Liu Wei; Niu Hanben
2011-02-15
We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.
Scattering of phonons by vacancies
Ratsifaritana, C.A.; Klemens, P.G.
1987-11-01
The scattering of phonons by vacancies is estimated by a perturbation technique in terms of the missing mass and the missing linkages. An argument is given why distortion effects can be disregarded. The resonance frequency of the defect is sufficiently high so that resonance effects can be disregarded for phonons in the important frequency range for thermal conduction. The theory is applied to the thermal resistance by vacancies in cases where the vacancy concentration is known: potassium chloride with divalent cations, nonstoichiometric zirconium carbide, and tin telluride.
Weak phonon scattering effect of twin boundaries on thermal transmission
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-01
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity. PMID:26822675
Weak phonon scattering effect of twin boundaries on thermal transmission.
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-29
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries' thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity.
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Scattering Tools for Nanostructure Phonon Engineering
2013-09-25
Arlington, VA 22203 AFOSR The vibrational properties of solids have crucial roles underpinning functional properties ranging from thermal conductivity... thermal diffuse scattering (TDS) techniques to nanoscale systems. With this approach we can probe phonons across the nanomaterials, phonons, x-ray...scattering, nanomembrane fabrication, flatness, large-wavevector vibrational properties, synchrotron x-rays, thermal diffuse scattering, silicon
Estreicher, S. K. Gibbons, T. M.; Kang, By.; Bebek, M. B.
2014-01-07
Defects in semiconductors introduce vibrational modes that are distinct from bulk modes because they are spatially localized in the vicinity of the defect. Light impurities produce high-frequency modes often visible by Fourier-transform infrared absorption or Raman spectroscopy. Their vibrational lifetimes vary by orders of magnitude and sometimes exhibit unexpectedly large isotope effects. Heavy impurities introduce low-frequency modes sometimes visible as phonon replicas in photoluminescence bands. But other defects such as surfaces or interfaces exhibit spatially localized modes (SLMs) as well. All of them can trap phonons, which ultimately decay into lower-frequency bulk phonons. When heat flows through a material containing defects, phonon trapping at localized modes followed by their decay into bulk phonons is usually described in terms of phonon scattering: defects are assumed to be static scattering centers and the properties of the defect-related SLMs modes are ignored. These dynamic properties of defects are important. In this paper, we quantify the concepts of vibrational localization and phonon trapping, distinguish between normal and anomalous decay of localized excitations, discuss the meaning of phonon scattering in real space at the atomic level, and illustrate the importance of phonon trapping in the case of heat flow at Si/Ge and Si/C interfaces.
Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering
Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.
2015-07-28
We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice.
"Phonon" scattering beyond perturbation theory
NASA Astrophysics Data System (ADS)
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
Alaie, Seyedhamidreza; Goettler, Drew F; Su, Mehmet; Leseman, Zayd C; Reinke, Charles M; El-Kady, Ihab
2015-06-24
Large reductions in the thermal conductivity of thin silicon membranes have been demonstrated in various porous structures. However, the role of coherent boundary scattering in such structures has become a matter of some debate. Here we report on the first experimental observation of coherent phonon boundary scattering at room temperature in 2D phononic crystals formed by the introduction of air holes in a silicon matrix with minimum feature sizes >100 nm. To delaminate incoherent from coherent boundary scattering, phononic crystals with a fixed minimum feature size, differing only in unit cell geometry, were fabricated. A suspended island technique was used to measure the thermal conductivity. We introduce a hybrid thermal conductivity model that accounts for partially coherent and partially incoherent phonon boundary scattering. We observe excellent agreement between this model and experimental data, and the results suggest that significant room temperature coherent phonon boundary scattering occurs.
Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2016-04-13
Using phonon wave packet molecular dynamics simulations, we find that anomalous longitudinal acoustic (LA) mode phonon scattering in low to moderate energy ranges is responsible for initiating thermophoretic motion in carbon nanotube oscillators. The repeated scattering of a single mode LA phonon wave packet near the ends of the inner nanotube provides a net unbalanced force that, if large enough, initiates thermophoresis. By applying a coherent phonon pulse on the outer tube, which generalizes the single mode phonon wave packet, we are able to achieve thermophoresis in a carbon nanotube oscillator. We also find the nature of the unbalanced force on end-atoms to be qualitatively similar to that under an imposed thermal gradient. The thermodiffusion coefficient obtained for a range of thermal gradients and core lengths suggest that LA phonon scattering is the dominant mechanism for thermophoresis in longer cores, whereas for shorter cores, it is the highly diffusive mechanism that provides the effective force.
Dissipation induced by phonon elastic scattering in crystals
Li, Guolong; Ren, Zhongzhou; Zhang, Xin
2016-01-01
We demonstrate that the phonon elastic scattering leads to a dominant dissipation in crystals at low temperature. The two-level systems (TLSs) should be responsible for the elastic scattering, whereas the dissipation induced by static-point defects (SPDs) can not be neglected. One purpose of this work is to show how the energy splitting distribution of the TLS ensemble affects the dissipation. Besides, this article displays the proportion of phonon-TLS elastic scattering to total phonon dissipation. The coupling coefficient of phonon-SPD scattering and the constant P0 of the TLS distribution are important that we estimate their magnitudes in this paper. Our results is useful to understand the phonon dissipation mechanism, and give some clues to improve the performance of mechanical resonators, apply the desired defects, or reveal the atom configuration in lattice structure of disordered crystals. PMID:27669517
Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
Yoshida, Taisuke; Matsukawa, Mami; Yanagitani, Takahiko
2011-06-01
To improve the accuracy of velocity measurements in the Brillouin scattering technique using weak thermal phonons, we have used induced coherent phonons, which intensify the scattering. To induce phonons in the gigahertz range, we used a c-axis tilted ZnO film transducer that was developed in our laboratory. This allowed us to induce longitudinal and shear acoustic phonons effectively at hypersonic frequencies. As a result, we obtained scattered light in the silica glass sample that was much more intense than that obtained from the thermal phonons. Because the Brillouin scattering from induced phonons was measured, the shift frequency was that of the electric signal applied to the ZnO transducer. Strong peaks lead to a reduction of the measurement time. This is useful for two-dimensional mapping of thin film elasticity using Brillouin scattering. Additionally, Brillouin scattering enables the simultaneous measurement of longitudinal and shear phonon velocities in the sample plane. This opens up a potential new technique for non-destructive elasticity measurements of various materials.
Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene
NASA Astrophysics Data System (ADS)
Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads
2017-01-01
Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons. We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry and resulting mobility.
Helium Atom Scattering as a Probe of Surface Phonons.
NASA Astrophysics Data System (ADS)
Yerkes, Steven Charles
A low energy (15-63 meV) helium beam is scattered from two different crystal surfaces; mechanically cleaved and polished LiF(100), and epitaxially grown Ag(111). Conservation equations for total particle energy and parallel momentum are presented as the basis for understanding the scattering experiment. These equations along with the system response function are used to numerically model the inelastic scattering data. The scattering of helium from LiF(100) at a surface temperature of approximately 140(DEGREES)K is reported along the <010> and <110> directions. Coherent elastic scattering intensities are used for surface characterization. Over 80% of the coherent inelastic scattering can be accounted for by the interaction with single Rayleigh phonons, and is consistent with a calculated rigid-ion Rayleigh phonon dispersion relation of LiF(100). These conclusions are supported by over 85 separate inelastic experiments performed at two incident beam energies (62.5 meV and 20.5 meV) and at several incident angles (50(DEGREES), 60(DEGREES), 65(DEGREES), 70(DEGREES)). The scattering from single Rayleigh phonons is reported as a function of crystal surface temperature, scattering angle, phonon frequency, and azimuthal angle. The inelastic scattering data is compared with the calculated intensities of an analytic inelastic scattering theory. The surface temperature dependent inelastic scattering intensity of the data are qualitatively predicted by the theory, however, the theory is inadequate in predicting the experimental intensity as a function of scattering angle, phonon frequency, and azimuthal angle. Incoherent elastic scattering (due to surface defects) is also reported as a function of scattered angle. No existing theory can account for the observed behavior of this scattering. Preliminary coherent inelastic scattering data are reported for. 23 meV helium from Ag(111) directed 12.5(DEGREES) from the <112>. Single(' ). Rayleigh phonons account for less than 60% of
NASA Astrophysics Data System (ADS)
Wang, Yan; Lu, Zexi; Ruan, Xiulin
2016-06-01
The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.
Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu2Si2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the lowmore » temperature phase.« less
Electron-phonon coupling in perovskites studied by Raman Scattering
NASA Astrophysics Data System (ADS)
Sathe, V. G.; Tyagi, S.; Sharma, G.
2016-10-01
Raman scattering is an unique technique for characterization and quantification of electron-phonon, spin-phonon and spin-lattice coupling in many of the currently prominent compounds like multiferroics and manganites. In manganites, it is understood now that a phase separated landscape with coexisting metallic and insulating regions exist in most of the compounds and application of small external perturbation causes an alteration in this landscape. In such scenario, local metallic regions grow suddenly at the expense of insulating regions below the magnetic ordering temperature. Such regions can be characterized effectively using Raman scattering measurements where delocalized electrons couple with the adjacent phonon peaks giving a Fano resonance in the form of asymmetric line shape.
Phonon scattering in graphene over substrate steps
Sevinçli, H.; Brandbyge, M.
2014-10-13
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
The effects of substrate phonon mode scattering on transport in carbon nanotubes.
Perebeinos, Vasili; Rotkin, Slava V; Petrov, Alexey G; Avouris, Phaedon
2009-01-01
Carbon nanotubes (CNTs) have large intrinsic carrier mobility due to weak acoustic phonon scattering. However, unlike two-dimensional metal-oxide-semiconductor field effect transistors (MOSFETs), substrate surface polar phonon (SPP) scattering has a dramatic effect on the CNTFET mobility, due to the reduced vertical dimensions of the latter. We find that for the van der Waals distance between CNT and an SiO2 substrate, the low-field mobility at room temperature is reduced by almost an order of magnitude depending on the tube diameter. We predict additional experimental signatures of the SPP mechanism in dependence of the mobility on density, temperature, tube diameter, and CNT-substrate separation.
Deviational simulation of phonon transport in graphene ribbons with ab initio scattering
Landon, Colin D.; Hadjiconstantinou, Nicolas G.
2014-10-28
We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.
Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai
2016-11-22
Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.
Giant Anharmonic Phonon Scattering in PbTe
Delaire, Olivier A; Ma, Jie; Marty, Karol J; May, Andrew F; McGuire, Michael A; Singh, David J; Lumsden, Mark D; Sales, Brian C; Du, Mao-Hua; Ehlers, Georg; Podlesnyak, Andrey A
2011-01-01
Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type.
Coherent phonon-grain boundary scattering in silicon inverse opals.
Ma, Jun; Parajuli, Bibek R; Ghossoub, Marc G; Mihi, Agustin; Sadhu, Jyothi; Braun, Paul V; Sinha, Sanjiv
2013-02-13
We report measurements and modeling of thermal conductivity in periodic three-dimensional dielectric nanostructures, silicon inverse opals. Such structures represent a three-dimensional "phononic crystal" but affect heat flow instead of acoustics. Employing the Stober method, we fabricate high quality silica opal templates that on filling with amorphous silicon, etching and recrystallizing produce silicon inverse opals. The periodicities and shell thicknesses are in the range 420-900 and 18-38 nm, respectively. The thermal conductivity of inverse opal films are relatively low, ~0.6-1.4 W/mK at 300 K and arise due to macroscopic bending of heat flow lines in the structure. The corresponding material thermal conductivity is in the range 5-12 W/mK and has an anomalous ~T(1.8) dependence at low temperatures, distinct from the typical ~T(3) behavior of bulk polycrystalline silicon. Using phonon scattering theory, we show such dependence arising from coherent phonon reflections in the intergrain region. This is consistent with an unconfirmed theory proposed in 1955. The low thermal conductivity is significant for applications in photonics where they imply significant temperature rise at relatively low absorption and in thermoelectrics, where they suggest the possibility of enhancement in the figure of merit for polysilicon with optimal doping.
Electron-phonon interaction and Raman scattering in nanocrystals
NASA Astrophysics Data System (ADS)
Klimin, S. N.; Pokatilov, E. P.; Fomin, V. M.; Devreese, J. T.; Gladilin, V. N.; Balaban, S. N.
1997-03-01
The vibrational eigenmodes of a nanocrystal are derived by diagonalization of the equations of motion for the ionic displacement taking into account a non-parabolic dispersion with electrostatic and mechanical boundary conditions. A finite width of the Brillouin zone leads automatically to a finite basis of vibrational modes. The developed method can be applicable to nanostructures of an arbitrary geometry. For a spherical nanocrystal, a dispersion equation contains the effective multimode dielectric function. The resulting eigenmodes are mixed bulk-like and interface waves, especially in the short-wavelength region. Using the obtained Hamiltonian, the one-phonon and two-phonon resonant Raman scattering spectra are calculated for a spherical CdSe nanocrystal in the borosilicate glass. The valence band mixing dramatically enhances relative intensities of the two-phonon peaks and makes the adiabatic approximation inapplicable. Hence, the Huang-Rhys parameter is not an adequate characteristic of the optical spectra. Using a direct expansion of the evolution operator, a good agreement has been achieved between the calculated and the experimentally observed [1] Raman spectra. [1] M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990).
A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale
Bong, Victor N-S; Wong, Basil T.
2015-08-28
Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.
Inelastic x-ray scattering measurements of phonon dynamics in URu_{2}Si_{2}
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; Said, A. H.; Leu, B. M.; Williams, Travis J.; Luke, G. M.; Lee, Y. S.
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu_{2}Si_{2}. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the low temperature phase.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers
NASA Astrophysics Data System (ADS)
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-01
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-14
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Interrelation of Resistivity and Inelastic Electron-Phonon Scattering Rate in Impure NbC Films
NASA Technical Reports Server (NTRS)
Il'in, K. S.; Ptitsina, N. G.; Sergeev, A. V.; Goltsman, G. N.; Gershenzon, E. M.; Karasik, B. S.; Pechen, E. V.; Krasnosvobodtsev, S. I.
1998-01-01
A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2-13 nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities.
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
Malhotra, Abhinav; Maldovan, Martin
2016-01-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects. PMID:27174699
Spin-phonon coupling in multiferroic YbMnO3 studied by Raman scattering
NASA Astrophysics Data System (ADS)
Fukumura, H.; Hasuike, N.; Harima, H.; Kisoda, K.; Fukae, K.; Yoshimura, T.; Fujimura, N.
2009-02-01
Hexagonal YbMnO3 bulk polycrystals were prepared and studied by Raman scattering in the temperature range of 15-300 K. A total of 15 phonon modes of A1, E1 and E2 type were identified. Some E2 phonon modes showed anomalous temperature variations in frequency at TN~80 K, suggesting a coupling between the spin and phonon systems below TN. As another evidence of spin-phonon coupling, softening of an A1-phonon mode for the O-Mn vibration was observed at ~TN. Substitution of Mn by Al suggests this view.
Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys
NASA Astrophysics Data System (ADS)
Tian, Zhiting; Li, Mingda; Ren, Zhensong; Ma, Hao; Alatas, Ahmet; Wilson, Stephen D.; Li, Ju
2015-09-01
PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.
Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys.
Tian, Zhiting; Li, Mingda; Ren, Zhensong; Ma, Hao; Alatas, Ahmet; Wilson, Stephen D; Li, Ju
2015-09-23
PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.
Temperature Dependence of Brillouin Light Scattering Spectra of Acoustic Phonons in Silicon
NASA Astrophysics Data System (ADS)
Somerville, Kevin; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-03-01
Thermal management represents an outstanding challenge in many areas of technology. Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. Interest in non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report temperature dependent BLS spectra of silicon, with Raman spectra taken simultaneously for comparison. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons. We determine that the integrated BLS intensity can be used measure the temperature of specific acoustic phonon modes. This work is supported by National Science Foundation (NSF) Thermal Transport Processes Program under Grant CBET-1336968.
Anharmonic effects in light scattering due to optical phonons in silicon
NASA Astrophysics Data System (ADS)
Balkanski, M.; Wallis, R. F.; Haro, E.
1983-08-01
Systematic measurements by light scattering of the linewidth and frequency shift of the q-->=0 optical phonon in silicon over the temperature range of 5-1400 K are presented. Both the linewidth and frequency shift exhibit a quadratic dependence on temperature at high temperatures. This indicates the necessity of including terms in the phonon proper self-energy corresponding to four-phonon anharmonic processes.
Neutron Scattering Investigation of Phonon Scattering Rates in Ag1-xSb1+xTe2+x (x = 0, 0.1, and 0.2)
Abernathy, Douglas L; Budai, John D; Delaire, Olivier A; Ehlers, Georg; Hong, Tao; Karapetrova, Evguenia A.; Ma, Jie; May, Andrew F; McGuire, Michael A; Specht, Eliot D
2014-01-01
The phonon dispersions and scattering rates of the thermoelectric material AgSbTe$_{2}$ were measured as a function of temperature with inelastic neutron scattering. The results show that phonon scattering rates are large and weakly dependent on temperature. The lattice thermal conductivity was calculated from the measured phonon lifetimes and group velocities, providing good agreement with bulk transport measurements. The measured phonon scattering rates and their temperature dependence are compared with models of phonon scattering by anharmonicity and point defect. We find that these processes cannot account for the large total phonon scattering rates observed, and their lack of temperature dependence. Neutron and synchrotron diffraction measurements on single crystals revealed an extensive nanostructure from cation ordering, which is likely responsible for the strong phonon scattering.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
NASA Astrophysics Data System (ADS)
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li; Li, Xiaoqin
2015-02-01
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Remote phonon scattering in field-effect transistors with a high κ insulating layer
NASA Astrophysics Data System (ADS)
Laikhtman, B.; Solomon, P. M.
2008-01-01
In this paper a remote phonon scattering of channel electrons in a field-effect transistor (FET) with a high dielectric constant (κ) insulator in between the gate and the channel is studied theoretically. The spectrum of phonons confined in the high κ layer and its modification by the gate screening is investigated. Only two phonon modes of five participate in the remote electron-phonon scattering. The gate suppresses one of the modes but increases scattering by the other. Numerical results for the channel mobility limited only by remote phonon scattering were obtained for a Si FET with a HfO2 layer and a SiO2 layer in between the channel and metallic gate. A surprising result is the reduction of the mobility compared to the case when the gate screening is absent. The dependence of the mobility on the widths of HfO2 and interfacial SiO2 layers on channel concentration and temperature was studied. The accuracy of the calculations based on the Boltzmann equation is discussed. Finally, a comparison of our results with available experimental data leads to the conclusion that the remote phonon scattering is not the dominating scattering mechanism.
Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth
2015-12-28
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
NASA Astrophysics Data System (ADS)
Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth
2015-12-01
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon
Chu, Yanbiao; Gautreau, Pierre; Basaran, Cemal
2014-09-15
In contrast with carbon nanotubes, the absence of translational symmetry (or periodical boundary condition) in the restricted direction of zigzag graphene nanoribbon removes the selection rule of subband number conservation. However, zigzag graphene nanoribbons with even dimers do have the inversion symmetry. We, therefore, propose a selection rule of parity conservation for electron-phonon interactions. The electron-phonon scattering matrix in zigzag graphene nanoribbons is developed using the tight-binging model within the deformation potential approximation.
Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon
NASA Astrophysics Data System (ADS)
Chu, Yanbiao; Gautreau, Pierre; Basaran, Cemal
2014-09-01
In contrast with carbon nanotubes, the absence of translational symmetry (or periodical boundary condition) in the restricted direction of zigzag graphene nanoribbon removes the selection rule of subband number conservation. However, zigzag graphene nanoribbons with even dimers do have the inversion symmetry. We, therefore, propose a selection rule of parity conservation for electron-phonon interactions. The electron-phonon scattering matrix in zigzag graphene nanoribbons is developed using the tight-binging model within the deformation potential approximation.
Observation of phonons in multiferroic BiFeO3 single crystals by Raman scattering
NASA Astrophysics Data System (ADS)
Fukumura, H.; Matsui, S.; Harima, H.; Takahashi, T.; Itoh, T.; Kisoda, K.; Tamada, M.; Noguchi, Y.; Miyayama, M.
2007-09-01
We have grown BiFeO3 bulk single crystals by a flux method and characterized the phonon spectra in detail by Raman scattering in the temperature range 4-1100 K. All the 13 Raman-active phonon modes predicted by group theory, 4A1+9E, were observed at low temperature and successfully assigned by a polarized Raman measurement. Moreover, drastic spectral changes in the Raman spectra were observed at temperatures 600-700 K and 1000-1100 K. These features are discussed from the viewpoint of phonon coupling with the magnetic ordering and the structural phase transition, respectively.
Observing backfolded and unfolded acoustic phonons by broadband optical light scattering.
Maerten, L; Bojahr, A; Bargheer, M
2015-02-01
We use broadband time domain Brillouin scattering to observe coherently generated phonon modes in bulk and nanolayered samples. We transform the measured transients into a frequency-wavevector diagram and compare the resulting dispersion relations to calculations. The detected oscillation amplitude depends on the occupation of phonon modes induced by the pump pulse. For nanolayered samples with an appropriately large period, the whole wavevector range of the Brillouin zone becomes observable by broadband optical light scattering. The backfolded modes vanish, when the excitation has passed the nanolayers and propagates through the substrate underneath.
Band structures in a two-dimensional phononic crystal with rotational multiple scatterers
NASA Astrophysics Data System (ADS)
Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele
2017-03-01
In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
NASA Astrophysics Data System (ADS)
Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez; Rossen, Pim B.; Soukiassian, Arsen; Suresha, S. J.; Duda, John C.; Foley, Brian M.; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W.; Moore, Joel E.; Muller, David A.; Schlom, Darrell G.; Hopkins, Patrick E.; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A.
2014-02-01
Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices.
Ravichandran, Jayakanth; Yadav, Ajay K; Cheaito, Ramez; Rossen, Pim B; Soukiassian, Arsen; Suresha, S J; Duda, John C; Foley, Brian M; Lee, Che-Hui; Zhu, Ye; Lichtenberger, Arthur W; Moore, Joel E; Muller, David A; Schlom, Darrell G; Hopkins, Patrick E; Majumdar, Arun; Ramesh, Ramamoorthy; Zurbuchen, Mark A
2014-02-01
Elementary particles such as electrons or photons are frequent subjects of wave-nature-driven investigations, unlike collective excitations such as phonons. The demonstration of wave-particle crossover, in terms of macroscopic properties, is crucial to the understanding and application of the wave behaviour of matter. We present an unambiguous demonstration of the theoretically predicted crossover from diffuse (particle-like) to specular (wave-like) phonon scattering in epitaxial oxide superlattices, manifested by a minimum in lattice thermal conductivity as a function of interface density. We do so by synthesizing superlattices of electrically insulating perovskite oxides and systematically varying the interface density, with unit-cell precision, using two different epitaxial-growth techniques. These observations open up opportunities for studies on the wave nature of phonons, particularly phonon interference effects, using oxide superlattices as model systems, with extensive applications in thermoelectrics and thermal management.
Raman scattering study of anharmonic phonon decay in InN
NASA Astrophysics Data System (ADS)
Domènech-Amador, Núria; Cuscó, Ramon; Artús, Luis; Yamaguchi, Tomohiro; Nanishi, Yasushi
2011-06-01
We present Raman scattering measurements on wurtzite InN over a temperature range from 80 to 660 K. To investigate all phonon modes of the wurtzite structure, measurements were performed on c and m faces of high-quality InN epilayers. High-resolution measurements of the low-frequency E2 mode reveal a slight anharmonic broadening of such a long-lived phonon due to up-conversion processes and a substantial contribution of background impurity broadening in the determination of its linewidth. An analysis of the anharmonicity and lifetimes of the InN phonons is carried out. Possible decay channels including up-conversion processes and four-phonon processes are discussed on the basis of density functional theory calculations.
Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system
Daon, Shauli; Pollak, Eli
2015-05-07
The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.
Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2
Ma, J.; Delaire, O.; May, A. F.; Carlton, C. E.; McGuire, M. A.; VanBebber, L. H.; Abernathy, D. L.; Ehlers, G.; Hong, Tao; Huq, A.; Tian, Wei; Keppens, V. M.; Shao-Horn, Y.; Sales, B. C.
2013-06-02
Materials with very low thermal conductivity are of high interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising to suppress thermal conductivity by scattering phonons, but challenges remain in producing bulk samples. We show that in crystalline AgSbTe2, a spontaneously-forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mappings of phonon mean-free-paths provide a novel bottom- up microscopic account of thermal conductivity, and also reveal intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and points to a new avenue in nano- scale engineering of materials, to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.
Thermal conductivity in large-J two-dimensional antiferromagnets: Role of phonon scattering
Chernyshev, A. L.; Brenig, Wolfram
2015-08-05
Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.
Ultrahigh thermoelectric performance by electron and phonon critical scattering in Cu2 Se1-x Ix.
Liu, Huili; Yuan, Xun; Lu, Ping; Shi, Xun; Xu, Fangfang; He, Ying; Tang, Yunshan; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Lin, Yue; Shi, Lei; Lin, He; Gao, Xingyu; Zhang, Xingmin; Chi, Hang; Uher, Ctirad
2013-12-03
Iodine-doped Cu2 Se shows a significantly improved thermoelectric performance during phase transitions by electron and phonon critical scattering, leading to a dramatic increase in zT by a factor of 3-7 times culminating in zT values of 2.3 at 400 K.
Phonon transport in silicon nanowires: The reduced group velocity and surface-roughness scattering
NASA Astrophysics Data System (ADS)
Zhu, Liyan; Li, Baowen; Li, Wu
2016-09-01
Using a linear-scaling Kubo simulation approach, we have quantitatively investigated the effects of confinement and surface roughness on phonon transport in silicon nanowires (SiNWs) as thick as 55 nm in diameter R . The confinement effect leads to significant reduction of phonon group velocity v in SiNWs compared to bulk silicon except at extremely low phonon frequencies f , which very likely persists in SiNWs several hundreds of nanometers thick, suggesting the inapplicability of bulk properties, including anharmonic phonon scattering, to SiNWs. For instance, the velocity can be reduced by more than 30% for phonons with f >4.5 THz in 55-nm-thick nanowires. In rough SiNWs Casimir's limit, which is valid in confined macroscopic systems, can underestimate the surface scattering by more than one order of magnitude. For a roughness profile with Lorentzian correlation characterized by root-mean-square roughness σ and correlation length Lr, the frequency-dependent phonon diffusivity D follows power-law dependences D ∝Rασ-βLrγ , where α ˜2 and β ˜1 . On average, γ increases from 0 to 0.5 as R /σ increases. The mean free path and the phonon lifetime essentially follow the same power-law dependences. These dependences are in striking contrast to Casimir's limit, i.e., D ˜v R /3 , and manifest the dominant role of the change in the number of atoms due to roughness. The thermal conductivity κ can vary by one order of magnitude with varying σ and Lr in SiNWs, and increasing σ and shortening Lr can efficiently lower κ below Casimir's limit by one order of magnitude. Our work provides different insights to understand the ultralow thermal conductivity of SiNWs reported experimentally and guidance to manipulate κ via surface roughness engineering.
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
NASA Astrophysics Data System (ADS)
Lindsay, L.
2016-11-01
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements, isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach, the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where κ values of isotopically pure systems (6LiH ,7L i2H , and 6LiF ) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these κ differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This paper provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
Lindsay, Lucas R.
2016-11-08
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance viamore » modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems (6LiH, 7Li2H and 6LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.« less
Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
Lindsay, Lucas R.
2016-11-08
Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk phonon dispersions. However, for light elements isotope mass variation can be relatively large (e.g., hydrogen and deuterium). Using a first principles Peierls-Boltzmann transport equation approach the effects of isotope variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some unusual cases where values of isotopically pure systems (^{6}LiH, ^{7}Li^{2}H and ^{6}LiF) are lower than the values from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and calculated κ are also discussed. This work provides insight into lattice thermal conductivity modulation with mass variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom systems.
Understanding Phonon Scattering by Nanoprecipitates in Potassium-Doped Lead Chalcogenides.
Wang, Zhao; Yang, Xiaolong; Feng, Dan; Wu, Haijun; Carrete, Jesus; Zhao, Li-Dong; Li, Chao; Cheng, Shaodong; Peng, Biaolin; Yang, Guang; He, Jiaqing
2017-02-01
We present a comprehensive experimental and theoretical study of phonon scattering by nanoprecipitates in potassium-doped PbTe, PbSe, and PbS. We highlight the role of the precipitate size distribution measured by microscopy, whose tuning allows for thermal conductivities lower than the limit achievable with a single size. The correlation between the size distribution and the contributions to thermal conductivity from phonons in different frequency ranges provides a physical basis to the experimentally measured thermal conductivities, and a criterion to estimate the lowest achievable thermal conductivity. The results have clear implications for efficiency enhancements in nanostructured bulk thermoelectrics.
Strong coupling between phonons and optical beating in backward Brillouin scattering
NASA Astrophysics Data System (ADS)
Huy, Kien Phan; Beugnot, Jean-Charles; Tchahame, Joël-Cabrel; Sylvestre, Thibaut
2016-10-01
Brillouin scattering is a fundamental nonlinear interaction between two optical waves and an acoustic wave mediated by electrostriction and photoelasticity. In this paper, we revisit the usual theory of this inelastic scattering to get a joint system in which the acoustic wave is strongly coupled to the interference pattern between the optical waves. We show in particular that when the coupling rate exceeds the phonon damping rate, the system enters the strong-coupling regime, giving rise to anticrossing in the dispersion relation and Rabi-like splitting. We further find numerically that strong coupling can, in principle, be observed using backward Brillouin scattering in subwavelength-diameter optical waveguides.
NASA Astrophysics Data System (ADS)
McSweeney, William; Glynn, Colm; Geaney, Hugh; Collins, Gillian; Holmes, Justin D.; O'Dwyer, Colm
2016-01-01
Si nanowires (NWs) are shown to develop internal mesoporosity during metal assisted chemical etching from Si wafers. The onset of internal porosity in n+-Si(100) compared to p-Si(100) is examined through a systematic investigation of etching parameters (etching time, AgNO3 concentration, HF % and temperature). Electron microscopy and Raman scattering show that specific etching conditions reduce the size of the internal Si nanocrystallites in the internal mesoporous structure to 3-5 nm. Mesoporous NWs are found to have diameters as large as 500 nm, compared to ˜100 nm for p-NWs that develop surface roughness. Etching of Si (100) wafers results in (100)-oriented NWs forming a three-fold symmetrical surface texture, without internal NW mesoporosity. The vertical etching rate is shown to depend on carrier concentration and degree of internal mesoporosity formation. Raman scattering of the transverse optical phonon and photoluminescence measurements confirm quantum size effects, phonon scattering and visible intense red light emission between 685 and 720 nm in internally mesoporous NWs associated with the etching conditions. Laser power heating of NWs confirms phonon confinement and scattering, which is demonstrated to be a function of the internal mesoporosity development. We also demonstrate the limitation of mesoporosity formation in n+-Si NWs and development of porosity within p-Si NWs by controlling the etching conditions. Lastly, the data confirm that phonon confinement and scattering often reported for Si NWs is due to surface-bound and internal nanostructure, rather than simply a diameter reduction in NW materials.
Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
Zhu, Diling; Robert, Aymeric; Henighan, Tom; ...
2015-08-10
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm-1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector positionmore » were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less
Effects of phonon scattering on the magneto-conductance in single and double quantum wires
NASA Astrophysics Data System (ADS)
Huang, D.; Lyo, S. K.
2003-03-01
We present an exact numerical formalism for the solution of the Boltzmann equation dominated by elastic (e.g., interface-roughness) and phonon scattering in a quasi-one-dimensional system. The result is employed to study the temperature-dependent conductance of a single and tunnel-coupled double quantum wells (DQWs) as a function of a perpendicular magnetic field. According to recent studies, the zero-temperature conductance is enhanced dramatically as a function of the field when the Fermi level lies inside the anticrossing gap of the DQWs. [S. K. Lyo, J. Phys.-Condens. Matter 8, L703 (1996), D. Huang and S. K. Lyo, ibid, 12, 3383 (2000), S. V. Korepov and M. A. Liberman, Phys. Rev. B 60, 13770 (1999)] Our results show that phonon scattering modifies the conductance and its enhancement significantly at temperatures corresponding to the gap energy or the sublevel separation or higher.
Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
Zhu, Diling; Robert, Aymeric; Lemke, Henrik T.; Trigo, Mariano
2015-08-10
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm^{-1} using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.
Diffuse scattering and low-energy phonons in superionic conductor Cu1.8SSe
NASA Astrophysics Data System (ADS)
Danilkin, Sergey; Hoser, Andreas; Schweika, Werner
2005-03-01
The neutron diffuse and inelastic scattering were studied in the superionic α-phase of copper selenide. In neutron diffraction experiments on Cu1.85Se single crystal the diffuse scattering features were observed along [111] direction in vicinity of (400) and (422) reflections. In inelastic neutron scattering measurements performed with time-of-flight spectrometer the elastic and inelastic scattering processes were separated and a strong inelastic scattering was observed also along [111] nearby (400) and (022). This shows that diffuse scattering found in conventional diffraction experiment is mainly inelastic and most probably comes from the low-energy phonons. Such phonons with optic-like behaviour of transverse acoustic modes at q/qm> 0.2-0.4 were found earlier in α-Cu1.85Se [1]. [1] S.A. Danilkin, A.N. Skomorokhov, A. Hoser, H. Fuess, V. Rajevac, N.N. Bickulova, Crystal structure and lattice dynamics of superionic copper selenide Cu2-δSe, J. Alloys and Compounds, 2003, v. 361, p. 57-61.
NASA Astrophysics Data System (ADS)
Akhoondali, Hossein; Goharrizi, Arash Yazdanpanah; Sharifi, Mohammad Javad
2014-11-01
The effect of optical and acoustic phonon-scattering in the presence of line-edge-roughness (LER) on the electronic properties of ultra-scaled armchair graphene nano-ribbons (AGNRs) is investigated. Non-equilibrium Green's function formalism (NEGF) is employed using a Hamiltonian formed from tight bonding model with consideration of first and third nearest neighbors. The combined effect of phonons and line edge roughness on the transmission, transport gap, and conductance are studied for different roughness strengths and AGNR lengths. Results show edge roughness slightly reduces the onset of optical phonon emission, acoustic phonons reduce off-state conductance and optical phonons reduce on-state conductance. In both cases, the degree and behavior of reduction is totally dependent on the intensity of edge roughness. Also, in the longer AGNRs with high edge roughness intensity, phonons increase the transport gap.
NASA Astrophysics Data System (ADS)
Park, Kyeong Hyun; Mohamed, Mohamed; Aksamija, Zlatan; Ravaioli, Umberto
2015-01-01
In this work, we calculate the thermal conductivity of layered bismuth telluride (Bi2Te3) thin films by solving the Boltzmann transport equation in the relaxation-time approximation using full phonon dispersion and compare our results with recently published experimental data and molecular dynamics simulation. The group velocity of each phonon mode is readily extracted from the full phonon dispersion obtained from first-principle density-functional theory calculation and is used along with the phonon frequency to compute the various scattering terms. Our model incorporates the typical interactions impeding thermal transport (e.g., umklapp, isotope, and boundary scatterings) and introduces a new interaction capturing the reduction of phonon transmission through van der Waals interfaces of adjacent Bi2Te3 quintuple layers forming the virtual superlattice thin film. We find that this novel approach extends the empirical Klemens-Callaway relaxation model in such anisotropic materials and recovers the experimental anisotropy while using a minimal set of parameters.
