacific Ocean. The relationship between O(3) and CO was analyzed, using nighttime data to minimize any local influence. The results showed a fairly good correlation between O(3) and CO from March to September. The contribution of CO from the Asian outflow reached a maximum in spring (88 ppb) and had a minimum in summer (27 ppb). The photochemical buildup of O(3) resulting from anthropogenic emissions in continental Asia was estimated to be 15 ppb in spring, while its production was insignificant, with an average of 4 ppb, in summer. A positive correlation between O(3) and CO plus high ozone levels in springtime suggested that the enhancements of O(3) were likely due to O(3) which was photochemically produced over this region.

  20. Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m a.s.l.) in Central Taiwan: seasonal variations and influence of Asian continental outflow.

    PubMed

    Lin, Yu Chi; Lin, Chuan Yao; Lin, Po Hsiung; Engling, Guenter; Lan, Yung-Yao; Kuo, Ten-Ho; Hsu, Wei Ting; Ting, Chia-Chun

    2011-07-15

    Continuous measurements of ozone (O(3)) and carbon monoxide (CO) were carried out at Mei-Feng (24.05°N, 120.10°E, 2269 m above sea level), a remote mountain site in central Taiwan, to investigate the influence of long-range transported air pollution on O(3) and CO variations in the subtropical Pacific region. Data collected from March 2009 to September 2010 revealed average mixing ratios of 37±14 ppb for O(3) and 188±82 ppb for CO at this remote site. Diurnal variations for both O(3) and CO were observed as well in all seasons. The higher levels for O(3) and CO in the afternoon were attributed to transport of boundary layer pollution to the site during daytime upslope flow. Monthly means of both O(3) and CO showed maxima in spring and in the continental air masses from Southeast Asia, coastal China, and Korea/Japan. On the contrary, the lower O(3) and CO levels found in summer were due to the marine air masses originating from the Philippine Sea and Pacific Ocean. The relationship between O(3) and CO was analyzed, using nighttime data to minimize any local influence. The results showed a fairly good correlation between O(3) and CO from March to September. The contribution of CO from the Asian outflow reached a maximum in spring (88 ppb) and had a minimum in summer (27 ppb). The photochemical buildup of O(3) resulting from anthropogenic emissions in continental Asia was estimated to be 15 ppb in spring, while its production was insignificant, with an average of 4 ppb, in summer. A positive correlation between O(3) and CO plus high ozone levels in springtime suggested that the enhancements of O(3) were likely due to O(3) which was photochemically produced over this region. PMID:21601237

  1. 78 FR 27161 - Approval and Promulgation of Air Quality Implementation Plans; Connecticut; Ozone Attainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... moderate ozone nonattainment area. See 40 CFR 81.307. Also, on April 30, 2004 (69 FR 23951), EPA...-hour ozone standard will continue with implementation of the 2008 ozone NAAQS. \\2\\ See 73 FR 16436... 2009 ozone season. C. Why is EPA proposing these actions? On August 31, 2010 (75 FR 53219), EPA made...

  2. Coherence of longterm stratospheric ozone time series for the study of ozone recovery in the northern mid-latitudes

    NASA Astrophysics Data System (ADS)

    Nair, Prijitha J.; Godin-Beekmann, Sophie; Pazmino, Andrea

    2010-05-01

    Since mid-to late 1980s decreasing amounts of ozone concentration has been observed in northern mid-latitudes mainly due to the ozone depleting chlorofluorocarbon loading in the stratosphere. Recent works indicate the stabilization of ozone loss in the mid-latitudes, in the upper stratosphere in particular. In order to further investigate the evolution of ozone in the mid-latitudes, a coherent dataset is required. As a first step, we diagnose the long term evolution of ozone at Observatoire de Haute Provence (OHP - 43.93°N, 5.71°E), one of the northern mid-latitude stations. In this study, we present the inter comparison of ozone measurements from OHP LIDAR with collocated SBUV, SAGEII, HALOE, MLS and GOMOS satellite observations as well as the ground based Ozonesondes and Umkehr measurements. A detailed statistical study on the relative differences of the compared measurements is performed to check any specific drifts with time. In addition, the seasonal and annual averages of the relative deviations are also checked to quantify agreement among the data. On average, all instruments show their best agreement with LIDAR between 20 and 40 km, where the differences are within 5%. The agreement with SAGEII measurements are remarkably good since it falls within 1% at 17-41 km. A similar result is also found from the Ozonesondes comparison at 22-31 km. Most comparisons exhibit slightly larger deviations below 20 and above 42 km, of about 10%. The LIDAR masurements are also compared to Umkehr measurements by converting its ozone number density to Dobson units for each Umkehr layer. The analysis reveals a negative bias in Umkehr data within -10% except at layer 6 (around 30 km).

  3. Ozone decomposition

    PubMed Central

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho

    2014-01-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  4. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates. PMID:26109880

  5. Ozone decomposition.

    PubMed

    Batakliev, Todor; Georgiev, Vladimir; Anachkov, Metody; Rakovsky, Slavcho; Zaikov, Gennadi E

    2014-06-01

    Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers). Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates.

  6. Evaluation of Intercontinental Transport of Ozone Using Full-tagged, Tagged-N and Sensitivity Methods

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Liu, J.; Mauzerall, D. L.; Emmons, L. K.; Horowitz, L. W.; Fan, S.; Li, X.; Tao, S.

    2014-12-01

    Long-range transport of ozone is of great concern, yet the source-receptor relationships derived previously depend strongly on the source attribution techniques used. Here we describe a new tagged ozone mechanism (full-tagged), the design of which seeks to take into account the combined effects of emissions of ozone precursors, CO, NOx and VOCs, from a particular source, while keeping the current state of chemical equilibrium unchanged. We label emissions from the target source (A) and background (B). When two species from A and B sources react with each other, half of the resulting products are labeled A, and half B. Thus the impact of a given source on downwind regions is recorded through tagged chemistry. We then incorporate this mechanism into the Model for Ozone and Related chemical Tracers (MOZART-4) to examine the impact of anthropogenic emissions within North America, Europe, East Asia and South Asia on ground-level ozone downwind of source regions during 1999-2000. We compare our results with two previously used methods -- the sensitivity and tagged-N approaches. The ozone attributed to a given source by the full-tagged method is more widely distributed spatially, but has weaker seasonal variability than that estimated by the other methods. On a seasonal basis, for most source/receptor pairs, the full-tagged method estimates the largest amount of tagged ozone, followed by the sensitivity and tagged-N methods. In terms of trans-Pacific influence of ozone pollution, the full-tagged method estimates the strongest impact of East Asian (EA) emissions on the western U.S. (WUS) in MAM and JJA (~3 ppbv), which is substantially different in magnitude and seasonality from tagged-N and sensitivity studies. This difference results from the full-tagged method accounting for the maintenance of peroxy radicals (e.g., CH3O2, CH3CO3, and HO2), in addition to NOy, as effective reservoirs of EA source impact across the Pacific, allowing for a significant contribution to

  7. A Study on Generation Ice Containing Ozone

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi

    Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.

  8. Observations of the Antarctic Ozone Hole from 2003 to 2014

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2015-04-01

    The Global Atmosphere Watch of WMO includes several stations in Antarctica that keep a close eye on the ozone layer during the ozone hole season. Observations made during the ozone holes from 2003 to 2014 will be compared to each other and interpreted in light of the meteorological conditions. Satellite observations will be used to get a more general picture of the size and depth of the ozone hole and will also be used to calculate various metrics for ozone hole severity. In 2003, 2005 and 2006, the ozone hole was relatively large with more ozone loss than normal. This is in particular the case for 2006, which by most ozone hole metrics was the most severe ozone hole on record. On the other hand, the ozone holes of 2004, 2007, 2010 and 2012 were less severe than normal, and only the very special ozone hole of 2002 had less ozone depletion when one regards the ozone holes of the last decade. The ozone hole of 2011 suffered more ozone depletion than in 2010, but it was quite average in comparison to other years of the last decade. The situation was similar in 2013 and 2014. The interannual variability will be discussed with the help of meteorological data, such as temperature conditions, possibility for polar stratospheric clouds, vortex shape and vortex longevity.

  9. Observations of the Antarctic Ozone Hole from 2003 to 2013

    NASA Astrophysics Data System (ADS)

    Braathen, Geir O.

    2014-05-01

    The Global Atmosphere Watch of WMO includes several stations in Antarctica that keep a close eye on the ozone layer during the ozone hole season. Observations made during the ozone holes from 2003 to 2013 will be compared to each other and interpreted in light of the meteorological conditions. Satellite observations will be used to get a more general picture of the size and depth of the ozone hole and will also be used to calculate various metrics for ozone hole severity. In 2003, 2005 and 2006, the ozone hole was relatively large with more ozone loss than normal. This is in particular the case for 2006, which by most ozone hole metrics was the most severe ozone hole on record. On the other hand, the ozone holes of 2004, 2007, 2010 and 2012 were less severe than normal, and only the very special ozone hole of 2002 had less ozone depletion when one regards the ozone holes of the last decade. The ozone hole of 2011 suffered more ozone depletion than in 2010, but it was quite average in comparison to other years of the last decade. The situation was similar in 2013. The interannual variability will be discussed with the help of meteorological data, such as temperature conditions, possibility for polar stratospheric clouds, vortex shape and vortex longevity. Observations will also be compared to 3-D chemical transport model calculations.

  10. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-01-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory works. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the resolution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small. The model also reproduces fairly well the polar ozone variability, with notably the formation of "ozone holes" in the southern hemisphere with amplitudes and seasonal evolutions that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone contents inside the polar vortex of the southern hemisphere over longer periods in spring time. It is concluded that for the study of climatic scenarios or the assimilation of ozone data, the present

  11. Ozone variability

    NASA Astrophysics Data System (ADS)

    Duetsch, H. U.

    1983-09-01

    The annual and long-term variations in the atmospheric ozone layer were examined on the basis of 55 yr of data taken at Aroya, Switzerland and 25 yr of data gathered by the global ozone network. Attention was given to annual and biennial variations, which showed that the midlatitude peak concentration was affected by a quasi-biennial variation of the tropical stratospheric circulation. Smaller scale circulation patterns were dominant in the lower stratosphere, although an observed negative trend of the total ozone was equally distributed between the troposphere and 24 km altitude. The global ozone increase detected in the 1960s was possible due to general circulation alterations, but may also have been influenced by injection of NO(x) into the atmosphere during atomic bomb testing.

  12. Ozone, Tropospheric

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    1995-01-01

    In the early part of the 20th century, ground-based and balloon-borne measurements discovered that most of atmosphere's ozone is located in the stratosphere with highest concentrations located between 15 and 30 km (9,3 and 18.6 miles). For a long time, it was believed that tropospheric ozone originated from the stratosphere and that most of it was destroyed by contact with the earth's surface. Ozone, O3, was known to be produced by the photo-dissociation of molecular oxygen, O2, a process that can only occur at wavelengths shorter than 242 nm. Because such short-wave-length radiation is present only in the stratosphere, no tropospheric ozone production is possible by this mechanism. In the 1940s, however, it became obvious that production of ozone was also taking place in the troposphere. The overall reaction mechanism was eventually identified by Arie Haagen-Smit of the California Institute of Technology, in highly polluted southern California. The copious emissions from the numerous cars driven there as a result of the mass migration to Los Angeles after World War 2 created the new unpleasant phenomenon of photochemical smog, the primary component of which is ozone. These high levels of ozone were injuring vegetable crops, causing women's nylons to run, and generating increasing respiratory and eye-irritation problems for the populace. Our knowledge of tropospheric ozone increased dramatically in the early 1950s as monitoring stations and search centers were established throughout southern California to see what could be done to combat this threat to human health and the environment.

  13. The Effect of Lightning NOx Production on Surface Ozone in the Continental United States

    NASA Technical Reports Server (NTRS)

    Kaynak, B.; Hu, Y.; Martin, R. V.; Russell, A. G.; Choi, Y.; Wang, Y.

    2008-01-01

    Lightning NO(x) emissions calculated using the US National Lightning Detection Network data were found to account for 30% of the total NO(x) emissions for July August 2004, a period chosen both for having higher lightning NO(x) production and high ozone levels, thus maximizing the likelihood that such emissions could impact peak ozone levels. Including such emissions led to modest, but sometimes significant increases in simulated surface ozone when using the Community Multi-scale Air Quality Model (CMAQ). Three model simulations were performed, two with the addition of lightning NO(x) emissions, and one without. Domain-wide daily maximum 8-h ozone changes due to lightning NO(x) were less than 2 ppbv in 71 % of the cases with a maximum of 10 ppbv; whereas the difference in 1-h ozone was less than 2 ppbv in 77% of the cases with a maximum of 6 ppbv. Daily maximum 1-h and 8-h ozone for grids containing O3 monitoring stations changed slightly, with more than 43% of the cases differing less than 2 ppbv. The greatest differences were 42 ppbv for both 1-h and 8-h O3 , though these tended to be on days of lower ozone. Lightning impacts on the season-wide maximum 1-h and 8-h averaged ozone decreased starting from the 1 st to 4th highest values (an average of 4th highest, 8-h values is used for attainment demonstration in the US). Background ozone values from the y-intercept of O3 versus NO(z) curve were 42.2 and 43.9 ppbv for simulations without and with lightning emissions, respectively. Results from both simulations with lightning NO(x) suggest that while North American lightning production of NO(x) can lead to significant local impacts on a few occasions, they will have a relatively small impact on typical maximum levels and determination of Policy Relevant Background levels.

  14. Ozone and Cavitation Combination

    NASA Astrophysics Data System (ADS)

    Carreon, Ernestina; Traversoni, Leonardo

    2009-09-01

    From laboratory measurements it is well known that the addition of ozone and cavitation enhances the properties of both, understanding for that the ones related to disinfection and carbon removal from waste water. This paper shows modeling of such phenomena that gives some light to the understanding of it and also provides the opportunity to improve the effectiveness of the current procedures.

  15. Contrasts between Antarctic and Arctic ozone depletion.

    PubMed

    Solomon, Susan; Portmann, Robert W; Thompson, David W J

    2007-01-01

    This work surveys the depth and character of ozone depletion in the Antarctic and Arctic using available long balloon-borne and ground-based records that cover multiple decades from ground-based sites. Such data reveal changes in the range of ozone values including the extremes observed as polar air passes over the stations. Antarctic ozone observations reveal widespread and massive local depletion in the heart of the ozone "hole" region near 18 km, frequently exceeding 90%. Although some ozone losses are apparent in the Arctic during particular years, the depth of the ozone losses in the Arctic are considerably smaller, and their occurrence is far less frequent. Many Antarctic total integrated column ozone observations in spring since approximately the 1980s show values considerably below those ever observed in earlier decades. For the Arctic, there is evidence of some spring season depletion of total ozone at particular stations, but the changes are much less pronounced compared with the range of past data. Thus, the observations demonstrate that the widespread and deep ozone depletion that characterizes the Antarctic ozone hole is a unique feature on the planet. PMID:17202269

  16. Tabulations of ambient ozone data obtained by GASP (Global Air Sampling Program) airliners, March 1975 to July 1979

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Holdeman, J. D.

    1984-01-01

    Tabulations are given of GASP ambient ozone mean, standard deviation, median, 84th percentile, and 98th percentile values, by month, flight level, and geographical region. These data are tabulated to conform to the temporal and spatial resolution required by FAA Advisory Circular 120-38 (monthly by 2000 ft in altitude by 5 deg in latitude) for climatological data used to show compliance with cabin ozone regulations. In addition seasonal x 10 deg latitude tabulations are included which are directly comparable to and supersede the interim GASP ambient ozone tabulations given in appendix B of FAA-EE-80-43 (NASA TM-81528). Selected probability variations are highlighted to illustrate the spatial and temporal variability of ambient ozone and to compare results from the coarse and fine grid analyses.

  17. Behavior of boundary layer ozone and its precursors over a great alluvial plain of the world: Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Beig, G.; Ali, K.

    2006-12-01

    We investigate the special behavior in the distribution of boundary layer ozone and its precursors over world's most extensive tract of uninterrupted alluvium and intensively farmed zones situated in the foothills of Himalayas as major river basin, known as Indo-Gangetic Plains (IGP). The study makes use of a Chemistry-Transport Model forced with dynamical fields and new emission inventories of pollutants established for 2001. It is found that the IGP region is highly vulnerable to human induced pollutant emissions due to conducive synoptic weather pattern which make it a source regions of ozone precursors within which these tracers remain confined and reinforce photochemical production of ozone. In addition, the continental tropical convergence zone and long range transport play a vital role. As a result, elevated levels of ozone concentration (maximum up to 80 ppbv) and its precursors with cellular structure of spatial variation with large seasonality are noticed.

  18. Response of Phaseolus vulgaris L. to differing ozone regimes having identical total exposure

    NASA Astrophysics Data System (ADS)

    Musselman, Robert C.; Younglove, Theodore; McCool, Patrick M.

    Protocols were designed to test for differences in response of plants to ozone treatments having equal total exposure (concentration × time) but different exposure profiles Kidney beans ( Phaseolus vulgaris L., cv. California Dark Red) were exposed to ozone in controlled fumigation chambers within a greenhouse Four different ozone exposure profiles were used, each having the same total cumulative exposure (SUM00) and the same 7, 12 and 24 h seasonal means. The three exposure profiles which incorporated peak concentrations more severely impacted response parameters compared to a steady-state profile which did not exceed the National Ambient Air Quality Standard. Significant differences were found in percent necrotic leaf area, number of pods and top dry weight between exposure profiles. In additional analyses, the response parameters were regressed against seasonal cumulative ozone concentrations raised to powers of 0.33 and from 0.5 to 4 in steps of 0.5 in order to increase effective weighting of the higher concentrations. Total dry weight and leaf necrosis were best fit with the sum of the squared concentrations ( n = 2) while number of pods was best fit by the summed concentrations to the 3.5 power ( n = 3.5). These analyses suggest the peak ozone concentrations are important in determining plant response.

  19. Reproductive performance of Lacaune dairy sheep exposed to artificial long days followed by natural photoperiod without and with additional progestagen treatment during the nonbreeding season.

    PubMed

    Fleisch, A; Bollwein, H; Piechotta, M; Janett, F

    2015-02-01

    This study compared the reproductive performance of Lacaune dairy ewes exposed to a light program and subsequent male introduction without (n = 36) or with (n = 36) an additional 6-day progestagen treatment during the nonbreeding season. All ewes were exposed to extended day length (16 hours light and 8 hours darkness) for 77 days during winter (December 15 until March 2) followed by increasing natural photoperiod. At the end of the photoperiodic treatment, three blood samples were collected 6 days apart for progesterone (P4) analysis to determine cyclic activity. One half of the ewes were additionally subjected to a 6-day progestagen treatment in combination with PGF2α and eCG at insert withdrawal. Rams fitted with marking harnesses were introduced to females for 45 days and marked ewes recorded. Ewes exposed to the light program only were joined 40 days after the end of photoperiodic treatment, and ewes with additional progestagen treatment were joined 1 day after insert removal (40-44 days after the end of photostimulation). Lambing data were recorded and fertility (percentage of ewes lambing, lambing rate, and litter size) assessed to the first service period and overall. Mean serum P4 concentrations were similarly (P > 0.05) low in both groups (0.4-0.7 ng/mL vs. 0.4-0.6 ng/mL). On the basis of elevated P4 levels (>1 ng/mL), evidence of luteal activity was found in 27.8% of the ewes at the end of the light program. Estrus response was equally high (97.2%) and estrus distribution highly synchronized in progestagen-treated ewes (91.7% within 4 days). In ewes exposed to the light program only, estrous activity was recorded within 4 days (six ewes), from Day 8 to Day 17 (17 ewes) and from Day 19 to Day 25 (12 ewes) after joining. The percentage of ewes that lambed to the first service period was higher (P < 0.05) in ewes exposed to the light program only than that in the group additionally treated with progestagen/PGF2α/eCG (94.4% vs. 69

  20. Analysis of the seasonal and inter-annual variations, and long-term trends of ozone in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Yassmany Hernández Paniagua, Iván; Clemitshaw, Kevin C.; Mendoza, Alberto

    2016-04-01

    Since 1993, high-precision and high-frequency measurements of ambient O3 have been recorded at 5 sites within the metropolitan area of Monterrey, the third largest city in Mexico. O3was measured by the Integral Environmental Monitoring System of the Nuevo Leon State Government using commercially available, conventional UV photometry instrumentation (precision better than ±1 ppb). The datasets exhibit variations on differing time-scales of minutes to hours, with evidence of seasonal cycles and inter-annual variability. The O3 diurnal cycles vary with length of daylight, which influences its formation and loss via photochemistry. No apparent influence is observed in the amplitudes of O3 diurnal cycles recorded during weekdays with higher emissions from fossil fuel combustion than at weekends, although larger amplitudes occur at sites with polluted air from industrial areas. Seasonal cycles are driven by the variation in solar radiation and changes in emissions of primary precursors, VOCs and NOX. Maximum O3 mixing ratios were recorded in spring, and minimum values in winter, with a secondary trough during summer due to the advection of clean air masses from the Gulf of Mexico. The largest spring maxima are recorded downwind of an industrial area likely due photochemical processing of VOCs and NOx, with the lowest recorded in a highly populated area due to reaction of O3 and NO. At all sites, decreasing seasonal amplitudes were observed during 1993-1998, followed by persistent increases from 1998 to 2014. Wind sector analyses were carried out by splitting the wind direction into 8 categories (45°). At all sites, the highest O3 mixing ratios were recorded from the E and SE sectors, with lowest values recorded in air masses from the W and NW. Wind sector analysis of primary precursors (such as VOCs, CO, NOX) reveal that sources are dominated by emissions from industrial regions in Monterrey and surrounding areas. The largest annual growth rates for the E and SE

  1. Analysis of the seasonal and inter-annual variations, and long-term trends of ozone in the metropolitan area of Monterrey, Mexico

    NASA Astrophysics Data System (ADS)

    Yassmany Hernández Paniagua, Iván; Clemitshaw, Kevin C.; Mendoza, Alberto

    2016-04-01

    Since 1993, high-precision and high-frequency measurements of ambient O3 have been recorded at 5 sites within the metropolitan area of Monterrey, the third largest city in Mexico. O3was measured by the Integral Environmental Monitoring System of the Nuevo Leon State Government using commercially available, conventional UV photometry instrumentation (precision better than ±1 ppb). The datasets exhibit variations on differing time-scales of minutes to hours, with evidence of seasonal cycles and inter-annual variability. The O3 diurnal cycles vary with length of daylight, which influences its formation and loss via photochemistry. No apparent influence is observed in the amplitudes of O3 diurnal cycles recorded during weekdays with higher emissions from fossil fuel combustion than at weekends, although larger amplitudes occur at sites with polluted air from industrial areas. Seasonal cycles are driven by the variation in solar radiation and changes in emissions of primary precursors, VOCs and NOX. Maximum O3 mixing ratios were recorded in spring, and minimum values in winter, with a secondary trough during summer due to the advection of clean air masses from the Gulf of Mexico. The largest spring maxima are recorded downwind of an industrial area likely due photochemical processing of VOCs and NOx, with the lowest recorded in a highly populated area due to reaction of O3 and NO. At all sites, decreasing seasonal amplitudes were observed during 1993-1998, followed by persistent increases from 1998 to 2014. Wind sector analyses were carried out by splitting the wind direction into 8 categories (45°). At all sites, the highest O3 mixing ratios were recorded from the E and SE sectors, with lowest values recorded in air masses from the W and NW. Wind sector analysis of primary precursors (such as VOCs, CO, NOX) reveal that sources are dominated by emissions from industrial regions in Monterrey and surrounding areas. The largest annual growth rates for the E and SE

  2. The Updated Umkehr Ozone Retrieval Algorithm and its Validation against Satellite Data

    NASA Technical Reports Server (NTRS)

    Petropavlovskikh, I.; Bhartia, P. K.; Labow, G.; Wellemeyer, C.

