Liu Wei; Niu Hanben
2011-02-15
We provide an approach to significantly break the diffraction limit in coherent anti-Stokes Raman scattering (CARS) microscopy via an additional probe-beam-induced photon depletion (APIPD). The additional probe beam, whose profile is doughnut shaped and whose wavelength is different from the Gaussian probe beam, depletes the phonons to yield an unwanted anti-Stokes signal within a certain bandwidth at the rim of the diffraction-limited spot. When the Gaussian probe beam that follows immediately arrives, no anti-Stokes signal is generated in this region, resembling stimulated emission depletion (STED) microscopy, and the spot-generating useful anti-Stokes signals by this beam are substantially suppressed to a much smaller dimension. Scanning the spot renders three-dimensional, label-free, and chemically selective CARS images with subdiffraction resolution. Also, resolution-enhanced images of the molecule, specified by its broadband even-total CARS spectral signals not only by one anti-Stokes signal for its special chemical bond, can be obtained by employing a supercontinuum source.
Weak phonon scattering effect of twin boundaries on thermal transmission
Dong, Huicong; Xiao, Jianwei; Melnik, Roderick; Wen, Bin
2016-01-01
To study the effect of twin boundaries on thermal transmission, thermal conductivities of twinned diamond with different twin thicknesses have been studied by NEMD simulation. Results indicate that twin boundaries show a weak phonon scattering effect on thermal transmission, which is only caused by the additional twin boundaries’ thermal resistance. Moreover, according to phonon kinetic theory, this weak phonon scattering effect of twin boundaries is mainly caused by a slightly reduced average group velocity. PMID:26822675
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping.
Bebek, M B; Stanley, C M; Gibbons, T M; Estreicher, S K
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-01-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved. PMID:27535463
Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping
NASA Astrophysics Data System (ADS)
Bebek, M. B.; Stanley, C. M.; Gibbons, T. M.; Estreicher, S. K.
2016-08-01
The interactions between thermal phonons and defects are conventionally described as scattering processes, an idea proposed almost a century ago. In this contribution, ab-initio molecular-dynamics simulations provide atomic-level insight into the nature of these interactions. The defect is the Si|X interface in a nanowire containing a δ-layer (X is C or Ge). The phonon-defect interactions are temperature dependent and involve the trapping of phonons for meaningful lengths of time in defect-related, localized, vibrational modes. No phonon scattering occurs and the momentum of the phonons released by the defect is unrelated to the momentum of the phonons that generated the excitation. The results are extended to the interactions involving only bulk phonons and to phonon-defect interactions at high temperatures. These do resemble scattering since phonon trapping occurs for a length of time short enough for the momentum of the incoming phonon to be conserved.
Phononic Molecules Studied by Raman Scattering
Lanzillotti-Kimura, N. D.; Fainstein, A.; Jusserand, B.; Lemaitre, A.
2010-01-04
An acoustic nanocavity can confine phonons in such a way that they act like electrons in an atom. By combining two of these phononic-atoms, it is possible to form a phononic 'molecule', with acoustic modes that are similar to the electronic states in a hydrogen molecule. We report Raman scattering experiments performed in a monolithic structure formed by a phononic molecule embedded in an optical cavity. The acoustic mode splitting becomes evident through both the amplification and change of selection rules induced by the optical cavity confinement. The results are in perfect agreement with photoelastic model simulations.
Phonon lineshapes in atom-surface scattering.
Martínez-Casado, R; Sanz, A S; Miret-Artés, S
2010-08-01
Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes. PMID:21399349
Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering
Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.
2015-07-28
We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice.
Comments on polaron-phonon scattering theory
NASA Astrophysics Data System (ADS)
Tulub, A. V.
2015-10-01
We use the polaron state function described in terms of coupled classical and quantum fields to calculate the cross section of phonon scattering on a polaron. The value of the resonance momentum is determined by asymptotic values of several integrals. Calculating them with crystal parameters taken into account leads to bounds on the maximum value of the coupling constant. We confirm that the applicability domain of the strong-coupling approximation is near zero.
"Phonon" scattering beyond perturbation theory
NASA Astrophysics Data System (ADS)
Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing
2016-02-01
Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.
NASA Astrophysics Data System (ADS)
Iyer, Srikanth S.; Candler, Robert N.
2016-03-01
In this work, we determine the intrinsic mechanical energy dissipation limit for single-crystal resonators due to anharmonic phonon-phonon scattering in the Akhiezer (Ω τ ≪1 ) regime. The energy loss is derived using perturbation theory and the linearized Boltzmann transport equation for phonons, and includes the direction- and polarization-dependent mode-Grüneisen parameters in order to capture the strain-induced anharmonicity among phonon branches. This expression reveals the fundamental differences among the internal friction limits for different types of bulk-mode elastic waves. For cubic crystals, 2D-extensional modes have increased dissipation compared to width-extensional modes because the biaxial deformation opposes the natural Poisson contraction of the solid. Additionally, we show that shear-mode vibrations, which preserve volume, have significantly reduced energy loss because dissipative phonon-phonon scattering is restricted to pure-shear phonon branches, indicating that Lamé- or wineglass-mode resonators will have the highest upper limit on mechanical efficiency. Finally, we employ key simplifications to evaluate the quality factor limits for common mode shapes in single-crystal silicon devices, explicitly including the correct effective elastic storage moduli for different vibration modes and crystal orientations. Our expression satisfies the pressing need for a reliable analytical model that can predict the phonon-phonon dissipation limits for modern resonant microelectromechanical systems, where precise manufacturing techniques and accurate finite-element methods can be used to select particular vibrational mode shapes and crystal orientations.
Dissipation induced by phonon elastic scattering in crystals
Li, Guolong; Ren, Zhongzhou; Zhang, Xin
2016-01-01
We demonstrate that the phonon elastic scattering leads to a dominant dissipation in crystals at low temperature. The two-level systems (TLSs) should be responsible for the elastic scattering, whereas the dissipation induced by static-point defects (SPDs) can not be neglected. One purpose of this work is to show how the energy splitting distribution of the TLS ensemble affects the dissipation. Besides, this article displays the proportion of phonon-TLS elastic scattering to total phonon dissipation. The coupling coefficient of phonon-SPD scattering and the constant P0 of the TLS distribution are important that we estimate their magnitudes in this paper. Our results is useful to understand the phonon dissipation mechanism, and give some clues to improve the performance of mechanical resonators, apply the desired defects, or reveal the atom configuration in lattice structure of disordered crystals. PMID:27669517
Spin Hall Effects Due to Phonon Skew Scattering
NASA Astrophysics Data System (ADS)
Gorini, Cosimo; Eckern, Ulrich; Raimondi, Roberto
2015-08-01
A diversity of spin Hall effects in metallic systems is known to rely on Mott skew scattering. In this work its high-temperature counterpart, phonon skew scattering, which is expected to be of foremost experimental relevance, is investigated. In particular, the phonon skew scattering spin Hall conductivity is found to be practically T independent for temperatures above the Debye temperature TD. As a consequence, in Rashba-like systems a high-T linear behavior of the spin Hall angle demonstrates the dominance of extrinsic spin-orbit scattering only if the intrinsic spin splitting is smaller than the temperature.
NASA Astrophysics Data System (ADS)
Wang, Yan; Lu, Zexi; Ruan, Xiulin
2016-06-01
The effect of phonon-electron (p-e) scattering on lattice thermal conductivity is investigated for Cu, Ag, Au, Al, Pt, and Ni. We evaluate both phonon-phonon (p-p) and p-e scattering rates from first principles and calculate the lattice thermal conductivity (κL). It is found that p-e scattering plays an important role in determining the κL of Pt and Ni at room temperature, while it has negligible effect on the κL of Cu, Ag, Au, and Al. Specifically, the room temperature κLs of Cu, Ag, Au, and Al predicted from density-functional theory calculations with the local density approximation are 16.9, 5.2, 2.6, and 5.8 W/m K, respectively, when only p-p scattering is considered, while it is almost unchanged when p-e scattering is also taken into account. However, the κL of Pt and Ni is reduced from 7.1 and 33.2 W/m K to 5.8 and 23.2 W/m K by p-e scattering. Even though Al has quite high electron-phonon coupling constant, a quantity that characterizes the rate of heat transfer from hot electrons to cold phonons in the two-temperature model, p-e scattering is not effective in reducing κL owing to the relatively low p-e scattering rates in Al. The difference in the strength of p-e scattering in different metals can be qualitatively understood by checking the amount of electron density of states that is overlapped with the Fermi window. Moreover, κL is found to be comparable to the electronic thermal conductivity in Ni.
Controlling electron-phonon scattering with metamaterial plasmonic structures
NASA Astrophysics Data System (ADS)
Kempa, Krzysztof; Wu, Xueyuan; Kong, Jiantao; Broido, David
Electron-plasmon scattering can be faster than electron-phonon scattering. While in metals plasmons occur in the UV range, phonons dominate behavior at much lower frequencies (far IR range), and this typically decouples these phenomena. In metamaterial plasmonic structures, however, plasma effects can be tuned down to the far IR range, allowing for their interference with phonons. It was recently shown, that such interference can protect hot electron energy induced in a solar cell, from dissipation into heat. In this work we explore the possibility of using such an effect to control the electron-phonon interaction and transport in semiconductors. We demonstrate, that this could lead to a novel path to enhancing the electrical and thermal conductivities and the thermoelectric figure of merit.
Inelastic x-ray scattering measurements of phonon dynamics in URu2Si2
Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; Said, A. H.; Leu, B. M.; Williams, Travis J.; Luke, G. M.; Lee, Y. S.
2016-02-11
In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu2Si2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations in the lowmore » temperature phase.« less
Surface phonon-polaritons: To scatter or not to scatter
NASA Astrophysics Data System (ADS)
Staude, Isabelle; Rockstuhl, Carsten
2016-08-01
A rewritable platform for subwavelength optical components is demonstrated by combining surface phonon-polaritons, sustained in a polar dielectric layer, with the switching functionality provided by a phase-change material.
Phonon scattering in graphene over substrate steps
Sevinçli, H.; Brandbyge, M.
2014-10-13
We calculate the effect on phonon transport of substrate-induced bends in graphene. We consider bending induced by an abrupt kink in the substrate, and provide results for different step-heights and substrate interaction strengths. We find that individual substrate steps reduce thermal conductance in the range between 5% and 47%. We also consider the transmission across linear kinks formed by adsorption of atomic hydrogen at the bends and find that individual kinks suppress thermal conduction substantially, especially at high temperatures. Our analysis show that substrate irregularities can be detrimental for thermal conduction even for small step heights.
Deviational simulation of phonon transport in graphene ribbons with ab initio scattering
Landon, Colin D.; Hadjiconstantinou, Nicolas G.
2014-10-28
We present a deviational Monte Carlo method for solving the Boltzmann-Peierls equation with ab initio 3-phonon scattering, for temporally and spatially dependent thermal transport problems in arbitrary geometries. Phonon dispersion relations and transition rates for graphene are obtained from density functional theory calculations. The ab initio scattering operator is simulated by an energy-conserving stochastic algorithm embedded within a deviational, low-variance Monte Carlo formulation. The deviational formulation ensures that simulations are computationally feasible for arbitrarily small temperature differences, while the stochastic treatment of the scattering operator is both efficient and exhibits no timestep error. The proposed method, in which geometry and phonon-boundary scattering are explicitly treated, is extensively validated by comparison to analytical results, previous numerical solutions and experiments. It is subsequently used to generate solutions for heat transport in graphene ribbons of various geometries and evaluate the validity of some common approximations found in the literature. Our results show that modeling transport in long ribbons of finite width using the homogeneous Boltzmann equation and approximating phonon-boundary scattering using an additional homogeneous scattering rate introduces an error on the order of 10% at room temperature, with the maximum deviation reaching 30% in the middle of the transition regime.
Beye, M; Hennies, F; Deppe, M; Suljoti, E; Nagasono, M; Wurth, W; Föhlisch, A
2009-12-01
Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.
NASA Astrophysics Data System (ADS)
Sapega, V. F.; Belitsky, V. I.; Ruf, T.; Fuchs, H. D.; Cardona, M.; Ploog, K.
1992-12-01
A strong increase of low-frequency Raman scattering has been observed in GaAs/AlxGa1-xAs multiple quantum wells in magnetic fields up to 14 T. The spectra, consisting of background scattering, folded acoustic phonons, and additional features, show resonant behavior with respect to the laser frequency and the strength of the magnetic field. The broad background, usually related to geminate recombination, has its origin in a continuum of Raman processes with the emission of longitudinal-acoustic phonons where crystal momentum is not conserved. Such processes can become dominant when interface fluctuations allow for resonant scattering in individual quantum wells only. Thus phonons with all possible energies contribute to the background scattering efficiency. The observed folded longitudinal-acoustic phonons are in good agreement with calculated frequencies. Additional features, detected in all samples measured, are attributed to local vibrational modes tied to the gaps at the folded Brillouin-zone center and edge. Other peculiarities observed correspond to modes localized at crossings of the folded longitudinal- and transverse-acoustic branches inside the Brillouin zone. The appearance of these local modes is attributed to fluctuations in the well and barrier thicknesses of the quantum wells.
Phonon dynamics and inelastic neutron scattering of sodium niobate
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Gupta, M. K.; Mittal, R.; Zbiri, M.; Rols, S.; Schober, H.; Chaplot, S. L.
2014-05-01
Sodium niobate (NaNbO3) exhibits an extremely complex sequence of structural phase transitions in the perovskite family and therefore provides an excellent model system for understanding the mechanism of structural phase transitions. We report temperature dependence of inelastic neutron scattering measurements of phonon densities of states in sodium niobate. The measurements are carried out in various crystallographic phases of this material at various temperatures from 300 to 1048 K. The phonon spectra exhibit peaks centered on 19, 37, 51, 70, and 105 meV. Interestingly, the peak near 70 meV shifts significantly towards lower energy with increasing temperature, while the other peaks do not exhibit any appreciable shift. The phonon spectra at 783 K show prominent change and become more diffusive as compared to those at 303 K. In order to better analyze these features, we have performed first-principles lattice dynamics calculations based on the density functional theory. The computed phonon density of states is found to be in good agreement with the experimental data. Based on our calculation we are able to assign the characteristic Raman modes in the antiferroelectric phase, which are due to the folding of the T (ω = 95 cm-1) and Δ (ω = 129 cm-1) points of the cubic Brillouin zone, to the A1g symmetry.
Giant Anharmonic Phonon Scattering in PbTe
Delaire, Olivier A; Ma, Jie; Marty, Karol J; May, Andrew F; McGuire, Michael A; Singh, David J; Lumsden, Mark D; Sales, Brian C; Du, Mao-Hua; Ehlers, Georg; Podlesnyak, Andrey A
2011-01-01
Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type.
Signal contrast in coherent Raman scattering: Optical phonons versus biomolecules
NASA Astrophysics Data System (ADS)
Voronin, A. A.; Zheltikov, A. M.
2012-09-01
We show that the limiting contrast of the coherent anti-Stokes Raman scattering (CARS) signal with respect to the coherent background due to nonresonant four-wave mixing is controlled by the Q factor of the Raman mode and is independent of the parameters of laser pulses. High-Q phonon modes of semiconductor nanoparticles, such as diamond nanoprobes, can therefore substantially enhance the contrast of CARS images, as well as the sensitivity of CARS spectroscopy and microscopy compared to typical Raman-active vibrations of organic molecules in biotissues.
Coherent phonon-grain boundary scattering in silicon inverse opals.
Ma, Jun; Parajuli, Bibek R; Ghossoub, Marc G; Mihi, Agustin; Sadhu, Jyothi; Braun, Paul V; Sinha, Sanjiv
2013-02-13
We report measurements and modeling of thermal conductivity in periodic three-dimensional dielectric nanostructures, silicon inverse opals. Such structures represent a three-dimensional "phononic crystal" but affect heat flow instead of acoustics. Employing the Stober method, we fabricate high quality silica opal templates that on filling with amorphous silicon, etching and recrystallizing produce silicon inverse opals. The periodicities and shell thicknesses are in the range 420-900 and 18-38 nm, respectively. The thermal conductivity of inverse opal films are relatively low, ~0.6-1.4 W/mK at 300 K and arise due to macroscopic bending of heat flow lines in the structure. The corresponding material thermal conductivity is in the range 5-12 W/mK and has an anomalous ~T(1.8) dependence at low temperatures, distinct from the typical ~T(3) behavior of bulk polycrystalline silicon. Using phonon scattering theory, we show such dependence arising from coherent phonon reflections in the intergrain region. This is consistent with an unconfirmed theory proposed in 1955. The low thermal conductivity is significant for applications in photonics where they imply significant temperature rise at relatively low absorption and in thermoelectrics, where they suggest the possibility of enhancement in the figure of merit for polysilicon with optimal doping. PMID:23286238
Coherent phonon-grain boundary scattering in silicon inverse opals.
Ma, Jun; Parajuli, Bibek R; Ghossoub, Marc G; Mihi, Agustin; Sadhu, Jyothi; Braun, Paul V; Sinha, Sanjiv
2013-02-13
We report measurements and modeling of thermal conductivity in periodic three-dimensional dielectric nanostructures, silicon inverse opals. Such structures represent a three-dimensional "phononic crystal" but affect heat flow instead of acoustics. Employing the Stober method, we fabricate high quality silica opal templates that on filling with amorphous silicon, etching and recrystallizing produce silicon inverse opals. The periodicities and shell thicknesses are in the range 420-900 and 18-38 nm, respectively. The thermal conductivity of inverse opal films are relatively low, ~0.6-1.4 W/mK at 300 K and arise due to macroscopic bending of heat flow lines in the structure. The corresponding material thermal conductivity is in the range 5-12 W/mK and has an anomalous ~T(1.8) dependence at low temperatures, distinct from the typical ~T(3) behavior of bulk polycrystalline silicon. Using phonon scattering theory, we show such dependence arising from coherent phonon reflections in the intergrain region. This is consistent with an unconfirmed theory proposed in 1955. The low thermal conductivity is significant for applications in photonics where they imply significant temperature rise at relatively low absorption and in thermoelectrics, where they suggest the possibility of enhancement in the figure of merit for polysilicon with optimal doping.
Acoustic scattering from phononic crystals with complex geometry.
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2016-05-01
This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC. Incorporation of these modes in the HKI, summed over all facets, then determines the externally scattered acoustic field. In particular, for frequencies in a complete bandgap (the usual operating frequency regime of many PC-based devices and the requisite operating regime of the presented theory), no need exists to solve for internal reflections from oppositely facing edges and, thus, the total scattered field can be computed without the need to consider internal multiple scattering. Several numerical examples are provided to verify the presented approach. Both harmonic and transient results are considered for spherical and bean-shaped PCs, each containing over 100 000 inclusions. This facet formalism is validated by comparison to an existing self-consistent scattering technique.
A note on two-phonon coherent anti-stokes Raman scattering
Shen, Y. R.
1981-01-01
Difference-frequency mixing of two pump waves can in principle excite two coherent phonon waves via the parametric process. Finally, only when the phonon excitation is small can the nonlinear susceptibility of two-phonon coherent anti-Stokes Raman scattering be described as proportional to the product of two Raman tensors.
A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale
Bong, Victor N-S; Wong, Basil T.
2015-08-28
Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers.
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-14
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Hierarchical thermoelectrics: crystal grain boundaries as scalable phonon scatterers
NASA Astrophysics Data System (ADS)
Selli, Daniele; Boulfelfel, Salah Eddine; Schapotschnikow, Philipp; Donadio, Davide; Leoni, Stefano
2016-02-01
Thermoelectric materials are strategically valuable for sustainable development, as they allow for the generation of electrical energy from wasted heat. In recent years several strategies have demonstrated some efficiency in improving thermoelectric properties. Dopants affect carrier concentration, while thermal conductivity can be influenced by alloying and nanostructuring. Features at the nanoscale positively contribute to scattering phonons, however those with long mean free paths remain difficult to alter. Here we use the concept of hierarchical nano-grains to demonstrate thermal conductivity reduction in rocksalt lead chalcogenides. We demonstrate that grains can be obtained by taking advantage of the reconstructions along the phase transition path that connects the rocksalt structure to its high-pressure form. Since grain features naturally change as a function of size, they impact thermal conductivity over different length scales. To understand this effect we use a combination of advanced molecular dynamics techniques to engineer grains and to evaluate thermal conductivity in PbSe. By affecting grain morphologies only, i.e. at constant chemistry, two distinct effects emerge: the lattice thermal conductivity is significantly lowered with respect to the perfect crystal, and its temperature dependence is markedly suppressed. This is due to an increased scattering of low-frequency phonons by grain boundaries over different size scales. Along this line we propose a viable process to produce hierarchical thermoelectric materials by applying pressure via a mechanical load or a shockwave as a novel paradigm for material design.
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
Malhotra, Abhinav; Maldovan, Martin
2016-01-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects. PMID:27174699
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires.
Malhotra, Abhinav; Maldovan, Martin
2016-01-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects. PMID:27174699
Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires
NASA Astrophysics Data System (ADS)
Malhotra, Abhinav; Maldovan, Martin
2016-05-01
Thermal transport in nanostructures has attracted considerable attention in the last decade but the precise effects of surfaces on heat conduction have remained unclear due to a limited accuracy in the treatment of phonon surface scattering phenomena. Here, we investigate the impact of phonon-surface scattering on the distribution of thermal energy across phonon wavelengths and mean free paths in Si and SiGe nanowires. We present a rigorous and accurate description of phonon scattering at surfaces and predict and analyse nanowire heat spectra for different diameters and surface conditions. We show that the decrease in the diameter and increased roughness and correlation lengths makes the heat phonon spectra significantly shift towards short wavelengths and mean free paths. We also investigate the emergence of phonon confinement effects for small diameter nanowires and different surface scattering properties. Computed results for bulk materials show excellent agreement with recent experimentally-based approaches that reconstruct the mean-free-path heat spectra. Our phonon surface scattering model allows for an accurate theoretical extraction of heat spectra in nanowires and contributes to elucidate the development of critical phonon transport modes such as phonon confinement and coherent interference effects.
Inelastic x-ray scattering measurements of phonon dispersion and lifetimes in PbTe1-x Se x alloys.
Tian, Zhiting; Li, Mingda; Ren, Zhensong; Ma, Hao; Alatas, Ahmet; Wilson, Stephen D; Li, Ju
2015-09-23
PbTe1-x Se x alloys are of special interest to thermoelectric applications. Inelastic x-ray scattering determination of phonon dispersion and lifetimes along the high symmetry directions for PbTe1-x Se x alloys are presented. By comparing with calculated results based on the virtual crystal model calculations combined with ab initio density functional theory, the validity of virtual crystal model is evaluated. The results indicate that the virtual crystal model is overall a good assumption for phonon frequencies and group velocities despite the softening of transverse acoustic phonon modes along [1 1 1] direction, while the treatment of lifetimes warrants caution. In addition, phonons remain a good description of vibrational modes in PbTe1-x Se x alloys.
A Bond-order Theory on the Phonon Scattering by Vacancies in Two-dimensional Materials
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-01-01
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages () and the variation of the force constant of bonds associated with vacancies () by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant is about three orders of magnitude lower than that due to missing mass and linkages . In contrast to the negligible in bulk materials, in two-dimensional materials can be 3–10 folds larger than . Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering. PMID:24866858
Temperature dependence of Brillouin light scattering spectra of acoustic phonons in silicon
Olsson, Kevin S.; Klimovich, Nikita; An, Kyongmo; Sullivan, Sean; Weathers, Annie; Shi, Li E-mail: elaineli@physics.utexas.edu; Li, Xiaoqin E-mail: elaineli@physics.utexas.edu
2015-02-02
Electrons, optical phonons, and acoustic phonons are often driven out of local equilibrium in electronic devices or during laser-material interaction processes. The need for a better understanding of such non-equilibrium transport processes has motivated the development of Raman spectroscopy as a local temperature sensor of optical phonons and intermediate frequency acoustic phonons, whereas Brillouin light scattering (BLS) has recently been explored as a temperature sensor of low-frequency acoustic phonons. Here, we report the measured BLS spectra of silicon at different temperatures. The origins of the observed temperature dependence of the BLS peak position, linewidth, and intensity are examined in order to evaluate their potential use as temperature sensors for acoustic phonons.
Hillenbrand, Rainer
2004-08-01
Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10nm scale, independent of the wavelength used (lambda=633 nm and 10 microm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si3N4. Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics-a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics.
Chen, Xin; Parker, David S; Singh, David J
2013-01-01
We present first principles calculations of the phonon dispersions of \\BiTe and discuss these in relation to the acoustic phonon interface scattering in ceramics. The phonon dispersions show agreement with what is known from neutron scattering for the optic modes. We find a difference between the generalized gradient approximation and local density results for the acoustic branches. This is a consequence of an artificial compression of the van der Waals bonded gaps in the \\BiTe structure when using the generalized gradient approximation. As a result local density approximation calculations provide a better description of the phonon dispersions in Bi$_{2}$Te$_{3}$. A key characteristic of the acoustic dispersions is the existence of a strong anisotropy in the velocities. We develop a model for interface scattering in ceramics with acoustic wave anisotropy and apply this to \\BiTe and compare with PbTe and diamond.
Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth
2015-12-28
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
NASA Astrophysics Data System (ADS)
Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth
2015-12-01
Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.
Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon
Chu, Yanbiao; Gautreau, Pierre; Basaran, Cemal
2014-09-15
In contrast with carbon nanotubes, the absence of translational symmetry (or periodical boundary condition) in the restricted direction of zigzag graphene nanoribbon removes the selection rule of subband number conservation. However, zigzag graphene nanoribbons with even dimers do have the inversion symmetry. We, therefore, propose a selection rule of parity conservation for electron-phonon interactions. The electron-phonon scattering matrix in zigzag graphene nanoribbons is developed using the tight-binging model within the deformation potential approximation.
Ballistic Performance Study of Nanowire FET: Effect of Channel Materials and Phonon Scattering
NASA Astrophysics Data System (ADS)
Iztihad, Hossain Md.; Khan, Touhid; Sufian, Abu; Alam, Md. Nur Kutubul; Mollah, Md. Nurunnabi; Islam, Md. Rafiqul
2016-02-01
The ballistic performance of Si and Ge nanowire (NW) is compared in this study. Current-voltage characteristic is obtained by self-consistently solving the nonequilibrium Green’s function (NEGF) transport equation with Poisson’s equation. The result is obtained at ⟨001⟩ channel orientation. Simulation result shows Ge NW gives higher ON-state current than Si NW, when OFF-state current is made equal by gate metal work function engineering. However, at subthreshold region, performance of NW FET for both material is almost identical. The intravalley and intervalley electron-phonon scattering effect is also calculated using the deformation potential theory and the self-consistent Born approximation. It is found that electron-phonon scattering effect is more pronounced at ON-state of Si NW FET. The ballistic current decreases with the decrease in diameter of the Si NW FET due to electron-phonon scattering.
Phonon-interface scattering in multilayer graphene on an amorphous support.
Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li
2013-10-01
The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG.
New inelastic process of phonon scattering by rotons
Pogorelov, L.A.; Sobolev, V.I.
1983-11-01
A new inelastic process has been discovered that determines the kinetics of superfluid helium at elevated pressures. The process involves absorption (emission) of phonons by rotons owing to the dispersion of the roton energy. Rotons moving at maximum velocity are shown to play an essential role in this process. The form of the roton dispersion relation proposed permits a good description of the kinetic processes and the results of direct measurements of the energy spectrum.
A bond-order theory on the phonon scattering by vacancies in two-dimensional materials.
Xie, Guofeng; Shen, Yulu; Wei, Xiaolin; Yang, Liwen; Xiao, Huaping; Zhong, Jianxin; Zhang, Gang
2014-01-01
We theoretically investigate the phonon scattering by vacancies, including the impacts of missing mass and linkages (τ(V)(-1)) and the variation of the force constant of bonds associated with vacancies (τ(A)(-1)) by the bond-order-length-strength correlation mechanism. We find that in bulk crystals, the phonon scattering rate due to change of force constant τ(A)(-1) is about three orders of magnitude lower than that due to missing mass and linkages τ(V)(-1). In contrast to the negligible τ(A)(-1) in bulk materials, τ(A)(-1) in two-dimensional materials can be 3-10 folds larger than τ(V)(-1). Incorporating this phonon scattering mechanism to the Boltzmann transport equation derives that the thermal conductivity of vacancy defective graphene is severely reduced even for very low vacancy density. High-frequency phonon contribution to thermal conductivity reduces substantially. Our findings are helpful not only to understand the severe suppression of thermal conductivity by vacancies, but also to manipulate thermal conductivity in two-dimensional materials by phononic engineering.
Semiclassical multi-phonon theory for atom-surface scattering: Application to the Cu(111) system
Daon, Shauli; Pollak, Eli
2015-05-07
The semiclassical perturbation theory of Hubbard and Miller [J. Chem. Phys. 80, 5827 (1984)] is further developed to include the full multi-phonon transitions in atom-surface scattering. A practically applicable expression is developed for the angular scattering distribution by utilising a discretized bath of oscillators, instead of the continuum limit. At sufficiently low surface temperature good agreement is found between the present multi-phonon theory and the previous one-, and two-phonon theory derived in the continuum limit in our previous study [Daon, Pollak, and Miret-Artés, J. Chem. Phys. 137, 201103 (2012)]. The theory is applied to the measured angular distributions of Ne, Ar, and Kr scattered from a Cu(111) surface. We find that the present multi-phonon theory substantially improves the agreement between experiment and theory, especially at the higher surface temperatures. This provides evidence for the importance of multi-phonon transitions in determining the angular distribution as the surface temperature is increased.
Thermal conductivity in large-J two-dimensional antiferromagnets: Role of phonon scattering
Chernyshev, A. L.; Brenig, Wolfram
2015-08-05
Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates. It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.
Phonon density of states in nanocrystalline Si1-xGex explored by inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Wilson, Stephen; Dhital, Chetan; Ren, Zhifeng; Abernathy, Doug
2012-02-01
Recently there have been significant advances in the efficiencies of traditional thermoelectric compounds gained via the creation of thermoelectric nanocomposites possessing substantially reduced thermal conductivity relative to their bulk counterparts [1,2]. The dramatic reduction in the heat transport of these nanocomposites is often attributed to the increased interface scattering of phonons or induced surface/boundary modes; however notably little work has been put worth into exploring the detailed changes in the phonon density of states in many of these functional nanocomposite samples. Here we present inelastic neutron scattering measurements exploring the phonon density of states in a series of Si1-xGex thermoelectric nanocomposites. The evolution of the phonon spectral weight distribution and linewidths as a function of Ge-doping will be discussed and compared to the known bulk phonon density of states in this system. [4pt] [1] Giri Joshi et al., Nano Letters 8, 4670 (2008). [0pt] [2] X. Wang et al., App. Phys. Lett. 93, 193121 (2008).