Zhou, Yanguang; Zhang, Xiaoliang; Hu, Ming
2017-02-08
By carefully and systematically performing Green-Kubo equilibrium molecular dynamics simulations, we report that the thermal conductivity (κ) of Si nanowires (NWs) does not diverge but converges and increases steeply when NW diameter (D) becomes extremely small (dκ/dD < 0), a long debate of one-dimensional heat conduction in history. The κ of the thinnest possible Si NWs reaches a superhigh level that is as large as more than 1 order of magnitude higher than its bulk counterpart. The abnormality is explained in terms of the dominant normal (N) process (energy and momentum conservation) of low frequency acoustic phonons that induces hydrodynamic phonon flow in the Si NWs without being scattered. With D increasing, the downward shift of optical phonons triggers strong Umklapp (U) scattering with acoustic phonons and attenuates the N process, leading to the regime of phonon boundary scattering (dκ/dD < 0). The two competing mechanisms result in nonmonotonic diameter dependence of κ with minima at critical diameter of 2-3 nm. Our results unambiguously demonstrate the converged κ and the clear trend of κ ∼ D for extremely thin Si NWs by fully elucidating the competition between the hydrodynamic phonon flow and phonon boundary scattering.
Impact of optical phonon scattering on inversion channel mobility in 4H-SiC trenched MOSFETs
NASA Astrophysics Data System (ADS)
Kutsuki, Katsuhiro; Kawaji, Sachiko; Watanabe, Yukihiko; Onishi, Toru; Fujiwara, Hirokazu; Yamamoto, Kensaku; Yamamoto, Toshimasa
2017-04-01
Temperature characteristics of the channel mobility were investigated for 4H-SiC trenched MOSFETs in the range from 30 to 200 °C. The conventional model of channel mobility limited by carrier scattering is based on Si-MOSFETs and shows a greatly different channel mobility from the experimental value, especially at high temperatures. On the other hand, our improved mobility model taking into account optical phonon scattering yielded results in excellent agreement with experimental results. Moreover, the major factors limiting the channel mobility were found to be Coulomb scattering in a low effective field (<0.7 MV/cm) and optical phonon scattering in a high effective field.
Phonon coupling effects in proton scattering from Ca40
NASA Astrophysics Data System (ADS)
Mackintosh, R. S.; Keeley, N.
2014-10-01
Background: Formal optical model theory shows that coupling to vibrational nuclear states generates a nonlocal and l-dependent dynamical polarization potential (DPP). Little is established concerning the DPP, yet its properties are crucial for explaining the departures of optical model potentials (OMPs) from global behavior and for the rigorous extraction of spectroscopic information from direct reactions. Purpose: To appraise the application of channel coupling followed by S-matrix inversion for the systematic exploration of the contribution of the coupling of collective states to the nucleon OMP and to identify properties of nuclear potentials indicative of l-dependence. Methods: S-matrix to potential, Slj→V(r )+l .sVSO(r), inversion provides local potentials that precisely reproduce the elastic channel S-matrix from coupled channel (CC) calculations. Subtracting the elastic channel uncoupled (bare) potential yields a local and l-independent representation of the DPP. The dependence of this local DPP upon the nature of the coupled states and upon other parameters can be studied. Results: All components of the DPP arising from coupling to vibrational states are substantially undulatory with a point-by-point magnitude therefore disproportionate to their contribution to volume integrals. Information relating to dynamical nonlocality is found. The proton charge leads to a substantial difference between DPPs for protons and neutrons. Conclusions: Undulatory features in potentials found in precision fits to elastic scattering data are significant, are a consequence of coupling to inelastic channels and must be allowed for in phenomenology; they are indirect evidence of l-dependence. Within the model, coupling to excited states magnifies the effect of the proton charge on the difference between proton-nucleus and neutron-nucleus interactions. Coupled channel plus inversion is a procedure of wide applicability, complementary to evaluation of the Feshbach formalism.
Size and temperature dependence of the electron-phonon scattering by donors in nanowire transistors
NASA Astrophysics Data System (ADS)
Bescond, M.; Carrillo-Nuñez, H.; Berrada, S.; Cavassilas, N.; Lannoo, M.
2016-08-01
Due to the constant size reduction, single-donor-based nanowire transistors receive an increasing interest from the semi-conductor industry. In this work we theoretically investigate the coupled influence of electron-phonon scattering, temperature and size (cross-section and channel length) on the properties of such systems. The aim is to determine under what conditions the localized character of the donor has a remarkable impact on the current characteristics. We use a quantum non-equilibrium Green's function approach in which the acoustic electron-phonon scattering is treated through local self-energies. We first show how this widely used approach, valid at high temperatures, can be extended to lower temperatures. Our simulations predict a hysteresis in the current when reducing the temperature down to 150 K. We also find that acoustic phonons degrade the current characteristics while their optical counterparts might have a beneficial impact with an increase of the ON-current. Finally we discuss the influence of nanowire length and cross-section and emphasize the complexity of precisely controlling the dopant level at room temperature.
Electron-soft phonon scattering in n -type SrTi O3
NASA Astrophysics Data System (ADS)
Zhou, W. X.; Zhou, J.; Li, C. J.; Zeng, S. W.; Huang, Z.; Harsan Ma, H. J.; Han, K.; Lim, Z. S.; Wan, D. Y.; Zhang, L. C.; Venkatesan, T.; Feng, Y. P.; Ariando
2016-11-01
SrTi O3 undergoes a cubic to tetragonal phase transition at Tc=105 -110 K , which can be described by a Brillouin zone corner Γ25 (111) soft phonon. Even though clear anomalies in specific heat, thermal expansion coefficient, and sound velocity have been observed, the correlation between phase transition and electronic transport properties in n -type doped SrTi O3 is still controversial. Here, we report phase transition induced electronic transport anomaly in temperature dependence of the temperature coefficient of resistance (TCR) consistently observed in a wide variety of SrTi O3 -based systems by detailed transport measurements and first-principles calculations. The observed TCR anomaly, which can be well fitted with the electron-Γ25 soft phonon scattering around Tc, is found to be caused by anomalies in both mobility and carrier density, with the former taking the dominant role. Moreover, the magnitude of the anomaly is found to decrease with increasing carrier density. These findings demonstrate the role of the electron-Γ25 soft phonon scattering in the conduction mechanism in SrTi O3 -based systems.
NASA Astrophysics Data System (ADS)
Xie, Hong-Yi; Foster, Matthew S.
2016-05-01
We study the electric and thermal transport of the Dirac carriers in monolayer graphene using the Boltzmann-equation approach. Motivated by recent thermopower measurements [F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016), 10.1103/PhysRevLett.116.136802], we consider the effects of quenched disorder, Coulomb interactions, and electron-optical-phonon scattering. Via an unbiased numerical solution to the Boltzmann equation we calculate the electrical conductivity, thermopower, and electronic component of the thermal conductivity, and discuss the validity of Mott's formula and of the Wiedemann-Franz law. An analytical solution for the disorder-only case shows that screened Coulomb impurity scattering, although elastic, violates the Wiedemann-Franz law even at low temperature. For the combination of carrier-carrier Coulomb and short-ranged impurity scattering, we observe the crossover from the interaction-limited (hydrodynamic) regime to the disorder-limited (Fermi-liquid) regime. In the former, the thermopower and the thermal conductivity follow the results anticipated by the relativistic hydrodynamic theory. On the other hand, we find that optical phonons become non-negligible at relatively low temperatures and that the induced electron thermopower violates Mott's formula. Combining all of these scattering mechanisms, we obtain the thermopower that quantitatively coincides with the experimental data.
NASA Astrophysics Data System (ADS)
Holmes, Jesse Curtis
Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be
Using high pressure to study thermal transport and phonon scattering mechanisms
NASA Astrophysics Data System (ADS)
Hohensee, Gregory Thomas
The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.
2009-01-01
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.
NASA Astrophysics Data System (ADS)
Ma, Hao; Li, Chen; Tang, Shixiong; Yan, Jiaqiang; Alatas, Ahmet; Lindsay, Lucas; Sales, Brian C.; Tian, Zhiting
2016-12-01
Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k ) ˜2000 W m-1K-1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ˜200 W m-1K-1 . To gain insight into this discrepancy, we measured phonon dispersion of single-crystal BAs along high symmetry directions using inelastic x-ray scattering and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the main reasons for the predicted ultrahigh k . This supports its potential to be a super thermal conductor if very-high-quality single-crystal samples can be synthesized.
Ma, Hao; Li, Chen; Tang, Shixiong; ...
2016-12-14
Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k) ~2000 Wm-1K-1 at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ~200 Wm-1K-1. To gain insight into this discrepancy, we measured phonon dispersion of single crystal BAs along high symmetry directions using inelastic x-ray scattering (IXS) and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the mainmore » reasons for the predicted ultrahigh k. This supports its potential to be a super thermal conductor if very high-quality single crystal samples can be synthesized.« less
Ab initio electron mobility and polar phonon scattering in GaAs
NASA Astrophysics Data System (ADS)
Zhou, Jin-Jian; Bernardi, Marco
2016-11-01
In polar semiconductors and oxides, the long-range nature of the electron-phonon (e -ph ) interaction is a bottleneck to compute charge transport from first principles. Here, we develop an efficient ab initio scheme to compute and converge the e -ph relaxation times (RTs) and electron mobility in polar materials. We apply our approach to GaAs, where by using the Boltzmann equation with state-dependent RTs, we compute mobilities in excellent agreement with experiment at 250 -500 K . The e -ph RTs and the phonon contributions to intravalley and intervalley e -ph scattering are also analyzed. Our work enables efficient ab initio computations of transport and carrier dynamics in polar materials.
Spin-flip relaxation via optical phonon scattering in quantum dots
Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen
2013-12-14
Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.
Ma, Hao; Li, Chen; Tang, Shixiong; Yan, Jiaqiang; Alatas, Ahmet; Lindsay, Lucas; Sales, Brian C.; Tian, Zhiting
2016-12-14
Cubic boron arsenide (BAs) was predicted to have an exceptionally high thermal conductivity (k) ~2000 Wm^{-1}K^{-1} at room temperature, comparable to that of diamond, based on first-principles calculations. Subsequent experimental measurements, however, only obtained a k of ~200 Wm-1K-1. To gain insight into this discrepancy, we measured phonon dispersion of single crystal BAs along high symmetry directions using inelastic x-ray scattering (IXS) and compared these with first-principles calculations. Based on the measured phonon dispersion, we have validated the theoretical prediction of a large frequency gap between acoustic and optical modes and bunching of acoustic branches, which were considered the main reasons for the predicted ultrahigh k. This supports its potential to be a super thermal conductor if very high-quality single crystal samples can be synthesized.
Defect induced phonon scattering for tuning the lattice thermal conductivity of SiO2 thin films
NASA Astrophysics Data System (ADS)
Cao, Sen; He, Hu; Zhu, Wenhui
2017-01-01
In this work, the thermal properties of nanoscale SiO2 thin films have been systematically investigated with respect to the thickness, crystal orientations and the void defects using non-equilibrium molecular-dynamics (NEMD) simulation. Size effect for the lattice thermal conductivity of nanoscale SiO2 thin films was observed. Additionally, SiO2 thin films with [001] oriented exhibited greater thermal conductivity compared with other crystal orientations which was discussed in terms of phonon density of states (PDOS). Furthermore, the porosity of void defects was introduced to quantify the influence of defects for thermal conductivity. Results exhibited that the thermal conductivity degraded with the increase of porosity. Two thermal conductivity suppression mechanisms, namely, void defects induced material loss interdicting heat conduction and phonon scattering enhanced by the boundary of defects, were proposed. Then, a further simulation was deployed to find that the effect of boundary scattering of defects was dominant in thermal conductivity degradation compared with material loss mechanism. The conclusion suggests that the thermal conductivity could be configured via regulating the distribution of PDOS directly associated with void defects.
Electron-phonon scattering and in-plane electric conductivity in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Ray, N.; Fleischmann, M.; Weckbecker, D.; Sharma, S.; Pankratov, O.; Shallcross, S.
2016-12-01
We have surveyed the in-plane transport properties of the graphene twist bilayer using (i) a low-energy effective Hamiltonian for the underlying electronic structure, (ii) an isotropic elastic phonon model, and (iii) the linear Boltzmann equation for elastic electron-phonon scattering. We find that transport in the twist bilayer is profoundly sensitive to the rotation angle of the constituent layers. Similar to the electronic structure of the twist bilayer, the transport is qualitatively different in three distinct angle regimes. At large angles (θ >≈10∘ ) and at temperatures below an interlayer Bloch-Grüneisen temperature of ≈10 K, the conductivity is independent of the twist angle, i.e., the layers are fully decoupled. Above this temperature the layers, even though decoupled in the ground state, are recoupled by electron-phonon scattering and the transport is different both from single-layer graphene as well as the Bernal bilayer. In the small-angle regime θ <≈2∘ , the conductivity drops by two orders of magnitude and develops a rich energy dependence, reflecting the complexity of the underlying topological changes (Lifshitz transitions) of the Fermi surface. At intermediate angles, the conductivity decreases continuously as the twist angle is reduced, while the energy dependence of the conductivity presents two sharp transitions, that occur at specific angle-dependent energies, and that may be related to (i) the well-studied van Hove singularity of the twist bilayer and (ii) a Lifshitz transition that occurs when trigonally placed electron pockets decorate the strongly warped Dirac cone. Interestingly, we find that, while the electron-phonon scattering is dominated by layer symmetric flexural phonons in the small-angle limit, at large angles, in contrast, it is the layer antisymmetric flexural mode that is most important. We examine the role of a layer perpendicular electric field finding that it affects the conductivity strongly at low temperatures
Comparing the anomalous phonons in Fe(Te,Se) and (Fe,Ni)(Te,Se) via neutron scattering
NASA Astrophysics Data System (ADS)
Schneeloch, John; Xu, Zhijun; Gu, Genda; Zaliznyak, Igor; Winn, Barry; Rodriguez-Rivera, Jose; Birgeneau, Robert; Xu, Guangyong; Tranquada, John
We studied the anomalous acoustic-type phonons in the Fe(Te,Se) iron-based superconductor family that arise from the (100) Bragg peak, which is forbidden according to the reported crystal structure for these materials. Inelastic neutron scattering was performed on superconducting and non-superconducting crystals of various compositions. The (100) phonons were much weaker in a non-superconducting nickel-doped crystal than in a superconducting crystal with similar selenium fraction, but comparison with another non-superconducting crystal suggests the difference is not simply related to superconductivity. This composition dependence was observed for both transverse and longitudinal phonons. The temperature dependences of the (100) phonons resembled those of conventional phonons. We will discuss these results and possible explanations for the relation between composition and lattice dynamics in this system.
Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO_{3}
Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; Gehring, P. M.; Stock, C.; Matsuda, Masaaki; Winn, Barry L.; Gu, Genda; Shapiro, Stephen M.; Birgeneau, R. J.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.; Xu, Guangyong
2015-02-10
In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO_{3}. The dispersions of the three acoustic phonon modes (LA along [100], TA_{1} along [010], and TA_{2} along [110]) and two low-energy optic phonon modes (LO and TO_{1}) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T_{N}=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in this multiferroic material are coupled.
Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO3
Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; ...
2015-02-10
In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA1 along [010], and TA2 along [110]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature TN=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in thismore » multiferroic material are coupled.« less
Investigation of phonon-like excitation in hydrated protein powders by neutron scattering
NASA Astrophysics Data System (ADS)
Chu, Xiang-Qiang (Rosie); Mamontov, Eugene; O'Neill, Hugh; Zhang, Qiu; Kolesnikov, Alexander
2013-03-01
Detecting the phonon dispersion relations in proteins is essential for understanding the intra-protein dynamical behavior. Such study has been attempted by X-ray in recent years. However, for such detections, neutrons have significant advantages in resolution and time-efficiency compare to X-rays. Traditionally the collective motions of atoms in protein molecules are hard to detect using neutrons, because of high incoherent scattering background from intrinsic hydrogen atoms in the protein molecules. The recent availability of a fully deuterated green fluorescent protein (GFP) synthesized by the Bio-deuteration Lab at ORNL opens new possibilities to probe collective excitations in proteins using inelastic neutron scattering. Using a direct time-of-flight Fermi chopper neutron spectrometer, we obtained a full map of the meV phonon-like excitations in the fully deuterated protein. The Q range of the observed excitations corresponds to the length scale close to the size of the secondary structures of proteins and reflects the collective intra-protein motions. Our results show that hydration of GFP seems to harden, not soften, the collective motions. This result is counterintuitive but in agreement with the observations by previous neutron scattering experiments. Sample preparation was supported by facilities operated by the Center for Structural Molecular Biology at ORNL which is supported by the U.S. DOE, Office of Science, Office of Biological and Environmental Research Project ERKP291.
Li, Chen; Ma, Jie; May, Andrew F; Cao, Huibo; Christianson, Andrew D; Ehlers, Georg; Singh, David J; Sales, Brian C; Delaire, Olivier A
2014-01-01
The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.
Li, C W; Hellman, O; Ma, J; May, A F; Cao, H B; Chen, X; Christianson, A D; Ehlers, G; Singh, D J; Sales, B C; Delaire, O
2014-05-02
The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase space for three-phonon scattering processes, combined with the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optic ferroelectric mode.
Effect of Electron-Phonon Scattering on Shot Noise in Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Chen, Yu-Chang; di Ventra, Massimiliano
2005-10-01
We investigate the effect of electron-phonon inelastic scattering on shot noise in nanoscale junctions in the regime of quasiballistic transport. We predict that when the local thermal energy of the junction is larger than its lowest vibrational mode energy eVc, the inelastic contribution to shot noise (conductance) increases (decreases) with bias as V (V). The corresponding Fano factor thus increases as V. We also show that the inelastic contribution to the Fano factor saturates with increasing thermal current exchanged between the junction and the bulk electrodes to a value which, for V≫Vc, is independent of bias. These predictions can be readily tested experimentally.
Influence of screening on longitudinal-optical phonon scattering in quantum cascade lasers
Ezhov, Ivan; Jirauschek, Christian
2016-01-21
We theoretically investigate the influence of screening on electron-longitudinal optical phonon scattering in quantum cascade lasers. By employing ensemble Monte Carlo simulations, an advanced screening model based on the random-phase approximation is compared to the more elementary Thomas-Fermi and Debye models. For mid-infrared structures, and to a lesser extent also for terahertz designs, the inclusion of screening is shown to affect the simulated current and optical output power. Furthermore, it is demonstrated that by using the electron temperature rather than the lattice temperature, the Debye model can be significantly improved.
A phonon scattering bottleneck for carrier cooling in lead chalcogenide nanocrystals.
Geiregat, Pieter; Delerue, Christophe; Justo, Yolanda; Aerts, Michiel; Spoor, Frank; Van Thourhout, Dries; Siebbeles, Laurens D A; Allan, Guy; Houtepen, Arjan J; Hens, Zeger
2015-01-27
The cooling dynamics of hot charge carriers in colloidal lead chalcogenide nanocrystals is studied by hyperspectral transient absorption spectroscopy. We demonstrate a transient accumulation of charge carriers at a high energy critical point in the Brillouin zone. Using a theoretical study of the cooling rate in lead chalcogenides, we attribute this slowing down of charge carrier cooling to a phonon scattering bottleneck around this critical point. The relevance of this observation for the possible harvesting of the excess energy of hot carriers by schemes such as multiexciton generation is discussed.
Phonons and magnons in stripe-ordered nickelates. A Raman scattering study
NASA Astrophysics Data System (ADS)
Gnezdilov, V.; Kurnosov, V.; Yeremenko, A.; Pashkevich, Yu.; Lemmens, P.; Tranquada, J.; Choi, K.-Y.; Güntherodt, G.; Nakajima, K.
2005-02-01
Electronic correlation effects in La2-xSrxNiO4 (x=1/3 and 0.225) lead to spontaneous phase separation into microscopic spin/charge stripes with commensurate and incommensurate order, respectively. Raman scattering experiments on such single-crystalline materials show a rich phenomenology of phonon and magnon anomalies due to the new, self-organized periodicities. These effects are observable as function of temperature but can also be induced by cooling in seemingly small magnetic fields leading to a reorganization of stripe structure.
Influence of magnetism on phonons in CaFe2As2 as seen via inelastic x-ray scattering
Hahn, S.E.; Lee, Y.; Ni, N.; Canfield, P.C.; Goldman, A.I.; McQueeney, R.J.; Harmon, B.N.; Alatas, A.; Leu, B.M.; Alp, E.E.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.
2009-06-19
In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high-temperature tetragonal phase of CaFe{sub 2}As{sub 2} using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.
Gutmann, Matthias J.; Graziano, Gabriella; Mukhopadhyay, Sanghamitra; Refson, Keith; von Zimmerman, Martin
2015-01-01
Direct phonon excitation in a neutron time-of-flight single-crystal Laue diffraction experiment has been observed in a single crystal of NaCl. At room temperature both phonon emission and excitation leave characteristic features in the diffuse scattering and these are well reproduced using ab initio phonons from density functional theory (DFT). A measurement at 20 K illustrates the effect of thermal population of the phonons, leaving the features corresponding to phonon excitation and strongly suppressing the phonon annihilation. A recipe is given to compute these effects combining DFT results with the geometry of the neutron experiment. PMID:26306090
Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; ...
2015-11-03
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found tomore » be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less
NASA Astrophysics Data System (ADS)
Mei, A. B.; Hellman, O.; Schlepütz, C. M.; Rockett, A.; Chiang, T.-C.; Hultman, L.; Petrov, I.; Greene, J. E.
2015-11-01
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations ℏ ωj (q), phonon densities of states g (ℏ ω ), and isochoric temperature-dependent vibrational heat capacities cv(T ) . We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv(T ) , computed within the harmonic approximation from ℏ ωj (q) values, increase with temperature from 0.4 ×10-4eV /atom K at 100 K to 1.4 ×10-4eV /atom K at 200 K and 1.9 ×10-4eV /atom K at 300 K, in excellent agreement with isobaric heat capacity values cp(T ) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲θc , where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲10 nm .
Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.
2015-11-03
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities c_{v} (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities c_{v} (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10^{-4} eV/atom K at 100 K to 1.4 x 10^{-4} eV/atom K at 200 K and 1.9 x 10^{-4} eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c_{p} (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θ_{c} where θ_{c} is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
2014-03-01
The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.
Plasmon-enhanced phonon and ionized impurity scattering in doped silicon
Chen, Ming-Jer Hsieh, Shang-Hsun; Chen, Chuan-Li
2015-07-28
Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10{sup 15}–10{sup 20 }cm{sup −3}). Application of the proposed method to strained silicon is also demonstrated.
NASA Astrophysics Data System (ADS)
Hauber, Anna; Fahy, Stephen
2017-01-01
We present a general treatment of carrier scattering by coupled phonon-plasmon collective modes in polar semiconductors, taking anharmonic phonon decay into account and self-consistently calculating carrier momentum relaxation rates and carrier mobility in a parabolic band model. We iteratively solve the weak-field Boltzmann equations for carriers and collective modes and obtain their nonequilibrium distribution functions. Both the scattering rates and the anharmonic decay of the coupled modes are expressed through the total dielectric function of the semiconductor, consisting of a damped lattice dielectric function, and a temperature dependent random phase approximation dielectric function for the carrier plasma. We show that the decay of the coupled modes has a significant effect on the contribution to the mobility limited by carrier-coupled mode scattering. We also propose a scalar quantity, the phonon dissipation weight factor, with which this effect can be estimated from an analytic expression. We apply this treatment to dynamically screened electron-longitudinal optical phonon scattering in bulk polar semiconductors, and to dynamically screened remote phonon scattering in polar heterostructures where monolayers of MoS2 are sandwiched between various polar dielectrics. We find that a dynamic treatment of the remote phonon scattering yields mobilities up to 75% higher than a static screening approximation does for structures which consist of a monolayer of MoS2 between hafnia and silica. Moreover, we show that accounting for the nonzero thickness of the MoS2 interface layer has an important effect on the calculated mobility in the same structure.
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-01
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered. PMID:28102368
NASA Astrophysics Data System (ADS)
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-01
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.
Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry
2017-01-19
Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.
Electron-phonon relaxation in weakly disordered AuPd wires due to inelastic scattering from defects
NASA Astrophysics Data System (ADS)
Lin, Juhn-Jong; Zhong, Yuan-Liang; Chen, Chii-Dong; Sergeev, Andrei
2010-03-01
To identify and investigate mechanisms of the electron-phonon relaxation in weakly disordered metallic conductors, we study the relaxation in a series of suspended and supported 15-nm thick AuPd wires. In a wide temperature range, from 8 K up to above 20 K, the measured relaxation rate reveals quadratic temperature dependence. Our observations are shown to be in agreement with the theory, which predicts that inelastic electron scattering from vibrating impurities and defects strongly dominates over ordinary electron-phonon interaction even in weakly disordered metallic conductors. Due to inelastic electron-boundary scattering this mechanism plays a leading role in the electron relaxation in nanosctructures with metallic components.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Arellanes, Adan Omar
2016-03-01
We study the potentials of a wide-aperture crystalline calomel-made acousto-optical cell. Characterizing this cell is nontrivial due to the chosen regime based on an advanced noncollinear two-phonon light scattering. Recently revealed important features of this phenomenon are essentially exploited in the cell and are investigated in more detail. These features can be observed more easily and simply in tetragonal crystals, e.g., calomel, exhibiting specific acousto-optical nonlinearity caused by the acoustic waves of finite amplitude. This parametric nonlinearity manifests itself at low acoustic powers in calomel possessing linear acoustic attenuation. The formerly identified additional degree of freedom, unique to this regime, is exploited for designing the cell with an eye to doubling the resolution due to two-phonon processes. We clarify the role of varying the central acoustic frequency and acoustic attenuation using that degree of freedom. Then the efficiency of calomel is exploited to expand the cell's bandwidth with a cost of its efficiency. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative techniques of optical spectrum analysis with the improved resolution. The achieved spectral resolution of 0.205 Å at 405 nm and the resolving power 19,800 are the best for acousto-optical spectrometers dedicated to space or airborne operations to date as far as we know.
Anharmonicity in Light Scattering by Optical Phonons in GaAs1-xBix
Joshya, R. S.; Rajaji, V.; Narayana, Chandrabhas; Mascarenhas, Angelo; Kini, R. N.
2016-05-28
We present a Raman spectroscopic study of GaAs 1-xBix epilayers grown by molecular beam epitaxy. We have investigated the anharmonic effect on the GaAs-like longitudinal optical phonon mode (LO'GaAs) of GaAs 1-xBix for different Bi concentrations at various temperatures. The results are analyzed in terms of the anharmonic damping effect induced by thermal and compositional disorder. We have observed that the anharmonicity increases with Bi concentration in GaAs 1-xBix as evident from the increase in the anharmonicity constants. In addition, the anharmonic lifetime of the optical phonon decreases with increasing Bi concentration in GaAs 1-xBix.
Dhital, Chetan; Abernathy, Douglas L; Zhu, Gaohua; Ren, Zhifeng; Broido, D.; Wilson, Stephen D
2012-01-01
Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques. Dynamic signatures of Ge clustering can be inferred from the data by referencing the resulting spectra to a density functional theoretical model assuming homogeneous alloying via the virtual-crystal approximation. Comparisons are also presented between as-milled Si nanopowder and bulk, polycrystalline Si where a preferential low-energy enhancement and lifetime broadening of the phonon density of states appear in the nanopowder. Negligible differences are however observed between the phonon spectra of bulk Si andhot-pressed, nanostructured Si samples suggesting that changes to the single-phonon dynamics above 4 meV play only a secondary role in the modified heat conduction of this compound.
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W. -S.; Shen, Z. -X.; Ghiringhelli, G.; Braicovich, L.
2016-10-25
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
NASA Astrophysics Data System (ADS)
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.
2016-10-01
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one's ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
Ghossoub, MG; Valavala, KV; Seong, M; Azeredo, B; Hsu, K; Sadhu, JS; Singh, PK; Sinha, S
2013-03-06
Frequency dependence in phonon surface scattering is a debated topic in fundamental phonon physics. Recent experiments and theory suggest such a phenomenon, but an independent agreement between the two remains elusive. We report low-temperature dependence of thermal conductivity in silicon nanowires fabricated using a two-step, metal-assisted chemical etch. By reducing etch rates down to 0.5 nm/s from the typical >100 nm/s, we report controllable roughening of nanowire surfaces and selectively focus on moderate roughness scales rather than the extreme scales investigated previously. This critically enables direct comparison with perturbation-based spectral scattering theory. Using experimentally characterized surface roughness, we show that a multiple scattering theory provides excellent agreement and explanation of the observed low-temperature dependence of rough surface nanowires. The theory does not employ any fitting parameters. A 5-10 nm roughness correlation length is typical in metal-assisted chemical etching and resonantly scatters dominant phonons in silicon, leading to the observed similar to T1.6-2.4 behavior. Our work provides fundamental and quantitative insight into spectral phonon scattering from rough surfaces. This advances applications of nanowires in thermoelectric energy conversion.
Withers, Ray L. . E-mail: withers@rsc.anu.edu.au; Welberry, T.R.; Pring, Allan; Tenailleau, Cristophe; Liu Yun
2005-03-15
Electron diffraction has been used to carefully investigate the reciprocal lattices of a range of iron-bearing sphalerites looking for evidence of Fe clustering and/or Fe/Zn ordering in the form of either additional satellite reflections or a structured diffuse intensity distribution accompanying the strong Bragg reflections of the underlying sphalerite-type average structure. While a highly structured diffuse intensity distribution in the form of transverse polarized {l_brace}110{r_brace}* sheets of diffuse intensity has been detected and found to be characteristic of all compositions, it does not appear to arise from Fe clustering and/or Fe/Zn ordering. Rather inherently low frequency, and therefore strongly thermally excited, phonon modes propagating along reciprocal space directions perpendicular to each of the six <110> real space directions of the average structure are suggested to be responsible for these {l_brace}110{r_brace}* sheets of diffuse intensity. Monte Carlo simulation (for a range of Zn-S, Zn-Zn and S-S interaction strengths) and subsequent Fourier transformation is used to confirm the existence of these low-frequency phonon modes of distortion as well as to show that they are an intrinsic, predictable property of the corner-connected tetrahedral structure of sphalerite. The low-frequency phonon modes involve coupled (Zn, Fe) and S motion in one-dimensional strings along <110> real space directions.
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon
2015-12-01
A correlation between the temperature-dependent leakage conduction, phonon and impurity scatterings and potential fluctuations of graphene/n-type Si Schottky diodes is identified. For applying a sufficiently high reverse-bias voltage, the significantly increase in the leakage current density with voltage at low temperature is mainly the result of graphene's Fermi-energy shifts. However, the high-field saturating leakage current is observed at high temperature. This is because of the competition among the phonon and impurity scatterings. In the graphene film transferred onto the n-type Si substrate, the Femi energy level is lower and the phonon coupling is stronger, giving a stronger dependence in the carrier velocity with temperature and a weaker dependence in the leakage current density with reserve-bias voltage.
Ozawa, Masakuni; Suzuki, Suguru; Loong, C.K.; Nipko, J.C.
1996-12-31
Inelastic neutron scattering was used to study the phonon densities of states of zirconia nanoparticles, the O-H stretch vibrations of physisorbed water molecules, and chemisorbed hydroxyl groups on the surface. Raman scattering was also used to measure the zone-center phonon modes. The observed distinct phonon frequencies and band widths at 10-120 meV reflect the different crystalline symmetries and compositional fluctuations in the small grain and interfacial regions of monoclinic ZrO{sub 2}, tetragonal or mixed cubic and tetragonal rare-earth-modified zirconia. The dynamics of water and hydroxyl groups on varying local structures of these zirconias result in the different frequencies of the O-H stretch vibrations at 400-600 meV.
Quantum stochastic approach for molecule/surface scattering. I. Atom-phonon interactions
NASA Astrophysics Data System (ADS)
Bittner, Eric R.; Light, John C.
1993-11-01
We present a general, fully quantum mechanical theory for molecule surface scattering at finite temperature within the time dependent Hartree (TDH) factorization. We show the formal manipulations which reduce the total molecule-surface-bath Schrödinger equation into a form which is computationally convenient to use. Under the TDH factorization, the molecular portion of the wavefunction evolves according to a mean-field Hamiltonian which is dependent upon both time and temperature. The temporal and thermal dependence is due to stochastic and dissipative terms that appear in the Heisenberg equations of motion for the phonon operators upon averaging over the bath states. The resulting equations of motion are solved in one dimension self consistently using quantum wavepackets and the discrete variable representation. We compute energy transfer to the phonons as a function of surface temperature and initial energy and compare our results to results obtained using other mean-field models, namely an averaged mean-field model and a fully quantum model based upon a dissipative form of the quantum Liouville equation. It appears that the model presented here provides a better estimation of energy transfer between the molecule and the surface.
Carvalho, Bruno R; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H; Malard, Leandro M; Pimenta, Marcos A
2017-03-09
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.
Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.
2017-01-01
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2. PMID:28276472
NASA Astrophysics Data System (ADS)
Carvalho, Bruno R.; Wang, Yuanxi; Mignuzzi, Sandro; Roy, Debdulal; Terrones, Mauricio; Fantini, Cristiano; Crespi, Vincent H.; Malard, Leandro M.; Pimenta, Marcos A.
2017-03-01
Double-resonance Raman scattering is a sensitive probe to study the electron-phonon scattering pathways in crystals. For semiconducting two-dimensional transition-metal dichalcogenides, the double-resonance Raman process involves different valleys and phonons in the Brillouin zone, and it has not yet been fully understood. Here we present a multiple energy excitation Raman study in conjunction with density functional theory calculations that unveil the double-resonance Raman scattering process in monolayer and bulk MoS2. Results show that the frequency of some Raman features shifts when changing the excitation energy, and first-principle simulations confirm that such bands arise from distinct acoustic phonons, connecting different valley states. The double-resonance Raman process is affected by the indirect-to-direct bandgap transition, and a comparison of results in monolayer and bulk allows the assignment of each Raman feature near the M or K points of the Brillouin zone. Our work highlights the underlying physics of intervalley scattering of electrons by acoustic phonons, which is essential for valley depolarization in MoS2.
Ghosh, Krishnendu Singisetti, Uttam
2015-02-14
N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.
Donovan, Brian F.; Sachet, Edward; Maria, Jon-Paul; Hopkins, Patrick E.
2016-01-11
Understanding the impact and complex interaction of thermal carrier scattering centers in functional oxide systems is critical to their progress and application. In this work, we study the interplay among electron and phonon thermal transport, mass-impurity scattering, and phonon-vacancy interactions on the thermal conductivity of cadmium oxide. We use time domain thermoreflectance to measure the thermal conductivity of a set of CdO thin films doped with Dy up to the saturation limit. Using measurements at room temperature and 80 K, our results suggest that the enhancement in thermal conductivity at low Dy concentrations is dominated by an increase in the electron mobility due to a decrease in oxygen vacancy concentration. Furthermore, we find that at intermediate doping concentrations, the subsequent decrease in thermal conductivity can be ascribed to a large reduction in phononic thermal transport due to both point defect and cation-vacancy scattering. With these results, we gain insight into the complex dynamics driving phonon scattering and resulting thermal transport in functional oxides.
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2007-03-01
The application of single-walled carbon nanotubes as the ideal ballistic conductors is expected. However, the electronic current saturates at the high-bias regime due to electron-phonon scattering. In order to improve the conductivity, understanding of the scattering mechanism is highly required. We investigated the electron-phonon coupling effect on the conductance in single-walled carbon nanotubes using the time-dependent wave-packet approach under a tight-binding approximation [1]. The vibrational atomic displacements in real space are introduced through the time-dependent change of the transfer energies. We solve the time-dependent Schr"odinger equation and obtain the time-dependent diffusion coefficients of the electronic wave packets. From these data, we can extract the coherence length and then the conductance. We found that the optical phonon decreases the conductance of metallic carbon nanotubes, because the propagating speed of electron is reduced by the electron-phonon scattering. Furthermore, we clarify the difference of the scattering effects on the conductivity of the metallic nanotube and the semiconducting one. [1] S. Roche et al., PRL 95 (2005) 076803
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2007-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2009-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals
NASA Astrophysics Data System (ADS)
Even, Jacky; Paofai, Serge; Bourges, Philippe; Letoublon, Antoine; Cordier, Stéphane; Durand, Olivier; Katan, Claudine
2016-03-01
Despite the wealth of research conducted the last three years on hybrid organic perovskites (HOP), several questions remain open including: to what extend the organic moiety changes the properties of the material as compared to allinorganic (AIP) related perovskite structures. To ultimately reach an answer to this question, we have recently introduced two approaches that were designed to take the stochastic molecular degrees of freedom into account, and suggested that the high temperature cubic phase of HOP and AIP is an appropriate reference phase to rationalize HOP's properties. In this paper, we recall the main concepts and discuss more specifically the various possible couplings between charge carriers and low energy excitations such as acoustic and optical phonons. As available experimental or simulated data on low energy excitations are limited, we also present preliminary neutron scattering and ultrasonic measurements obtained and freshly prepared single crystals of CH3NH3PbBr3.