    2003-01-01

    Improvements to the Umkehr ozone profile retrieval algorithm have been developed and are now being evaluated. The updated algorithm is able to simulate observations more accurately and provides data output that is easier to analyze. Among the new diagnostic capabilities that the updated algorithm provides is the averaging kernel (AK) method. The AK approach allows studying how the algorithm responds when a small perturbation is made in a particular layer of the atmosphere [Rodgers 1976, 1990]. We will use the AK method to define precisely what Umkehr should measure given a set of profiles measured by other platforms. This method allows us to compare trends and offsets in data more accurately than it has been done in the past. The updated Umkehr retrievals will be validated against SAGE II ozone profiles as well as SSBUV ozone profile data. We will discuss possible reasons for offset between data and differences in derived ozone profile trends. Considerable variability of the ozone profile within the 10-degree latitude envelope creates noise in the SAGE matching dataset and makes comparisons difficult. To eliminate this problem, the SAGE and Umkehr data had been previously de-seasonalized by subtracting the latitude/season dependent ozone climatology. However, the remaining noise in the ozone residuals was still considerably high for trend analysis and was attributed to longitude variability of SAGE sampling. The new ozone climatology (Labow, NASA) that has longitude dependent ozone variability will be used to minimize contribution of sampling noise in comparisons of satellite and ground station. The comparison of zenith-sky radiances (Umkehr N-value measurements) synthesized for a given set of SAGE profiles will be used to determine whether SAGE-derived N-values agree with the Umkehr-measured N-values. The instrumental effects will be discussed. Both the Umkehr data and SAGE II measurements will be analyzed for their information about ozone variability and loss and

  3. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    NASA Astrophysics Data System (ADS)

    Eyring, V.; Cionni, I.; Bodeker, G. E.; Charlton-Perez, A. J.; Kinnison, D. E.; Scinocca, J. F.; Waugh, D. W.; Akiyoshi, H.; Bekki, S.; Chipperfield, M. P.; Dameris, M.; Dhomse, S.; Frith, S. M.; Garny, H.; Gettelman, A.; Kubin, A.; Langematz, U.; Mancini, E.; Marchand, M.; Nakamura, T.; Oman, L. D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Rozanov, E.; Shepherd, T. G.; Shibata, K.; Tian, W.; Braesicke, P.; Hardiman, S. C.; Lamarque, J. F.; Morgenstern, O.; Pyle, J. A.; Smale, D.; Yamashita, Y.

    2010-10-01

    Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODS or GHG concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG-induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where CO2-induced stratospheric cooling increases ozone, full ozone recovery is projected to not likely have occurred by 2100 even though ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the midlatitude lower stratosphere the evolution differs from that in the tropics, and rather than a steady decrease in ozone, first a decrease in ozone is simulated from 1960 to 2000, which is then followed by a steady increase through the 21st century. Ozone in the midlatitude lower stratosphere returns to 1980 levels by ~2045 in the Northern Hemisphere (NH) and by ~2055 in the Southern Hemisphere (SH), and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column

  4. Options to accelerate ozone recovery: ozone and climate benefits

    NASA Astrophysics Data System (ADS)

    Daniel, J. S.; Fleming, E. L.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-08-01

    Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.

  5. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  6. Comparison of Ozone Retrievals from the Pandora Spectrometer System and Dobson Spectrophotometer in Boulder, Colorado

    NASA Technical Reports Server (NTRS)

    Herman, J.; Evans, R.; Cede, A.; Abuhassan, N.; Petropavlovskikh, I.; McConville, G.

    2015-01-01

    A comparison of retrieved total column ozone (TCO) amounts between the Pandora #34 spectrometer system and the Dobson #061 spectrophotometer from direct-sun observations was performed on the roof of the Boulder, Colorado, NOAA building. This paper, part of an ongoing study, covers a 1-year period starting on 17 December 2013. Both the standard Dobson and Pandora TCO retrievals required a correction, TCO(sub corr) = TCO (1 + C(T)), using a monthly varying effective ozone temperature, T(sub E), derived from a temperature and ozone profile climatology. The correction is used to remove a seasonal difference caused by using a fixed temperature in each retrieval algorithm. The respective corrections C(T(sub E)) are C(sub Pandora) = 0.00333(T(sub E) - 225) and C(sub Dobson) = -0.0013(T(sub E) - 226.7) per degree K. After the applied corrections removed most of the seasonal retrieval dependence on ozone temperature, TCO agreement between the instruments was within 1% for clear-sky conditions. For clear-sky observations, both co-located instruments tracked the day-to-day variation in total column ozone amounts with a correlation of r(exp 2) = 0.97 and an average offset of 1.1 +/- 5.8 DU. In addition, the Pandora TCO data showed 0.3% annual average agreement with satellite overpass data from AURA/OMI (Ozone Monitoring Instrument) and 1% annual average offset with Suomi-NPP/OMPS (Suomi National Polar-orbiting Partnership, the nadir viewing portion of the Ozone Mapper Profiler Suite).

  7. Insights into Tropical Tropospheric Ozone from the SHADOZ Network

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Schmidlin, F. J.; Oltmans, S. J.

    2002-01-01

    The first view of lower stratospheric and upper tropospheric structure from sondes is provided by a 3-year, 10-site record from the Southern Hemisphere ADditional OZonesondes (SHADOZ) network: http://code9 16.gsfc.nasa.gov/Data_services/shadoz. Observations covering 1998-2000 were made over Ascension Island; Nairobi, Kenya; Irene, South Africa; La Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Taking the UT/LS (upper troposphere-lower stratosphere) as the region between 12 and 17 km, we examine ozone variability in this region on a week-to- week and seasonal basis. The tropopause is lower in September-October-November than in March-April-May, when ozone is a minimum at most SHADOZ stations. A zonal wave-one pattern (referring to ozone mixing ratios greater over the Atlantic and adjacent continents than over the Pacific and eastern Indian Ocean), persists all year. The wave, predominantly in the troposphere and with variable magnitude, appears to be due to general circulation - with subsidence over the Atlantic and frequent deep convection over the Pacific and Indian Ocean. The variability of deep convection - most prominent at Java, Fiji, Samoa and Natal - is explored in time-vs-altitude ozone curtains. Stratospheric incursions into the troposphere are most prominent in soundings at Irene and Reunion Island.

  8. Highlights of TOMS Version 9 Total Ozone Algorithm

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan; Haffner, David

    2012-01-01

    The fundamental basis of TOMS total ozone algorithm was developed some 45 years ago by Dave and Mateer. It was designed to estimate total ozone from satellite measurements of the backscattered UV radiances at few discrete wavelengths in the Huggins ozone absorption band (310-340 nm). Over the years, as the need for higher accuracy in measuring total ozone from space has increased, several improvements to the basic algorithms have been made. They include: better correction for the effects of aerosols and clouds, an improved method to account for the variation in shape of ozone profiles with season, latitude, and total ozone, and a multi-wavelength correction for remaining profile shape errors. These improvements have made it possible to retrieve total ozone with just 3 spectral channels of moderate spectral resolution (approx. 1 nm) with accuracy comparable to state-of-the-art spectral fitting algorithms like DOAS that require high spectral resolution measurements at large number of wavelengths. One of the deficiencies of the TOMS algorithm has been that it doesn't provide an error estimate. This is a particular problem in high latitudes when the profile shape errors become significant and vary with latitude, season, total ozone, and instrument viewing geometry. The primary objective of the TOMS V9 algorithm is to account for these effects in estimating the error bars. This is done by a straightforward implementation of the Rodgers optimum estimation method using a priori ozone profiles and their error covariances matrices constructed using Aura MLS and ozonesonde data. The algorithm produces a vertical ozone profile that contains 1-2.5 pieces of information (degrees of freedom of signal) depending upon solar zenith angle (SZA). The profile is integrated to obtain the total column. We provide information that shows the altitude range in which the profile is best determined by the measurements. One can use this information in data assimilation and analysis. A side

  9. Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models

    NASA Astrophysics Data System (ADS)

    Eyring, V.; Cionni, I.; Bodeker, G. E.; Charlton-Perez, A. J.; Kinnison, D. E.; Scinocca, J. F.; Waugh, D. W.; Akiyoshi, H.; Bekki, S.; Chipperfield, M. P.; Dameris, M.; Dhomse, S.; Frith, S. M.; Garny, H.; Gettelman, A.; Kubin, A.; Langematz, U.; Mancini, E.; Marchand, M.; Nakamura, T.; Oman, L. D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Rozanov, E.; Shepherd, T. G.; Shibata, K.; Tian, W.; Braesicke, P.; Hardiman, S. C.; Lamarque, J. F.; Morgenstern, O.; Pyle, J. A.; Smale, D.; Yamashita, Y.

    2010-05-01

    Projections of stratospheric ozone from a suite of chemistry-climate models (CCMs) have been analyzed. In addition to a reference simulation where anthropogenic halogenated ozone depleting substances (ODSs) and greenhouse gases (GHGs) vary with time, sensitivity simulations with either ODSs or GHGs concentrations fixed at 1960 levels were performed to disaggregate the drivers of projected ozone changes. These simulations were also used to assess the two distinct milestones of ozone returning to historical values (ozone return dates) and ozone no longer being influenced by ODSs (full ozone recovery). These two milestones are different. The date of ozone returning to historical values does not indicate complete recovery from ODSs in most cases, because GHG induced changes accelerate or decelerate ozone changes in many regions. In the upper stratosphere where GHG induced stratospheric cooling increases ozone, full ozone recovery has not likely occurred by 2100 while ozone returns to its 1980 or even 1960 levels well before (~2025 and 2040, respectively). In contrast, in the tropical lower stratosphere ozone decreases continuously from 1960 to 2100 due to projected increases in tropical upwelling, while by around 2040 it is already very likely that full recovery from the effects of ODSs has occurred, although ODS concentrations are still elevated by this date. In the lower midlatitude stratosphere the evolution differs from that in the tropics, and rather than a steady decrease of ozone, first a decrease of ozone is simulated between 1960 and 2000, which is then followed by a steady increase throughout the 21st century. Ozone in the lower stratosphere midlatitudes returns to its 1980 levels ˜2045 in the NH and ~2055 in the SH, and full ozone recovery is likely reached by 2100 in both hemispheres. Overall, in all regions except the tropical lower stratosphere, full ozone recovery from ODSs occurs significantly later than the return of total column ozone to its 1980

  10. Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Vergne, Phillippe; Sifakis, Nicolas; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas, Àngela; Peñuelas, Josep; Kambezidis, Harry; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within the scope of a biomonitoring study conducted in twelve urban agglomerations in eight European countries, the ozone-sensitive bioindicator plant Nicotiana tabacum cv. Bel-W3 was employed in order to assess the occurrence of phytotoxic ozone effects at urban, suburban, rural and traffic-exposed sites. The tobacco plants were exposed to ambient air for biweekly periods at up to 100 biomonitoring sites from 2000 to 2002. Special emphasis was placed upon methodological standardisation of plant cultivation, field exposure and injury assessment. Ozone-induced leaf injury showed a clearly increasing gradient from northern and northwestern Europe to central and southern European locations. The strongest ozone impact occurred at the exposure sites in Lyon and Barcelona, while in Edinburgh, Sheffield, Copenhagen and Düsseldorf only weak to moderate ozone effects were registered. Between-site differences within local networks were relatively small, but seasonal and inter-annual differences were strong due to the variability of meteorological conditions and related ozone concentrations. The 2001 data revealed a significant relationship between foliar injury degree and various descriptors of ozone pollution such as mean value, AOT20 and AOT40. Examining individual sites of the local monitoring networks separately, however, yielded noticeable differences. Some sites showed no association between ozone pollution and ozone-induced effects, whereas others featured almost linear relationships. This is because the actual ozone flux into the leaf, which is modified by various environmental factors, rather than ambient ozone concentration determines the effects on plants. The advantage of sensitive bioindicators like tobacco Bel-W3 is that the impact of the effectively absorbed ozone dose can directly be measured.

  11. Quantifying isentropic stratosphere-troposphere exchange of ozone

    NASA Astrophysics Data System (ADS)

    Yang, Huang; Chen, Gang; Tang, Qi; Hess, Peter

    2016-04-01

    There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STE by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350-380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280-350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Furthermore, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.

  12. Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hollaway, M. J.; Arnold, S. R.; Challinor, A. J.; Emberson, L. D.

    2011-08-01

    Enhanced surface ozone concentrations are known to be harmful to vegetation, reducing crop growth and yields. Tropospheric ozone concentrations have increased steadily since pre-industrial times, driven by in-situ production from anthropogenic emissions of nitrogen oxides (NOx), CO and volatile organic compounds. Transport of ozone and its precursors between continents has been shown to contribute to surface ozone air quality exceedences in many regions of the Northern Hemisphere. Using a global atmospheric chemistry model, we have quantified for the first time, intercontinental contributions to crop ozone exposure and yield reduction in the Northern Hemisphere. We apply three metrics (AOT40/M7/M12) to assess the impacts of NOx emissions from each of the Northern Hemispheres three major industrialised regions (North (N) America, South East (SE) Asia and Europe) on global and regional exposure of 6 major agricultural crop types to harmful ozone concentrations, and the resultant yield losses during the 2000 growing season. Using these metrics, model calculations show that for wheat, rice, cotton and potato, 100 % reductions in SE Asian anthropogenic NOx emissions tend to produce the greatest global reduction in crop yield losses (48.8 to 94.7 %) with the same cuts to N American emissions resulting in the greatest global impact on crop yield reductions for maize and soybean (57.5 to 81.7 %). N American NOx emissions produce the largest transboundary impact, resulting in European yield loss reductions of between 12.4 % and 55.6 %, when a 100 % cut is applied to NOx emissions from the N American region. European NOx emissions tend to produce a smaller transboundary impact, due to inefficiency of transport from the European domain. The threshold nature of the AOT40 ozone-exposure metric, results in a strong dependence of the diagnosed impact from trans-boundary emissions on local ozone concentration. In addition, we find that in parts of the United States, biomass

  13. The Antarctic Ozone Hole

    ERIC Educational Resources Information Center

    Jones, Anna E.

    2008-01-01

    Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…

  14. Observing Tropospheric Ozone From Space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  15. An Extended View of Mars Ozone

    NASA Technical Reports Server (NTRS)

    Fast, Kelly

    2011-01-01

    We present an ongoing effort to characterize chemistry in Mars' atmosphere in multiple seasons on timescales longer than flight missions through coordinated efforts by GSFC's HIPWAC spectrometer and Mars Express SPICAM, archival measurements, and tests/application of photochemical models. The trace species ozone (O3) is an effective probe of atmospheric chemistry because it is destroyed by chemically active odd hydrogen species (HO(sub x)) that result from water vapor photolysis. Observed ozone abundance on Mars is a critical test for three-dimensional photochemistry coupled general circulation models (GCM) that make specific predictions for the spatial, diurnal, and seasonal behavior of ozone and related chemistry and climatological conditions. Coordinated measurements by HIPWAC and SPICAM quantitatively linked mission data to the 23-year GSFC ozone data record and also revealed unanticipated inter-decadal variability of same-season ozone abundances, a possible indicator of changing cloud activity (heterogeneous sink for HO(sub x)). A detailed study of long-term conditions is critical to characterizing the predictability of Mars' seasonal chemical behavior, particularly in light of the implications of and the lack of explanation for reported methane behavior.

  16. Ozone in the Pacific Troposphere from Ozonesonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Voemel, H.; Koshy, K.; Simon, P.; Bendura, R.; Thompson, A. M.; Logan, J. A.; Hasebe, F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Ozone vertical profile measurements obtained from ozonesondes flown at Fiji, Samoa, Tahiti and the Galapagos are used to characterize ozone in the troposphere over the tropical Pacific. There is a significant seasonal variation at each of these sites. At sites in both the eastern and western Pacific, ozone is highest at almost all levels in the troposphere during the September-November season and lowest during, March-May. There is a relative maximum at all of the sites in the mid-troposphere during all seasons of the year (the largest amounts are usually found near the tropopause). This maximum is particularly pronounced during, the September-November season. On average, throughout the troposphere at all seasons, the Galapagos has larger ozone amounts than the western Pacific sites. A trajectory climatology is used to identify the major flow regimes that are associated with the characteristic ozone behavior at various altitudes and seasons. The enhanced ozone seen in the mid-troposphere during September-November is associated with flow from the continents. In the western Pacific this flow is usually from southern Africa (although 10-day trajectories do not always reach the continent), but also may come from Australia and Indonesia. In the Galapagos the ozone peak in the mid-troposphere is seen in flow from the South American continent and particularly from northern Brazil. The time of year and flow characteristics associated with the ozone mixing ratio peaks seen in both the western and eastern Pacific suggest that these enhanced ozone values result from biomass burning. In the upper troposphere low ozone amounts are seen with flow that originates in the convective western Pacific.

  17. Earth's Endangered Ozone

    ERIC Educational Resources Information Center

    Panofsky, Hans A.

    1978-01-01

    Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)

  18. Variability of ozone near the tropopause from GASP data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.

    1978-01-01

    The first 22 months of ozone data from the Global Atmospheric Sampling Program are summarized. Variations in space and time were examined at nearly all scales permitted by the data. Case studies in the tropics suggest that local ozone maxima may be found in or near clouds. Preliminary seasonal mean maps of ozone during spring are presented for the Northern Hemisphere. In the troposphere over the United States during summer there is a distinct midcontinental ozone maximum. There is a diurnal variation in ozone in the upper troposphere and the daily range is about 5 ppbv. Correlations between ozone and other variables are given for the synoptic-scale and on a hemispheric scale. The possible bearing of these results on ozone transport computations is discussed.

  19. Ozone crisis

    SciTech Connect

    Roan, S.

    1989-01-01

    The author presents an account of the depletion of the atmosphere's ozone layer since the discovery of the phenomenon 15 years ago. The book recounts the flight to ban chlorofluorocarbons (CFC's) and describes the science, the people, and the politics involved, up to the March 1988 international treaty restricting CFC production. It surveys the media's coverage, describes the struggle for remedies, and offers a prognosis for the future.