LA phonons scattering of surface electrons in Bi2Se3
NASA Astrophysics Data System (ADS)
Huang, Lang-Tao; Zhu, Bang-Fen
2013-03-01
Within the Boltzmann equation formalism we evaluate the transport relaxation time of Dirac surface states (SSs) in the typical topological insulator(TI) Bi2Se3 due to the phonon scattering. We find that although the back-scattering of the SSs in TIs is strictly forbidden, the in-plane scattering between SSs in 3-dimensional TIs is allowed, maximum around the right-angle scattering. Thus the topological property of the SSs only reduces the scattering rate to its one half approximately. Besides, the larger LA deformation potential and lower sound velocity of Bi2Se3 enhance the scattering rate significantly. Compared with the Dirac electrons in graphene, we find the scattering rate of SSs in Bi2Se3 are two orders of magnitudes larger, which agree with the recent transport experiments. This work was supported by the NSFC (Grant No. 11074143), and the Program of Basic Research Development of China (Grant No. 2011CB921901).
LA phonons scattering of surface electrons in Bi2Se3
NASA Astrophysics Data System (ADS)
Huang, Lang-Tao; Zhu, Bang-Fen
2013-12-01
Within the Boltzmann equation formalism we evaluate the transport relaxation time of Dirac surface states (SSs) in the typical topological insulator(TI) Bi2Se3 due to the phonon scattering. We find that although the back-scattering of the SSs in TIs is strictly forbidden, the in-plane scattering between SSs in 3-dimensional TIs is allowed, maximum around the right-angle scattering. Thus the topological property of the SSs only reduces the scattering rate to its one half approximately. Besides, the larger LA deformation potential and lower sound velocity of Bi2Se3 enhance the scattering rate significantly. Compared with the Dirac electrons in graphene, we find the scattering rate of SSs in Bi2Se3 are two orders of magnitudes larger, which agree with the recent transport experiments.
Addition and subtraction of single phonons in a trapped ion system
NASA Astrophysics Data System (ADS)
Lv, Dingshun; An, Shuoming; Um, Mark; Lu, Yao; Zhang, Jingning; Kim, Kihwan
2014-05-01
We introduce an addition and subtraction of single phonons in a trapped ion system. The creation â† and annihilation â operation have been realized with photons and used for the complete engineering of quantum states of light and the probe of fundamental quantum phenomena. The mathematical description of photon is identical to that of phonon. However, phonon is a particle of quantized matter wave, which should be interpreted differently from photon. We implement the addition and the subtraction of phonon by applying an anti-Jaynes-Cummings type of operation on our trapped ion and performing projective measurements. Our realization can be used for the accurate measurement of position and momentum as well as their relation. This work was supported by the National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, 2011CBA00302, the National Natural Science Foundation of China Grant 61073174, 61033001, 61061130540.
An ab initio study of multiple phonon scattering resonances in silicon germanium alloys
NASA Astrophysics Data System (ADS)
Mendoza, Jonathan; Esfarjani, Keivan; Chen, Gang
2015-05-01
We have computed phonon scattering rates and density of states in silicon germanium alloys using Green's function calculations and density functional theory. This method contrasts with the virtual crystal approximation (VCA) used in conjunction with Fermi's golden rule, which cannot capture resonance states occurring through the interaction of substitutional impurities with the host lattice. These resonances are demonstrated by density of states and scattering rate calculations in the dilute limit and show broadening as the concentration increases. Although these deviations become significant from the VCA at high frequencies, the relaxation times obtained for these phonon modes are small in both the full scattering theory and the VCA, resulting in their negligible contribution to thermal transport.
Resonant raman scattering and dispersion of polar optical and acoustic phonons in hexagonal inn
Davydov, V. Yu. Klochikhin, A. A.; Smirnov, A. N.; Strashkova, I. Yu.; Krylov, A. S.; Lu Hai; Schaff, William J.; Lee, H.-M.; Hong, Y.-L.; Gwo, S.
2010-02-15
It is shown that a study of the dependence of impurity-related resonant first-order Raman scattering on the frequency of excitation light makes it possible to observe the dispersion of polar optical and acoustic branches of vibrational spectrum in hexagonal InN within a wide range of wave vectors. It is established that the wave vectors of excited phonons are uniquely related to the energy of excitation photon. Frequencies of longitudinal optical phonons E{sub 1}(LO) and A{sub 1}(LO) in hexagonal InN were measured in the range of excitation-photon energies from 2.81 to 1.17 eV and the frequencies of longitudinal acoustic phonons were measured in the range 2.81-1.83 eV of excitation-photon energies. The obtained dependences made it possible to extrapolate the dispersion of phonons A{sub 1}(LO) and E{sub 1}(LO) to as far as the point {Gamma} in the Brillouin zone and estimate the center-band energies of these phonons (these energies have not been uniquely determined so far).
Phononic thermal resistance due to a finite periodic array of nano-scatterers
NASA Astrophysics Data System (ADS)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
2016-07-01
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetric objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5-100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.
Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
Zhu, Diling; Robert, Aymeric; Henighan, Tom; Lemke, Henrik T.; Chollet, Matthieu; Glownia, J. Mike; Reis, David A.; Trigo, Mariano
2015-08-10
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm-1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector positionmore » were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less
Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
Zhu, Diling; Robert, Aymeric; Lemke, Henrik T.; Trigo, Mariano
2015-08-10
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm^{-1} using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.
NASA Astrophysics Data System (ADS)
Torén, H.; Samuelsson, L.; Hellsing, B.
2016-09-01
The aim of this model study of the electron-phonon coupling in graphene was to find out about the relative importance of the inter- and intraband scattering and which phonon modes are the most active. This was achieved by analyzing the electron-phonon matrix element of the carbon dimer in the unit cell. We found that for the intra molecular orbital matrix elements the longitudinal optical phonon mode is the active phonon mode. The matrix element corresponding to σ → σ is greater than the matrix element for π → π . The inter molecular orbital scattering π → σ is driven by the out-of-plane acoustic phonon mode, while the out-of-plane optical mode does not contribute for symmetry reasons. We found the unexpected result that the magnitude of matrix element of the inter molecular orbital scattering π → σ exceeds the intra molecular orbital scattering π → π . These results indicate that the in general not considered inter-band scattering has to be taken into account when analyzing e.g. photo-hole lifetimes and the electron-phonon coupling constant λ from photoemission data of graphene.
NASA Astrophysics Data System (ADS)
Essert, Sven; Schneider, Hans Christian
2011-12-01
We theoretically investigate spin-dependent carrier dynamics due to the electron-phonon interaction after ultrafast optical excitation in ferromagnetic metals. We calculate the electron-phonon matrix elements including the spin-orbit interaction in the electronic wave functions and the interaction potential. Using the matrix elements in Boltzmann scattering integrals, the momentum-resolved carrier distributions are obtained by solving their equation of motion numerically. We find that the optical excitation with realistic laser intensities alone leads to a negligible magnetization change, and that the demagnetization due to electron-phonon interaction is mostly due to hole scattering. Importantly, the calculated demagnetization quenching due to this Elliot-Yafet-type depolarization mechanism is not large enough to explain the experimentally observed result. We argue that the ultrafast demagnetization of ferromagnets does not occur exclusively via an Elliott-Yafet type process, i.e., scattering in the presence of the spin-orbit interaction, but is influenced to a large degree by a dynamical change of the band structure, i.e., the exchange splitting.
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang; Xie, Heng; Gao, Ya; Feng, Danqi; Xiong, Huang
2014-12-29
We propose a scheme for on-chip all optical mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. To describe the mode conversion the theoretical model of the FSBS is established by taking into account the radiation pressure and the electrostriction force simultaneously. The numerical simulation is carried out for the mode conversion from the fundamental mode E11x to the higher-order mode E21x. The results indicate that the mode conversion efficiency is affected by the waveguide length and the input pump light power, and the highest efficiency can reach upto 88% by considering the influence of optical and acoustic absorption losses in the hybrid waveguide. Additionally, the conversion bandwidth with approximate 12.5 THz can be achieved in 1550nm communication band. This mode converter on-chip is a promising device in the integrated optical systems, which can effectively increase the capacity of silicon data busses for on-chip optical interconnections. PMID:25607172
Chen, Guodong; Zhang, Ruiwen; Sun, Junqiang; Xie, Heng; Gao, Ya; Feng, Danqi; Xiong, Huang
2014-12-29
We propose a scheme for on-chip all optical mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide. To describe the mode conversion the theoretical model of the FSBS is established by taking into account the radiation pressure and the electrostriction force simultaneously. The numerical simulation is carried out for the mode conversion from the fundamental mode E11x to the higher-order mode E21x. The results indicate that the mode conversion efficiency is affected by the waveguide length and the input pump light power, and the highest efficiency can reach upto 88% by considering the influence of optical and acoustic absorption losses in the hybrid waveguide. Additionally, the conversion bandwidth with approximate 12.5 THz can be achieved in 1550nm communication band. This mode converter on-chip is a promising device in the integrated optical systems, which can effectively increase the capacity of silicon data busses for on-chip optical interconnections.
Spin-dependent intravalley and intervalley electron-phonon scatterings in germanium
NASA Astrophysics Data System (ADS)
Liu, Z.; Nestoklon, M. O.; Cheng, J. L.; Ivchenko, E. L.; Wu, M. W.
2013-08-01
The spin-dependent electron-phonon scattering in the L and Γ valleys of germanium crystals has been investigated theoretically. For this purpose, the 16 × 16 k · p Hamiltonian correctly describing the electron dispersion in the vicinity of the L point of the Brillouin zone in germanium in the lowest conduction bands and the highest valence bands has been constructed. This Hamiltonian facilitates the analysis of the spin-dependent properties of conduction electrons. Then, the electron scatterings by phonons in the L and Γ valleys, i.e., intra- L valley, intra-Γ valley, inter- L-Γ valley, and inter- L-L valley scatterings, have been considered successively. The scattering matrix expanded in powers of the electron wave vectors counted from the centers of the valleys has been constructed using the invariant method for each type of processes. The numerical coefficients in these matrices have been found by the pseudopotential method. The partial contributions of the Elliott and Yafet mechanisms to the spin-dependent electron scattering have been analyzed. The obtained results can be used in studying the optical orientation and relaxation of hot electrons in germanium.
NASA Astrophysics Data System (ADS)
Poborchii, Vladimir; Tada, Tetsuya; Morita, Yukinori; Kanayama, Toshihiko
2013-10-01
We study Raman spectra of single straight Si-on-insulator (SOI) nanowires (NWs) at the 364 nm excitation wavelength. Uncoated SOI NW Raman band downshift and asymmetric broadening appeared to be smaller than those reported for NW ensembles, where these effects are enhanced due to additional wave-vector relaxation associated with NW imperfections. We observe NW-diameter-inversely proportional symmetric Raman band broadening associated with the phonon boundary scattering (PBS). NW longitudinal optical phonon lifetime and mean free path are determined from the PBS band broadening. SiO2-coated NWs display stress transforming from tensile to compressive with a decrease in the NW width.
Kakodkar, Rohit R.; Feser, Joseph P.
2015-09-07
We present a numerical approach to the solution of elastic phonon-interface and phonon-nanostructure scattering problems based on a frequency-domain decomposition of the atomistic equations of motion and the use of perfectly matched layer (PML) boundaries. Unlike molecular dynamic wavepacket analysis, the current approach provides the ability to simulate scattering from individual phonon modes, including wavevectors in highly dispersive regimes. Like the atomistic Green's function method, the technique reduces scattering problems to a system of linear algebraic equations via a sparse, tightly banded matrix regardless of dimensionality. However, the use of PML boundaries enables rapid absorption of scattered wave energies at the boundaries and provides a simple and inexpensive interpretation of the scattered phonon energy flux calculated from the energy dissipation rate in the PML. The accuracy of the method is demonstrated on connected monoatomic chains, for which an analytic solution is known. The parameters defining the PML are found to affect the performance and guidelines for selecting optimal parameters are given. The method is used to study the energy transmission coefficient for connected diatomic chains over all available wavevectors for both optical and longitudinal phonons; it is found that when there is discontinuity between sublattices, even connected chains of equivalent acoustic impedance have near-zero transmission coefficient for short wavelengths. The phonon scattering cross section of an embedded nanocylinder is calculated in 2D for a wide range of frequencies to demonstrate the extension of the method to high dimensions. The calculations match continuum theory for long-wavelength phonons and large cylinder radii, but otherwise show complex physics associated with discreteness of the lattice. Examples include Mie oscillations which terminate when incident phonon frequencies exceed the maximum available frequency in the embedded nanocylinder, and
Kulpe, Jason A; Sabra, Karim G; Leamy, Michael J
2015-06-01
External scattering from a finite phononic crystal (PC) is studied using the Helmholtz-Kirchhoff integral theorem integrated with a Bloch wave expansion (BWE). The BWE technique is used to describe the internal pressure field of a semi-infinite or layered PC subject to an incident monochromatic plane wave. Following the BWE solution, the Helmholtz-Kirchhoff integral is used to determine the external scattered field. For cubic PCs, the scattered results are compared to numerical treatments in both the frequency and time domain. The presented approach is expected to be valid when the PC size is larger than the acoustic wavelength. However, very good agreement in the spatial beam pattern is also documented for both large and small (with respect to the wavelength) PCs. The result of this work is a fully-analytical, efficient, and verified approach for accurately predicting external scattering from finite, three-dimensional PCs.
Size and temperature dependence of the electron–phonon scattering by donors in nanowire transistors
NASA Astrophysics Data System (ADS)
Bescond, M.; Carrillo-Nuñez, H.; Berrada, S.; Cavassilas, N.; Lannoo, M.
2016-08-01
Due to the constant size reduction, single-donor-based nanowire transistors receive an increasing interest from the semi-conductor industry. In this work we theoretically investigate the coupled influence of electron-phonon scattering, temperature and size (cross-section and channel length) on the properties of such systems. The aim is to determine under what conditions the localized character of the donor has a remarkable impact on the current characteristics. We use a quantum non-equilibrium Green's function approach in which the acoustic electron-phonon scattering is treated through local self-energies. We first show how this widely used approach, valid at high temperatures, can be extended to lower temperatures. Our simulations predict a hysteresis in the current when reducing the temperature down to 150 K. We also find that acoustic phonons degrade the current characteristics while their optical counterparts might have a beneficial impact with an increase of the ON-current. Finally we discuss the influence of nanowire length and cross-section and emphasize the complexity of precisely controlling the dopant level at room temperature.
Size and temperature dependence of the electron-phonon scattering by donors in nanowire transistors
NASA Astrophysics Data System (ADS)
Bescond, M.; Carrillo-Nuñez, H.; Berrada, S.; Cavassilas, N.; Lannoo, M.
2016-08-01
Due to the constant size reduction, single-donor-based nanowire transistors receive an increasing interest from the semi-conductor industry. In this work we theoretically investigate the coupled influence of electron-phonon scattering, temperature and size (cross-section and channel length) on the properties of such systems. The aim is to determine under what conditions the localized character of the donor has a remarkable impact on the current characteristics. We use a quantum non-equilibrium Green's function approach in which the acoustic electron-phonon scattering is treated through local self-energies. We first show how this widely used approach, valid at high temperatures, can be extended to lower temperatures. Our simulations predict a hysteresis in the current when reducing the temperature down to 150 K. We also find that acoustic phonons degrade the current characteristics while their optical counterparts might have a beneficial impact with an increase of the ON-current. Finally we discuss the influence of nanowire length and cross-section and emphasize the complexity of precisely controlling the dopant level at room temperature.
NASA Astrophysics Data System (ADS)
Holmes, Jesse Curtis
Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be
Excitons in one-phonon resonant Raman scattering: Fröhlich and interference effects
NASA Astrophysics Data System (ADS)
Cantarero, A.; Trallero-Giner, C.; Cardona, M.
1989-12-01
A theoretical model of resonant Raman scattering including excitons as intermediate states in the process is compared with recent experimental results in some III-V compound semiconductors where the Raman polarizability was obtained in absolute value for several scattering configurations. In particular, Fröhlich (F) interaction and its interference with the deformation potential (DP) one is analyzed in the E0+Δ0 critical point (CP) of GaAs at three different temperatures. Also the E0 and E0+Δ0 CP of GaP and E0+Δ0 of GaSb are analyzed. We show that the inclusion of impurity-induced forbidden LO-phonon Raman scattering is not necessary when excitonic effects are considered. The experimental data of GaAs corresponding to F interaction can be fitted by assuming a Fröhlich constant cF=0.14 eV Aṥ/2. Lifetime broadenings of 12 meV (10 K), 14 meV (100 K), and 28 meV (300 K) are deduced. The lifetime broadening of GaAs and GaSb at 100 K are taken from two-phonon Raman scattering spectra where the incoming and outgoing resonances are well defined. The general features in the comparison with the experiment is that the measured spectra corresponding to F interaction are well fitted; however, the theoretical interference is stronger than the measured one.
NASA Astrophysics Data System (ADS)
Xie, Hong-Yi; Foster, Matthew S.
2016-05-01
We study the electric and thermal transport of the Dirac carriers in monolayer graphene using the Boltzmann-equation approach. Motivated by recent thermopower measurements [F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016), 10.1103/PhysRevLett.116.136802], we consider the effects of quenched disorder, Coulomb interactions, and electron-optical-phonon scattering. Via an unbiased numerical solution to the Boltzmann equation we calculate the electrical conductivity, thermopower, and electronic component of the thermal conductivity, and discuss the validity of Mott's formula and of the Wiedemann-Franz law. An analytical solution for the disorder-only case shows that screened Coulomb impurity scattering, although elastic, violates the Wiedemann-Franz law even at low temperature. For the combination of carrier-carrier Coulomb and short-ranged impurity scattering, we observe the crossover from the interaction-limited (hydrodynamic) regime to the disorder-limited (Fermi-liquid) regime. In the former, the thermopower and the thermal conductivity follow the results anticipated by the relativistic hydrodynamic theory. On the other hand, we find that optical phonons become non-negligible at relatively low temperatures and that the induced electron thermopower violates Mott's formula. Combining all of these scattering mechanisms, we obtain the thermopower that quantitatively coincides with the experimental data.
Using high pressure to study thermal transport and phonon scattering mechanisms
NASA Astrophysics Data System (ADS)
Hohensee, Gregory Thomas
The aerospace industry studies nanocomposites for heat dissipation and moderation of thermal expansion, and the semiconductor industry faces a Joule heating barrier in devices with high power density. My primary experimental tools are the diamond anvil cell (DAC) coupled with time-domain thermoreflectance (TDTR). TDTR is a precise optical method well-suited to measuring thermal conductivities and conductances at the nanoscale and across interfaces. The DAC-TDTR method yields thermal property data as a function of pressure, rather than temperature. This relatively unexplored independent variable can separate the components of thermal conductance and serve as an independent test for phonon-defect scattering models. I studied the effect of non-equilibrium thermal transport at the aluminum-coated surface of an exotic cuprate material Ca9La5Cu 24O41, which boasts a tenfold enhanced thermal conductivity along one crystalline axis where two-leg copper-oxygen spin-ladder structures carry heat in the form of thermalized magnetic excitations. Highly anisotropic materials are of interest for controlled thermal management applications, and the spin-ladder magnetic heat carriers ("magnons") are not well understood. I found that below room temperature, the apparent thermal conductivity of Ca9La5Cu24O41 depends on the frequency of the applied surface heating in TDTR. This occurs because the thermal penetration depth in the TDTR experiment is comparable to the length-scale for the equilibration of the magnons that are the dominant channel for heat conduction and the phonons that dominate the heat capacity. I applied a two-temperature model to analyze the TDTR data and extracted an effective volumetric magnon-phonon coupling parameter g for Ca9La5Cu24O 41 at temperatures from 75 K to 300 K; g varies by approximately two orders of magnitude over this range of temperature and has the value g = 1015 W m-3 K-1 near the peak of the thermal conductivity at T ≈ 180 K. To examine
Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
Martin, Pierre; Aksamija, Zlatan; Pop, Eric; Ravaioli, Umberto
2009-03-27
We present a novel approach for computing the surface roughness-limited thermal conductivity of silicon nanowires with diameter D<100 nm. A frequency-dependent phonon scattering rate is computed from perturbation theory and related to a description of the surface through the root-mean-square roughness height Delta and autocovariance length L. Using a full phonon dispersion relation, we find a quadratic dependence of thermal conductivity on diameter and roughness as (D/Delta)(2). Computed results show excellent agreement with experimental data for a wide diameter and temperature range (25-350 K), and successfully predict the extraordinarily low thermal conductivity of 2 W m(-1) K-1 at room temperature in rough-etched 50 nm silicon nanowires. PMID:19392295
NASA Astrophysics Data System (ADS)
Anufriev, Roman; Maire, Jeremie; Nomura, Masahiro
2016-01-01
We investigate the impact of various phonon-scattering mechanisms on the in-plane thermal conductivity of suspended silicon thin films with two-dimensional periodic arrays of holes, i.e., phononic crystal (PnC) nanostructures. A large amount of data on the PnC structures with square, hexagonal, and honeycomb lattices reveals that the thermal conductivity is mostly determined by the surface-to-volume ratio. However, as the characteristic size of the structure is reduced down to several tens of nanometers, thermal conductivity becomes independent of the surface-to-volume ratio, lattice type, and other geometrical parameters, being controlled solely by the distance between adjacent holes (neck size).
Spin-flip relaxation via optical phonon scattering in quantum dots
Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen
2013-12-14
Based on the spin-orbit coupling admixture mechanism, we theoretically investigate the spin-flip relaxation via optical phonon scattering in quantum dots by considering the effect of lattice relaxation due to the electron-acoustic phonon deformation potential coupling. The relaxation rate displays a cusp-like structure (or a spin hot spot) that becomes more clearly with increasing temperature. We also calculate the relaxation rate of the spin-conserving process, which follows a Gaussian form and is several orders of magnitude larger than that of spin-flip process. Moreover, we find that the relaxation rate displays the oscillatory behavior due to the interplay effects between the magnetic and spatial confinement for the spin-flip process not for the spin-conserving process. The trends of increasing and decreasing temperature dependence of the relaxation rates for two relaxation processes are obtained in the present model.
Acoustic phonons in chrysotile asbestos probed by high-resolution inelastic x-ray scattering
Mamontov, Eugene; Vakhrushev, S. B.; Kumzerov, Yu. A,; Alatas, A.
2009-01-01
Acoustic phonons in an individual, oriented fiber of chrysotile asbestos (chemical formula Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}) were observed at room temperature in the inelastic x-ray measurement with a very high (meV) resolution. The x-ray scattering vector was aligned along [1 0 0] direction of the reciprocal lattice, nearly parallel to the long axis of the fiber. The latter coincides with [1 0 0] direction of the direct lattice and the axes of the nano-channels. The data were analyzed using a damped harmonic oscillator model. Analysis of the phonon dispersion in the first Brillouin zone yielded the longitudinal sound velocity of (9200 {+-} 600) m/s.
Phonon scattering limited performance of monolayer MoS{sub 2} and WSe{sub 2} n-MOSFET
Sengupta, Amretashis; Chanana, Anuja; Mahapatra, Santanu
2015-02-15
In this paper we show the effect of electron-phonon scattering on the performance of monolayer (1L) MoS{sub 2} and WSe{sub 2} channel based n-MOSFETs. Electronic properties of the channel materials are evaluated using the local density approximation (LDA) in density functional theory (DFT). For phonon dispersion we employ the small displacement / frozen phonon calculations in DFT. Thereafter using the non-equilibrium Green’s function (NEGF) formalism, we study the effect of electron-phonon scattering and the contribution of various phonon modes on the performance of such devices. It is found that the performance of the WSe{sub 2} device is less impacted by phonon scattering, showing a ballisticity of 83% for 1L-WSe{sub 2} FET for channel length of 10 nm. Though 1L-MoS{sub 2} FET of similar dimension shows a lesser ballisticity of 75%. Also in the presence of scattering there exist a a 21–36% increase in the intrinsic delay time (τ) and a 10–18% reduction in peak transconductance (g{sub m}) for WSe{sub 2} and MoS{sub 2} devices respectively.
Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO_{3}
Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; Gehring, P. M.; Stock, C.; Matsuda, Masaaki; Winn, Barry L.; Gu, Genda; Shapiro, Stephen M.; Birgeneau, R. J.; Ushiyama, T.; Yanagisawa, Y.; Tomioka, Y.; Ito, T.; Xu, Guangyong
2015-02-10
In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO_{3}. The dispersions of the three acoustic phonon modes (LA along [100], TA_{1} along [010], and TA_{2} along [110]) and two low-energy optic phonon modes (LO and TO_{1}) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature T_{N}=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in this multiferroic material are coupled.
Neutron inelastic scattering measurements of low-energy phonons in the multiferroic BiFeO3
Schneeloch, John A.; Xu, Zhijun; Wen, Jinsheng; Gehring, P. M.; Stock, C.; Matsuda, Masaaki; Winn, Barry L.; Gu, Genda; Shapiro, Stephen M.; Birgeneau, R. J.; et al
2015-02-10
In this study, we present neutron inelastic scattering measurements of the low-energy phonons in single crystal BiFeO3. The dispersions of the three acoustic phonon modes (LA along [100], TA1 along [010], and TA2 along [110]) and two low-energy optic phonon modes (LO and TO1) have been mapped out between 300 and 700 K. Elastic constants are extracted from the phonon measurements. The energy linewidths of both TA phonons at the zone boundary clearly broaden when the system is warmed toward the magnetic ordering temperature TN=640 K. In conclusion, this suggests that the magnetic order and low-energy lattice dynamics in thismore » multiferroic material are coupled.« less
Phonon wave-packet scattering and energy dissipation dynamics in carbon nanotube oscillators
NASA Astrophysics Data System (ADS)
Prasad, Matukumilli V. D.; Bhattacharya, Baidurya
2015-12-01
Friction in carbon nanotube (CNT) oscillators can be explained in terms of the interplay between low frequency mechanical motions and high frequency vibrational modes of the sliding surfaces. We analyze single mode phonon wave packet dynamics of CNT based mechanical oscillators, with cores either stationary or sliding with moderate velocities, and study how various individual phonons travel through the outer CNT, interact with the inner nanostructure, and undergo scattering. Two acoustic modes (longitudinal and transverse) and one optical mode (flexural optical) are found to be responsible for the major portion of friction in these oscillators: the transmission functions display a significant dip in the rather narrow frequency range of 5-15 meV. We also find that the profile of the dip is characteristic of the inner core. In contrast, radial breathing and twisting modes, which are dominant in thermal transport, display ideal transmission at all frequencies. We also observe polarization dependent scattering and find that the scattering dynamics comprises of an oscillating decay of localized energy inside the inner CNT. This work provides a way towards engineering CNT linear oscillators with better tribological properties.
Role of triple phonon excitations in large angle quasi-elastic scattering of very heavy mass systems
NASA Astrophysics Data System (ADS)
Zamrun, Muhammad Firihu
2016-07-01
We study the effect of multi-phonon excitations on large-angle quasi-elastic scattering of massive systems using the full order coupled-channels formalism. We especially investigate the role of triple phonon excitations of the target and projectile nuclei on the quasi-elastic scattering cross-section as well as the barrier distribution for 54Cr, 56Fe, 64Ni and 70Zn + 208Pb systems. It is shown that the calculations taken into account, the triple octupole phonon excitations of the target and triple quadrupole phonon excitations of the projectile for these systems can explain the experimental data of the quasi-elastic cross-section and the quasi-elastic barrier distribution. These results indicate that the coupled-channels formalism is still valid even for the very heavy mass systems.
Influence of magnetism on phonons in CaFe2As2 as seen via inelastic x-ray scattering
Hahn, S.E.; Lee, Y.; Ni, N.; Canfield, P.C.; Goldman, A.I.; McQueeney, R.J.; Harmon, B.N.; Alatas, A.; Leu, B.M.; Alp, E.E.; Chung, D.Y.; Todorov, I.S.; Kanatzidis, M.G.
2009-06-19
In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high-temperature tetragonal phase of CaFe{sub 2}As{sub 2} using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.
Gutmann, Matthias J.; Graziano, Gabriella; Mukhopadhyay, Sanghamitra; Refson, Keith; von Zimmerman, Martin
2015-01-01
Direct phonon excitation in a neutron time-of-flight single-crystal Laue diffraction experiment has been observed in a single crystal of NaCl. At room temperature both phonon emission and excitation leave characteristic features in the diffuse scattering and these are well reproduced using ab initio phonons from density functional theory (DFT). A measurement at 20 K illustrates the effect of thermal population of the phonons, leaving the features corresponding to phonon excitation and strongly suppressing the phonon annihilation. A recipe is given to compute these effects combining DFT results with the geometry of the neutron experiment. PMID:26306090
Surface defects characterization in a quantum wire by coherent phonons scattering
NASA Astrophysics Data System (ADS)
Rabia, M. S.
2015-03-01
The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour's interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.
Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.
2015-11-03
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities c_{v} (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities c_{v} (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10^{-4} eV/atom K at 100 K to 1.4 x 10^{-4} eV/atom K at 200 K and 1.9 x 10^{-4} eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values c_{p} (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θ_{c} where θ_{c} is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.
Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.
2015-11-03
Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found tomore » be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less
NASA Astrophysics Data System (ADS)
Baral, Alexander; Vollmar, Svenja; Schneider, Hans Christian
2014-07-01
We present a microscopic calculation of magnetization damping for a magnetic "toy model." The magnetic system consists of itinerant carriers coupled antiferromagnetically to a dispersionless band of localized spins, and the magnetization damping is due to coupling of the itinerant carriers to a phonon bath in the presence of spin-orbit coupling. Using a mean-field approximation for the kinetic exchange model and assuming the spin-orbit coupling to be of the Rashba form, we derive Boltzmann scattering integrals for the distributions and spin conherences in the case of an antiferromagnetic exchange splitting, including a careful analysis of the connection between lifetime broadening and the magnetic gap. For incoherent scattering of itinerant carriers with the phonon bath, i.e., the Elliott-Yafet mechanism, we extract dephasing and magnetization times T1 and T2 from initial conditions corresponding to a tilt of the magnetization vector and draw a comparison to phenomenological equations such as the Landau-Lifshitz (LL) or the Gilbert damping. We also analyze magnetization precession and damping for this system including an anisotropy field and find a carrier mediated dephasing of the localized spin via the mean-field coupling.