Raman scattering from confined phonons in GaAs/AlGaAs quantum wires
NASA Astrophysics Data System (ADS)
Bairamov, B. H.; Aydinli, A.; Tanatar, B.; Güven, K.; Gurevich, S.; Mel'tser, B. Ya.; Ivanov, S. V.; Kop'ev, P. S.; Smirnitskii, V. B.; Timofeev, F. N.
1998-10-01
We report on photoluminescence and Raman scattering performed at low temperature (T = 10 K) on GaAs/Al0.3Ga0.7As quantum-well wires with effective wire widths ofL = 100.0 and 10.9 nm prepared by molecular beam epitaxial growth followed by holographic patterning, reactive ion etching, and anodic thinning. We find evidence for the existence of longitudinal optical phonon modes confined to the GaAs quantum wire. The observed frequency at οL10 = 285.6 cm-1forL = 11.0 nm is in good agreement with that calculated on the basis of the dispersive dielectric continuum theory of Enderleinas applied to the GaAs/Al0.3Ga0.7As system. Our results indicate the high crystalline quality of the quantum-well wires fabricated using these techniques.
NASA Astrophysics Data System (ADS)
Kim, Dai-Sik
1990-01-01
Time-resolved Raman scattering experiments have been performed in semiconductors to study the relaxation of hot carriers excited by subpicosecond laser pulses. A one-beam-excite-and-probe Raman scattering technique has been developed and applied to the cooling of hot electrons by varying the laser pulse width. Electron-phonon scattering times have been deduced by measuring the population of phonons generated by hot electron relaxation as a function of carrier density. Three different type of samples: bulk GaAs, In_{0.53}Ga _{0.47}As alloy, and GaAs/AlAs multiple quantum wells have been studied. In GaAs, we discovered a transient overshoot of longitudinal optical (LO) phonon temperature above the electron temperature which we have called 'phonon temperature overshoot'. This is contrary to expectation if we assume that the electrons are cooled only by emission of LO phonons. The results can be explained if we assume that the electrons are cooled predominantly by another more efficient mechanism in addition to LO phonon emission. We found that intervalley scattering provided the cooling mechanism to explain both the phonon temperature overshoot and the cooling curve of the hot carriers. This model was found to be successful in explaining the hot electron cooling curve in In_{0.53 }Ga_{0.47}As and in enabling us to determine the intervalley scattering rate in In_{0.53}Ga _{0.47}As for the first time. Based on this same model, we predicted that the hot phonon population generated by hot electrons will be greatly reduced in GaAs/AlAs multiple quantum wells as the well thickness is reduced to below 400 A. This prediction has been verified by measuring the hot phonon population excited by subpicosecond laser pulses in a series of samples with well width varying between 1000 A to 100 A. While the experimental results are in good qualitative agreement with our prediction, the observed phonon population is higher than predicted by our model. One possible explanation of this
Scattering rates due to electron-phonon interaction in CdS1-xSex quantum dots
NASA Astrophysics Data System (ADS)
Alcalde, Augusto M.; Weber, Gerald
2000-11-01
We calculate electron-LO-confined and surface phonon scattering rates in CdS1-xSex spherical quantum dots. The phonon modes are described in the frame of the two-mode dielectric continuum model, and the standard k.p formalism is used for treating the electronic band structure. We include the effects of inhomogeneous broadening due to statistical dot size distribution, which can create a wide channel of efficient relaxation. We demonstrate that changes in the concentration can generate variations of more than one order of magnitude in the relaxation rates.
Shcherbakov, A S; Arellanes, A O; Chavushyan, V
2016-12-01
We develop an advanced approach to the optical spectrometer with acousto-optical dynamic grating for the Guillermo Haro astrophysical observatory (Mexico). The progress consists of two principle novelties. First is the use of the acousto-optical nonlinearity of two-phonon light scattering in crystals with linear acoustic losses. This advanced regime of light scattering exhibits a recently revealed additional degree of freedom, which allows tuning of the frequency of elastic waves and admits the nonlinear apodization improving the dynamic range. The second novelty is the combination of the cross-disperser with acousto-optical processing. A similar pioneering step provides an opportunity to operate over all the visible range in a parallel regime with maximal achievable resolution. The observation window of the optical spectrometer in that observatory is ∼9 cm, so that the theoretical estimations of maximal performances for a low-loss LiNbO_{3} crystal for this optical aperture at λ=405 nm give spectral resolution of 0.0523 Å, resolving power of 77,400, and 57,500 spots. The illustrative proof-of-principle experiments with a 6 cm LiNbO_{3} crystal have been performed.
NASA Astrophysics Data System (ADS)
Zhang, Shu-Lin; Xia, Lei; Chen, Weihua; Li, D. Y.; Li, Wanyu; He, Juan
2016-12-01
The phonon dispersion relation (PDR), i.e., the dependence of phonon frequency ω on its wavevector q, ω(q), was measured traditionally by inelastic neutron scattering (INS) or inelastic X-ray scattering (IXS). A new approach to measure PDR by Raman scattering (RS) of nanostructures was proposed and applied to observe the longitudinal optical (LO) PDR of diamond successfully. Due to the higher resolution and accuracy of ω and q in RS, a clear downbending feature of ω with increasing q away from the Brillouin zoon center was observed for the first time. The validity of the new approach has been confirmed also by the appearing of the downward bending in PDR, which is originally measured by traditional high-resolution IXS experiment. The downbending feature may give us a clue for deep understanding of the interactions occur in diamond, while the overbending feature observed by INS and IXS has been attributed to strong effective second-nearest-neighbor forces.
Surface defects characterization in a quantum wire by coherent phonons scattering
Rabia, M. S.
2015-03-30
The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
1993-01-01
The addition of ultrafine scattering centers into Bi_2Te_3-based materials and their impact on the thermal and electrical transport properties in a 200-500 K temperature range are discussed. Based on previous theoretical efforts, the resulting improvements in the figure of merit of these heavily doped thermoelectric semiconductors were calculated as a function of composition, temperature, doping level, particulate size and concentration. Determination of the lattice thermal conductivity of the various alloys was conducted by considering phonon-phonon, carrier-phonon, point defect and inert scattering center scattering mechanisms. Degradation of the electrical properties due to the increase scattering rate was also taken into account. Practical application of these results is considered.
Strelchuk, V V; Nikolenko, A S; Gubanov, V O; Biliy, M M; Bulavin, L A
2012-11-01
In the present work, we used Raman spectroscopy as sensitive tool for characterization of dispersion of electron-phonon resonances in one-layer graphene. We analyzed Stokes and anti-Stokes components of the Raman spectra to investigate the temperature dependence of the graphene G-band on the power of exciting radiation. Appearance and drastic intensity increase of zone-edge D-like modes caused by introduction of structural defects and/or deformations in the graphene layer were observed in the Raman spectra at high powers of excitation. We investigated phonon dispersion of one-layer graphene for iTO phonon branch at K point along K-M direction, which is involved in double-resonance Raman scattering. Raman dispersion slope of D-band is in good agreement with results of theoretical calculations based on the Green's functions approach based on the screened electron-electron interaction. Deviation of the experimental iTO phonon frequency from the linear dependence on excitation energy was observed at excitation E(exc) = 3.81 eV. Self-consistent classification of phonon states according to the symmetry for all dispersion branches of one-layer graphene was carried out.
Ab initio simulation of single- and few-layer MoS2 transistors: Effect of electron-phonon scattering
NASA Astrophysics Data System (ADS)
Szabó, Áron; Rhyner, Reto; Luisier, Mathieu
2015-07-01
In this paper, we present full-band atomistic quantum transport simulations of single- and few-layer MoS2 field-effect transistors (FETs) including electron-phonon scattering. The Hamiltonian and the electron-phonon coupling constants are determined from ab initio density-functional-theory calculations. It is observed that the phonon-limited electron mobility is enhanced with increasing layer thicknesses and decreases at high charge concentrations. The electrostatic control is found to be crucial even for a single-layer MoS2 device. With a single-gate configuration, the double-layer MoS2 FET shows the best intrinsic performance with an ON current, ION=685 μ A /μ m , but with a double-gate contact the transistor with a triple-layer channel delivers the highest current with ION=1850 μ A /μ m . The charge in the channel is almost independent of the number of MoS2 layers, but the injection velocity increases significantly with the channel thickness in the double-gate devices due to the reduced electron-phonon scattering rates in multilayer structures. We demonstrate further that the ballistic limit of transport is not suitable for the simulation of MX 2 FETs because of the artificial negative differential resistance it predicts.
NASA Astrophysics Data System (ADS)
Johnston, Steven
2015-03-01
One of the primary goals of superconductivity research is engineering materials that become superconducting at high temperatures. To this end, I will examine forward scattering from phonons as a general means to increase Tc in unconventional superconductors. First I will introduce the mechanisms for generating electron-lattice interactions in quasi-two-dimensional correlated systems that are peaked in the forward scattering direction. Then I will present case studies comparing theory to angle-resolved photoemission spectroscopy data for the Bi-family of cuprate superconductors and the recently discovered FeSe monolayer in SrTiO3 substrates [2]. These studies demonstrate the general principle of using particular electron-phonon interactions for enhancing superconductivity in unconventional pairing channels.
NASA Astrophysics Data System (ADS)
Jarlov, C.; Wodey, É.; Lyasota, A.; Calic, M.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.
2016-08-01
Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment.
Discrete states and carrier-phonon scattering in quantum dot population dynamics
Man, Minh Tan; Lee, Hong Seok
2015-01-01
The influence of the growth conditions of multilayer CdTe/ZnTe quantum dots (QDs) on Si substrate upon their carrier dynamics is studied using intensity integration and broadening photoluminescence. The unusual temperature dependence of the line broadening is explained using a model for interband transitions that involves a lowest discrete electronic state (1Se) with different discrete hole states (1S3/2 and 2S3/2) and a 1P transition. These transitions are expected to play a critical role in both the thermally activated energy and the line broadening of the QDs. We also demonstrate that a thermally activated transition between two different states occurs with band low-temperature quenching, with values separated by 5.8–16 meV. The main nonradiative process is thermal escape assisted by carrier scattering via emission of longitudinal phonons through the hole states at high temperature, with an average energy of 19.3–20.2 meV. PMID:25652600
Raman scattering by phonons of Ga1-xAlxSb mixed crystals
NASA Astrophysics Data System (ADS)
Berdekas, D.
2013-06-01
We present calculations of the Raman scattering spectra by the long-wavelength vibrations of Ga1-xAlxSb mixed crystals for three different cation concentrations. Each mixed crystal is approached using a primitive cell 64 times larger than the primitive cell of the bulk constituents GaSb and AlSb. The phonon modes are calculated on the basis of an 11 parameter Rigid Ion Model and the Raman spectra are calculated using the Bond Polarizability Model (BPM), away from resonance conditions. The parameters of this model (BPM) are not arbitrarily approximated but we have obtained them on the basis of certain relations, involving directly measurable quantities, such as dielectric and elastooptic constants of the bulk crystal. It is shown that for small concentrations the Al ions are not randomly distributed over the whole crystal but almost all tend to concentrate in neighboring lattice planes. Further, we have reproduced the Raman spectra close to resonance conditions, assuming that the value of the first order polarizability of AlSb is increased by an amount of 50% close to resonance conditions. Finally it is shown that disorder produces asymmetric Raman lines spectra with the intensities of the two strongest peaks in the optic frequency ranges of the bulk constituents being concentration dependent.
NASA Astrophysics Data System (ADS)
Pernot, G.; Stoffel, M.; Savic, I.; Pezzoli, F.; Chen, P.; Savelli, G.; Jacquot, A.; Schumann, J.; Denker, U.; Mönch, I.; Deneke, Ch.; Schmidt, O. G.; Rampnoux, J. M.; Wang, S.; Plissonnier, M.; Rastelli, A.; Dilhaire, S.; Mingo, N.
2010-06-01
The ability to precisely control the thermal conductivity (κ) of a material is fundamental in the development of on-chip heat management or energy conversion applications. Nanostructuring permits a marked reduction of κ of single-crystalline materials, as recently demonstrated for silicon nanowires. However, silicon-based nanostructured materials with extremely low κ are not limited to nanowires. By engineering a set of individual phonon-scattering nanodot barriers we have accurately tailored the thermal conductivity of a single-crystalline SiGe material in spatially defined regions as short as ~15nm. Single-barrier thermal resistances between 2 and 4×10-9m2KW-1 were attained, resulting in a room-temperature κ down to about 0.9Wm-1K-1, in multilayered structures with as little as five barriers. Such low thermal conductivity is compatible with a totally diffuse mismatch model for the barriers, and it is well below the amorphous limit. The results are in agreement with atomistic Green's function simulations.
NASA Astrophysics Data System (ADS)
Nag Chowdhury, Basudev; Chattopadhyay, Sanatan
2016-09-01
In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.
Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics.
Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin
2014-10-29
Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La(3+), Mg(2+) and Al(3+) ions with large ionic radius Ba(2+), Zn(2+) and Ti(4+), respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings.
Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics
Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin
2014-01-01
Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings. PMID:25351166
Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics
NASA Astrophysics Data System (ADS)
Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin
2014-10-01
Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings.
Nakayama, Masaaki Ohno, Tatsuya; Furukawa, Yoshiaki
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
Lucas, A A; Sunjic, M; Benedek, G
2013-09-04
An analytic model is developed to describe the inelastic processes occurring when keV Ne(+) ions are scattered at grazing incidence by the (100) surface of LiF. The large energy losses (up to 30 eV) of the reflected Ne(+) particles reported by Borisov et al (1999 Phys. Rev. Lett. 83 5378) are shown to arise specifically from the long-range coupling between the projectiles and the so-called Fuchs-Kliewer (FK) optical phonons of LiF whose fields extend far outside the surface. The strength of the coupling is estimated, allowing one to compute the average number of excited FK phonon quanta (ħωS = 0.071 eV) and hence the mean energy losses. For emerging, neutralized Ne(0), a distinct energy loss mechanism is shown to occur, namely the excitation of FK phonons and other types of surface collective modes associated with the screening of the F(0) 'hole' left behind by the neutralization process. This mechanism contributes a large fraction of the loss, additional to that suffered by the incident Ne(+) ion. The model explains the experimental observations quantitatively (1999 Phys. Rev. Lett. 83 5378). The paper ends with a discussion of the large energy broadening of the observed loss peaks.
NASA Astrophysics Data System (ADS)
Nguyen, Phuong Hoa; Hofmann, Karl R.; Paasch, Gernot
2002-11-01
In advanced full-band Monte Carlo (MC) models, the Nordheim approximation with a spherical Wigner-Seitz cell for a lattice with two atoms per elementary cell is still common, and in the most detailed work on silicon by Kunikiyo [et al.] [J. Appl. Phys. 74, 297 (1994)], the atomic positions in the cell have been incorrectly introduced in the phonon scattering rates. In this article the correct expressions for the phonon scattering rates based on the screened pseudopotential are formulated for the case of several atoms per unit cell. Furthermore, the simplest wave number dependent approximation is introduced, which contains an average of the cell structure factor and the acoustic and the optical deformation potentials as two parameters to be fitted. While the band structure is determined by the pseudopotential at the reciprocal lattice vectors, the phonon scattering rates are essentially determined by wave numbers below the smallest reciprocal lattice vector. Thus, in the phonon scattering rates, the pseudopotential form factor is modeled by the simple Ashcroft model potential, in contrast to the full band structure, which is calculated using a nonlocal pseudopotential scheme. The parameter in the Ashcroft model potential is determined using a method based on the equilibrium condition. For the screening of the pseudopotential form factor, the Lindhard dielectric function is used. Compared to the Nordheim approximation with a spherical Wigner-Seitz cell, the approximation results in up to 10% lower phonon scattering rates. Examples from a detailed comparison of the influence of the two deformation potentials on the electron and hole drift velocities are presented for Ge and Si at different temperatures. The results are prerequisite for a well-founded choice of the two deformation potentials as fit parameters and they provide an explanation of the differences between the two materials, the origin of the anisotropy of the drift velocities, and the origin of the dent in
NASA Astrophysics Data System (ADS)
Branlund, J. M.; Hofmeister, A.; Dong, J.
2013-12-01
Over the course of several years, we have measured heat transport to high temperatures for a large number (ca. 200) of minerals, rocks, glasses and melts using laser flash analysis which eliminates systematic errors (contact losses and boundary-to-boundary radiative transfer gains) that limit utility of conventional, contact techniques. The database is large enough to elucidate patterns. For most samples and particularly for our >60 non-metallic, large single-crystals, >30 glasses and >12 polycrystals, we show that thermal diffusivity is consistently represented by D(T) =F/T ^G + HT, permitting confident extrapolation from conditions in the laboratory to those in the mantle. The two distinct temperature terms describing D(T) suggest that two microscopic mechanisms of conduction exist in the electrical insulators explored. We propose that phonon scattering (the F/T^G term) sums with radiative diffusion of infrared (IR) light in the form of polaritons (the HT term). Speeds near that of sound over unit cell scale lengths exist for the polariton mechanism due to phonon-photon coupling, thereby distinguishing this proposed mechanism from high frequency diffusive radiative transfer which travels near the speed of light, and only is important following transient heating. For 63 single-crystals and many glasses unaffected by disordering or reconstructive phase transitions, G ranges from 0.3 to 2, depending on structure, and H is ~0.0001/ K, and so HT crosses F/T^G by ~1300 K (for most oxides), meaning that radiative diffusion of IR light is more important than phonon scattering inside the Earth. Importantly, the increase in heat transport due to elevated temperature is augmented by the increase due to high P inside planets, providing stability against convection. The popular view of a vigorously convecting interior needs revisiting, given known feedback in the temperature equation and the large size of the HT term. To understand the microscopic basis of HT term, we re
NASA Astrophysics Data System (ADS)
Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen
Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.
Neumann-Cosel, P. von; Burda, O.; Kuhar, M.; Lenhardt, A.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N. T.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Pietralla, N.
2006-03-13
High-resolution inelastic electron (performed at the S-DALINAC) and proton (performed at iThemba LABS) scattering experiments on 92Zr and 94Mo with emphasis on E2 transitions are presented The measured form factors and angular distributions provide a measure for the F-spin purity, respectively the isovector nature, of the proposed one-phonon mixed symmetry states and furthermore provide a sensitive test of a possible two-phonon character of excited 2+ states.
Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki
2013-10-28
Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.
Influence of magnetism on phonons in CaFe{sub 2}As{sub 2} as seen via inelastic x-ray scattering.
Hahn, S. E.; Lee, Y.; Ni, N.; Canfield, P. C.; Goldman, A. I.; McQueeney, R. J.; Harmon, B. N.; Alatas, A.; Leu, B. M.; Alp, E. E.; Chung, D. Y.; Todorov, I. S.; Kanatzidis, M. G.; Iowa State Univ.; Northwestern Univ.
2009-01-01
In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high-temperature tetragonal phase of CaFe{sub 2}As{sub 2} using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.
Electron-phonon scattering effects on electronic and optical properties of orthorhombic GeS
NASA Astrophysics Data System (ADS)
Villegas, Cesar E. P.; Rocha, A. R.; Marini, Andrea
2016-10-01
Group-VI monochalcogenides are attracting a great deal of attention due to their peculiar anisotropic properties. Very recently, it has been suggested that GeS could act as a promissory absorbing material with high input-output ratios, which are relevant features for designing prospective optoelectronic devices. In this work, we use the ab initio many-body perturbation theory to study the role of electron-phonon coupling on orthorhombic GeS. We identify the vibrational modes that efficiently couple with the electronic states responsible for giving rise to the first and second excitonic state. We also study finite-temperature optical absorption, and we show that even at T →0 K , the role of the electron-phonon interaction is crucial to properly describe the position and width of the main experimental excitation peaks. Our results suggest that the electron-phonon coupling is essential to properly describe the optical properties of the monochalcogenides family.
Phonon modes at the 2H-NbSe2 surface observed by grazing incidence inelastic x-ray scattering.
Murphy, B M; Requardt, H; Stettner, J; Serrano, J; Krisch, M; Müller, M; Press, W
2005-12-16
We have determined the dispersion of acoustic and optical surface phonon modes 2H-NbSe2 at the by inelastic x-ray scattering under grazing incidence conditions. Already, at room temperature, an anomaly is observed close to the charge density wave -vector position located at about one-third along the Gamma-M direction of the Brillouin zone. Our results indicate that the anomaly for the surface mode occurs at a lower energy than that measured in bulk sensitive geometry in the same experiment, showing evidence of a modified behavior in the uppermost layers. We demonstrate that inelastic x-ray scattering in grazing incidence conditions provides a unique tool to selectively study either surface or bulk lattice dynamics in a single experiment.
NASA Astrophysics Data System (ADS)
Chandrasekaran, Saravan Kumar; Bieler, Tom; Compton, Chris; Wright, Neil T.
2012-06-01
Production of niobium ingots and subsequent fabrication and processing of superconducting radio frequency (SRF) cavities affect the thermal conductivity of superconducting niobium in an as yet unknown way. Here, parameters of a theoretically-based model are used to relate thermal conductivity to the heat treatment temperature of niobium. Temperature and heat flux measurements on large grain niobium specimens with different heat treatment histories are used to estimate the parameters in the model. The parameter associated with the scattering of phonons by normal conducting electrons, β3, deviates from its theoretical value at cooler heat treatment temperatures, but converges to the theoretical value at hotter heat treatment temperatures. The parameter associated with the scattering of phonons by lattice defects and boundaries, β4, correlates well with the heat treatment temperature. The parameter associated with the condensation of electrons to form Cooper pairs, β5, is shown to be unaffected by the heat treatment temperature. These results show promise for relating thermal conductivity to the material processing of niobium.
Koh, Yee Kan; Lyons, Austin S; Bae, Myung-Ho; Huang, Bin; Dorgan, Vincent E; Cahill, David G; Pop, Eric
2016-10-12
Heat transfer across interfaces of graphene and polar dielectrics (e.g., SiO2) could be mediated by direct phonon coupling, as well as electronic coupling with remote interfacial phonons (RIPs). To understand the relative contribution of each component, we develop a new pump-probe technique called voltage-modulated thermoreflectance (VMTR) to accurately measure the change of interfacial thermal conductance under an electrostatic field. We employed VMTR on top gates of graphene field-effect transistors and find that the thermal conductance of SiO2/graphene/SiO2 interfaces increases by up to ΔG ≈ 0.8 MW m(-2) K(-1) under electrostatic fields of <0.2 V nm(-1). We propose two possible explanations for the small observed ΔG. First, because the applied electrostatic field induces charge carriers in graphene, our VMTR measurements could originate from heat transfer between the charge carriers in graphene and RIPs in SiO2. Second, the increase in heat conduction could be caused by better conformity of graphene interfaces under electrostatic pressure exerted by the induced charge carriers. Regardless of the origins of the observed ΔG, our VMTR measurements establish an upper limit for heat transfer from unbiased graphene to SiO2 substrates via RIP scattering; for example, only <2% of the interfacial heat transport is facilitated by RIP scattering even at a carrier concentration of ∼4 × 10(12) cm(-2).
Liu, Jie; Xu, Xu; Anantram, M.P.
2014-09-01
The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.
NASA Astrophysics Data System (ADS)
Muñoz, Jorge A.; Fultz, Brent
2015-07-01
Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.
Muñoz, Jorge A.; Fultz, Brent
2015-07-23
Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.
Interfacial electron and phonon scattering processes in high-powered nanoscale applications.
Hopkins, Patrick E.
2011-10-01
The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.
NASA Astrophysics Data System (ADS)
Scamarcio, G.; Spagnolo, V.; Corvasce, C.; Lugará, M.; Suemune, I.
1994-08-01
We report a study of Raman scattering at resonance with the band gap in (ZnSe)d(ZnS0.18Se0.82)d superlattices, 20 Å<=d<=150 Å. Taking advantage of a microprobe, all the independent geometries have been excited in backscattering either from the sample surface or the superlattice edge. The energies of optical phonons with their wave vectors both parallel and normal to the growth axis have been measured, thus showing the expected anisotropic behavior. The comparison between first- and second-order spectra allows us to assess the nature of the phonons dominating the iterated electron-phonon scattering as a function of the well width.
Thermal conductivity in $\text{large}-J$ two-dimensional antiferromagnets: Role of phonon scattering
Chernyshev, A. L.; Brenig, Wolfram
2015-08-05
Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates.
It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.
Terahertz Quantum Cascade Structures Using Step Wells And Longitudinal Optical-Phonon Scattering
2009-06-01
maximum H = Hamiltonian ħ = 6.582 119 15(56)×10−22 MeV sec j = probability density flux kB = 8.617 343(15)×10−5 eV K−1 k and q = momentum vector...which are an absolute necessity for analyzing or designing QC band structures, will be covered. Various 6 scattering mechanisms and the...sections that follow, the calculation of scattering rates for the pertinent scattering mechanisms will be covered. As will be shown, the scattering
Cross-plane heat conduction in thin films with ab-initio phonon dispersions and scattering rates
NASA Astrophysics Data System (ADS)
Vermeersch, Bjorn; Carrete, Jesús; Mingo, Natalio
2016-05-01
We present a first-principles study of the cross-plane thermal conductivity κ ⊥ in a wide variety of semiconductor thin films. We introduce a simple suppression model that matches variance-reduced Monte Carlo simulations with ab-initio phonon dispersions and scattering rates within ≤ 5 % even for anisotropic compounds. This, in turn, enables accurate κ ⊥ reconstruction from tabulated cumulative conductivity curves κ Σ ( Λ ⊥ ) . We furthermore reveal, and explain, a distinct quasiballistic regime characterised by a fractional thickness dependence κ ⊥ ˜ L 2 - α in alloys (where α is the Lévy exponent) and logarithmic dependence κ ⊥ ˜ ln ( L ) in single crystals. These observations culminate in the formulation of two compact parametric forms for κ ⊥ ( L ) that can fit the first-principles curves across the entire ballistic-diffusive range within a few percent for all investigated compounds.
Park, Kyeong Hyun Mohamed, Mohamed; Ravaioli, Umberto; Aksamija, Zlatan
2015-01-07
In this work, we calculate the thermal conductivity of layered bismuth telluride (Bi{sub 2}Te{sub 3}) thin films by solving the Boltzmann transport equation in the relaxation-time approximation using full phonon dispersion and compare our results with recently published experimental data and molecular dynamics simulation. The group velocity of each phonon mode is readily extracted from the full phonon dispersion obtained from first-principle density-functional theory calculation and is used along with the phonon frequency to compute the various scattering terms. Our model incorporates the typical interactions impeding thermal transport (e.g., umklapp, isotope, and boundary scatterings) and introduces a new interaction capturing the reduction of phonon transmission through van der Waals interfaces of adjacent Bi{sub 2}Te{sub 3} quintuple layers forming the virtual superlattice thin film. We find that this novel approach extends the empirical Klemens-Callaway relaxation model in such anisotropic materials and recovers the experimental anisotropy while using a minimal set of parameters.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
NASA Astrophysics Data System (ADS)
Jiang, P. P.; Zhang, X. L.; Chang, P.; Hu, Z. G.; Bai, W.; Li, Y. W.; Chu, J. H.
2014-04-01
Optical phonons of multiferroic Bi4Ti3O12-BiFeO3 ceramic have been investigated by low temperature Raman scattering and infrared reflectance spectra. Anomalies at about 85 K can be observed from the temperature dependence of the Raman and infrared modes, which arise from spin-phonon interaction during antiferromagnetic to paramagnetic phase transition. It was found that the change of exchange interaction in magnetic phase transition can be induced by Fe-O-Fe octahedral tilting driven from the A-site atoms. Moreover, ferroelectricity-related displacement of Bismuth atoms suggests the coupling of magnetic and ferroelectric orders.
Fu, Chenguang; Wu, Haijun; Liu, Yintu; He, Jiaqing; Zhao, Xinbing; Zhu, Tiejun
2016-08-01
Hierarchical scattering is suggested as an effective strategy to enhance the figure of merit zT of heavy-band thermoelectric materials. Heavy-band FeNbSb half-Heusler system with intrinsically low carrier mean free path is demonstrated as a paradigm. An enhanced zT of 1.34 is obtained at 1150 K for the Fe1.05Nb0.75Ti0.25Sb compound with intentionally designed hierarchical scattering centers.
Three-phonon stimulated Raman scattering in an orthorhombic LuAlO3 crystal
NASA Astrophysics Data System (ADS)
Kaminskii, A. A.
2016-12-01
High-order stimulated Raman scattering (SRS) has been revealed in a LuAlO3 crystal upon stationary picosecond laser excitation. All recorded Stokes and anti-Stokes χ(3)-nonlinear laser components are attributed to three SRS-promoting A g vibrational modes of its octahedral anionic units (AlO3)-3.
Price, A. Martinez, A.
2015-04-28
Using quantum transport simulations, the impact of electron-phonon scattering on the transfer characteristic of a gate-all-around nanowire (GaAs) field effect transistor (NWFET) has been thoroughly investigated. The Non-Equilibrium Green's Function formalism in the effective mass approximation using a decoupled mode decomposition has been deployed. NWFETs of different dimensions have been considered, and scattering mechanisms including acoustic, optical and polar optical phonons have been included. The effective masses were extracted from tight binding simulations. High and low drain bias have been considered. We found substantial source to drain tunnelling current and significant impact of phonon scattering on the performance of the NWFET. At low drain bias, for a 2.2 × 2.2 nm{sup 2} cross-section transistor, scattering caused a 72%, 77%, and 81% decrease in the on-current for a 6 nm, 10 nm, and 20 nm channel length, respectively. This reduction in the current due to scattering is influenced by the increase in the tunnelling current. We include the percentage tunnelling for each valley at low and high drain bias. It was also found that the strong quantisation caused the relative position of the valleys to vary with the cross-section. This had a large effect on the overall tunnelling current. The phonon-limited mobility was also calculated, finding a mobility of 950 cm{sup 2}/V s at an inversion charge density of 10{sup 12 }cm{sup −2} for a 4.2 × 4.2 nm{sup 2} cross-section device.
Enhanced phonon scattering by nanovoids in high thermoelectric power factor polysilicon thin films
NASA Astrophysics Data System (ADS)
Dunham, Marc T.; Lorenzi, Bruno; Andrews, Sean C.; Sood, Aditya; Asheghi, Mehdi; Narducci, Dario; Goodson, Kenneth E.
2016-12-01
The ability to tune the thermal conductivity of semiconductor materials is of interest for thermoelectric applications, in particular, for doped silicon, which can be readily integrated in electronic microstructures and have a high thermoelectric power factor. Here, we examine the impact of nanovoids on the thermal conductivity of highly doped, high-power factor polysilicon thin films using time-domain thermoreflectance. Voids are formed through ion implantation and annealing, evolving from many small (˜4 nm mean diameter) voids after 500 °C anneal to fewer, larger (˜29 nm mean diameter) voids with a constant total volume fraction after staged thermal annealing to 1000 °C. The thermal conductivity is reduced to 65% of the non-implanted reference film conductivity after implantation and 500 °C anneal, increasing with anneal temperature until fully restored after 800 °C anneal. The void size distributions are determined experimentally using small-angle and wide-angle X-ray scattering. While we believe multiple physical mechanisms are at play, we are able to corroborate the positive correlation between measurements of thermal conductivity and void size with Monte Carlo calculations and a scattering probability based on Matthiessen's rule. The data suggest an opportunity for thermal conductivity suppression combined with the high power factor for increased material zT and efficiency of nanostructured polysilicon as a thermoelectric material.
Damped soft phonons and diffuse scattering in (Bi1/2Na1/2)TiO3
NASA Astrophysics Data System (ADS)
Matsuura, M.; Iida, H.; Hirota, K.; Ohwada, K.; Noguchi, Y.; Miyayama, M.
2013-02-01
Neutron-scattering studies of (Bi1/2Na1/2)TiO3 (BNT) have been performed to elucidate the microscopic mechanism of the broad maximum in the temperature dependence of the dielectric constant at Tm˜600 K and the reduction in the piezoelectric properties above the depolarization temperature, 460˜480 K. We observed diffuse scattering near the Γ point below 700 K, which competes with the superlattice peak at the M point of the tetragonal phase but coexists with the superlattice peak at the R point of the rhombohedral phase. The diffuse scattering shows an anisotropic Q shape extending along the <100> direction transverse to the scattering vector Q, which is explained by atomic shifts bridging the tetragonal and rhombohedral structures. We propose that the broad maximum in the dielectric constant is associated with a diffusive first-order transition between the competing tetragonal and rhombohedral phases. In addition, we found that the diffuse scattering is reduced for single crystals grown under high oxygen pressure, which suggests an analogy with the central peak in hydrogen-reduced SrTiO3. Inelastic neutron scattering near the Γ point reveals a heavily overdamped soft mode similar to those reported in lead-based relaxors, the “waterfall” feature. Moreover, a damped soft transverse acoustic mode is observed for the <100> direction as the anisotropic diffuse scattering, indicating phase instabilities with the same origin as that of the diffuse scattering. The recovery of the soft mode is observed near the depolarization temperature, which coincides with the disappearance of the superlattice peak at the M point. These results indicate that the depolarization and the waterfall feature originate in the dynamic nature of ferroelectric clusters in the coexisting tetragonal/rhombohedral phase.
NASA Astrophysics Data System (ADS)
Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.
2016-05-01
Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.
NASA Astrophysics Data System (ADS)
Liu, Te-Huan; Zhou, Jiawei; Liao, Bolin; Singh, David J.; Chen, Gang
2017-02-01
We present a first-principles framework to investigate the electron scattering channels and transport properties for polar materials by combining the exact solution of the linearized electron-phonon (e-ph) Boltzmann transport equation in its integral-differential form associated with the e-ph coupling matrices obtained from the polar Wannier interpolation scheme. No ad hoc parameter is required throughout this calculation, and GaAs, a well-studied polar material, is used as an example to demonstrate this method. In this work, the long-range and short-range contributions as well as the intravalley and intervalley transitions in the e-ph interactions (EPIs) have been quantitatively addressed. Promoted by such mode-by-mode analysis, we find that in GaAs, the piezoelectric scattering is comparable to deformation-potential scattering for electron scatterings by acoustic phonons in EPI even at room temperature, and it makes a significant contribution to mobility. Furthermore, we achieved good agreement with experimental data for the mobility, and we identified that electrons with mean free paths between 130 and 210 nm provide the dominant contribution to the electron transport at 300 K. Such information provides a deeper understanding of the electron transport in GaAs, and the presented framework can be readily applied to other polar materials.
NASA Astrophysics Data System (ADS)
Fatale, S.; Moser, S.; Miyawaki, J.; Harada, Y.; Grioni, M.
2016-11-01
We investigated the ferroelectric perovskite material BaTiO3 by resonant inelastic x-ray scattering (RIXS) at the Ti L3 edge. We observe with decreasing temperature a transfer of spectral weight from the elastic to the charge-transfer spectral features, indicative of increasing Ti 3 d -O 2 p hybridization. When the incident photon energy selects transitions to the Ti 3 d eg manifold, the quasielastic RIXS response exhibits a tail indicative of phonon excitations. A fit of the spectral line shape by a theoretical model allows us to estimate the electron-phonon coupling strength M ˜0.25 eV, which places BaTiO3 in the intermediate coupling regime.