  20. Addition of surfactants in ozonated water cleaning for the suppression of functional group formation and particle adhesion on the SiO2 surface

    NASA Astrophysics Data System (ADS)

    Yang, Jahyun; Im, Kyungtaek; Lim, Sangwoo

    2011-04-01

    Various kinds of surfactants were added to a cleaning solution and deionized (DI) water, and their effect on the suppression of organic function group formation and particle adhesion to a SiO2 surface was analyzed using multi-internal reflection Fourier transform infrared spectroscopy. The results implied that attached organic functional groups are affected by the chemical structure of a surfactant in DI water. Furthermore, the addition of anionic glycolic acid ethoxylate 4-tert-butylphenyl ether (GAE4E) is the most effective in terms of preventing organic group attachment and particle adhesion to the SiO2 surface, whether it was added to the cleaning solution or post-cleaning rinse water, with or without polystyrene latex particles. Moreover, it was possible to completely prevent particle adhesion to the SiO2 surface with the proper addition of GAE4E in DIO3 solution.

  1. SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders

    NASA Astrophysics Data System (ADS)

    Tegtmeier, S.; Hegglin, M. I.; Anderson, J.; Bourassa, A.; Brohede, S.; Degenstein, D.; Froidevaux, L.; Fuller, R.; Funke, B.; Gille, J.; Jones, A.; Kasai, Y.; Krüger, K.; Kyrölä, E.; Lingenfelser, G.; Lumpe, J.; Nardi, B.; Neu, J.; Pendlebury, D.; Remsberg, E.; Rozanov, A.; Smith, L.; Toohey, M.; Urban, J.; Clarmann, T.; Walker, K. A.; Wang, R. H. J.

    2013-11-01

    comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed intercomparison. The ozone climatologies in form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I/II/III, UARS-MLS, HALOE, POAM II/III, SMR, OSIRIS, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978-2010. The intercomparisons focus on mean biases of annual zonal mean fields, interannual variability, and seasonal cycles. Additionally, the physical consistency of the data is tested through diagnostics of the quasi-biennial oscillation and Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical and midlatitude middle stratosphere with a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified, including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere (with a spread of ±30%) and at high latitudes (±15%). In particular, large relative differences are identified in the Antarctic during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. The evaluations provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons, detection of long-term trends, and data-merging activities.

  2. Ozone depletion at northern and southern latitudes derived from January 1979 to December 1991 Total Ozone Mapping Spectrometer data

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mcpeters, R.; Larko, D.

    1993-01-01

    An extended version of the Nimbus 7/TOMS ozone data set from the period January 1, 1979 to December 31, 1991 is presented. It is shown that the ozone-trend data indicate that regions of enhanced ozone depletion rates have formed at middle and high latitudes during recent years. The seasonal dependence and geographical extent of the enhanced ozone-depletion rates for the Northern and Southern hemispheres are examined. The variability of the long-term ozone trend determination is discussed via consideration of the differences among 11-, 12-, and 13-yr trend calculations. The effects of the Mount Pinatubo eruption and other volcanic eruptions on the TOMS equatorial zonal average ozone measurements, and its influence on long-term trend determinations are discussed. On the basis of a determination of the aerosol phase function using TOMS data, the effect of stratospheric aerosols on determination of ozone amounts from TOMS are shown to be less than 1 percent.

  3. Antarctic ozone hole - Possible implications for ozone trends in the Southern Hemisphere

    NASA Technical Reports Server (NTRS)

    Sze, N. D.; Ko, M. K. W.; Weisenstein, D. K.; Rodriguez, J. M.; Stolarski, R. S.; Schoeberl, M. R.

    1989-01-01

    Satellite-borne instruments (the Total Ozone Mapping Spectrometer and the Solar Backscattered Ultraviolet Instrument) show that, compared to 1979, total column ozone has a year-round decrease of more than 5 percent in the neighborhood of 60 deg S. The meteorological conditions (warmer temperatures, the absence of polar stratospheric clouds) at these latitudes do not seem to favor heterogeneous chemistry as the direct cause for the observed year-round ozone reduction. A mechanism involving the seasonal transport of ozone-poor air from within the polar vortex to lower latitudes (the so-called 'dilution effect') is proposed as a possible explanation for the observed year-round ozone reduction in subpolar regions. A two-dimensional model with an imposed springtime Antarctic ozone depletion is used to study the post-ozone hole impact on the spatial and temporal distributions of column ozone at latitudes north of 60 deg S. It is found that the time constant associated with the dilution effect in the latitude region 40-60 deg S is about 1 year, long enough to contribute to the observed year-round decrease of total ozone in that region.

  4. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration (MF) membrane system.

    PubMed

    Lee, S; Jang, N; Watanabe, Y

    2004-01-01

    The effect of residual ozone on reducing the membrane fouling was investigated using ozone resisting microfiltration membrane. It was found out that the fouling was reduced effectively by maintaining residual ozone in the membrane module. To clarify the reason why the residual ozone reduces the membrane fouling, research was focused on the molecular degradation reaction and particle destabilization reaction induced by residual ozone. The major reason of membrane fouling reduction was attributed to the reduction of reversible resistance induced by the cake layer. The reversible resistance was reduced due to degradation of organic substances in the cake layer. In addition to degradation reaction, the increase of fouling particle size due to residual ozone in the cake layer is another important process for fouling reduction. This effect has been referred to as ozone-induced destabilization reaction. The calcium present in the raw water influenced this reaction. The increase of fouling particles size improves the filterability through the cake layer and backwashing efficiency.

  5. Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L.; Larar, Allen M.

    2001-01-01

    Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.

  6. Meteorological factors affecting lower tropospheric ozone mixing ratios in Bangkok, Thailand

    NASA Astrophysics Data System (ADS)

    Janjai, S.; Buntoung, S.; Nunez, M.; Chiwpreecha, K.; Pattarapanitchai, S.

    2016-09-01

    This paper examines the influence of meteorological conditions in ozone mixing ratio measured at the Thai Meteorological Department (TMD) in Bangkok, Thailand. In addition to surface wind speed and direction, surface ozone concentrations, ozonesondes and CALIPSO Lidar images were collected during the study period extending from 01/01/2014 to 30/04/2015. Surface ozone concentrations show a strong seasonality, with maximum in the dry months of December to April and minimum during the wet southwest (SW) monsoon period extending from May to October. High ozone concentrations are related to biomass burning in the northeast highland regions of the country and neighboring Myanmar and southern China. These precursors travel in a southerly direction towards Bangkok in a well-defined aerosol layer which may be at ground level or at elevated heights. The growth of the daytime mixed layer scavenges some of the upper level aerosols, although local maxima in ozone concentrations at 1-2 km are a frequent feature at Bangkok. There is an evidence of fumigation in the Gulf of Thailand and a return flow via the southerly sea breezes.

  7. Average ozone vertical distribution at Sodankyla based on the 1988-1991 ozone sounding data

    NASA Technical Reports Server (NTRS)

    Kyro, Esko; Rummukainen, Markku; Taalas, Petteri; Supperi, Ari

    1994-01-01

    The study presents the statistical analysis of ozone sonde data obtained at Sodankyla (67.4 deg N, 26.6 deg E) from the beginning of the sounding program on March 1988 to the end of December 1991. The Sodankyla sounding data offers the longest continuous record of the ozone vertical distribution in the European Arctic. In this paper, we present the average ozone partial pressures within each 1 km column obtained for different seasons during the almost four year long period. We believe that the data represented here are useful as an interim reference ozone atmosphere, especially considering the fact that northern Scandinavia has become a popular campaign site for the big international ozone experiments.

  8. Increasing risk for negative ozone impacts on vegetation in northern Sweden.

    PubMed

    Karlsson, P E; Tang, L; Sundberg, J; Chen, D; Lindskog, A; Pleijel, H

    2007-11-01

    Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season.

  9. The 2002 Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Nash, E. R.; Douglass, A. R.; Kawa, S. R.

    2003-01-01

    Since 1979, the ozone hole has grown from near zero size to over 24 Million km2. This area is most strongly controlled by levels of inorganic chlorine and bromine oncentrations. In addition, dynamical variations modulate the size of the ozone hole by either cooling or warming the polar vortex collar region. We will review the size observations, the size trends, and the interannual variability of the size. Using a simple trajectory model, we will demonstrate the sensitivity of the ozone hole to dynamical forcing, and we will use these observations to discuss the size of the ozone hole during the 2002 Austral spring. We will further show how the Cly decreases in the stratosphere will cause the ozone hole to decrease by 1-1.5% per year. We will also show results from a 3-D chemical transport model (CTM) that has been continuously run since 1999. These CTM results directly show how strong dynamics acts to reduce the size of the ozone hole.

  10. Tropospheric Ozone and Biomass Burning

    NASA Technical Reports Server (NTRS)

    Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.

  11. Absorption of ozone by porous particles

    SciTech Connect

    Afanas'ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  12. [Effects of Ozone on Photosynthesis of Several Plants].

    PubMed

    Li, Miao-miao

    2015-05-01

    In order to investigate the effect of ozone on photosynthesis of Machilus pauhoi, Lindera setchuenensis, Phoebe bournei, Phoebe chekiangensis and Machilus thunbergii, the study was carried out in 12 open-top chambers( OTCs) with different levels of ozone in Qianyanzhou experimental station, and net photosynthesis rate (Pn) and stomatal conductance (Cond) were detected. The results indicated that ozone treatments changed the variation trend of photosynthesis of all tested plants, but ozone exposure did not always play an inhibitory role on them. In fact, photosynthesis changed with ozone concentration, experimental period, season and specific species. Exposed to ozone could even promote Pn to a peak in a short term, and the indicator of plants treated with ozone was higher than that of the control at this point. Low and medium concentrations of ozone treatment enhanced Pn of Phoebe bournei and Machilus thunbergii. The peak of treatment group also came earlier because of ozone. Furthermore, the positive correlation between Pn and Cond did not existed under the condition of ozone. Machilus thunbergii had the strongest resistance to ozone, followed by Phoebe bournei, by comparison, Phoebe chekiangensis, Machilus pauhoi and Lindera setchuenensis were more sensitive.

  13. Changes in the delta13C values of trees during a tropical rainy season: some effects in addition to diffusion and carboxylation by Rubisco?

    PubMed

    Terwilliger, V

    1997-12-01

    The d13C values of deciduous and evergreen tree leaves were compared in open and closed- canopy environments throughout a rainy season in Panamá. Newly emerging leaves had higher d13C values than older leaves of all seedlings and trees at all dates sampled. This was apparently not caused by a decline in water use efficiency as leaves develop because instantaneous ci/ca was significantly higher in newly emerging than in expanded leaves on the same twigs of trees in the field as well as on seedlings growing in a controlled, unchanging environment. Higher d13C values in newly emerging leaves occurred across diverse environmental comparisons. For example, leaves emerging during the rainy season had higher d13C values than corresponding mature leaves that had emerged both during the dry season and when water was abundant. The early enrichment in 13C may thus reflect the translocation of carbon to initiate a new leaf. Furthermore, the lack of sensitivity of this enrichment to a microclimate suggests that it might be the result of processes that occur after carbon fixation by Rubisco. Other changes in d13C values as leaves developed may also have resulted from carbon translocation processes. Foliar d13C decreased significantly after most of the leaf biomass of the deciduous Apeiba membranacea had developed. The d13C values of the evergreen Cecropia insignis were lower in the open canopy than in closed-canopy forests at the end of the rainy season. These findings suggest that the d13C values of leaves can yield ecological information about the allocation of carbon within trees.

  14. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  15. Ozone transport commission developments

    SciTech Connect

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  16. Ozone Hole Over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These images from the Total Ozone Mapping Spectrometer (TOMS) show the progressive depletion of ozone over Antarctica from 1979 to 1999. This 'ozone hole' has extended to cover an area as large as 10.5 million square miles in September 1998. The previous record of 10.0 million square miles was set in 1996. The Antarctic ozone hole develops each year between late August and early October. Regions with higher levels of ozone are shown in red. NASA and NOAA instruments have been measuring Antarctic ozone levels since the early 1970s. Large regions of depleted ozone began to develop over Antarctica in the early 1980s. Ozone holes of substantial size and depth are likely to continue to form during the next few years, scientists hope to see a reduction in ozone loss as levels of ozone-destroying CFCs (chlorofluorocarbons) are gradually reduced. Credit: Images by Greg Shirah, NASA Goddard Space Flight Center Scientific Visualization Studio

  17. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  18. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems. PMID:24429521

  19. A Global Ozone Climatology from Ozone Soundings via Trajectory Mapping: A Stratospheric Perspective

    NASA Technical Reports Server (NTRS)

    Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; McLinden, C.; Zhao, T.; Gong, S.; Sioris, G.; Jin, J. J.; Liu, G.; Moeini, O.

    2013-01-01

    This study explores a domain-filling trajectory approach to generate a global ozone climatology from sparse ozonesonde data. Global ozone soundings of 51,898 profiles at 116 stations over 44 years (1965-2008) are used, from which forward and backward trajectories are performed for 4 days, driven by a set of meteorological reanalysis data. Ozone mixing ratios of each sounding from the surface to 26 km altitude are assigned to the entire path along the trajectory. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s with grids of 5 degree 5 degree 1 km (latitude, longitude, and altitude). It is also archived yearly from 1965 to 2008. This climatology is validated at 20 ozonesonde stations by comparing the actual ozone sounding profile with that found through the trajectories, using the ozone soundings at all the stations except one being tested. The two sets of profiles are in good agreement, both individually with correlation coefficients between 0.975 and 0.998 and root mean square (RMS) differences of 87 to 482 ppbv, and overall with a correlation coefficient of 0.991 and an RMS of 224 ppbv. The ozone climatology is also compared with two sets of satellite data, from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). Overall, the ozone climatology compares well with SAGE and OSIRIS data by both seasonal and zonal means. The mean difference is generally under 20 above 15 km. The comparison is better in the northern hemisphere, where there are more ozonesonde stations, than in the southern hemisphere; it is also better in the middle and high latitudes than in the tropics, where assimilated winds are imperfect in some regions. This ozone climatology can capture known features in the stratosphere, as well as seasonal and decadal variations of these features. Furthermore, it provides a wealth of detail about longitudinal variations in the stratosphere such

  20. The Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1988-01-01

    Observations of Antarctic ozone levels and the discovery of a hole in the Antarctic region are examined. The effects of chlorofluorocarbons (CFCs) on the level of stratospheric ozone are analyzed. Three cycles explaining the cause of ozone depletion in the poles are proposed. A comparison of field data and proposed depletion cycles reveals that the chemical origin of the ozone hole is due to CFCs. The potential global effects of the Antarctic ozone hole are discussed.

  1. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  2. Rocket Ozone Data Recovery for Digital Archival

    NASA Astrophysics Data System (ADS)

    Hwang, S. H.; Krueger, A. J.; Hilsenrath, E.; Haffner, D. P.; Bhartia, P. K.

    2014-12-01

    Ozone distributions in the photochemically-controlled upper stratosphere and mesosphere were first measured using spectrometers on V-2 rockets after WWII. The IGY(1957-1958) spurred development of new optical and chemical instruments for flight on meteorological and sounding rockets. In the early 1960's, the US Navy developed an Arcas rocket-borne optical ozonesonde and NASA GSFC developed chemiluminescent ozonesonde onboard Nike_Cajun and Arcas rocket. The Navy optical ozone program was moved in 1969 to GSFC where rocket ozone research was expanded and continued until 1994 using Super Loki-Dart rocket at 11 sites in the range of 0-65N and 35W-160W. Over 300 optical ozone soundings and 40 chemiluminescent soundings were made. The data have been used to produce the US Standard Ozone Atmosphere, determine seasonal and diurnal variations, and validate early photochemical models. The current effort includes soundings conducted by Australia, Japan, and Korea using optical techniques. New satellite ozone sounding techniques were initially calibrated and later validated using the rocket ozone data. As satellite techniques superseded the rocket methods, the sponsoring agencies lost interest in the data and many of those records have been discarded. The current task intends to recover as much of the data as possible from the private records of the experimenters and their publications, and to archive those records in the WOUDC (World Ozone and Ultraviolet Data Centre). The original data records are handwritten tabulations, computer printouts that are scanned with OCR techniques, and plots digitized from publications. This newly recovered digital rocket ozone profile data from 1965 to 2002 could make significant contributions to the Earth science community in atmospheric research including long-term trend analysis.

  3. Characterizing the lifetime and occurrence of stratospheric-tropospheric exchange events in the rocky mountain region using high-resolution ozone measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.; McGee, Thomas J.; Thompson, Anne M.; Pierce, R. Bradley; Sumnicht, Grant K.; Twigg, Laurence W.; Eloranta, Edwin; Hoff, Raymond M.

    2015-12-01

    The evolution of a Stratospheric-Tropospheric Exchange (STE) event from 4 to 8 August 2014 at Fort Collins, Colorado, is described. The event is characterized with observations from the Goddard Space Flight Center TROPospheric OZone (TROPOZ) Differential Absorption Lidar, the University of Wisconsin High Spectral Resolution Lidar, and multiple ozonesondes during NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality and the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) campaigns. Based on the extended TROPOZ observations throughout the entire campaign, it was found that STE events have largely contributed to an additional 10-30 ppbv of ozone at Fort Collins. Additional measurements of ozone and relative humidity from the Atmospheric Infrared Sounder are characterize the transport of the intrusion. The Real-time Air Quality Modeling System simulated ozone agrees well with the TROPOZ ozone concentrations and altitude during the STE event. To extend the analysis into other seasons and years, the modeled ozone to potential vorticity ratio is used as a tracer for stratospheric air residing below the tropopause. It is found that at Fort Collins, CO, and depending on season from 2012 to 2014, between 18 and 31% of tropospheric ozone corresponds to stratospheric air. A relationship to determine the lifetime of stratospheric air below the tropopause is derived using the simulated ratio tracer. Results indicate that throughout summer 2014, 43% of stratospheric air resided below the tropopause for less than 12 h. However, nearly 39% persisted below the tropopause for 12-48 h and likely penetrated deeper in the troposphere.

  4. Ozone Budgets from a Global Chemistry/Transport Model and Comparison to Observations from POLARIS

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randolph; Newman, P. A.; Douglass, A. R.; Weaver, C. J.; Gao, R.-S.; Salawitch, R. J.; Johnson, D. G.; Jucks, K. W.

    1998-01-01

    The objective of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field mission was to obtain data to better characterize the summertime seasonal decrease of ozone at mid to high latitudes. The decrease in ozone occurs mainly in the lower stratosphere and is expected to result from in situ chemical destruction. Instrumented balloons and aircraft were used in POLARIS, along with satellites, to measure ozone and chemical species which are involved with stratospheric ozone chemistry. In order to close the seasonal ozone budget, however, ozone transport must also be estimated. Comparison to a global chemistry and transport model (CTM) of the stratosphere indicates how well the summertime ozone loss processes are simulated and thus how well we can predict the ozone response to changing amounts of chemical source gases. Moreover, the model gives insight into the possible relative magnitude of transport contributions to the seasonal ozone decline. Initial comparison to the Goddard CTM, which uses transport winds and temperatures from meteorological data assimilation, shows a high ozone bias in the model and an attenuated summertime ozone loss cycle. Comparison of the model chemical partitioning and ozone catalytic loss rates to those derived from measurements shows fairly close agreement both at ER-2 altitudes (20 km) and higher. This suggests that the model transport is too active in resupplying ozone to the high latitude region, although chemistry failings cannot be completely ruled out. Comparison of ozone and related species will be shown along with a full diagnosis of the model ozone budget and its possible sources of error.

  5. Ozone Budgets from a Global Chemistry/ Transport Model and Comparison to Observations from POLARIS

    NASA Technical Reports Server (NTRS)

    Kawa, S. Randy

    1999-01-01

    The objective of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) field mission was to obtain data to better characterize the summertime seasonal decrease of ozone at mid to high latitudes. The decrease in ozone occurs mainly in the lower stratosphere and is expected to result from in situ chemical destruction. Instrumented balloons and aircraft were used in POLARIS, along with satellites, to measure ozone and chemical species which are involved with stratospheric ozone chemistry. In order to close the seasonal ozone budget, however, ozone transport must also be estimated. Comparison to a global chemistry and transport model (CTM) of the stratosphere indicates how well the summertime ozone loss processes are simulated and thus how well we can predict the ozone response to changing amounts of chemical source gases. Moreover, the model gives insight into the possible relative magnitude of transport contributions to the seasonal ozone decline. Initial comparison to the Goddard CTM, which uses transport winds and temperatures from meteorological data assimilation, shows a high ozone bias in the model and an attenuated summertime ozone loss cycle. Comparison of the model chemical partitioning, and ozone catalytic loss rates to those derived from measurements shows fairly close agreement both at ER-2 altitudes (20 km) and higher. This suggests that the model transport is too active in resupplying ozone to the high latitude region, although chemistry failings cannot be completely ruled out. Comparison of ozone and related species will be shown along with a full diagnosis of the model ozone budget and its possible sources of error.

  6. Handbook of ozone technology and applications. Vol. 2. Ozone for drinking water treatment

    SciTech Connect

    Rice, R.G.; Netzer, A.