Bulk phonon scattering in perturbed quasi-3D multichannel crystallographic waveguide.
Rabia, M S
2008-11-19
In the present paper, we concentrate on the influence of local defects on scattering properties of elastic waves in perturbed crystalline quasi-three-dimensional nanostructures in the harmonic approximation. Our model consists of three infinite atomic planes, assimilated into a perfect waveguide in which different distributions of scatterers (or defects) are inserted in the bulk. We have investigated phonon transmission and conductance for three bulk defect configurations. The numerical treatment of the problem, based on the Landauer approach, resorts to the matching method initially employed for the study of surface localized phonons and resonances. We present a detailed study of the defect-induced fluctuations in the transmission spectra. These fluctuations can be related to Fano resonances and Fabry-Pérot oscillations. The first is due to the coupling between localized defect states and the perfect waveguide propagating modes whereas the latter results from the interference between incidental and reflected waves. Numerical results reveal the intimate relation between transmission spectra and localized impurity states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. PMID:21693856
Plasmon-enhanced phonon and ionized impurity scattering in doped silicon
Chen, Ming-Jer Hsieh, Shang-Hsun; Chen, Chuan-Li
2015-07-28
Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10{sup 15}–10{sup 20 }cm{sup −3}). Application of the proposed method to strained silicon is also demonstrated.
Dhital, Chetan; Abernathy, Douglas L; Zhu, Gaohua; Ren, Zhifeng; Broido, D.; Wilson, Stephen D
2012-01-01
Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques. Dynamic signatures of Ge clustering can be inferred from the data by referencing the resulting spectra to a density functional theoretical model assuming homogeneous alloying via the virtual-crystal approximation. Comparisons are also presented between as-milled Si nanopowder and bulk, polycrystalline Si where a preferential low-energy enhancement and lifetime broadening of the phonon density of states appear in the nanopowder. Negligible differences are however observed between the phonon spectra of bulk Si andhot-pressed, nanostructured Si samples suggesting that changes to the single-phonon dynamics above 4 meV play only a secondary role in the modified heat conduction of this compound.
NASA Astrophysics Data System (ADS)
Lin, Yow-Jon
2015-12-01
A correlation between the temperature-dependent leakage conduction, phonon and impurity scatterings and potential fluctuations of graphene/n-type Si Schottky diodes is identified. For applying a sufficiently high reverse-bias voltage, the significantly increase in the leakage current density with voltage at low temperature is mainly the result of graphene's Fermi-energy shifts. However, the high-field saturating leakage current is observed at high temperature. This is because of the competition among the phonon and impurity scatterings. In the graphene film transferred onto the n-type Si substrate, the Femi energy level is lower and the phonon coupling is stronger, giving a stronger dependence in the carrier velocity with temperature and a weaker dependence in the leakage current density with reserve-bias voltage.
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Yushchenko, A. N.; Korolyuk, O. A.; Bermejo, F. J.; Fernandez-Perea, R.; Bustinduy, I.; González, M. A.
2008-01-01
The thermal conductivity κ(T) of the crystalline and glassy phases of the two isomers of propyl alcohol has been measured. The two isomers differ by a minor chemical detail involving the position of the hydroxyl group with respect to the carbon backbone. Such a difference in molecular structure leads, however, to disparate behaviors for the temperature dependence of κ(T) , for both glass and crystal states. The κ(T) for the glass shows for 1-propanol an anomalously large plateau region comprising temperatures within 6-90K , while data for isomeric 2-propanol show only a small plateau up to 10K which is comparable to data on lower alcohols. The results emphasize the role played by internal molecular degrees of freedom as sources of strong resonant phonon scattering.
Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering.
Yang, Lei; Chen, Zhi-Gang; Hong, Min; Han, Guang; Zou, Jin
2015-10-28
N-type Bi2Te3 nanostructures were synthesized using a solvothermal method and in turn sintered using sparking plasma sintering. The sintered n-type Bi2Te3 pellets reserved nanosized grains and showed an ultralow lattice thermal conductivity (∼0.2 W m(-1) K(-1)), which benefits from high-density small-angle grain boundaries accommodated by dislocations. Such a high phonon scattering leads an enhanced ZT of 0.88 at 400 K. This study provides an efficient method to enhance thermoelectric performance of thermoelectric nanomaterials through nanostructure engineering, making the as-prepared n-type nanostructured Bi2Te3 as a promising candidate for room-temperature thermoelectric power generation and Peltier cooling. PMID:26451626
Enhanced Thermoelectric Performance of Nanostructured Bi2Te3 through Significant Phonon Scattering.
Yang, Lei; Chen, Zhi-Gang; Hong, Min; Han, Guang; Zou, Jin
2015-10-28
N-type Bi2Te3 nanostructures were synthesized using a solvothermal method and in turn sintered using sparking plasma sintering. The sintered n-type Bi2Te3 pellets reserved nanosized grains and showed an ultralow lattice thermal conductivity (∼0.2 W m(-1) K(-1)), which benefits from high-density small-angle grain boundaries accommodated by dislocations. Such a high phonon scattering leads an enhanced ZT of 0.88 at 400 K. This study provides an efficient method to enhance thermoelectric performance of thermoelectric nanomaterials through nanostructure engineering, making the as-prepared n-type nanostructured Bi2Te3 as a promising candidate for room-temperature thermoelectric power generation and Peltier cooling.
Raman scattering by confined optical phonons in Si and Ge nanostructures.
Alfaro, Pedro; Cisneros, Rodolfo; Bizarro, Monserrat; Cruz-Irisson, Miguel; Wang, Chumin
2011-03-01
A microscopic theory of the Raman scattering based on the local bond-polarizability model is presented and applied to the analysis of phonon confinement in porous silicon and porous germanium, as well as nanowire structures. Within the linear response approximation, the Raman shift intensity is calculated by means of the displacement-displacement Green's function and the Born model, including central and non-central interatomic forces. For the porous case, the supercell method is used and ordered pores are produced by removing columns of Si or Ge atoms from their crystalline structures. This microscopic theory predicts a remarkable shift of the highest-frequency of first-order Raman peaks towards lower energies, in comparison with the crystalline case. This shift is discussed within the quantum confinement framework and quantitatively compared with the experimental results obtained from porous silicon samples, which were produced by anodizing p--type (001)-oriented crystalline Si wafers in a hydrofluoric acid bath. PMID:21270988
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2007-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Williams, Benjamin S. (Inventor)
2009-01-01
The present invention provides quantum cascade lasers and amplifier that operate in a frequency range of about 1 Terahertz to about 10 Terahertz. In one aspect, a quantum cascade laser of the invention includes a semiconductor heterostructure that provides a plurality of lasing modules connected in series. Each lasing module includes a plurality of quantum well structure that collectively generate at least an upper lasing state, a lower lasing state, and a relaxation state such that the upper and the lower lasing states are separated by an energy corresponding to an optical frequency in a range of about 1 to about 10 Terahertz. The lower lasing state is selectively depopulated via resonant LO-phonon scattering of electrons into the relaxation state.
Carrier scattering processes and low energy phonon spectroscopy in hybrid perovskites crystals
NASA Astrophysics Data System (ADS)
Even, Jacky; Paofai, Serge; Bourges, Philippe; Letoublon, Antoine; Cordier, Stéphane; Durand, Olivier; Katan, Claudine
2016-03-01
Despite the wealth of research conducted the last three years on hybrid organic perovskites (HOP), several questions remain open including: to what extend the organic moiety changes the properties of the material as compared to allinorganic (AIP) related perovskite structures. To ultimately reach an answer to this question, we have recently introduced two approaches that were designed to take the stochastic molecular degrees of freedom into account, and suggested that the high temperature cubic phase of HOP and AIP is an appropriate reference phase to rationalize HOP's properties. In this paper, we recall the main concepts and discuss more specifically the various possible couplings between charge carriers and low energy excitations such as acoustic and optical phonons. As available experimental or simulated data on low energy excitations are limited, we also present preliminary neutron scattering and ultrasonic measurements obtained and freshly prepared single crystals of CH3NH3PbBr3.
NASA Astrophysics Data System (ADS)
Donovan, Brian F.; Sachet, Edward; Maria, Jon-Paul; Hopkins, Patrick E.
2016-01-01
Understanding the impact and complex interaction of thermal carrier scattering centers in functional oxide systems is critical to their progress and application. In this work, we study the interplay among electron and phonon thermal transport, mass-impurity scattering, and phonon-vacancy interactions on the thermal conductivity of cadmium oxide. We use time domain thermoreflectance to measure the thermal conductivity of a set of CdO thin films doped with Dy up to the saturation limit. Using measurements at room temperature and 80 K, our results suggest that the enhancement in thermal conductivity at low Dy concentrations is dominated by an increase in the electron mobility due to a decrease in oxygen vacancy concentration. Furthermore, we find that at intermediate doping concentrations, the subsequent decrease in thermal conductivity can be ascribed to a large reduction in phononic thermal transport due to both point defect and cation-vacancy scattering. With these results, we gain insight into the complex dynamics driving phonon scattering and resulting thermal transport in functional oxides.
Ghosh, Krishnendu Singisetti, Uttam
2015-02-14
N-polar GaN channel mobility is important for high frequency device applications. Here, we report theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2DEG) in N-polar GaN quantum well channels with high-k dielectrics. Rode's iterative calculation is used to predict the scattering rate and mobility. Coupling of the GaN plasmon modes with the SO modes is taken into account and dynamic screening is employed under linear polarization response. The effect of SO phonons on 2DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with HfO{sub 2} and ZrO{sub 2} high-k dielectrics is low and limits the total mobility. The SO scattering for SiN dielectric on GaN was found to be negligible due to its high SO phonon energy. Using Al{sub 2}O{sub 3}, the SO phonon scattering does not affect mobility significantly only except the case when the channel is too thin with a low 2DEG density.
Surface defects characterization in a quantum wire by coherent phonons scattering
Rabia, M. S.
2015-03-30
The influence of surface defects on the scattering properties of elastic waves in a quasi-planar crystallographic waveguide is studied in the harmonic approximation using the matching method formalism. The structural model is based on three infinite atomic chains forming a perfect lattice surmounted by an atomic surface defect. Following the Landauer approach, we solve directly the Newton dynamical equation with scattering boundary conditions and taking into account the next nearest neighbour’s interaction. A detailed study of the defect-induced fluctuations in the transmission spectra is presented for different adatom masses. As in the electronic case, the presence of localized defect-induced states leads to Fano-like resonances. In the language of mechanical vibrations, these are called continuum resonances. Numerical results reveal the intimate relation between transmission spectra and localized defect states and provide a basis for the understanding of conductance spectroscopy experiments in disordered mesoscopic systems. The results could be useful for the design of phononic devices.
Phonon scattering in strained transition layers for GaN heteroepitaxy
NASA Astrophysics Data System (ADS)
Cho, Jungwan; Li, Yiyang; Hoke, William E.; Altman, David H.; Asheghi, Mehdi; Goodson, Kenneth E.
2014-03-01
Strained transition layers, which are common for heteroepitaxial growth of functional semiconductors on foreign substrates, include high defect densities that impair heat conduction. Here, we measure the thermal resistances of AlN transition layers for GaN on Si and SiC substrates in the temperature range 300
Fleurial, J.P.
1993-09-01
The addition of ultrafine scattering centers into Bi{sub 2}Te{sub 3}-based materials and their impact on the thermal and electrical transport properties in a 200-500 K temperature range are discussed. Based on previous theoretical efforts, the resulting improvements in the figure of merit of these heavily doped thermoelectric semiconductors were calculated as a function of composition, temperature, doping level, particulate size and concentration. Determination of the lattice thermal conductivity of the various alloys was conducted by considering phonon-phonon, carrier-phonon, point defect and inert scattering center scattering mechanisms. Degradation of the electrical properties due to the increase scattering rate was also taken into account. Practical application of these results is considered.
Ab initio simulation of single- and few-layer MoS2 transistors: Effect of electron-phonon scattering
NASA Astrophysics Data System (ADS)
Szabó, Áron; Rhyner, Reto; Luisier, Mathieu
2015-07-01
In this paper, we present full-band atomistic quantum transport simulations of single- and few-layer MoS2 field-effect transistors (FETs) including electron-phonon scattering. The Hamiltonian and the electron-phonon coupling constants are determined from ab initio density-functional-theory calculations. It is observed that the phonon-limited electron mobility is enhanced with increasing layer thicknesses and decreases at high charge concentrations. The electrostatic control is found to be crucial even for a single-layer MoS2 device. With a single-gate configuration, the double-layer MoS2 FET shows the best intrinsic performance with an ON current, ION=685 μ A /μ m , but with a double-gate contact the transistor with a triple-layer channel delivers the highest current with ION=1850 μ A /μ m . The charge in the channel is almost independent of the number of MoS2 layers, but the injection velocity increases significantly with the channel thickness in the double-gate devices due to the reduced electron-phonon scattering rates in multilayer structures. We demonstrate further that the ballistic limit of transport is not suitable for the simulation of MX 2 FETs because of the artificial negative differential resistance it predicts.
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Yushchenko, A. N.; Manzhelii, V. G.; Korolyuk, O. A.; Bermejo, F. J.; Fernández-Perea, R.; Cabrillo, C.; González, M. A.
2006-08-01
The thermal conductivity of all three disordered solid phases of ethyl alcohol has been measured. That for the orientationally disordered bcc phase is found to be remarkably close to that for the structurally amorphous solid, especially at low temperatures. The results, which emphasize the role of orientational disorder in phonon scattering, are discussed with the aid of computer simulations on single-crystalline models of both bcc and monoclinic crystals.
Jarlov, C; Wodey, É; Lyasota, A; Calic, M; Gallo, P; Dwir, B; Rudra, A; Kapon, E
2016-08-12
Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment. PMID:27563983
NASA Astrophysics Data System (ADS)
Jarlov, C.; Wodey, É.; Lyasota, A.; Calic, M.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.
2016-08-01
Using site-controlled semiconductor quantum dots (QDs) free of multiexcitonic continuum states, integrated with photonic crystal membrane cavities, we clarify the effects of pure dephasing and phonon scattering on exciton-cavity coupling in the weak-coupling regime. In particular, the observed QD-cavity copolarization and cavity mode feeding versus QD-cavity detuning are explained quantitatively by a model of a two-level system embedded in a solid-state environment.
Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.
Ortiz, Brenden R; Peng, Haowei; Lopez, Armando; Parilla, Philip A; Lany, Stephan; Toberer, Eric S
2015-07-15
The design of thermoelectric materials often involves the integration of point defects (alloying) as a route to reduce the lattice thermal conductivity. Classically, the point defect scattering strength follows from simple considerations such as mass contrast and the presence of induced strain fields (e.g. radius contrast, coordination changes). While the mass contrast can be easily calculated, the associated strain fields induced by defect chemistry are not readily predicted and are poorly understood. In this work, we use classical and first principles calculations to provide insight into the strain field component of phonon scattering from isoelectronic point defects. Our results also integrate experimental measurements on bulk samples of SnSe and associated alloys with S, Te, Ge, Sr and Ba. These efforts highlight that the strength and extent of the resulting strain field depends strongly on defect chemistry. Strain fields can have a profound impact on the local structure. For example, in alloys containing Ba, the strain fields have significant spatial extent (1 nm in diameter) and produce large shifts in the atomic equilibrium positions (up to 0.5 Å). Such chemical complexity suggests that computational assessment of point defects for thermal conductivity depression should be hindered. However, in this work, we present and verify several computational descriptors that correlate well with the experimentally measured strain fields. Furthermore, these descriptors are conceptually transparent and computationally inexpensive, allowing computation to provide a pivotal role in the screening of effective alloys. The further development of point defect engineering could complement or replace nanostructuring when optimizing the thermal conductivity, offering the benefits of thermodynamic stability, and providing more clearly defined defect chemistry. PMID:26145414
NASA Astrophysics Data System (ADS)
Nag Chowdhury, Basudev; Chattopadhyay, Sanatan
2016-09-01
In the current work, the impact of electron-phonon scattering phenomena on the transport behaviour of silicon nanowire field-effect-transistors with sub-mean free path channel length has been investigated by developing a theoretical model that incorporates the responses of carrier effective mass mismatch between the channel and source/drain. For this purpose, a set of relevant quantum field equations has been solved by non-equilibrium Green's function formalism. The obtained device current for a particular set of biases is found to decrease due to phonon scattering below a certain doping level of source/drain, above which it is observed to enhance anomalously. Analyses of the quantified scattering lifetime and power dissipation at various confinement modes of the device indicates that such unusual enhancement of current is originated from the power served by phonons instead of associated decay processes. The power generation has been observed to improve by using high-k materials as gate insulator. Such results may contribute significantly to the future nano-electronic applications for energy harvesting.
Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics
Lu, Haoran; Wang, Chang-An; Huang, Yong; Xie, Huimin
2014-01-01
Authors reported an effective path to decrease the thermal conductivity while to increase the coefficient of thermal expansion, thus enhancing the thermo-physical properties of the LnMeA11O19-type magnetoplumbite LaMgAl11O19 by simultaneously substituting La3+, Mg2+ and Al3+ ions with large ionic radius Ba2+, Zn2+ and Ti4+, respectively. The mechanism behind the lowered thermal conductivity was mainly due to the multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics. These modes involve the following four aspects, namely, point defect mechanism, the intrinsic scattering in the complex crystal cell and materials with stepped surface to localize phonon vibrational modes, as well as nano-platelet-like structure to incorporate additional grain boundary scattering. This study provides novel thoughts for promising candidate materials of even lower thermal conductivity for the next generation thermal barrier coatings. PMID:25351166
NASA Astrophysics Data System (ADS)
Basak, Tista; Rao, Mala N.; Chaplot, S. L.; Salke, Nilesh; Rao, Rekha; Dhanasekaran, R.; Rajarajan, A. K.; Rols, S.; Mittal, R.; Jayakrishnan, V. B.; Sastry, P. U.
2014-01-01
Inelastic neutron scattering, Raman and X-ray diffraction measurements coupled with lattice dynamical calculations (employing a semi-empirical transferable potential model) have been carried out to gain a detailed understanding of the peculiar vibrational spectrum exhibited by the mixed crystal ZnS1-xSex. Raman scattering measurements performed over a varying range of temperature (100-800 K) and pressure (up to 13 GPa) have confirmed that the additional mode observed in the spectra are visible over the entire range of temperature and pressure. Correlation of the individual motions of atoms (obtained from computed total and partial phonon density of states) with the inelastic neutron scattering measurements (carried out over the entire Brillouin zone) have then indicated that the existence of the additional mode in ZnS1-xSex is due to the vibrations of the Se atom being in resonance with that of the S atom. Further, it has been shown that the presence of this additional mode can be tuned by varying the mass of the atom at the Se site. In addition, an analysis of bond-length distribution with increasing Se concentration have elucidated that bond-length spread is not responsible for the presence of the additional mode. An analysis of the peak shifts of the Raman modes with temperature and pressure indicate that the anharmonicity of the vibrational modes increases with increasing compositional disorder. This is attributed to the fact that increasing Se concentration gives rise to a distribution of bond-lengths in ZnS1-xSex, which is responsible for this compositional disorder induced anharmonicity. Our computations have thus revealed that mass of the anion is responsible for the presence of additional mode while bond-length distribution gives rise to the existence of compositional disorder induced anharmonicity in ZnS1-xSex. Further, it is observed that the contribution of explicit anharmonicity to the total anharmonicity becomes dominant at higher temperatures. This
A layer-multiple-scattering method for phononic crystals and heterostructures of such
NASA Astrophysics Data System (ADS)
Sainidou, R.; Stefanou, N.; Psarobas, I. E.; Modinos, A.
2005-03-01
We present a computer program to calculate the frequency band structure of an infinite phononic crystal, and the transmission, reflection and absorption of elastic waves by a slab of this crystal. The crystal consists of a stack of identical slices parallel to a given surface; the slice may consist of multilayers of non-overlapping spheres of given periodicity parallel to the surface and homogeneous plates. The elastic coefficients of the various components of the crystal may be complex functions of the frequency. Program summaryTitle of program: MULTEL Catalogue identifier:ADUT Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUT Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computers: Pentium 4 PC, HP J-5600 Installation: University of Athens, Section of Solid State Physics Operating systems: MS Windows, LINUX, HP-UX Programming language used: FORTRAN 77 Memory required to execute with typical data: 0.9M words Number of bits in a word: 32 Number of processors used: 1 Has the code been vectorized or parallelized?: No Distribution format:tar.gz. Number of lines in distributed program, including test data, etc.: 8676 Number of bytes in distributed program, including test data, etc.: 61 459 Nature of physical problem: Calculation of the complex band structure associated with a given surface of a phononic crystal, and of the transmission, reflection and absorption coefficients of elastic waves by a slab of the crystal parallel to the given surface. We note that the ordinary frequency band structure of the infinite crystal is contained within the complex band structure of any surface of the crystal. Method of solution: Solution of the equations of elasticity using multiple-scattering techniques. Restrictions on the complexity of the program: The structures that can be considered consist of parallel planes of non-overlapping spheres of given two-dimensional periodicity and uniform plates. Typical running time: For the
Nakayama, Masaaki Ohno, Tatsuya; Furukawa, Yoshiaki
2015-04-07
We have systematically investigated the photoluminescence (PL) dynamics of free excitons in GaAs/Al{sub 0.3}Ga{sub 0.7}As single quantum wells, focusing on the energy relaxation process due to exciton–acoustic-phonon scattering under non-resonant and weak excitation conditions as a function of GaAs-layer thickness from 3.6 to 12.0 nm and temperature from 30 to 50 K. The free exciton characteristics were confirmed by observation that the PL decay time has a linear dependence with temperature. We found that the free exciton PL rise rate, which is the reciprocal of the rise time, is inversely linear with the GaAs-layer thickness and linear with temperature. This is consistent with a reported theoretical study of the exciton–acoustic-phonon scattering rate in the energy relaxation process in quantum wells. Consequently, it is conclusively verified that the PL rise rate is dominated by the exciton–acoustic-phonon scattering rate. In addition, from quantitative analysis of the GaAs-layer thickness and temperature dependences, we suggest that the PL rise rate reflects the number of exciton–acoustic-phonon scattering events.
Lucas, A A; Sunjic, M; Benedek, G
2013-09-01
An analytic model is developed to describe the inelastic processes occurring when keV Ne(+) ions are scattered at grazing incidence by the (100) surface of LiF. The large energy losses (up to 30 eV) of the reflected Ne(+) particles reported by Borisov et al (1999 Phys. Rev. Lett. 83 5378) are shown to arise specifically from the long-range coupling between the projectiles and the so-called Fuchs-Kliewer (FK) optical phonons of LiF whose fields extend far outside the surface. The strength of the coupling is estimated, allowing one to compute the average number of excited FK phonon quanta (ħωS = 0.071 eV) and hence the mean energy losses. For emerging, neutralized Ne(0), a distinct energy loss mechanism is shown to occur, namely the excitation of FK phonons and other types of surface collective modes associated with the screening of the F(0) 'hole' left behind by the neutralization process. This mechanism contributes a large fraction of the loss, additional to that suffered by the incident Ne(+) ion. The model explains the experimental observations quantitatively (1999 Phys. Rev. Lett. 83 5378). The paper ends with a discussion of the large energy broadening of the observed loss peaks.
NASA Astrophysics Data System (ADS)
Greenstein, Abraham; Hudiono, Yeny; Graham, Samuel; Nair, Sankar
2010-03-01
We present a systematic study to investigate the effects of nonframework cations and the role of phonon scattering mechanisms on the thermal transport properties of zeolite LTA, via experiment and semiempirical lattice dynamics calculations. Our study is motivated by the increasing interest in accurate measurements and mechanistic understanding of the thermal transport properties of zeolite materials. The presence of a nanostructured pore network, extra-framework cations, and tunable framework structure and composition confer interesting thermophysical properties to these materials, making them a good model system to investigate thermal transport in complex materials. Continuous films of zeolite LTA with different nonframework cations (Na+, K+, and Ca+2) were synthesized and characterized. The thermal conductivity was measured using the three-omega method over a wide range of temperature (150-450 K). These are the first thermal conductivity measurements performed on bulk LTA, so they are more accurate than previous measurements, which involved the use of compacted zeolite powders. Our data showed significant dependence of the thermal conductivity on the extra-framework cations as well the temperature. The thermal conductivities of the zeolite LTA samples were modeled with the relaxation time approximation to the Boltzmann transport equation. The full phonon spectra for each type of LTA zeolite were calculated and used in conjunction with semiempirical relaxation time expressions to calculate the thermal conductivity. The results both validated, and suggested the limitations of, this modeling approach. Optical phonons dominated the thermal conductivity and boundarylike scattering was found to be the strongest phonon scattering mechanism, as also observed in MFI zeolite.
NASA Astrophysics Data System (ADS)
Branlund, J. M.; Hofmeister, A.; Dong, J.
2013-12-01
Over the course of several years, we have measured heat transport to high temperatures for a large number (ca. 200) of minerals, rocks, glasses and melts using laser flash analysis which eliminates systematic errors (contact losses and boundary-to-boundary radiative transfer gains) that limit utility of conventional, contact techniques. The database is large enough to elucidate patterns. For most samples and particularly for our >60 non-metallic, large single-crystals, >30 glasses and >12 polycrystals, we show that thermal diffusivity is consistently represented by D(T) =F/T ^G + HT, permitting confident extrapolation from conditions in the laboratory to those in the mantle. The two distinct temperature terms describing D(T) suggest that two microscopic mechanisms of conduction exist in the electrical insulators explored. We propose that phonon scattering (the F/T^G term) sums with radiative diffusion of infrared (IR) light in the form of polaritons (the HT term). Speeds near that of sound over unit cell scale lengths exist for the polariton mechanism due to phonon-photon coupling, thereby distinguishing this proposed mechanism from high frequency diffusive radiative transfer which travels near the speed of light, and only is important following transient heating. For 63 single-crystals and many glasses unaffected by disordering or reconstructive phase transitions, G ranges from 0.3 to 2, depending on structure, and H is ~0.0001/ K, and so HT crosses F/T^G by ~1300 K (for most oxides), meaning that radiative diffusion of IR light is more important than phonon scattering inside the Earth. Importantly, the increase in heat transport due to elevated temperature is augmented by the increase due to high P inside planets, providing stability against convection. The popular view of a vigorously convecting interior needs revisiting, given known feedback in the temperature equation and the large size of the HT term. To understand the microscopic basis of HT term, we re
Zhang, Ruiwen; Chen, Guodong; Sun, Junqiang
2016-06-13
We present the generation of forward stimulated Brillouin scattering (FSBS) in hybrid phononic-photonic waveguides. To confine the optical and acoustic waves simultaneously, a hybrid waveguide is designed by embedding the silicon line defect in the silicon nitride phononic crystal slab. By taking into account three kinds hybrid waveguide, the appropriate structural parameters are obtained to enhance the acousto-optic interaction. We fabricate the honeycomb hybrid waveguide with a CMOS compatible technology. The forward Brillouin frequency shift is measured up to 2.425 GHz and the acoustic Q-factor of the corresponding acoustic mode is 1100. The influences of pump power, acoustic loss, nonlinear optical loss and lattice constant on the acousto-optic interaction in FSBS are analyzed and discussed. The proposed approach has important potential applications in on-chip all-optical signal processing. PMID:27410324
NASA Astrophysics Data System (ADS)
Savic, Ivana; Murphy, Ronan; Murray, Eamonn; Fahy, Stephen
Efficient thermoelectric energy conversion is highly desirable as 60% of the consumed energy is wasted as heat. Low lattice thermal conductivity is one of the key factors leading to high thermoelectric efficiency of a material. However, the major obstacle in the design of such materials is the difficulty in efficiently scattering phonons across the frequency spectrum. Using first principles calculations, we predict that driving PbTe materials close to a Peierls-like phase transition could be a powerful strategy to solve this problem. We illustrate this concept by applying tensile [001] strain to PbTe and its alloys with another rock-salt IV-VI material, PbSe; and by alloying PbTe with a IV-VI Peierls-distorted material, GeTe. This induces extremely soft optical modes, which increase acoustic-optical phonon coupling and decrease phonon lifetimes at all frequencies. We show that PbTe, Pb(Se,Te) and (Pb,Ge)Te alloys driven near the phase transition in the described manner could have the lattice thermal conductivity considerably lower than that of PbTe. The proposed concept may open new opportunities for the development of more efficient thermoelectric materials. This work was supported by Science Foundation Ireland and the Marie-Curie Action COFUND under Starting Investigator Research Grant 11/SIRG/E2113.
Neumann-Cosel, P. von; Burda, O.; Kuhar, M.; Lenhardt, A.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Botha, N. T.; Fearick, R. W.; Carter, J.; Sideras-Haddad, E.; Foertsch, S. V.; Neveling, R.; Smit, F. D.; Fransen, C.; Fujita, H.; Pietralla, N.
2006-03-13
High-resolution inelastic electron (performed at the S-DALINAC) and proton (performed at iThemba LABS) scattering experiments on 92Zr and 94Mo with emphasis on E2 transitions are presented The measured form factors and angular distributions provide a measure for the F-spin purity, respectively the isovector nature, of the proposed one-phonon mixed symmetry states and furthermore provide a sensitive test of a possible two-phonon character of excited 2+ states.
Yoshida, Kyohei; Hachiya, Kan; Okumura, Kensuke; Mishima, Kenta; Inukai, Motoharu; Torgasin, Konstantin; Omer, Mohamed; Sonobe, Taro; Zen, Heishun; Negm, Hani; Kii, Toshiteru; Masuda, Kai; Ohgaki, Hideaki
2013-10-28
Mode-selective phonon excitation by a mid-infrared laser (MIR-FEL) is demonstrated via anti-Stokes Raman scattering measurements of 6H-silicon carbide (SiC). Irradiation of SiC with MIR-FEL and a Nd-YAG laser at 14 K produced a peak where the Raman shift corresponds to a photon energy of 119 meV (10.4 μm). This phenomenon is induced by mode-selective phonon excitation through the irradiation of MIR-FEL, whose photon energy corresponds to the photon-absorption of a particular phonon mode.
Influence of magnetism on phonons in CaFe{sub 2}As{sub 2} as seen via inelastic x-ray scattering.