Phonon engineering for nanostructures.
Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
Phonon dispersion in hypersonic two-dimensional phononic crystal membranes
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Sledzinska, M.; Alzina, F.; Gomis-Bresco, J.; Reparaz, J. S.; Wagner, M. R.; Sotomayor Torres, C. M.
2015-02-01
We investigate experimentally and theoretically the acoustic phonon propagation in two-dimensional phononic crystal membranes. Solid-air and solid-solid phononic crystals were made of square lattices of holes and Au pillars in and on 250 nm thick single crystalline Si membrane, respectively. The hypersonic phonon dispersion was investigated using Brillouin light scattering. Volume reduction (holes) or mass loading (pillars) accompanied with second-order periodicity and local resonances are shown to significantly modify the propagation of thermally activated GHz phonons. We use numerical modeling based on the finite element method to analyze the experimental results and determine polarization, symmetry, or three-dimensional localization of observed modes.
Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-11
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
NASA Astrophysics Data System (ADS)
Cavassilas, Nicolas; Bescond, Marc; Mera, Hector; Lannoo, Michel
2013-01-01
We apply a recently developed one-shot current conserving lowest order approximation (LOA) to the modeling of inelastic transport in silicon double-gate transistors using the non-equilibrium Green's function formalism. The transport properties are compared to those given by the commonly adopted selfconsistent Born approximation (SCBA). We find that LOA reproduces well the current reduction due to phonon scattering, as given by the SCBA. This good agreement is further improved by adopting a conserving analytical-continuation approach. In ultimate thin-film devices, the combination of LOA and analytical-continuation techniques offers the same accuracy as the SCBA but at a much reduced computational cost.
Phonon localization drives polar nanoregions in a relaxor ferroelectric.
Manley, M E; Lynn, J W; Abernathy, D L; Specht, E D; Delaire, O; Bishop, A R; Sahul, R; Budai, J D
2014-04-10
Relaxor ferroelectrics exemplify a class of functional materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. Although known for about 30 years, there is no definitive explanation for polar nanoregions (PNRs). Here we show that ferroelectric phonon localization drives PNRs in relaxor ferroelectric PMN-30%PT using neutron scattering. At the frequency of a preexisting resonance mode, nanoregions of standing ferroelectric phonons develop with a coherence length equal to one wavelength and the PNR size. Anderson localization of ferroelectric phonons by resonance modes explains our observations and, with nonlinear slowing, the PNRs and relaxor properties. Phonon localization at additional resonances near the zone edges explains competing antiferroelectric distortions known to occur at the zone edges. Our results indicate the size and shape of PNRs that are not dictated by complex structural details, as commonly assumed, but by phonon resonance wave vectors. This discovery could guide the design of next generation relaxor ferroelectrics.
NASA Astrophysics Data System (ADS)
Singh, Baltej; Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Rols, Stephane; Patwe, Sadequa Jahedkhan; Achary, Srungarpu Nagabhusan; Schober, Helmut; Tyagi, Avesh Kumar; Chaplot, Samrath Lal
2017-02-01
β-Eucryptite (LiAlSiO4) shows anisotropic thermal expansion as well as one-dimensional super-ionic conductivity. We have performed the lattice dynamical calculations using ab-initio density functional theory along with inelastic neutron scattering measurements. The anisotropic stress dependence of the phonon spectrum is calculated to obtain the thermal expansion behavior along various axes. The calculations show that the Grüneisen parameters of the low-energy phonon modes around 10 meV have large negative values and govern the negative thermal expansion behavior at low temperatures along both the "a"- and "c"-axes. On the other hand, anisotropic elasticity along with anisotropic positive values of the Grüneisen parameters of the high-energy modes in the range 30-70 meV are responsible for the thermal expansion at high temperatures, which is positive in the a-b plane and negative along the c-axis. The analysis of the polarization vectors of the phonon modes sheds light on the mechanism of the anomalous thermal expansion behavior. The softening of a Γ-point mode at about 2 GPa may be related to the high-pressure phase transition.
NASA Astrophysics Data System (ADS)
Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.
2016-05-01
Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.
Cooper, Michael William D.; Liu, Xiang -Yang; Stanek, Christopher Richard; ...
2016-07-15
In this study, a new approach for adjusting molecular dynamics results on UO2 thermal conductivity to include phonon-spin scattering has been used to improve calculations on Ux Pu1–x O2 and UxTh1xO2. We demonstrate that by including spin scattering a strong asymmetry as a function of uranium actinide fraction, x, is obtained. Greater degradation is shown for UxTh1–xO2 than UxPu1-xO2. Minimum thermal conductivities are predicted at U0.97Pu0.03O2 and U0.58Th0.42O2, although the degradation in UxPu1–xO2 is negligible relative to pure UO2.
Additional and canonical phonon modes in Hg1-xCdxTe(0.06≤x≤0.7)
NASA Astrophysics Data System (ADS)
Polit, J.; Sheregii, E. M.; Cebulski, J.; Kisiel, A.; Robouch, B. V.; Marcelli, A.; Mycielski, A.
2010-07-01
In this experimental work a conception of the phonon spectra of the Hg1-xCdxTe(x=0.06-0.7) solid solution is presented which explains the presence of additional lines in the region 100-115cm-1 . Data of the optical reflectivity measurements obtained in far and middle infrared regions for eleven compositions of these alloys in the temperature range from 20 to 293 K using the synchrotron radiation ( DAΦNE -LIGHT in LNF, Italy) as source are analyzed. Analyses were performed on samples of different types ( n and p type) of conductivity as well as the temperature dependences of the line intensity under consideration in the region from 70 to 118cm-1 . The model of two valley potential of the mercury atom in the Hg1-xCdxTe lattice is used for interpretation of the additional phonon modes.
NASA Astrophysics Data System (ADS)
Giefers, H.; Koval, S.; Wortmann, G.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.
2006-09-01
The local phonon density of states (DOS) at the Sn site in tin monoxide (SnO) is studied at pressures up to 8GPa with Sn119 nuclear resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation at 23.88keV . The preferred orientation (texture) of the SnO crystallites in the investigated samples is used to measure NRIXS spectra preferentially parallel and almost perpendicular to the c axis of tetragonal SnO . A subtraction method is applied to these NRIXS spectra to produce projected local Sn DOS spectra as seen parallel and perpendicular to the c axis of SnO . These experimentally obtained local Sn DOS spectra, both in the polycrystalline case as well as projected parallel and perpendicular to the c axis, are compared with corresponding theoretical phonon DOS spectra, derived from dispersion relations calculated with a recently developed shell model. Comparison between the experimental projected Sn DOS spectra and the corresponding theoretical DOS spectra enables us to follow the pressure-induced shifts of several acoustic and optic phonon modes. While the principal spectral features of the experimental and theoretical phonon DOS agree well at energies above 10meV , the pressure behavior of the low-energy part of the DOS is not well reproduced by the theoretical calculations. In fact, they exhibit, in contrast to the experimental data, a dramatic softening of two low-energy modes, their energies approaching zero around 2.5GPa , clearly indicating the limitations of the applied shell model. These difficulties are obviously connected with the complex Sn-O and Sn-Sn bindings within and between the Sn-O-Sn layers in the litharge structure of SnO . We derived from the experimental and theoretical DOS spectra a variety of elastic and thermodynamic parameters of the Sn sublattice, such as the Lamb-Mössbauer factor, the mean force constant, and Debye temperatures, as well as the vibrational contributions to the Helmholtz free energy, specific heat, entropy, and
NASA Astrophysics Data System (ADS)
Spagnolo, V.; Scamarcio, G.; Corvasce, C.; Lugará, M.; Suemune, I.
1994-07-01
We report a study of multiphonon resonant Raman scattering in a series of symmetric (ZnSe) d(ZnS 1- xSe x) d superlattices (SL), 20Å ≤ d ≤ 150Å. In addition to confined optical phonons, the energies of interface (IF) modes with in-plane wavevectors have been assessed by means of micro-probe Raman measurements in backscattering from the SL edge. The comparison between one- and two-phonon spectra shows that the electron-phonon interaction is dominated by ZnSe-like IF phonons for d < 50Å, whereas LO 2 phonons prevail for larger well.
Raman selection rule for surface optical phonons in ZnS nanobelts
NASA Astrophysics Data System (ADS)
Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He-Hau, Jr.
2016-03-01
We report Raman scattering results for high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In the Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm-1 and 350 cm-1, corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition to a strong surface optical (SO) phonon mode at 329 cm-1. The existence of the SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectra were recorded on a single ZnS NB and for the first time a SO phonon band has been detected on a single nanobelt. Different selection rules for the SO phonon mode are shown from their corresponding E1/A1 phonon modes, and were attributed to the breaking of anisotropic translational symmetry on the NB surface.
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-09
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; ...
2016-08-09
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less
Phonon anharmonicity and negative thermal expansion in SnSe
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-01
The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
Phonon dynamics of graphene on metals
NASA Astrophysics Data System (ADS)
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
NASA Astrophysics Data System (ADS)
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-10-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon-phonon interactions, it has been a challenge to directly measure electron-phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump-probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron-phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron-phonon interaction on phonon transport in doped semiconductors.
``Forbidden'' phonon in the iron chalcogenide series
NASA Astrophysics Data System (ADS)
Fobes, David M.; Zaliznyak, Igor A.; Xu, Zhijun; Gu, Genda; Tranquada, John M.
2015-03-01
Recently, we uncovered evidence for the formation of a bond-order wave (BOW) leading to ferro-orbital order at low temperature, acting to stabilize the bicollinear AFM order, in the iron-rich parent compound, Fe1+yTe. Investigating the inelastic spectra centered near (100) in Fe1+yTe, a signature peak for the BOW formation in the monoclinic phase, we observed an acoustic phonon dispersion in both tetragonal and monoclinic phases. While a structural Bragg peak accompanies the mode in the monoclinic phase, in the tetragonal phase Bragg scattering at this Q is forbidden by symmetry, and we observed no elastic peak. This phonon mode was also observed in superconducting FeTe0.6Se0.4, where structural and magnetic transitions are suppressed. LDA frozen phonon calculations suggested that this mode could result from a spin imbalance between neighboring Fe atoms, but polarized neutron measurements revealed no additional magnetic scattering. We propose that this ``forbidden'' phonon mode may originate from dynamically broken symmetry, perhaps related to the strong dynamic spin correlations in these materials. Work at BNL was supported by BES, US DOE, under Contract No. DE-AC02-98CH10886. Research at ORNL's HFIR and SNS sponsored by Scientific User Facilities Division, BES, US DOE. We acknowledge the support of NIST, in providing neutron research facilities.
2009-01-26
sion is given by5 keff=vF 2Te / 3AeeTe 2+BepTp , where vF is the Fermi velocity and Aee and Bep are electron-electron and electron-phonon...be used to express the free electron colli- sional frequency as38 =1 / AeeTe 2+ Bep Tp, where Aee and Bep are the material constants relating to...wavelength of =800 nm 1.55 eV, the values for n1 and n2 listed in Table I for air, Au, Si, and SiO2, 53 and Aee and Bep for Au as 1.2 107 K−2 s−1 and
Surface Phonons and Polaritons.
1976-01-01
for an impurity in the surface of a crystal could be observed in the one phonon cross section for the resonant absorption or e.ission of ,—rays by...localized at the surface. The w5 — dependence has a simple physical origin. It is well known that the cross section for scattering of bulk phonons by a...propagate. In Section II of the present Chapter we present the theory underlying the surface induced vibrational properties of crystals which we have
Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...
2016-03-14
We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-01-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors. PMID:27731406
Scanning Tunneling Microscopy Observation of Phonon Condensate.
Altfeder, Igor; Voevodin, Andrey A; Check, Michael H; Eichfeld, Sarah M; Robinson, Joshua A; Balatsky, Alexander V
2017-02-22
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.
Scanning Tunneling Microscopy Observation of Phonon Condensate
Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.
2017-01-01
Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066
NASA Astrophysics Data System (ADS)
Gasanly, N. M.; Aydinli, A.; Aydinli, A.; Kocabaş, C.; Özkan, H.
The temperature dependencies (10-300 K) of the eight Raman-active mode frequencies and linewidths in GaSe0.5S0.5 layered crystal have been measured in the frequency range from 10 to 320 cm-1. We observed softening and broadening of the optical phonon lines with increasing temperature. Comparison of the experimental data with the theories of the shift and broadening of the interlayer and intralayer phonon lines showed that the temperature dependencies can be explained by the contributions from thermal expansion, lattice anharmonicity and crystal disorder. The purely anharmonic contribution (phonon-phonon coupling) is found to be due to three-phonon processes. It was established that the effect of crystal disorder on the broadening of phonon lines is greater for GaSe0.5S0.5 than for binary compounds GaSe and GaS.
Carvalho, Bruno R; Malard, Leandro M; Alves, Juliana M; Fantini, Cristiano; Pimenta, Marcos A
2015-04-03
This work describes a resonance Raman study performed on samples with one, two, and three layers (1L, 2L, 3L), and bulk MoS2, using more than 30 different laser excitation lines covering the visible range, and focusing on the intensity of the two most pronounced features of the Raman scattering spectrum of MoS2 (E2g(1) and A1g bands). The Raman excitation profiles of these bands were obtained experimentally, and it is found that the A1g feature is enhanced when the excitation laser is in resonance with A and B excitons of MoS2, while the E2g1 feature is shown to be enhanced when the excitation laser is close to 2.7 eV. We show from the symmetry analysis of the exciton-phonon interaction that the mode responsible for the E2g(1) resonance is identified as the high energy C exciton recently predicted [D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013)].
NASA Astrophysics Data System (ADS)
Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.
2002-03-01
NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
Hyperbolic phonon polaritons in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
NASA Astrophysics Data System (ADS)
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how
Phonon, two-magnon, and electronic Raman scattering of Fe1+yTe1-xSex
NASA Astrophysics Data System (ADS)
Okazaki, K.; Sugai, S.; Niitaka, S.; Takagi, H.
2011-01-01
We have measured Raman-scattering spectra of single-crystalline FeTe0.6Se0.4 (Tc~ 14.5 K) and its parent compound Fe1.074Te at various temperatures. In the parent compound Fe1.074Te, A1g and B1g modes have been observed at 158 and 202 cm-1, respectively, at 5 K. These frequencies agree qualitatively with the calculated results. Two-magnon excitation has been observed around 2300 cm-1 for both compounds. A temperature dependence between the electronic Raman spectra below and above Tc has been observed, and 2Δ and 2Δ/kBTC have been estimated as 5.0 meV and 4.0, respectively.
NASA Astrophysics Data System (ADS)
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Yu, Si-Yuan; Sun, Xiao-Chen; Ni, Xu; Wang, Qing; Yan, Xue-Jun; He, Cheng; Liu, Xiao-Ping; Feng, Liang; Lu, Ming-Hui; Chen, Yan-Feng
2016-12-01
Strategic manipulation of wave and particle transport in various media is the key driving force for modern information processing and communication. In a strongly scattering medium, waves and particles exhibit versatile transport characteristics such as localization, tunnelling with exponential decay, ballistic, and diffusion behaviours due to dynamical multiple scattering from strong scatters or impurities. Recent investigations of graphene have offered a unique approach, from a quantum point of view, to design the dispersion of electrons on demand, enabling relativistic massless Dirac quasiparticles, and thus inducing low-loss transport either ballistically or diffusively. Here, we report an experimental demonstration of an artificial phononic graphene tailored for surface phonons on a LiNbO3 integrated platform. The system exhibits Dirac quasiparticle-like transport, that is, pseudo-diffusion at the Dirac point, which gives rise to a thickness-independent temporal beating for transmitted pulses, an analogue of Zitterbewegung effects. The demonstrated fully integrated artificial phononic graphene platform here constitutes a step towards on-chip quantum simulators of graphene and unique monolithic electro-acoustic integrated circuits.
Phonon transport analysis of semiconductor nanocomposites using monte carlo simulations
NASA Astrophysics Data System (ADS)
Malladi, Mayank
Nanocomposites are composite materials which incorporate nanosized particles, platelets or fibers. The addition of nanosized phases into the bulk matrix can lead to significantly different material properties compared to their macrocomposite counterparts. For nanocomposites, thermal conductivity is one of the most important physical properties. Manipulation and control of thermal conductivity in nanocomposites have impacted a variety of applications. In particular, it has been shown that the phonon thermal conductivity can be reduced significantly in nanocomposites due to the increase in phonon interface scattering while the electrical conductivity can be maintained. This extraordinary property of nanocomposites has been used to enhance the energy conversion efficiency of the thermoelectric devices which is proportional to the ratio of electrical to thermal conductivity. This thesis investigates phonon transport and thermal conductivity in Si/Ge semiconductor nanocomposites through numerical analysis. The Boltzmann transport equation (BTE) is adopted for description of phonon thermal transport in the nanocomposites. The BTE employs the particle-like nature of phonons to model heat transfer which accounts for both ballistic and diffusive transport phenomenon. Due to the implementation complexity and computational cost involved, the phonon BTE is difficult to solve in its most generic form. Gray media (frequency independent phonons) is often assumed in the numerical solution of BTE using conventional methods such as finite volume and discrete ordinates methods. This thesis solves the BTE using Monte Carlo (MC) simulation technique which is more convenient and efficient when non-gray media (frequency dependent phonons) is considered. In the MC simulation, phonons are displaced inside the computational domain under the various boundary conditions and scattering effects. In this work, under the relaxation time approximation, thermal transport in the nanocomposites are
Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo
2015-01-14
Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.
Vasin, A. S.; Vikhrova, O. V.; Vasilevskiy, M. I.
2014-04-14
Confinement and alloy disorder effects on the lattice dynamics and Raman scattering in Si{sub 1−x}Ge{sub x} nanocrystals (NCs) are investigated numerically employing two different empirical inter-atomic potentials. Relaxed NCs of different compositions (x) were built using the Molecular Dynamics method and applying rigid boundary conditions mimicking the effect of surrounding matrix. The resulting variation of bond lengths with x was checked against Vegard's law and the NC phonon modes were calculated using the same inter-atomic potential. The localization of the principal Raman-active (Si-Si, Si-Ge, and Ge-Ge) modes is investigated by analysing representative eigenvectors and their inverse participation ratio. The dependence of the position and intensity of these modes upon x and NC size is presented and compared to previous calculated results and available experimental data. In particular, it is argued that the composition dependence of the intensity of the Si-Ge and Ge-Ge modes does not follow the fraction of the corresponding nearest-neighbour bonds as it was suggested by some authors. Possible effects of alloy segregation are considered by comparing the calculated properties of random and clustered Si{sub x}Ge{sub 1−x} NCs. It is found that the Si-Si mode and Ge-Ge mode are enhanced and blue-shifted (by several cm{sup −1}for the Si-Si mode), while the intensity of the Si-Ge Raman mode is strongly suppressed by clustering.
Raman scattering investigation of skutterudite compounds
NASA Astrophysics Data System (ADS)
Ogita, N.; Kondo, T.; Hasegawa, T.; Takasu, Y.; Udagawa, M.; Takeda, N.; Ishikawa, K.; Sugawara, H.; Kikuchi, D.; Sato, H.; Sekine, C.; Shirotani, I.
2006-08-01
Raman scattering spectra of filled skutterudite RT4X12 (R=La, Ce, Pr, Nd, Sm and Y, T=Fe, Ru and Os, and X=Sb and P) and unfilled skutterudite CoP3 have been measured. All first-order Raman active phonons, which are due to the vibration of pnictogens, are observed. In addition, the crystal field excitations in PrRu4P12 spectra and the second-order phonons including rare-earth vibrations in SmRu4P12 and ROs4Sb12 are also observed. The second-order phonons can be observed for the sample with the larger cage space. The peak intensity of the second-order phonons decreases with decreasing temperature and vanishes at low temperature. Such a temperature dependence suggests that the second-order phonons are thermally excited and due to independent vibrations of the rare-earth ions, that is rattler motion.
Otelaja, O. O.; Robinson, R. D.
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
Jana, R. N.; Sinha, S.; Meikap, A. K.
2015-05-15
We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V{sub 82}Al{sub 18-x}Fe{sub x} alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δρ(T)∝−ρ{sub 0}{sup 5/2}√(T), which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ{sub 0}{sup −1}∝l{sub e}, where l{sub e} is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ{sub e−ph}{sup −1}∝T{sup 2}l{sub e}. This anomalous behavior of τ{sub e−ph}{sup −1} cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.
Second Harmonic Generation of Nanoscale Phonon Wave Packets.
Bojahr, A; Gohlke, M; Leitenberger, W; Pudell, J; Reinhardt, M; von Reppert, A; Roessle, M; Sander, M; Gaal, P; Bargheer, M
2015-11-06
Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.
NASA Astrophysics Data System (ADS)
Peng, Liang; Jiang, Kai; Zhang, Jinzhong; Hu, Zhigao; Wang, Genshui; Dong, Xianlin; Chu, Junhao
2016-01-01
Optical phonons and the phase transition of relaxor ferroelectric ceramics Sr x Ba1-x Nb2O6 (SBN) and Ca y (Sr0.5Ba0.5)1-y Nb2O6 (CSBN) with different composition (0.3≤slant x≤slant 0.5 , 0.1≤slant y≤slant 0.2 ) have been investigated by variable-temperature Raman scattering and spectroscopic ellipsometry. The anomalous temperature dependence of Tauc gap energy (E t ) is used to fit the phonon energy dependence of the permittivity, and the Raman intensity of some interesting optical phonons can be ascribed to the phase transition from a ferroelectric to a paraelectric structure. The Curie temperature of SBN decreases from 556 to 359 K with increasing Sr composition, which can be attributed to the substitution of smaller Sr2+ for Ba2+. On increasing the Ca composition, however, the phase transition temperature of CSBN remains nearly unchanged at about 350 K. This could be due to the fact that most doped Ca2+ ions move into the oxygen ion site and exhibit no obvious effect on the vibrational properties. Therefore, the general disorder which results from Sr2+ substituting Ba2+ , dominates the phase transition process for SBN-based ferroelectric oxides. Meanwhile, the dielectric functions from 200 to 600 K have been evaluated with the aid of the Tauc-Lorentz model. The electronic transition is located at about 5 eV and decreases with increasing temperature for all the samples. Moreover, the phase transition temperature range derived from the spectroscopic ellipsometry agrees well with that from the Raman scattering. It reveals that the variation of the fundamental energy gap may be associated with the phase transition of SBN ceramics. Both Raman scattering and spectroscopic ellipsometry are proven to be a effective method of exploring the phase transition of ferroelectric oxides.
Engineering thermal conductance using a two-dimensional phononic crystal
Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.; Chaudhuri, Saumyadip; Maasilta, Ilari J.
2014-01-01
Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device. PMID:24647049
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
NASA Astrophysics Data System (ADS)
Le Tacon, M.; Forrest, T. R.; Rüegg, Ch.; Bosak, A.; Walters, A. C.; Mittal, R.; Rønnow, H. M.; Zhigadlo, N. D.; Katrych, S.; Karpinski, J.; Hill, J. P.; Krisch, M.; McMorrow, D. F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO0.60F0.35 single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Phonon Squeezing by Raman Scattering.
NASA Astrophysics Data System (ADS)
Nori, Franco; Hu, Xuedong
1997-03-01
We have studied quantum fluctuation properties of a crystal lattice, and proposed several mechanisms to achieve this goal(X. Hu and F. Nori, Phys. Rev. Lett. 76, 2294 (1996); Phys. Rev. B 53, 2419 (1996); preprint.).
Depth-Dependent Defect Studies Using Coherent Acoustic Phonons
2014-09-29
12211 Research Triangle Park, NC 27709-2211 coherent acoustic phonons, diamond, silicon, photelastic coefficients , refractive index, graphene, Second...attributed to the cooling of the subsystem of hot optical phonons by optical- acoustic phonon scattering . We observe that at different pump energy and...SECURITY CLASSIFICATION OF: Presented is our scientific progress in two areas of research. The first is coherent acoustic phonon (CAP) spectroscopy of
Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Nori, Franco
1997-03-01
We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.
Phonons of the anomalous element cerium
Krisch, Michael; Farber, D. L.; Xu, R.; Antonangeli, Daniele; Aracne, C. M.; Beraud, Alexandre; Chiang, Tai-Chang; Zarestky, J.; Kim, Duck Young; Isaev, Eyvaz I.; Ahuja, Rajeev; Johansson, Börje
2011-01-01
Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural γ - α transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the γ → α transition, and compared it with theoretical results using ab initio lattice dynamics. Several phonon branches show strong changes in the dispersion shape, indicating large modifications in the interactions between phonons and conduction electrons. This is reflected as well by the lattice Grüneisen parameters, particularly around the X point. We derive a vibrational entropy change , illustrating the importance of the lattice contribution to the transition. Additionally, we compare first principles calculations with the experiments to shed light on the mechanism underlying the isostructural volume collapse in cerium under pressure. PMID:21597000
Surface-phonon dispersion of a NiO(100) thin film
NASA Astrophysics Data System (ADS)
Kostov, K. L.; Polzin, S.; Saha, S. K.; Brovko, O.; Stepanyuk, V.; Widdra, W.
2013-06-01
A well-ordered 25 ML epitaxial NiO(100) film on Ag(100) as prepared by layer-by-layer growth has been characterized by high-resolution electron energy loss spectroscopy. Six different phonon branches have been identified in the Γ¯X¯ direction of the surface Brillouin zone and are compared with first-principles phonon calculations. Whereas the surface Rayleigh mode shows a strong upward dispersion of 173 cm-1 in agreement with observations for the NiO(100) single crystal, the other surface phonons and surface resonances show only smaller dispersion widths in Γ¯X¯ direction. The Wallis and the Lucas phonons are localized at 425 and 367 cm-1 at the Γ¯ point, respectively. Additionally, two phonons are identified that have stronger weight at the zone boundary at 194 and 285 cm-1 and that become surface resonances at the zone center. The dominant spectral feature is the Fuchs-Kliewer (FK) phonon polariton at 559 cm-1, which is excited by dipole scattering and exhibits a rather broad non-Lorentzian lineshape. The lineshape is explained by a FK splitting resulting from the splitting of bulk optical phonons due to antiferromagnetic order. This view is supported by calculations of the surface-loss function from bulk reflectivity data.
NASA Astrophysics Data System (ADS)
Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.
2013-08-01
Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for ``far-side'' excitation than ``near-side''. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface.
Temperature dependence of coherent phonons in TbVO4 crystal probed by ultrafast optical spectroscopy
NASA Astrophysics Data System (ADS)
Jin, Z.; Ma, H.; Li, D.; Wang, L.; Ma, G.; Guo, F.; Chen, J.
2011-07-01
Coherent optical phonons in terbium vanadate (TbVO4) are investigated by using femtosecond time-resolved pump-probe spectroscopy at temperatures from 20 to 300 K. Combined with the Raman spectrum, the coherent phonon mode is attributed to an optical phonon mode of B1g symmetry. The main generation mechanism of the coherent optical phonons is revealed to be the impulsive stimulated Raman scattering. The temperature dependence of the dephasing time reveals that the main mechanism of the coherent phonon population decay is anharmonic phonon-phonon coupling, which causes a redshift of the coherent phonon frequency with increasing temperature.
Zarkevich, Nikolai
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.
Phonon dynamics of americium telluride
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Ahirwar, Ashok K.; Sanyal, S. P.
2013-06-01
We report for the first time the complete phonon dispersion curves for Americium telluride (AmTe) using a breathing shell models (BSM) to establish their predominant ionic nature. The results obtained in the present study show the general features of the phonon spectrum. We could not compare our results with the experimental measurements as they are not available so far. We emphasize the need of neutron scattering measurements to compare our results. We also report, for the first time specific heat for this compound.
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Sergeev, A. V.
1998-01-01
Recent paper has raised again a question about the electron-phonon (EP) relaxation rate in impure metals. From weak localization (WL) measurements the authors have found that the dephasing rate in AuPd disordered films follows the T(sup 2)el-law (el is the mean free path).
Coherent Phonon Rabi Oscillations with a High-Frequency Carbon Nanotube Phonon Cavity.
Zhu, Dong; Wang, Xin-He; Kong, Wei-Cheng; Deng, Guang-Wei; Wang, Jiang-Tao; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Jiang, Kai-Li; Dai, Xing-Can; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-02-08
Phonon-cavity electromechanics allows the manipulation of mechanical oscillations similar to photon-cavity systems. Many advances on this subject have been achieved in various materials. In addition, the coherent phonon transfer (phonon Rabi oscillations) between the phonon cavity mode and another oscillation mode has attracted many interest in nanoscience. Here, we demonstrate coherent phonon transfer in a carbon nanotube phonon-cavity system with two mechanical modes exhibiting strong dynamical coupling. The gate-tunable phonon oscillation modes are manipulated and detected by extending the red-detuned pump idea of photonic cavity electromechanics. The first- and second-order coherent phonon transfers are observed with Rabi frequencies 591 and 125 kHz, respectively. The frequency quality factor product fQm ∼ 2 × 10(12) Hz achieved here is larger than kBTbase/h, which may enable the future realization of Rabi oscillations in the quantum regime.
Microfabricated phononic crystal devices and applications
NASA Astrophysics Data System (ADS)
Olsson, R. H., III; El-Kady, I.
2009-01-01
Phononic crystals are the acoustic wave analogue of photonic crystals. Here a periodic array of scattering inclusions located in a homogeneous host material forbids certain ranges of acoustic frequencies from existence within the crystal, thus creating what are known as acoustic bandgaps. The majority of previously reported phononic crystal devices have been constructed by hand, assembling scattering inclusions in a viscoelastic medium, predominantly air, water or epoxy, resulting in large structures limited to frequencies below 1 MHz. Recently, phononic crystals and devices have been scaled to VHF (30-300 MHz) frequencies and beyond by utilizing microfabrication and micromachining technologies. This paper reviews recent developments in the area of micro-phononic crystals including design techniques, material considerations, microfabrication processes, characterization methods and reported device structures. Micro-phononic crystal devices realized in low-loss solid materials are emphasized along with their potential application in radio frequency communications and acoustic imaging for medical ultrasound and nondestructive testing. The reported advances in batch micro-phononic crystal fabrication and simplified testing promise not only the deployment of phononic crystals in a number of commercial applications but also greater experimentation on a wide variety of phononic crystal structures.
NASA Astrophysics Data System (ADS)
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-01
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-25
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.
El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Phononic Origins of Friction in Carbon Nanotube Oscillators.
Prasad, Matukumilli V D; Bhattacharya, Baidurya
2017-03-01
Phononic coupling can have a significant role in friction between nanoscale surfaces. We find frictional dissipation per atom in carbon nanotube (CNT) oscillators to depend significantly on interface features such as contact area, commensurability, and by end-capping of the inner core. We perform large-scale phonon wavepacket MD simulations to study phonon coupling between a 250 nm long (10,10) outer tube and inner cores of four different geometries. Five different phonon polarizations known to have dominant roles in thermal transport are selected, and transmission coefficient plots for a range of phonon energies along with phonon scattering dynamics at specific energies are obtained. We find that the length of interface affects friction only through LA phonon scattering and has a significant nonlinear effect on total frictional force. Incommensurate contact does not always give rise to superlubricity: the net effect of two competing interaction mechanisms shown by longitudinal and transverse phonons decides the role of commensurability. Capping of the core has no effect on acoustic phonons but destroys the coherence of transverse optical phonons and creates diffusive scattering. In contrast, the twisting and radial breathing phonon modes have perfect transmission at all energies and can be deemed as the enablers of ultralow friction in CNT oscillators. Our work suggests that tuning of interface geometries can give rise to desirable friction properties in nanoscale devices.
NASA Astrophysics Data System (ADS)
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Phonon dispersion in red mercuric iodide
Sim, H.; Chang, Y. ); James, R.B. )
1994-02-15
We present theoretical studies of phonon modes of undoped HgI[sub 2] in its red tetragonal form. A rigid-ion model including the Coulomb interaction is used which gives the best fit to the neutron scattering, infrared reflectivity, and Raman scattering data. The calculated sound velocities are also in accord with experiment.
Jayawardhana, Sasani; Rosa, Lorenzo; Juodkazis, Saulius; Stoddart, Paul R.
2013-01-01
Surface-enhanced Raman scattering (SERS) is attracting increasing interest for chemical sensing, surface science research and as an intriguing challenge in nanoscale plasmonic engineering. Several studies have shown that SERS intensities are increased when metal island film substrates are excited through a transparent base material, rather than directly through air. However, to our knowledge, the origin of this additional enhancement has never been satisfactorily explained. In this paper, finite difference time domain modeling is presented to show that the electric field intensity at the dielectric interface between metal particles is higher for “far-side” excitation than “near-side”. This is reasonably consistent with the observed enhancement for silver islands on SiO2. The modeling results are supported by a simple analytical model based on Fresnel reflection at the interface, which suggests that the additional SERS signal is caused by near-field enhancement of the electric field due to the phase shift at the dielectric interface. PMID:23903714
Additivity rule for the calculation of electron scattering from polyatomic molecules
NASA Astrophysics Data System (ADS)
Jiang, Yuhai; Sun, Jinfeng; Wan, Lingde
2000-12-01
Total cross sections (TCSs) for electron scattering by polyatomic molecules C2F4, C2F6, C3F6, C3F8, C6F6, and C6H6 are calculated in the incident electron energy range 30-3000 eV employing the 100% additivity rule and energy-dependent geometric additivity rule (EGAR) approaches. The EGAR, proposed by Jiang et al. [J. Phys. B 30, 5025 (1997); Phys. Lett. A 237, 53 (1997)], relates to molecular properties and the energy of incident electrons. Two approaches for the TCS of C2F6, C3F8, C6F6, and C6H6 molecules are compared and the EGAR yields better accord with available experimental measurements in the whole energy region. The new results for C2F4 and C3F6 are also presented although no experimental data are available for comparison. The atoms are presented by spherical complex optical potential, which is composed of static, exchange, polarization, and absorption terms.
NASA Astrophysics Data System (ADS)
Sasmal, Kalyan; Hadjiev, Viktor; Chu, C. W.(Paul)
Quaternary CaFeAsF has ZrCuSiAs-type structure,(RO)δ+ layer in RFeAsO replaced by (CaF)δ+ layer,with tetragonal (P4/nmm)-orthorhombic (Cmma) phase transition at 134K,while magnetic order,SDW sets in at 114K. Partial replacement of Fe with Co/Ni is direct electron doping to (FeAs)δ+ layer.Tc ~15K in CaFe0.9Ni0.1AsF.Substitution of rare earth metal for alkaline earth metal suppresses anomaly in resistivity & induces superconductivity.Tc ~52K in Ca0.5Pr0.5FeAsF.Characterized by resistivity, susceptibility,XRD & EDX-SEM.Upper critical field estimated from magneto resistance.Bulk superconductivity proved by DC magnetization. Hall coefficient RH revealed hole-like charge carriers in parent compound CaFeAsF, while electron-type (RH in normal state is -Ve) for Ca0.5Pr0.5FeAsF.Evolution of Raman active phonons of Ca1-xPrxFeAsF measured with polarized Raman spectroscopy at room temperature from absurfaces of impurity-free microcrystals.Spectra exhibit sharp phonon lines on very weak electronic scattering background.Frequency and symmetry of Raman phonons involving out-of-plane atomic vibrations are found at 162.5 cm-1 (A1 g, Pr), 201 cm-1 (A1 g, As), 215.5 cm-1 (B1 g, Fe), 265 cm-1 (Eg, Fe) and 334 cm-1 (B1 g, F) for Ca0.5Pr0.5FeAsF.Observations are compared with RFeAsO unconventional superconductors also possibly related to magnetic fluctuations
Nanoscale pillar hypersonic surface phononic crystals
NASA Astrophysics Data System (ADS)
Yudistira, D.; Boes, A.; Graczykowski, B.; Alzina, F.; Yeo, L. Y.; Sotomayor Torres, C. M.; Mitchell, A.