    1984-01-01

    This volume of the handbook series concerns the application of ozone for the treatment of drinking water. Great emphasis is given ozone's powerful disinfectant and oxidant properties with the added advantage of the non-production of undesirable by-products. European sources have been heavily drawn upon since that is where most of the experience has been. Over one-third of the volume is devoted to a bibliography of some 1600 citations (in addition to 260 as chapter references). Contents: Ozone disinfection of drinking water. Removal of color from drinking water with ozone. Removal of ammonia and other nitrogen derivatives from drinking water with ozone. Raw water preozonation. Recent developments in the treatment of drinking water. Ozone for drinking water treatment - a bibliography. Index.

  7. Influence of the ozone profile above Madrid (Spain) on Brewer estimation of ozone air mass factor

    NASA Astrophysics Data System (ADS)

    Antón, M.; López, M.; Costa, M. J.; Serrano, A.; Bortoli, D.; Bañón, M.; Vilaplana, J. M.; Silva, A. M.

    2009-08-01

    The methodology used by Brewer spectroradiometers to estimate the ozone column is based on differential absorption spectroscopy. This methodology employs the ozone air mass factor (AMF) to derive the total ozone column from the slant path ozone amount. For the calculating the ozone AMF, the Brewer algorithm assumes that the ozone layer is located at a fixed height of 22 km. However, for a real specific site the ozone presents a certain profile, which varies spatially and temporally depending on the latitude, altitude and dynamical conditions of the atmosphere above the site of measurements. In this sense, this work address the reliability of the mentioned assumption and analyses the influence of the ozone profiles measured above Madrid (Spain) in the ozone AMF calculations. The approximated ozone AMF used by the Brewer algorithm is compared with simulations obtained using the libRadtran radiative transfer model code. The results show an excellent agreement between the simulated and the approximated AMF values for solar zenith angle lower than 75°. In addition, the relative differences remain lower than 2% at 85°. These good results are mainly due to the fact that the altitude of the ozone layer assumed constant by the Brewer algorithm for all latitudes notably can be considered representative of the real profile of ozone above Madrid (average value of 21.7±1.8 km). The operational ozone AMF calculations for Brewer instruments are limited, in general, to SZA below 80°. Extending the usable SZA range is especially relevant for Brewer instruments located at high mid-latitudes.

  8. Effects of ozone on species composition in an upland grassland.

    PubMed

    Wedlich, Kerstin V; Rintoul, Naomi; Peacock, Simon; Cape, J Neil; Coyle, Mhairi; Toet, Sylvia; Barnes, Jeremy; Ashmore, Mike

    2012-04-01

    Northern hemispheric background concentrations of ozone are increasing, but few studies have assessed the ecological significance of these changes for grasslands of high conservation value under field conditions. We carried out a 3-year field experiment in which ozone was released at a controlled rate over three experimental transects to produce concentration gradients over the field site, an upland mesotrophic grassland located in the UK. We measured individual species biomass in an annual hay cut in plots receiving ambient ozone, and ambient ozone elevated by mean concentrations of approximately 4 ppb and 10 ppb in the growing seasons of 2008 and 2009. There was a significant negative effect of ozone exposure on herb biomass, but not total grass or legume biomass, in 2008 and 2009. Within the herb fraction, ozone exposure significantly decreased the biomass of Ranunculus species and that of the hemi-parasitic species Rhinanthus minor. Multivariate analysis of species composition, taking into account spatial variation in soil conditions and ozone exposure, showed no significant ozone effect on the grass component. In contrast, by 2009, ozone had become the dominant factor influencing species composition within the combined herb and legume component. Our results suggest that elevated ozone concentrations may be a significant barrier to achieving increased species diversity in managed grasslands.

  9. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  10. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  11. Relationship between ozone and the air pollutants in Peninsular Malaysia for 2003 retrieved from SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2013-05-01

    Since few decades ago, air pollution has become a hot topic of environmental and atmospheric research due to the impact of air pollution on human health. Ozone is one of the important chemical constituent of the atmosphere, which plays a key role in atmospheric energy budget and chemistry, air quality and global change. Results from the analysis of the retrieved monthly data from Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY (SCIAMACHY) were utilized, in order to analyze the impact of air pollutants (CO2, CH4, H2O, and NO2) on the ozone in Peninsular Malaysia for 2003 using multiple regression analysis. SCIAMACHY onboard ENVISAT as part of the atmospheric chemistry payload of the third European Space Agency (ESA) Earth observation, is the first satellite instrument whose measurements is enough precise and sensitive for all the greenhouse gases to make observation at all atmospheric altitude levels down to the Earth's surface. Among the four pollutants, ozone was most affected by water vapor (H2O vapor), indicated by a strong beta coefficient (-0.769 - 0.997), depends on the seasonal variety. In addition, CO2 also shows a strong Beta coefficient (-0.654 - 0.717) and also affected by the seasonal variation. The variation of pollutants on the average explains change 50.1% of the ozone. This means that about 50.1% of the ozone is attributed to these pollutant gases. The SCIAMACHY data and the satellite measurements successfully identify the increase of the atmospheric air pollutants over the study area.

  12. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT

    EPA Science Inventory

    The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...

  13. Upper Tropospheric Ozone Between Latitudes 60S and 60N Derived from Nimbus 7 TOMS/THIR Cloud Slicing

    NASA Technical Reports Server (NTRS)

    Ziemke, Jerald R.; Chandra, Sushil; Bhartia, P. K.

    2002-01-01

    This study evaluates the spatial distributions and seasonal cycles in upper tropospheric ozone (pressure range 200-500 hPa) from low to high latitudes (60S to 60N) derived from the satellite retrieval method called "Cloud Slicing." Cloud Slicing is a unique technique for determining ozone profile information in the troposphere by combining co-located measurements of cloud-top, pressure and above-cloud column ozone. For upper tropospheric ozone, co-located measurements of Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) above-cloud column ozone, and Nimbus 7 Temperature Humidity Infrared Radiometer (THIR) cloud-top pressure during 1979-1984 were incorporated. In the tropics, upper tropospheric ozone shows year-round enhancement in the Atlantic region and evidence of a possible semiannual variability. Upper tropospheric ozone outside the tropics shows greatest abundance in winter and spring seasons in both hemispheres with largest seasonal and largest amounts in the NH. These characteristics are similar to lower stratospheric ozone. Comparisons of upper tropospheric column ozone with both stratospheric ozone and a proxy of lower stratospheric air mass (i.e., tropopause pressure) from National Centers for Environmental Prediction (NCEP) suggest that stratosphere-troposphere exchange (STE) may be a significant source for the seasonal variability of upper tropospheric ozone almost everywhere between 60S and 60N except in low latitudes around 10S to 25N where other sources (e.g., tropospheric transport, biomass burning, aerosol effects, lightning, etc.) may have a greater role.

  14. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  15. Trends in the Vertical Distribution of Ozone: Assessment and Implications in Terms of Ozone Recovery

    NASA Astrophysics Data System (ADS)

    Harris, N. R. P.; Hassler, B.; Tummon, F.

    2014-12-01

    The successful implementation of the Montreal Protocol has led to reductions in stratospheric halogen loading, which is expected to result in less chemical depletion of ozone and thus increased stratospheric ozone amounts [WMO, 2011]. To unambiguously identify a positive ozone response directly attributable to declining halogen levels, consistent long-term ozone profile observations are required. Although near-global satellite observations of the ozone profile have been made since 1978, no single instrument has covered this entire period, meaning that merged data series combining several instrument records are required to fully understand long-term ozone changes. All available long-term data sets are analysed for trends in the period 1979-2012. The data sets are based on a varying combination of instruments including SBUV/2, SAGE-2, HALOE, UARS-MLS, OSIRIS, SAGE-3, GOMOS, ACE-FTS, and Aura-MLS. The analyses reveal that all data sets represent seasonality and interannual variability well, with those data sets based on the same instrument set tending to be more similar, despite different merging techniques being used. A multiple linear regression analysis reveals that long-term ozone trends are similar in the period prior to 1997, but show more diversity for the period since 1998. This is likely a result of the different instruments used to construct each data set, which vary more in the latter period. These results have important implications in terms of the detection of ozone recovery resulting from the reduction in stratospheric halogen loading. This work was done as part of the Si2N (Stratosphere-troposphere Processes And their Role in Climate (SPARC), the International Ozone Commission (IOC), the ozone focus area of the Integrated Global Atmospheric Chemistry Observations (IGACO-O3), and the Network for Detection of Atmospheric Composition Change (NDACC) - SPARC/IOC/IGACO-O3/NDACC) initiative.

  16. Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone DIAL

    NASA Astrophysics Data System (ADS)

    Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence

    2016-06-01

    Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins, Colorado. The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase aloft during recirculation episodes has been historically difficult, results indicate that an increase of 20 - 30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.

  17. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J. J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeni, O.; Liu, X.; Sioris, C. E.

    2013-05-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1962 are used. The small number of stations causes the set of ozone soundings to be sparse in geographical spacing. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically-based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal averages provides a global view of tropospheric ozone trends, which appear to be surprisingly modest over the last four decades.

  18. Intercontinental trans-boundary contributions to ozone-induced crop yield losses in the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Hollaway, M. J.; Arnold, S. R.; Challinor, A. J.; Emberson, L. D.

    2012-01-01

    Using a global atmospheric chemistry model, we have quantified for the first time, intercontinental transboundary contributions to crop ozone exposure and subsequent yield reductions in the Northern Hemisphere. We apply four metrics (AOT40, M7, M12, W126) to assess the impacts of 100% reductions in anthropogenic NOx emissions from North (N) America, South East (SE) Asia and Europe on global and regional exposure of 6 major agricultural crop types to surface ozone, and resultant crop production losses during the year 2000 growing season. Using these metrics, model calculations show that for wheat, rice, cotton and potato, 100 % reductions in SE Asian anthropogenic NOx emissions tend to produce the greatest global reduction in crop production losses (42.3-95.2%), and a 100 % reduction to N~American anthropogenic NOx emissions results in the greatest global impact on crop production losses for maize and soybean (59.2-85.9%). A 100% reduction in N~American anthropogenic NOx emissions produces the largest transboundary impact, resulting in European production loss reductions of between 14.2% and 63.2%. European NOx emissions tend to produce a smaller transboundary impact, due to inefficiency of transport from the European domain. The threshold nature of the AOT40 ozone-exposure metric results in strong dependence of non-local emissions impacts on the local ozone concentration distribution. Our calculations of absolute crop production change under emission reduction scenarios differ between the metrics used, however we find the relative importance of each region's transboundary impact remains robust between metrics. Our results demonstrate that local air quality and emission control strategies have the potential to partly alleviate ozone-induced crop yield loss in continents downstream, in addition to effectively mitigating local ozone-induced production losses.

  19. The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results.

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Weber, Mark; Buchwitz, Michael; Rozanov, Vladimir; Ladstätter-Weißenmayer, Annette; Richter, Andreas; Debeek, Rüdiger; Hoogen, Ricarda; Bramstedt, Klaus; Eichmann, Kai-Uwe; Eisinger, Michael; Perner, Dieter

    1999-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument aboard the European Space Agency's (ESA) Second European Remote Sensing Satellite (ERS-2), which was launched in April 1995. The main scientific objective of the GOME mission is to determine the global distribution of ozone and several other trace gases, which play an important role in the ozone chemistry of the earth's stratosphere and troposphere. GOME measures the sunlight scattered from the earth's atmosphere and/or reflected by the surface in nadir viewing mode in the spectral region 240-790 nm at a moderate spectral resolution of between 0.2 and 0.4 nm. Using the maximum 960-km across-track swath width, the spatial resolution of a GOME ground pixel is 40 × 320 km2 for the majority of the orbit and global coverage is achieved in three days after 43 orbits.Operational data products of GOME as generated by DLR-DFD, the German Data Processing and Archiving Facility (D-PAF) for GOME, comprise absolute radiometrically calibrated earthshine radiance and solar irradiance spectra (level 1 products) and global distributions of total column amounts of ozone and NO2 (level 2 products), which are derived using the DOAS approach (Differential Optical Absorption Spectroscopy). (Under certain conditions and some restrictions, the operational data products are publically available from the European Space Agency via the ERS Helpdesk.)In addition to the operational data products, GOME has delivered important information about other minor trace gases such as OClO, volcanic SO2, H2CO from biomass burning, and tropospheric BrO. Using an iterative optimal estimation retrieval scheme, ozone vertical profiles can be derived from the inversion of the UV/VIS spectra. This paper reports on the GOME instrument, its operation mode, and the retrieval techniques, the latter with particular emphasis on DOAS (total column retrieval) and advanced optimal estimation (ozone profile retrieval).Observation of ozone depletion in the

  20. Surface ozone measurements using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Jain, Sohan L.; Arya, B. C.; Ghude, Sachin D.; Arora, Arun K.; Sinha, Randhir K.

    2005-01-01

    Human activities have been influencing the global atmosphere since the beginning of the industrial era, causing shifts from its natural state. The measurements have shown that tropospheric ozone is increasing gradually due to anthropogenic activities. Surface ozone is a secondary pollutant, its concentration in lower troposphere depends upon its precursors (CO, CH4, non methane hydrocarbons, NOx) as well as weather and transport phenomenon. The surface ozone exceeding the ambient air quality standard is health hazard to human being, animal and vegetation. The regular information of its concentrations on ground levels is needed for setting ambient air quality objectives and understanding photo chemical air pollution in urban areas. A Differential Absorption Lidar (DIAL) using a tunable CO2 laser has been designed and developed at National Physical Laboratory, New Delhi, to monitor water vapour, surface ozone, ammonia, ethylene etc. Some times ethylene and surface ozone was found to be more than 40 ppb and 140 ppb respectively which is a health hazard. Seasonal variation in ozone concentrations shows maximum in the months of summer and autumn and minimum in monsoon and winter months. In present communication salient features of experimental set up and results obtained will be presented in detail.

  1. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations

    NASA Astrophysics Data System (ADS)

    Cariolle, D.; Teyssèdre, H.

    2007-05-01

    This article describes the validation of a linear parameterization of the ozone photochemistry for use in upper tropospheric and stratospheric studies. The present work extends a previously developed scheme by improving the 2-D model used to derive the coefficients of the parameterization. The chemical reaction rates are updated from a compilation that includes recent laboratory work. Furthermore, the polar ozone destruction due to heterogeneous reactions at the surface of the polar stratospheric clouds is taken into account as a function of the stratospheric temperature and the total chlorine content. Two versions of the parameterization are tested. The first one only requires the solution of a continuity equation for the time evolution of the ozone mixing ratio, the second one uses one additional equation for a cold tracer. The parameterization has been introduced into the chemical transport model MOCAGE. The model is integrated with wind and temperature fields from the ECMWF operational analyses over the period 2000-2004. Overall, the results from the two versions show a very good agreement between the modelled ozone distribution and the Total Ozone Mapping Spectrometer (TOMS) satellite data and the "in-situ" vertical soundings. During the course of the integration the model does not show any drift and the biases are generally small, of the order of 10%. The model also reproduces fairly well the polar ozone variability, notably the formation of "ozone holes" in the Southern Hemisphere with amplitudes and a seasonal evolution that follow the dynamics and time evolution of the polar vortex. The introduction of the cold tracer further improves the model simulation by allowing additional ozone destruction inside air masses exported from the high to the mid-latitudes, and by maintaining low ozone content inside the polar vortex of the Southern Hemisphere over longer periods in spring time. It is concluded that for the study of climate scenarios or the assimilation of

  2. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  3. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  4. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  5. The Possible Responses Of Polar Ozone Depletion To Solar Proton Events In 2012 By FY-3 Satellite Observations

    NASA Astrophysics Data System (ADS)

    Huang, C.; Zhang, X.; Cao, D.; Huang, F.; Wang, W.; Xiao, Z.; Liu, D.

    2015-12-01

    In this work, according to FY-3 observations (measurements of Total Ozone Unit (TOU), Solar Backscatter Ultraviolet Sounder (SBUS) and Space Environment Monitor (SEM)), we analyze polar ozone depletions with Solar Proton Events (SPE) which occurred in late January and early March. Ozone distributions change with increasing energetic proton flux (particle energy is over 100MeV) at altitude of 30km. Total ozone content reduces 4%-5% during February in high latitude regions of both hemispheres that the ozone depletions contain season variations and SPE effects. From ozone profile anomaly analyses, the short-term effects of SPE can be distinguished from long-term effects of ozone season variations after SPEs took place. At the upper stratosphere, the SPE-related ozone depletions are more significant in the Northern Hemisphere in January and the short-term effects are more pronounced in March in the Southern Hemisphere.

  6. Evaluating stomatal ozone fluxes in WRF-Chem: Comparing ozone uptake in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Rydsaa, J. H.; Stordal, F.; Gerosa, G.; Finco, A.; Hodnebrog, Ø.

    2016-10-01

    The development of modelling tools for estimating stomatal uptake of surface ozone in vegetation is important for the assessment of potential damage induced due to both current and future near surface ozone concentrations. In this study, we investigate the skill in estimating ozone uptake in plants by the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) V3.6.1, with the Wesely dry deposition scheme. To validate the stomatal uptake of ozone, the model simulations were compared with field measurements of three types of Mediterranean vegetation, over seven different periods representing various meteorological conditions. Some systematic biases in modelled ozone fluxes are revealed; the lack of an explicit and time varying dependency on plants' water availability results in overestimated daytime ozone stomatal fluxes particularly in dry periods. The optimal temperature in the temperature response function is likely too low for the woody species tested here. Also, too low nighttime stomatal conductance leads to underestimation of ozone uptake during night. We demonstrate that modelled stomatal ozone flux is improved by accounting for vapor pressure deficit in the ambient air. Based on the results of the overall comparison to measured fluxes, we propose that additional improvements to the stomatal conductance parameterization should be implemented before applying the modelling system for estimating ozone doses and potential damage to vegetation.

  7. Effect of climate change on surface ozone over North America, Europe, and East Asia

    NASA Astrophysics Data System (ADS)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-04-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year 2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose that climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  8. An evaluation of electrochemical concentration Cell (ECC) sonde measurements of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Geraci, M. J.; Luers, J. K.

    1978-01-01

    Using Dobson spectrophotometer measurements of total ozone as a comparison, an analysis of the electrochemical concentration cell (ECC) ozonesonde's measurement accuracy is presented. Days of conjunctive ECC-Dobson observations (from 1970 to 1976 at Wallops Flight Center) provide a set of 123 pairs of total ozone values. Sample set statistics are generated with means and standard deviations of total ozone values and differences being noted. An in-depth study of factors such as time assumptions used in calculating residual ozone, and other possible sources of errors are examined. A study of ECC ozone profiles is also presented with an evaluation of sonde measurement of seasonal trends, altitude or peak ozone concentration, and other important ozone parameters. Short-period changes in total ozone using Dobson data during the observational period are also described.

  9. Tropospheric ozone variability over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Kulkarni, Pavan S.; Bortoli, D.; Salgado, R.; Antón, M.; Costa, M. J.; Silva, A. M.

    2011-01-01

    To study tropospheric ozone variability over the Iberian Peninsula (IP), NASA Langley TOR data have been analyzed for the 1979-2005 period. The maximum tropospheric ozone concentration over the entire IP was found in June (˜41 DU) and a minimum in December (˜29 DU). However the maximum tropospheric ozone concentration was found over West Atlantic Coast (WAC) (˜44 DU), followed by Mediterranean Coast (MC) (˜42 DU), North Atlantic Coast (NAC) (˜41 DU), Central Iberian Peninsula (CIP) (˜40 DU) and Pyrenees Mountain Range (PMR) (˜39 DU) during June-July. The high concentration of tropospheric ozone in July over the Atlantic Ocean near IP is due to the presence of Azores anticyclone and related photochemistry and dynamics, and affects the observed higher tropospheric ozone concentration over WAC zone. Strong seasonal cycle in tropospheric ozone concentration has been observed with large variation over NAC (˜49%), followed by WAC (˜48%) and MC (˜41%) compared to CIP and PMR (˜38%) zones. When the data are compared over the IP for the two periods (1979-1993 and 1997-2005), a systematic increase in the number of months with higher tropospheric ozone concentration has been observed during the second period with respect to the first. These increases are almost 8% to 24% over NAC, 6% to 17% over WAC, 5% to 24% over CIP, 6% to 23% over MC and 13% to 18% over PMR, zones. It has been observed that topography, climatology and population density distribution plays a crucial role in the variability of tropospheric ozone concentration over the IP.

  10. Ozone Antimicrobial Efficacy

    EPA Science Inventory

    Ozone is a potent germicide that has been used extensively for water purification. In Europe, 90 percent of the municipal water systems are treated with ozone, and in France, ozone has been used to treat drinking water since 1903. However, there is limited information on the bioc...

  11. Global ozone and air quality: a multi-model assessment of risks to human health and crops

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.

    2008-02-01

    Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to

  12. Investigation of the structure and dynamics of the ozone layer in the Eastern Arctic region during EASOE Campaign

    NASA Technical Reports Server (NTRS)

    Khattatov, V.; Yushkov, V.; Rudakov, V.; Zaitsev, I.; Rosen, J.; Kjome, N.