Hahn, S. E.; Lee, Y.; Ni, N.; Canfield, P. C.; Goldman, A. I.; McQueeney, R. J.; Harmon, B. N.; Alatas, A.; Leu, B. M.; Alp, E. E.; Chung, D. Y.; Todorov, I. S.; Kanatzidis, M. G.; Iowa State Univ.; Northwestern Univ.
2009-01-01
In the iron pnictides, the strong sensitivity of the iron magnetic moment to the arsenic position suggests a significant relationship between phonons and magnetism. We measured the phonon dispersion of several branches in the high-temperature tetragonal phase of CaFe{sub 2}As{sub 2} using inelastic x-ray scattering on single-crystal samples. These measurements were compared to ab initio calculations of the phonons. Spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improve agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Arellanes, Adan O.
2016-03-01
Principally new features of the non-collinear two-phonon light scattering governed by elastic waves of finite amplitude in birefringent bulk crystals are detected and observed. The main goals of our investigations are to reveal novel important details inherent in the nonlinearity of this effect and to study properties of similar parametric nonlinearity both theoretically and experimentally in wide-aperture crystals with moderate linear acoustic attenuation. An additional degree of freedom represented by the dispersive birefringence factor, which can be distinguished within this nonlinear phenomenon, is characterized. This physical degree of freedom gives us a one-of-a-kind opportunity to apply the strongly non-linear two-phonon light scattering in practice for the first time. The local unit-level maxima in the distribution of light scattered into the second order appear periodically as the acoustic power density grows. It makes possible to identify a few transfer function profiles peculiar to these maxima in the isolated planes of angular-frequency mismatches. These maxima give us an opportunity to choose the desirable profile for the transfer function at the fixed angle of incidence for the incoming light beam with a wide spectrum .The needed theoretical analysis is developed and proof-of-principle experiments, performed with a specially designed wide-aperture acousto-optical cell made of the calomel (α-Hg2Cl2) crystal, are presented. The obtained spectral resolution ~0.235 Å at 405 nm (i.e. the resolving power ~17,200) can be compared with the most advanced acousto-optical spectrometers for space/airborne operations. Evidently, our results with the calomel-based acousto-optical cell look like the best we can mention at the moment.
Liu, Jie; Xu, Xu; Anantram, M.P.
2014-09-01
The electron transport through ultra-scaled amorphous phase change material (PCM) GeTe is investigated by using ab initio molecular dynamics, density functional theory, and non-equilibrium Green’s function, and the inelastic electron–phonon scattering is accounted for by using the Born approximation. It is shown that, in ultra-scaled PCM device with 6 nm channel length, < 4 % of the energy carried by the incident electrons from the source is transferred to the atomic lattice before reaching the drain, indicating that the electron transport is largely elastic. Our simulation results show that the inelastic electron–phonon scattering, which plays an important role to excite trapped electrons in bulk PCM devices, exerts very limited influence on the current density value and the shape of current–voltage curve of ultra-scaled PCM devices. The analysis reveals that the Poole–Frenkel law and the Ohm’s law, which are the governing physical mechanisms of the bulk PCM devices, cease to be valid in the ultra-scaled PCM devices.
Muñoz, Jorge A.; Fultz, Brent
2015-07-23
Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe–Fe bonds but stiffens the Au–Au and Au–Fe bonds which results in a net stiffening relative to the elemental components.
NASA Astrophysics Data System (ADS)
Muñoz, Jorge A.; Fultz, Brent
2015-07-01
Recent measurements of the phonon spectra of several Au-rich alloys of face-centered-cubic Fe-Au using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering are summarized. The Wills-Harrison model, accounting for charge transfer upon alloying, is used to explain the observed negative excess vibrational entropy of mixing, which increases the miscibility gap temperature in the system by an estimated maximum of 550 K and we adjudicate to a charge transfer from the Fe to the Au atoms that results in an increase in the electron density in the free-electron-like states and in stronger sd-hybridization. When Au is the solvent, this softens the Fe-Fe bonds but stiffens the Au-Au and Au-Fe bonds which results in a net stiffening relative to the elemental components.
Raman scattering measurements of phonon anharmonicity in CuAlO2 thin films
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Dussan, S.; Sharma, Ganpat L.; Katiyar, Ram S.
2008-12-01
CuAlO2 thin films were grown on single crystalline sapphire substrates with c-axis orientation by rf sputtering method. The x-ray diffraction data indicate the formation of delafossite structure and tend to be oriented along (001). Temperature dependent Raman spectra of CuAlO2 thin films were measured from 80 to 1273 K, and we observed two optical modes at Eg (˜418 cm-1) and A1g(˜767 cm-1) showing anomalous frequency and linewidth shifts with temperature, which were interpreted as an experimental evidence of combined effect of lattice expansion and anharmonic phonon-phonon interaction in CuAlO2. At high temperature, polaronic state and change in effective mass due to lattice expansion also affect the frequency shift and the linewidth of the observed Raman modes.
Interfacial electron and phonon scattering processes in high-powered nanoscale applications.
Hopkins, Patrick E.
2011-10-01
The overarching goal of this Truman LDRD project was to explore mechanisms of thermal transport at interfaces of nanomaterials, specifically linking the thermal conductivity and thermal boundary conductance to the structures and geometries of interfaces and boundaries. Deposition, fabrication, and post possessing procedures of nanocomposites and devices can give rise to interatomic mixing around interfaces of materials leading to stresses and imperfections that could affect heat transfer. An understanding of the physics of energy carrier scattering processes and their response to interfacial disorder will elucidate the potentials of applying these novel materials to next-generation high powered nanodevices and energy conversion applications. An additional goal of this project was to use the knowledge gained from linking interfacial structure to thermal transport in order to develop avenues to control, or 'tune' the thermal transport in nanosystems.
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Arellanes, Adan O.
2016-03-01
Performances of any system for data processing based on acousto-optical technique are mainly determined by parameters of the acousto-optical cell (AOC) exploited within the schematic arrangement. Here, basic properties of the AOC, involved into a novel processor for precise optical spectrum analysis dedicated to modern astrophysical applications, are considered. Because potential applications of this processor will be focused on investigations in extra-galactic astronomy as well as studies of extra-solar planets, an advanced regime of the non-collinear two-phonon light scattering has been elaborated for spectrum analysis with significantly improved spectral resolution. Under similar uprated requirements, the AOC, based on that specific regime in the calomel (Hg2Cl2) crystal, had been chosen, and its parameters were analyzed theoretically and verified experimentally. Then, the adequate approach to estimating the frequency/spectral bandwidth and spectral resolution had been developed. The bandwidth was calculated and experimentally realized with the additionally involved tilt angle of light incidence, allowing variations for acoustic frequencies. The resolution was characterized taking into account its doubling peculiar to the nonlinear two-phonon mechanism of light scattering. Proof-of-principle experiments were performed with the calomel AOC of 52 mm optical aperture, providing ~94% efficiency in the transmitted light due to the slow-shear acoustic mode of finite amplitude (the acoustic power density ~150 mW/mm2) with the velocity of 0.347×105 cm/s at the radio-wave acoustic frequency ~71 MHz. As a result, we have obtained the spectral resolution <0.235 Å within the spectral bandwidth <290 Å that looks as the best one can mention at the moment in acousto-optics.
Thermal conductivity in $\text{large}-J$ two-dimensional antiferromagnets: Role of phonon scattering
Chernyshev, A. L.; Brenig, Wolfram
2015-08-05
Different types of relaxation processes for magnon heat current are discussed, with a particular focus on coupling to three-dimensional phonons. There is thermal conductivity by these in-plane magnetic excitations using two distinct techniques: Boltzmann formalism within the relaxation-time approximation and memory-function approach. Also considered are the scattering of magnons by both acoustic and optical branches of phonons. We demonstrate an accord between the two methods, regarding the asymptotic behavior of the effective relaxation rates.
It is strongly suggested that scattering from optical or zone-boundary phonons is important for magnon heat current relaxation in a high-temperature window of ΘD≲T<< J.
Park, Kyeong Hyun Mohamed, Mohamed; Ravaioli, Umberto; Aksamija, Zlatan
2015-01-07
In this work, we calculate the thermal conductivity of layered bismuth telluride (Bi{sub 2}Te{sub 3}) thin films by solving the Boltzmann transport equation in the relaxation-time approximation using full phonon dispersion and compare our results with recently published experimental data and molecular dynamics simulation. The group velocity of each phonon mode is readily extracted from the full phonon dispersion obtained from first-principle density-functional theory calculation and is used along with the phonon frequency to compute the various scattering terms. Our model incorporates the typical interactions impeding thermal transport (e.g., umklapp, isotope, and boundary scatterings) and introduces a new interaction capturing the reduction of phonon transmission through van der Waals interfaces of adjacent Bi{sub 2}Te{sub 3} quintuple layers forming the virtual superlattice thin film. We find that this novel approach extends the empirical Klemens-Callaway relaxation model in such anisotropic materials and recovers the experimental anisotropy while using a minimal set of parameters.
Manipulation of Phonons with Phononic Crystals
Leseman, Zayd Chad
2015-07-09
There were three research goals associated with this project. First, was to experimentally demonstrate phonon spectrum control at THz frequencies using Phononic Crystals (PnCs), i.e. demonstrate coherent phonon scattering with PnCs. Second, was to experimentally demonstrate analog PnC circuitry components at GHz frequencies. The final research goal was to gain a fundamental understanding of phonon interaction using computational methods. As a result of this work, 7 journal papers have been published, 1 patent awarded, 14 conference presentations given, 4 conference publications, and 2 poster presentations given.
Price, A. Martinez, A.
2015-04-28
Using quantum transport simulations, the impact of electron-phonon scattering on the transfer characteristic of a gate-all-around nanowire (GaAs) field effect transistor (NWFET) has been thoroughly investigated. The Non-Equilibrium Green's Function formalism in the effective mass approximation using a decoupled mode decomposition has been deployed. NWFETs of different dimensions have been considered, and scattering mechanisms including acoustic, optical and polar optical phonons have been included. The effective masses were extracted from tight binding simulations. High and low drain bias have been considered. We found substantial source to drain tunnelling current and significant impact of phonon scattering on the performance of the NWFET. At low drain bias, for a 2.2 × 2.2 nm{sup 2} cross-section transistor, scattering caused a 72%, 77%, and 81% decrease in the on-current for a 6 nm, 10 nm, and 20 nm channel length, respectively. This reduction in the current due to scattering is influenced by the increase in the tunnelling current. We include the percentage tunnelling for each valley at low and high drain bias. It was also found that the strong quantisation caused the relative position of the valleys to vary with the cross-section. This had a large effect on the overall tunnelling current. The phonon-limited mobility was also calculated, finding a mobility of 950 cm{sup 2}/V s at an inversion charge density of 10{sup 12 }cm{sup −2} for a 4.2 × 4.2 nm{sup 2} cross-section device.
Gorishnyy, T; Ullal, C K; Maldovan, M; Fytas, G; Thomas, E L
2005-03-25
In this Letter we propose the use of hypersonic phononic crystals to control the emission and propagation of high frequency phonons. We report the fabrication of high quality, single crystalline hypersonic crystals using interference lithography and show that direct measurement of their phononic band structure is possible with Brillouin light scattering. Numerical calculations are employed to explain the nature of the observed propagation modes. This work lays the foundation for experimental studies of hypersonic crystals and, more generally, phonon-dependent processes in nanostructures.
Long-wave phonons in ZnSe-BeSe mixed crystals: Raman scattering and percolation model
NASA Astrophysics Data System (ADS)
Pagès, O.; Ajjoun, M.; Tite, T.; Bormann, D.; Tournié, E.; Rustagi, K. C.
2004-10-01
We extend to longitudinal-optical (LO) phonons the percolation model set for the basic understanding of the atypical transverse-optical (TO) one-bond→two-mode behavior observed by Raman scattering in the Be-Se spectral range of the random Zn1-xBexSe alloy (0⩽x⩽1) , which opens the class of mixed crystals with contrast in the bond stiffness. The study is supported by contour modeling of the TO and LO Raman line shapes. This is achieved via application of the Hon and Faust treatment to a version of the modified-random-element-isodisplacement model generalized to multioscillators. While the TO signal clearly discriminates between Be-Se vibrations within the hard Be -rich region and the soft Zn -rich one, complexity arises in the LO symmetry due to vibration coupling via the 1ong-range longitudinal polarization field. In particular this generates a massive transfer of oscillator strength from the low-frequency (LO-) (hard, soft)-mixed mode to the high-frequency (LO+) one, which results in an apparent LO+ single-mode behavior. Moreover the contrasts between the Zn-Se and Be-Se bond lengths and bond stiffness are proposed to force a Verleur and Barker-like (VB) discrete multimode Raman response from each region. Accordingly LO- and LO+ intramode transfers of oscillator strength superimpose to the LO-→LO+ intermode one. This accounts for the spectacular distortions of the LO+ line shape. On the whole, the puzzling LO behavior can be regarded as the result of a cooperative phenomenon between two discrete assemblies of polar LO phonons, driven by the long-range longitudinal polarization field. Also, the Verleur and Barker description accounts for subtle unexplained behaviors in the TO symmetry. More generally it appears to provide a much attractive area for the discussion of the asymmetries of the TO and LO Raman line shapes in random alloys, as a possible alternative to the much debated spatial correlation model or to internal/external strain effects.
Damped soft phonons and diffuse scattering in (Bi1/2Na1/2)TiO3
NASA Astrophysics Data System (ADS)
Matsuura, M.; Iida, H.; Hirota, K.; Ohwada, K.; Noguchi, Y.; Miyayama, M.
2013-02-01
Neutron-scattering studies of (Bi1/2Na1/2)TiO3 (BNT) have been performed to elucidate the microscopic mechanism of the broad maximum in the temperature dependence of the dielectric constant at Tm˜600 K and the reduction in the piezoelectric properties above the depolarization temperature, 460˜480 K. We observed diffuse scattering near the Γ point below 700 K, which competes with the superlattice peak at the M point of the tetragonal phase but coexists with the superlattice peak at the R point of the rhombohedral phase. The diffuse scattering shows an anisotropic Q shape extending along the <100> direction transverse to the scattering vector Q, which is explained by atomic shifts bridging the tetragonal and rhombohedral structures. We propose that the broad maximum in the dielectric constant is associated with a diffusive first-order transition between the competing tetragonal and rhombohedral phases. In addition, we found that the diffuse scattering is reduced for single crystals grown under high oxygen pressure, which suggests an analogy with the central peak in hydrogen-reduced SrTiO3. Inelastic neutron scattering near the Γ point reveals a heavily overdamped soft mode similar to those reported in lead-based relaxors, the “waterfall” feature. Moreover, a damped soft transverse acoustic mode is observed for the <100> direction as the anisotropic diffuse scattering, indicating phase instabilities with the same origin as that of the diffuse scattering. The recovery of the soft mode is observed near the depolarization temperature, which coincides with the disappearance of the superlattice peak at the M point. These results indicate that the depolarization and the waterfall feature originate in the dynamic nature of ferroelectric clusters in the coexisting tetragonal/rhombohedral phase.
NASA Astrophysics Data System (ADS)
Kojima, Seiji; Kanehara, Kazuki; Hoshina, Takuya; Tsurumi, Takaaki
2016-10-01
IR active optical modes and phonon-polaritons with E(x) and A1(z) symmetries were studied in a ferroelectric congruent lithium niobate crystal. The real and imaginary parts of a dielectric constant along the a- and c-axes were accurately determined by far-infrared spectroscopic ellipsometry (FIRSP) from 40 to 700 cm-1. For the nine transverse optical (TO) modes with E(x) symmetry, it was difficult to observe the 5th E(TO5) mode at 361 cm-1 and the 9th E(TO9) mode at 665 cm-1 by Raman scattering owing to the very low Raman intensity, while these modes were clearly observed by FIRSP. In contrast, the 6th E(TO6) mode at 371 cm-1 was not observed by FIRSP owing to the very weak absorption, while it was clearly observed by Raman scattering. All the four TO modes with A1(z) symmetry were clearly observed independently by FIRSP and Raman scattering. The dispersion relations of phonon-polaritons including the damping of polaritons were determined using the real and imaginary parts of a polariton wavevector calculated from complex dielectric constants. The polariton dispersion of the lowest A1(z) mode at 254 cm-1 is in agreement with the previous forward Raman scattering experiment; however, any anticrossing predicted by the previous impulsive Raman scattering experiment was not observed.
Goryachev, Maxim; Creedon, Daniel L; Galliou, Serge; Tobar, Michael E
2013-08-23
The confinement of high frequency phonons approaching 1 GHz is demonstrated in phonon-trapping acoustic cavities at cryogenic temperatures using a low-coupled network approach. The frequency range is extended by nearly an order of magnitude, with excitation at greater than the 200th overtone achieved for the first time. Such a high frequency operation reveals Rayleigh-type phonon scattering losses due to highly diluted lattice impurities and corresponding glasslike behavior, with a maximum Q(L)×f product of 8.6×10(17) at 3.8 K and 4×10(17) at 15 mK. This suggests a limit on the Q×f product due to unavoidable crystal disorder. Operation at 15 mK is high enough in frequency that the average phonon occupation number is less than unity, with a loaded quality factor above half a billion. This work represents significant progress towards the utilization of such acoustic cavities for hybrid quantum systems.
NASA Astrophysics Data System (ADS)
Milekhin, Alexander G.; Sveshnikova, Larisa L.; Duda, Tatyana A.; Rodyakina, Ekaterina E.; Dzhagan, Volodymyr M.; Sheremet, Evgeniya; Gordan, Ovidiu D.; Himcinschi, Cameliu; Latyshev, Alexander V.; Zahn, Dietrich R. T.
2016-05-01
Here we present the results on an investigation of resonant Stokes and anti- Stokes surface-enhanced Raman scattering (SERS) by optical phonons in colloidal CdSe nanocrystals (NCs) homogeneously deposited on arrays of Au nanoclusters using the Langmuir-Blodgett technology. The thickness of deposited NCs, determined by transmission and scanning electron microscopy, amounts to approximately 1 monolayer. Special attention is paid to the determination of the localized surface plasmon resonance (LSPR) energy in the arrays of Au nanoclusters as a function of the nanocluster size by means of micro-ellipsometry. SERS by optical phonons in CdSe NCs shows a significant enhancement factor with a maximal value of 2 × 103 which depends resonantly on the Au nanocluster size and thus on the LSPR energy. The deposition of CdSe NCs on the arrays of Au nanocluster dimers enabled us to study the polarization dependence of SERS. It was found that a maximal SERS signal is observed for the light polarization along the dimer axis. Finally, SERS by optical phonons was observed for CdSe NCs deposited on the structures with a single Au dimer. A difference of the LO phonon energy is observed for CdSe NCs on different single dimers. This effect is explained as the confinement-induced shift which depends on the CdSe nanocrystal size and indicates quasi-single NC Raman spectra being obtained.
Addition of noise by scatter correction methods in PVI
Barney, J.S. . Div. of Nuclear Medicine); Harrop, R.; Atkins, M.S. . School of Computing Science)
1994-08-01
Effective scatter correction techniques are required to account for errors due to high scatter fraction seen in positron volume imaging (PVI). To be effective, the correction techniques must be accurate and practical, but they also must not add excessively to the statistical noise in the image. The authors have investigated the noise added by three correction methods: a convolution/subtraction method; a method that interpolates the scatter from the events outside the object; and a dual energy window method with and without smoothing of the scatter estimate. The methods were applied to data generated by Monte Carlo simulation to determine their effect on the variance of the corrected projections. The convolution and interpolation methods did not add significantly to the variance. The dual energy window subtraction method without smoothing increased the variance by a factor of more than twelve, but this factor was improved to 1.2 by smoothing the scatter estimate.
Liu, Y.; Berti, D.; Baglioni, P.; Chen, S. H.; Alatas, A.; Sinn, H.; Said, A.; Alp, E. E.; Experimental Facilities Division; Massachusetts Inst. of Technology; Univ. of Florence
2005-01-01
Shear-aligned 40 wt% calf-thymus Na-DNA molecules in aqueous solutions are prepared in their liquid crystalline phases and studied by high resolution inelastic X-ray scattering (IXS). Measured IXS spectra are analyzed with the generalized three effective eigenmode (GTEE) theory. The phonon dispersion relations along the axial direction of DNA molecules with different MgCl2 concentrations are constructed and compared. It is found that the sound speed along the axial direction of DNA molecules varies only slightly, but the phonon dampening is greatly affected with the increase amount of MgCl{sub 2} concentration. Using the GTEE theory, we are able to extract the longitudinal viscosity in the hydrodynamic limit from the Q-dependence of a fitted parameter. We make a comprehensive review of the GTEE theory and discuss detailed analyses of IXS spectra taking into account finite energy resolution of the instrument.
Phonon engineering for nanostructures.
Aubry, Sylvie; Friedmann, Thomas Aquinas; Sullivan, John Patrick; Peebles, Diane Elaine; Hurley, David H.; Shinde, Subhash L.; Piekos, Edward Stanley; Emerson, John Allen
2010-01-01
Understanding the physics of phonon transport at small length scales is increasingly important for basic research in nanoelectronics, optoelectronics, nanomechanics, and thermoelectrics. We conducted several studies to develop an understanding of phonon behavior in very small structures. This report describes the modeling, experimental, and fabrication activities used to explore phonon transport across and along material interfaces and through nanopatterned structures. Toward the understanding of phonon transport across interfaces, we computed the Kapitza conductance for {Sigma}29(001) and {Sigma}3(111) interfaces in silicon, fabricated the interfaces in single-crystal silicon substrates, and used picosecond laser pulses to image the thermal waves crossing the interfaces. Toward the understanding of phonon transport along interfaces, we designed and fabricated a unique differential test structure that can measure the proportion of specular to diffuse thermal phonon scattering from silicon surfaces. Phonon-scale simulation of the test ligaments, as well as continuum scale modeling of the complete experiment, confirmed its sensitivity to surface scattering. To further our understanding of phonon transport through nanostructures, we fabricated microscale-patterned structures in diamond thin films.
Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.
2014-08-11
The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.
Biswas, Tutul; Ghosh, Tarun Kanti
2013-01-23
We study the interaction between electron and acoustic phonons in a Rashba spin-orbit coupled two-dimensional electron gas using Boltzmann transport theory. Both the deformation potential and piezoelectric scattering mechanisms are considered in the Bloch-Grüneisen (BG) regime as well as in the equipartition (EP) regime. The effect of the Rashba spin-orbit interaction on the temperature dependence of the resistivity in the BG and EP regimes is discussed. We find that the effective exponent of the temperature dependence of the resistivity in the BG regime decreases due to spin-orbit coupling.
Uniaxial strain-induced Kohn anomaly and electron-phonon coupling in acoustic phonons of graphene
NASA Astrophysics Data System (ADS)
Cifuentes-Quintal, M. E.; de la Peña-Seaman, O.; Heid, R.; de Coss, R.; Bohnen, K.-P.
2016-08-01
Recent advances in strain engineering at the nanoscale have shown the feasibility to modulate the properties of graphene. Although the electron-phonon (e-ph) coupling and Kohn anomalies in graphene define the phonon branches contributing to the resonance Raman scattering and are relevant to the electronic and thermal transport as a scattering source, the evolution of the e-ph coupling as a function of strain has been less studied. In this work, the Kohn anomalies and the e-ph coupling in uniaxially strained graphene along armchair and zigzag directions were studied by means of density functional perturbation theory calculations. In addition to the phonon anomaly at the transversal optical (TO) phonon branch in the K point for pristine graphene, we found that uniaxial strain induces a discontinuity in the frequency derivative of the longitudinal acoustic phonon branch. This behavior corresponds to the emergence of a Kohn anomaly, as a consequence of a strain-enhanced e-ph coupling. Thus, the present results for uniaxially strained graphene contrast with the commonly assumed view that the e-ph coupling around the K point is only present in the TO phonon branch.
Phonon manipulation with phononic crystals.
Kim Bongsang; Hopkins, Patrick Edward; Leseman, Zayd C.; Goettler, Drew F.; Su, Mehmet F.; El-Kady, Ihab Fathy; Reinke, Charles M.; Olsson, Roy H., III
2012-01-01
factor. In addition, the techniques and scientific understanding developed in the research can be applied to a wide range of materials, with the caveat that the thermal conductivity of such a material be dominated by phonon, rather than electron, transport. In particular, this includes several thermoelectric materials with attractive properties at elevated temperatures (i.e., greater than room temperature), such as silicon germanium and silicon carbide. It is reasonable that phononic crystal patterning could be used for high-temperature thermoelectric devices using such materials, with applications in energy scavenging via waste-heat recovery and thermoelectric cooling for high-performance microelectronic circuits. The only part of the ZT picture missing in this work was the experimental measurement of the Seebeck coefficient of our phononic crystal devices. While a first-order approximation indicates that the Seebeck coefficient should not change significantly from that of bulk silicon, we were not able to actually verify this assumption within the timeframe of the project. Additionally, with regards to future high-temperature applications of this technology, we plan to measure the thermal conductivity reduction factor of our phononic crystals as elevated temperatures to confirm that it does not diminish, given that the nominal thermal conductivity of most semiconductors, including silicon, decreases with temperature above room temperature. We hope to have the opportunity to address these concerns and further advance the state-of-the-art of thermoelectric materials in future projects.
NASA Astrophysics Data System (ADS)
Gupta, Mayanak Kumar; Mittal, Ranjan; Zbiri, Mohamed; Singh, Ripandeep; Rols, Stephane; Schober, Helmut; Chaplot, Samrath Lal
2014-10-01
We have carried out an extensive phonon study on multiferroic GaFeO3 to elucidate its dynamical behavior. Inelastic neutron scattering measurements are performed over a wide temperature range, 150 to 1198 K. First principles lattice dynamical calculations are done for the sake of the analysis and interpretation of the observations. The comparison of the phonon spectra from magnetic and nonmagnetic calculations highlights pronounced differences. The energy range of the vibrational atomistic contributions of the Fe and O ions are found to differ significantly in the two calculation types. Therefore, magnetism induced by the active spin degrees of freedom of Fe cations plays a key role in stabilizing the structure and dynamics of GaFeO3. Moreover, the computed enthalpy in various phases of GaFeO3 is used to gain deeper insights into the high-pressure phase stability of this material. Further, the volume dependence of the phonon spectra is used to determine its thermal expansion behavior.
NASA Astrophysics Data System (ADS)
Wang, Y.; Nakatsukasa, K.; Rademaker, L.; Berlijn, T.; Johnston, S.
2016-05-01
Mono- and multilayer FeSe thin films grown on SrTiO3 and BiTiO3 substrates exhibit a greatly enhanced superconductivity over that found in bulk FeSe. A number of proposals have been advanced for the mechanism of this enhancement. One possibility is the introduction of a cross-interface electron-phonon (e-ph) interaction between the FeSe electrons and oxygen phonons in the substrates that is peaked in the forward scattering (small {q}) direction due to the two-dimensional nature of the interface system. Motivated by this, we explore the consequences of such an interaction on the superconducting state and electronic structure of a two-dimensional system using Migdal-Eliashberg (ME) theory. This interaction produces not only deviations from the expectations of conventional phonon-mediated pairing but also replica structures in the spectral function and density of states, as probed by angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and quasiparticle interference imaging. We also discuss the applicability of ME theory for a situation where the e-ph interaction is peaked at small momentum transfer and in the FeSe/STO system.
Effect of isotopic disorder on Raman scattering spectra of crystals
Plekhanov, V.G.
1995-03-01
The first results of a quantitative study into the effect of isotopic disorder on optical phonon states, revealed as a broadening and shift of LO({Gamma}) phonon lines in second-order Raman scattering spectra of LiH{sub x}D{sub 1-x} crystals, are presented. The presence in the spectra of a local vibration at small values of x and the two-mode character of the LO{Gamma} phonons for x {le} 0.45, together with the substantial broadening of the LO({Gamma}) phonon scattering lines, suggest the presence of a considerable isotopic disorder effect, which implies unambiguously strong LO({Gamma}) phonon scattering. Additional supporting evidence comes from the disagreement of the above experimental finding with the coherent-potential-model predictions for the case of weak phonon scattering. 21 refs., 3 figs.
Cooper, Michael William D.; Liu, Xiang -Yang; Stanek, Christopher Richard; Andersson, David Anders
2016-07-15
In this study, a new approach for adjusting molecular dynamics results on UO2 thermal conductivity to include phonon-spin scattering has been used to improve calculations on Ux Pu1–x O2 and UxTh1xO2. We demonstrate that by including spin scattering a strong asymmetry as a function of uranium actinide fraction, x, is obtained. Greater degradation is shown for UxTh1–xO2 than UxPu1-xO2. Minimum thermal conductivities are predicted at U0.97Pu0.03O2 and U0.58Th0.42O2, although the degradation in UxPu1–xO2 is negligible relative to pure UO2.
Phonons from neutron powder diffraction
Dimitrov, D.A.; Louca, D.; Roeder, H. )
1999-09-01
The spherically averaged structure function S([vert bar][bold q][vert bar]) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S([vert bar][bold q][vert bar]) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center ([vert bar][bold q][vert bar][ne]0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been [ital successfully] implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF[sub 2]. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction. [copyright] [ital 1999] [ital The American Physical Society
Giefers, H.; Koval, S.; Wortmann, G.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.
2006-09-01
The local phonon density of states (DOS) at the Sn site in tin monoxide (SnO) is studied at pressures up to 8 GPa with {sup 119}Sn nuclear resonant inelastic x-ray scattering (NRIXS) of synchrotron radiation at 23.88 keV. The preferred orientation (texture) of the SnO crystallites in the investigated samples is used to measure NRIXS spectra preferentially parallel and almost perpendicular to the c axis of tetragonal SnO. A subtraction method is applied to these NRIXS spectra to produce projected local Sn DOS spectra as seen parallel and perpendicular to the c axis of SnO. These experimentally obtained local Sn DOS spectra, both in the polycrystalline case as well as projected parallel and perpendicular to the c axis, are compared with corresponding theoretical phonon DOS spectra, derived from dispersion relations calculated with a recently developed shell model. Comparison between the experimental projected Sn DOS spectra and the corresponding theoretical DOS spectra enables us to follow the pressure-induced shifts of several acoustic and optic phonon modes. While the principal spectral features of the experimental and theoretical phonon DOS agree well at energies above 10 meV, the pressure behavior of the low-energy part of the DOS is not well reproduced by the theoretical calculations. In fact, they exhibit, in contrast to the experimental data, a dramatic softening of two low-energy modes, their energies approaching zero around 2.5 GPa, clearly indicating the limitations of the applied shell model. These difficulties are obviously connected with the complex Sn-O and Sn-Sn bindings within and between the Sn-O-Sn layers in the litharge structure of SnO. We derived from the experimental and theoretical DOS spectra a variety of elastic and thermodynamic parameters of the Sn sublattice, such as the Lamb-Moessbauer factor, the mean force constant, and Debye temperatures, as well as the vibrational contributions to the Helmholtz free energy, specific heat, entropy, and
PHONONS IN INTRINSIC JOSEPHSON SYSTEMS
C. PREIS; K. SCHMALZL; ET AL
2000-10-01
Subgap structures in the I-V curves of layered superconductors are explained by the excitation of phonons by Josephson oscillations. In the presence of a magnetic field applied parallel to the layers additional structures due to fluxon motion appear. Their coupling with phonons is investigated theoretically and a shift of the phonon resonances in strong magnetic fields is predicted.