2016-09-01
We report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.
Geometrical tuning of thermal phonon spectrum in nanoribbons
NASA Astrophysics Data System (ADS)
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay
2016-03-01
Phonon spectral energy transmission in silicon nanoribbons is investigated using Monte-Carlo simulations in the boundary scattering regime by changing the length and width geometrical parameters. We show that the transition frequency from specular scattering to diffuse scattering is inversely proportional to the edge roughness σ with a geometry independent factor of proportionality. The increase of the length over width ratio \\zeta leads to a decrease of the energy transmission in the diffuse scattering regime which evolves as {{≤ft(1+{{\\zeta}0.59}\\right)}-1} . This trend is explained by developing a model of phonon energy transmission in the fully diffuse scattering regime which takes into account the probability for a diffusively scattered phonon to be directly transmitted from any position on the edge of the nanoribbon. This model establishes the importance of the solid angles in the energy transmission evolution with \\zeta . The transition from unity energy transmission in the specular scattering regime to reduced transmission in the diffuse scattering regime constitutes a low-pass frequency filter for phonons. Our simulations show an energy rejection rate better than 90% for high \\zeta , which paves the way for potential high performance filters. Filtering out high frequency phonons is of significant interest for phononic crystal applications, which use band engineering of phonons in the wave regime with low frequencies.
Lifetime of the phonons in the PLT ceramic
Barba-Ortega, J. Joya, M. R.; Londoño, F. A.
2014-11-05
The lifetimes at higher temperatures on lanthanum-modified lead titanate (PLT) are mainly due to the anharmonic decay of optical phonons into low-energy phonons. The temperature-independent contributions from inherent crystal defects and from boundary scattering become comparable to the phonon scattering contribution at lower temperatures. The thermal interaction is large at higher temperatures which decreases the phonon mean free path, and so the decay lifetime decreases as the temperature of the system is increased. This leads to the increased line width at higher temperatures. We made an estimate of the lifetimes for different concentrations and temperatures in PLT.
Acoustic phonon propagation in ultra-thin Si membranes under biaxial stress field
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Gomis-Bresco, J.; Alzina, F.; Reparaz, J. S.; Shchepetov, A.; Prunnila, M.; Ahopelto, J.; Sotomayor Torres, C. M.
2014-07-01
We report on stress induced changes in the dispersion relations of acoustic phonons propagating in 27 nm thick single crystalline Si membranes. The static tensile stress (up to 0.3 GPa) acting on the Si membranes was achieved using an additional strain compensating silicon nitride frame. Dispersion relations of thermally activated hypersonic phonons were measured by means of Brillouin light scattering spectroscopy. The theory of Lamb wave propagation is developed for anisotropic materials subjected to an external static stress field. The dispersion relations were calculated using the elastic continuum approximation and taking into account the acousto-elastic effect. We find an excellent agreement between the theoretical and the experimental dispersion relations.
Phononic crystals of poroelastic spheres
NASA Astrophysics Data System (ADS)
Alevizaki, A.; Sainidou, R.; Rembert, P.; Morvan, B.; Stefanou, N.
2016-11-01
An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation of the underlying physics is provided.
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.
2016-09-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
2014-08-01
Introduction; 1. Simple models of the electron-phonon interaction; 2. Quantum confinement of carriers; 3. Quasicontinuum theory of lattice vibrations; 4. Bulk vibratory modes in an isotropic continuum; 5. Optical modes in a quantum well; 6. Superlattice modes; 7. Optical modes in various structures; 8. Electron-phonon interaction in a quantum well; 9. Other scattering mechanisms; 10. Quantum screening; 11. The electron distribution function; 12. Spin relaxation; 13. Electrons and phonons in the Wurtzite lattice; 14. Nitride heterostructures; 15. Terahertz sources; References; Index.
Mishra, S. K.; Gupta, M. K.; Mittal, R.; ...
2016-06-22
Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO3 covering various phase transitions, and over 6–150 K in PrMnO3 covering the magnetic transition. The excitations around 20 meV in CaMnO3 and at 17 meV in PrMnO3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above TN. In spite of the similarity of the structure of the two compounds, the neutron inelasticmore » spectrum of PrMnO3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO3 and highly anisotropic for PrMnO3. The calculation in PrMnO3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO3 does not show any phase transition up to 60 GPa.« less
Dynamics of vortices in neutral superfluids with noninteracting phonons
NASA Astrophysics Data System (ADS)
Fortin, Jean-Yves
2001-05-01
The transverse force on an isolated and moving vortex in a neutral superfluid at rest is evaluated at finite temperature in the case of noninteracting phonons. Using the Thouless, Ao, Niu (TAN) [Phys. Rev. Lett. 76, 3758 (1996)] general theory, we show that the transverse force is exactly equal to the superfluid Magnus force. We extend this theory in the case of a slowly moving vortex on a circular trajectory, and find an additional contribution coming from the centrifugal reaction. This term gives a negative vortex mass due to the phonons and diverges logarithmically at low frequency. The friction force is also evaluated for zero and finite frequencies, and compared with the scattering theory.
Pedron, D.
1998-07-31
Low frequency Raman data for {kappa}-(ET){sub 2}Cu(NCS){sub 2}(T{sub c} = 10.4 K) are reported. Measurements have been performed in a wide range of temperatures (1.5-100 K) and frequency hardening related to the superconducting transition has been observed for all the low-lying coupled phonons. The measured relative frequency shifts are lower than those previously reported for {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br (T{sub c} = 11.67 K), but the behavior of the two systems is similar and indicates a significant strength of the intermolecular electron-photon coupling. The effects of isotopic substitutions ({sup 13}C{sub 4} {sup 34}S{sub 8} and {sup 2}H{sub 8}) in ET molecules on the low frequency Raman active phonons of {kappa}-(ET{sub 2}Cu(NCS){sub 2}) are also reported. They give the first direct experimental confirmation to the suggested lattice softening induced by deuteration.
Leman, Steven W
2012-09-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Leman, Steven W.
2012-09-15
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Phonon limited superconducting correlations in metallic nanograins
NASA Astrophysics Data System (ADS)
Croitoru, M. D.; Shanenko, A. A.; Vagov, A.; Milošević, M. V.; Axt, V. M.; Peeters, F. M.
2015-11-01
Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.
Mitri, F. G.
2015-09-15
The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.
Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; Zhang, H.; Ellis, D.; Zhao, Yang; Clark, L.; Kallin, A. B.; Mazurek, E.; Dabkowska, H. A.; Gaulin, Bruce D.
2016-03-14
We present time-of-flight neutron-scattering measurements on single crystals of La_{2-x}Ba_{x}CuO_{4} (LBCO) with 0 ≤ x ≤ 0.095 and La_{2-x}Sr_{x}CuO_{4} (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO
Cooper, Michael William D.; Liu, Xiang -Yang; Stanek, Christopher Richard; Andersson, David Anders
2016-07-15
In this study, a new approach for adjusting molecular dynamics results on UO_{2} thermal conductivity to include phonon-spin scattering has been used to improve calculations on U_{x} Pu_{1–x} O_{2} and U_{x}Th_{1x}O_{2}. We demonstrate that by including spin scattering a strong asymmetry as a function of uranium actinide fraction, x, is obtained. Greater degradation is shown for U_{x}Th_{1–x}O_{2} than U_{x}Pu_{1-x}O_{2}. Minimum thermal conductivities are predicted at U_{0.97}Pu_{0.03}O_{2} and U_{0.58}Th_{0.42}O_{2}, although the degradation in U_{x}Pu_{1–x}O_{2} is negligible relative to pure UO_{2}.
Deterministic fractals: extracting additional information from small-angle scattering data.
Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I
2011-09-01
The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.
Illustrative numerical comparisons between phonon mean free paths and phonon thermal conductivity
NASA Astrophysics Data System (ADS)
MacDonald, W. M.; Anderson, A. C.
Measurements of thermal conductivity are often used as an interrogative technique to learn about phonon scattering processes in solids. In general the relationship between thermal conductivity lambda and a phonon mean free path 1 is complex and it is therefore necessary to make some simplifying assumptions in order to make this relationship tractable. These assumptions may lead to erroneous conclusions, many of which have appeared in the published literature. An intuitive insight is provided to the relationship between lambda and 1.
Non-equilibrium Phonons in CaWO4: Issues for Phonon Mediated Particle Detectors
NASA Astrophysics Data System (ADS)
Msall, Madeleine; Head, Timothy; Jumper, Daniel
2009-03-01
The CRESST experiment looks for evidence of dark matter particles colliding with nuclei in CaWO4, using cryogenic bolometers sensitive to energy deposition ˜ 10 keV with a few percent accuracy. Calibration of the energy deposited in the phonon system depends upon the details of the evolution of the non-equilibrium energy in the CaWO4 absorber. Our phonon images sensitively measure variations in angular phonon flux, providing key information about the elastic constants and scattering rates that determine the energy evolution. Phonon pulses, created by focused photoexcitation of a 150 nm Cu film, are detected after propagation through 3 mm of CaWO4. The 20 ns Ar-ion laser pulse creates a localized (10-3 mm^2) source of 10-20 K blackbody phonons. The sample is at 2 K. Our images show that the elastic constants derived from ultrasonic velocities along high symmetry axes do not accurately predict the total phonon flux along non-symmetry directions. We present new data on the dependence of phonon flux on excitation level and discuss the influence of isotope and anharmonic decay on the shape of phonon pulses in these ultrapure samples. Thanks to J.P. Wolfe and the Frederick Seitz Materials Research Laboratory, Urbana, IL, for partial support of this work.
NASA Astrophysics Data System (ADS)
Wong, Joe
2004-03-01
The phonon spectra of plutonium and its alloys have been sought after in the past few decades following the discovery of this actinide element in 1941, but with no success. This was due to a combination of the high neutron absorption cross section of 239Pu, the common isotope, and non-availability of large single crystals of any Pu-bearing materials. We have recent designed a high resolution inelastic x-ray scattering experiment using a bright synchrotron x-ray beam at the European Sychrotron Radiation Facility (ESRF), Grenoble and mapped the full phonon dispersion curves of an fcc delta-phase polycrystalline Pu-Ga alloy (1). Several unusual features including, a large elastic anisotropy, a small shear elastic modulus C', a Kohn-like anomaly in the T1[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. Our results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for d-plutonium.(2) This work was performed in collaboration with Dr. M. Krisch (ESRF)) and Prof. T.-C. Chiang (UIU), and under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. Joe Wong et al. Science, vol.301, 1078 (2003) 2. X. Dai et al. Science, vol.300, 953 (2003)
Interface scattering in polycrystalline thermoelectrics
Popescu, Adrian; Haney, Paul M.
2014-03-28
We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with a Landauer approach, while that of phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall system is well described by effective medium theory. Using bulk parameters similar to those of PbTe and a square barrier potential for the interface electron scattering, we identify the interface scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering is generally detrimental due to a reduction in electrical conductivity; however, for sufficiently weak electronic interface scattering, ZT is enhanced due to phonon interface scattering.
Cuscó, R; Alarcón-Lladó, E; Ibáñez, J; Yamaguchi, T; Nanishi, Y; Artús, L
2009-10-14
We use a hydrodynamical approach to analyse the long-wavelength LO-phonon-plasmon coupled modes observed in a set of high-quality MBE-grown InN epilayers with electron densities varying over one order of magnitude, from ∼2 × 10(18) to ∼2 × 10(19) cm(-3). The samples were characterized by scanning electron microscopy, x-ray diffraction and Hall measurements. The correlation observed between the E(2)(high) mode frequency, and hence residual strain, and the electron density measured in the layers indicates that the differences in background electron density may be associated with threading dislocations. Owing to the low Raman signal, only the L(-) branch of the coupled modes can be unambiguously observed. The frequency of the L(-) Raman peak is, however, sensitive enough to the free electron density to allow its determination from lineshape fits to the spectra. These were carried out using an extended hydrodynamical model. Given the small bandgap energy and large conduction band nonparabolicity of InN, suitable expressions for the optical effective mass and mean square velocity that enter the hydrodynamical model were derived. Electron density values extracted from L(-) lineshape fits agree reasonably well with Hall determinations.
A new hybrid phononic crystal in low frequencies
NASA Astrophysics Data System (ADS)
Zhang, Z.; Han, X. K.
2016-11-01
A novel hybrid phononic crystal is designed to obtain wider band gaps in low frequency range. The hybrid phononic crystal consists of rubber slab with periodic holes and plumbum stubs. In comparison with the phononic crystal without periodic holes, the new designed phononic crystal can obtain wider band gaps and better vibration damping characteristics. The wider band gap can be attributed to the interaction of local resonance and Bragg scattering. The controlling of the BG is explained by the strain energy of the hybrid PC and the introduced effective mass. The effects of the geometrical parameters and the shapes of the stubs and holes on the controlling of waves are further studied.
NASA Astrophysics Data System (ADS)
Kulić, M. L.; Dolgov, O. V.
2017-01-01
The theory of the electron-phonon interaction (EPI) with strong forward scattering peak (FSP) in an extreme delta-peak limit (Kulić and Zeyher 1994 Phys. Rev. B 49 4395; Kulić 2000 Phys. Rep. 38 1-264 Kulić and Dolgov 2005 Phys. Status Solidi b 242 151; Danylenko et al 1999 Eur. Phys. J. B 9 201) is recently applied in (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009) for the explanation of high {T}{{c}}(˜ 100 {{K}}) in a monolayer FeSe grown on {{{SrTiO}}}3 (Lee et al 2014 Nature 515 245) and TiO2 (Rebec et al 2016 arXiv:1606.09358v1) substrates. The EPI is due to a long-range dipolar electric field created by high-energy oxygen vibrations ({{Ω }}˜ 90 meV) at the interface (Lee et al 2014 Nature 515 245; Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). In leading order (with respect to {T}{{c}0}/{{Ω }}) the mean-field critical temperature {T}{{c}0}={< {V}{{epi}}(q)> }q/4) ˜ {({{aq}}{{c}})}2{V}{{epi}}(0) and the gap {{{Δ }}}0=2{T}{{c}0\\text{}} are due to an interplay between the maximal EPI pairing potential {V}{{epi}}(0) and the FSP-width q c. For {T}{{c}0}˜ 100 K one has {{{Δ }}}0˜ 16 meV in a satisfactory agreement with ARPES experiments. In leading order T c0 is mass-independent and a very small oxygen isotope effect is expected in next to leading order. In clean systems T c0 for s-wave and d-wave pairing is degenerate but both are affected by non-magnetic impurities, which are pair-weakening in the s-channel and pair-breaking in the d-channel. The self-energy and replica bands at T = 0 and at the Fermi surface are calculated and compared with experimental results at T> 0 ( Rademaker et al 2016 New J. Phys. 18 022001; Wang et al 2016 Supercond. Sci. Technol. 29 054009). The EPI coupling constant {λ }{{m}}={< {V}{{epi}}(q)> }q/2{{Ω }} is mass-dependent ({M}1/2) and at ω (\\ll {{Ω }}) makes the slope of the self
Mishra, S. K.; Gupta, M. K.; Mittal, R.; Kolesnikov, Alexander I.; Chaplot, S. L.
2016-06-22
Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO_{3} covering various phase transitions, and over 6–150 K in PrMnO_{3} covering the magnetic transition. The excitations around 20 meV in CaMnO_{3} and at 17 meV in PrMnO_{3} at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above T_{N}. In spite of the similarity of the structure of the two compounds, the neutron inelastic spectrum of PrMnO_{3} exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO_{3}. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO_{3} and highly anisotropic for PrMnO_{3}. The calculation in PrMnO_{3} shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO_{3} does not show any phase transition up to 60 GPa.
The effect of n- and p-type doping on coherent phonons in GaN.
Ishioka, Kunie; Kato, Keiko; Ohashi, Naoki; Haneda, Hajime; Kitajima, Masahiro; Petek, Hrvoje
2013-05-22
The effect of doping on the carrier-phonon interaction in wurtzite GaN is investigated by pump-probe reflectivity measurements using 3.1 eV light in near resonance with the fundamental band gap of 3.39 eV. Coherent modulations of the reflectivity due to the E2 and A1(LO) modes, as well as the 2A1(LO) overtone are observed. Doping of acceptor and donor atoms enhances the dephasing of the polar A1(LO) phonon via coupling with plasmons, with the effect of donors being stronger. Doping also enhances the relative amplitude of the coherent A1(LO) phonon with respect to that of the high-frequency E2 phonon, though it does not affect the relative intensity in Raman spectroscopic measurements. We attribute this enhanced coherent amplitude to the transient depletion field screening (TDFS) excitation mechanism, which, in addition to impulsive stimulated Raman scattering (ISRS), contributes to the generation of coherent polar phonons even for sub-band gap excitation. Because the TDFS mechanism requires photoexcitation of carriers, we argue that the interband transition is made possible at a surface with photon energies below the bulk band gap through the Franz-Keldysh effect.
Hypersonic phonon propagation in one-dimensional surface phononic crystal
NASA Astrophysics Data System (ADS)
Graczykowski, B.; Sledzinska, M.; Kehagias, N.; Alzina, F.; Reparaz, J. S.; Sotomayor Torres, C. M.
2014-03-01
Hypersonic, thermally activated surface acoustic waves propagating in the surface of crystalline silicon patterned with periodic stripes were studied by Brillouin light scattering. Two characteristic directions (normal and parallel to the stripes) of surface acoustic waves propagation were examined exhibiting a distinctive propagation behavior. The measured phononic band structure exhibits diverse features, such as zone folding, band gap opening, and hybridization to local resonance for waves propagating normal to the stripes, and a variety of dispersive modes propagating along the stripes. Experimental results were supported by theoretical calculations performed using finite element method.
Phonons and elasticity of cementite through the Curie temperature
NASA Astrophysics Data System (ADS)
Mauger, L.; Herriman, J. E.; Hellman, O.; Tracy, S. J.; Lucas, M. S.; Muñoz, J. A.; Xiao, Yuming; Li, J.; Fultz, B.
2017-01-01
Phonon partial densities of states (pDOS) of Fe573C were measured from cryogenic temperatures through the Curie transition at 460 K using nuclear resonant inelastic x-ray scattering. The cementite pDOS reveal that low-energy acoustic phonons shift to higher energies (stiffen) with temperature before the magnetic transition. This unexpected stiffening suggests strongly nonharmonic vibrational behavior that impacts the thermodynamics and elastic properties of cementite. Density functional theory calculations reproduced the anomalous stiffening observed experimentally in cementite by accounting for phonon-phonon interactions at finite temperatures. The calculations show that the low-energy acoustic phonon branches with polarizations along the [010] direction are largely responsible for the anomalous thermal stiffening. The effect was further localized to the motions of the FeII site within the orthorhombic structure, which participates disproportionately in the anomalous phonon stiffening.
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.
Electron-phonon interaction model and prediction of thermal energy transport in SOI transistor.
Jin, Jae Sik; Lee, Joon Sik
2007-11-01
An electron-phonon interaction model is proposed and applied to thermal transport in semiconductors at micro/nanoscales. The high electron energy induced by the electric field in a transistor is transferred to the phonon system through electron-phonon interaction in the high field region of the transistor. Due to this fact, a hot spot occurs, which is much smaller than the phonon mean free path in the Si-layer. The full phonon dispersion model based on the Boltzmann transport equation (BTE) with the relaxation time approximation is applied for the interactions among different phonon branches and different phonon frequencies. The Joule heating by the electron-phonon scattering is modeled through the intervalley and intravalley processes for silicon by introducing average electron energy. The simulation results are compared with those obtained by the full phonon dispersion model which treats the electron-phonon scattering as a volumetric heat source. The comparison shows that the peak temperature in the hot spot region is considerably higher and more localized than the previous results. The thermal characteristics of each phonon mode are useful to explain the above phenomena. The optical mode phonons of negligible group velocity obtain the highest energy density from electrons, and resides in the hot spot region without any contribution to heat transport, which results in a higher temperature in that region. Since the acoustic phonons with low group velocity show the higher energy density after electron-phonon scattering, they induce more localized heating near the hot spot region. The ballistic features are strongly observed when phonon-phonon scattering rates are lower than 4 x 10(10) S(-1).
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing
2010-11-16
Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the
Thermal transport in phononic crystals: The role of zone folding effect
NASA Astrophysics Data System (ADS)
Dechaumphai, Edward; Chen, Renkun
2012-04-01
Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.
NASA Astrophysics Data System (ADS)
Peelaers, H.; Partoens, B.; Peeters, F. M.
2009-09-01
The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.
NASA Astrophysics Data System (ADS)
Scheikh Obeid, A.; Aslanidou, S.; Birkhan, J.; Krugmann, A.; vonÂ Neumann-Cosel, P.; Pietralla, N.; Poltoratska, I.; Ponomarev, V. Yu.
2014-03-01
Background: The B (E2) transition strength to the 22+ state in 94Zr was initially reported to be larger by a factor of 1.63 than the one to the 21+ state from lifetime measurements with the Doppler-shift attenuation method using the (n,n'γ) reaction [Elhami et al., Phys. Rev. C 75, 011301(R) (2007), 10.1103/PhysRevC.75.011301]. This surprising behavior was recently revised in a new measurement by the same group using the same experimental technique leading to a ratio below unity as expected in vibrational nuclei. Purpose: The goal is an independent determination of the ratio of B (E2) strengths for the transitions to the 21,2+ states of 94Zr with inelastic electron scattering. Method: The relative population of the 21,2+ states in the (e,e') reaction was measured at the S-DALINAC in a momentum transfer range q =0.17-0.51 fm-1 and analyzed in plane-wave Born approximation with the method described by Scheikh Obeid et al. [Phys. Rev. C 87, 014337 (2013), 10.1103/PhysRevC.87.014337]. Results: The extracted B (E2) strength ratio of 0.789(43) between the excitation of the 21+ and 22+ states of 94Zr is consistent with but more precise than the latest (n,n'γ) experiment. Using the B (E2) transition strength to the first excited state from the literature a value of 3.9(9) Weisskopf units is deduced for the B (E2;22+→01+) transition. Conclusions: The electron scattering result independently confirms the latest interpretation of the different (n,n'γ) results for the transition to the 22+ state in 94Zr.
Towards a microscopic understanding of the phonon bottleneck
Garanin, D. A.
2007-03-01
The problem of the phonon bottleneck in the relaxation of two-level systems (spins) to a narrow group of resonant phonons via emission-absorption processes is investigated from first principles. It is shown that the kinetic approach based on the Pauli master equation is invalid because of the narrow distribution of the phonons exchanging their energy with the spins. This results in a long-memory effect that can be best taken into account by introducing an additional dynamical variable corresponding to the nondiagonal matrix elements responsible for spin-phonon correlation. The resulting system of dynamical equations describes the phonon-bottleneck plateau in the spin excitation, as well as a gap in the spin-phonon spectrum, for any finite concentration of spins. On the other hand, it does not accurately render the line shape of emitted phonons and still needs improving.
Phonon thermal transport through tilt grain boundaries in strontium titanate
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr
2014-08-21
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.
Parsons, L. C. Andrews, G. T.
2014-07-21
Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.
NASA Astrophysics Data System (ADS)
Kim, J. S.; Ryu, H. C.; Kim, S. H.; Kim, H.; Rho, H.; Kim, Y. J.; Lim, Y. S.; Yee, K. J.
2013-10-01
We describe our observation of coherent phonon oscillations of X-point zone-boundary transverse-optical (TO) mode, TO(X), in nitrogen-ion-implanted GaAs that has been annealed at high temperatures. With the TO(X) mode being forbidden from the Raman selection rule in pure zinc-blende GaAs, the lattice defects have provided additional momentum for phonon generation. Annealing-induced structural modifications were demonstrated through X-ray diffraction, transmission electron microscopy, and Raman scattering measurements. The polarization dependence of the TO(X) mode was compared with that of the longitudinal optical mode, and the temperature dependence of the TO(X) phonon dephasing was also investigated.
Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.
2015-05-15
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; ...
2015-12-07
Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
NASA Astrophysics Data System (ADS)
Bragas, A. V.; Aku-Leh, C.; Costantino, S.; Ingale, Alka; Zhao, J.; Merlin, R.
2004-05-01
We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump-probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons.
Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor
NASA Astrophysics Data System (ADS)
Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje
2015-11-01
The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.
Shear viscosity due to phonons in superfluid neutron stars
NASA Astrophysics Data System (ADS)
Manuel, Cristina; Tolos, Laura
2011-12-01
We compute the contribution of phonons to the shear viscosity η in superfluid neutron stars, assuming neutron pairing in a S01 channel. We use a Boltzmann equation amended by a collision term that takes into account the binary collisions of phonons. We use effective field theory techniques to extract the phonon scattering rates, written as a function of the equation of state of the system. Our formulation is rather general, and can be used to extract the shear viscosity due to binary collisions of phonons for other superfluids, such as the cold Fermi gas in the unitarity limit. We find that η∝1/T5, the proportionality factor depending on the equation of state of the system. Our results indicate that the phonon contribution to η cannot be ignored and might have relevant effects in the dynamics of the different oscillation modes of the star.
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
Li, Chen W.; Smith, Hillary L.; Lan, Tian; ...
2015-04-13
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat moremore » anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.
2015-04-13
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO_{2}) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.
Phonon squeezed states: quantum noise reduction in solids
NASA Astrophysics Data System (ADS)
Hu, Xuedong; Nori, Franco
1999-03-01
This article discusses quantum fluctuation properties of a crystal lattice, and in particular, phonon squeezed states. Squeezed states of phonons allow a reduction in the quantum fluctuations of the atomic displacements to below the zero-point quantum noise level of coherent phonon states. Here we discuss our studies of both continuous-wave and impulsive second-order Raman scattering mechanisms. The later approach was used to experimentally suppress (by one part in a million) fluctuations in phonons. We calculate the expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators, as well as the effects of the phonon squeezed states on macroscopically measurable quantities, such as changes in the dielectric constant. These results are compared with recent experiments. Further information, including preprints and animations, are available in http://www-personal.engin.umich.edu/∼nori/squeezed.html.
Theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena
NASA Astrophysics Data System (ADS)
Jin, Yongmei M.; Wang, Yu U.; Ren, Yang
2015-12-01
Pre-martensitic phenomena, also called martensite precursor effects, have been known for decades while yet remain outstanding issues. This paper addresses pre-martensitic phenomena from new theoretical and experimental perspectives. A statistical mechanics-based Grüneisen-type phonon theory is developed. On the basis of deformation-dependent incompletely softened low-energy phonons, the theory predicts a lattice instability and pre-martensitic transition into elastic-phonon domains via 'phonon spinodal decomposition.' The phase transition lifts phonon degeneracy in cubic crystal and has a nature of phonon pseudo-Jahn-Teller lattice instability. The theory and notion of phonon domains consistently explain the ubiquitous pre-martensitic anomalies as natural consequences of incomplete phonon softening. The phonon domains are characterised by broken dynamic symmetry of lattice vibrations and deform through internal phonon relaxation in response to stress (a particular case of Le Chatelier's principle), leading to previously unexplored new domain phenomenon. Experimental evidence of phonon domains is obtained by in situ three-dimensional phonon diffuse scattering and Bragg reflection using high-energy synchrotron X-ray single-crystal diffraction, which observes exotic domain phenomenon fundamentally different from usual ferroelastic domain switching phenomenon. In light of the theory and experimental evidence of phonon domains and their roles in pre-martensitic phenomena, currently existing alternative opinions on martensitic precursor phenomena are revisited.
Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.
NASA Astrophysics Data System (ADS)
Mehta, Sushrut Madhukar
Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.
Lattice dynamics of xenotime: The phonon dispersion relations and density of states of LuPO{sub 4}
Nipko, J.C.; Loong, C.; Loewenhaupt, M.; Braden, M.; Reichardt, W.; Boatner, L.A.
1997-11-01
LuPO{sub 4} is the nonmagnetic end member of a series of rare-earth phosphates with a common zircon-type crystal structure. The phonon-dispersion curves of LuPO{sub 4} along the [x,0,0], [x,x,0], and [0,0,x] symmetry directions were measured by neutron triple-axis spectroscopy using single-crystal samples. The phonon density of states was determined by time-of-flight neutron scattering using polycrystalline samples. Phonons involving mainly motions of rare-earth ions were found to be well separated in energy from those of the P and O vibrations. A large gap in the phonon-frequency-distribution function, which divides the O-P-O bending-type motions from the P-O stretches, was observed. All of the experimental results were satisfactorily accounted for by lattice-dynamic shell-model calculations. LuPO{sub 4} is a host material for the incorporation of rare-earth ions to produce activated luminescence. Information regarding the phonon and thermodynamic properties of LuPO{sub 4} is pertinent to extended investigations of additional rare-earth spin-lattice interactions in other zircon-structure rare-earth orthophosphates. {copyright} {ital 1997} {ital The American Physical Society}
First-Principles Calculation of forces and phonons in solid
NASA Astrophysics Data System (ADS)
Ning, Zhenhua; Shelton, William
We have developed a multiple scattering theory approach to calculate Hellmann-Feynman forces and phonons via the calculation of the force constant and dynamical matrix. To demonstrate the accuracy and validity of our approach we compare with the ELK code, which is a full potential Linear Augmented Plane Wave (FLAPW) based method. As we will show our forces and phonon dispersion curves are in good agreement with the FLAPW code. This work lays the foundation for developing a first principles approach for calculation of phonons in substitutionally disordered materials.
Phonon hydrodynamics and its applications in nanoscale heat transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2015-09-01
Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.
Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction
NASA Astrophysics Data System (ADS)
Melnick, Corey; Kaviany, Massoud
2016-03-01
The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less
Electron–phonon coupling in hybrid lead halide perovskites
Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.
2016-01-01
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329
Electron-phonon coupling in hybrid lead halide perovskites
NASA Astrophysics Data System (ADS)
Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.
2016-05-01
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ~40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
Electron-phonon coupling in hybrid lead halide perovskites.
Wright, Adam D; Verdi, Carla; Milot, Rebecca L; Eperon, Giles E; Pérez-Osorio, Miguel A; Snaith, Henry J; Giustino, Feliciano; Johnston, Michael B; Herz, Laura M
2016-05-26
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron-phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites.
Observation of Low-Energy Einstein Phonon and Superconductivity in Single-Crystalline LaBe13
NASA Astrophysics Data System (ADS)
Hidaka, Hiroyuki; Shimizu, Yusei; Yamazaki, Seigo; Miura, Naoyuki; Nagata, Ryoma; Tabata, Chihiro; Mombetsu, Shota; Yanagisawa, Tatsuya; Amitsuka, Hiroshi
2017-02-01
The thermal and electrical transport properties of single-crystalline LaBe13 have been investigated by specific-heat (C) and electrical-resistivity (ρ) measurements. The specific-heat measurements in a wide temperature range revealed the presence of a hump anomaly near 40 K in the C(T)/T curve, indicating that LaBe13 has a low-energy Einstein-like-phonon mode with a characteristic temperature of ˜177 K. In addition, a superconducting transition was observed in the ρ measurements at the transition temperature of 0.53 K, which is higher than the value of 0.27 K reported previously by Bonville et al. Furthermore, an unusual T3 dependence was found in ρ(T) below ˜50 K, in contrast to the behavior expected from the electron-electron scattering or the electron-Debye phonon scattering.
Bloch oscillations in the presence of plasmons and phonons
Ghosh; Jonsson; Wilkins
2000-07-31
The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].
Electron-phonon coupling and thermal transport in thermoelectric compound Mo3Sb7-xTex
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Li, Chen; Said, Ayman; Abernathy, Douglas; Yan, Jiaqiang; Delaire, Olivier
Complex interactions between solid-state excitations, such as phonon-phonon, phonon-electron, and phonon-magnon couplings are often responsible for unusual material properties. In this presentation, we report on our investigations of phonon propagation and thermal transport in thermoelectric Mo3Sb7-xTex. We have performed extensive inelastic neutron and x-ray scattering measurements of phonons in Mo3Sb7-xTex, mapping the phonon dispersions and density of states, as function of temperature and composition. Our first-principles density functional theory simulations, coupled with experimental measurements, reveal the importance of electron-phonon coupling, which dominates the scattering rates over alloy disorder scattering. Doping with Te shifts the Fermi surface near the top of the valence band, suppressing screening and causing phonons to stiffen markedly. Our measurements of acoustic dispersions and linewidths, coupled with DFT simulations and models of phonon scattering enable us to quantify the impact of the electron-phonon coupling on the thermal conductivity.
Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene
NASA Astrophysics Data System (ADS)
Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-06-01
We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586
Phonon dispersion and quantization tuning of strained carbon nanotubes for flexible electronics
Gautreau, Pierre; Chu, Yanbiao; Basaran, Cemal; Ragab, Tarek
2014-06-28
Graphene and carbon nanotubes are materials with large potentials for applications in flexible electronics. Such devices require a high level of sustainable strain and an understanding of the materials electrical properties under strain. Using supercell theory in conjunction with a comprehensive molecular mechanics model, the full band phonon dispersion of carbon nanotubes under uniaxial strain is studied. The results suggest an overall phonon softening and open up the possibility of phonon quantization tuning with uniaxial strain. The change in phonon quantization and the resulting increase in electron-phonon and phonon-phonon scattering rates offer further explanation and theoretical basis to the experimental observation of electrical properties degradation for carbon nanotubes under uniaxial strain.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; ...
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
NASA Astrophysics Data System (ADS)
Howard, Colin
The following dissertation presents a comprehensive study of the interaction between Dirac fermion quasiparticles (DFQs) and surface phonons on the surfaces of the topological insulators Bi2Se3 and Bi2Te 3. Inelastic helium atom surface scattering (HASS) spectroscopy and time of flight (TOF) techniques were used to measure the surface phonon dispersion of these materials along the two high-symmetry directions of the surface Brillouin zone (SBZ). Two anomalies common to both materials are exhibited in the experimental data. First, there is an absence of Rayleigh acoustic waves on the surface of these materials, pointing to weak coupling between the surface charge density and the surface acoustic phonon modes and potential applications for soundproofing technologies. Secondly, both materials exhibit an out-of-plane polarized optical phonon mode beginning at the SBZ center and dispersing to lower energy with increasing wave vector along both high-symmetry directions of the SBZ. This trend terminates in a V-shaped minimum at a wave vector corresponding to 2 kF for each material, after which the dispersion resumes its upward trend. This phenomenon constitutes a strong Kohn anomaly and can be attributed to the interaction between the surface phonons and DFQs. To quantify the coupling between the optical phonons experiencing strong renormalization and the DFQs at the surface, a phenomenological model was constructed based within the random phase approximation. Fitting the theoretical model to the experimental data allowed for the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator encoded in the phonon self energy. This allowed, for the first time, calculation of phonon mode-specific quasiparticle-phonon coupling lambdanu( q) from experimental data. Additionally, an averaged coupling parameter was determined for both materials yielding bar lambdaTe ≈ 2 and bar lambdaSe ≈ 0.7. These values are
Hole-interface optical phonon relaxation rates with valence band-mixing effects
NASA Astrophysics Data System (ADS)
Kim, Cheol-Hoi
2004-05-01
We theoretically investigate the hole-interface optical phonon scattering rates for a InGaAs-AlGaAs quantum well structure, taking into account the valence-band mixing. The dispersion relation and the electrostatic potentials for interface optical phonon modes are obtained based on the macroscopic dielectric continuum model. For the hole dispersion relation, the Luttinger-Kohn Hamiltonian is used. The hole-interface optical phonon interaction is evaluated by the Fermi's golden rule taking into account the Bloch overlap factor. Our results show that the hole-interface phonon scattering rates within the parabolic band approximation are different from those including valence band mixing effects. Especially, in the low energy region, the hole-interface phonon scattering rates within the parabolic band approximation are overestimated very significantly.
Hassan, P A; Fritz, Gerhard; Kaler, Eric W
2003-01-01
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.