    1994-01-01

    Balloon measurements of the vertical distribution of ozone and aerosol were made at Dickson Island (73 deg N, 81 deg E), Kiruna (68 deg N, 20 deg E) and Heiss Island (81 deg N, 58 deg E) from December 1991 to March 1992. To acquire data on the seasonal variability of the vertical ozone distribution, electrochemical ozonesondes ECC-4A were flown three times a week. With ozonesondes on the same balloons, backscattersondes were flown on the average of two or three times per month. Using these instruments, altitude profiles of backscatter ratio were measured at two wavelengths centered at 490 nm and 940 nm. Additionally, at Heiss Island, Dickson, and Yakutsk (63 deg N, 130 deg E) regular total ozone measurements were obtained using Brewer spectrophotometers. Based on measurements of backscatter ratio it was found that after the Pinatubo eruption in June 1991 significant amount of stratospheric aerosols were formed and transported to the Arctic before the polar vortex was well developed. Analysis of ozone data has shown a deep decrease of ozone concentration in the lower stratosphere in times of intensive transportation of air masses from low latitudes to the polar region in the second half of January and also for some periods in February and March of 1992. When the values of backscatter ratio beta were more than 8-10 at a wavelength of 940 nm strong anticorrelation occurred between aerosol loading and ozone concentration in the lower stratosphere. At 50-70 deg N, the mean monthly values of total ozone in winter-spring 1992 proved to be much lower than the climatic mean values.

  13. Ozone drinking water treatment handbook

    SciTech Connect

    Rice, R.G.

    1990-01-01

    This book explains how ozone can be used to provide primary disinfection, while minimizing halogenated by-products. This is of use to those who design pilot plant studies in full scale ozone plants-and those who employ ozone and regulatory personnel. Detailed section on components of an ozonization system outlines feed gas preparation (air and oxygen), ozone generation, ozone contacting, ozone off gas destruction, monitoring and control of ozonation systems, engineering aspects of ozone, cost factors in ozone technology, case histories (European and U.S.).

  14. Convective Lofting Links Indian Ocean Air Pollution to Paradoxical South Atlantic Ozone Maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Guan, Hong; Thompson, Anne M.; Witte, Jacquelyn C.

    2003-01-01

    We describe a broad resolution of the "Atlantic Paradox" concerning the seasonal and geographic distribution of tropical tropospheric ozone. We describe periods of significant maximum tropospheric O3 for Jan.-April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO)O3 maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.- March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 30 or 60 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  15. Convective lofting links Indian Ocean air pollution to paradoxical South Atlantic ozone maxima

    NASA Technical Reports Server (NTRS)

    Chatfield, R. B.; Guan, H.; Thompson, A. M.; Witte, J. C.

    2005-01-01

    We describe a broad resolution of the Atlantic Parado concerning the seasonal and geographic distribution, of tropical tropospheric ozone. We highlight periods of significant maximum tropospheric O3 for Jan.- April, 1999, exploiting satellite estimates and SHADOZ (Southern Hemisphere Additional Ozonesondes). Trajectory analyses connecting sondes and Total Tropospheric Ozone (TTO) maps suggest a complex influence from the Indian Ocean: beginning with mixed combustion sources, then low level transport, cumulonimbus venting, possible stratospheric input, and finally high-level transport to the west, with possible mixing over Africa. For the Jan.-March highest column-O3 periods in the Atlantic, distinct sounding peaks trace to specific NO sources, especially lightning, while in the same episodes, recurring every 20-50 days, more diffuse buildups of Indian-to-Atlantic pollution make important contributions.

  16. Ozone decreases spring root growth and root carbohydrate content in ponderosa pine the year following exposure

    SciTech Connect

    Andersen, C.P.; Hogsett, W.E.; Wessling, R.; Plocher, M.

    1991-01-01

    Storage carbohydrates are extremely important for new shoot and root development following dormancy or during periods of high stress. The hypothesis that ozone decreases carbohydrate storage and decreases new root growth during the year following exposure was investigated. The results suggest that (1) ponderosa pine seedlings exposed to 122 and 169 ppm hrs ozone for one season have significantly less root starch reserves available just prior to and during bud break the following year, and (2) spring root growth is decreased following ozone exposure. The carry-over effects of ozone stress may be important in long-lived perennial species which are annually subjected to ozone.

  17. Tropospheric Ozone and Photochemical Smog

    NASA Astrophysics Data System (ADS)

    Sillman, S.

    2003-12-01

    emitted species, in a process that is driven by sunlight and is accelerated by warm temperatures. This smog is largely the product of gasoline-powered engines (especially automobiles), although coal-fired industry can also generate photochemical smog. The process of photochemical smog formation was first identified by Haagen-Smit and Fox (1954) in association with Los Angeles, a city whose geography makes it particularly susceptible to this type of smog formation. Sulfate aerosols and organic particulates are often produced concurrently with ozone, giving rise to a characteristic milky-white haze associated with this type of air pollution.Today ozone and particulates are recognized as the air pollutants that are most likely to affect human health adversely. In the United States, most major metropolitan areas have periodic air pollution events with ozone in excess of government health standards. Violations of local health standards also occur in major cities in Canada and in much of Europe. Other cities around the world (especially Mexico City) also experience very high ozone levels. In addition to urban-scale events, elevated ozone occurs in region-wide events in the eastern USA and in Western Europe, with excess ozone extending over areas of 1,000 km2 or more. Ozone plumes of similar extent are found in the tropics (especially in Central Africa) at times of high biomass burning (e.g., Jenkins et al., 1997; Chatfield et al., 1998). In some cases ozone associated with biomass burning has been identified at distances up to 104 km from its sources (Schultz et al., 1999).Ozone also has a significant impact on the global troposphere, and ozone chemistry is a major component of global tropospheric chemistry. Global background ozone concentrations are much lower than urban or regional concentrations during pollution events, but there is evidence that the global background has increased as a result of human activities (e.g., Wang and Jacob, 1998; Volz and Kley, 1988). A rise in

  18. The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination

    NASA Technical Reports Server (NTRS)

    Aikin, A.C.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.

  19. How Tropospheric is Tropospheric Ozone?

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Scheel, Hans-Eckhart; Sprenger, Michael; Vogelmann, Hannes

    2010-05-01

    There has been a long debate on the reasons of the increase in tropospheric ozone during the past century. Mostly the photochemical ozone formation combined with the growing level of air pollution has been stressed. However, with decreasing European precursor emissions in the 1990s and the ongoing positive trend of O3 at the high-lying Alpine station Zugspitze (2962 m a.s.l.) until about 2000 this view has started to change. Data filtering of the Zugspitze data based on relative humidity (RH), 7Be and CO measurements have revealed that the only positive ozone trend could be found for descending air masses of dominating stratospheric origin whereas the trend for polluted air masses is around zero. The 7Be data, recorded since 1970, showed a positive trend since the mid-seventies. Based on daily model forecasts by ETH of stratospheric air intrusions co-ordinated lidar measurements of ozone and, more recently, water vapour (Vogelmann and Trickl, 2008) have been carried out. It could be shown that there is an excellent agreement between the intrusion forecasts, the lidar measurements and low-RH events at the Zugspitze summit (Trickl et al., 2010). The forecasts also allowed us to define intrusion types as well as to review and to revise the data-filtering criteria used for the in-situ data. This study, carried out for the period 2001-2005, yields a significantly higher number of intrusions reaching 3000 m than obtained in previous investigations, with even about 20 per cent more cases (mostly overpasses) predicted by the forecasts. Seasonal cycles of the intrusion frequency were derived and, in all but one intrusion type, peaked during the cold season. Recent measurements with the water-vapour lidar (see parallel contribution) have revealed RH values of 0-2 per cent even in very thin layers of stratospheric origin reaching the lower troposphere. This indicates that significant mixing with tropospheric air can only occur during the early phase of an intrusion, if not

  20. A global tropospheric ozone climatology from trajectory-mapped ozone soundings

    NASA Astrophysics Data System (ADS)

    Liu, G.; Liu, J.; Tarasick, D. W.; Fioletov, V. E.; Jin, J. J.; Moeini, O.; Liu, X.; Sioris, C. E.; Osman, M.

    2013-11-01

    A global three-dimensional (i.e. latitude, longitude, altitude) climatology of tropospheric ozone is derived from the ozone sounding record by trajectory mapping. Approximately 52 000 ozonesonde profiles from more than 100 stations worldwide since 1965 are used. The small number of stations results in a sparse geographical distribution. Here, forward and backward trajectory calculations are performed for each sounding to map ozone measurements to a number of other locations, and so to fill in the spatial domain. This is possible because the lifetime of ozone in the troposphere is of the order of weeks. This physically based interpolation method offers obvious advantages over typical statistical interpolation methods. The trajectory-mapped ozone values show reasonable agreement, where they overlap, to the actual soundings, and the patterns produced separately by forward and backward trajectory calculations are similar. Major regional features of the tropospheric ozone distribution are clearly evident in the global maps. An interpolation algorithm based on spherical functions is further used for smoothing and to fill in remaining data gaps. The resulting three-dimensional global tropospheric ozone climatology facilitates visualization and comparison of different years, decades, and seasons, and offers some intriguing insights into the global variation of tropospheric ozone. It will be useful for climate and air quality model initialization and validation, and as an a priori climatology for satellite data retrievals. Further division of the climatology into decadal and annual averages can provide a global view of tropospheric ozone changes, although uncertainties with regard to the performance of older sonde types, as well as more recent variations in operating procedures, need to be taken into account.

  1. The influence of atmospheric dynamics and climate modes on mean and extreme values of column ozone over the United States

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I. V.; Johnson, B.; Evans, R. D.; Manney, G. L.; Rieder, H.

    2013-12-01

    Column ozone measurements are available from five US stations since the 1960s. These time series contain valuable information about the inter-annual variability and trends in the atmospheric ozone field related to natural and anthropogenic processes. In addition to total column measurements Umkehr ozone profiles are derived on every clear, sunny day in Boulder, CO, since 1978. These vertical measurements allow for the attributing total column ozone variability to processes of both tropospheric or stratospheric origin. It is well known that ozone in the free troposphere and lower stratosphere is greatly influenced by atmospheric dynamics. Equivalent Latitude and the position of the individual stations with respect to the subtropical and polar jets can be used to relate the variability of total ozone to transport processes. In this study we use data of all five long-term Dobson stations across the US to investigate the influence of atmospheric dynamics and climate modes, i.e., the Northern Atlantic Oscillation (NAO) and the El Nino Southern Oscillation (ENSO) on total ozone variability and trends since the 1960s. In addition to standard evaluation techniques we utilize a so called STL-decomposition method (Seasonal-Trend decomposition procedure based on Loess) and methods of statistical extreme value theory (EVT) to address the temporal variability and trends in the Dobson data, as well as synoptic-scale meteorological (i.e., subtropical jets) and climate variability. While ozone depleting substances dominate the overall negative trend in column ozone over the observational record, our analysis shows that dynamical features such as the Quasi-Biennial Oscillation (QBO) and climate modes such as ENSO and NAO contribute significantly to ozone variability (and trends) at all 5 US Dobson stations. Some individual stations capture extremes that reflect regional events more strongly than others; the signature of such events becomes clearer when comparing ozone variability

  2. Options to Accelerate Ozone Recovery: Ozone and Climate Benefits

    NASA Technical Reports Server (NTRS)

    Fleming, E. L.; Daniel, J. S.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-01-01

    The humankind or anthropogenic influence on ozone primarily originated from the chlorofluorocarbons and halons (chlorine and bromine). Representatives from governments have met periodically over the years to establish international regulations starting with the Montreal Protocol in 1987, which greatly limited the release of these ozone-depleting substances (DDSs). Two global models have been used to investigate the impact of hypothetical reductions in future emissions of ODSs on total column ozone. The investigations primarily focused on chlorine- and bromine-containing gases, but some computations also included nitrous oxide (N2O). The Montreal Protocol with ODS controls have been so successful that further regulations of chlorine- and bromine-containing gases could have only a fraction of the impact that regulations already in force have had. if all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2% during the period 2030-2100 compared to a case of no additional ODS restrictions. Chlorine- and bromine-containing gases and nitrous oxide are also greenhouse gases and lead to warming of the troposphere. Elimination of N 20 emissions would result in a reduction of radiative forcing of 0.23 W/sq m in 2100 than presently computed and destruction of the CFC bank would produce a reduction in radiative forcing of 0.005 W/sq m in 2100. This paper provides a quantitative way to consider future regulations of the CFC bank and N 20 emissions

  3. Options to accelerate ozone recovery:ozone and climate benefits

    NASA Astrophysics Data System (ADS)

    Daniel, J. S.; Fleming, E. L.; Portmann, R. W.; Velders, G. J. M.; Jackman, C. H.; Ravishankara, A. R.

    2010-04-01

    Hypothetical reductions in future emissions of ozone-depleting substances (ODSs), including N2O, are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact that regulations already in force have had. If all anthropogenic ODS emissions were halted beginning in 2011, ozone is calculated to be higher by about 1-2{%} during the period 2030-2100 compared to a case of no additional ODS restrictions. Radiative forcing by 2100 would be about 0.23 W/m2 lower due to the elimination of N2O emissions and about 0.005 W/m2 lower due to destruction of the chlorofluorocarbon (CFC) bank. The ability of EESC to be a suitable metric for total ozone is also quantified. Responding to the recent suggestion that N2O should be considered an ODS, we provide an approach to incorporate N2O into the EESC formulation.

  4. Chemistry-Transport Modeling of the Satellite Observed Distribution of Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Peters, Wouter; Krol, Maarten; Dentener, Frank; Thompson, Anne M.; Leloeveld, Jos; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20%) discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite over-estimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOX abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOX emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies. Conversely

  5. Ozone influence on native vegetation in the Jizerske hory Mts. of the Czech Republic: results based on ozone exposure and ozone-induced visible symptoms.

    PubMed

    Hůnová, Iva; Matoušková, Leona; Srněnský, Radek; Koželková, Klára

    2011-12-01

    Ozone levels in the Jizerske hory Mts. measured at 13 sites by diffusive samplers during the 2006 and 2007 vegetation seasons are presented. A significant ozone gradient (5.4 ppb in 2006 and 4.0 ppb in 2007) per 100 m difference in altitude between 370 and 1,100 m a.s.l. was recorded. High-resolution maps of phytotoxic potential were developed. The AOT40 threshold (5 ppm h) was exceeded over the entire area with the highest levels exceeding this threshold by 12 times in the upper portions of the mountains. Ozone visible injury was evaluated at four of the monitoring sites on seven native plant and tree species. Four species showed ozone-like symptoms, two of which (Rubus idaeus and Fagus sylvatica) were confirmed as ozone-induced. Our results indicate that ambient ozone is likely to have a much lower impact on the Jizerske hory Mts. vegetation than expected, considering the measured ambient ozone exposures and favourable environmental conditions for ozone uptake.

  6. Ozone’s Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry

    PubMed Central

    Weschler, Charles J.

    2006-01-01

    Objective The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related health effects by extensive review of the literature as well as further analyses of published data. Findings Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent work indicating little, if any, threshold for ozone’s impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydroperoxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone and mortality tend to have residences that are older and less likely to have central air conditioning, which implies greater transport of ozone from outdoors to indoors. Conclusions Indoor exposures to ozone and its oxidation products can be reduced by filtering ozone from ventilation air and limiting the indoor use of products and materials whose emissions react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare centers in regions that routinely experience elevated outdoor ozone concentrations. PMID:17035131

  7. Biomonitoring of tropospheric ozone phytotoxicity in rural Catalonia

    NASA Astrophysics Data System (ADS)

    Ribas, Angela; Peñuelas, Josep

    The ozone (O 3) phytotoxicity in rural areas of Catalonia (NE Spain) and the biomonitoring capacity of Bel-W3 tobacco ( Nicotiana tabacum) cultivars were assessed by determining the percentage of leaf area injured by ozone in plants of this cultivar exposed from spring to autumn since 1995-1999. The study was conducted simultaneously on nine field sites where ground level ozone concentrations and meteorological parameters were continuously monitored. Geographical, seasonal and annual variations of ozone damage rate and their links with meteorological conditions were studied. Ozone concentrations and leaf damage increased at the end of spring and the beginning of summer. Coastal sites generally presented higher O 3 concentrations than inland and mountain sites. These mountain sites were the most sensitive ones to ozone toxicity. The ozone concentrations correlated well with ozone injury. However, at this local scale the ozone levels did not fully account for all the observed injury (only 11%). The response of tobacco plants to ozone concentrations and therefore its biomonitoring capacity depended also on different environmental conditions, mainly those linked to stomatal behaviour such as vapour pressure deficit. The categorization of leaf damage in 10% intervals and its averaging throughout the whole study period and the whole region, strongly improved (99% of variance accounted) the relationship with ozone concentrations expressed as AOT20 (accumulated over a cut-off of 20 ppb v). N. tabacum cultivar Bel-W3 is thus a very good biomonitor of ozone concentrations in the long term at the regional scale. Taking into account the phytotoxical response of this sensitive tobacco cultivar, we propose the 1.28 ppm v h biweekly AOT40 (with a solar radiation threshold of 50 W m -2) as a damage threshold level for sensitive species.

  8. Calculations of increased solar UV fluxes and DUV doses due to stratospheric-ozone depletions

    SciTech Connect

    Zardecki, A.; Gerstl, S.A.W.

    1982-02-01

    Accurate radiative transfer calculations are performed in the middle ultraviolet spectral region for aerosol-loaded atmospheres with the goal of determining the solar irradiance at the ground and quantifying the irradiance perturbations due to the presence of aerosols and various ozone depletions. The extent of the increase of UV-B radiation as a function of wave-length and solar zenith angle is calculated for five model atmospheres. In addition, the damaging ultraviolet dose rates and radiation amplification factors are evaluated at different latitudes and seasons for erythemal and DNA action spectra.

  9. Spatial regression analysis on 32 years of total column ozone data

    NASA Astrophysics Data System (ADS)

    Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.

    2014-08-01

    Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively

  10. Model development for naphthenic acids ozonation process.

    PubMed

    Al Jibouri, Ali Kamel H; Wu, Jiangning

    2015-02-01

    Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters. PMID:25189805

  11. Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi

    NASA Astrophysics Data System (ADS)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric

    2016-07-01

    The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.

  12. Direct ozone production rate measurements and their use in assessing ozone source and receptor regions for Houston in 2013

    NASA Astrophysics Data System (ADS)

    Baier, Bianca C.; Brune, William H.; Lefer, Barry L.; Miller, David O.; Martins, Douglas K.

    2015-08-01

    Mitigating ozone pollution involves reducing ozone production and relies on complex air-quality models to design reduction strategies and determine their effectiveness. However, modeled ozone does not always agree with observations. A complementary approach is to measure the ozone production rate directly, leading to the development of the Measurement of Ozone Production Sensor (MOPS). Two improved second-generation MOPSv2s were deployed for NASA's DISCOVER-AQ field campaign in September 2013 at the University of Houston, 5 km south of downtown, and Smith Point, at the mouth of the Houston Ship Channel. Median September P(O3) was low, consistent with the observed ambient ozone. The MOPSv2s provided statistically similar results when they were compared for 8 day sat the University of Houston. October measurements yielded a median ozone production rate of 27 ± 11 ppbv hr-1, falling within the range of calculated P(O3) from prior Houston field campaigns in 2006 and 2009. Additionally, diurnal patterns are similar to model-derived ozone production from these previous campaigns. An advection analysis for a high ozone event on 25 September 2013 indicates that the Houston site was in a local ozone source region, while Smith Point ozone was likely enhanced by transport from other areas.

  13. Ozone depletion, paradigms, and politics

    SciTech Connect

    Iman, R.L.

    1993-10-01

    The destruction of the Earth`s protective ozone layer is a prime environmental concern. Industry has responded to this environmental problem by: implementing conservation techniques to reduce the emission of ozone-depleting chemicals (ODCs); using alternative cleaning solvents that have lower ozone depletion potentials (ODPs); developing new, non-ozone-depleting solvents, such as terpenes; and developing low-residue soldering processes. This paper presents an overview of a joint testing program at Sandia and Motorola to evaluate a low-residue (no-clean) soldering process for printed wiring boards (PWBs). Such processes are in widespread use in commercial applications because they eliminate the cleaning operation. The goal of this testing program was to develop a data base that could be used to support changes in the mil-specs. In addition, a joint task force involving industry and the military has been formed to conduct a follow-up evaluation of low-residue processes that encompass the concerns of the tri-services. The goal of the task force is to gain final approval of the low-residue technology for use in military applications.

  14. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  15. New Total Ozone Algorithm for Application to the Total Ozone Mapping Spectrometer

    NASA Technical Reports Server (NTRS)

    Wellemeyer, C.; Bhartia, P. K.; Taylor, S. L.; Qin, W.; Flynn, L.; Seftor, C.