Raman selection rule for surface optical phonons in ZnS nanobelts.
Ho, Chih-Hsiang; Varadhan, Purushothaman; Wang, Hsin-Hua; Chen, Cheng-Ying; Fang, Xiaosheng; He, Jr-Hau
2016-03-21
We report Raman scattering results for high-quality wurtzite ZnS nanobelts (NBs) grown by chemical vapor deposition. In the Raman spectrum, the ensembles of ZnS NBs exhibit first order phonon modes at 274 cm(-1) and 350 cm(-1), corresponding to A1/E1 transverse optical and A1/E1 longitudinal optical phonons, in addition to a strong surface optical (SO) phonon mode at 329 cm(-1). The existence of the SO band is confirmed by its shift with different surrounding dielectric media. Polarization dependent Raman spectra were recorded on a single ZnS NB and for the first time a SO phonon band has been detected on a single nanobelt. Different selection rules for the SO phonon mode are shown from their corresponding E1/A1 phonon modes, and were attributed to the breaking of anisotropic translational symmetry on the NB surface. PMID:26924069
Phonon anharmonicity and negative thermal expansion in SnSe
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-09
In this paper, the anharmonic phonon properties of SnSe in the Pnma phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy,more » in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. Finally, the origin of the anharmonic phonon thermodynamics is linked to the electronic structure.« less
Phonon anharmonicity and negative thermal expansion in SnSe
NASA Astrophysics Data System (ADS)
Bansal, Dipanshu; Hong, Jiawang; Li, Chen W.; May, Andrew F.; Porter, Wallace; Hu, Michael Y.; Abernathy, Douglas L.; Delaire, Olivier
2016-08-01
The anharmonic phonon properties of SnSe in the P n m a phase were investigated with a combination of experiments and first-principles simulations. Using inelastic neutron scattering (INS) and nuclear resonant inelastic X-ray scattering (NRIXS), we have measured the phonon dispersions and density of states (DOS) and their temperature dependence, which revealed a strong, inhomogeneous shift and broadening of the spectrum on warming. First-principles simulations were performed to rationalize these measurements, and to explain the previously reported anisotropic thermal expansion, in particular the negative thermal expansion within the Sn-Se bilayers. Including the anisotropic strain dependence of the phonon free energy, in addition to the electronic ground state energy, is essential to reproduce the negative thermal expansion. From the phonon DOS obtained with INS and additional calorimetry measurements, we quantify the harmonic, dilational, and anharmonic components of the phonon entropy, heat capacity, and free energy. The origin of the anharmonic phonon thermodynamics is linked to the electronic structure.
Phonon thermoelectric transistors and rectifiers
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Kulkarni, Manas; Segal, Dvira; Imry, Yoseph
2015-07-01
We describe nonlinear phonon-thermoelectric devices where charge current and electronic and phononic heat currents are coupled, driven by voltage and temperature biases, when phonon-assisted inelastic processes dominate the transport. Our thermoelectric transistors and rectifiers can be realized in a gate-tunable double quantum-dot system embedded in a nanowire which is realizable within current technology. The inelastic electron-phonon scattering processes are found to induce pronounced charge, heat, and cross rectification effects, as well as a thermal transistor effect that, remarkably, can appear in the present model even in the linear-response regime without relying on the onset of negative differential thermal conductance.
Angular dispersion of oblique phonon modes in BiFeO3 from micro-Raman scattering
NASA Astrophysics Data System (ADS)
Hlinka, J.; Pokorny, J.; Karimi, S.; Reaney, I. M.
2011-01-01
The angular dispersion of oblique phonon modes in a multiferroic BiFeO3 has been obtained from a micro-Raman spectroscopic investigation of a coarse grain ceramic sample. Continuity of the measured angular dispersion curves allows conclusive identification of all pure zone-center polar modes. The method employed here to reconstruct the anisotropic crystal property from a large set of independent local measurements on a macroscopically isotropic ceramic sample profits from the considerable dispersion of the oblique modes in ferroelectric perovskites and it can be in principle conveniently applied to any other optically uniaxial ferroelectric material.
NASA Astrophysics Data System (ADS)
Rowe, Michael P.; Zhou, Li Qin; Banerjee, Debasish; Zhang, Minjuan
2015-01-01
Recovery of waste heat from internal combustion engines is one strategy for meeting the ever increasing demand for more fuel efficient-automobiles. Thermoelectric materials are capable of this, by solid-state conversion of thermal to electrical energy, but the efficiency of this energy conversion requires improvement. In this work the thermoelectric figure of merit ( ZT) was improved by combining phonon scattering with grain boundary modification in a bismuth antimony telluride nanocomposite material with zinc antimony grain boundaries and zinc oxide nanoparticle inclusions. The advantage of including these zinc nanostructures is discussed. By reducing thermal conductivity while increasing the power factor, ZT was been increased from 0.6 to 1.1.
Phonon dynamics of graphene on metals
NASA Astrophysics Data System (ADS)
Taleb, Amjad Al; Farías, Daniel
2016-03-01
The study of surface phonon dispersion curves is motivated by the quest for a detailed understanding of the forces between the atoms at the surface and in the bulk. In the case of graphene, additional motivation comes from the fact that thermal conductivity is dominated by contributions from acoustic phonons, while optical phonon properties are essential to understand Raman spectra. In this article, we review recent progress made in the experimental determination of phonon dispersion curves of graphene grown on several single-crystal metal surfaces. The two main experimental techniques usually employed are high-resolution electron energy loss spectroscopy (HREELS) and inelastic helium atom scattering (HAS). The different dispersion branches provide a detailed insight into the graphene-substrate interaction. Softening of optical modes and signatures of the substrate‧s Rayleigh wave are observed for strong graphene-substrate interactions, while acoustic phonon modes resemble those of free-standing graphene for weakly interacting systems. The latter allows determining the bending rigidity and the graphene-substrate coupling strength. A comparison between theory and experiment is discussed for several illustrative examples. Perspectives for future experiments are discussed.
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
NASA Astrophysics Data System (ADS)
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-10-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon-phonon interactions, it has been a challenge to directly measure electron-phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump-probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron-phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron-phonon interaction on phonon transport in doped semiconductors.
A study of non-equilibrium phonons in GaAs/AlAs quantum wells
Su, Zhenpeng
1996-11-01
In this thesis we have studied the non-equilibrium phonons in GaAs/AlAs quantum wells via Raman scattering. We have demonstrated experimentally that by taking into account the time-reversal symmetry relation between the Stokes and anti-Stokes Raman cross sections, one can successfully measure the non-equilibrium phonon occupancy in quantum wells. Using this technique, we have studied the subject of resonant intersubband scattering of optical phonons. We find that interface roughness plays an important role in resonant Raman scattering in quantum wells. The lateral size of the smooth regions in such interface is estimated to be of the order of 100 {Angstrom}. Through a study of photoluminescence of GaAs/AlAs quantum wells under high intensity laser excitation, we have found that band nonparabolicity has very little effect on the electron subband energies even for subbands as high as a few hundred meV above the lowest one. This finding may require additional theoretical study to understand its origin. We have also studied phonon confinement and propagation in quantum wells. We show that Raman scattering of non-equilibrium phonons in quantum wells can be a sensitive measure of the spatial extent of the longitudinal optical (LO) phonons. We deduce the coherence length of LO phonons in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells as a function of the Al concentration x.
Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; Van Gastel, G. J.; Abernathy, Douglas L.; Stone, Matthew B.; Granroth, Garrett E.; Kolesnikov, Alexander I.; Savici, Andrei T.; Kim, Young -June; et al
2016-03-14
We present time-of-flight neutron-scattering measurements on single crystals of La2-xBaxCuO4 (LBCO) with 0 ≤ x ≤ 0.095 and La2-xSrxCuO4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossings of the highly dispersive spin excitationsmore » and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less
Photo-excited charge carriers suppress sub-terahertz phonon mode in silicon at room temperature
Liao, Bolin; Maznev, A. A.; Nelson, Keith A.; Chen, Gang
2016-01-01
There is a growing interest in the mode-by-mode understanding of electron and phonon transport for improving energy conversion technologies, such as thermoelectrics and photovoltaics. Whereas remarkable progress has been made in probing phonon–phonon interactions, it has been a challenge to directly measure electron–phonon interactions at the single-mode level, especially their effect on phonon transport above cryogenic temperatures. Here we use three-pulse photoacoustic spectroscopy to investigate the damping of a single sub-terahertz coherent phonon mode by free charge carriers in silicon at room temperature. Building on conventional pump–probe photoacoustic spectroscopy, we introduce an additional laser pulse to optically generate charge carriers, and carefully design temporal sequence of the three pulses to unambiguously quantify the scattering rate of a single-phonon mode due to the electron–phonon interaction. Our results confirm predictions from first-principles simulations and indicate the importance of the often-neglected effect of electron–phonon interaction on phonon transport in doped semiconductors. PMID:27731406
Kinetic description of an electron--LO-phonon system with finite phonon lifetime
Nguyen, V.T.; Mahler, G. )
1992-02-15
We study the cooling of an electron plasma from a kinetic point of view. For this purpose, a quantum theory of fluctuations is applied to derive the kinetic equations for an electron--LO-phonon system from various model Hamiltonians. A polarization approximation is provided that goes beyond perturbation theory of the electron-phonon interaction. The description of electron-phonon energy exchange is shown to be impossible with the interacting Hamiltonian in Froehlich's one-phonon form unless dissipation of the bare LO phonon is included. For a Hamiltonian including effects of the scattering of LO phonons by acoustic phonons, kinetic equations are derived. The equation for LO phonons is shown to describe the collective excitations with finite lifetime, in the limiting case of weak damping of the plasmon-phonon coupled modes. A reduction of the cooling rate similar to the hot-phonon'' effect is shown to occur for the case of weak coupling without assuming a steady state of the LO phonons. Finally, an electron-phonon interaction Hamiltonian in two-phonon form is considered and it is shown that electron-phonon energy exchange may be described in the polarization approximation without introducing a finite phonon lifetime.
Coherent acoustic phonons in nanostructures
NASA Astrophysics Data System (ADS)
Dekorsy, T.; Taubert, R.; Hudert, F.; Bartels, A.; Habenicht, A.; Merkt, F.; Leiderer, P.; Köhler, K.; Schmitz, J.; Wagner, J.
2008-02-01
Phonons are considered as a most important origin of scattering and dissipation for electronic coherence in nanostructures. The generation of coherent acoustic phonons with femtosecond laser pulses opens the possibility to control phonon dynamics in amplitude and phase. We demonstrate a new experimental technique based on two synchronized femtosecond lasers with GHz repetition rate to study the dynamics of coherently generated acoustic phonons in semiconductor heterostructures with high sensitivity. High-speed synchronous optical sampling (ASOPS) enables to scan a time-delay of 1 ns with 100 fs time resolution with a frequency in the kHz range without a moving part in the set-up. We investigate the dynamics of coherent zone-folded acoustic phonons in semiconductor superlattices (GaAs/AlAs and GaSb/InAs) and of coherent vibration of metallic nanostructures of non-spherical shape using ASOPS.
Carvalho, Bruno R; Malard, Leandro M; Alves, Juliana M; Fantini, Cristiano; Pimenta, Marcos A
2015-04-01
This work describes a resonance Raman study performed on samples with one, two, and three layers (1L, 2L, 3L), and bulk MoS2, using more than 30 different laser excitation lines covering the visible range, and focusing on the intensity of the two most pronounced features of the Raman scattering spectrum of MoS2 (E2g(1) and A1g bands). The Raman excitation profiles of these bands were obtained experimentally, and it is found that the A1g feature is enhanced when the excitation laser is in resonance with A and B excitons of MoS2, while the E2g1 feature is shown to be enhanced when the excitation laser is close to 2.7 eV. We show from the symmetry analysis of the exciton-phonon interaction that the mode responsible for the E2g(1) resonance is identified as the high energy C exciton recently predicted [D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013)].
NASA Astrophysics Data System (ADS)
Vasin, A. S.; Vikhrova, O. V.; Vasilevskiy, M. I.
2014-04-01
Confinement and alloy disorder effects on the lattice dynamics and Raman scattering in Si1-xGex nanocrystals (NCs) are investigated numerically employing two different empirical inter-atomic potentials. Relaxed NCs of different compositions (x) were built using the Molecular Dynamics method and applying rigid boundary conditions mimicking the effect of surrounding matrix. The resulting variation of bond lengths with x was checked against Vegard's law and the NC phonon modes were calculated using the same inter-atomic potential. The localization of the principal Raman-active (Si-Si, Si-Ge, and Ge-Ge) modes is investigated by analysing representative eigenvectors and their inverse participation ratio. The dependence of the position and intensity of these modes upon x and NC size is presented and compared to previous calculated results and available experimental data. In particular, it is argued that the composition dependence of the intensity of the Si-Ge and Ge-Ge modes does not follow the fraction of the corresponding nearest-neighbour bonds as it was suggested by some authors. Possible effects of alloy segregation are considered by comparing the calculated properties of random and clustered SixGe1-x NCs. It is found that the Si-Si mode and Ge-Ge mode are enhanced and blue-shifted (by several cm-1for the Si-Si mode), while the intensity of the Si-Ge Raman mode is strongly suppressed by clustering.
NASA Astrophysics Data System (ADS)
Yang, Fan; Dames, Chris
2015-04-01
The heating-frequency dependence of the apparent thermal conductivity in a semi-infinite body with periodic planar surface heating is explained by an analytical solution to the Boltzmann transport equation. This solution is obtained using a two-flux model and gray mean free time approximation and verified numerically with a lattice Boltzmann method and numerical results from the literature. Extending the gray solution to the nongray regime leads to an integral transform and accumulation-function representation of the phonon scattering spectrum, where the natural variable is mean free time rather than mean free path, as often used in previous work. The derivation leads to an approximate cutoff conduction similar in spirit to that of Koh and Cahill [Phys. Rev. B 76, 075207 (2007), 10.1103/PhysRevB.76.075207] except that the most appropriate criterion involves the heater frequency rather than thermal diffusion length. The nongray calculations are consistent with Koh and Cahill's experimental observation that the apparent thermal conductivity shows a stronger heater-frequency dependence in a SiGe alloy than in natural Si. Finally these results are demonstrated using a virtual experiment, which fits the phase lag between surface temperature and heat flux to obtain the apparent thermal conductivity and accumulation function.
Hyperbolic phonon polaritons in hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Dai, Siyuan
2015-03-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.
Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning.
Hopkins, Patrick E; Reinke, Charles M; Su, Mehmet F; Olsson, Roy H; Shaner, Eric A; Leseman, Zayd C; Serrano, Justin R; Phinney, Leslie M; El-Kady, Ihab
2011-01-12
Phononic crystals (PnCs) are the acoustic wave equivalent of photonic crystals, where a periodic array of scattering inclusions located in a homogeneous host material causes certain frequencies to be completely reflected by the structure. In conjunction with creating a phononic band gap, anomalous dispersion accompanied by a large reduction in phonon group velocities can lead to a massive reduction in silicon thermal conductivity. We measured the cross plane thermal conductivity of a series of single crystalline silicon PnCs using time domain thermoreflectance. The measured values are over an order of magnitude lower than those obtained for bulk Si (from 148 W m(-1) K(-1) to as low as 6.8 W m(-1) K(-1)). The measured thermal conductivity is much smaller than that predicted by only accounting for boundary scattering at the interfaces of the PnC lattice, indicating that coherent phononic effects are causing an additional reduction to the cross plane thermal conductivity.
Heat transport by phonons in crystalline materials and nanostructures
NASA Astrophysics Data System (ADS)
Koh, Yee Kan
conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ≤ ℓ ≤ 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.
NASA Astrophysics Data System (ADS)
Perrin, Bernard
2007-06-01
The conference PHONONS 2007 was held 15-20 July 2007 in the Conservatoire National des Arts et Métiers (CNAM) Paris, France. CNAM is a college of higher technology for training students in the application of science to industry, founded by Henri Grégoire in 1794. This was the 12th International Conference on Phonon Scattering in Condensed Matter. This international conference series, held every 3 years, started in France at Sainte-Maxime in 1972. It was then followed by meetings at Nottingham (1975), Providence (1979), Stuttgart (1983), Urbana-Champaign (1986), Heidelberg (1989), Ithaca (1992), Sapporo (1995), Lancaster (1998), Dartmouth (2001) and St Petersburg (2004). PHONONS 2007 was attended by 346 delegates from 37 different countries as follows: France 120, Japan 45, Germany 25, USA 25, Russia 21, Italy 13, Poland 9, UK 9, Canada 7, The Netherlands 7, Finland 6, Spain 6, Taiwan 6, Greece 4, India 4, Israel 4, Ukraine 4, Serbia 3, South Africa 3, Argentina 2, Belgium 2, China 2, Iran 2, Korea 2, Romania 2, Switzerland 2, and one each from Belarus, Bosnia-Herzegovina, Brazil, Bulgaria, Egypt, Estonia, Mexico, Moldova, Morocco, Saudi Arabia, Turkey. There were 5 plenary lectures, 14 invited talks and 84 oral contributions; 225 posters were presented during three poster sessions. The first plenary lecture was given by H J Maris who presented fascinating movies featuring the motion of a single electron in liquid helium. Robert Blick gave us a review on the new possibilities afforded by nanotechnology to design nano-electomechanical systems (NEMS) and the way to use them to study elementary and fundamental processes. The growing interest for phonon transport studies in nanostructured materials was demonstrated by Arun Majumdar. Andrey Akimov described how ultrafast acoustic solitons can monitor the optical properties of quantum wells. Finally, Maurice Chapellier told us how
Phonon transport analysis of semiconductor nanocomposites using monte carlo simulations
NASA Astrophysics Data System (ADS)
Malladi, Mayank
Nanocomposites are composite materials which incorporate nanosized particles, platelets or fibers. The addition of nanosized phases into the bulk matrix can lead to significantly different material properties compared to their macrocomposite counterparts. For nanocomposites, thermal conductivity is one of the most important physical properties. Manipulation and control of thermal conductivity in nanocomposites have impacted a variety of applications. In particular, it has been shown that the phonon thermal conductivity can be reduced significantly in nanocomposites due to the increase in phonon interface scattering while the electrical conductivity can be maintained. This extraordinary property of nanocomposites has been used to enhance the energy conversion efficiency of the thermoelectric devices which is proportional to the ratio of electrical to thermal conductivity. This thesis investigates phonon transport and thermal conductivity in Si/Ge semiconductor nanocomposites through numerical analysis. The Boltzmann transport equation (BTE) is adopted for description of phonon thermal transport in the nanocomposites. The BTE employs the particle-like nature of phonons to model heat transfer which accounts for both ballistic and diffusive transport phenomenon. Due to the implementation complexity and computational cost involved, the phonon BTE is difficult to solve in its most generic form. Gray media (frequency independent phonons) is often assumed in the numerical solution of BTE using conventional methods such as finite volume and discrete ordinates methods. This thesis solves the BTE using Monte Carlo (MC) simulation technique which is more convenient and efficient when non-gray media (frequency dependent phonons) is considered. In the MC simulation, phonons are displaced inside the computational domain under the various boundary conditions and scattering effects. In this work, under the relaxation time approximation, thermal transport in the nanocomposites are
Phonon Mapping in Flowing Equilibrium
NASA Astrophysics Data System (ADS)
Ruff, J. P. C.
2015-03-01
When a material conducts heat, a modification of the phonon population occurs. The equilibrium Bose-Einstein distribution is perturbed towards flowing-equilibrium, for which the distribution function is not analytically known. Here I argue that the altered phonon population can be efficiently mapped over broad regions of reciprocal space, via diffuse x-ray scattering or time-of-flight neutron scattering, while a thermal gradient is applied across a single crystal sample. When compared to traditional transport measurements, this technique offers a superior, information-rich new perspective on lattice thermal conductivity, wherein the band and momentum dependences of the phonon thermal current are directly resolved. The proposed method is benchmarked using x-ray thermal diffuse scattering measurements of single crystal diamond under transport conditions. CHESS is supported by the NSF & NIH/NIGMS via NSF Award DMR-1332208.
NASA Astrophysics Data System (ADS)
Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo
2014-12-01
Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK-1 which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 108 and 1.83 × 108 cm Hz1/2 W-1 for sensors of 52 nm thick poly-Si, and 5.75 × 107 and 3.95 × 107 cm Hz1/2 W-1 for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm
Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo
2015-01-14
Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.
Vasin, A. S.; Vikhrova, O. V.; Vasilevskiy, M. I.
2014-04-14
Confinement and alloy disorder effects on the lattice dynamics and Raman scattering in Si{sub 1−x}Ge{sub x} nanocrystals (NCs) are investigated numerically employing two different empirical inter-atomic potentials. Relaxed NCs of different compositions (x) were built using the Molecular Dynamics method and applying rigid boundary conditions mimicking the effect of surrounding matrix. The resulting variation of bond lengths with x was checked against Vegard's law and the NC phonon modes were calculated using the same inter-atomic potential. The localization of the principal Raman-active (Si-Si, Si-Ge, and Ge-Ge) modes is investigated by analysing representative eigenvectors and their inverse participation ratio. The dependence of the position and intensity of these modes upon x and NC size is presented and compared to previous calculated results and available experimental data. In particular, it is argued that the composition dependence of the intensity of the Si-Ge and Ge-Ge modes does not follow the fraction of the corresponding nearest-neighbour bonds as it was suggested by some authors. Possible effects of alloy segregation are considered by comparing the calculated properties of random and clustered Si{sub x}Ge{sub 1−x} NCs. It is found that the Si-Si mode and Ge-Ge mode are enhanced and blue-shifted (by several cm{sup −1}for the Si-Si mode), while the intensity of the Si-Ge Raman mode is strongly suppressed by clustering.
NASA Astrophysics Data System (ADS)
Maitra, Kingsuk; Frank, Martin M.; Narayanan, Vijay; Misra, Veena; Cartier, Eduard A.
2007-12-01
We report low temperature (40-300 K) electron mobility measurements on aggressively scaled [equivalent oxide thickness (EOT)=1 nm] n-channel metal-oxide-semiconductor field effect transistors (nMOSFETs) with HfO2 gate dielectrics and metal gate electrodes (TiN). A comparison is made with conventional nMOSFETs containing HfO2 with polycrystalline Si (poly-Si) gate electrodes. No substantial change in the temperature acceleration factor is observed when poly-Si is replaced with a metal gate, showing that soft optical phonons are not significantly screened by metal gates. A qualitative argument based on an analogy between remote phonon scattering and high-resolution electron energy-loss spectroscopy (HREELS) is provided to explain the underlying physics of the observed phenomenon. It is also shown that soft optical phonon scattering is strongly damped by thin SiO2 interface layers, such that room temperature electron mobility values at EOT=1 nm become competitive with values measured in nMOSFETs with SiON gate dielectrics used in current high performance processors.
Otelaja, O. O.; Robinson, R. D.
2015-10-26
In this work, the mechanism for enhanced phonon backscattering in silicon is investigated. An understanding of phonon propagation through substrates has implications for engineering heat flow at the nanoscale, for understanding sources of decoherence in quantum systems, and for realizing efficient phonon-mediated particle detectors. In these systems, phonons that backscatter from the bottom of substrates, within the crystal or from interfaces, often contribute to the overall detector signal. We utilize a microscale phonon spectrometer, comprising superconducting tunnel junction emitters and detectors, to specifically probe phonon backscattering in silicon substrates (∼500 μm thick). By etching phonon “enhancers” or deep trenches (∼90 μm) around the detectors, we show that the backscattered signal level increases by a factor of ∼2 for two enhancers versus one enhancer. Using a geometric analysis of the phonon pathways, we show that the mechanism of the backscattered phonon enhancement is due to confinement of the ballistic phonon pathways and increased scattering off the enhancer walls. Our result is applicable to the geometric design and patterning of substrates that are employed in phonon-mediated detection devices.
Jana, R. N.; Sinha, S.; Meikap, A. K.
2015-05-15
We have reported a comprehensive study on temperature and disorder dependence of inelastic electron dephasing scattering rate in disordered V{sub 82}Al{sub 18-x}Fe{sub x} alloys. The dephasing scattering time has been measured by analysis of low field magnetoresistance using the weak localization theory. In absence of magnetic field the variation of low temperature resistivity rise follows the relation Δρ(T)∝−ρ{sub 0}{sup 5/2}√(T), which is well described by three-dimensional electron-electron interactions. The temperature-independent dephasing rate strongly depends on disorder and follows the relation τ{sub 0}{sup −1}∝l{sub e}, where l{sub e} is the electron elastic mean free path. The inelastic electron-phonon scattering rate obeying the anomalous relation τ{sub e−ph}{sup −1}∝T{sup 2}l{sub e}. This anomalous behavior of τ{sub e−ph}{sup −1} cannot be explained in terms of current theories for electron-phonon scattering in impure dirty conductors.
Second Harmonic Generation of Nanoscale Phonon Wave Packets
NASA Astrophysics Data System (ADS)
Bojahr, A.; Gohlke, M.; Leitenberger, W.; Pudell, J.; Reinhardt, M.; von Reppert, A.; Roessle, M.; Sander, M.; Gaal, P.; Bargheer, M.
2015-11-01
Phonons are often regarded as delocalized quasiparticles with certain energy and momentum. The anharmonic interaction of phonons determines macroscopic properties of the solid, such as thermal expansion or thermal conductivity, and a detailed understanding becomes increasingly important for functional nanostructures. Although phonon-phonon scattering processes depicted in simple wave-vector diagrams are the basis of theories describing these macroscopic phenomena, experiments directly accessing these coupling channels are scarce. We synthesize monochromatic acoustic phonon wave packets with only a few cycles to introduce nonlinear phononics as the acoustic counterpart to nonlinear optics. Control of the wave vector, bandwidth, and consequently spatial extent of the phonon wave packets allows us to observe nonlinear phonon interaction, in particular, second harmonic generation, in real time by wave-vector-sensitive Brillouin scattering with x-rays and optical photons.
Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures
NASA Astrophysics Data System (ADS)
Nomura, Masahiro; Nakagawa, Junki; Kage, Yuta; Maire, Jeremie; Moser, Dominik; Paul, Oliver
2015-04-01
Thermal phonon transport in silicon nanowires (Si NWs) and two-dimensional phononic crystal (2D PnC) nanostructures was investigated by measuring thermal conductivity using a micrometer-scale time-domain thermoreflectance. The impact of nanopatterning on thermal conductivity strongly depends on the geometry, specularity parameter, and thermal phonon mean free path (MFP) distribution. Thermal conductivities for 2D PnC nanostructures were found to be much lower than that for NWs with similar characteristic length and surface-to-volume ratio due to stronger phonon back scattering. In single-crystalline Si, PnC patterning has a stronger impact at 4 K than at room temperature due to a higher specularity parameter and a longer thermal phonon MFP. Nanowire patterning has a stronger impact in polycrystalline Si, where thermal phonon MFP distribution is biased longer by grain boundary scattering.
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity.
Chen, J C H; Sato, Y; Kosaka, R; Hashisaka, M; Muraki, K; Fujisawa, T
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Enhanced electron-phonon coupling for a semiconductor charge qubit in a surface phonon cavity
Chen, J. C. H.; Sato, Y.; Kosaka, R.; Hashisaka, M.; Muraki, K.; Fujisawa, T.
2015-01-01
Electron-phonon coupling is a major decoherence mechanism, which often causes scattering and energy dissipation in semiconductor electronic systems. However, this electron-phonon coupling may be used in a positive way for reaching the strong or ultra-strong coupling regime in an acoustic version of the cavity quantum electrodynamic system. Here we propose and demonstrate a phonon cavity for surface acoustic waves, which is made of periodic metal fingers that constitute Bragg reflectors on a GaAs/AlGaAs heterostructure. Phonon band gap and cavity phonon modes are identified by frequency, time and spatially resolved measurements of the piezoelectric potential. Tunneling spectroscopy on a double quantum dot indicates the enhancement of phonon assisted transitions in a charge qubit. This encourages studying of acoustic cavity quantum electrodynamics with surface phonons. PMID:26469629
Engineering thermal conductance using a two-dimensional phononic crystal
Zen, Nobuyuki; Puurtinen, Tuomas A.; Isotalo, Tero J.; Chaudhuri, Saumyadip; Maasilta, Ilari J.
2014-01-01
Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device. PMID:24647049
Engineering thermal conductance using a two-dimensional phononic crystal.
Zen, Nobuyuki; Puurtinen, Tuomas A; Isotalo, Tero J; Chaudhuri, Saumyadip; Maasilta, Ilari J
2014-03-19
Controlling thermal transport has become relevant in recent years. Traditionally, this control has been achieved by tuning the scattering of phonons by including various types of scattering centres in the material (nanoparticles, impurities, etc). Here we take another approach and demonstrate that one can also use coherent band structure effects to control phonon thermal conductance, with the help of periodically nanostructured phononic crystals. We perform the experiments at low temperatures below 1 K, which not only leads to negligible bulk phonon scattering, but also increases the wavelength of the dominant thermal phonons by more than two orders of magnitude compared to room temperature. Thus, phononic crystals with lattice constants ≥1 μm are shown to strongly reduce the thermal conduction. The observed effect is in quantitative agreement with the theoretical calculation presented, which accurately determined the ballistic thermal conductance in a phononic crystal device.