Phonon waveguides for electromechanical circuits.
Hatanaka, D; Mahboob, I; Onomitsu, K; Yamaguchi, H
2014-07-01
Nanoelectromechanical systems (NEMS), utilizing localized mechanical vibrations, have found application in sensors, signal processors and in the study of macroscopic quantum mechanics. The integration of multiple mechanical elements via electrical or optical means remains a challenge in the realization of NEMS circuits. Here, we develop a phonon waveguide using a one-dimensional array of suspended membranes that offers purely mechanical means to integrate isolated NEMS resonators. We demonstrate that the phonon waveguide can support and guide mechanical vibrations and that the periodic membrane arrangement also creates a phonon bandgap that enables control of the phonon propagation velocity. Furthermore, embedding a phonon cavity into the phonon waveguide allows mobile mechanical vibrations to be dynamically switched or transferred from the waveguide to the cavity, thereby illustrating the viability of waveguide-resonator coupling. These highly functional traits of the phonon waveguide architecture exhibit all the components necessary to permit the realization of all-phononic NEMS circuits.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo_{3}Sb_{7–x}Te_{x}
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo_{3}Sb_{7–x}Te_{x} (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.
Phonon interference in crystalline and amorphous confined nanoscopic films
NASA Astrophysics Data System (ADS)
Liang, Zhi; Wilson, Thomas E.; Keblinski, Pawel
2017-02-01
Using molecular dynamics phonon wave packet simulations, we study phonon transmission across hexagonal (h)-BN and amorphous silica (a-SiO2) nanoscopic thin films sandwiched by two crystalline leads. Due to the phonon interference effect, the frequency-dependent phonon transmission coefficient in the case of the crystalline film (Si|h-BN|Al heterostructure) exhibits a strongly oscillatory behavior. In the case of the amorphous film (Si|a-SiO2|Al and Si|a-SiO2|Si heterostructures), in spite of structural disorder, the phonon transmission coefficient also exhibits oscillatory behavior at low frequencies (up to ˜1.2 THz), with a period of oscillation consistent with the prediction from the two-beam interference equation. Above 1.2 THz, however, the phonon interference effect is greatly weakened by the diffuse scattering of higher-frequency phonons within an a-SiO2 thin film and at the two interfaces confining the a-SiO2 thin film.
Mapping gigahertz vibrations in a plasmonic-phononic crystal
NASA Astrophysics Data System (ADS)
Kelf, Timothy A.; Hoshii, Wataru; Otsuka, Paul H.; Sakuma, Hirotaka; Veres, Istvan A.; Cole, Robin M.; Mahajan, Sumeet; Baumberg, Jeremy J.; Tomoda, Motonobu; Matsuda, Osamu; Wright, Oliver B.
2013-02-01
We image the gigahertz vibrational modes of a plasmonic-phononic crystal at sub-micron resolution by means of an ultrafast optical technique, using a triangular array of spherical gold nanovoids as a sample. Light is strongly coupled to the plasmonic modes, which interact with the gigahertz phonons by a process akin to surface-enhanced stimulated Brillouin scattering. A marked enhancement in the observed optical reflectivity change at the centre of a void on phononic resonance is likely to be caused by this mechanism. By comparison with numerical simulations of the vibrational field, we identify resonant breathing deformations of the voids and elucidate the corresponding mode shapes. We thus establish scanned optomechanical probing of periodic plasmonic-phononic structures as a new means of investigating their coupled excitations on the nanoscale.
Phonon-Josephson resonances in atomtronic circuits
NASA Astrophysics Data System (ADS)
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Phonon anharmonicity and components of the entropy in palladium and platinum
NASA Astrophysics Data System (ADS)
Shen, Yang; Li, Chen W.; Tang, Xiaoli; Smith, Hillary L.; Fultz, B.
2016-06-01
Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.
Symmetry-adapted phonon analysis of nanotubes
NASA Astrophysics Data System (ADS)
Aghaei, Amin; Dayal, Kaushik; Elliott, Ryan S.
2013-02-01
The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling; and third, unlike crystals where phonon stability does not provide information on stability with respect to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability with respect to all perturbations that do not involve structural modes. Our finding of characteristic
ERIC Educational Resources Information Center
Reid, John S.
1977-01-01
Discussed are how the thermal vibrations of a solid are described in terms of lattice waves, how these waves interact with other waves, or with themselves, and how one is led from such a description in terms of waves to the concept of a phonon. (Author/MA)
Iglesias, J. M.; Martín, M. J.; Pascual, E.; Rengel, R.
2016-01-25
We study, by means of a Monte Carlo simulator, the hot phonon effect on the relaxation dynamics in photoexcited graphene and its quantitative impact as compared with considering an equilibrium phonon distribution. Our multi-particle approach indicates that neglecting the hot phonon effect significantly underestimates the relaxation times in photoexcited graphene. The hot phonon effect is more important for a higher energy of the excitation pulse and photocarrier densities between 1 and 3 × 10{sup 12 }cm{sup −2}. Acoustic intervalley phonons play a non-negligible role, and emitted phonons with wavelengths limited up by a maximum (determined by the carrier concentration) induce a slower carrier cooling rate. Intrinsic phonon heating is damped in graphene on a substrate due to the additional cooling pathways, with the hot phonon effect showing a strong inverse dependence with the carrier density.
Phonon properties of americium phosphide
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.
2016-05-01
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Pozela, Yu. Pozela, K.; Juciene, V.; Balakauskas, S.; Evtikhiev, V. P.; Schkolnik, A. S.; Storasta, Yu.; Mekys, A.
2007-12-15
Confinement and localization of optical phonons in narrow phonon wells with thin phonon barriers decreases the rate of electron-phonon scattering by polar optical phonons by a factor of many times. An increase in mobility and drift velocity of electrons is experimentally observed in strong electric fields upon introduction of thin phonon barriers into the AlGaAs/GaAs/AlGaAs quantum well.
Phononic Frequency Comb via Intrinsic Three-Wave Mixing.
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-01-20
Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.
Phononic Frequency Comb via Intrinsic Three-Wave Mixing
NASA Astrophysics Data System (ADS)
Ganesan, Adarsh; Do, Cuong; Seshia, Ashwin
2017-01-01
Optical frequency combs have resulted in significant advances in optical frequency metrology and found wide applications in precise physical measurements and molecular fingerprinting. A direct analogue of frequency combs in the phononic or acoustic domain has not been reported to date. In this Letter, we report the first clear experimental evidence for a phononic frequency comb. We show that the phononic frequency comb is generated through the intrinsic coupling of a driven phonon mode with an autoparametrically excited subharmonic mode. The experiments depict the comb generation process evidenced by a spectral response consisting of equally spaced discrete and phase coherent comb lines. Through systematic experiments at different drive frequencies and amplitudes, we portray the well-connected process of phononic frequency comb formation and define the attributes to control the features associated with comb formation in such a system. In addition to the demonstration of frequency comb, the interplay between the nonlinear resonances and the well-known Duffing phenomenon is also observed.
Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method
NASA Astrophysics Data System (ADS)
Shu, Hai-Sheng; Wang, Xing-Guo; Liu, Ru; Li, Xiao-Gang; Shi, Xiao-Na; Liang, Shan-Jun; Xu, Li-Huan; Dong, Fu-Zhen
2015-09-01
Based on the concept of generalized phononic crystals (GPCs), a type of 1D cylindrical shell of generalized phononic crystals (CS-GPCs) where two kinds of homogeneous materials are arranged periodically along radial direction was proposed in this paper. On the basis of radial, torsional shear and axial shear vibrational equations of cylindrical shell, the total transfer matrix of mechanical state vector were set up respectively, and the bandgap phenomena of these three type waves were disclosed by using the method of transfer matrix eigenvalue of mechanical state vector instead of the previous localized factor analyses and Bloch theorem. The characteristics and forming mechanism of these bandgaps of CS-GPCs, together with the influences of several important structure and material parameters on them were investigated and discussed in detail. Our results showed that, similar to the plane wave bandgaps, 1D CS-GPCs can also possess radial, torsional shear and axial shear wave bandgaps within high frequency region that conforms to the Bragg scattering effect; moreover, the radial vibration of CS-GPCs can generate low frequency bandgap (the start frequency near 0 Hz), as a result of the double effects of wavefront expansion and Bragg scattering effect, wherein the wavefront effect can be the main factor and directly determine the existence of the low frequency bandgaps, while the Bragg scattering effect has obvious enhancement effect to the attenuation. Additionally, the geometrical and material parameters of units have significant influences on the wave bandgaps of CS-GPCs.
Dispersive Phonon Imaging in Iii-V Semiconductors.
NASA Astrophysics Data System (ADS)
Hebboul, Saad Eddine
Low-temperature transport properties of high-frequency acoustic phonons are investigated in GaAs, InSb, InP and InAs using the phonon-imaging technique. In this method, a focused laser beam provides a movable heat source on one side of a cooled crystal (<=q2 K). A single small phonon detector on the opposite face records the transmitted heat flux as a function of propagation direction. Ballistic phonons channel along directions in the crystal which are completely determined by the detailed shape of constant-energy surfaces in wavevector space. The resulting focusing patterns are characterized by sharp phonon caustics which are clearly identified from the continuous background due to scattered phonons. In the dispersive regime, where phonon wavelength is comparable to atomic spacing, the angular positions of these caustic lines are very sensitive to phonon frequency, thus providing a novel test for lattice dynamics theories. Experiments are performed with superconducting tunnel junctions and Al bolometers to probe both the high-frequency and low -frequency regimes, respectively. We find that large-k ballistic phonons give rise to distinct focusing patterns in all four types of crystals, with thicknesses varying between 0.4 and 0.8 mm. Due to isotope scattering in the bulk, tunnel-junction experiments yield well-defined caustic patterns with a dominant frequency given by the detector gap 2Delta. In InSb, where zone boundary frequencies are small (nu_ {TA} ~ 1.2 THz), the frequency dependence of the dispersive phonon focusing patterns are measured using PbTl (0.43, 0.59 THz) and PbBi (0.69, 0.73, 0.78, 0.82 THz) tunnel junction detectors. The results are interpreted with Monte Carlo calculations based on rigid, dipole, shell, and bond-charge models. Although each model yields satisfactory fits to the previously measured dispersion curves, the predicted patterns show remarkable differences in the caustic structures. This result underscores the utility of phonon imaging
NASA Astrophysics Data System (ADS)
Nissimagoudar, A. S.; Sankeshwar, N. S.
2014-06-01
Lattice thermal conductivity, κp, of suspended and supported graphene nanoribbons (GNRs) is studied over a wide temperature range, taking into account the dispersive nature of confined acoustic phonon modes. Employing a modified Callaway model, an expression for κp is developed, considering the explicit contributions from in-plane longitudinal, transverse, and torsional acoustic, and out-of-plane flexural acoustic phonon modes. Numerical calculations of κp(T) are presented assuming the confined acoustic phonons to be scattered by sample boundaries, impurities, and other phonons via both normal and umklapp processes. The effect of phonon confinement is to modify the phonon group velocities and the temperature dependence of κp. In a suspended 5-nm-wide GNR at room temperature, a decrease in κp by ˜70% is predicted. Our study brings out the relative importance of the contributing phonon modes and reveals the influence of flexural phonons on κp as a marked shoulder at low temperatures. The role of the various sample-dependent scattering mechanisms is examined. The substrate, in supported GNRs, is shown to curtail the phonon mean free path and suppress the low-temperature κp. Our results are in good agreement with recent experimental data of Bae et al. [M. H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z. Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013), 10.1038/ncomms2755] for supported GNRs.
NASA Astrophysics Data System (ADS)
Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Abernathy, Douglas L.; Aczel, Adam A.; Zhou, Jianshi; Delaire, Olivier; Shi, Li
2016-10-01
Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in S r14C u24O41 , which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7-1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gapped and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in S r14C u24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. These findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.
Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; ...
2016-10-21
Intriguing lattice dynamics have been predicted for aperiodic crystals that contain incommensurate substructures. Here we report inelastic neutron scattering measurements of phonon and magnon dispersions in Sr14Cu24O41, which contains incommensurate one-dimensional (1D) chain and two-dimensional (2D) ladder substructures. Two distinct pseudoacoustic phonon modes, corresponding to the sliding motion of one sublattice against the other, are observed for atomic motions polarized along the incommensurate axis. In the long wavelength limit, it is found that the sliding mode shows a remarkably small energy gap of 1.7–1.9 meV, indicating very weak interactions between the two incommensurate sublattices. The measurements also reveal a gappedmore » and steep linear magnon dispersion of the ladder sublattice. The high group velocity of this magnon branch and weak coupling with acoustic and pseudoacoustic phonons can explain the large magnon thermal conductivity in Sr14Cu24O41 crystals. In addition, the magnon specific heat is determined from the measured total specific heat and phonon density of states and exhibits a Schottky anomaly due to gapped magnon modes of the spin chains. Furthermore, these findings offer new insights into the phonon and magnon dynamics and thermal transport properties of incommensurate magnetic crystals that contain low-dimensional substructures.« less
One-Dimensional Physics of Interacting Electrons and Phonons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Deshpande, Vikram Vijay
The one-dimensional (1D) world is quite different from its higher dimensional counterparts. For example, the electronic ground state in 1D is not a Fermi liquid as in most solids, due to the role of electron-electron interactions. Most commonly, electrons in 1D are described as a Luttinger liquid , where the low-energy excitations are decoupled bosonic charge and spin waves. Carbon nanotubes are clean 1D systems which have been shown to behave like a Luttinger liquid at high electron density. However, at low electron density and in the absence of disorder, the ground state is predicted to be a 1D Wigner crystal---an electron solid dominated by long-range Coulomb interaction. Moreover, short-range interaction mediated by the atomic lattice (umklapp scattering) is predicted to transform a nominal 1D metal into a Mott insulator. In this thesis, we develop techniques to make extremely clean nanotube single-electron transistors. We study them in the few-electron/hole regime using Coulomb blockade spectroscopy in a magnetic field. In semiconducting nanotubes, we map out the antiferromagnetic exchange coupling as a function of carrier number and find excellent agreement to a Wigner crystal model. In nominally metallic nanotubes, we observe a universal energy gap in addition to the single-particle bandgap, implying that nanotubes are never metallic. The magnitude, radius dependence and low-energy neutral excitations of this additional gap indicate a Mott insulating origin. Further, we use simultaneous electrical and Raman spectroscopy measurements to study the phonons scattered by an electric current. At high bias, suspended nanotubes show striking negative differential conductance, attributed to non-equilibrium phonons. We directly observe such "hot" phonon populations in the Raman response and also report preferential electron coupling to one of two optical phonon modes. In addition, using spatially-resolved Raman spectroscopy, we obtain a wealth of local information
Light dark matter scattering in outer neutron star crusts
NASA Astrophysics Data System (ADS)
Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph
2016-09-01
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
Phonons, defects and optical damage in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.
1986-04-01
Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.
Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.
2015-05-15
In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.
Sadhu, Jyothi; Tian, Hongxiang; Ma, Jun; Azeredo, Bruno; Kim, Junhwan; Balasundaram, Karthik; Zhang, Chen; Li, Xiuling; Ferreira, P M; Sinha, S
2015-05-13
Existing theory and data cannot quantify the contribution of phonon drag to the Seebeck coefficient (S) in semiconductors at room temperature. We show that this is possible through comparative measurements between nanowires and the bulk. Phonon boundary scattering completely quenches phonon drag in silicon nanowires enabling quantification of its contribution to S in bulk silicon in the range 25-500 K. The contribution is surprisingly large (∼34%) at 300 K even at doping of ∼3 × 10(19) cm(-3). Our results contradict the notion that phonon drag is negligible in degenerate semiconductors at temperatures relevant for thermoelectric energy conversion. A revised theory of electron-phonon momentum exchange that accounts for a phonon mean free path spectrum agrees well with the data.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Electron-Phonon Coupling and its implication for the superconducting topological insulators
Zhang, Xiao-Long; Liu, Wu-Ming
2015-01-01
The recent observation of superconductivity in doped topological insulators has sparked a flurry of interest due to the prospect of realizing the long-sought topological superconductors. Yet the understanding of underlying pairing mechanism in these systems is far from complete. Here we investigate this problem by providing robust first-principles calculations of the role of electron-phonon coupling for the superconducting pairing in the prime candidate CuxBi2Se3. Our results show that electron-phonon scattering process in this system is dominated by zone center and boundary optical modes, with coexistence of phonon stiffening and softening. While the calculated electron-phonon coupling constant λ suggests that Tc from electron-phonon coupling is 2 orders smaller than the ones reported on bulk inhomogeneous samples, suggesting that superconductivity may not come from pure electron-phonon coupling. We discuss the possible enhancement of superconducting transition temperature by local inhomogeneity introduced by doping. PMID:25753813
Optical studies of terahertz phonons dynamics in small-grain polycrystalline corundum
NASA Astrophysics Data System (ADS)
Feofilov, S. P.; Kaplyanskii, A. A.; Kulinkin, A. B.; Zakharchenya, R. I.
1999-03-01
The dynamics of terahertz acoustic phonons generated by optical pumping in ceramic-like α-Al 2O 3 with grain size ∼100 nm produced with the help of sol-gel technology was studied with the technique of optical detection of phonons by observation of probe Cr 3+ and Mn 4+ ions fluorescence. The dynamics of phonon distribution is very slow (∼ms) and drastically differs from that in regular α-Al 2O 3 ceramics with micron grain size and is similar to that observed earlier in oxide glasses. The results are discussed in the framework of studies of phonons in different structured and spatially restricted Al 2O 3 materials with different ratios between phonon wavelength λ and crystallite size a. It is shown that the acoustic mismatch model which describes phonon scattering in regular ceramics is not valid for small-grain sol-gel produced ceramics-like material.
NASA Astrophysics Data System (ADS)
Hong, Jiawang; Li, Chen W.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, Olivier
The promising thermoelectric material SnSe exhibits ultra-low and strongly anisotropic thermal conductivity. By combining first-principles calculations and inelastic neutron scattering measurements, we have investigated the phonon dispersions and phonon scattering mechanisms, and probed the origin of the large anharmonicity in SnSe. We will discuss the connection between the phonon properties and the high-temperature structural phase transition, and how the electronic structure leads to large anharmonic phonon interactions in SnSe. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, which could help design materials with ultralow thermal conductivity. Computations were performed using the OLCF at ORNL. Modeling of neutron data was performed in CAMM, measurements were funded by the US DOE, BES, Materials Science and Engineering Division.
Generating Coherent Phonons and Spin Excitations with Ultrafast Light Pulses
NASA Astrophysics Data System (ADS)
Merlin, Roberto
2006-03-01
Recent work on the generation of coherent low-lying excitations by ultrafast laser pulses will be reviewed, emphasizing the microscopic mechanisms of light-matter interaction. The topics covered include long-lived phonons in ZnO [C. Aku-Leh, J. Zhao, R. Merlin, J. Men'endez and M. Cardona, Phys. Rev.B 71, 205211 (2005)], squeezed magnons [J. Zhao, A. V. Bragas, D. J. Lockwood and R. Merlin, Phys. Rev. Lett. 93, 107203 (2004)], spin- and charge-density fluctuations [J. M. Bao et al., Phys. Rev. Lett. 92, 236601 (2004)] and cyclotron resonance [J. K. Wahlstrand, D. M. Wang, P. Jacobs, J. M. Bao, R. Merlin, K. W. West and L. N. Pfeiffer, AIP Conference Proceedings 772 (2005), p. 1313] in GaAs quantum wells. In addition, unpublished results on surface -avoiding phonons in GaAs-AlAs superlattices [M. Trigo et al., unpublished] and magnons in ferromagnetic Ga1-xMnxAs [D. M. Wang et al., unpublished] will be discussed. It will also be shown that frequencies can be measured using pump-probe techniques with a precision comparable to that of Brillouin scattering. It is now widely accepted that stimulated Raman scattering (SRS) is (often but not always) the mechanism responsible for the coherent coupling. Results will be presented showing that SRS is described by two separate tensors, one of which accounts for the excitation-induced modulation of the susceptibility, and the other one for the dependence of the amplitude of the oscillation on the light intensity [T. E. Stevens, J. Kuhl and R. Merlin, Phys. Rev. B 65, 144304 (2002)]. These tensors have the same real component, associated with impulsive coherent generation, but different imaginary parts. If the imaginary term dominates, that is, for strongly absorbing substances, the mechanism for two-band processes becomes displacive in nature, as in the DECP (displacive excitation of coherent phonons) model. It will be argued that DECP is not a separate mechanism, but a particular case of SRS. In the final part of the talk, an
Light scattering from acoustic vibrational modes in confined structures
NASA Astrophysics Data System (ADS)
Bandhu, Rudra Shyam
The acoustic vibrational modes and their light scattering intensities in confined structures such as supported films, double layer free-standing membrane and sub-micron sized wires on a free-standing membrane have been studied using Brillouin Light Scattering (BLS). Standing wave type acoustic phonons were recently observed in supported thin films of silicon oxy-nitride. We build upon this finding to study the acoustic modes in thin zinc selenide (ZnSe) films on gallium arsenide (GaAs). The surprising behaviour of the Brillouin intensities of the standing wave modes in ZnSe are explained in terms of interference of the elasto-optic scattering amplitudes from the film and substrate. Numerical calculations of the scattering cross-section, which takes into account ripple and elasto-optic scattering mechanism, agrees well with the experimental data. Light scattering studies of standing wave type modes in free-standing polymethyl methacrylate (PMMA) layer on Si3N4 were carried out. In these bilayer structures PMMA is much softer than Si3N 4, a property that leads to confinement of low frequency modes associated with the PMMA layer to within its boundaries. In addition, the flexural and the dilatational modes from the Si3N4 layer are observed and are found to hybridize with the standing wave modes from the PMMA layer. Our study of phonon modes in PMMA wires supported on a free-standing Si3N4 membrane extends our work on free-standing double layer membranes. In recent years there is much interest in the study of phonon modes in nano-scale structures such as wires or dots. Although much theoretical work has been carried out in this direction, no experiments exist that explore the dispersion of the phonon modes in such structures. Brillouin Light scattering is ideally suited for studying phonons in such reduced dimensions and our work represents the first effort in this direction. The spectra reveal modes which are quantized both along the width, as well along the thickness
Phonon densities of states of face-centered-cubic Ni-Fe alloys
Lucas, Matthew; Mauger, L; Munoz, Jorge A.; Halevy, I; Horwath, J; Semiatin, S L; Leontsev, S. O.; Stone, Matthew B; Abernathy, Douglas L; Xiao, Yuming; Chow, P; Fultz, B.
2013-01-01
Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.
Temperature dependent phonon properties of thermoelectric materials
NASA Astrophysics Data System (ADS)
Hellman, Olle; Broido, David; Fultz, Brent
2015-03-01
We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.
Enhancing phonon flow through one-dimensional interfaces by impedance matching
Polanco, Carlos A. Ghosh, Avik W.
2014-08-28
We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.
Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; Silibin, Maxim V.; Kalinin, Sergei V.; Eliseev, Eugene A.
2015-09-29
The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic soft mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.
Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; ...
2015-09-29
The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic softmore » mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.« less
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-01
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
Magnetic moments induce strong phonon renormalization in FeSi
Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.
2015-01-01
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619
Toward reversing Joule heating with a phonon-absorbing heterobarrier
NASA Astrophysics Data System (ADS)
Shin, Seungha; Kaviany, Massoud
2015-02-01
Using a graded heterobarrier placed along an electron channel, phonons emitted in Joule heating are recycled in situ by increasing the entropy of phonon-absorbing electrons. The asymmetric electric potential distribution created by alloy grading separates the phonon absorption and emission regions, and emission in the larger effective-mass region causes momentum relaxation with smaller electron kinetic energy loss. These lead to smaller overall phonon emission and simultaneous potential-gain and self-cooling effects. Larger potential is gained with lower current and higher optical-phonon temperature. The self-consistent Monte Carlo simulations complying with the lateral momentum conservation combined with the entropy analysis are applied to a GaAs:Al electron channel with a graded heterobarrier, and under ideal lateral thermal isolation from surroundings, the phonon recycling efficiency reaches 25% of the reversible limit at 350 K, and it increases with temperature. The lateral momentum contributes to the transmission across the barrier, so partially nonconserving lateral momentum electron scattering (rough interface) can improve efficiency.
A moment model for phonon transport at room temperature
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Alireza; Struchtrup, Henning
2017-01-01
Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
Gu, Xiaokun; Yang, Ronggui
2015-01-14
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
Phonon-lifetimes in demixing systems
NASA Astrophysics Data System (ADS)
Davaasambuu, J.; Güthoff, F.; Petri, M.; Hradil, K.; Schober, H.; Ollivier, J.; Eckold, G.
2012-06-01
The dynamics of silver-alkali halide mixed single crystals (AgxNa1-xBr, x = 0.23, 0.35, 0.40 and 0.70) were studied by inelastic neutron scattering during the process of spinodal decomposition. Using the thermal three-axes spectrometer PUMA as well as the time-of-flight spectrometer IN5, the time evolution of phonons was observed in time-resolved, stroboscopic measurements. Complementary to the study of long wavelength acoustic phonons, as studied previously, we extended these investigations to Brillouin-zone boundary modes that are particularly sensitive to variations of the local structure. Starting from the homogeneous mixed phase the behaviour of these modes during demixing is observed in real-time. A simple dynamical model based on local structure variants helps to interpret the results. It is shown that the phonon lifetimes vary strongly during the phase separation and increase drastically during the coarsening process. Up to a critical size of precipitates of about 10 nm, zone-boundary modes are found to be strongly damped, while beyond the line widths are reduced to the experimental resolution. This finding leads to the conclusion that the typical mean free path of these modes is of the order of 10 nm, which corresponds to 20 unit cells.
Yoctocalorimetry: phonon counting in nanostructures
NASA Astrophysics Data System (ADS)
Roukes, M. L.
1999-03-01
It appears feasible with nanostructures to perform calorimetry at the level of individual thermal phonons. Here I outline an approach employing monocrystalline mesoscopic insulators, which can now be patterned from semiconductor heterostructures into complex geometries with full, three-dimensional relief. Successive application of these techniques also enables definition of integrated nanoscale thermal transducers; coupling these to a dc SQUID readout yields the requisite energy sensitivity and temporal resolution with minimal back action. The prospect of phonon counting opens intriguing experimental possibilities with analogies in quantum optics. These include fluctuation-based phonon spectroscopy, phonon shot noise in the energy relaxation of nanoscale systems, and quantum statistical phenomena such as phonon bunching and anticorrelated electron-phonon exchange.
NASA Astrophysics Data System (ADS)
Korkusinski, M.; Studenikin, S. A.; Aers, G.; Granger, G.; Kam, A.; Sachrajda, A. S.
2017-02-01
Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.
Korkusinski, M; Studenikin, S A; Aers, G; Granger, G; Kam, A; Sachrajda, A S
2017-02-10
Manipulating qubits via electrical pulses in a piezoelectric material such as GaAs can be expected to generate incidental acoustic phonons. In this Letter we determine theoretically and experimentally the consequences of these phonons for semiconductor spin qubits using Landau-Zener-Stückelberg interferometry. Theoretical calculations predict that phonons in the presence of the spin-orbit interaction produce both phonon-Rabi fringes and accelerated evolution at the singlet-triplet anticrossing. Observed features confirm the influence of these mechanisms. Additionally, evidence is found that the pulsed gates themselves act as phonon cavities increasing the influence of phonons under specific resonant conditions.
Evolution of spin phonon coupling by substituting Cd for Zn in the frustrated spinel ZnCr2Se4
NASA Astrophysics Data System (ADS)
Chen, Xuliang; Yang, Zhaorong
2016-05-01
Frustration makes a tremendous amount of degenerate ground states which provides no energy scale of its own. Any perturbation has to be considered strong and fascinating phenomena may be emergent upon relieving of frustration. Here, we report the evolution of spin phonon coupling in the frustrated spinel system Zn1-xCdxCr2Se4 (0 ≤ x ≤ 1) from magnetization, specific heat and thermal conductivity. Our results give clear evidences that the spin-orientated structural transitions decay rapidly as x going from 0 to 0.4 while the correlations between spin and lattice degrees of freedom for 0.6 ≤ x ≤ 1 become weak and can be explained in terms of the traditional magnetostriction effect. In addition, for 0 ≤ x ≤ 0.4 thermal carriers reveal strong scattering from spin fluctuations in the vicinity of TN owing to strong frustration, in stark contrast with those for 0.6 ≤ x ≤ 1 where traditional phonon-like heat conduction behaviors are observed. Moreover, it is shown that a moderate applied magnetic field can drive readily the fluctuations-scattered thermal conductivity toward traditional phonon-like one as observed in CdCr2Se4, reaching about 30% for x = 0.4 at 25 K in 1 T. Such strong field-sensitive effects may introduce new promising functionalities for potential applications.
NASA Astrophysics Data System (ADS)
Konar, Aniruddha; Fang, Tian; Jena, Debdeep
2010-03-01
Surface phonons (SO-phonons) arise at the boundary of two different dielectric mediums. Though the effect of electron-surface phonon scattering on low-filed charge transport has been studied extensively for thin Si-MOSFET [1] and graphene [2], its effect on the 1D nanowire devices has not studied so far. Vibrating diploes in polar gate-dielectric induces a time-varying potential inside the nanowires. The frequencies of these time-varying fields have been calculated by implementing electrostatic boundary conditions at different interfaces of nanowire-dielectric-metal system. Our calculation shows that the electron-SO phonon interaction strength decays exponentially from the gate-nanowire interface towards the nanowire axis. Electron-SO phonon scattering rate has been calculated using Boltzmann transport equation under relaxation time approximation. We find that for thin nanowires (radius 1-20 nm), electron-SO phonon scattering rate is comparable to other dominant scattering mechanisms (such as impurity and bulk optical phonon scatterings) and reduces carrier mobility significantly. Calculating surface-phonon limited mobility of Si nanowires on various available common dielectrics, we have predicted the optimum choice of gate-dielectrics for nanowire-based electronic devices. [4pt] [1] M. V. Fischetti et. al J. Appl. Phys. 90 4581 (2001). [0pt] [2] A. Konar et. al. arXiv: 0902.0819.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Quantum symmetries induced by phonons in the Hubbard model
NASA Astrophysics Data System (ADS)
Montorsi, Arianna; Rasetti, Mario
1994-03-01
We show how the addition of a phonon field to the Hubbard model deforms the superconducting su(2) part of the global symmetry Lie algebra su(2)⊗su(2)/openZ2, holding at half filling for the customary model, into a quantum [su(2)]q symmetry, holding for a filling which depends on the electron-phonon interaction strength. Such symmetry originates in the feature that in the presence of phonons the hopping amplitude turns out to depend on the coupling strength. The states generated by resorting to this q symmetry exhibit both off-diagonal long-range order and pairing.
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-01-01
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-10-05
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials.
Shear Brillouin light scattering microscope
Kim, Moonseok; Besner, Sebastien; Ramier, Antoine; Kwok, Sheldon J. J.; An, Jeesoo; Scarcelli, Giuliano; Yun, Seok Hyun
2016-01-01
Brillouin spectroscopy has been used to characterize shear acoustic phonons in materials. However, conventional instruments had slow acquisition times over 10 min per 1 mW of input optical power, and they required two objective lenses to form a 90° scattering geometry necessary for polarization coupling by shear phonons. Here, we demonstrate a confocal Brillouin microscope capable of detecting both shear and longitudinal phonons with improved speeds and with a single objective lens. Brillouin scattering spectra were measured from polycarbonate, fused quartz, and borosilicate in 1-10 s at an optical power level of 10 mW. The elastic constants, phonon mean free path and the ratio of the Pockels coefficients were determined at microscopic resolution. PMID:26832263
Dynamical Cooper pairing in nonequilibrium electron-phonon systems
NASA Astrophysics Data System (ADS)
Knap, Michael; Babadi, Mehrtash; Refael, Gil; Martin, Ivar; Demler, Eugene
2016-12-01
We analyze Cooper pairing instabilities in strongly driven electron-phonon systems. The light-induced nonequilibrium state of phonons results in a simultaneous increase of the superconducting coupling constant and the electron scattering. We demonstrate that the competition between these effects leads to an enhanced superconducting transition temperature in a broad range of parameters. Our results may explain the observed transient enhancement of superconductivity in several classes of materials upon irradiation with high intensity pulses of terahertz light, and may pave new ways for engineering high-temperature light-induced superconducting states.
Optical phonon lasing and its detection in transport through semiconduc- tor double quantum dots
NASA Astrophysics Data System (ADS)
Okuyama, Rin; Eto, Mikio; Brandes, Tobias
2014-03-01
We theoretically propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. No additional cavity or resonator is required. We show that the DQD couples to only two phonon modes that act as a natural cavity. The pumping to the upper level is realized by an electric current through the DQD under a finite bias. Using the rate equation in the Born-Markov-Secular approximation, we analyze the enhanced phonon emission when the level spacing in the DQD is tuned to the phonon energy. We find the phonon lasing when the pumping rate is much larger than the phonon decay rate, whereas anti-bunching of phonon emission is observed when the pumping rate is smaller.[1] Our theory can be also applicable to DQDs embedded in nanomechanical resonators to control the vibrating modes. We discuss detection of amplified modes using the electric current and its noise through the DQD, and another DQD fabricated nearby.
Switchable topological phonon channels
NASA Astrophysics Data System (ADS)
Süsstrunk, Roman; Zimmermann, Philipp; Huber, Sebastian D.
2017-01-01
Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put into realizing mechanical topological metamaterials, almost no works deal with manipulating their edge channels in sight of applications. Here, we take a step in this direction, by taking advantage of local symmetry breaking potentials to build a switchable topological phonon channel.
NASA Astrophysics Data System (ADS)
Yang, Jia-Yue; Qin, Guangzhao; Hu, Ming
2016-12-01
The macroscopic thermal transport is fundamentally determined by the intrinsic interactions among microscopic electrons and phonons. In conventional insulators and semiconductors, phonons dominate the thermal transport, and the contribution of electron-phonon interaction (EPI) is negligible. However, in polar semiconductors, the Fröhlich electron-phonon coupling is strong and its influence on phononic thermal transport is of great significance. In this work, the effect of EPI on phonon dispersion and lattice thermal conductivity of wurtzite gallium nitride (GaN) is comprehensively investigated from the atomistic level by performing first-principles calculations. Due to the existence of relatively large electronegativity difference between Ga and N atoms, the Fröhlich coupling in wurtzite GaN is remarkably strong. Consequently, the lattice thermal conductivity of natural wurtzite GaN at room temperature is reduced by ˜24%-34% when including EPI, and the resulted thermal conductivity value is in better agreement with experiments. Furthermore, the scattering rate of phonons due to EPI, the intrinsic phonon-phonon interaction (PPI) as well as isotope disorder is computed and analyzed. It shows that the EPI scattering rate is comparable to PPI for low-frequency heat-carrying phonons. This work attempts to explore the mechanism of thermal transport beyond intrinsic PPI for polar semiconductors, with a great potential of thermal conductivity engineering for desired performance.
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murphy-Armando, Felipe; Trigo, Mariano; Savic, Ivana; Murray, Eamonn; Reis, David
We have calculated the time-evolution of carriers and generated phonons in Ge after ultrafast photo-excitation above the direct band-gap. The relevant electron-phonon and anharmonic phonon scattering rates are obtained from first-principles electronic structure calculations. Measurements of the x-ray diffuse scattering after excitation near the L point in the Brillouin zone find a relatively slow (5 ps, compared to the typical electron-phonon energy relaxation of the Gamma-L phonon) increase of the phonon population. We find this is due to emission caused by the scattering of electrons between the Delta and L valleys, after the initial depopulation of the Gamma valley. The relative slowness of this process is due to a combination of causes: (i) the finite time for the initial depopulation of the conduction Gamma valley; (ii) the associated electron-phonon coupling is relatively weaker (compared to Gamma-L, Gamma-Delta and Delta-Delta couplings) ; (iii) the TA associated phonon has a long lifetime and (iv) the depopulation of the Delta valley suppresses the phonon emission. Supported by Science Foundation Ireland, Grant 12/1A/1601.