    2003-01-01

    The Total Ozone Mapping Spectrometer (TOMS) series comprises four instruments providing a total of 25 years of daily global stratospheric ozone data over the sunlit portion of the Earth. A new retrieval algorithm has been developed for TOMS, designated Version 8. The algorithm is based on differential absorption across a pair of wavelength channels chosen close together to minimize the impact of wavelength dependent forward modeling errors. Version 8 enhancements include correction for the presence of tropospheric aerosols and sun glint from water surfaces, a better treatment of variability due to tropospheric ozone and temperature dependence, and an improved forward model, particularly in regions of persistent snow and ice. Among other things, the Version 8 enhancements have reduced latitudinal dependence seen previously in TOMS - Dobson comparisons, predominantly in the Southern Hemisphere's summer, when the tropospheric ozone, temperature, and snow/ice corrections are additive. The basic components of the algorithm and its impact on derived total ozone will be discussed.

  16. Seasonality of Tuberculosis

    PubMed Central

    Fares, Auda

    2011-01-01

    Objectives: This study was designed to review previous studies and analyse the current knowledge and controversies related to seasonal variability of tuberculosis (TB) to examine whether TB has an annual seasonal pattern. Study Design and Methods: Systematic review of peer reviewed studies identified through literature searches using online databases belonging to PubMed and the Cochrane library with key words “Tuberculosis, Seasonal influence” and “Tuberculosis, Seasonal variation”. The search was restricted to articles published in English. The references of the identified papers for further relevant publications were also reviewed. Results: Twelve studies conducted between the period 1971 and 2006 from 11 countries/regions around the world (South Western Cameroon, South Africa, India, Hong Kong, Japan, Kuwait, Spain, UK, Ireland, Russia, and Mongolia) were reviewed. A seasonal pattern of tuberculosis with a mostly predominant peak is seen during the spring and summer seasons in all of the countries (except South Western Cameroon and Russia). Conclusions: The observation of seasonality leads to assume that the risk of transmission of M. tuberculosis does appear to be the greatest during winter months. Vitamin D level variability, indoor activities, seasonal change in immune function, and delays in the diagnosis and treatment of tuberculosis are potential stimuli of seasonal tuberculosis disease. Additionally, seasonal variation in food availability and food intake, age, and sex are important factors which can play a role in the tuberculosis notification variability. Prospective studies regarding this topic and other related subjects are highly recommended. PMID:21572609

  17. Perspectives on African Ozone from Sondes, Dobson and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Diab, R. D.; Thouret, V.; Sauvage, B.

    2004-01-01

    We have been studying variability in ozone over Africa using data from ozonesondes (vertical profiles from surface to stratosphere), aircraft (the MOZAIC dataset with cruise altitude and landing/takeoff profiles) and the ground (Dobson spectrophotometer total ozone column measurement). The following may give context for ozone investigations during AMMA: 1. Total ozone measurements since 1989 show considerable variability in mean value among the African stations in Algeria, Kenya, Egypt, South Africa, as well as in seasonal cycles and year-to-year. Trends are not evident. 2. The impacts of convection, stratospheric injection, biomass burning and lightning appear in ozone sounding profile data. Time-series analysis and case studies point to periodic influences of long-range interactions with the Atlantic ("ozone paradox," wave-one") and Indian Oceans. 3. Tropospheric ozone variations, observed in tropospheric profiles and integrated column amount, follow general seasonal patterns but short- term variability is so strong that simple averages are inadequate for describing "climatology" and statistical classification approaches may be required.

  18. Massive global ozone loss predicted following regional nuclear conflict.

    PubMed

    Mills, Michael J; Toon, Owen B; Turco, Richard P; Kinnison, Douglas E; Garcia, Rolando R

    2008-04-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25-45% at midlatitudes, and 50-70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical "ozone hole." The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N(2)O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous "nuclear winter/UV spring" calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  19. Assimilation of ozone profiles from the Improved Limb Atmospheric Spectrometer. 2; Study on Antarctic Ozone

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Wargan, Krzysztof; Chang, Lang-Ping; yashi, Hiroo; Pawson, Steve; Nakajima, Hideaki

    2005-01-01

    Ozone data from the Improved Limb Atmospheric Spectrometer-II (ILAS-II) were included in addition to other satellite observations in the ozone assimilation system at the Global Modeling and Assimilation Office (GMAO) of NASA/Goddard. The control run assimilated data from NOAA 16 Solar Backscatter Ultraviolet/2 (SBUV/2) and Polar Ozone and Aerosol Measurement III (POAM III) instruments. Persistent impacts over Antarctica and transient impacts over northern middle and high latitudes are seen from April to October 2003, when ILAS-II provided good coverage. The largest improvements with respect to independent ozone sonde data are seen over the South Pole station. Ozone analyses and forecasts from the assimilation of SBUV/2, POAM III and ILAS-II data b e used to investigate the transport of ozone to southern middle latitudes following the breakup of the Antarctic vortex. The quality of analyses and forecasts is evaluated by comparison with independent Stratospheric Aerosol and Gas Experiment III (SAGE III) ozone data near 46degs. Anomaly correlations between SAGE III data and forecasts'exceed 0.6 for up to five to seven days at 30,50, and 70 ma. The loss of skill with advancing forecast length is related to dynamical errors due to an excessively persistent vortex in longer forecasts, which hampers the transport of low ozone air into middle latitudes.

  20. Is There an Arctic Ozone Hole?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    1999-01-01

    Total ozone observations from the Total Ozone Mapping Spectrometer (TOMS) instruments during March 1997 revealed an extensive region of low column densities in the Arctic region centered near the north pole. Values were below 250 Dobson units for nearly a two week period during this period, and were correlated with the position of the northern lower stratospheric polar vortex. The March 1997 average total ozone column densities were more than 30% lower than the average of column densities observed during the 1979-1982 March period. Both the northern spring seasons of 1998 and 1999 have shown much higher levels of total ozone. In this presentation, we will discuss the causes of the low total ozone values in 1997 and contrast those low values with the higher 1998 and 1999 observations. The reason for my travel to the University of Valparaiso is to give this seminar and provide information to my colleagues on our work here at GSFC. The benefit to NASA is to interact with my Univ. of Valparaiso colleagues, gain their insights and input into this research, and establish collaborations with the current research efforts at the University.

  1. EMISSION OF OZONE IN THE VALE DO PARAÍBA REGION, IN SOUTHEASTERN BRAZIL, FOR THE YEAR 2007

    NASA Astrophysics Data System (ADS)

    Dos Santos Zepka, A.; Sales, A. B.; Alvalá, P. C.

    2009-12-01

    The city of São José dos Campos (São Paulo, Brazil) in recent years has shown strong growth and current increase in industrial economy, leading to a sharp urban development and consequent problems of air pollution. The ozone is a major greenhouse gas, present in the troposphere by photochemical reactions in natural emissions of anthropogenic and biogenic hydrocarbons such as volatile organic compounds and nitrogen oxides, which can come from lightning and soil. Due to the fact that this gas is considered the main pollutant responsible for poor air quality, the objective of this study was to characterize the behavior of the emission of ozone in the Vale do Paraíba region, in Southeastern Brazil, in association with meteorological parameters. Researches in this area are essential, because of the need for better knowledge on air quality at regional and global. The motivation for this study was based on the fact that the ozone near the surface can be considered a gas harmful to human and animal health, crops and forests as well of urban areas in general, besides being used as a major indicators of air quality by agencies of monitoring environment, such as the IPCC (Intergovernmental Panel on Climate Change), for example. This study is an initial analysis that will lead to a better understanding of chemical and physical processes that occur in the atmosphere of the city and region. Ozone and meteorological data were obtained from two locations in the city, known as INPE (23°12,04'S; 45°51,06'W) and UNIVAP (23°12,05'S; 45°57,02'W) during the year 2007. The ozone data were obtained every 15 minutes and converted in hourly and daily averages. In addition, were collected the maximum and minimum measure daily. The ozone showed similar behavior to temperature and irradiance for the period studied. In spring and summer there was an increase of ozone mixing ratio, which was produced photochemically during the increase of solar irradiance. Moreover, the periods of autumn

  2. Climate-chemistry interaction affecting tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Mao, Huiting

    1999-09-01

    Tropospheric ozone, an important radiative-chemical species, has been observed increasing especially at northern midlatitudes during the past few decades. This dissertation addresses climate-chemistry interaction associated with such increases in three aspects using observations as well as atmospheric chemistry and climate models. Ozone impact on climate is first evaluated by radiative forcing calculations due to observed ozone changes. It is found that a 10% increase in tropospheric ozone causes a radiative forcing of 0.17 Wm-2 using a fixed temperature (FT) method or 0.13 Wm-2 using a fixed dynamic heating (FDH) method, which is comparable to the radiative forcing 0.26 (FT) and -0.09 Wm-2 (FDH) caused by the stratospheric ozone depletion during the 1980s. Second, radiative forcing due to changes in ozone precursors is estimated. Ozone changes in response to a 20% reduction in surface NOx emission in six regions around the globe differ between regions. A maximum decrease in ozone column reaches 5% in southeast Asia and the central Atlantic Ocean, inducing a local radiative forcing of up to -0.1 Wm-2 in those regions. It indicates that surface NOx emission changes can potentially affect regional climate. Third, the effects of climate and climate changes on atmospheric chemistry are addressed with two studies. One study investigates the effects of global warming on methane and ozone, and another looks into cloud effects on photodissociation rate constants. Calculations based on the IPCC business-as-usual scenario indicate that by 2050, temperature and moisture increases can suppress methane and tropospheric ozone increases by 17% and 11%, respectively, in reference to the 1990 concentrations. The combined effects offset the global warming induced forcing 3.90 Wm -2 by -0.46 Wm-2. A one-dimensional study suggests that a typical cirrus cloud (τ = 2) can significantly increase J(O1D) and J(NO2) around the tropopause with a maximum of 21%. Geographical and seasonal

  3. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008.

    PubMed

    Li, Chaoyang; Balluz, Lina S; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R

    2016-02-01

    Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P < 0.0001), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM2.5 concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both P < 0.0001). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: -0.30 to -0.19) and 0.21 year in females (95% CI: -0.25 to -0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy.

  4. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008

    PubMed Central

    Li, Chaoyang; Balluz, Lina S.; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R.

    2016-01-01

    Abstract Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P < 0.0001), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM2.5 concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both P < 0.0001). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: −0.30 to −0.19) and 0.21 year in females (95% CI: −0.25 to −0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy. PMID:26886595

  5. Long-Term Exposure to Ozone and Life Expectancy in the United States, 2002 to 2008.

    PubMed

    Li, Chaoyang; Balluz, Lina S; Vaidyanathan, Ambarish; Wen, Xiao-Jun; Hao, Yongping; Qualters, Judith R

    2016-02-01

    Long-term exposure to ground-level ozone is associated with increased risk of morbidity and mortality. The association remains uncertain between long-term exposure to ozone and life expectancy. We assessed the associations between seasonal mean daily 8-hour maximum (8-hr max) ozone concentrations measured during the ozone monitoring seasons and life expectancy at birth in 3109 counties of the conterminous U.S. during 2002 to 2008. We used latent class growth analysis to identify latent classes of counties that had distinct mean levels and rates of change in ozone concentrations over the 7-year period and used linear regression analysis to determine differences in life expectancy by ozone levels. We identified 3 classes of counties with distinct seasonal mean daily 8-hr max ozone concentrations and rates of change. When compared with the counties with the lowest ozone concentrations, the counties with the highest ozone concentrations had 1.7- and 1.4-year lower mean life expectancy in males and females (both P < 0.0001), respectively. The associations remained statistically significant after controlling for potential confounding effects of seasonal mean PM2.5 concentrations and other selected environmental, demographic, socio-economic, and health-related factors (both P < 0.0001). A 5 ppb higher ozone concentration was associated with 0.25 year lower life expectancy in males (95% CI: -0.30 to -0.19) and 0.21 year in females (95% CI: -0.25 to -0.17). We identified 3 classes of counties with distinct mean levels and rates of change in ozone concentrations. Our findings suggest that long-term exposure to a higher ozone concentration may be associated with a lower life expectancy. PMID:26886595

  6. Advanced treatment of biotreated textile industry wastewater with ozone, virgin/ozonated granular activated carbon and their combination.

    PubMed

    Arslan-Alaton, Idil; Seremet, Ozden

    2004-01-01

    Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.

  7. [Ozone exposure and asthma].

    PubMed

    Kleis, S; Louis, R; Bartsch, P

    2003-03-01

    Ozone is a pollutant the production of which depends on weather conditions and car engine combustion. Numerous epidemiological studies have indicated that high ozone levels correlated with morbidity in asthma. Experimental studies have shown that exposure of healthy subjects and asthmatics to ozone levels comparable to those measured in ambient air during hot summer days can generate respiratory symptoms, neutrophilic airways inflammation and lung function impairment. Lung function changes following ozone exposure are more pronounced in asthmatics and are dependent on the duration and intensity of exposure, a previous exposure and the nutritional status of the subjects. The airway epithelial cell layer is likely to play a pivotal role in initiating the inflammatory process following ozone exposure. Control of ambient air ozone levels must be a target for public health authorities.

  8. Biological effects of ozone

    SciTech Connect

    Lippmann, M. )

    1989-09-01

    Tropospheric ozone, a classic anthropogenic air pollutant, is going to remain a troublesome byproduct of contemporary civilization for many decades. We have known for some time that the hydrocarbons and nitrogen oxides from motor vehicles, together with actinic radiation, account for local and regional photochemistry leading to prolonged afternoon ozone peaks. We also now know that agricultural burning and intensive animal husbandry elevate regional and mesoscale concentrations of ozone and its precursors, and that remote background levels of ozone have been rising steadily throughout this century. The changes we will have to make in emission controls to appreciably reduce current tropospheric ozone levels will have profound effects on our transportation systems, consumer products, and lifestyles. As a society, we will have to make difficult choices about the levels of ozone-associated health, welfare, and natural system damage we will tolerate, or conversely, how much we are willing to pay for controls which can minimize the damage.

  9. Ozone therapy in periodontics

    PubMed Central

    Gupta, G; Mansi, B

    2012-01-01

    Gingival and Periodontal diseases represent a major concern both in dentistry and medicine. The majority of the contributing factors and causes in the etiology of these diseases are reduced or treated with ozone in all its application forms (gas, water, oil). The beneficial biological effects of ozone, its anti-microbial activity, oxidation of bio-molecules precursors and microbial toxins implicated in periodontal diseases and its healing and tissue regeneration properties, make the use of ozone well indicated in all stages of gingival and periodontal diseases. The primary objective of this article is to provide a general review about the clinical applications of ozone in periodontics. The secondary objective is to summarize the available in vitro and in vivo studies in Periodontics in which ozone has been used. This objective would be of importance to future researchers in terms of what has been tried and what the potentials are for the clinical application of ozone in Periodontics. PMID:22574088

  10. Observational Diagnoses of Extratropical Ozone STE During the Aura Era

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Douglass, Anne R.; Witte, Jacquie C.; Kaplan, Trevor B.

    2011-01-01

    The transport of ozone from the stratosphere to the extratropical troposphere is an important boundary condition to tropospheric chemistry. However, previous direct estimates from models and indirect estimates from observations have poorly constrained the magnitude of ozone stratosphere-troposphere exchange (STE). In this study we provide a direct diagnosis of the extratropical ozone STE using data from the Microwave Limb Sounder on Aura and output of the MERRA reanalysis over the time period from 2005 to the present. We find that the mean annual STE is about 275 Tg/yr and 205 Tg/yr in the NH and SH, respectively. The interannual variability of the magnitude is about twice as great in the NH than the SH. We find that this variability is dominated by the seasonal variability during the late winter and spring. A comparison of the ozone flux to the mass flux reveals that there is not a simple relationship between the two quantities. This presentation will also examine the magnitude and distribution of ozone in the lower stratosphere relative to the years of maximum and minimum ozone STE. Finally, we will examine any possible signature of increased ozone STE in the troposphere using sonde and tropospheric ozone residual (TOR) data, and output from the Global Modeling Initiative Chemistry Transport Model (GMI CTM).

  11. Foreign versus Domestic Contributions to China's Ozone Air Pollution

    NASA Astrophysics Data System (ADS)

    Ni, Ruijing; Lin, Jintai; Lin, Weili; Yan, Yingying

    2016-04-01

    Ozone is a critical air pollutant because it damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China' ozone pollution. Here, we use the global chemical transport model (GEOS-Chem) simulations to quantify the contributions of ozone transport from regions with large anthropogenic emissions to China. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone air quality. Of all ozone over China produced by global anthropogenic emissions, foreign anthropogenic emissions contribute 40% near the surface, and the foreign contribution increases with altitude and reaches up to 70% in the upper troposphere. The contributions by North America and Europe reach maximum levels in spring, in which season Chinese influence on the western United States also peaks. The springtime maxima are associated with strong westerly winds and frequent cyclonic activities favorable to the long-range transport. European anthropogenic pollution enhanced surface ozone concentrations by 1~4 ppbv over Western and Northern China in spring and winter. Despite much longer transport distance, the contribution from North America is distinctly greater than that from Europe due to the nearly tripled VOC emissions. Ozone contributed by Foreign Asian countries peaks in summer and autumn, widely dispersed to the upper troposphere over Southern China with strong upwelling. Therefore, although China produces large amounts of ozone precursor emissions, its domestic ozone pollution is still contributed significantly by foreign anthropogenic emissions. Our study is relevant to Chinese ozone pollution control and global collaboration.

  12. The Validation of Ground Based Ozone Measurements over Korea.

    NASA Astrophysics Data System (ADS)

    Baek, K. H.; Kim, J. H.; Herman, J. R.; Haffner, D. P.; Kim, J.

    2015-12-01

    The Validation of Ground Based Ozone Measurements over KoreaKorea will launch GEMS instrument in 2018 onboard the Geostationary Korea Multi-Purpose Satellite to monitor tropospheric gas concentrations in both high temporal and spatial resolution. In order to utilize information from satellite, it is crucial to carry out validation of satellite data with respect to ground-based measurements because satellite retrievals suffer from large error. The purpose of this study is to examine the performance of total ozone measurements from Pandora, Brewer, and Dobson which will be used for validation of GEMS ozone product. Because single version of the satellite retrieval algorithm is used to process the entire data set for a given satellite instrument and satellite instrument characteristics are typically changing slowly, it is assumed that sudden jumps or large drifts in ground-satellite total ozone measurements difference for individual sites are commonly related to problems with ground-based measurements. Thereby, satellite measurements can be used to estimate the performance of the ground-based measurement network as well as to identify potential problems residing in individual station. As a reference of satellite ozone measurements, we have selected ozone data derived from OMI-TOMS V8.5 algorithm because it is a very robust algorithm that has well studied about various error sources such as the effects of aerosols and clouds, variation in shape of ozone profiles with season, latitude, and total ozone. For the future validation of GEMS measurements, Korea has planned to use Pandora measurement that has been started operating since 2012. However, Pandora measurements reported to have unusual high total column ozone in the presence of clouds from the comparison of Pandora with OMI total ozone during DISCOVERY-AQ campaign. In this study, we will analyze the Pandora measurements associated with cloud and introduce the statistical technique, Kalman Filter, to correct the

  13. The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.

    1994-01-01

    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.

  14. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Astrophysics Data System (ADS)

    Olsen, M. A.; Schoeberl, M. R.; Ziemke, J. R.

    2006-12-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere- troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone from OMI total column measurements creates a high- resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that ozone transported from the stratosphere may be responsible for a significant fraction of the mean tropospheric ozone maxima.

  15. [Influence of ozone on snap bean under ambient air in two sites of northern China].

    PubMed

    Yuan, Xiang-Yang; Zhang, Wei-Wei; Sun, Jing-Song; Hu, En-Zhu; Zhang, Yu-Long; Zhang, Hong-Xing; Tian, Yuan; Feng, Zhao-Zhong

    2014-08-01

    Tropospheric ozone (O3) has been assumed the most phytotoxic air pollutant and the snap bean (Phaseolus vulgaris L.) is known to be an ozone-sensitive species. Two genotypes (R123, ozone-tolerance, S156, ozone-sensitivity) of snap bean were explored in three places. The objective of this study was to evaluate whether the snap bean was influenced under the current ambient ozone concentration. The findings indicated that the leaves of bean grown at Research Center for Eco-Environmental Sciences (RCEES), Chinese Academy of Sciences and ChangPing showed visible ozone symptoms under the ambient ozone concentration, and the averaged ozone injury proportion in S156 was 23.5% higher than R123 during the entire growth season. The ozone damage to the snap bean depends on the plant growing stages. The injury symptoms appeared just after flowering, increased from the stages of flowering to pod formation, and reached the maximum at the stages of pod maturation. The ratio of S156/R123 in pod yield was 0.48, and 0.24 and 0.73 in the RCEES, ChangPing and Harbin, respectively. The ratio close to 1 was assumed that the plant growth is not affected by ozone, and the lower ratio is, the more damage caused by ozone. Obviously, the current ambient ozone concentration of Beijing area has significantly caused the yield loss of snap bean.

  16. Year-round atmosphere-snowpack ozone exchanges at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Van Dam, B. A.; Helmig, D.; Honrath, R. E.; Hueber, J.; Seok, B.; Toro, C.; Kramer, L. J.; Ganzeveld, L.; Neff, W. D.