Phonon localization in ultrathin layered structures
NASA Astrophysics Data System (ADS)
Döring, F.; Eberl, C.; Schlenkrich, S.; Schlenkrich, F.; Hoffmann, S.; Liese, T.; Krebs, H. U.; Pisana, S.; Santos, T.; Schuhmann, H.; Seibt, M.; Mansurova, M.; Ulrichs, H.; Zbarsky, V.; Münzenberg, M.
2015-04-01
An efficient way for minimizing phonon thermal conductivity in solids is to nanostructure them by means of reduced phonon mean free path, phonon scattering and phonon reflection at interfaces. A sophisticated approach toward this lies in the fabrication of thin multilayer films of different materials. In this paper, we show by femtosecond-pump-probe reflectivity measurements that in different multilayer systems with varying acoustic mismatch (consisting of metals, semiconductors, oxides and polymers), oscillations due to phonon localization can be observed. For the growth of multilayer films with well-defined layer thicknesses, we used magnetron sputtering, evaporation and pulsed laser deposition. By altering the material combinations and reducing the layer thicknesses down to 3 nm, we observed different mechanisms of phonon blocking, reaching in the frequency regime up to 360 GHz.
Topologically protected elastic waves in phononic metamaterials
Mousavi, S. Hossein; Khanikaev, Alexander B.; Wang, Zheng
2015-01-01
Surface waves in topological states of quantum matter exhibit unique protection from backscattering induced by disorders, making them ideal carriers for both classical and quantum information. Topological matters for electrons and photons are largely limited by the range of bulk properties, and the associated performance trade-offs. In contrast, phononic metamaterials provide access to a much wider range of material properties. Here we demonstrate numerically a phononic topological metamaterial in an elastic-wave analogue of the quantum spin Hall effect. A dual-scale phononic crystal slab is used to support two effective spins for phonons over a broad bandwidth, and strong spin–orbit coupling is realized by breaking spatial mirror symmetry. By preserving the spin polarization with an external load or spatial symmetry, phononic edge states are shown to be robust against scattering from discrete defects as well as disorders in the continuum, demonstrating topological protection for phonons in both static and time-dependent regimes. PMID:26530426
Mao, Jun; Wang, Yumei; Ge, Binghui; Jie, Qing; Liu, Zihang; Saparamadu, Udara; Liu, Weishu; Ren, Zhifeng
2016-07-27
In this study, the thermoelectric properties of Mg2Sn0.98-xPbxSb0.02 were first studied, and then Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 were accordingly investigated. The results showed that the formation of Mg2Sn0.98-xPbxSb0.02 solid solutions effectively reduced the lattice thermal conductivity of Mg2Sn. The room temperature lattice thermal conductivity of Mg2Sn0.98Sb0.02 is ∼5.2 W m(-1) K(-1) but only ∼2.5 W m(-1) K(-1) for Mg2Sn0.73Pb0.25Sb0.02, a reduction of ∼52%. Further alloying Mg2Sn0.98-xPbxSb0.02 with Mg2Si or Mg2Ge to form Mg2Sn0.93-xSixPb0.05Sb0.02 or Mg2Sn0.93-xGexPb0.05Sb0.02 reduced the lattice thermal conductivity significantly due to enhanced phonon scattering by point defects as well as nanoparticles. Moreover, bipolar thermal conductivities were suppressed due to the larger bandgap of Mg2Si and Mg2Ge than Mg2Sn. Furthermore, similar to the pseudo-binary Mg2Sn-Mg2Si and Mg2Sn-Mg2Ge systems, band convergence was also observed in pseudo-ternary Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. The convergence of conduction bands led to higher PFs at lower temperatures for Mg2Sn0.93-xSixPb0.05Sb0.02 and Mg2Sn0.93-xGexPb0.05Sb0.02 materials. As a result, higher peak ZTs of ∼1.3 for Mg2Sn0.63Si0.3Pb0.05Sb0.02 and ∼1.2 for Mg2Sn0.68Ge0.25Pb0.05Sb0.02 were achieved. PMID:27412367
Hill, J.P.; Le Tacon, M.; Forrest, T.R.; Ruegg, Ch.; Bosak, A.; Walters, A.C.; Mittal, R.; Rønnow, H.M.; Zhigadlo, N.D.; Katrych, S.; Karpinski, J.; Krisch, M.; McMorrow, D.F.
2009-12-01
We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO{sub 0.60}F{sub 0.35} single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.
Farber, D; Chiang, T; Krisch, M; Occelli, F; Schwartz, A; Wall, M; Xu, R; Boro, C
2003-12-17
Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}' {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts. Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimental data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter-atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single-grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc {delta}-Pu-Ga alloy using the high resolution
Phononic and magnonic dispersions of surface waves on a permalloy/BARC nanostructured array
2013-01-01
Phononic and magnonic dispersions of a linear array of periodic alternating Ni80Fe20 and bottom anti-reflective coating nanostripes on a Si substrate have been measured using Brillouin light scattering. The observed phononic gaps are considerably larger than those of laterally patterned multi-component crystals previously reported, mainly a consequence of the high elastic and density contrasts between the stripe materials. Additionally, the phonon hybridization bandgap has an unusual origin in the hybridization and avoided crossing of the zone-folded Rayleigh and pseudo-Sezawa waves. The magnonic band structure features near-dispersionless branches, with unusual vortex-like dynamic magnetization profiles, some of which lie below the highly-dispersive fundamental mode branch. Finite element calculations of the phononic and magnonic dispersions of the magphonic crystal accord well with experimental data. PMID:23452555
NASA Astrophysics Data System (ADS)
Andersson, M.; Börjesson, L.; Jarlborg, T.; Phuong, H. V.; Rapp, Ö.
1992-09-01
The strong depression of Tc with Ca-Th substitution in Y1-2xCaxThxBa2Cu3O7-δ has been investigated in a model calculation of the electronic and phononic contributions from the apex oxygen, O(4), on the electron-phonon interaction, λ. The shift with Ca-Th substitution of the characteristic O(4) vibrational mode was measured by Raman scattering. The electronic part η of λ has been calculated at several distances between chain Cu(1) and O(4) in the region of the observed variation with x. η was found to depend strongly on this distance. The results show a small increase with x of the O(4) frequency and a strong decrease of η. Both these factors thus contribute to a decrease of λ. We therefore find evidence that a decreasing electron-phonon interaction is associated with the depression of Tc in Ca-Th substituted YBa2Cu3O7-δ.
Influence of anharmonic phonon decay on self-heating in Si nanowire transistors
Rhyner, Reto Luisier, Mathieu
2014-08-11
Anharmonic phonon-phonon scattering is incorporated into an electro-thermal quantum transport approach based on the nonequilibrium Green's function formalism. Electron-phonon and phonon-phonon interactions are taken into account through scattering self-energies solved in the self-consistent Born approximation. While studying self-heating effects in ultra-scaled Si nanowire transistors, it is found that the phonon decay process softens the artificial accumulation of high energy phonons caused by electron relaxations close to the drain region. This leads to an increase of the device current in the ON-state and a reduction of the effective lattice temperature.
NASA Astrophysics Data System (ADS)
Ashokan, Vinod; Indu, B. D.; Dimri, A. Kr.
2016-09-01
In this work, thermal conductivity of high temperature superconductors (HTS) has been analyzed on the basis of modified Callaway model. In the new formulation, the relaxation times of various contributing processes have been observed in newer perspectives of electron and phonon line widths. To obtain line widths, the quantum dynamics of electron and phonon is carried out by using double time thermodynamic Green’s functions method via a general Hamiltonian. The outcome of this heuristic approach is utilized to successfully explain the spectacular behavior of thermal conductivity of HTS, and particularly in the vicinity of transition temperature.
Zarkevich, Nikolai
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces for a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.
2014-11-24
ThermoPhonon is a stand-alone code, which can be integrated into other software packages. Typically, it is used together with a density functional theory (DFT) code (such as VASP, Wien2k, AbInit, SIESTA) and a phonon code (such as Phonopy or Phon). The workflow is the following. Molecular dynamics (MD) in a supercell at a given temperature T is performed using another code. After sufficient equilibration, the output in the form of atomic positions and forces formore » a large number of selected MD steps is recorded into a file. If needed, one can modify this file by applying additional constraints, such as enforced crystal symmetry or subtracted motion of the center of mass. ThermoPhonon reads the file with atomic positions and forces and writes a new file with the force constants. Force constants can be used by another code (such as Phonopy or Phon) to produce phonon spectrum for plotting, in the assumption of known equilibrium atomic positions provided in a separate file.« less
Phonon dynamics of americium telluride
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Ahirwar, Ashok K.; Sanyal, S. P.
2013-06-01
We report for the first time the complete phonon dispersion curves for Americium telluride (AmTe) using a breathing shell models (BSM) to establish their predominant ionic nature. The results obtained in the present study show the general features of the phonon spectrum. We could not compare our results with the experimental measurements as they are not available so far. We emphasize the need of neutron scattering measurements to compare our results. We also report, for the first time specific heat for this compound.
NASA Technical Reports Server (NTRS)
Karasik, B. S.; Sergeev, A. V.
1998-01-01
Recent paper has raised again a question about the electron-phonon (EP) relaxation rate in impure metals. From weak localization (WL) measurements the authors have found that the dephasing rate in AuPd disordered films follows the T(sup 2)el-law (el is the mean free path).
Phonon Engineering in Isotopically Disordered Silicon Nanowires.
Mukherjee, S; Givan, U; Senz, S; Bergeron, A; Francoeur, S; de la Mata, M; Arbiol, J; Sekiguchi, T; Itoh, K M; Isheim, D; Seidman, D N; Moutanabbir, O
2015-06-10
The introduction of stable isotopes in the fabrication of semiconductor nanowires provides an additional degree of freedom to manipulate their basic properties, design an entirely new class of devices, and highlight subtle but important nanoscale and quantum phenomena. With this perspective, we report on phonon engineering in metal-catalyzed silicon nanowires with tailor-made isotopic compositions grown using isotopically enriched silane precursors (28)SiH4, (29)SiH4, and (30)SiH4 with purity better than 99.9%. More specifically, isotopically mixed nanowires (28)Si(x)(30)Si(1-x) with a composition close to the highest mass disorder (x ∼ 0.5) were investigated. The effect of mass disorder on the phonon behavior was elucidated and compared to that in isotopically pure (29)Si nanowires having a similar reduced mass. We found that the disorder-induced enhancement in phonon scattering in isotopically mixed nanowires is unexpectedly much more significant than in bulk crystals of close isotopic compositions. This effect is explained by a nonuniform distribution of (28)Si and (30)Si isotopes in the grown isotopically mixed nanowires with local compositions ranging from x = ∼0.25 to 0.70. Moreover, we also observed that upon heating, phonons in (28)Si(x)(30)Si(1-x) nanowires behave remarkably differently from those in (29)Si nanowires suggesting a reduced thermal conductivity induced by mass disorder. Using Raman nanothermometry, we found that the thermal conductivity of isotopically mixed (28)Si(x)(30)Si(1-x) nanowires is ∼30% lower than that of isotopically pure (29)Si nanowires in agreement with theoretical predictions.
NASA Astrophysics Data System (ADS)
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-01
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-25
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety.
He, Shixuan; Xie, Wanyi; Zhang, Wei; Zhang, Liqun; Wang, Yunxia; Liu, Xiaoling; Liu, Yulong; Du, Chunlei
2015-02-25
A novel strategy which combines iteratively cubic spline fitting baseline correction method with discriminant partial least squares qualitative analysis is employed to analyze the surface enhanced Raman scattering (SERS) spectroscopy of banned food additives, such as Sudan I dye and Rhodamine B in food, Malachite green residues in aquaculture fish. Multivariate qualitative analysis methods, using the combination of spectra preprocessing iteratively cubic spline fitting (ICSF) baseline correction with principal component analysis (PCA) and discriminant partial least squares (DPLS) classification respectively, are applied to investigate the effectiveness of SERS spectroscopy for predicting the class assignments of unknown banned food additives. PCA cannot be used to predict the class assignments of unknown samples. However, the DPLS classification can discriminate the class assignment of unknown banned additives using the information of differences in relative intensities. The results demonstrate that SERS spectroscopy combined with ICSF baseline correction method and exploratory analysis methodology DPLS classification can be potentially used for distinguishing the banned food additives in field of food safety. PMID:25300041
El-Kady, Ihab F.; Olsson, Roy H.
2012-01-10
Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.
Ballistic phonon transport in holey silicon.
Lee, Jaeho; Lim, Jongwoo; Yang, Peidong
2015-05-13
When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.
Studies of Phonon Anharmonicity in Solids
NASA Astrophysics Data System (ADS)
Lan, Tian
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject. Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods. We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts
Nonequilibrium phonon effects in midinfrared quantum cascade lasers
Shi, Y. B. Knezevic, I.
2014-09-28
We investigate the effects of nonequilibrium phonon dynamics on the operation of a GaAs-based midinfrared quantum cascade laser over a range of temperatures (77–300 K) via a coupled ensemble Monte Carlo simulation of electron and optical-phonon systems. Nonequilibrium phonon effects are shown to be important below 200 K. At low temperatures, nonequilibrium phonons enhance injection selectivity and efficiency by drastically increasing the rate of interstage electron scattering from the lowest injector state to the next-stage upper lasing level via optical-phonon absorption. As a result, the current density and modal gain at a given field are higher and the threshold current density lower and considerably closer to experiment than results obtained with thermal phonons. By amplifying phonon absorption, nonequilibrium phonons also hinder electron energy relaxation and lead to elevated electronic temperatures.
NASA Astrophysics Data System (ADS)
Rury, Aaron S.
2016-06-01
This study reports experimental, computational, and theoretical evidence for a previously unobserved coherent phonon-phonon interaction in an organic solid that can be described by the application of Fano's analysis to a case without the presence of a continuum. Using Raman spectroscopy of the hydrogen-bonded charge-transfer material quinhydrone, two peaks appear near 700 cm-1 we assign as phonons whose position and line-shape asymmetry depend on the sample temperature and light scattering excitation energy. Density functional theory calculations find two nearly degenerate phonons possessing frequencies near the values found in experiment that share similar atomic motion out of the aromatic plane of electron donor and acceptor molecules of quinhydrone. Further analytical modeling of the steady-state light scattering process using the Peierls-Hubbard Hamiltonian and time-dependent perturbation theory motivates assignment of the physical origin of the asymmetric features of each peak's line shape to an interaction between two discrete phonons via nonlinear electron-phonon coupling. In the context of analytical model results, characteristics of the experimental spectra upon 2.33 eV excitation of the Raman scattering process are used to qualify the temperature dependence of the magnitude of this coupling in the valence band of quinhydrone. These results broaden the range of phonon-phonon interactions in materials in general while also highlighting the rich physics and fundamental attributes specific to organic solids that may determine their applicability in next generation electronics and photonics technologies.
Calculates Thermal Neutron Scattering Kernel.
1989-11-10
Version 00 THRUSH computes the thermal neutron scattering kernel by the phonon expansion method for both coherent and incoherent scattering processes. The calculation of the coherent part is suitable only for calculating the scattering kernel for heavy water.
NASA Astrophysics Data System (ADS)
Sasmal, Kalyan; Hadjiev, Viktor; Chu, C. W.(Paul)
Quaternary CaFeAsF has ZrCuSiAs-type structure,(RO)δ+ layer in RFeAsO replaced by (CaF)δ+ layer,with tetragonal (P4/nmm)-orthorhombic (Cmma) phase transition at 134K,while magnetic order,SDW sets in at 114K. Partial replacement of Fe with Co/Ni is direct electron doping to (FeAs)δ+ layer.Tc ~15K in CaFe0.9Ni0.1AsF.Substitution of rare earth metal for alkaline earth metal suppresses anomaly in resistivity & induces superconductivity.Tc ~52K in Ca0.5Pr0.5FeAsF.Characterized by resistivity, susceptibility,XRD & EDX-SEM.Upper critical field estimated from magneto resistance.Bulk superconductivity proved by DC magnetization. Hall coefficient RH revealed hole-like charge carriers in parent compound CaFeAsF, while electron-type (RH in normal state is -Ve) for Ca0.5Pr0.5FeAsF.Evolution of Raman active phonons of Ca1-xPrxFeAsF measured with polarized Raman spectroscopy at room temperature from absurfaces of impurity-free microcrystals.Spectra exhibit sharp phonon lines on very weak electronic scattering background.Frequency and symmetry of Raman phonons involving out-of-plane atomic vibrations are found at 162.5 cm-1 (A1 g, Pr), 201 cm-1 (A1 g, As), 215.5 cm-1 (B1 g, Fe), 265 cm-1 (Eg, Fe) and 334 cm-1 (B1 g, F) for Ca0.5Pr0.5FeAsF.Observations are compared with RFeAsO unconventional superconductors also possibly related to magnetic fluctuations
Polarized and spatially resolved Raman scattering from composition-graded wurtzite InGaAs nanowires
NASA Astrophysics Data System (ADS)
Kim, H.; Rho, H.; Lee, E. H.; Song, J. D.
2016-05-01
We report Raman scattering from wurtzite single-crystalline InGaAs nanowires (NWs) to probe optical phonon behaviors associated with spatial grading in alloy composition along the NW length. Polarized Raman spectra revealed several optical phonons and their scattering symmetries: (i) InAs-like A 1(LO) and A 1(TO) phonons and (ii) GaAs-like A 1(LO), A 1(TO), and E 2(high) phonons. In addition, strong anisotropic behavior was observed in the Raman tensor elements of the A 1(TO) phonon mode. Interestingly, a spatial mapping of the GaAs-like A 1(TO) phonon along the NW length direction showed a systematic increase in energy from the NW top (~255 cm‑1) to the midpoint (~263 cm‑1), indicating an increase in the Ga mole fraction from about 0.5 to about 0.8. Further toward the NW bottom, the GaAs-like A 1(TO) phonon energy saturated to the peak value at about 264 cm‑1. In the upper half of the NW, the phonon linewidths broadened significantly due to the spatial grading in In/Ga composition along the NW length. When the composition grading was negligible in the bottom half of the NW, the spectral widths were considerably narrowed. The GaAs-like E 2(high) phonon showed similar variations in both energy and spectral width along the NW length.
Phonons of the cis-polyacetylene chain
NASA Astrophysics Data System (ADS)
Faulques, Eric; Buisson, Jean-Pierre; Lefrant, Serge
1995-12-01
An investigation of the in-plane phonons of the cis-polyacetylene chain (CH)x and isotopic analogs (CD)x and (13CH)x is presented on the basis of a Fourier's dynamical D-matrix formalism. The conjugation is found to be similar to that of the trans-polyacetylene chain. Phonon dispersions have been calculated and follow the shapes predicted by Božović. Finally, the most interesting result is that phonon density of states exhibits van Hove singularities whose energies are close to those determined experimentally with incoherent inelastic neutron scattering.
Molecular dynamics study of phonon screening in graphene
NASA Astrophysics Data System (ADS)
Javvaji, Brahmanandam; Roy Mahapatra, D.; Raha, S.
2014-04-01
Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phononmode is excited fromone end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.
Endo, Hitoshi; Schwahn, Dietmar; Cölfen, Helmut
2004-05-15
The role of the double-hydrophilic block copolymer poly(ethylen glycol)-block-poly(methacrylic acid) (PEG-b-PMAA) on the morphogenesis of calcium carbonate (CaCO3) was studied by applying the contrast variation small angle neutron scattering technique. The morphology and size of CaCO3 crystals is strongly affected by the addition of PEG-b-PMAA. In order to determine the partial scattering functions of the polymer and CaCO3 mineral, we developed both an experimental and theoretical approach with a sophisticated method of their determination from the scattering intensity. Partial scattering functions give detailed information for each component. In particular, the partial scattering function of the polymer, Spp, shows a monotonic slope with Q(-2 to -3) where the scattering vector Q is low (Q < 0.01 Angstrom(-1)), which is a clear evidence that the polymer within the CaCO3 mineral has a mass fractal dimension. The other partial scattering functions reflected the geometry of the CaCO3 particles or the "interaction" of polymer and CaCO3 on a microscopic scale, which leads to a coherent view with Spp.
Mishra, S. K.; Gupta, M. K.; Mittal, R.; Kolesnikov, Alexander I.; Chaplot, S. L.
2016-06-22
Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO3 covering various phase transitions, and over 6–150 K in PrMnO3 covering the magnetic transition. The excitations around 20 meV in CaMnO3 and at 17 meV in PrMnO3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above TN. In spite of the similarity of the structure of the two compounds, the neutron inelasticmore » spectrum of PrMnO3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO3 and highly anisotropic for PrMnO3. The calculation in PrMnO3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO3 does not show any phase transition up to 60 GPa.« less
Soft surfaces of nanomaterials enable strong phonon interactions
NASA Astrophysics Data System (ADS)
Bozyigit, Deniz; Yazdani, Nuri; Yarema, Maksym; Yarema, Olesya; Lin, Weyde Matteo Mario; Volk, Sebastian; Vuttivorakulchai, Kantawong; Luisier, Mathieu; Juranyi, Fanni; Wood, Vanessa
2016-03-01
Phonons and their interactions with other phonons, electrons or photons drive energy gain, loss and transport in materials. Although the phonon density of states has been measured and calculated in bulk crystalline semiconductors, phonons remain poorly understood in nanomaterials, despite the increasing prevalence of bottom-up fabrication of semiconductors from nanomaterials and the integration of nanometre-sized components into devices. Here we quantify the phononic properties of bottom-up fabricated semiconductors as a function of crystallite size using inelastic neutron scattering measurements and ab initio molecular dynamics simulations. We show that, unlike in microcrystalline semiconductors, the phonon modes of semiconductors with nanocrystalline domains exhibit both reduced symmetry and low energy owing to mechanical softness at the surface of those domains. These properties become important when phonons couple to electrons in semiconductor devices. Although it was initially believed that the coupling between electrons and phonons is suppressed in nanocrystalline materials owing to the scarcity of electronic states and their large energy separation, it has since been shown that the electron-phonon coupling is large and allows high energy-dissipation rates exceeding one electronvolt per picosecond (refs 10, 11, 12, 13). Despite detailed investigations into the role of phonons in exciton dynamics, leading to a variety of suggestions as to the origins of these fast transition rates and including attempts to numerically calculate them, fundamental questions surrounding electron-phonon interactions in nanomaterials remain unresolved. By combining the microscopic and thermodynamic theories of phonons and our findings on the phononic properties of nanomaterials, we are able to explain and then experimentally confirm the strong electron-phonon coupling and fast multi-phonon transition rates of charge carriers to trap states. This improved understanding of phonon
Leman, Steven W.
2012-09-15
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Mitri, F. G.
2015-09-15
The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf’s translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2015-09-01
The standard Resonance Scattering Theory (RST) of plane waves is extended for the case of any two-dimensional (2D) arbitrarily-shaped monochromatic beam incident upon an elastic cylinder with arbitrary location using an exact methodology based on Graf's translational addition theorem for the cylindrical wave functions. The analysis is exact as it does not require numerical integration procedures. The formulation is valid for any cylinder of finite size and material that is immersed in a nonviscous fluid. Partial-wave series expansions (PWSEs) for the incident, internal and scattered linear pressure fields are derived, and the analysis is further extended to obtain generalized expressions for the on-axis and off-axis acoustic radiation force components. The wave-fields are expressed using generalized PWSEs involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. The off-axial BSCs are expressed analytically in terms of an infinite PWSE with emphasis on the translational offset distance d. Numerical computations are considered for a zeroth-order quasi-Gaussian beam chosen as an example to illustrate the analysis. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. In addition, computations for the radiation force exerted on an elastic cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed.
Phonon surface mapping of graphite: Disentangling quasi-degenerate phonon dispersions
NASA Astrophysics Data System (ADS)
Grüneis, A.; Serrano, J.; Bosak, A.; Lazzeri, M.; Molodtsov, S. L.; Wirtz, L.; Attaccalite, C.; Krisch, M.; Rubio, A.; Mauri, F.; Pichler, T.
2009-08-01
The two-dimensional mapping of the phonon dispersions around the K point of graphite by inelastic x-ray scattering is provided. The present work resolves the longstanding issue related to the correct assignment of transverse and longitudinal phonon branches at K . We observe an almost degeneracy of the three TO-, LA-, and LO-derived phonon branches and a strong phonon trigonal warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which exhibits a trigonal warping effect opposite to that of the electronic band structure. We determined the electron-phonon coupling constant to be 166(eV/Å)2 in excellent agreement to GW calculations. These results are fundamental for understanding angle-resolved photoemission, double-resonance Raman and transport measurements of graphene-based systems.
Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion.
Phan, The Long; Vincent, Roger; Cherns, David; Nghia, Nguyen Xuan; Ursaki, V V
2008-11-26
We have investigated normal and resonant Raman scattering in Me-doped ZnO nanorods (Me = Mn, Co, Cu and Ni) prepared by thermal diffusion. Experimental results show that the normal Raman spectra consist of the conventional modes associated with wurtzite ZnO and impurity-related additional modes. Under resonant conditions, only longitudinal optical (LO) phonon scattering and its overtones are observed. The number of LO phonon lines and their relative intensity depend on the doping element and level. For the nanorods doped with Cu and Ni, we have observed LO phonon overtones up to eleventh order. This situation does not happen for the Mn-doped nanorods, which show only five LO phonon modes. By co-doping Mn and Co into the ZnO host lattice, however, the LO phonon overtones up to eleventh order are observed again. The nature of this phenomenon is explained by means of the study of XRD, TEM and photoluminescence.
Deterministic fractals: extracting additional information from small-angle scattering data.
Cherny, A Yu; Anitas, E M; Osipov, V A; Kuklin, A I
2011-09-01
The small-angle scattering curves of deterministic mass fractals are studied and analyzed in momentum space. In the fractal region, the curve I(q)q(D) is found to be log-periodic with good accuracy, and the period is equal to the scaling factor of the fractal. Here, D and I(q) are the fractal dimension and the scattering intensity, respectively. The number of periods of this curve coincides with the number of fractal iterations. We show that the log-periodicity of I(q)q(D) in the momentum space is related to the log-periodicity of the quantity g(r)r(3-D) in the real space, where g(r) is the pair distribution function. The minima and maxima positions of the scattering intensity are estimated explicitly by relating them to the pair distance distribution in real space. It is shown that the minima and maxima are damped with increasing polydispersity of the fractal sets; however, they remain quite pronounced even at sufficiently large values of polydispersity. A generalized self-similar Vicsek fractal with controllable fractal dimension is introduced, and its scattering properties are studied to illustrate the above findings. In contrast with the usual methods, the present analysis allows us to obtain not only the fractal dimension and the edges of the fractal region, but also the fractal iteration number, the scaling factor, and the number of structural units from which the fractal is composed.
Phonon and magnon dispersions of incommensurate spin ladder compound Sr14Cu24O41
NASA Astrophysics Data System (ADS)
Chen, Xi; Bansal, Dipanshu; Sullivan, Sean; Zhou, Jianshi; Delaire, Olivier; Shi, Li
There are a variety of compounds consisting of two or more interpenetrating sublattices with lattice periods incommensurate at least along one crystal axis. One example is spin ladder compound Sr14Cu24O41 consisting of incommensurate spin ladder and spin chain sublattices. It has been predicted that unique phonon modes occur in these compounds due to the relative motion of the sublattices. In the low-wavelength limit, there is only one longitudinal acoustic mode due to the rigid translation of both sublattices. In addition, one extra pseudo-acoustic mode is present due to relative sliding motions of the two sublattices. Although the theoretical aspects of the lattice dynamics of incommensurate compounds have been studied, there have been few experimental investigations on their phonon dynamics. In this work, single crystals of Sr14Cu24O41are grown by the traveling solvent floating zone method. The phonon dispersion of Sr14Cu24O41 is studied through inelastic neutron scattering measurements in order to better understand its phonon dynamics. In addition, its magnon dispersion is investigated and correlated to the large directional magnon thermal conductivity. The measurements reveal a wealth of intriguing features on phonons and magnons in the spin ladder compound. This work is supported by ARO MURI program under Award # W911NF-14-1-0016.
Thermal neutron scattering in graphite
NASA Astrophysics Data System (ADS)
Al-Qasir, Iyad Ibrahim
Generation IV Very High Temperature Reactor (VHTR) concepts, are graphite moderated and gas cooled thermal spectrum reactors. The characteristics of the low energy (E < 1 eV) neutron spectrum in these reactors will be dictated by the process of neutron slowing-down and thermalization in the graphite moderator. The ability to accurately predict this process in these reactors can have significant neutronic and safety implications. In reactor design calculations, thermal neutron scattering cross section libraries are needed for the prediction of the thermal neutron environment in the core. Currently used libraries (ENDF/B-VII) are a product of the 1960s and remain based on many physical approximations. In addition, these libraries show noticeable discrepancies with experimental data. In this work, investigation of thermal neutron scattering in graphite as a function of temperature was performed. The fundamental input for the calculation of thermal neutron scattering cross sections, i.e., the phonon frequency distribution and/or the dispersion relations, was generated using a modern approach that is based on quantum mechanical electronic structure (ab initio) simulations combined with a lattice dynamics direct method supercell approach. The calculations were performed using the VASP and PHONON codes. The VASP calculations used the local density approximation, and the projector augmented-wave pseudopotential. A supercell of 144 atoms was used; and the integration over the Brillouin zone was confined to a 3x3x4 k-mesh generated by the Monkhorst-Pack scheme. A plane-wave basis set with an energy cutoff of 500 eV was applied. The corresponding dispersion relations, heat capacity, and phonon frequency distribution show excellent agreement with experimental data. Despite the use of the above techniques to produce more accurate input data, the examination of the results indicated persistence of the inconsistencies between calculations and measurements at neutron energies
Phonon-phonon interactions and phonon damping for the curvature modes in carbon nanotubes
NASA Astrophysics Data System (ADS)
Li, Guolong; Ren, Zhongzhou
2016-01-01
We focus on the damping of the lowest-lying gapped modes with integer angular-momentum quantum number |l|=2 in carbon nanotubes (CNTs). These modes, called C modes simply, can be predicted within the framework of the continuum elasticity theory with the curvature term. Based on the phonon-phonon interactions due to the anharmonic effect, we obtain the three-phonon coupling coefficients of different damping processes of C modes. Applying perturbation theory, we calculate relaxation rates τ_C-1 and upper bounds of quality factors for the long-wavelength C modes. In addition, we display the wave vector dependence of τC and show the importance of the C mode damping to thermal conductivity.
Phonon dispersion and lifetimes in MgB2.