Phonons in twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Cocemasov, Alexandr I.; Nika, Denis L.; Balandin, Alexander A.
2013-07-01
We theoretically investigate phonon dispersion in AA-stacked, AB-stacked, and twisted bilayer graphene with various rotation angles. The calculations are performed using the Born-von Karman model for the intralayer atomic interactions and the Lennard-Jones potential for the interlayer interactions. It is found that the stacking order affects the out-of-plane acoustic phonon modes the most. The difference in the phonon densities of states in the twisted bilayer graphene and in AA- or AB-stacked bilayer graphene appears in the phonon frequency range 90-110 cm-1. Twisting bilayer graphene leads to the emergence of different phonon branches—termed hybrid folded phonons—which originate from the mixing of phonon modes from different high-symmetry directions in the Brillouin zone. The frequencies of the hybrid folded phonons depend strongly on the rotation angle and can be used for noncontact identification of the twist angles in graphene samples. The obtained results and the tabulated frequencies of phonons in twisted bilayer graphene are important for the interpretation of experimental Raman data and in determining the thermal conductivity of these material systems.
Electrical switch to the resonant magneto-phonon effect in graphene.
Leszczynski, Przemyslaw; Han, Zheng; Nicolet, Aurelien A L; Piot, Benjamin A; Kossacki, Piotr; Orlita, Milan; Bouchiat, Vincent; Basko, Denis M; Potemski, Marek; Faugeras, Clement
2014-03-12
We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around B ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron-phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm(-1) are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response.
Probing confined acoustic phonons in free standing small gold nanoparticles
Mankad, Venu; Jha, Prafulla K.; Ravindran, T. R.
2013-02-21
Polarized and depolarized spectra from gold (Au) nanoparticles of different sizes are investigated in the small size range, between 3 and 7 nm, using low frequency Raman spectroscopy. Acoustic vibrations of the free-standing Au nanoparticles are demonstrated with frequencies ranging from 5 to 35 cm{sup -1}, opening the way to the development of the acoustic resonators. A blue shift in the phonon peaks along with the broadening is observed with a decrease in particle size. Comparison of the measured frequencies with vibrational dynamics calculation and an examination as from the transmission electron microscopy results ascertain that the low frequency phonon modes are due to acoustic phonon quantization. Our results show that the observed low frequency Raman scattering originates from the spherical (l = 0) and quadrupolar (l = 2) vibrations of the spheroidal mode due to plasmon mediated acoustic vibrations in Au nanoparticles.
Phonon anharmonicity in silicon from 100 to 1500 K
Kim, D. S.; Smith, Hillary L.; Niedziela, Jennifer L.; ...
2015-01-21
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes weremore » $$\\langle$$Δεi/εiΔT$$\\rangle$$=₋0.07, giving a mean isobaric Grüneisen parameter of +6.95±0.67, which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15kB/atom to the vibrational entropy, compared to 0.03kB/atom from quasiharmonicity. Lastly, excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.« less
Phonon anharmonicity in silicon from 100 to 1500 K
NASA Astrophysics Data System (ADS)
Kim, D. S.; Smith, H. L.; Niedziela, J. L.; Li, C. W.; Abernathy, D. L.; Fultz, B.
2015-01-01
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes were <Δ ɛi/ɛiΔ T >=-0.07 , giving a mean isobaric Grüneisen parameter of +6.95 ±0.67 , which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15 kB /atom to the vibrational entropy, compared to 0.03 kB /atom from quasiharmonicity. Excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.
Anharmonic phonons and magnons in BiFeO3
Delaire, Olivier A; Ma, Jie; Stone, Matthew B; Huq, Ashfia; Gout, Delphine J; Brown, Craig; Wang, Kefeng; Ren, Zhifeng
2012-01-01
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
Phonon anharmonicity in silicon from 100 to 1500 K
Kim, D. S.; Smith, Hillary L.; Niedziela, Jennifer L.; Li, Chen W.; Abernathy, Douglas L.; Fultz, B.
2015-01-21
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes were $\\langle$Δε_{i}/ε_{i}ΔT$\\rangle$=₋0.07, giving a mean isobaric Grüneisen parameter of +6.95±0.67, which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15k_{B}/atom to the vibrational entropy, compared to 0.03k_{B}/atom from quasiharmonicity. Lastly, excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.
Anomalous phonon behavior in superconducting CaKFe4As4: An optical study
Yang, Run; Dai, Yaomin; Xu, Bing; ...
2017-02-08
Here, the temperature dependence of ab-plane optical conductivity of CaKFe4As4 has been measured below and above its superconducting transition temperature Tc≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T-linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm–1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ1 ≃ 9 meV and Δ2 ≃ 14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cm–1, we observe two different infrared-active Fe-Asmore » modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.« less
Anomalous phonon behavior in superconducting CaKFe4As4 : An optical study
NASA Astrophysics Data System (ADS)
Yang, Run; Dai, Yaomin; Xu, Bing; Zhang, Wei; Qiu, Ziyang; Sui, Qiangtao; Homes, Christopher C.; Qiu, Xianggang
2017-02-01
The temperature dependence of a b -plane optical conductivity of CaKFe4As4 has been measured below and above its superconducting transition temperature Tc≃35.5 K. In the normal state, analysis with the two-Drude model reveals a T -linear scattering rate for the coherent response, which suggests strong spin-fluctuation scattering. Below the superconducting transition, the optical conductivity below 120 cm-1 vanishes, indicating nodeless gap(s). The Mattis-Bardeen fitting in the superconducting state gives two gaps of Δ1≃9 meV and Δ2≃14 meV, in good agreement with recent angle-resolved photoemission spectroscopy (ARPES) results. In addition, around 255 cm-1, we observe two different infrared-active Fe-As modes with obvious asymmetric lineshape, originating from strong coupling between lattice vibrations and spin or charge excitations. Considering a moderate Hund's rule coupling determined from spectral weight analysis, we propose that the strong fluctuations induced by the coupling between itinerant carriers and local moments may affect the phonon mode, and the electron-phonon coupling through the spin channel is likely to play an important role in the unconventional pairing in iron-based superconductors.
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
NASA Astrophysics Data System (ADS)
Davis, Bruce L.; Hussein, Mahmoud I.
2011-12-01
The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.
Phonon-assisted relaxation in a frustrated antiferromagnet
Ehlers, Georg
2006-01-01
A thermally activated magnetic relaxation is observed using neutron spin-echo in the pyrochlore slab (kagom{acute e} bilayer) compound SrCr{sub 9x}Ga{sub 12-9x}O{sub 19} (x=0.95) in a restricted temperature range, 4K < T < 4K, above a cross-over to a low temperature relaxation regime with a weaker temperature dependence. The activation energy of the thermally activated relaxation, of the order of 7 meV, coincides with the energy of a phonon mode observed with neutron and Raman spectroscopy, indicating a phonon-assisted regime. The experimental observation of phonon-assisted process gives additional insight to the importance of spin-phonon coupling in frustrated magnets with regard to the models mostly based on purely magnetic interactions.
NASA Astrophysics Data System (ADS)
Feng, Tianli; Ruan, Xiulin; Ye, Zhenqiang; Cao, Bingyang
2015-06-01
The spectral phonon properties in defected graphene have been unclear due to the lack of advanced techniques for predicting the phonon-defect scattering rate without fitting parameters. Taking advantage of the extended phonon normal mode analysis, we obtained the spectral phonon relaxation time and mean free path (MFP) in defected graphene and studied the impacts of three common types of defects: Stone-Thrower-Wales (STW) defect, double vacancy (DV), and monovacancy (MV). The phonon-STW defect scattering rate is found to have no significant frequency dependence, and as a result, the relative contribution of long-wavelength phonons sharply decreases. In contrast, the phonon scattering by DVs or MVs exhibits a frequency dependence of τp-d -1˜ω1.1 -1.3 except for a few long-wavelength phonons, revisiting the traditionally used ˜ω4 dependence. We note that although MV-defected graphene has the lowest thermal conductivity as compared to the other two defected graphene samples at the same defect concentration, it has a portion of phonons with the longest MFP. The contribution from the long-MFP and long-wavelength phonons does not decrease much as the vacancy concentration increases. STW defect and MV block more out-of-plane modes than in-plane modes, while DV has less bias for which mode to block. As the MV concentration increases from 0 to 1.1%, the relative contribution from out-of-plane modes decreases from 30% to 18%, while that of the transverse acoustic mode remains at around 30%. These findings of spectral phonon properties can provide more insight than the effective properties and benefit the prospective phononic engineering.
Nonlinear Transport and Noise Properties of Acoustic Phonons
NASA Astrophysics Data System (ADS)
Walczak, Kamil
We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.
Phonon properties of graphene derived from molecular dynamics simulations
Koukaras, Emmanuel N.; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos
2015-01-01
A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of χ = −0.05 cm−1/K for the Γ-E2g shift in agreement with reported experimental values. PMID:26316252
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-14
In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; ...
2016-01-14
In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials. PMID:26763899
Generation and detection of squeezed phonons in lattice dynamics by ultrafast optical excitations
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Esposito, Martina; Fausti, Daniele; Floreanini, Roberto; Titimbo, Kelvin; Zimmermann, Klaus
2017-02-01
We propose a fully quantum treatment for pump and probe experiments applied to the study of phonon excitations in solids. To describe the interaction between photons and phonons, a single effective hamiltonian is used that is able to model both the excitation induced by pump laser pulses and the subsequent measuring process through probe pulses. As the photoexcited phonons interact with their surroundings, mainly electrons and impurities in the target material, they cannot be considered isolated: their dynamics needs to be described by a master equation that takes into account the dissipative and noisy effects due to the presence of the environment. In this formalism, the quantum dynamics of pump excited phonons can be analyzed through suitable probe photon observables; in particular, a clear signature of squeezed phonons can be obtained by looking simultaneously at the behavior of the scattered probe mean photon number and its variance.
Phonon arithmetic in a trapped ion system
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan
2016-01-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897
Phonon arithmetic in a trapped ion system.
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M S; Kim, Kihwan
2016-04-21
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically.
Phonon spectra of alkali metals
NASA Astrophysics Data System (ADS)
Zeković, S.; Vukajlović, F.; Veljković, V.
1982-10-01
In this work we used a simple local model pseudopotential which includes screening for the phonon spectra calculations of alkali metals. The results obtained are in very good agreement with experimental data. In some branches of phonon spectra the differences between theoretical and experimental results are within 1-2%, while the maximum error is about 6%. The suggested form of the pseudopotential allows us to describe the phonon spectra of Na, K and Rb with only one, and, at the same time, a unique, parameter. In this case, the maximum disagreements from experiment are 9% for Na, 8% for K and 7% for Rb.
Temperature dependence of Raman-active phonons and anharmonic interactions in layered hexagonal BN
NASA Astrophysics Data System (ADS)
Cuscó, Ramon; Gil, Bernard; Cassabois, Guillaume; Artús, Luis
2016-10-01
We present a Raman scattering study of optical phonons in hexagonal BN for temperatures ranging from 80 to 600 K. The experiments were performed on high-quality, single-crystalline hexagonal BN platelets. The observed temperature dependence of the frequencies and linewidths of both Raman active E2 g optical phonons is analyzed in the framework of anharmonic decay theory, and possible decay channels are discussed in the light of density-functional theory calculations. With increasing temperature, the E2g high mode displays strong anharmonic interactions, with a linewidth increase that indicates an important contribution of four-phonon processes and a marked frequency downshift that can be attributed to a substantial effect of the four-phonon scattering processes (quartic anharmonicity). In contrast, the E2g low mode displays a very narrow linewidth and weak anharmonic interactions, with a frequency downshift that is primarily accounted for by the thermal expansion of the interlayer spacing.
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Nunes, O. A. C.
2014-06-21
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate R{sup PA,DA} scales with T{sub BG}{sup S−1} (S=PA,DA), T{sub BG}{sup S} being the Block−Gru{sup ¨}neisen temperature. In the high-T Block−Gru{sup ¨}neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio R{sup PA}/R{sup DA} scales with ≈1/√(n), n being the carrier concentration. We found that only for carrier concentration n≤10{sup 10}cm{sup −2}, R{sup PA}/R{sup DA}>1. In the low-T Block−Gru{sup ¨}neisen regime, and for n=10{sup 10}cm{sup −2}, the ratio R{sup PA}/R{sup DA} scales with T{sub BG}{sup DA}/T{sub BG}{sup PA}≈7.5 and R{sup PA}/R{sup DA}>1. In this regime, PA phonon dominates the electron scattering and R{sup PA}/R{sup DA}<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
Phonon-assisted gain in a semiconductor double quantum dot maser.
Gullans, M J; Liu, Y-Y; Stehlik, J; Petta, J R; Taylor, J M
2015-05-15
We develop a microscopic model for the recently demonstrated double-quantum-dot maser. In characterizing the gain of this device we find that, in addition to the direct stimulated emission of photons, there is a large contribution from the simultaneous emission of a photon and a phonon, i.e., the phonon sideband. We show that this phonon-assisted gain typically dominates the overall gain, which leads to masing. Recent experimental data are well fit with our model.
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
NASA Astrophysics Data System (ADS)
Gholamrezaie, Fatemeh; de Leeuw, Dago M.; Meskers, Stefan C. J.
2016-06-01
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.
Gholamrezaie, Fatemeh; de Leeuw, Dago M; Meskers, Stefan C J
2016-06-07
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.
Phonons in NaO/sub 2/ near the order-disorder transition
Wakabayashi, N.; Alefeld, B.; Buhrer, W.; Smith, H.G.
1982-10-15
The acoustic phonons in cubic NaO/sub 2/ have been studied above and below the order-disorder transition by inelastic neutron scattering. Above the transition the O/sub 2/ /sup -/ ions are disordered and undergoing rapid reorientation about the body diagonals. This reorientation couples with and affects certain acoustic modes in the crystal. The results are described in terms of a phonon-pseudospin coupling theory.
Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube
Hayashi, Hiroyuki; Takahashi, Koji; Ikuta, Tatsuya; Nishiyama, Takashi; Takata, Yasuyuki; Zhang, Xing
2014-03-17
Phonon confinement and in situ thermal conductance measurements in an individual multi-walled carbon nanotube (MWNT) are reported. Focused ion beam (FIB) irradiation was used to successively shorten a 4.8 μm long MWNT, eventually yielding a 0.3 μm long MWNT. After the first FIB irradiation, a 41% reduction in conductance was achieved, compared with that of the pristine MWNT. This was because the contributions from phonons with long free paths were excluded by scattering at FIB-induced defects. Phonon transport in linked multiple-length nanotubes was also investigated.
Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.
Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C
2016-01-21
Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.
Soft Phonons in (delta)-Phase Plutonium Near the (delta)-(alpha)' Transition
Xu, R; Wong, J; Zshack, P; Hong, H; Chiang, T
2007-09-13
Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized {delta}-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc {delta}-phase to the monoclinic {alpha}{prime}-phase at low temperatures. This work is a study of the lattice dynamics of this system by x-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.
Phonons and phase stability in Ti-V approximants to gum metal
NASA Astrophysics Data System (ADS)
Hanlumyuang, Y.; Sankaran, R. P.; Sherburne, M. P.; Morris, J. W., Jr.; Chrzan, D. C.
2012-04-01
The stability of competing phases within body-centered-cubic Ti-V approximants to gum metal is considered from the perspective of phonon dispersion. Phonons are associated with the potential to form the ω and α'' phases. It is argued that alloys can be designed to be linearly stable with respect to the formation of both phases, even as the ideal shear strength approaches zero. The reduction in ideal strength is associated with softening of the phonons along Γ-N and is reflected in diffuse-scattering diffraction experiments.
Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.
1999-01-01
The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.
NASA Astrophysics Data System (ADS)
Chen, Gang
In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE
Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Zhang, J.-Z.; Dyson, A.; Ridley, B. K.
2011-10-01
Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by 40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold. Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the threshold emission and the near subband-bottom absorption). All the results are well explained in terms of electron and phonon densities of states.
Temperature dependence of the A1(LO) and E2 (high) phonons in hexagonal InN nanowires
NASA Astrophysics Data System (ADS)
Song, B.; Jian, J. K.; Wang, G.; Bao, H. Q.; Chen, X. L.
2007-06-01
The frequencies and dampings of the zone-center optical phonon modes of A1(LO) (longitudinal-optical) and E2 (high) in wurtzite InN nanowires have been investigated by micro-Raman scattering in the temperature range from 80 to 300 K. Our results reveal that the phonon frequencies decrease and the linewidths broaden with increasing temperature. The obtained experimental data of the frequencies and linewidths at various temperatures can be well described by an empirical model which takes into account the contribution of the thermal expansion of lattice and symmetric decay of phonons into two and three identical phonons with lower energy. The results show that decay into two phonons is the probable channel for the A1(LO) mode and three-phonon decay dominates the E2 (high) mode.
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
Raman Scattering in HIGH-Tc Superconductors
NASA Astrophysics Data System (ADS)
Thomsen, Christian; Cardona, Manuel
The following sections are included: * INTRODUCTION * Theory * Light scattering by phonons * Electronic scattering * Instrumentation * VIBRATIONAL ANALYSIS AND LATTICE DYNAMICS * Optical Modes of RBa2Cu3O7-δ * Symmetry analysis of the ěc{k} = 0 modes * Lattice dynamical calculation for RBa2Cu3O7 and RBa2Cu3O6 * The Bismuth and Thallium Compounds * The Zurich Superconductors * EXPERIMENTAL RESULTS ON RBa2Cu3O7-δ * Raman Scattering by Phonons * Single crystals of YBa2Cu3O7-δ * Ceramic materials, impurity phases, and thin films * Oxygen deficiency * Isotope effect * Electronic scattering and the gap problem * Scattering by magnons * Bismuth and CuO2-Based Materials: Single-Crystal Spectra and Phonon Assignments * Thallium and CuO2 Based Materials * The Zurich Oxides * BRIEF COMPARISON WITH IR DATA * CONSEQUENCES CONCERNING THE MECHANISM OF HIGH-TC SUPERCONDUCTIVITY AND CONCLUSIONS * ACKNOWLEDGEMENTS * REFERENCES
Phonon dynamics of neptunium chalcogenides
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.
2012-06-01
We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.
Kargar, Fariborz; Debnath, Bishwajit; Kakko, Joona-Pekko; Säynätjoki, Antti; Lipsanen, Harri; Nika, Denis L.; Lake, Roger K.; Balandin, Alexander A.
2016-01-01
Similar to electron waves, the phonon states in semiconductors can undergo changes induced by external boundaries. However, despite strong scientific and practical importance, conclusive experimental evidence of confined acoustic phonon polarization branches in individual free-standing nanostructures is lacking. Here we report results of Brillouin—Mandelstam light scattering spectroscopy, which reveal multiple (up to ten) confined acoustic phonon polarization branches in GaAs nanowires with a diameter as large as 128 nm, at a length scale that exceeds the grey phonon mean-free path in this material by almost an order-of-magnitude. The dispersion modification and energy scaling with diameter in individual nanowires are in excellent agreement with theory. The phonon confinement effects result in a decrease in the phonon group velocity along the nanowire axis and changes in the phonon density of states. The obtained results can lead to more efficient nanoscale control of acoustic phonons, with benefits for nanoelectronic, thermoelectric and spintronic devices. PMID:27830698
NASA Astrophysics Data System (ADS)
Hao, Qing; Xiao, Yue; Zhao, Hongbo
2016-08-01
In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.
Diffraction of electrons at intermediate energies: The role of phonons
NASA Astrophysics Data System (ADS)
Ascolani, H.; Zampieri, G.
1996-07-01
The intensity of electrons reflected ``elastically'' from crystalline surfaces presents two regimes: the low-energy or LEED regime (<500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime (>500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering.
Current & Heat Transport in Graphene Nanoribbons: Role of Non-Equilibrium Phonons
NASA Astrophysics Data System (ADS)
Pennington, Gary; Finkenstadt, Daniel
2010-03-01
The conducting channel of a graphitic nanoscale device is expected to experience a larger degree of thermal isolation when compared to traditional inversion channels of electronic devices. This leads to enhanced non-equilibrium phonon populations which are likely to adversely affect the mobility of graphene-based nanoribbons due to enhanced phonon scattering. Recent reports indicating the importance of carrier scattering with substrate surface polar optical phonons in carbon nanotubes^1 and graphene^2,3 show that this mechanism may allow enhanced heat removal from the nanoribbon channel. To investigate the effects of hot phonon populations on current and heat conduction, we solve the graphene nanoribbon multiband Boltzmann transport equation. Monte Carlo transport techniques are used since phonon populations may be tracked and updated temporally.^4 The electronic structure is solved using the NRL Tight-Binding method,^5 where carriers are scattered by confined acoustic, optical, edge and substrate polar optical phonons. [1] S. V. Rotkin et al., Nano Lett. 9, 1850 (2009). [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer, Nature Nanotech. 3, 206 (2008). [3] V. Perebeinos and P. Avouris, arXiv:0910.4665v1 [cond-mat.mes-hall] (2009). [4] P. Lugli et al., Appl. Phys. Lett. 50, 1251 (1987). [5] D. Finkenstadt, G. Pennington & M.J. Mehl, Phys. Rev. B 76, 121405(R) (2007).
Matsushita, Stephane Yu; Matsui, Kazuki; Kato, Hiroki; Suto, Shozo; Yamada, Taro
2014-03-14
We have measured the surface phonon dispersion curves on the hydrogen-terminated Si(110)-(1×1) surface with the two-dimensional space group of p2mg along the two highly symmetric and rectangular directions of ΓX{sup ¯} and ΓX{sup ′¯} using high-resolution electron-energy-loss spectroscopy. All the essential energy-loss peaks on H:Si(110) were assigned to the vibrational phonon modes by using the selection rules of inelastic electron scattering including the glide-plane symmetry. Actually, the surface phonon modes of even-symmetry to the glide plane (along ΓX{sup ¯}) were observed in the first Brillouin zone, and those of odd-symmetry to the glide plane were in the second Brillouin zone. The detailed assignment was made by referring to theoretical phonon dispersion curves of Gräschus et al. [Phys. Rev. B 56, 6482 (1997)]. We found that the H–Si stretching and bending modes, which exhibit highly anisotropic dispersion, propagate along ΓX{sup ¯} direction as a one-dimensional phonon. Judging from the surface structure as well as our classical and quantum mechanical estimations, the H–Si stretching phonon propagates by a direct repulsive interaction between the nearest neighbor H atoms facing each other along ΓX{sup ¯}, whereas the H–Si bending phonon propagates by indirect interaction through the substrate Si atomic linkage.
NASA Astrophysics Data System (ADS)
Kumar, Ashok; Murari, N. M.; Katiyar, R. S.
2008-04-01
We observed "one magnon," scattering in multiferroic polycrystalline BiFeO3 thin films near 17.2cm-1 at 90K employing Raman spectroscopy. It is seen with a kink in magnon intensity at 150K and with strong anomaly near 210K illustrating spin reorientation transition. The spectral weight of one magnon transferred to the lowest phonon mode near the spin reorientation temperature suggests magnon-phonon coupling. Dielectric constant and dielectric loss as function of temperature showed anomaly at 210K suggesting magnon-phonon-electric dipole coupling. The one magnon becomes overdamped or overcome by elastic scattering at elevated temperatures.
Raman and infrared study of 4f electron-phonon coupling in HoVO3
NASA Astrophysics Data System (ADS)
Roberge, B.; Balli, M.; Jandl, S.; Fournier, P.; Palstra, T. T. M.; Nugroho, A. A.
2016-11-01
First-order Raman scattering and multiphonons are studied in RVO3 (R = Ho and Y) as a function of temperature in the orthorhombic and monoclinic phases. Raman spectra of HoVO3 and YVO3 unveil similar features since both compounds have nearly identical R-radii. However, the most important difference lies in the transition temperature involving the V3+ orbitals, the V3+ magnetic moments as well as the crystallographic structure. Particularly, the magnetic and orbital reorientations occur at T N2 = 40 K for HoVO3 instead T N2 =77 K in the case of YVO3. For both systems, anomalous phonon shifts which are related to spin-phonon coupling are observed below the V3+ magnetic ordering temperature (T N1 ≈ 110 K) while additional phonon anomalies are exclusively observed in HoVO3 around T * ≈ 15 K. On the other hand, infrared (IR) transmittance measurements as a function of temperature reveal Ho3+5I8 → 5I7 excitations and additional excitations assigned as vibronics. These latter combined with drastic changes in Ho3+5I8 → 5I7 excitations at T N2, are indicative of a strong coupling between the Ho3+ ions and the ligand field. This could explain the large magnetocaloric capacity shown by HoVO3.
NASA Astrophysics Data System (ADS)
Qian, Jun
This research work contains two main parts: the theoretical study of confined phonon modes and electron states in confined graphene nanostructures; the experimental part including two topics about fabricating a graphene-FET aptamer-sensor for cocaine detection and the study of the electronic transport properties of dsDNA. In the theory part, we study the confined optical phonon modes in graphene nanoribbons (GNR) and rectangular graphene quantum dots (RGQD) by the elastic continuum model. The carrier states are studied by effective mass approximation. The phonon bottleneck effect is expected in general for RGQDs. The scattering rates are calculated for specific RGQDs with carefully chosen dimensions to fulfill the momentum and energy conservation conditions. In the experimental part, we have developed a combined technique of semiconductor processes and molecular biological protocols to fabricate a signal-off graphene-FET aptamer-sensor for cocaine. In addition, DNA transport properties were studied by STM on GNP-dsDNA-Au conjugates in atmospheric condition. The dsDNA-complexes exhibit as a slightly n-type semiconductor by simulated with a Landauer-type model. A geometrical model is proposed to explain the distinct I-V spectra.
ERIC Educational Resources Information Center
Hamilton, M. W.
2007-01-01
A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…
Grimm, K.N.; Meneghetti, D.
1981-10-01
When calculations of flux are done in less than three dimensions, bucklings are normally used to model leakages (flows) in the dimensions for which the flux is not calculated. If the net leakage for a given energy group is outward (positive), the buckling is positive, and buckling methods work well. However, if the new leakage for a given energy group is inward (negative), the buckling is negative and can lead to numerical instabilities (oscillations in the iterative flux calculation). This report discusses two equivalent nonbuckling methods to model inward leakages. One method (the chi/sub g/ method) models these incoming neutrons by additional fission sources. The other method (the ..sigma../sub s/(1 ..-->.. g) method) models them by increased downscatter sources. The derivation of the two methods is shown, and the flux spectra obtained by their use are compared with those obtained from two-dimensional (RZ) calculations.
Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2
NASA Astrophysics Data System (ADS)
Tóth, Sándor; Wehinger, Björn; Rolfs, Katharina; Birol, Turan; Stuhr, Uwe; Takatsu, Hiroshi; Kimura, Kenta; Kimura, Tsuyoshi; Rønnow, Henrik M.; Rüegg, Christian
2016-11-01
Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons. The IXS spectrum of the coupled system contains not only the phonon dispersion but also the so far undetected magnetic correlation function. Here we report the observation of strong magnon-phonon coupling in LiCrO2 that enables the measurement of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon excitations and electric dipole active two-magnon excitations in the magnetically ordered phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict that several (frustrated) magnets with dominant direct exchange and non-collinear magnetism show surprisingly large IXS cross-section for magnons and multi-magnon processes.
NASA Astrophysics Data System (ADS)
Mandal, Amrita; Mitra, Sreemanta; Datta, Anindya; Banerjee, Sourish; Dhara, Sandip; Chakravorty, Dipankar
2012-10-01
Two dimensional wurtzite ZnS nanosheets with thickness of 0.6 nm are grown within the interlayer spaces of sodium fluorophlogopite mica (Na-4 mica) using ion-exchange-cum-solution treatment method followed by sulfidation treatment at 873 K. The presence of wurtzite ZnS is confirmed by x-ray diffraction, electron microscopy, and Raman scattering studies. The two dimensional form of ZnS gives rise to a strong quantum confinement with the band gap blue shifted by 1.7 eV. Thickness of the nanosheet is confirmed using atomic force microscopy. Raman scattering studies show higher order transverse optical modes due to increased deformation potential in reduced dimension. In contrast to red shift of optical phonon modes in phonon confinement model, a blue shift observed is ascribed to a compressive stress on ZnS nanosheets grown within Na-4 mica interlayer spaces. An additional band at 315 cm-1 is assigned to surface optical phonon. Unusual broadening in room temperature photoluminescence spectrum may be due to strong coupling of excitons with overtones of longitudinal optical phonon modes.
Electromagnon dispersion probed by inelastic X-ray scattering in LiCrO2
Tóth, Sándor; Wehinger, Björn; Rolfs, Katharina; Birol, Turan; Stuhr, Uwe; Takatsu, Hiroshi; Kimura, Kenta; Kimura, Tsuyoshi; Rønnow, Henrik M.; Rüegg, Christian
2016-01-01
Inelastic X-ray scattering with meV energy resolution (IXS) is an ideal tool to measure collective excitations in solids and liquids. In non-resonant scattering condition, the cross-section is strongly dominated by lattice vibrations (phonons). However, it is possible to probe additional degrees of freedom such as magnetic fluctuations that are strongly coupled to the phonons. The IXS spectrum of the coupled system contains not only the phonon dispersion but also the so far undetected magnetic correlation function. Here we report the observation of strong magnon–phonon coupling in LiCrO2 that enables the measurement of magnetic correlations throughout the Brillouin zone via IXS. We find electromagnon excitations and electric dipole active two-magnon excitations in the magnetically ordered phase and heavily damped electromagnons in the paramagnetic phase of LiCrO2. We predict that several (frustrated) magnets with dominant direct exchange and non-collinear magnetism show surprisingly large IXS cross-section for magnons and multi-magnon processes. PMID:27882928
Phonon hydrodynamics in two-dimensional materials
NASA Astrophysics Data System (ADS)
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-01
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Spectroscopy of phonons and spin torques in magnetic point contacts.
Yanson, I K; Naidyuk, Yu G; Bashlakov, D L; Fisun, V V; Balkashin, O P; Korenivski, V; Konovalenko, A; Shekhter, R I
2005-10-28
Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.
Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces.
Chow, Colin M; Yu, Hongyi; Jones, Aaron M; Yan, Jiaqiang; Mandrus, David G; Taniguchi, Takashi; Watanabe, Kenji; Yao, Wang; Xu, Xiaodong
2017-02-08
Raman scattering is a ubiquitous phenomenon in light-matter interactions, which reveals a material's electronic, structural, and thermal properties. Controlling this process would enable new ways of studying and manipulating fundamental material properties. Here, we report a novel Raman scattering process at the interface between different van der Waals (vdW) materials as well as between a monolayer semiconductor and 3D crystalline substrates. We find that interfacing a WSe2 monolayer with materials such as SiO2, sapphire, and hexagonal boron nitride (hBN) enables Raman transitions with phonons that are either traditionally inactive or weak. This Raman scattering can be amplified by nearly 2 orders of magnitude when a foreign phonon mode is resonantly coupled to the A exciton in WSe2 directly or via an A1(') optical phonon from WSe2. We further showed that the interfacial Raman scattering is distinct between hBN-encapsulated and hBN-sandwiched WSe2 sample geometries. This cross-platform electron-phonon coupling, as well as the sensitivity of 2D excitons to their phononic environments, will prove important in the understanding and engineering of optoelectronic devices based on vdW heterostructures.
Chiang, Wei-Shan; Fratini, Emiliano; Ridi, Francesca; Lim, Sung-Hwan; Yeh, Yi-Qi; Baglioni, Piero; Choi, Sung-Min; Jeng, U-Ser; Chen, Sow-Hsin
2013-05-15
The microstructure of calcium-silicate-hydrate (C-S-H) gel, a major hydrated phase of Ordinary Portland Cement, with and without polycarboxylic ether (PCE) additives is investigated by combined analyses of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) data. The results show that these comb-shaped polymers tend to increase the size of the disk-like globules but have little influence on the thickness of the water and calcium silicate layers within the globules. As a result, the fractal packing of the globules becomes more open in the range of a few hundred nanometers, in the sense that the mass fractal dimension diminishes, since the PCE adsorption on the globules increases the repulsive force between and polydispersity of the C-S-H units. Moreover, scanning electron microscope (SEM) study of the synthesized C-S-H gels in the micrometer range shows that the PCEs depress the formation of fibrils while enhancing the foil-like morphology.
Incoherent neutron scattering in acetanilide and three deuterated derivatives
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José
1991-03-01
Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.
Phonons in active microfluidic crystals
NASA Astrophysics Data System (ADS)
Tsang, Alan Cheng Hou; Kanso, Eva
2016-11-01
One-dimensional crystals of driven particles confined in quasi two-dimensional microfluidic channels have been shown to exhibit propagating sound waves in the form of 'phonons', including both transverse and longitudinal normal modes. Here, we focus on one-dimensional crystals of motile particles in uniform external flows. We study the propagation of phonons in the context of an idealized model that accounts for hydrodynamic interactions among the motile particles. We obtain a closed-form analytical expression for the dispersion relation of the phonons. In the moving frame of reference of the crystals, the traveling directions of the phonons depend on the intensity of the external flow, and are exactly opposite for the transverse and longitudinal modes. We further investigate the stability of the phonons and show that the longitudinal mode is linearly stable, whereas the transverse mode is subject to an instability arising from the activity and orientation dynamics of the motile particles. These findings are important for understanding the propagation of disturbances and instabilities in confined motile particles, and could generate practical insights into the transport of motile cells in microfluidic devices.
Rameau, J.D.; Yang, H.-B.; Gu, G. D.; Johnson, P. D.
2009-11-24
Laser-based photoemission with photons of energy 6 eV is used to examine the fine details of the very low-energy electron dispersion and associated dynamics in the nodal region of optimally doped Bi2212. A 'kink' in the dispersion in the immediate vicinity of the Fermi energy is associated with scattering from an optical phonon previously identified in Raman studies. The identification of this phonon as the appropriate mode is confirmed by comparing the scattering rates observed experimentally with the results of calculated scattering rates based on the properties of the phonon mode.
Femtosecond electron imaging of defect-modulated phonon dynamics
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2016-01-01
Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790
Optical phonons in PbTe/CdTe multilayer heterostructures
Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.
2015-05-15
The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.
Phonon conduction in GaN-diamond composite substrates
NASA Astrophysics Data System (ADS)
Cho, Jungwan; Francis, Daniel; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.
2017-02-01
The integration of strongly contrasting materials can enable performance benefits for semiconductor devices. One example is composite substrates of gallium nitride (GaN) and diamond, which promise dramatically improved conduction cooling of high-power GaN transistors. Here, we examine phonon conduction in GaN-diamond composite substrates fabricated using a GaN epilayer transfer process through transmission electron microscopy, measurements using time-domain thermoreflectance, and semiclassical transport theory for phonons interacting with interfaces and defects. Thermoreflectance amplitude and ratio signals are analyzed at multiple modulation frequencies to simultaneously extract the thermal conductivity of GaN layers and the thermal boundary resistance across GaN-diamond interfaces at room temperature. Uncertainties in the measurement of these two properties are estimated considering those of parameters, including the thickness of a topmost metal transducer layer, given as an input to a multilayer thermal model, as well as those associated with simultaneously fitting the two properties. The volume resistance of an intermediate, disordered SiN layer between the GaN and diamond, as well as a presence of near-interfacial defects in the GaN and diamond, dominates the measured GaN-diamond thermal boundary resistances as low as 17 m2 K GW-1. The GaN thermal conductivity data are consistent with the semiclassical phonon thermal conductivity integral model that accounts for the size effect as well as phonon scattering on point defects at concentrations near 3 × 1018 cm-3.