    2012-12-01

    Previous field observations along with model sensitivity studies have indicated that surface ozone fluxes over snow are an important component impacting tropospheric ozone levels in the Arctic. The goal of this work is to demonstrate and quantify the numerous dependencies and controls that operate on atmosphere-snowpack chemical exchanges over an ice sheet. To accomplish this, year round atmosphere-snowpack ozone exchanges are presented for the dry, polar snowpack at GEOSummit Station, Greenland. Eddy-covariance and gradient derived ozone fluxes are analyzed in concert with measurements of ozone and nitrogen oxides within the snowpack interstitial air, a suite of meteorological and turbulence measurements at the surface, and high temporal and spatial resolution near-surface ozone profile data from an intermittently run moving inlet system. These measurements improve upon our current understanding of surface ozone exchanges over polar snow by indicating the influence of diurnal and seasonal radiation cycles, as well as snow temperature and boundary layer conditions.

  17. Energetic particle precipitation: A major driver of the ozone budget in the Antarctic upper stratosphere

    NASA Astrophysics Data System (ADS)

    Damiani, Alessandro; Funke, Bernd; Santee, Michelle L.; Cordero, Raul R.; Watanabe, Shingo

    2016-04-01

    Geomagnetic activity is thought to affect ozone and, possibly, climate in polar regions via energetic particle precipitation (EPP) but observational evidence of its importance in the seasonal stratospheric ozone variation on long time scales is still lacking. Here we fill this gap by showing that at high southern latitudes, late winter ozone series, covering the 1979-2014 period, exhibit an average stratospheric depletion of about 10-15% on a monthly basis caused by EPP. Daily observations indicate that every austral winter EPP-induced low ozone concentrations appear at about 45 km in late June and descend later to 30 km, before disappearing by September. Such stratospheric variations are coupled with mesospheric ozone changes also driven by EPP. No significant correlation between these ozone variations and solar ultraviolet irradiance has been found. This suggests the need of including the EPP forcing in both ozone model simulations and trend analysis.

  18. The Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1988-01-01

    Processes that may be responsible for the thinning in the ozone layer above the South Pole are described. The chlorine catalytic cycle which destroys ozone is described, as are the major types of reactions that are believed to interfere with this cycle by forming chlorine reservoirs. The suspected contributions of polar stratospheric clouds to these processes are examined. Finally, the possibility that the ozone hole may be due more to a shift in atmospheric dynamics than to chemical destruction is addressed.

  19. Changes in stratospheric ozone.

    PubMed

    Cicerone, R J

    1987-07-01

    The ozone layer in the upper atmosphere is a natural feature of the earth's environment. It performs several important functions, including shielding the earth from damaging solar ultraviolet radiation. Far from being static, ozone concentrations rise and fall under the forces of photochemical production, catalytic chemical destruction, and fluid dynamical transport. Human activities are projected to deplete substantially stratospheric ozone through anthropogenic increases in the global concentrations of key atmospheric chemicals. Human-induced perturbations may be occurring already.

  20. Information On Tropospheric Ozone From Space Borne Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Hasekamp, O. P.; Landgraf, J.

    Tropospheric ozone retrieval from reflectance spectra is an important issue for many current and future satellite instruments.However, it is difficult to distinguish between stratospheric and tropospheric ozone on the basis of reflectance spectra only, because the reflectance is a quantity that is more sensitive to stratospheric ozone than to tro- pospheric ozone. In this paper we show that satellite measurements of the state of polarization of backscattered light contain valuable additional information on tropo- spheric ozone. The reason for this is the high sensitivity of the state of polarization to tropospheric ozone. This is because the state of polarization is most sensitive to ozone at that altitude where most scattering takes place, which is in the troposphere for wavelengths >300 nm. Retrievals performed on synthetic GOME-2 data show that the vertical resolution of the tropospheric ozone profile is significantly improved if a polarization measurement is used in addition to the reflectance spectrum. Prob- lems that are currently encountered in tropospheric ozone retrieval from reflectance spectra may be solved by using additional polarization measurements.

  1. Adsorption air cleaning from ozone.

    PubMed

    Baltrenas, Pranas; Paliulis, Dainius; Vasarevicius, Saulius; Simaitis, Ramutis

    2003-01-01

    Not much has been written about air cleaning from ozone. The aim of this paper was to demonstrate the possibility of adsorption air cleaning from ozone. The second aim was to investigate the dependence of the efficiency of ozone removal from the air on the height of the adsorber layer and on concentrations of ozone, and to obtain empirical formulas for calculating the efficiency of ozone treatment. Equipment for air cleaning from ozone and nitrogen and sulphur dioxides is suggested.

  2. An Extended View of Ozone and Chemistry in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Smith, Ramsey L.; Fast, Kelly E.; Kostiuk, T.; Lefevre, Frank; Hewagama, Tilak; Livengood, Timothy A.

    2011-01-01

    We present an ongoing effort to characterize chemistry in Mars' atmosphere in multiple seasons on timescales longer than spaceflight missions through coordinated efforts by GSFC's HIPWAC spectrometer and Mars Express SPICAM, archival measurements, and tests/application of photochemical models. The trace species ozone (03) is an effective probe of Mars' atmospheric chemistry because it is destroyed by odd-hydrogen species (HOx, from water vapor photolysis). Observed ozone is a critical test for specific predictions by 3-D photochemical models (spatial, diurnal, seasonal). Coordinated measurements by HIPWAC and SPICAM quantitatively linked mission data to the 23-year GSFC ozone data record and also revealed unanticipated inter-decadal variability of same-season ozone abundances, a possible indicator of changing cloud activity (heterogeneous sink for HOx). A detailed study of long-term conditions is critical to characterizing the predictability of Mars' seasonal chemical behavior, particularly in light of the implications of and the lack of explanation for reported methane behavior.

  3. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  4. Spatial distribution of tropospheric ozone in western Washington, USA.

    PubMed

    Cooper, S M; Peterson, D L

    2000-03-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area approximately 6000 km(2)), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55-67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk. PMID:15092980

  5. Discoveries about Tropospheric Ozone Pollution from Satellite and Sounding

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2004-01-01

    We have been producing near-real time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. This is most readily done for the tropics, where the stratospheric and tropospheric ozone column amounts can be discriminated readily. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: chttp://www.atmos.umd.edu/-trope>. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. Time permitting, examples of mid-latitude, intercontinental transport of ozone pollution sensed by TOMS will be shown. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (less than 2000 ozone profiles): (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) convective variability affects tropospheric ozone over the Indian and Pacific Ocean; (d) a "tropical Atlantic Paradox" appears in December-January-February.

  6. Altitude troposphere ozone profiles over Kyiv-Goloseyev station by simultaneous Umkehr and FTIR observations

    NASA Astrophysics Data System (ADS)

    Milinevsky, Gennadi; Shavrina, Angelina; Udodov, Evgeny; Liptuga, Anatoly; Kyslyi, Volodymyr; Danylevsky, Vassyl; Kravchenko, Volodymyr; Ivanov, Yuri; Synyavski, Ivan; Romanyuk, Yaroslav; Pavlenko, Yakov; Veles, Oleksandr

    2016-04-01

    Total ozone column and ozone profile data have been obtained from both: (1) standard Dobson measurements and Umkehr method, and (2) using modeling of the ozone absorption spectral band profile near 9.6 microns with the MODTRAN4.3 Atmospheric Radiation Transfer Model based on the HITRAN molecular absorption database from Fourier transform infrared spectroscopy (FTIR) observations. The simultaneous ground-based Dobson/Umkehr and FTIR ozone observations have been performed in 2014-2015 at the mid-latitude Kyiv-Goloseyev KGV GAW station for joint altitude troposphere ozone profiles analysis. To retrieve ozone column estimates and ozone profiles from FTIR observations, we used the satellite Aqua-AIRS water vapor, temperature and ozone profiles, and the simultaneous with FTIR observations the Umkehr ozone profiles and surface ozone measurements as input a priori information for the MODTRAN4.3 model. The altitude ozone profiles retrieved from Umkehr method and satellite measurements are in good correspondence in stratosphere layer. However the troposphere part of ozone profiles is uncertain and reproduced with large errors. Therefore we use the MODTRAN4.3 model for interpretation of observed FTIR absorption spectrum to retrieve and improve the troposphere part of ozone altitude distribution. The synergy of Umkehr, satellite and FTIR simultaneous observations including surface ozone measurements allows rendering the ozone profile features in troposphere that indicate the stratosphere-troposphere exchange processes. Season ozone profile variations observed from Umkehr measurements are discussed as well. This work was partly supported by the Polar FORCeS project no. 4012 of the Australian Antarctic Science Program.

  7. Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer

    NASA Astrophysics Data System (ADS)

    Hayashida, S.; Liu, X.; Ono, A.; Yang, K.; Chance, K.

    2015-09-01

    We report observations from space using ultraviolet (UV) radiance for significant enhancement of ozone in the lower troposphere over central and eastern China (CEC). The recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite revealed the spatial and temporal variation of ozone distributions in multiple layers in the troposphere. We compared the OMI-derived ozone over Beijing with airborne measurements by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. The correlation between OMI and MOZAIC ozone in the lower troposphere was reasonable, which assured the reliability of OMI ozone retrievals in the lower troposphere under enhanced ozone conditions. The ozone enhancement was clearly observed over CEC, with Shandong Province as its center, and was most notable in June in any given year. Similar seasonal variations were observed throughout the 9-year OMI measurement period of 2005 to 2013. A considerable part of this ozone enhancement could be attributed to the emissions of ozone precursors from industrial activities and automobiles, and possibly from open crop residue burning (OCRB) after the winter wheat harvest. The ozone distribution presented in this study is also consistent with some model studies. The lower tropospheric ozone distribution is first shown from OMI retrieval in this study, and the results will be useful in clarifying any unknown factors that influence ozone distribution by comparison with model simulations.

  8. Variability of sunspot cycle QBO and total ozone over high altitude western Himalayan regions

    NASA Astrophysics Data System (ADS)

    Ningombam, Shantikumar Singh

    2011-10-01

    Long-term trend of total column ozone at high altitude region in Ladakh is studied, using a total ozone mapping spectrometer and an ozone monitoring instrument during 1979-2008. In the region, total ozone exhibits seasonality with maximum in spring and minimum in autumn. The decreasing trend of total ozone was found as -2.51±0.45% per decade with 95% confidence level in the region. Ozone deficiency in the Ladakh region is strongest (-33.9 DU at Hanle) in May and weakest (-11.5 DU at Hanle) in January-February. In the study, the solar maximum in 1990 is in phase with ozone maximum, while ozone variation lags in phase with the 1980 and 2000 solar maxima. However, a significant correlation between total ozone and sunspot number is achieved in the westerly phase of quasi-biennial oscillation during spring season. Decreasing trend of ozone in the region is correlating well with the cooling rate in the lower stratosphere.

  9. Climate-driven ground-level ozone extreme in the fall over the Southeast United States

    PubMed Central

    Wang, Yuhang

    2016-01-01

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980–2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management. PMID:27551089

  10. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    PubMed

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-01

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  11. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    PubMed

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-01

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management. PMID:27551089

  12. Use of satellite data to study tropospheric ozone in the tropics

    NASA Technical Reports Server (NTRS)

    Fishman, Jack; Minnis, Patrick; Reichle, Henry G., Jr.

    1986-01-01

    Three independent examples are discussed which suggest that photochemical ozone production in the troposphere can be observed in the tropics from an analysis of total ozone data. The first finding shows that the seasonal cycle of total columnar ozone is dominated by the seasonal cycle of tropospheric ozone, even though tropospheric ozone accounts for only 5-15 percent of the total ozone. Second, a case study is presented which shows that enhanced total ozone observed over the Amazon Basin can be associated with the presence of biomass burning. In situ measurements have confirmed that biomass burning does result in the production of photochemically generated ozone, analogous to the formation of 'smog' near industrialized areas. Third, an analysis of the distribution of carbon monoxide obtained from a Space Shuttle platform is strongly correlated with the concurrent distribution of total ozone between 5 deg S and 10 deg N. Because all of the sources of carbon monoxide are located in the troposphere, this finding likewise suggests that the gradients of total ozone at low latitudes must also reflect processes occurring in the troposphere.

  13. Toward Improving Atmospheric Models and Ozone Projections: Laboratory UV Absorption Cross Sections and Equilibrium Constant of ClOOCl

    NASA Astrophysics Data System (ADS)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2015-12-01

    Thirty years have now passed since the discovery of the Antarctic ozone hole, and despite comprehensive international agreements being in place to phase out CFCs and halons, polar ozone losses generally remain severe. The relevant halogen compounds have very long atmospheric lifetimes, which ensures that seasonal polar ozone depletion will likely continue for decades to come. Changes in the climate system can further impact stratospheric ozone abundance through changes in the temperature and water vapor structure of the atmosphere and through the potential initiation of solar radiation management efforts. In many ways, the rate at which climate is changing must now be considered fast relative to the slow removal of halogens from the atmosphere. Photochemical models of Earth's atmosphere play a critical role in understanding and projecting ozone levels, but in order for these models to be accurate, they must be built on a foundation of accurate laboratory data. ClOOCl is the centerpiece of the catalytic cycle that accounts for more than 50% of the chlorine-catalyzed ozone loss in the Arctic and Antarctic stratosphere every spring, and so uncertainties in the ultraviolet cross sections of ClOOCl are particularly important. Additionally, the equilibrium constant of the dimerization reaction of ClO merits further study, as there are important discrepancies between in situ measurements and lab-based models, and the JPL-11 recommended equilibrium constant includes high error bars at atmospherically relevant temperatures (~75% at 200 K). Here we analyze available data for the ClOOCl ultraviolet cross sections and equilibrium constant and present new laboratory spectroscopic results.

  14. Distribution of tropospheric ozone determined from satellite data

    SciTech Connect

    Fishman, J. ); Watson, C.E. ); Larsen, J.C. ); Logan, J.A. )

    1990-03-20

    An analysis of more than 22,000 ozone profiles from Stratospheric Aerosol and Gas Experiment 1 (SAGE 1) (1979-1981) and SAGE 2 (1984-1987) between 50{degree}N and 50{degree}S is used in conjunction with 9 years (1979-1987) of daily global depictions of total ozone from the Total Ozone Mapping Spectrometer (TOMS) instrument abroad Nimbus 7 to investigate the spatial distribution and seasonal cycle of the integrated amount of ozone in the troposphere. In the tropics, highest concentrations are found in the eastern Atlantic Ocean downwind (west) of Africa and maximize during the time when biomass burning is most prevalent, between July and October. A different seasonal cycle in the tropics is also observed over Indonesia where a relative maximum is present in the March-April time frame, likewise consistent with when biomass burning is most prevalent. At mid-latitudes, highest concentrations are found downwind of Asia and maximize in the summer. Relatively higher amounts of tropospheric ozone are similarly observed downwind of North America and Europe. At mid-latitudes, the ratio between the amount of tropospheric ozone in the northern hemisphere and the amount in the southern hemisphere is 1.4, in good agreement with in situ measurements. A detailed comparison of this satellite technique with available ozonesonde measurements suggests that the accuracy of this method for deriving the climatology of tropospheric ozone is probably better than 10% in the tropics and 15% at mid-latitudes. The authors also show that TOMS total ozone measurements in the tropics can often be used independently to provide important qualitative insight into the behavior of tropospheric ozone at these low latitudes.

  15. The Interaction Between Dynamics and Chemistry of Ozone in the Set-Up Phase of the Northern Hemisphere Polar Vortex

    NASA Technical Reports Server (NTRS)

    Kawa, S.R.; Douglass, A. R.; Bevilacqua, R.; Margitan, J. J.; Sen, B.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding stratospheric ozone loss to the point of accurately predicting ozone in the future requires correctly distinguishing chemical from transport-induced changes in ozone. For example, evaluating the impact of chlorine reduction in controlling stratospheric ozone loss requires estimating the amount of ozone lost in chemical reactions in the polar winter and spring. The Northern Hemisphere winter polar region is a particularly crucial and interesting area because it appears that the Northern vortex may currently be poised near the threshold of extreme ozone destruction such as that which now occurs annually in the Antarctic ozone "hole." In this presentation we explore the interaction of ozone transport and chemistry through the Northern late summer and fall seasons as the vortex circulation becomes established. This phase of the seasonal cycle determines the starting point for heterogeneous processes and chlorine-driven loss that take control in the winter vortex. Using a combination of profile data from POAM, HALOE, and in situ measurements, we show that relatively low ozone at high latitudes in the middle stratosphere is associated with vortex airmasses and that these ozone abundances evolve photochemically from characteristically higher values at the end of the summer. The zonal variance of ozone mixing ratio also increases greatly at this time consistent with increasing wave-driven transport. Comparison with a three-dimensional chemistry-transport model is used to generalize the findings from the limited set of observations and quantify the relative roles of transport and chemistry in determining the ozone mixing ratio distributions.

  16. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  17. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    PubMed

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications.

  18. Benefit-cost analysis of commercially available activated carbon filters for indoor ozone removal in single-family homes.

    PubMed

    Aldred, J R; Darling, E; Morrison, G; Siegel, J; Corsi, R L

    2016-06-01

    This study involved the development of a model for evaluating the potential costs and benefits of ozone control by activated carbon filtration in single-family homes. The modeling effort included the prediction of indoor ozone with and without activated carbon filtration in the HVAC system. As one application, the model was used to predict benefit-to-cost ratios for single-family homes in 12 American cities in five different climate zones. Health benefits were evaluated using disability-adjusted life-years and included city-specific age demographics for each simulation. Costs of commercially available activated carbon filters included capital cost differences when compared to conventional HVAC filters of similar particle removal efficiency, energy penalties due to additional pressure drop, and regional utility rates. The average indoor ozone removal effectiveness ranged from 4 to 20% across the 12 target cities and was largely limited by HVAC system operation time. For the parameters selected in this study, the mean predicted benefit-to-cost ratios for 1-inch filters were >1.0 in 10 of the 12 cities. The benefits of residential activated carbon filters were greatest in cities with high seasonal ozone and HVAC usage, suggesting the importance of targeting such conditions for activated carbon filter applications. PMID:25952610

  19. A statistical model to predict total column ozone in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; Mat Jafri, M. Z.

    2016-03-01

    This study aims to predict monthly columnar ozone in Peninsular Malaysia based on concentrations of several atmospheric gases. Data pertaining to five atmospheric gases (CO2, O3, CH4, NO2, and H2O vapor) were retrieved by satellite scanning imaging absorption spectrometry for atmospheric chartography from 2003 to 2008 and used to develop a model to predict columnar ozone in Peninsular Malaysia. Analyses of the northeast monsoon (NEM) and the southwest monsoon (SWM) seasons were conducted separately. Based on the Pearson correlation matrices, columnar ozone was negatively correlated with H2O vapor but positively correlated with CO2 and NO2 during both the NEM and SWM seasons from 2003 to 2008. This result was expected because NO2 is a precursor of ozone. Therefore, an increase in columnar ozone concentration is associated with an increase in NO2 but a decrease in H2O vapor. In the NEM season, columnar ozone was negatively correlated with H2O (-0.847), NO2 (0.754), and CO2 (0.477); columnar ozone was also negatively but weakly correlated with CH4 (-0.035). In the SWM season, columnar ozone was highly positively correlated with NO2 (0.855), CO2 (0.572), and CH4 (0.321) and also highly negatively correlated with H2O (-0.832). Both multiple regression and principal component analyses were used to predict the columnar ozone value in Peninsular Malaysia. We obtained the best-fitting regression equations for the columnar ozone data using four independent variables. Our results show approximately the same R value (≈ 0.83) for both the NEM and SWM seasons.

  20. The Antarctic Ozone Hole.

    ERIC Educational Resources Information Center

    Stolarski, Richard S.

    1988-01-01

    Discusses the Airborne Antarctic Ozone Experiment (1987) and the findings of the British Antarctic Survey (1985). Proposes two theories for the appearance of the hole in the ozone layer over Antarctica which appears each spring; air pollution and natural atmospheric shifts. Illustrates the mechanics of both. Supports worldwide chlorofluorocarbon…

  1. Surface Ozone in Kiev

    NASA Astrophysics Data System (ADS)

    Shavrina, A. V.; Mikulskaya, I. A.; Kiforenko, S. I.; Blum, O. B.; Sheminova, V. A.; Veles, A. A.

    The study of total ozone over Kiev and its concentration changes with height in the troposphere has been made on the base of ground-based observations with the infrared Fourier-spectrometer in the Main Astronomical Observatory of National Academy of Sciences of Ukraine (MAO NASU) as part of ESA-NIVR-KNMI project no 2907 "OMI validation by ground based remote sensing: ozone columns and atmospheric profiles "(2005-2008) [1,2,4]. Ground-level ozone in Kiev for an episode of its high concentrations in August 2000 was also simulated with the model of urban air pollution UAM-V [5,6]. In 2008 the satellite data Aura-OMI on profiles of ozone in the atmosphere OMO3PR became available (http://disc.sci.gsfc.nasa.gov/ Aura/data-holdings/OMI/ omo3pr_v003.shtml). They include ozone content in the lower layer of the atmosphere, beginning from 2005, which can be used to evaluate the ground-level ozone in all cities of Ukraine. The comparison of the data of ozone air pollution in Kiev (ozone - the pollutant of the first class of danger) and medical statistics data of of respiratory system (RS) diseases of the city population was carried out with the package "Statistica". A regression analysis, prognostic regression modelling, and retrospective prognosis of the epidemiological situation with respect to RS pathologies in Kiev in 2000-2006 were performed.