Shukla, Abhay; Calandra, Matteo; D'Astuto, Matteo; Lazzeri, Michele; Mauri, Francesco; Bellin, Christophe; Krisch, Michael; Karpinski, J; Kazakov, S M; Jun, J; Daghero, D; Parlinski, K
2003-03-01
We measure phonon dispersion and linewidth in a single crystal of MgB2 along the Gamma-A, Gamma-M, and A-L directions using inelastic x-ray scattering. We use density functional theory to compute the effect of both electron-phonon coupling and anharmonicity on the linewidth, obtaining excellent agreement with experiment. Anomalous broadening of the E(2g) phonon mode is found all along Gamma-A. The dominant contribution to the linewidth is always the electron-phonon coupling.
Interface scattering in polycrystalline thermoelectrics
Popescu, Adrian; Haney, Paul M.
2014-03-28
We study the effect of electron and phonon interface scattering on the thermoelectric properties of disordered, polycrystalline materials (with grain sizes larger than electron and phonons' mean free path). Interface scattering of electrons is treated with a Landauer approach, while that of phonons is treated with the diffuse mismatch model. The interface scattering is embedded within a diffusive model of bulk transport, and we show that, for randomly arranged interfaces, the overall system is well described by effective medium theory. Using bulk parameters similar to those of PbTe and a square barrier potential for the interface electron scattering, we identify the interface scattering parameters for which the figure of merit ZT is increased. We find the electronic scattering is generally detrimental due to a reduction in electrical conductivity; however, for sufficiently weak electronic interface scattering, ZT is enhanced due to phonon interface scattering.
NASA Technical Reports Server (NTRS)
Smalheer, C. V.
1973-01-01
The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.
Addition of missing loops and domains to protein models by x-ray solution scattering.
Petoukhov, Maxim V; Eady, Nigel A J; Brown, Katherine A; Svergun, Dmitri I
2002-01-01
Inherent flexibility and conformational heterogeneity in proteins can often result in the absence of loops and even entire domains in structures determined by x-ray crystallographic or NMR methods. X-ray solution scattering offers the possibility of obtaining complementary information regarding the structures of these disordered protein regions. Methods are presented for adding missing loops or domains by fixing a known structure and building the unknown regions to fit the experimental scattering data obtained from the entire particle. Simulated annealing was used to minimize a scoring function containing the discrepancy between the experimental and calculated patterns and the relevant penalty terms. In low-resolution models where interface location between known and unknown parts is not available, a gas of dummy residues represents the missing domain. In high-resolution models where the interface is known, loops or domains are represented as interconnected chains (or ensembles of residues with spring forces between the C(alpha) atoms), attached to known position(s) in the available structure. Native-like folds of missing fragments can be obtained by imposing residue-specific constraints. After validation in simulated examples, the methods have been applied to add missing loops or domains to several proteins where partial structures were available. PMID:12496082
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.
Raman spectra of semiconductor nanoparticles: Disorder-activated phonons
NASA Astrophysics Data System (ADS)
Ingale, Alka; Rustagi, K. C.
1998-09-01
We present Raman spectra of four semiconductor doped glasses and a single crystal of CdS0.55Se0.45 in the range 30-800 cm-1 in the backscattering geometry. This includes the first-order Raman scattering from the disorder-activated zone-edge phonons and the LO phonons. TO phonon modes are not observed, as in bulk CdS, for the excitation well above the lowest gap. We show that the asymmetric line profile of the LO phonon structure can be understood as a composite of two phonon modes: the zone center and the zone edge phonons. Disorder-activated modes in the (30-130)-cm-1 range and the higher-order Raman spectra are also observed and found to be consistent with this assignment.
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.
Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays
Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.
2015-10-28
We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less
Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing
2010-11-16
Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the
Phonon thermal transport through tilt grain boundaries in strontium titanate
Zheng, Zexi; Chen, Xiang; Yang, Shengfeng; Xiong, Liming; Chen, Youping; Deng, Bowen; Chernatynskiy, Aleksandr
2014-08-21
In this work, we perform nonequilibrium molecular dynamics simulations to study phonon scattering at two tilt grain boundaries (GBs) in SrTiO{sub 3}. Mode-wise energy transmission coefficients are obtained based on phonon wave-packet dynamics simulations. The Kapitza conductance is then quantified using a lattice dynamics approach. The obtained results of the Kapitza conductance of both GBs compare well with those obtained by the direct method, except for the temperature dependence. Contrary to common belief, the results of this work show that the optical modes in SrTiO{sub 3} contribute significantly to phonon thermal transport, accounting for over 50% of the Kapitza conductance. To understand the effect of the GB structural disorder on phonon transport, we compare the local phonon density of states of the atoms in the GB region with that in the single crystalline grain region. Our results show that the excess vibrational modes introduced by the structural disorder do not have a significant effect on phonon scattering at the GBs, but the absence of certain modes in the GB region appears to be responsible for phonon reflections at GBs. This work has also demonstrated phonon mode conversion and simultaneous generation of new modes. Some of the new modes have the same frequency as the initial wave packet, while some have the same wave vector but lower frequencies.
First Principles Modeling of Phonon Heat Conduction in Nanoscale Crystalline Structures
Sandip Mazumder; Ju Li
2010-06-30
The inability to remove heat efficiently is currently one of the stumbling blocks toward further miniaturization and advancement of electronic, optoelectronic, and micro-electro-mechanical devices. In order to formulate better heat removal strategies and designs, it is first necessary to understand the fundamental mechanisms of heat transport in semiconductor thin films. Modeling techniques, based on first principles, can play the crucial role of filling gaps in our understanding by revealing information that experiments are incapable of. Heat conduction in crystalline semiconductor films occurs by lattice vibrations that result in the propagation of quanta of energy called phonons. If the mean free path of the traveling phonons is larger than the film thickness, thermodynamic equilibrium ceases to exist, and thus, the Fourier law of heat conduction is invalid. In this scenario, bulk thermal conductivity values, which are experimentally determined by inversion of the Fourier law itself, cannot be used for analysis. The Boltzmann Transport Equation (BTE) is a powerful tool to treat non-equilibrium heat transport in thin films. The BTE describes the evolution of the number density (or energy) distribution for phonons as a result of transport (or drift) and inter-phonon collisions. Drift causes the phonon energy distribution to deviate from equilibrium, while collisions tend to restore equilibrium. Prior to solution of the BTE, it is necessary to compute the lifetimes (or scattering rates) for phonons of all wave-vector and polarization. The lifetime of a phonon is the net result of its collisions with other phonons, which in turn is governed by the conservation of energy and momentum during the underlying collision processes. This research project contributed to the state-of-the-art in two ways: (1) by developing and demonstrating a calibration-free simple methodology to compute intrinsic phonon scattering (Normal and Umklapp processes) time scales with the inclusion
Resonant squeezing and the anharmonic decay of coherent phonons
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murray, Éamonn D.; Reis, David A.
2016-04-01
We show that the anharmonic decay of large-amplitude coherent phonons in a solid generates strongly enhanced squeezing of the phonon modes near points of the Brillouin zone where energy conservation in the three-phonon decay process is satisfied. The squeezing process leads to temporal oscillations of the mean-square displacement of target modes in resonance with the coherent phonon, which are characteristic of coherent phonon decay and do not occur in the decay of a phonon in a well-defined number state. For realistic material parameters of optically excited group-V semimetals, we predict that this squeezing results in strongly enhanced oscillations of the x-ray diffuse scattering intensity at sharply defined values of the x-ray momentum transfer. Numerical simulations of the phonon dynamics and the x-ray diffuse scattering in optically excited bismuth, using harmonic and anharmonic force parameters calculated with constrained density functional theory, demonstrate oscillations of the diffuse scattering intensity of magnitude 10%-20% of the thermal background at points of the Brillouin zone, where resonance occurs. Such oscillations should be observable using time-resolved optical-pump and x-ray-probe facilities available at current x-ray free-electron laser sources.
Parsons, L. C. Andrews, G. T.
2014-07-21
Brillouin light scattering experiments and optical reflectance measurements were performed on a pair of porous silicon-based optical Bragg mirrors which had constituent layer porosity ratios close to unity. For off-axis propagation, the phononic and photonic band structures of the samples were modeled as a series of intersecting linear dispersion curves. Zone-folding was observed for the longitudinal bulk acoustic phonon and the frequency of the probed zone-folded longitudinal phonon was shown to be dependent on the propagation direction as well as the folding order of the mode branch. There was no conclusive evidence of coupling between the transverse and the folded longitudinal modes. Two additional observed Brillouin peaks were attributed to the Rayleigh surface mode and a possible pseudo-surface mode. Both of these modes were dispersive, with the velocity increasing as the wavevector decreased.
Volodin, V. A.; Sachkov, V. A.; Sinyukov, M. P.
2015-05-15
The angular anisotropy of interface phonons and their interaction with optical phonons in (001) GaAs/AlAs superlattices are calculated and experimentally studied. Experiments were performed by Raman light scattering in different scattering geometries for phonons with the wave vector directed normally to the superlattice and along its layers. Phonon frequencies were calculated by the extended Born method taking the Coulomb interaction into account in the rigid-ion approximation. Raman scattering spectra were calculated in the Volkenshtein bond-polarizability approximation. Calculations confirmed that the angular anisotropy of phonons observed in experiments appears due to interaction (mixing) of optical phonons, in which atoms are mainly displaced normally to superlattices, with interface phonons (TO-IF modes). In the scattering geometry, when the wave vector lies in the plane of superlattice layers, the mixed TO-IF modes are observed under nonresonance conditions. The Raman spectra for TO-IF modes depend on the mixing of atoms at heteroboundaries.
Phononic filter effect of rattling phonons in the thermoelectric clathrate Ba8Ge40+xNi6-x
NASA Astrophysics Data System (ADS)
Euchner, H.; Pailhès, S.; Nguyen, L. T. K.; Assmus, W.; Ritter, F.; Haghighirad, A.; Grin, Y.; Paschen, S.; de Boissieu, M.
2012-12-01
One of the key requirements for good thermoelectric materials is a low lattice thermal conductivity. Here we present a combined neutron scattering and theoretical investigation of the lattice dynamics in the type I clathrate system Ba-Ge-Ni, which fulfills this requirement. We observe a strong hybridization between phonons of the Ba guest atoms and acoustic phonons of the Ge-Ni host structure over a wide region of the Brillouin zone, which is in contrast with the frequently adopted picture of isolated Ba atoms in Ge-Ni host cages. It occurs without a strong decrease of the acoustic phonon lifetime, which contradicts the usual assumption of strong anharmonic phonon-phonon scattering processes. Within the framework of ab initio density-functional theory calculations we interpret these hybridizations as a series of anticrossings which act as a low-pass filter, preventing the propagation of acoustic phonons. To highlight the effect of such a phononic low-pass filter on the thermal transport, we compute the contribution of acoustic phonons to the thermal conductivity of Ba8Ge40Ni6 and compare it to those of pure Ge and a Ge46 empty-cage model system.
NASA Astrophysics Data System (ADS)
Melkonyan, G. G.; Kröger, H.; Gulian, A. M.
2003-10-01
Nonequilibrium phenomena in thin solid films can result in cooling effects. These types of effects were predicted theoretically a while ago, and only recently were demonstrated experimentally in superconductor-insulator-normal metal (SIN) tunnel junctions. Since then, there is a growing interest in tunneling effects for the purpose to develop on-chip refrigerators. Thin film devices have the advantage of being extremely compact, operate in a continuous mode, dissipate little power, and can easily be integrated in cryogenic detectors. Currently these refrigerators can generate cooling in the order of 100 mK in an environment of 0.3-0.5 K. There are reasons to expect that this performance can be enhanced but a fundamental investigation of underlying principles is required. One of the outcomes of this type of analysis is the phonon deficit effect. In this article we investigate the phonon deficit effect in thin film superconductor-insulator-superconductor and SIN tunnel junctions. Depending on circumstances, the phonon absorption spectra of such tunnel junctions have spectral windows of phonon emission and/or absorption. We demonstrate that the phonon deficit mechanism can stand for the experimental results with SIN tunnel junctions. In addition, application of the theory of this effect allows us to propose using phonon filters to select the phonon absorption windows and thus to enhance the cooling effect. We discuss a particular superlattice design of corresponding phonon filters.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo3Sb7–xTex
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo3Sb7–xTex (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassingmore » the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.« less
Ultrafast optical generation of coherent phonons in CdTe1-xSex quantum dots
NASA Astrophysics Data System (ADS)
Bragas, A. V.; Aku-Leh, C.; Costantino, S.; Ingale, Alka; Zhao, J.; Merlin, R.
2004-05-01
We report on the impulsive generation of coherent optical phonons in CdTe0.68Se0.32 nanocrystallites embedded in a glass matrix. Pump-probe experiments using femtosecond laser pulses were performed by tuning the laser central energy to resonate with the absorption edge of the nanocrystals. We identify two longitudinal optical phonons, one longitudinal acoustic phonon and a fourth mode of a mixed longitudinal-transverse nature. The amplitude of the optical phonons as a function of the laser central energy exhibits a resonance that is well described by a model based on impulsive stimulated Raman scattering. The phases of the coherent phonons reveal coupling between different modes. At low power density excitations, the frequency of the optical coherent phonons deviates from values obtained from spontaneous Raman scattering. This behavior is ascribed to the presence of electronic impurity states which modify the nanocrystal dielectric function and, thereby, the frequency of the infrared-active phonons.
Surface induced phonon decay rates in thin film nano-structures
NASA Astrophysics Data System (ADS)
Photiadis, D. M.
2007-12-01
Nano-scale structure significantly impacts phonon transport and related phonon relaxation rates, with order of magnitude effects on the thermal conductivity of dielectric thin films and quantum wires, and even larger effects on the lifetimes of ultrasonic phonons of micro- (nano-) oscillators. In both cases, efforts to explain the data have been hampered by our lack of knowledge of the effects of confined dimensionality on phonon-phonon scattering rates. Using a phonon Boltzmann equation with appropriate boundary conditions on the free surfaces to take surface roughness into account, we have obtained an expression yielding phonon lifetimes in 2-D dielectric nanostructures(thin films) resulting from phonon-phonon scattering in conjunction with phonon-surface scattering. We present these theoretical results and, in the limit in which surface induced losses dominate, obtain explicit predictions for the phonon lifetimes. The predicted temperature dependence of the ultrason! ic loss does not explain the observed saturation of the loss at low temperatures(τ(T) → const), but does give results of the order of magnitude of measured ultrasonic lifetimes.
NASA Astrophysics Data System (ADS)
Goel, Prabhatasree; Gupta, M. K.; Mittal, R.; Rols, S.; Achary, S. N.; Tyagi, A. K.; Chaplot, S. L.
2015-03-01
Lattice dynamics and high-pressure phase transitions in A W O4 (A =Ba ,Sr ,Ca , and Pb ) have been investigated using inelastic neutron scattering experiments, ab initio density functional theory calculations, and extensive molecular dynamics simulations. The vibrational modes that are internal to W O4 tetrahedra occur at the highest energies consistent with the relative stability of W O4 tetrahedra. The neutron data and the ab initio calculations are found to be in excellent agreement. The neutron and structural data are used to develop and validate an interatomic potential model. The model is used for classical molecular dynamics simulations to study their response to high pressure. We have calculated the enthalpies of the scheelite and fergusonite phases as a function of pressure, which confirms that the scheelite to fergusonite transition is second order in nature. With increase in pressure, there is a gradual change in the A O8 polyhedra, while there is no apparent change in the W O4 tetrahedra. We found that all the four tungstates amorphize at high pressure. This is in good agreement with available experimental observations which show amorphization at around 45 GPa in BaW O4 and 40 GPa in CaW O4 . Further molecular dynamics simulations at high pressure and high temperature indicate that application of pressure at higher temperature hastens the process of amorphization. On amorphization, there is an abrupt increase in the coordination of the W atom while the bisdisphenoids around the A atom are considerably distorted. The pair-correlation functions of the various atom pairs corroborate these observations. Our observations aid in predicting the pressure of amorphization in SrW O4 and PbW O4 .
Dynamically coupled plasmon-phonon modes in GaP: An indirect-gap polar semiconductor
NASA Astrophysics Data System (ADS)
Ishioka, Kunie; Brixius, Kristina; Höfer, Ulrich; Rustagi, Avinash; Thatcher, Evan M.; Stanton, Christopher J.; Petek, Hrvoje
2015-11-01
The ultrafast coupling dynamics of coherent optical phonons and the photoexcited electron-hole plasma in the indirect gap semiconductor GaP are investigated by experiment and theory. For below-gap excitation and probing by 800-nm light, only the bare longitudinal optical (LO) phonons are observed. For above-gap excitation with 400-nm light, the photoexcitation creates a high density, nonequilibrium e -h plasma, which introduces an additional, faster decaying oscillation due to an LO phonon-plasmon coupled (LOPC) mode. The LOPC mode frequency exhibits very similar behavior for both n - and p -doped GaP, downshifting from the LO to the transverse optical (TO) phonon frequency limits with increasing photoexcited carrier density. We assign the LOPC mode to the LO phonons coupled with the photoexcited multicomponent plasma. For the 400-nm excitation, the majority of the photoexcited electrons are scattered from the Γ valley into the satellite X valley, while the light and spin-split holes are scattered into the heavy hole band, within 30 fs. The resulting mixed plasma is strongly damped, leading to the LOPC frequency appearing in the reststrahlen gap. Due to the large effective masses of the X electrons and heavy holes, the coupled mode appears most distinctly at carrier densities ≳5 ×1018cm-3 . We perform theoretical calculations of the nuclear motions and the electronic polarizations following an excitation with an ultrashort optical pulse to obtain the transient reflectivity responses of the coupled modes. We find that, while the longitudinal diffusion of photoexcited carriers is insignificant, the lateral inhomogeneity of the photoexcited carriers due to the laser intensity profile should be taken into account to reproduce the major features of the observed coupled mode dynamics.
Phonon Density of States in MgB{sub 2}
Osborn, R.; Goremychkin, E. A.; Kolesnikov, A. I.; Hinks, D. G.
2001-07-02
We report inelastic neutron scattering measurements of the phonon density of states in Mg
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.
2015-04-13
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO_{2}) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.
2015-04-13
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat moremore » anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less
Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia
NASA Astrophysics Data System (ADS)
Li, C. W.; Smith, H. L.; Lan, T.; Niedziela, J. L.; Muñoz, J. A.; Keith, J. B.; Mauger, L.; Abernathy, D. L.; Fultz, B.
2015-04-01
Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2 ) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 w K . Temperature-dependent phonon densities of states (DOS) are reported, as are Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.
Renormalisation of Nonequilibrium Phonons Under Strong Perturbative Influences.
NASA Astrophysics Data System (ADS)
Mehta, Sushrut Madhukar
Effects of strong perturbative influences, namely the presence of a narrow distribution of acoustic phonons, and the presence of an electron plasma, on the dynamics of nonequilibrium, near zone center, longitudinal optical phonons in GaP have been investigated in two separate experiments. The study of the effects of the interaction between the LO phonons and a heavily populated, narrow distribution of acoustic phonons lead to the observation of a new optically driven nonequilibrium phonon state. Time Resolved Coherent Antistokes Raman Scattering (TR-CARS), with picosecond resolution, was used to investigate the new mode. In order to achieve high occupation numbers in the acoustic branch, the picosecond laser pulses used were amplified up to 1.0 GW/cm^2 peak power per laser beam. An important characteristic property of the new state which differentiates it from the well known LO phonon state is the fact that rather than having the single decay rate observed under thermal equilibrium, the new state has two decay rates. Moreover, these two decay rates depend strongly on the distribution of the acoustic phonon occupation number. The coupling of the LO phonons with an electron plasma, on the other hand, was investigated by measurements of the shape of the Raman scattered line associated with the phonon-plasmon coupled mode. The plasma was generated by thermal excitation of carriers in doped samples. It was possible to study a large variety of plasma excitations by controlling the concentration of the dopant and the ambient temperature. A complete, self consistant model based on standard dielectric response theory is presented, and applied to the measurements of the phonon-plasmon coupled mode. It is possible to recover, via this model, the effective coupled mode damping rate, the plasma damping rate, and the plasma frequency as functions of ambient temperature, or the carrier concentration.
Phonon sidebands of excitons bound to isoelectronic impurities in semiconductors
Zhang, Y.; Ge, W.; Sturge, M.D. ); Zheng, J.; Wu, B. )
1993-03-15
The configuration coordinate (CC) and momentum conservation (MC) models have been widely used to explain the phonon sidebands of impurity spectra in semiconductors. In this paper, the distinction between the CC and MC models is discussed. We conclude that the MC model only applies to shallow Coulombic impurities; in other cases, such as isoelectronic traps, the CC model is more appropriate. We show that the Huang-Rhys parameters for bulk phonon modes coupling to a bound electron or exciton can be calculated from the bound-state wave function in [ital k] space if the phonon-induced intervalley and intravalley electron scattering processes of the pure crystal are known. We study in detail the phonon sidebands of nitrogen-bound excitons in GaP, giving the selection rules for electron-phonon coupling in the CC model, and showing that their strength can be well accounted for by the CC model. The apparently anomalous [ital X]'' peak of the LO-phonon sideband in GaP:N is shown to be associated with intervalley scattering in the conduction band. The MC model, which has been used in an attempt to explain the phonon sidebands of GaP:N in some previous work, is shown to be inapplicable to this case.
Influence of pulse width and detuning on coherent phonon generation
NASA Astrophysics Data System (ADS)
Nakamura, Kazutaka G.; Shikano, Yutaka; Kayanuma, Yosuke
2015-10-01
We investigated the coherent phonon generation mechanism by irradiation of an ultrashort pulse with a simple two-level model. Our derived formulation shows that both impulsive stimulated Raman scattering (ISRS) and impulsive absorption (IA) simultaneously occur, and phonon wave packets are generated in the electronic ground and excited states by ISRS and IA, respectively. We identify the dominant process from the amplitude of the phonon oscillation. For short pulse widths, ISRS is very small and becomes larger as the pulse width increases. We also show that the initial phase is dependent on the pulse width and the detuning.
First-Principles Calculation of forces and phonons in solid
NASA Astrophysics Data System (ADS)
Ning, Zhenhua; Shelton, William
We have developed a multiple scattering theory approach to calculate Hellmann-Feynman forces and phonons via the calculation of the force constant and dynamical matrix. To demonstrate the accuracy and validity of our approach we compare with the ELK code, which is a full potential Linear Augmented Plane Wave (FLAPW) based method. As we will show our forces and phonon dispersion curves are in good agreement with the FLAPW code. This work lays the foundation for developing a first principles approach for calculation of phonons in substitutionally disordered materials.
Birefringent phononic structures
Psarobas, I. E. Exarchos, D. A.; Matikas, T. E.
2014-12-15
Within the framework of elastic anisotropy, caused in a phononic crystal due to low crystallographic symmetry, we adopt a model structure, already introduced in the case of photonic metamaterials, and by analogy, we study the effect of birefringence and acoustical activity in a phononic crystal. In particular, we investigate its low-frequency behavior and comment on the factors which determine chirality by reference to this model.
Phonon hydrodynamics and its applications in nanoscale heat transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2015-09-01
Phonon hydrodynamics is an effective macroscopic method to study heat transport in dielectric solid and semiconductor. It has a clear and intuitive physical picture, transforming the abstract and ambiguous heat transport process into a concrete and evident process of phonon gas flow. Furthermore, with the aid of the abundant models and methods developed in classical hydrodynamics, phonon hydrodynamics becomes much easier to implement in comparison to the current popular approaches based on the first-principle method and kinetic theories involving complicated computations. Therefore, it is a promising tool for studying micro- and nanoscale heat transport in rapidly developing micro and nano science and technology. However, there still lacks a comprehensive account of the theoretical foundations, development and implementation of this approach. This work represents such an attempt in providing a full landscape, from physical fundamental and kinetic theory of phonons to phonon hydrodynamics in view of descriptions of phonon systems at microscopic, mesoscopic and macroscopic levels. Thus a systematical kinetic framework, summing up so far scattered theoretical models and methods in phonon hydrodynamics as individual cases, is established through a frame of a Chapman-Enskog solution to phonon Boltzmann equation. Then the basic tenets and procedures in implementing phonon hydrodynamics in nanoscale heat transport are presented through a review of its recent wide applications in modeling thermal transport properties of nanostructures. Finally, we discuss some pending questions and perspectives highlighted by a novel concept of generalized phonon hydrodynamics and possible applications in micro/nano phononics, which will shed more light on more profound understanding and credible applications of this new approach in micro- and nanoscale heat transport science.
Spectral Analysis of Surface Controlled Phonon Transport in Nanophononic Metamaterials
NASA Astrophysics Data System (ADS)
Neogi, Sanghamitra; Donadio, Davide
Phonon engineering in nanostructured semiconductors has shown promises to further advance the performance of energy applications beyond the state-of-the-art limit. In nanostructured materials, phonon transport is greatly affected by the surface nanoscale character. The concept of nanophononic metamaterial (NPM) was introduced recently to affect nanoscale thermal transport with the inclusion of local surface resonators. We carried out a systematic investigation of phonon transport in locally resonant silicon-based NPMs. We used classical equilibrium molecular dynamics and a Boltzmann transport equation approach with the relaxation time approximation to investigate the nature of phononic thermal transport in nanopatterned silicon membranes with thicknesses of the order of 10 nm and below. We find the presence of local surface resonators has a significant effect on the phonon dispersion and has a direct consequence of suppression of group velocities of phonons in the NPMs. We completed the investigation by relating nanoscale resonant character (geometry and material composition) with phonon scattering, and consequently, phonon transport in the locally resonant silicon membrane NPMs This project is funded by the program FP7-ENERGY-2012-1-2STAGE under Contract Number 309150.
Phonovoltaic. I. Harvesting hot optical phonons in a nanoscale p -n junction
NASA Astrophysics Data System (ADS)
Melnick, Corey; Kaviany, Massoud
2016-03-01
The phonovoltaic (pV) cell is similar to the photovoltaic. It harvests nonequilibrium (hot) optical phonons (Ep ,O) more energetic than the band gap (Δ Ee ,g) to generate power in a p-n junction. We examine the theoretical electron-phonon and phonon-phonon scattering rates, the Boltzmann transport of electrons, and the diode equation and hydrodynamic simulations to describe the operation of a pV cell and develop an analytic model predicting its efficiency. Our findings indicate that a pV material with Ep ,O≃Δ Ee ,g≫kBT , where kBT is the thermal energy, and a strong interband electron-phonon coupling surpasses the thermoelectric limit, provided the optical phonon population is excited in a nanoscale cell, enabling the ensuing local nonequilibrium. Finding and tuning a material with these properties is challenging. In Paper II [C. Melnick and M. Kaviany, Phys. Rev. B 93, 125203 (2016), 10.1103/PhysRevB.93.125203], we tune the band gap of graphite within density functional theory through hydrogenation and the application of isotropic strains. The band gap is tuned to resonate with its energetic optical phonon modes and calculate the ab initio electron-phonon and phonon-phonon scattering rates. While hydrogenation degrades the strong electron-phonon coupling in graphene such that the figure of merit vanishes, we outline the methodology for a continued material search.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.
Orbitally-driven giant phonon anharmonicity in SnSe
Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.
2015-10-19
We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less
Electron–phonon coupling in hybrid lead halide perovskites
Wright, Adam D.; Verdi, Carla; Milot, Rebecca L.; Eperon, Giles E.; Pérez-Osorio, Miguel A.; Snaith, Henry J.; Giustino, Feliciano; Johnston, Michael B.; Herz, Laura M.
2016-01-01
Phonon scattering limits charge-carrier mobilities and governs emission line broadening in hybrid metal halide perovskites. Establishing how charge carriers interact with phonons in these materials is therefore essential for the development of high-efficiency perovskite photovoltaics and low-cost lasers. Here we investigate the temperature dependence of emission line broadening in the four commonly studied formamidinium and methylammonium perovskites, HC(NH2)2PbI3, HC(NH2)2PbBr3, CH3NH3PbI3 and CH3NH3PbBr3, and discover that scattering from longitudinal optical phonons via the Fröhlich interaction is the dominant source of electron–phonon coupling near room temperature, with scattering off acoustic phonons negligible. We determine energies for the interacting longitudinal optical phonon modes to be 11.5 and 15.3 meV, and Fröhlich coupling constants of ∼40 and 60 meV for the lead iodide and bromide perovskites, respectively. Our findings correlate well with first-principles calculations based on many-body perturbation theory, which underlines the suitability of an electronic band-structure picture for describing charge carriers in hybrid perovskites. PMID:27225329
Bloch oscillations in the presence of plasmons and phonons
Ghosh; Jonsson; Wilkins
2000-07-31
The coupling between Bloch oscillating electrons and longitudinal optical phonons in a superlattice leads to resonant phonon excitation but no gap in the Bloch-phonon spectrum. In addition, we predict a sharp transition from plasma to Bloch oscillations at nu(B) = 2nu(P). From a microscopic description with phenomenological dampings, we numerically map out the behavior of coupled Bloch-plasmon-phonon modes for a wide range of parameters, and mimic experimental conditions. Our results are in good agreement with recent experiments by Dekorsy et al. [Phys. Rev. Lett. 85, 1080 (2000)].
Lifetimes of two-phonon 1 - states in even N = 82 nuclei
NASA Astrophysics Data System (ADS)
Herzberg, R.-D.; Bauske, I.; von Brentano, P.; Eckert, Th.; Fischer, R.; Geiger, W.; Kneissl, U.; Margraf, J.; Maser, H.; Pietralla, N.; Pitz, H. H.; Zilges, A.
1995-02-01
Photon scattering experiments on the semi magic nuclei 138Ba and 140Ce have been performed at the bremsstrahlung facility of the Stuttgart Dynamitron. Two-phonon 1 - states were excited at 4.026 and 3.643 MeV excitation energy respectively as well as a number of 2 + states between 2 and 4 MeV. Lifetimes and upper limits for the decay to other low-lying states were extracted from the data and are compared to lifetimes given in the literature. The systematics of B(E1) values and energies of the 1 - two-phonon states is analysed using additional data from previously published (γ, γ') experiments on the neighbouring isotones 142Nd and 144Sm.