YPHON: A package for calculating phonons of polar materials
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Long-Qing; Liu, Zi-Kui
2014-11-01
In our recent works, we have developed a mixed-space approach within the framework of direct method for the first-principle calculation of phonon properties. It makes full use of the accuracy of the force constants calculated in the real space and the dipole-dipole interactions in the reciprocal space, making the accurate phonon calculation possible with the direct method for polar materials. In this paper, an efficient C++ implementation of the mixed-space approach, YPHON, is provided as open source, including demos and Linux scripts for extracting input data to YPHON from the output of VASP.5. The functions of the current package include the calculations of: (1) the phonon dispersions; (2) the phonon density of states; (3) the neutron scattering section weighted phonon density of state; (4) the phonons of the high symmetry structure using the force constants from low symmetry structure; (5) the phonon dispersions of random alloys; and (6) the analysis of the vibrational modes using the point group theory. Catalogue identifier: AETS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567815 No. of bytes in distributed program, including test data, etc.: 9763594 Distribution format: tar.gz Programming language: C++, Linux scripts. Computer: Linux systems with a g++ or C++ compiler. Operating system: Linux. RAM: Ranges from a few Mbytes to a few Gbytes, dynamically depending on the system size. Classification: 7.8. External routines: GSL-the GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. VASP.5 or later for the calculations of force constants and dielectric constants and Born effective charge for polar materials. Nature of problem: This package has the purpose of computing
Lattice Waves, Spin Waves, and Neutron Scattering
DOE R&D Accomplishments Database
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Zhou, X.J.
2010-04-30
thought possible only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T{sub c} materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T{sub c} cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that
Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
Koch, R J; Fryska, S; Ostler, M; Endlich, M; Speck, F; Hänsel, T; Schaefer, J A; Seyller, Th
2016-03-11
Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.
The phonon density of states measured with synchrotron radiation and nuclear resonances.
Sturhahn, W.; Hu, M.; Shastri, S.; Toellner, T.
2001-01-26
In this experiment, we will use synchrotron radiation to measure the density of states of vibrational excitations (phonons.) Each group of students will conduct an experiment at sector 3-ID of the Advanced Photon Source, the nation's premier synchrotron radiation facility. We provide one support staff per group, i.e., Drs. Michael Hu, Sarvjit Shastri, Wolfgang Sturhahn, and Tom Toellner will help their group to perform the experiment and interpret the data. After data collection (1-2 h per group), the remaining time will be spent with evaluation and interpretation. In addition to your own data, we provide similar sets of data. Computer hardware (iMac running as X-terminals) and software for data manipulation will be provided. It is important that you understand the basic principles of the experimental method. Therefore we strongly recommend that you read the next section and the attached article Phonon Density of States Measured by Inelastic Nuclear Resonant Scattering. You are expected to use this description to familiarize yourself with the experimental setup and its individual components before the start of the experiment. You should be able to solve at least 75% of the quiz correctly. If you have particular questions or a general problem in understanding this document, please contact Dr. W. Sturhahn, Bldg. 431, Rm. D007, tel. 0163.
NASA Astrophysics Data System (ADS)
Mahdouani, M.
2017-03-01
We present a theoretical study of the electron- surface phonon interaction in mono-layer graphene (1LG) on polar substrates such as SiO2,HfO2, SiC and hexagonal BN . Thus we have used the eigen energies derived from the tight-binding Hamiltonian in mono-layer graphene. Our results indicate that the electron-surface phonon interaction depends on the polar substrate. Such polar substrates allow for the existence of polar optical phonons localized near the graphene-substrate interface which could be an important scattering source for graphene carriers through the long-range Fröhlich coupling. Likewise, we have investigated the effect of various dielectrics on the SO phonon-limited mobility, the SO phonon-limited resistivity, the SO phonon-limited conductivity and the scattering rate in single layer graphene by considering the effects of the SO optical phonon scattering arising from the polar substrates and by varying the temperature, the charge carrier density and the physical separation between graphene and interface of dielectric substrate.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Effects of temperature and pressure on phonons in FeSi1–xAlx
Delaire, O.; Al-Qasir, I. I.; Ma, J.; ...
2013-05-31
The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe₁₋xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrowmore » band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.« less
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.« less
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ^{(2)} nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P^{NL} of the impulsively excited phonons and those of parametrically amplified waves.
Phonon transport properties of two-dimensional group-IV materials from ab initio calculations
NASA Astrophysics Data System (ADS)
Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan
2016-12-01
It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, István
2016-01-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881
Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
Park, Cheol-Hwan; Bonini, Nicola; Sohier, Thibault; Samsonidze, Georgy; Kozinsky, Boris; Calandra, Matteo; Mauri, Francesco; Marzari, Nicola
2014-03-12
We present a first-principles study of the temperature- and density-dependent intrinsic electrical resistivity of graphene. We use density-functional theory and density-functional perturbation theory together with very accurate Wannier interpolations to compute all electronic and vibrational properties and electron-phonon coupling matrix elements; the phonon-limited resistivity is then calculated within a Boltzmann-transport approach. An effective tight-binding model, validated against first-principles results, is also used to study the role of electron-electron interactions at the level of many-body perturbation theory. The results found are in excellent agreement with recent experimental data on graphene samples at high carrier densities and elucidate the role of the different phonon modes in limiting electron mobility. Moreover, we find that the resistivity arising from scattering with transverse acoustic phonons is 2.5 times higher than that from longitudinal acoustic phonons. Last, high-energy, optical, and zone-boundary phonons contribute as much as acoustic phonons to the intrinsic electrical resistivity even at room temperature and become dominant at higher temperatures.
Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals.
Wei, Zhiyong; Wehmeyer, Geoff; Dames, Chris; Chen, Yunfei
2016-10-07
Molecular dynamics simulations are performed to investigate the thermal transport properties of a three-dimensional (3D) anisotropic phononic crystal consisting of silicon nanowires and films. The calculation shows that the in-plane thermal conductivity is negatively correlated with the out-of-plane thermal conductivity upon making geometric changes, whether varying the nanowire diameter or the film thickness. This enables the anisotropy ratio of thermal conductivity to be tailored over a wide range, in some cases by more than a factor of 20. Similar trends in thermal conductivity are also observed from an independent phonon ray tracing simulation considering only diffuse boundary scattering effects, though the range of anisotropy ratios is smaller than that obtained in MD simulation. By analyzing the phonon dispersion relation with varied geometric parameters, it is found that increasing the nanowire diameter increases the out-of-plane acoustic phonon group velocities, but reduces the in-plane longitudinal and fast transverse acoustic phonon group velocities. The calculated phonon irradiation further verified the negative correlation between the in-plane and the out-of-plane thermal conductivity. The proposed 3D phononic crystal may find potential application in thermoelectrics, energy storage, catalysis and sensing applications owing to its widely tailorable thermal conductivity.
Phonon dispersion relation in PbTiO3
NASA Astrophysics Data System (ADS)
Tomeno, Izumi; Fernandez-Baca, Jaime; Marty, Karol; Oka, Kunihiko; Tsunoda, Yorihiko
2013-03-01
The phonon dispersion relations for cubic PbTiO3 (Tc = 763 K) have been determined along the high symmetry directions at T = 793 K using inelastic neutron scattering. A set of the TO branches drops significantly toward the zone center. This is quite different from the soft mode anomaly in the Pb-based relaxors, named as the waterfall phenomenon. The zone-center TO mode energy softens with decreasing temperature from 1173 to 793 K. The TA branch along [ ξ , ξ , ξ ] shows significant softening around ξ = 0.25 and 0.5. These two anomalies persist up to 1173 K and are weakly temperature dependent. Moreover, the TA branches along [1,0,0] and [1,1,0] soften in the entire q range as the temperature approaches Tc. Although the phonon softening occurs simultaneously, the softening of the zone center TO mode plays an important role in the single phase transition. The phonon dispersion relations for cubic and tetragonal PbTiO3 are discussed in connection with BaTiO3, KTaO3, Pb(Zn1/3Nb2/3)O3, and Pb(Mg1/3Nb2/3)O3. U.S.-Japan cooperative program on neutron scattering
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; ...
2016-01-20
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less
TUNABLE Band Structures of 2d Multi-Atom Archimedean-Like Phononic Crystals
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Chen, C. Q.; Tian, X. G.
2012-06-01
Two dimensional multi-atom Archimedean-like phononic crystals (MAPCs) can be obtained by adding "atoms" at suitable positions in primitive cells of traditional simple lattices. Band structures of solid-solid and solid-air MAPCs are computed by the finite element method in conjunction with the Bloch theory. For the solid-solid system, our results show that the MAPCs can be suitably designed to split and shift band gaps of the corresponding traditional simple phononic crystal (i.e., with only one scatterer inside a primitive cell). For the solid-air system, the MAPCs have more and wider band gaps than the corresponding traditional simple phononic crystal. Numerical calculations for both solid-solid and solid-air MAPCs show that the band gap of traditional simple phononic crystal can be tuned by appropriately adding "atoms" into its primitive cell.
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-01
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. This proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra. PMID:26785835
Electron-phonon interaction in liNbO/sub 3/: Fe and sillenite crystals
Kostritshii, S.M.; Kotov, A.G.; Semenov, A.E.; Shcherbakov, A.G.
1985-12-01
Circular photogalvanic effect (CPGE) is observed in sillenite crystals, whereas linear photogalvanic effect (LPGE) is observed in LiNbO/sub 3/. The mechanisms of CPGE and LPGE are linked to the asymmetry of the electron-phonon interaction (EPI) and the inclusion of indirect transitions, which can also occur with the participation of optical phonons. The authors cite Raman scattering (RS) of light as one of the most promising tools for studying the electron-phonon interaction based on the polarized spectra of optical phonons. The experimental results obtained for the LiNbO/sub 3/: Fe crystals is examined, as well as for the Bi/sub 12/SiO/sub 20/ sillenite crystals.
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-20
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.
Lan, Tian; Li, Chen W.; Hellman, O.; ...
2015-08-11
Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less
Band structures and localization properties of aperiodic layered phononic crystals
NASA Astrophysics Data System (ADS)
Yan, Zhi-Zhong; Zhang, Chuanzeng
2012-03-01
The band structures and localization properties of in-plane elastic waves with coupling of longitudinal and transverse modes oblique propagating in aperiodic phononic crystals based on Thue-Morse and Rudin-Shapiro sequences are studied. Using transfer matrix method, the concept of the localization factor is introduced and the correctness is testified through the Rytov dispersion relation. For comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered. In addition, the influences of the random disorder, local resonance, translational and/or mirror symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.
Phononic crystal plate with hollow pillars connected by thin bars
NASA Astrophysics Data System (ADS)
Jin, Yabin; Pennec, Yan; Pan, Yongdong; Djafari-Rouhani, Bahram
2017-01-01
A new type of phononic crystal plate consisting of hollow pillars on a bar-connected plate is proposed. With respect to usual pillar based phononic crystal plates, the Bragg band gap can be tuned to be much wider and extended to a sub-wavelength region, and the low frequency gap can be moved to an extremely low frequency range. Such a structure can generate quadrapolar, hexapolar and octopolar whispering-gallery modes (WGMs) inside the band gaps with very high confinement and quality factors. By filling the hollow pillars with a liquid, these WGMs, together with additional localized compressional and solid-liquid coupling modes, can be tuned either by varying the inner radius of the pillars or controlling the height of the liquid. We discuss some possible functionalities of these phononic crystals for the purpose of sensing the acoustic properties of liquids, multiplexer and wireless communication.
Evolution of molecular crystal optical phonons near structural phase transitions
NASA Astrophysics Data System (ADS)
Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea
Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.
Interaction of electrons with optical phonons localized in a quantum well
Pozela, J. Pozela, K.; Juciene, V.; Suziedelis, A.; Shkolnik, A. S.; Mikhrin, S. S.; Mikhrin, V. S.
2009-12-15
The scattering rate of electrons in a quantum well by localized polar optical and interface phonons is considered. The dependence of the force of the electron-phonon interaction on the frequency of optical phonons in materials of the heterostructure forming the electron and phonon quantum wells is determined. It is shown that, by varying the composition of semiconductors forming the quantum well and its barriers, it is possible to vary the scattering rates of electrons by a factor of several times. The scattering rates of electrons by polar optical phonons are calculated depending on the fractions In{sub x} and In{sub y} in the composition of semiconductors forming the In{sub x}Al{sub 1-x}As/In{sub y}Ga{sub 1-y}As quantum wells. Dependences of the mobility and saturated drift velocity of electrons in high electric fields and quantum wells In{sub y}Ga{sub 1-y}As on the composition of the In{sub x}Al{sub 1-x}As barriers introduced into quantum wells are determined experimentally. The electron mobility increases, while the saturated drift velocity decreases as the fraction of In{sub x} in the composition of barriers is increased.
Phonon-drag thermopower in 3D Dirac semimetals.
Kubakaddi, S S
2015-11-18
A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T < 1 K and nearly levels off for higher T. It is also seen that S(g) increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S(g) ~ T(8) (T(4)) and S(g) ~ n(e)(-5/3)(n(e)(-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T > 0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.
Phonon-drag thermopower in 3D Dirac semimetals
NASA Astrophysics Data System (ADS)
Kubakaddi, S. S.
2015-11-01
A theory of low-temperature phonon-drag thermopower S g in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S g, in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S g is found to increase rapidly for about T < 1 K and nearly levels off for higher T. It is also seen that S g increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S g ~ T 8 (T 4) and S g ~ n\\text{e}-5/3 (n\\text{e}-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S d shows that S g dominates (and is much greater than) S d for about T > 0.2 K. Herring’s law S g μ p ~ T -1, relating phonon limited mobility μ p and S g in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.
Nonlinear control of high-frequency phonons in spider silk
NASA Astrophysics Data System (ADS)
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; ...
2015-08-24
In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less
Dean M. P.; Howard, C.A.; Withers, F.
2011-12-19
Graphene phonons are measured as a function of electron doping via the addition of potassium adatoms. In the low doping regime, the in-plane carbon G peak hardens and narrows with increasing doping, analogous to the trend seen in graphene doped via the field effect. At high dopings, beyond those accessible by the field effect, the G peak strongly softens and broadens. This is interpreted as a dynamic, nonadiabatic renormalization of the phonon self-energy. At dopings between the light and heavily doped regimes, we find a robust inhomogeneous phase where the potassium coverage is segregated into regions of high and low density. The phonon energies, linewidths, and tunability are notably very similar for one- to four-layer potassium-doped graphene, but significantly different to bulk potassium-doped graphite.
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Nonlinear phononics using atomically thin membranes
NASA Astrophysics Data System (ADS)
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-01-01
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. PMID:27175859
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-05-12
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Finally, our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.
Anomalous Infrared Spectra of Hybridized Phonons in Type-I Clathrate Ba8Ga16Ge30
NASA Astrophysics Data System (ADS)
Iwamoto, Kei; Kushibiki, Shunsuke; Honda, Hironori; Kajitani, Shuhei; Mori, Tatsuya; Matsumoto, Hideki; Toyota, Naoki; Suekuni, Koichiro; Avila, Marcos A.; Takabatake, Toshiro
2013-02-01
The optical conductivity spectra of the rattling phonons in the clathrate Ba8Ga16Ge30 are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of Ba(2)2+ ions consist of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.
NASA Astrophysics Data System (ADS)
Whalley, Lucy D.; Skelton, Jonathan M.; Frost, Jarvist M.; Walsh, Aron
2016-12-01
Lattice vibrations in CH3NH3PbI3 are strongly interacting, with double-well instabilities present at the Brillouin zone boundary. Analysis within a first-principles lattice-dynamics framework reveals anharmonic potentials with short phonon quasiparticle lifetimes and mean free paths. The phonon behavior is distinct from the inorganic semiconductors GaAs and CdTe where three-phonon interaction strengths are three orders of magnitude smaller. The implications for the applications of hybrid halide perovskites arising from thermal conductivity, band-gap deformation, and charge-carrier scattering through electron-phonon coupling, are presented.
Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite
NASA Astrophysics Data System (ADS)
Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.
2011-08-01
Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.
Nanoscale control of phonon excitations in graphene
Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo
2015-01-01
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454
Theory of scattering of electromagnetic waves of the microwave range in a turbid medium
NASA Astrophysics Data System (ADS)
Konstantinov, O. V.; Matveentsev, A. V.
2013-02-01
The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.
Collinear scattering of photoexcited carriers in graphene
NASA Astrophysics Data System (ADS)
Trushin, Maxim
2016-11-01
We propose an explicitly solvable model for collinear scattering of photoexcited carriers in intrinsic graphene irradiated by monochromatic light. We find that the collinear scattering rate is directly proportional to the photocarrier energy and derive an analytic expression for the corresponding relaxation time. The result agrees with the recent numerical prediction [Nat. Commun. 7, 11617 (2016), 10.1038/ncomms11617] and is able to describe the photocarrier evolution at low energies, where scattering on optical phonons is strongly suppressed.
NASA Astrophysics Data System (ADS)
Jeong, Eue-Jin
A multichannel detection high resolution electron analyzer has been constructed and tested. The capabilities of achieving out-of-plane scattering geometry, high resolution and high sensitivity has made it possible to detect for the first time the odd-symmetry surface phonon modes on Ni(100) and Ag(100) surfaces. Initial tests were performed to verify the performance of the spectrometer. The best instrumental resolution obtained was 3.5 meV and analyzer count rate could be maintained at 1000 Hz in large angle scattering geometry. This represents an improvement in performance of a factor of at least 50 compared to the existing conventional single channel spectrometers. Odd symmetry surface phonon modes found on Ag(100) surfaces have been measured to be 3.2 meV which agrees closely with available calculations. An additional interesting feature found to be interesting is that the background width of odd symmetry modes appear to be narrower than that of the even symmetry mode scattering data. This effect has not been predicted or explained by theory. As it stands now, the large angle high-resolution electron energy loss cross sections are not completely characterized by theory.
NASA Astrophysics Data System (ADS)
Murakami, Yuta; Werner, Philipp; Tsuji, Naoto; Aoki, Hideo
2015-01-01
We study the relaxation of the Holstein model after a sudden switch-on of the interaction by means of the nonequilibrium dynamical mean field theory, with the self-consistent Migdal approximation as an impurity solver. We show that there exists a qualitative change in the thermalization dynamics as the interaction is varied in the weak-coupling regime. On the weaker interaction side of this crossover, the phonon oscillations are damped more rapidly than the electron thermalization time scale, as determined from the relaxation of the electron momentum distribution function. On the stronger interaction side, the relaxation of the electrons becomes faster than the phonon damping. In this regime, despite long-lived phonon oscillations, a thermalized momentum distribution is realized temporarily. The origin of the "thermalization crossover" found here is traced back to different behaviors of the electron and phonon self-energies as a function of the electron-phonon coupling. In addition, the importance of the phonon dynamics is demonstrated by comparing the self-consistent Migdal results with those obtained with a simpler Hartree-Fock impurity solver that neglects the phonon self-energy. The latter scheme does not properly describe the evolution and thermalization of isolated electron-phonon systems.
Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering
Trigo, M.; Chen, J.; Vishwanath, V.H.; Sheu, Y.M.; Graber, T.; Henning, R.; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.
2011-03-03
We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.
NASA Astrophysics Data System (ADS)
Cheaito, Ramez; Gaskins, John T.; Caplan, Matthew E.; Donovan, Brian F.; Foley, Brian M.; Giri, Ashutosh; Duda, John C.; Szwejkowski, Chester J.; Constantin, Costel; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.; Hopkins, Patrick E.
2015-01-01
The advances in phonon spectroscopy in homogeneous solids have unveiled extremely useful physics regarding the contribution of phonon energies and mean-free paths to the thermal transport in solids. However, as material systems decrease to length scales less than the phonon mean-free paths, thermal transport can become much more impacted by scattering and transmission across interfaces between two materials than the intrinsic relaxation in the homogeneous solid. To elucidate the fundamental interactions driving this thermally limiting interfacial phonon scattering process, we analytically derive and experimentally measure a thermal boundary conductance accumulation function. We develop a semiclassical theory to calculate the thermal boundary conductance accumulation function across interfaces using the diffuse mismatch model, and validate this derivation by measuring the interface conductance between eight different metals on native oxide/silicon substrates and four different metals on sapphire substrates. Measurements were performed at room temperature using time-domain thermoreflectance and represent the first-reported values for interface conductance across several metal/native oxide/silicon and metal/sapphire interfaces. The various metal films provide a variable bandwidth of phonons incident on the metal/substrate interface. This method of varying phonons' cutoff frequency in the film while keeping the same substrate allows us to mimic the accumulation of thermal boundary conductance and thus provides a direct method to experimentally validate our theory. We show that the accumulation function can be written as the product of a weighted average of the interfacial phonon transmission function and the accumulation of the temperature derivative of the phonon flux incident on the interface; this provides the framework to extract an average, spectrally dependent phonon transmissivity from a series of thermal boundary conductance measurements. Our approach provides
Phonon assisted resonant tunneling and its phonons control
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.; Krevchik, V. D.; Semenov, M. B.; Filatov, D. O.; Shorokhov, A. V.; Bukharaev, A. A.; Dakhnovsky, Y.; Nikolaev, A. V.; Pyataev, N. A.; Zaytsev, R. V.; Krevchik, P. V.; Egorov, I. A.; Yamamoto, K.; Aringazin, A. K.
2016-09-01
We observe a series of sharp resonant features in the tunneling differential conductance of InAs quantum dots. We found that dissipative quantum tunneling has a strong influence on the operation of nanodevices. Because of such tunneling the current-voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunneling current is related to a creation of a dilute instanton-anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Spin-dependent electron-phonon interaction in SmFeAsO by low-temperature Raman spectroscopy.
Zhang, L; Guan, P F; Feng, D L; Chen, X H; Xie, S S; Chen, M W
2010-11-03
The interplay between spin dynamics and lattice vibration has been suggested as an important part of the puzzle of high-temperature superconductivity. Here, we report the strong interaction between spin fluctuation and phonon in SmFeAsO, a parent compound of the iron arsenide family of superconductors, revealed by low-temperature Raman spectroscopy. Anomalous zone-boundary-phonon Raman scattering from spin superstructure was observed at temperatures below the antiferromagnetic ordering point, which offers compelling evidence on spin-dependent electron-phonon coupling in pnictides.
Raman scattering under structural and magnetic phase transitions in terbium ferroborate
NASA Astrophysics Data System (ADS)
Peschanskii, A. V.; Yeremenko, A. V.; Fomin, V. I.; Bezmaternykh, L. N.; Gudim, I. A.
2014-02-01
The Raman scattering spectrum of single crystal TbFe3(BO3)4 was studied in the frequency range 3-500 cm-1 at temperatures from 2 to 300 K. It was found that in high- and low-temperature phases there exist additional phonon lines which were not known before. In the high-temperature phase, these lines originate from LO-TO splitting of polar phonons. Appearance of the additional lines in the low temperature phase is due to both a reduction of the crystal symmetry under the phase transition and an increase of the primitive cell volume. It was established that the frequencies of some phonon lines in the magneto-ordered phase are shifted towards the high-energy region upon applying an external magnetic field along the third-order axis. The spectrum of two-magnon Raman scattering was investigated. It was shown that at low temperatures the two-magnon band has a complex shape that reflects specific features in the density of state of the magnon branches. The magnon energy at the Brillouin zone boundary was determined.
Liao, Bolin; Qiu, Bo; Zhou, Jiawei; Huberman, Samuel; Esfarjani, Keivan; Chen, Gang
2015-03-20
The electron-phonon interaction is well known to create major resistance to electron transport in metals and semiconductors, whereas fewer studies are directed to its effect on phonon transport, especially in semiconductors. We calculate the phonon lifetimes due to scattering with electrons (or holes), combine them with the intrinsic lifetimes due to the anharmonic phonon-phonon interaction, all from first principles, and evaluate the effect of the electron-phonon interaction on the lattice thermal conductivity of silicon. Unexpectedly, we find a significant reduction of the lattice thermal conductivity at room temperature as the carrier concentration goes above 10(19) cm(-3) (the reduction reaches up to 45% in p-type silicon at around 10(21) cm(-3)), a range of great technological relevance to thermoelectric materials.
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Engineering dissipation with phononic spectral hole burning.
Behunin, R O; Kharel, P; Renninger, W H; Rakich, P T
2017-03-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Engineering dissipation with phononic spectral hole burning
NASA Astrophysics Data System (ADS)
Behunin, R. O.; Kharel, P.; Renninger, W. H.; Rakich, P. T.
2016-12-01
Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon-phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.
Measuring phonons in protein crystals
NASA Astrophysics Data System (ADS)
Niessen, Katherine A.; Snell, Edward; Markelz, A. G.
2013-03-01
Using Terahertz near field microscopy we find orientation dependent narrow band absorption features for lysozyme crystals. Here we discuss identification of protein collective modes associated with the observed features. Using normal mode calculations we find good agreement with several of the measured features, suggesting that the modes arise from internal molecular motions and not crystal phonons. Such internal modes have been associated with protein function.
Light scattering by surface acoustic waves on corrugated metal surfaces
Robertson, W.M.; Grimsditch, M. ); Moretti, A.L.; Kaufman, R.G.; Hulse, G.R. ); Fullerton, E.; Schuller, I.K. )
1990-03-15
We report the results of a Brillouin-scattering study of corrugated Ag surfaces. The corrugation plays a dramatic role in the wave-vector--selection rules governing coupling to surface phonons, and this effect is substantially different when the effective wave vector of the surface corrugation is collinear or perpendicular to the scattering plane. In processes that involve the grating wave vector, we show that the coupling mechanism between light and phonons is governed by surface plasmons which introduce a new scattering interaction with unusual polarization features in the Brillouin-scattering process.
NASA Astrophysics Data System (ADS)
Colognesi, D.; Formisano, F.; Ramirez-Cuesta, A. J.; Ulivi, L.
2009-04-01
In the present paper we report inelastic neutron scattering measurements on solid low-pressure hydrogen deuteride at three different temperatures (between 4.5 and 15.6 K) using the time-of-flight spectrometers BRISP at ILL (France) and TOSCA-II at ISIS, RAL (UK). The measured double-differential cross sections give access to the proton component of the HD self-inelastic structure factor. Processed BRISP data were employed to verify the applicability of the generalized Young and Koppel model to solid HD in our kinematic range and to obtain the mean-square displacement of the molecular centers of mass. In addition, a large broadening of the first two rotational peaks was observed. A reasonable result for the density of phonon states from TOSCA-II data has been obtained, although a rigorous extraction was not possible, due to the overlap among the various spectral components. The intensity loss in the extracted density of phonon states was interpreted as the effect the phonon-roton resonance in solid hydrogen deuteride. Finally the two Bose-corrected moments of the HD phonon spectrum, related to the molecular mean-square displacement and mean kinetic energy, were simulated through a path integral Monte Carlo code. The former quantity was compared to the mentioned experimental estimates.
Femtosecond time-resolved study of the generation and propagation of phonon polaritons in LiNbO3
NASA Astrophysics Data System (ADS)
Planken, P. C. M.; Noordam, L. D.; Kennis, J. T. M.; Lagendijk, A.
1992-04-01
Using intense femtosecond pulses, we have generated phonon polaritons in the ferroelectric crystal LiNbO3. Phonon-polariton pulses consisting of ~=8 oscillations of the electric field were generated. They were detected in a time-resolved way by diffraction of a probe pulse from the standing wave formed by these phonon polaritons. We determined their dispersion for frequencies up to 130 cm-1. The pulse width of the phonon polaritons was ~=3 ps. In addition, we have studied their propagation in the crystal, by diffracting a probe pulse from one of the traveling phonon polaritons. We demonstrate that in this case, the diffracted signal is sensitive to the phase of the phonon polariton. Analytical calculations show that this can be explained in terms of the interference between the electric fields of the nondiffracted probe beam and the first-order diffracted probe beam.
Diffraction of electrons at intermediate energies: The role of phonons
Ascolani, H.; Zampieri, G.
1996-07-01
The intensity of electrons reflected {open_quote}{open_quote}elastically{close_quote}{close_quote} from crystalline surfaces presents two regimes: the low-energy or LEED regime ({lt}500 eV), in which the electrons are reflected along the Bragg directions, and the intermediate-energy or XPD/AED regime ({gt}500 eV), in which the maxima of intensity are along the main crystallographic axes. We present a model which explains this transition in terms of the excitation/absorption of phonons during the scattering. {copyright} {ital 1996 American Institute of Physics.}
THz metamaterials made of phonon-polariton materials
NASA Astrophysics Data System (ADS)
Kafesaki, M.; Basharin, A. A.; Economou, E. N.; Soukoulis, C. M.
2014-08-01
In this paper, we demonstrate numerically various phenomena and possibilities that can be realized in THz metamaterials made of phonon-polariton materials. Such phenomena include hyperbolic dispersion relation, subwavelength imaging using backward propagation and backward radiation, total transmission and subwavelength guiding exploiting Mie-resonant scattering in permittivity near zero host, and toroidal dipolar response. The systems that we use to demonstrate most of these phenomena are two-dimensional periodic systems of μm-scale rods in a host, where both rods and host are made of polaritonic alkali-halide materials.
Self-sustained coherent phonon generation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Navarro-Urrios, D.; Gomis-Bresco, J.; Alzina, F.; Capuj, N. E.; García, P. D.; Colombano, M. F.; Chavez-Angel, E.; Sotomayor-Torres, C. M.
2016-09-01
Optical forces can set tiny objects in states of mechanical self-sustained oscillation, spontaneously generating periodic signals by extracting power from steady sources. Miniaturized self-sustained coherent phonon sources are interesting for applications such as mass-force sensing, intra-chip metrology and intra-chip time-keeping among others. In this paper, we review several mechanisms and techniques that can drive a mechanical mode into the lasing regime by exploiting the radiation pressure force in optomechanical cavities, namely stimulated emission, dynamical back-action, forward stimulated Brillouin scattering and self-pulsing.
Dynamic Jahn-Teller viewpoint for generation mechanism of asymmetric modes of coherent phonons
NASA Astrophysics Data System (ADS)
Kayanuma, Yosuke; Nakamura, Kazutaka G.
2017-03-01
We propose a dynamic Jahn-Teller approach to elucidate the generation mechanism of asymmetric modes of coherent phonons induced in crystals by irradiation with a short optical pulse in the opaque energy region. This is a natural extension of the impulsive excitation model of symmetric modes to multi dimensions in the configuration coordinate space. We show that the two generation mechanisms of coherent phonons coexist in this case, namely the impulsive absorption (IA) mechanism and impulsive stimulated Raman scattering (ISRS) mechanism. The dependence of the phonon amplitude on the polarization of the pump pulse is exactly the same in IA and ISRS processes and is in agreement with the prediction of the argument based on Raman tensors. The dependence of the excitation efficiency of the coherent phonons on the frequency of the pump pulse is calculated using a simplified model of the optical response function of the crystal. Generally, the IA mechanism predominates in the opaque region, although ISRS makes a comparable contribution to phonon generation in the near-edge opaque region. The initial phase of the coherent phonon is always cosine-like in IA but depends on the excitation frequency in ISRS.
Computational Study of In-Plane Phonon Transport in Si Thin Films
Wang, Xinjiang; Huang, Baoling
2014-01-01
We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061
Nonharmonic phonons in α-iron at high temperatures
NASA Astrophysics Data System (ADS)
Mauger, L.; Lucas, M. S.; Muñoz, J. A.; Tracy, S. J.; Kresch, M.; Xiao, Yuming; Chow, Paul; Fultz, B.
2014-08-01
Phonon densities of states (DOS) of bcc α-Fe57 were measured from room temperature through the 1044 K Curie transition and the 1185 K fcc γ-Fe phase transition using nuclear resonant inelastic x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal expansion, but the low transverse modes soften especially rapidly above 700 K, showing strongly nonharmonic behavior that persists through the magnetic transition. Interatomic force constants for the bcc phase were obtained by iteratively fitting a Born-von Kármán model to the experimental phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial force constants weakened significantly at elevated temperatures. An unusually large nonharmonic behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35 meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibrational entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic excitations. A small change in vibrational entropy across the α-γ structural phase transformation is also reported.
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Theoretical investigation of the phonon-limited carrier mobility in (001) Si films
NASA Astrophysics Data System (ADS)
Li, Jing; Lampin, Evelyne; Delerue, Christophe; Niquet, Yann-Michel
2016-11-01
We calculate the phonon-limited carrier mobility in (001) Si films with a fully atomistic framework based on a tight-binding (TB) model for the electronic structure, a valence-force-field model for the phonons, and the Boltzmann transport equation. This framework reproduces the electron and phonon bands over the whole first Brillouin zone and accounts for all possible carrier-phonon scattering processes. It can also handle one-dimensional (wires) and three-dimensional (bulk) structures and therefore provides a consistent description of the effects of dimensionality on the phonon-limited mobilities. We first discuss the dependence of the electron and hole mobilities on the film thickness and carrier density. The mobility tends to decrease with decreasing film thickness and increasing carrier density, as the structural and electric confinement enhances the electron-phonon interactions. We then compare hydrogen-passivated and oxidized films in order to understand the impact of surface passivation on the mobility and discuss the transition from nanowires to films and bulk. Finally, we compare the semi-classical TB mobilities with quantum Non-Equilibrium Green's Function calculations based on k ṡ p band structures and on deformation potentials for the electron-phonon interactions (KP-NEGF). The TB mobilities show a stronger dependence on carrier density than the KP-NEGF mobilities, yet weaker than the experimental data on Fully Depleted-Silicon-on-Insulator devices. We discuss the implications of these results on the nature of the apparent increase of the electron-phonon deformation potentials in silicon thin films.
Temperature Dependence of Phonons in Pyrolitic Graphite
DOE R&D Accomplishments Database
Brockhouse, B. N.; Shirane, G.
1977-01-01
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.
NASA Astrophysics Data System (ADS)
Zhang, J.-Z.; Dyson, A.; Ridley, B. K.
2015-01-01
Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation (ER) of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation (PD) and ER time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby, particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: With no hot phonons or screening, the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for ER time with the two phonon models (within a 5% of deviation). However, the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the PD values obtained from the DC and 3DP models are in general different in the spontaneous phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register's scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the ER: their contribution is enhanced in the spontaneous emission process but is dramatically reduced after including the HPE. Our calculation with both phonon
Phonon-mediated negative differential conductance in molecular quantum dots
NASA Astrophysics Data System (ADS)
Zazunov, Alex; Feinberg, Denis; Martin, Thierry
2006-03-01
Transport through a single-molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy using a carbon nanotube contacted by a scanning tunneling microscope tip [Nature 432, 371 (2004)], where negative differential conductance of the breathing-mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A “half-shuttle” mechanism is also introduced. A quantum kinetic formulation allows us to derive rate equations. Assuming asymmetric tunneling rates and in the absence of the half-shuttle coupling, negative differential conductance (NDC) is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in the absence of a gate, the “floating” level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
Electron-phonon interactions from first principles
NASA Astrophysics Data System (ADS)
Giustino, Feliciano
2017-01-01
This article reviews the theory of electron-phonon interactions in solids from the point of view of ab initio calculations. While the electron-phonon interaction has been studied for almost a century, predictive nonempirical calculations have become feasible only during the past two decades. Today it is possible to calculate from first principles many materials properties related to the electron-phonon interaction, including the critical temperature of conventional superconductors, the carrier mobility in semiconductors, the temperature dependence of optical spectra in direct and indirect-gap semiconductors, the relaxation rates of photoexcited carriers, the electron mass renormalization in angle-resolved photoelectron spectra, and the nonadiabatic corrections to phonon dispersion relations. In this article a review of the theoretical and computational framework underlying modern electron-phonon calculations from first principles as well as landmark investigations of the electron-phonon interaction in real materials is given. The first part of the article summarizes the elementary theory of electron-phonon interactions and their calculations based on density-functional theory. The second part discusses a general field-theoretic formulation of the electron-phonon problem and establishes the connection with practical first-principles calculations. The third part reviews a number of recent investigations of electron-phonon interactions in the areas of vibrational spectroscopy, photoelectron spectroscopy, optical spectroscopy, transport, and superconductivity.