  2. Ozone and temperature trends

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Fioletov, Vitali; Bishop, Lane; Godin, Sophie; Bojkov, Rumen D.; Kirchhoff, Volker; Chanin, Marie-Lise; Zawodny, Joseph M.; Zerefos, Christos S.; Chu, William

    1991-01-01

    An update of the extensive reviews of the state of knowledge of measured ozone trends published in the Report of the International Ozone Trends Panel is presented. The update contains a review of progress since these reports, including reviewing of the ozone records, in most cases through March 1991. Also included are some new, unpublished reanalyses of these records including a complete reevaluation of 29 stations located in the former Soviet Union. The major new advance in knowledge of the measured ozone trend is the existence of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer (TOMS) and Stratospheric Aerosol and Gas Experiment (SAG) instruments. These confirm many of the findings, originally derived from the Dobson record, concerning northern mid-latitude changes in ozone. We now have results from several instruments, whereas the previously reported changes were dependent on the calibration of a single instrument. This update will compare the ozone records from many different instruments to determine whether or not they provide a consistent picture of the ozone change that has occurred in the atmosphere. The update also briefly considers the problem of stratospheric temperature change. As in previous reports, this problem received significantly less attention, and the report is not nearly as complete. This area needs more attention in the future.

  3. Saving Our Ozone Shield.

    ERIC Educational Resources Information Center

    Lacoste, Beatrice

    1992-01-01

    Discusses the introduction and continued use of chlorofluorocarbons (CFCs) as related to stratospheric ozone depletion. Presents the characteristics of CFCs conducive to the chemical reaction with ozone, the history of CFC use and detection of related environmental problems, health hazards, and alternatives to CFC use. (MCO)

  4. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  5. Observing trends in total ozone and extreme ozone events

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2014-05-01

    The ozone layer in the stratosphere has been recovering since the 1989 Montreal Protocol reduced the use of ozone-destroying chlorofluorocarbons. Fitzka et al. observed trends in total ozone levels and the vertical distribution of ozone at Hoher Sonnblick, a mountain in Austria, from 1994 to 2011.

  6. Ozone in equatorial latitudes

    NASA Astrophysics Data System (ADS)

    Martini, L.; Zimmermann, G.; Trinkkeller, B.

    The presence of ozone in the atmosphere protects the biosphere against harmful solar UV radiation. The ozone distribution in the atmosphere is maintained on the basis of a complex system of reactions. The amount of atmospheric ozone might be reduced as a consequence of human activities. Such reduction in the atmospheric ozone could affect climate and biological processes on earth. As a part of plans for a further enhancement of the global surveillance of the atmospheric ozone layer, a series of radiation experiments concerning the quartz-ultraviolet region were conducted as a joint project of the German Democratic Republic and the USSR. The experiments had the objective to measure the radiative flux of the solar UV radiation and to determine absorption and dispersion of the radiation in the upper atmosphere. The investigation included the launching of 12 rockets from a research vessel in the Indian Ocean near the equator and 34 balloon flights.

  7. Impact of climate variability on tropospheric ozone.

    PubMed

    Grewe, Volker

    2007-03-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Niño), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO(x) emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  8. Impact of climate variability on tropospheric ozone.

    PubMed

    Grewe, Volker

    2007-03-01

    A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Niño), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO(x) emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric

  9. Changing Seasons

    ERIC Educational Resources Information Center

    Karolak, Eric

    2011-01-01

    In some ways, there is a season of change at the national level in early childhood. Some things are wrapping up while some developments aim to prepare the "field" for improvements in the next year and beyond, just as a garden plot is readied for the next planting season. Change is in the air, and there's hope of renewal, but what changes and how…

  10. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J. M.

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  11. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    SciTech Connect

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    2010-06-23

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels in different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.

  12. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  13. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J.

    2008-12-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs) has been firmly established with laboratory measurements, atmospheric observations, and modeling research. The nations of the world implemented the Montreal Protocol (and amendments) which stopped ODS production in 1992. In this presentation we use a fully coupled radiation- chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally average column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet (UV) radiation increases, tripling the erythemal (sunburn) radiation in the northern summer mid-latitudes by 2065.

  14. Ozone-induced stomatal sluggishness develops progressively in Siebold's beech (Fagus crenata).

    PubMed

    Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi

    2012-07-01

    We investigated the effects of ozone and leaf senescence on steady-state stomatal conductance and stomatal response to light variation. Measurements were carried out in a free-air ozone exposure experiment on a representative deciduous broadleaved tree species in Japan (Fagus crenata). Both steady-state and dynamic stomatal response to light variation varied intrinsically with season due to leaf senescence. Ozone induced the decrease in steady-state leaf gas exchange and the sluggish stomatal closure progressively. These findings suggest that ozone reduces the ability of plants to adapt to a fluctuating light environment under natural conditions, and therefore impairs plant growth and ability to control water loss.

  15. Ozone risk for crops and pastures in present and future climates

    NASA Astrophysics Data System (ADS)

    Fuhrer, Jürg

    2009-02-01

    Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions

  16. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores.

    PubMed

    Jung, Yeon Jung; Oh, Byung Soo; Kang, Joon-Wun

    2008-03-01

    This study was performed to evaluate the inactivation efficiency or synergy of combined ozone and UV processes (combined ozone/UV process) or sequential processes (ozone-UV, UV-ozone) compared with individual unit processes and to investigate the specific roles of ozone, UV and the hydroxyl radical, which is formed as an intermediate in the combined ozone/UV process. The Bacillus subtilis spore, which has often been used as a surrogate microorganism for Cryptosporidium parvum oocysts, was used as a target microorganism. Compared to individual unit processes with ozone or UV, the inactivation of B. subtilis spores by the combined ozone/UV process was enhanced under identical conditions. To investigate the specific roles of ozone and UV in the combined ozone/UV process, sequential ozone-UV and UV-ozone processes were tested for degrees of inactivation. Additionally, the experiment was performed in the presence and absence of tert-butyl alcohol, which acted as a hydroxyl radical scavenger to assess the role of inactivation by the hydroxyl radical in the combined ozone/UV process. Among the five candidate processes, the greatest synergistic effect was observed in the combined ozone/UV process. From the comparison of five candidate processes, the hydroxyl radical and ozone were each determined to significantly enhance the overall inactivation efficiency in the combined ozone/UV process. PMID:18028981

  17. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores.

    PubMed

    Jung, Yeon Jung; Oh, Byung Soo; Kang, Joon-Wun

    2008-03-01

    This study was performed to evaluate the inactivation efficiency or synergy of combined ozone and UV processes (combined ozone/UV process) or sequential processes (ozone-UV, UV-ozone) compared with individual unit processes and to investigate the specific roles of ozone, UV and the hydroxyl radical, which is formed as an intermediate in the combined ozone/UV process. The Bacillus subtilis spore, which has often been used as a surrogate microorganism for Cryptosporidium parvum oocysts, was used as a target microorganism. Compared to individual unit processes with ozone or UV, the inactivation of B. subtilis spores by the combined ozone/UV process was enhanced under identical conditions. To investigate the specific roles of ozone and UV in the combined ozone/UV process, sequential ozone-UV and UV-ozone processes were tested for degrees of inactivation. Additionally, the experiment was performed in the presence and absence of tert-butyl alcohol, which acted as a hydroxyl radical scavenger to assess the role of inactivation by the hydroxyl radical in the combined ozone/UV process. Among the five candidate processes, the greatest synergistic effect was observed in the combined ozone/UV process. From the comparison of five candidate processes, the hydroxyl radical and ozone were each determined to significantly enhance the overall inactivation efficiency in the combined ozone/UV process.

  18. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  19. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  20. The Two Faces of Ozone.

    ERIC Educational Resources Information Center

    Monastersky, Richard

    1989-01-01

    Provides answers to questions regarding the ozone problem: (1) nature of ozone in the troposphere and stratosphere; (2) possibility of sending the excess ozone at ground level to the stratosphere; (3) possibility of producing pure ozone and carrying it to the stratosphere; and (4) banning chlorofluorocarbons. (YP)

  1. Comparison of merged profile ozone satellite observations (1984-2011): Assessment and implications in terms of ozone recovery

    NASA Astrophysics Data System (ADS)

    Tummon, Fiona; Hassler, Birgit; Harris, Neil, , Dr; Staehelin, Johannes

    The successful implementation of the Montreal Protocol has led to reductions in stratospheric halogen loading, which is expected to result in less chemical depletion of ozone and thus increased stratospheric ozone amounts [WMO, 2011]. To unambiguously identify a positive ozone response directly attributable to declining halogen levels, consistent long-term ozone profile observations are required. Although near-global satellite observations of the ozone profile have been made since 1979, no single instrument has covered this entire period, meaning that merged data series combining several instrument records are required to fully understand long-term ozone changes. As part of the Si2N (Stratosphere-troposphere Processes And their Role in Climate (SPARC), the International Ozone Commission (IOC), the ozone focus area of the Integrated Global Atmospheric Chemistry Observations (IGACO-O3), and the Network for Detection of Atmospheric Composition Change (NDACC) - SPARC/IOC/IGACO-O3/NDACC) initiative, all available merged, long-term data sets were compared and assessed. Seven data sets, each based on a varying combination of instruments including SBUV/2, SAGE-2, HALOE, UARS-MLS, OSIRIS, SAGE-3, GOMOS, ACE-FTS, and Aura-MLS, were investigated. The analysis covers the period 1984-2011, for which all data sets were available. The analyses reveal that all data sets represent seasonality and interannual variability well, with those data sets based on the same instrument set tending to be more similar, despite different merging techniques being used. A multiple linear regression analysis reveals that long-term ozone trends are similar in the period prior to 1997, but show more diversity for the period 1998-2011. This is likely a result of the different instruments used to construct each data set, which vary more in the latter period. These results have important implications in terms of the detection of ozone recovery resulting from the reduction in stratospheric halogen

  2. Winter rain and summer ozone: a predictive relationship.

    PubMed

    Sandberg, J S; Basso, M J; Okin, B A

    1978-06-01

    Insights from dendrochronology have provided a new seasonal predictor for air pollution meteorology. In the San Francisco Bay Area summer ozone excesses over the federal ozone standard are correlated (correlation coefficient r = .87) with precipitation for the two preceding winters, a factor related to tree-ring width in a precipitation-stressed climate. The hypothesis that reactive hydrocarbon emissions from vegetative biomass affects these ozone excesses was supported by a similar correlation between summer hydrocarbon average maximums and the two-winter precipitation factor, reaching r = .88 at suburban stations. A weak tendency for hot summers to follow wet winters (in 16 years of California data) explains only a minor part of the ozone-rain relationship in multiple correlations.

  3. Cosmic Rays and Total Ozone at Higher Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Lastovicka, J.; Krizan, P.

    Various external factors of solar origin like solar activity (solar cycle, 27-day variation etc.), geomagnetic storms and other solar wind-related phenomena, and changes of fluxes of high-energy particles can potentially affect the ozone layer. Here we examine the effects of Forbush decreases and other decreases of the galactic cosmic rays (GCR) on the columnar ozone content (= total ozone) at higher middle latitudes near 50o N. The Forbush decreases usually occur together with geomagnetic storms and relatively often together with solar proton events (SPEs). Then it is difficult, if not impossible, to distinguish between the effects of geomagnetic storms, SPEs and Forbush decreases and other decreases of the GCR flux. Therefore we present here the results of investigations of the effects of Forbush decreases and other substantial decreases of GCRs on total ozone for events when there was no geomagnetic storm. Some effects our found, which depend principally on other conditions (season, solar activity level, QBO phase etc.).

  4. Winter rain and summer ozone: a predictive relationship.

    PubMed

    Sandberg, J S; Basso, M J; Okin, B A

    1978-06-01

    Insights from dendrochronology have provided a new seasonal predictor for air pollution meteorology. In the San Francisco Bay Area summer ozone excesses over the federal ozone standard are correlated (correlation coefficient r = .87) with precipitation for the two preceding winters, a factor related to tree-ring width in a precipitation-stressed climate. The hypothesis that reactive hydrocarbon emissions from vegetative biomass affects these ozone excesses was supported by a similar correlation between summer hydrocarbon average maximums and the two-winter precipitation factor, reaching r = .88 at suburban stations. A weak tendency for hot summers to follow wet winters (in 16 years of California data) explains only a minor part of the ozone-rain relationship in multiple correlations. PMID:17740697

  5. On the role of climate variability on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Lin, M.

    2014-12-01

    The response of tropospheric ozone to changing atmospheric circulation is poorly understood owing to a lack of reliable long-term observations. There is great current interest in quantifying the extent to which observed ozone trends over recent decades at northern mid-latitude sites are driven by changes in precursor emissions versus shifts in atmospheric circulation patterns. In this talk, I present a detailed analysis of the impact of interannual to decadal climate variability on tropospheric ozone, based on observations and a suite of chemistry-climate model hindcast simulations. Decadal shifts in circulation regimes modulate long-range transport of Asian pollution, leading to very different seasonal ozone trends at Mauna Loa Observatory in the subtropical Pacific Ocean. During autumn, the flow of ozone-rich air from Eurasia towards Hawaii strengthened in the mid-1990s onwards, as a result of the positive phase of the Pacific North American pattern, increasing ozone at Mauna Loa. During spring, weakening airflow from Asia in the 2000s, tied to La-Niña-like decadal cooling in the equatorial Pacific Ocean, offsets ozone increases at Mauna Loa that otherwise would have occurred due to rising Asian emissions. The circulation-driven variability in Asian pollution over the subtropical North Pacific regions manifests mainly as changes in the mean as opposed to in transport events. At high-elevation Western U.S. sites, intrusions of stratospheric ozone deep into the troposphere during spring exert a greater influence than Asian pollution, particularly on the high tail of observed surface ozone distribution. We show that year-to-year variability in springtime high-ozone episodes measured in Western U.S. surface air is tied to known modes of climate variability, which modulate meanders in the polar frontal jet conducive to deep stratospheric ozone intrusions. Specifically, the La Niña-related increase in the frequency of deep stratospheric intrusion events plays a

  6. Solar cycle effect in SBUV/SBUV 2 ozone data

    NASA Astrophysics Data System (ADS)

    Gruzdev, Aleksandr

    Effect of the 11-year solar cycle on stratospheric ozone is analyzed using the data of ozone measurements with SBUV/SBUV 2 instruments aboard Nimbus 7, NOAA 9, NOAA 11, NOAA 14, NOAA 16, and NOAA 17-NOAA 19 satellites for 1978-2012 (ftp://toms.gsfc.nasa.gov/pub/sbuv/). High-resolution spectral and cross-spectral methods as well as the method of multiple linear regression were used for the analysis. The regression model takes into account the annual variation, the linear trend, the solar cycle effect and the effects on ozone of the products of the Pinatubo volcano eruption and the quasi-biennial oscillations in the equatorial stratospheric wind. The cross-spectral analysis of ozone concentration and 10.7 cm solar radio flux shows that, generally, 11-year ozone variations in the upper stratosphere and lower mesosphere lag behind while ozone variations in the low-latitude lower stratosphere lead the solar cycle. The phase shift between the ozone variations and the solar cycle reaches pi/2 in 35-40 km layer over the tropics and in the southern hemisphere lower stratosphere. Calculations show that taking into account the phase shift is especially important for correct estimation of the ozone response to the solar cycle in the tropical middle stratosphere. Local maxima of ozone sensitivity to the 11-year solar cycle are noted around a year below the stratopause (45-50 km), in 30-35 km layer in the middle stratosphere, and in the polar lower stratosphere. The sensitivity of the ozone response to the solar cycle for the whole period of 1978-2012 is less than that for the period of 1978-2003 which does not include the 24th solar cycle with anomalously small amplitude. The ozone response is seasonally dependent. Maximal amplitudes of the ozone response are characteristic for polar latitudes during winter-spring periods. For example ozone changes related to the solar cycle can reach 5% in the low and middle latitudes during the 1978-2012 period, while winter-spring ozone

  7. Which metric of ambient ozone to predict daily mortality?

    NASA Astrophysics Data System (ADS)

    Moshammer, Hanns; Hutter, Hans-Peter; Kundi, Michael

    2013-02-01

    It is well known that ozone concentration is associated with daily cause specific mortality. But which ozone metric is the best predictor of the daily variability in mortality? We performed a time series analysis on daily deaths (all causes, respiratory and cardiovascular causes as well as death in elderly 65+) in Vienna for the years 1991-2009. We controlled for seasonal and long term trend, day of the week, temperature and humidity using the same basic model for all pollutant metrics. We found model fit was best for same day variability of ozone concentration (calculated as the difference between daily hourly maximum and minimum) and hourly maximum. Of these the variability displayed a more linear dose-response function. Maximum 8 h moving average and daily mean value performed not so well. Nitrogen dioxide (daily mean) in comparison performed better when previous day values were assessed. Same day ozone and previous day nitrogen dioxide effect estimates did not confound each other. Variability in daily ozone levels or peak ozone levels seem to be a better proxy of a complex reactive secondary pollutant mixture than daily average ozone levels in the Middle European setting. If this finding is confirmed this would have implications for the setting of legally binding limit values.

  8. Ozone Photolysis: Strong Isotopologue/isotopomer Selectivity in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Gatti, Fabien; Ndengue, Steve; Jost, Remy; Halasz, Gabor; Vibok, Agnes

    2013-06-01

    Using the visible-UV absorption cross section (Abs. XS) of five ozone isotopologues and an averaged actinic flux, we have calculated the contribution of the atmospheric ozone photolysis to the oxygen isotope and ozone isotopologue/isotopomer enrichment. Five ozone isotopologues/isotopomers are considered among which three are symmetric, O^{16}3 (noted 666), O^{16}O^{17}O^{16} (676) and O^{16}O^{18}O^{16} (686), and two are asymmetric, O^{17}O^{16}_2 (667) and O^{18}O^{16}_2 (668). The photolysis rates of the five ozone isotopologues have been calculated as a function of altitude. The Multi Configuration Time Dependent Hartree (MCTDH) method and the potential energy surfaces calculates by R. Schinke and coworkers have been used. We have used experimental actinic fluxes, averaged for latitude and season, for altitudes varying by step of 4km up to 80km. Below 35km, the contribution of the Hartley band to the photolysis rates is restricted to its low energy range, named the Huggins band, which has strong isotopologue/isotopomer selectivity and then induces strong enrichment. Consequently, the isotopologue enrichment's due to ozone photolysis are strongly dependent of the altitude, with pronounced enrichment peaks around 35 km, the altitude corresponding to the maximum relative contribution of the Huggins band. We will also present some new simulations for the simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale.

  9. Direct measurements of tropospheric ozone from TOMS data

    NASA Technical Reports Server (NTRS)

    Hudson, Robert D.

    1993-01-01

    In the past year, we have made measurements of the tropospheric total column of ozone during the biomass burning season in Africa (August to October). Fishman et. al. had reported previously that by taking a time average of the low spatial resolution data from TOMS (Total Ozone Mapping Spectrometer) on Nimbus-7 (referred to as the Grid-T data set), during the biomass burning season in Africa, a plume of ozone extends from the East coast of Africa into the Atlantic. In this report, we present an analysis that we have made using the measured TOMS radiances taken from the High Density TOMS data set (referred as the HDT data set), which examines this plume in more detail.

  10. Growth-stage dependent crop yield response to ozone exposure.

    PubMed

    Younglove, T; McCool, P M; Musselman, R C; Kahl, M E

    1994-01-01

    Data from four crop yield-loss field trials were examined to determine if analysis using an imposed phenological weighting function based on seasonal growth stage would provide a more accurate indication of impact of ozone exposure. Alfalfa (Medicago sativa L. cv. Moapa 69), dry bean (Phaseolus vulgaris L. cv. California Dark Red kidney), fresh market and processing tomato (Lycopersicon esculentum Mill. cv. 6718 VF and VF-145-B7879, respectively) were grown at 9-11 ambient field plots within southern California comprising an ambient gradient of ozone. The growing season for each crop was artificially divided into 'quarters' composed of equal numbers of whole days and roughly corresponding to specific growth stages. Ozone exposure was calculated for each of these 'quarters' and regressed against final crop yield using 163 different exposure statistics. Weighting functions were developed using reciprocal residual mean square (1/RMS) or percentage of the best 100 exposure statistics of the 163 tested (TOP100) for each of the quarters. The third quarter of the alfalfa season was clearly most responsive to ozone as measured by both of the weighting functions. Third quarter ozone was also weighted highest by both weighting functions for dry bean. Fresh market and processing tomato were each influenced the greatest by second quartero zone as demonstrated by both weighting functions. The occurrence of ozone during physiologically important events (flowering and initial fruit set in second quarter for tomato; pod development in third quarter for dry bean) appeared to influence the yield of these crops the greatest. Growth-stage-dependent phenological weighting of pollutant exposure may result in more effective predictions of levels of ozone exposure resulting in yield reductions.

  11. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have