Magnetic oscillation of optical phonon in ABA- and ABC-stacked trilayer graphene
NASA Astrophysics Data System (ADS)
Cong, Chunxiao; Jung, Jeil; Cao, Bingchen; Qiu, Caiyu; Shen, Xiaonan; Ferreira, Aires; Adam, Shaffique; Yu, Ting
2015-06-01
We present a comparative measurement of the G -peak oscillations of phonon frequency, Raman intensity, and linewidth in the magneto-Raman scattering of optical E2 g phonons in mechanically exfoliated ABA- and ABC-stacked trilayer graphene (TLG). Whereas in ABA-stacked TLG, we observe magnetophonon oscillations consistent with single-bilayer chiral band doublets, the features are flat for ABC-stacked TLG up to magnetic fields of 9 T. This suppression can be attributed to the enhancement of band chirality that compactifies the spectrum of Landau levels and modifies the magnetophonon resonance properties. The drastically different coupling behavior between the electronic excitations and the E2 g phonons in ABA- and ABC-stacked TLG reflects their different electronic band structures and the electronic Landau level transitions and thus can be another way to determine the stacking orders and to probe the stacking-order-dependent electronic structures. In addition, the sensitivity of the magneto-Raman scattering to the particular stacking order in few-layer graphene highlights the important role of interlayer coupling in modifying the optical response properties in van der Waals layered materials.
Phonon dispersion and quantization tuning of strained carbon nanotubes for flexible electronics
Gautreau, Pierre; Chu, Yanbiao; Basaran, Cemal; Ragab, Tarek
2014-06-28
Graphene and carbon nanotubes are materials with large potentials for applications in flexible electronics. Such devices require a high level of sustainable strain and an understanding of the materials electrical properties under strain. Using supercell theory in conjunction with a comprehensive molecular mechanics model, the full band phonon dispersion of carbon nanotubes under uniaxial strain is studied. The results suggest an overall phonon softening and open up the possibility of phonon quantization tuning with uniaxial strain. The change in phonon quantization and the resulting increase in electron-phonon and phonon-phonon scattering rates offer further explanation and theoretical basis to the experimental observation of electrical properties degradation for carbon nanotubes under uniaxial strain.
Phononic crystal diffraction gratings
NASA Astrophysics Data System (ADS)
Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent
2012-02-01
When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides.
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic-phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized-with over 1,000 times larger nonlinearity than reported in previous systems-yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586
Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides
Shin, Heedeuk; Qiu, Wenjun; Jarecki, Robert; Cox, Jonathan A.; Olsson, Roy H.; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T.
2013-01-01
Nanoscale modal confinement is known to radically enhance the effect of intrinsic Kerr and Raman nonlinearities within nanophotonic silicon waveguides. By contrast, stimulated Brillouin-scattering nonlinearities, which involve coherent coupling between guided photon and phonon modes, are stifled in conventional nanophotonics, preventing the realization of a host of Brillouin-based signal-processing technologies in silicon. Here we demonstrate stimulated Brillouin scattering in silicon waveguides, for the first time, through a new class of hybrid photonic–phononic waveguides. Tailorable travelling-wave forward-stimulated Brillouin scattering is realized—with over 1,000 times larger nonlinearity than reported in previous systems—yielding strong Brillouin coupling to phonons from 1 to 18 GHz. Experiments show that radiation pressures, produced by subwavelength modal confinement, yield enhancement of Brillouin nonlinearity beyond those of material nonlinearity alone. In addition, such enhanced and wideband coherent phonon emission paves the way towards the hybridization of silicon photonics, microelectromechanical systems and CMOS signal-processing technologies on chip. PMID:23739586
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less
NASA Astrophysics Data System (ADS)
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-11-27
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.
Zeng, Lingping; Collins, Kimberlee C; Hu, Yongjie; Luckyanova, Maria N; Maznev, Alexei A; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang
2015-01-01
Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wire-grid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. This table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials. PMID:26612032
Anharmonic effects on Raman-active phonons
NASA Astrophysics Data System (ADS)
Canonico, Michael John
This dissertation explores anharmonic properties of semiconductor materials associated with strain and phonon lifetime using Raman spectroscopy. In recent years, extensive research and development of strain engineered advanced complementary metal-oxide-semiconductor devices utilizing high-k dielectrics and metal gate technology has been conducted to meet the challenges imposed by fundamental limits of device scaling. From a development and manufacturing viewpoint, the metrology required to drive these new technologies is critical to their success. In particular, UV-Raman spectroscopy has been extensively used to measure wafer and device strain due to the high spatial and spectral resolution coupled with an ultra-short optical penetration depth in Si. However, the strain-shift coefficients reported in the literature, which correlate the shift in Raman frequency with strain, have typically been measured in the visible portion of the spectrum and appear to differ from their UV counter-parts. This work presents a detailed measurement of the strain-shift coefficients in the UV at 325 and 364nm for Si, Ge, and Si:C and SiGe alloys. In addition, the temperature dependence of the frequencies and linewidths of the Raman-active longitudinal-optic (LO) phonons in GaAs and AlAs III-V semiconductor compounds is presented. Contrary to early theoretical predictions, the low temperature lifetime of the LO phonon is similar for the two materials with tau = 9.5 ps and 9.7 ps in GaAs and AlAs, respectively. The discrepancy between theory and experiment is caused by the accidental degeneracy between the AlAs LO phonon frequency and a Van Hove singularity in the two-phonon density of states. A new expression, based on the frequency dependence of the phonon self-energy, is derived to model the phonon lifetime.
NASA Astrophysics Data System (ADS)
Howard, Colin
The following dissertation presents a comprehensive study of the interaction between Dirac fermion quasiparticles (DFQs) and surface phonons on the surfaces of the topological insulators Bi2Se3 and Bi2Te 3. Inelastic helium atom surface scattering (HASS) spectroscopy and time of flight (TOF) techniques were used to measure the surface phonon dispersion of these materials along the two high-symmetry directions of the surface Brillouin zone (SBZ). Two anomalies common to both materials are exhibited in the experimental data. First, there is an absence of Rayleigh acoustic waves on the surface of these materials, pointing to weak coupling between the surface charge density and the surface acoustic phonon modes and potential applications for soundproofing technologies. Secondly, both materials exhibit an out-of-plane polarized optical phonon mode beginning at the SBZ center and dispersing to lower energy with increasing wave vector along both high-symmetry directions of the SBZ. This trend terminates in a V-shaped minimum at a wave vector corresponding to 2 kF for each material, after which the dispersion resumes its upward trend. This phenomenon constitutes a strong Kohn anomaly and can be attributed to the interaction between the surface phonons and DFQs. To quantify the coupling between the optical phonons experiencing strong renormalization and the DFQs at the surface, a phenomenological model was constructed based within the random phase approximation. Fitting the theoretical model to the experimental data allowed for the extraction of the matrix elements of the coupling Hamiltonian and the modifications to the surface phonon propagator encoded in the phonon self energy. This allowed, for the first time, calculation of phonon mode-specific quasiparticle-phonon coupling lambdanu( q) from experimental data. Additionally, an averaged coupling parameter was determined for both materials yielding bar lambdaTe ≈ 2 and bar lambdaSe ≈ 0.7. These values are
Hassan, P A; Fritz, Gerhard; Kaler, Eric W
2003-01-01
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.
Hassan, P A; Fritz, Gerhard; Kaler, Eric W
2003-01-01
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases. PMID:16256467
Three-Phonon Phase Space as an Indicator of the Lattice Thermal Conductivity in Semiconductors
NASA Astrophysics Data System (ADS)
Lindsay, L.; Broido, D. A.
2007-03-01
The room temperature lattice thermal conductivity of many semiconductors is limited primarily by three-phonon scattering processes arising from the anharmonicity of the interatomic potential. We employ an adiabatic bond charge model [1,2] for the phonon dispersions to calculate the phase space for three-phonon scattering events of several group IV and III-V semiconductors. We find that the amount of phase space available for this scattering in materials varies inversely with their measured thermal conductivities. Anomalous behavior occurs in III-V materials having large mass differences between cation and anion, which we explain in terms of the severely restricted three-phonon phase space arising from the large gap between acoustic and optic phonon branches. [1] W. Weber, Physical Review B 15, 4789 (1977). [2] K. C. Rustagi and W. Weber, Solid State Communications 18, 673 (1976).
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
NASA Astrophysics Data System (ADS)
Nunes, O. A. C.
2014-06-01
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate RPA ,DA scales with TBGS -1 (S =PA,DA), TBGS being the Block -Gru¨neisen temperature. In the high-T Block -Gru¨neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio RPA/RDA scales with ≈1/√n , n being the carrier concentration. We found that only for carrier concentration n ≤1010cm-2, RPA/RDA>1. In the low-T Block -Gru¨neisen regime, and for n =1010cm-2, the ratio RPA/RDA scales with TBGDA/TBGPA≈7.5 and RPA/RDA>1. In this regime, PA phonon dominates the electron scattering and RPA/RDA<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
Electron-phonon coupling and thermal transport in the thermoelectric compound Mo_{3}Sb_{7–x}Te_{x}
Bansal, Dipanshu; Li, Chen W.; Said, Ayman H.; Abernathy, Douglas L.; Yan, Jiaqiang; Delaire, Olivier A.
2015-12-07
Phonon properties of Mo_{3}Sb_{7–x}Te_{x} (x = 0, 1.5, 1.7), a potential high-temperature thermoelectric material, have been studied with inelastic neutron and x-ray scattering, and with first-principles simulations. The substitution of Te for Sb leads to pronounced changes in the electronic struc- ture, local bonding, phonon density of states (DOS), dispersions, and phonon lifetimes. Alloying with tellurium shifts the Fermi level upward, near the top of the valence band, resulting in a strong suppression of electron-phonon screening, and a large overall stiffening of interatomic force- constants. The suppression in electron-phonon coupling concomitantly increases group velocities and suppresses phonon scattering rates, surpassing the effects of alloy-disorder scattering, and re- sulting in a surprising increased lattice thermal conductivity in the alloy. We also identify that the local bonding environment changes non-uniformly around different atoms, leading to variable perturbation strengths for different optical phonon branches. The respective roles of changes in phonon group velocities and phonon lifetimes on the lattice thermal conductivity are quantified. Lastly, our results highlight the importance of the electron-phonon coupling on phonon mean-free-paths in this compound, and also estimates the contributions from boundary scattering, umklapp scattering, and point-defect scattering.
Phonon-Josephson resonances in atomtronic circuits
NASA Astrophysics Data System (ADS)
Bidasyuk, Y. M.; Prikhodko, O. O.; Weyrauch, M.
2016-09-01
We study the resonant excitation of sound modes from Josephson oscillations in Bose-Einstein condensates. From the simulations for various setups using the Gross-Pitaevskii mean-field equations and Josephson equations we observe additional tunneling currents induced by resonant phonons. The proposed experiment may be used for spectroscopy of phonons as well as other low-energy collective excitations in Bose-Einstein condensates. We also argue that the observed effect may mask the observation of Shapiro resonances if not carefully controlled.
Improved model of optical phonon confinement in silicon nanocrystals
Volodin, V. A.; Sachkov, V. A.
2013-01-15
We develop a model for calculating the Raman scattering spectra from phonons confined in for silicon nanocrystals, which is based on the familiar approach taking into account the uncertainty in the quasi-momentum of phonons localized in the nanocrystals. The model is considerably improved by taking into account dispersion of phonons not only in the magnitude of the quasi-momentum, but also in its direction. A significant refinement of the model is also due to the fact that phonon dispersion is calculated using the widely approved Keating model instead of being approximated by empirical expressions as was done in earlier approaches. The calculations based on this model make it possible to determine the sizes of silicon nanocrystals more precisely from analysis of the experimental Raman spectra.
Phonon anharmonicity and components of the entropy in palladium and platinum
NASA Astrophysics Data System (ADS)
Shen, Yang; Li, Chen W.; Tang, Xiaoli; Smith, Hillary L.; Fultz, B.
2016-06-01
Inelastic neutron scattering was used to measure the phonon density of states in fcc palladium and platinum metal at temperatures from 7 K to 1576 K. Both phonon-phonon interactions and electron-phonon interactions were calculated by methods based on density functional theory (DFT) and were consistent with the measured shifts and broadenings of phonons with temperature. Unlike the longitudinal modes, the characteristic transverse modes had a nonlinear dependence on temperature owing to the requirement for a population of thermal phonons for upscattering. Kohn anomalies were observed in the measurements at low temperature and were reproduced by calculations based on DFT. Contributions to the entropy from phonons and electrons were assessed and summed to obtain excellent agreement with prior calorimetric data. The entropy from thermal expansion is positive for both phonons and electrons but larger for phonons. The anharmonic phonon entropy is negative in Pt, but in Pd it changes from positive to negative with increasing temperature. Owing to the position of the Fermi level on the electronic DOS, the electronic entropy was sensitive to the adiabatic electron-phonon interaction in both Pd and Pt. The adiabatic EPI depended strongly on thermal atom displacements.
Symmetry-adapted phonon analysis of nanotubes
NASA Astrophysics Data System (ADS)
Aghaei, Amin; Dayal, Kaushik; Elliott, Ryan S.
2013-02-01
The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves. Our findings include that, first, not all non-optic long-wavelength modes are zero energy and conversely not all zero energy modes are long-wavelength; second, the phonon curves accurately predict both the onset as well as the soft modes for instabilities such as torsional buckling; and third, unlike crystals where phonon stability does not provide information on stability with respect to non-rank-one deformation modes, phonon stability in nanotubes is sufficient to guarantee stability with respect to all perturbations that do not involve structural modes. Our finding of characteristic
Modification of the phonon spectrum of bulk Si through surface nanostructuring
NASA Astrophysics Data System (ADS)
Iskandar, A.; Gwiazda, A.; Huang, Y.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.
2016-09-01
In this paper, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. The phonon spectrum in a finite material is strongly affected by the presence of free surfaces, which is the addition of a contribution from an essentially two-dimensional crystal. The phonon spectrum of a bulk material can hence be altered by a hybridization mechanism between confined phonon modes in nanostructures introduced on the surface of a bulk material and the underlying bulk phonon modes. We measured the heat capacities of bare and surface-structured silicon substrates originating from the same silicon wafer. Then, we deduced important features of the phonon spectra of the samples investigated through a rigorous analysis of the measured heat capacity curves. The results show that the shape and size of the nanostructures made on the surface of the bulk substrate have a strong effect on the phonon spectrum of the bulk material.
Phonon properties of americium phosphide
NASA Astrophysics Data System (ADS)
Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.
2016-05-01
Phonon properties of AmP have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmP are presented follow the same trend as observed in uranium phosphide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.
Generation mechanism of terahertz coherent acoustic phonons in Fe
NASA Astrophysics Data System (ADS)
Henighan, T.; Trigo, M.; Bonetti, S.; Granitzka, P.; Higley, D.; Chen, Z.; Jiang, M. P.; Kukreja, R.; Gray, A.; Reid, A. H.; Jal, E.; Hoffmann, M. C.; Kozina, M.; Song, S.; Chollet, M.; Zhu, D.; Xu, P. F.; Jeong, J.; Carva, K.; Maldonado, P.; Oppeneer, P. M.; Samant, M. G.; Parkin, S. S. P.; Reis, D. A.; Dürr, H. A.
2016-06-01
We use femtosecond time-resolved hard x-ray scattering to detect coherent acoustic phonons generated during ultrafast laser excitation of ferromagnetic bcc Fe films grown on MgO(001). We observe the coherent longitudinal-acoustic phonons as a function of wave vector through analysis of the temporal oscillations in the x-ray scattering signal. The width of the extracted strain wave front associated with this coherent motion is ˜100 fs. An effective electronic Grüneisen parameter is extracted within a two-temperature model. However, ab initio calculations show that the phonons are nonthermal on the time scale of the experiment, which calls into question the validity of extracting physical constants by fitting such a two-temperature model.
Two-phonon processes of intraband relaxation in the terahertz regime in quantum dots.
Wang, Zi-Wu; Li, Shu-Shen
2011-06-01
We theoretically investigate the intraband relaxation of quantum dots in the terahertz regime due to two acoustic phonon scattering by applying a lattice relaxation approach based on the deformation potential coupling between electrons and acoustic phonons. In particular, we find that the relaxation time depends strongly on the ratio of two acoustic phonons. The influences of the energy separation between the ground and first excited state, the quantum dot height, and the lattice temperature on the relaxation time are also discussed. Our theoretical results not only give a reasonable explanation for the current experimental measurement but also provide some insight into two-phonon intraband relaxation in quantum dots.
Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling
NASA Astrophysics Data System (ADS)
Pradip, R.; Piekarz, P.; Bosak, A.; Merkel, D. G.; Waller, O.; Seiler, A.; Chumakov, A. I.; Rüffer, R.; Oleś, A. M.; Parlinski, K.; Krisch, M.; Baumbach, T.; Stankov, S.
2016-05-01
Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature TC=69 K . This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.
Regner, Keith T; Sellan, Daniel P; Su, Zonghui; Amon, Cristina H; McGaughey, Alan J H; Malen, Jonathan A
2013-01-01
Non-metallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events-their mean free paths. Due to the breadth of the phonon mean free path spectrum, nanostructuring materials can reduce thermal conductivity from bulk by scattering long mean free path phonons, whereas short mean free path phonons are unaffected. Here we use a breakdown in diffusive phonon transport generated by high-frequency surface temperature modulation to identify the mean free path-dependent contributions of phonons to thermal conductivity in crystalline and amorphous silicon. Our measurements probe a broad range of mean free paths in crystalline silicon spanning 0.3-8.0 μm at a temperature of 311 K and show that 40±5% of its thermal conductivity comes from phonons with mean free path >1 μm. In a 500 nm thick amorphous silicon film, despite atomic disorder, we identify propagating phonon-like modes that contribute >35±7% to thermal conductivity at a temperature of 306 K.
NASA Astrophysics Data System (ADS)
Regner, Keith T.; Sellan, Daniel P.; Su, Zonghui; Amon, Cristina H.; McGaughey, Alan J. H.; Malen, Jonathan A.
2013-03-01
Non-metallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events—their mean free paths. Due to the breadth of the phonon mean free path spectrum, nanostructuring materials can reduce thermal conductivity from bulk by scattering long mean free path phonons, whereas short mean free path phonons are unaffected. Here we use a breakdown in diffusive phonon transport generated by high-frequency surface temperature modulation to identify the mean free path-dependent contributions of phonons to thermal conductivity in crystalline and amorphous silicon. Our measurements probe a broad range of mean free paths in crystalline silicon spanning 0.3-8.0 μm at a temperature of 311 K and show that 40±5% of its thermal conductivity comes from phonons with mean free path >1 μm. In a 500 nm thick amorphous silicon film, despite atomic disorder, we identify propagating phonon-like modes that contribute >35±7% to thermal conductivity at a temperature of 306 K.
NASA Astrophysics Data System (ADS)
Pop, Eric; Dutton, Robert W.; Goodson, Kenneth E.
2004-11-01
We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Ξu=6.8eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are DLA=6.39eV and DTA=3.01eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported.
Phonons, defects and optical damage in crystalline acetanilide
NASA Astrophysics Data System (ADS)
Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.
1986-04-01
Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.
Sadhu, Jyothi; Tian, Hongxiang; Ma, Jun; Azeredo, Bruno; Kim, Junhwan; Balasundaram, Karthik; Zhang, Chen; Li, Xiuling; Ferreira, P M; Sinha, S
2015-05-13
Existing theory and data cannot quantify the contribution of phonon drag to the Seebeck coefficient (S) in semiconductors at room temperature. We show that this is possible through comparative measurements between nanowires and the bulk. Phonon boundary scattering completely quenches phonon drag in silicon nanowires enabling quantification of its contribution to S in bulk silicon in the range 25-500 K. The contribution is surprisingly large (∼34%) at 300 K even at doping of ∼3 × 10(19) cm(-3). Our results contradict the notion that phonon drag is negligible in degenerate semiconductors at temperatures relevant for thermoelectric energy conversion. A revised theory of electron-phonon momentum exchange that accounts for a phonon mean free path spectrum agrees well with the data.
Electron-Phonon Coupling and its implication for the superconducting topological insulators
Zhang, Xiao-Long; Liu, Wu-Ming
2015-01-01
The recent observation of superconductivity in doped topological insulators has sparked a flurry of interest due to the prospect of realizing the long-sought topological superconductors. Yet the understanding of underlying pairing mechanism in these systems is far from complete. Here we investigate this problem by providing robust first-principles calculations of the role of electron-phonon coupling for the superconducting pairing in the prime candidate CuxBi2Se3. Our results show that electron-phonon scattering process in this system is dominated by zone center and boundary optical modes, with coexistence of phonon stiffening and softening. While the calculated electron-phonon coupling constant λ suggests that Tc from electron-phonon coupling is 2 orders smaller than the ones reported on bulk inhomogeneous samples, suggesting that superconductivity may not come from pure electron-phonon coupling. We discuss the possible enhancement of superconducting transition temperature by local inhomogeneity introduced by doping. PMID:25753813
Anomalous Hall effect for the phonon heat conductivity in paramagnetic dielectrics.
Kagan, Yu; Maksimov, L A
2008-04-11
The theory of the anomalous Hall effect for the heat transfer in a parmagnetic dielectric, discovered by Strohm, Rikken, and Wyder [Phys. Rev. Lett. 95, 155901 (2005)]10.1103/PhysRevLett.95.155901, is developed. The appearance of the phonon heat flux normal to both the temperature gradient and the magnetic field is connected with the interaction of magnetic ions with the crystal field oscillations. In crystals with an arbitrary phonon spectrum this interaction creates the elliptical polarization of phonons. The kinetics related to phonon scattering induced by the spin-phonon interaction determines an origin of the off-diagonal phonon density matrix. The combination of both factors is decisive for the phenomenon under consideration.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Zhang, Yu Chen, GuanHua; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Pandya, Ankur; Shinde, Satyam; Jha, Prafulla K.
2015-05-15
In this paper the hot electron transport properties like carrier energy and momentum scattering rates and electron energy loss rates are calculated via interactions of electrons with polar acoustical phonons for Mn doped BN quantum well in BN nanosheets via piezoelectric scattering and deformation potential mechanisms at low temperatures with high electric field. Electron energy loss rate increases with the electric field. It is observed that at low temperatures and for low electric field the phonon absorption is taking place whereas, for sufficient large electric field, phonon emission takes place. Under the piezoelectric (polar acoustical phonon) scattering mechanism, the carrier scattering rate decreases with the reduction of electric field at low temperatures wherein, the scattering rate variation with electric field is limited by a specific temperature beyond which there is no any impact of electric field on such scattering.
Light dark matter scattering in outer neutron star crusts
NASA Astrophysics Data System (ADS)
Cermeño, Marina; Pérez-García, M. Ángeles; Silk, Joseph
2016-09-01
We calculate for the first time the phonon excitation rate in the outer crust of a neutron star due to scattering from light dark matter (LDM) particles gravitationally boosted into the star. We consider dark matter particles in the sub-GeV mass range scattering off a periodic array of nuclei through an effective scalar-vector interaction with nucleons. We find that LDM effects cause a modification of the net number of phonons in the lattice as compared to the standard thermal result. In addition, we estimate the contribution of LDM to the ion-ion thermal conductivity in the outer crust and find that it can be significantly enhanced at large densities. Our results imply that for magnetized neutron stars the LDM-enhanced global conductivity in the outer crust will tend to reduce the anisotropic heat conduction between perpendicular and parallel directions to the magnetic field.
NASA Astrophysics Data System (ADS)
Hong, Jiawang; Li, Chen W.; May, A. F.; Bansal, D.; Chi, S.; Hong, T.; Ehlers, G.; Delaire, Olivier
The promising thermoelectric material SnSe exhibits ultra-low and strongly anisotropic thermal conductivity. By combining first-principles calculations and inelastic neutron scattering measurements, we have investigated the phonon dispersions and phonon scattering mechanisms, and probed the origin of the large anharmonicity in SnSe. We will discuss the connection between the phonon properties and the high-temperature structural phase transition, and how the electronic structure leads to large anharmonic phonon interactions in SnSe. The present results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, which could help design materials with ultralow thermal conductivity. Computations were performed using the OLCF at ORNL. Modeling of neutron data was performed in CAMM, measurements were funded by the US DOE, BES, Materials Science and Engineering Division.
NASA Astrophysics Data System (ADS)
Hayes, W. W.
In the initial portion of this dissertation studies of Ar scattering from Ru(0001) at thermal and hyperthermal energies are compared to calculations with classical scattering theory. These data exhibited a number of characteristics that are unusual in comparison to other systems for which atomic beam experiments have been carried out under similar conditions. The measured energy losses were unusually small. Some of the angular distributions exhibited an anomalous shoulder feature in addition to a broad peak near the specular direction and quantum mechanical diffraction was observed under conditions for which it was not expected. Many of the unusual features observed in the measurements are explained, but only upon using an effective surface mass of 2.3 Ru atomic masses, which implies collective effects in the Ru crystal. The large effective mass, because it leads to substantially larger Debye-Waller factors, explains and confirms the observations of diffraction features. It also leads to the interesting conclusion that Ru is a metal for which atomic beam scattering measurements in the purely quantum mechanical regime, where diffraction and single-phonon creation are dominant, should be possible not only with He atoms, but with many other atomic species with larger masses. A useful theoretical expression for interpreting and analyzing observed scattering intensity spectra for atomic and molecular collisions with surfaces is the differential reflection coefficient for a smooth, vibrating surface. This differential reflection coefficient depends on a parameter, usually expressed in dimensions of velocity, that arises due to correlated motions of neighboring regions of the surface and can be evaluated if the polarization vectors of the phonons near the surface are known. As a part of this dissertation experimental conditions are suggested under which this velocity paramenter may be more precisely measured than it has been in the past. Experimental data for scattering
Effects of pre-stress and surface stress on phonon thermal conductivity of rectangular Si nanowires
NASA Astrophysics Data System (ADS)
Zhu, Linli; Ruan, Haihui
2015-04-01
This work investigates theoretically the phonon property and thermal conductivity of rectangular silicon nanowires under pre-stress and surface stress. In the framework of elasticity theory, the effects of spatial confinement are considered in the phonon dispersion relation of a stressed nanowire. The surface energy, which brings about the variation of the elastic modulus of nanowire and the influence on the phonon property, is then involved. Under a pre-stress field, the acoustoelastic effect gives rise to the change of phonon properties and thermal conductivity. Our numerical results demonstrate that the applied surface stress and pre-stress field can alter the phonon dispersion relation of a silicon nanowire significantly. The phonon energy increases if the surface stress is negative and the pre-stress is positive, and vice versa. The changes of phonon dispersion relation as well as the various phonon scattering rates lead to the variation of phonon thermal conductivity, which is the consequence of the surface stress and pre-stress fields. We further elaborate the size and temperature dependence of phonon thermal conductivity under different applied surface stresses and pre-stress fields and suggest using the strain engineering to tune the thermal performance of semiconductor nanostructures.
Low temperature phonon anomalies in cuprates
Egami, T.; Petrov, Y.; McQueeney, R.J.; Shirane, G.; Endoh, Y.
1998-08-01
The inelastic neutron scattering measurement on La{sub 1.85}Sr{sub .15}CuO{sub 4} single crystals shows that the in-plane LO phonon dispersion at low temperature is incompatible with the current view on the dynamic charge stripes, which for this composition should have the periodicity of 4a. Instead the results are consistent with the dynamic stripes with the periodicity of 2a, half of what is expected and a quarter of the magnetic periodicity. Calculations with the two-band t-t{prime}-J model suggest that such 2a stripe charge ordering may help hole pairing.
Enhancing phonon flow through one-dimensional interfaces by impedance matching
Polanco, Carlos A. Ghosh, Avik W.
2014-08-28
We extend concepts from microwave engineering to thermal interfaces and explore the principles of impedance matching in 1D. The extension is based on the generalization of acoustic impedance to nonlinear dispersions using the contact broadening matrix Γ(ω), extracted from the phonon self energy. For a single junction, we find that for coherent and incoherent phonons, the optimal thermal conductance occurs when the matching Γ(ω) equals the Geometric Mean of the contact broadenings. This criterion favors the transmission of both low and high frequency phonons by requiring that (1) the low frequency acoustic impedance of the junction matches that of the two contacts by minimizing the sum of interfacial resistances and (2) the cut-off frequency is near the minimum of the two contacts, thereby reducing the spillage of the states into the tunneling regime. For an ultimately scaled single atom/spring junction, the matching criterion transforms to the arithmetic mean for mass and the harmonic mean for spring constant. The matching can be further improved using a composite graded junction with an exponential varying broadening that functions like a broadband antireflection coating. There is, however, a trade off as the increased length of the interface brings in additional intrinsic sources of scattering.
A first-principles study on the phonon transport in layered BiCuOSe
NASA Astrophysics Data System (ADS)
Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan
2016-02-01
First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe.
A first-principles study on the phonon transport in layered BiCuOSe
Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan
2016-01-01
First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe. PMID:26878884
Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; Silibin, Maxim V.; Kalinin, Sergei V.; Eliseev, Eugene A.
2015-09-29
The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic softmore » mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.« less
Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; Silibin, Maxim V.; Kalinin, Sergei V.; Eliseev, Eugene A.
2015-09-29
The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic soft mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.
A first-principles study on the phonon transport in layered BiCuOSe.
Shao, Hezhu; Tan, Xiaojian; Liu, Guo-Qiang; Jiang, Jun; Jiang, Haochuan
2016-01-01
First-principles calculations are employed to investigate the phonon transport of BiCuOSe. Our calculations reproduce the lattice thermal conductivity of BiCuOSe. The calculated grüneisen parameter is 2.4 ~ 2.6 at room temperature, a fairly large value indicating a strong anharmonicity in BiCuOSe, which leads to its ultralow lattice thermal conductivity. The contribution to total thermal conductivity from high-frequency optical phonons, which are mostly contributed by the vibrations of O atoms, is larger than 1/3, remarkably different from the usual picture with very little contribution from high-frequency optical phonons. Our calculations show that both the high group velocities and low scattering processes involved make the high-frequency optical modes contribute considerably to the total lattice thermal conductivity. In addition, we show that the sound velocity and bulk modulus along a and c axes exhibit strong anisotropy, which results in the anisotropic thermal conductivity in BiCuOSe. PMID:26878884
A moment model for phonon transport at room temperature
NASA Astrophysics Data System (ADS)
Mohammadzadeh, Alireza; Struchtrup, Henning
2016-08-01
Heat transfer in solids is modeled by deriving the macroscopic equations for phonon transport from the phonon-Boltzmann equation. In these equations, the Callaway model with frequency-dependent relaxation time is considered to describe the Resistive and Normal processes in the phonon interactions. Also, the Brillouin zone is considered to be a sphere, and its diameter depends on the temperature of the system. A simple model to describe phonon interaction with crystal boundary is employed to obtain macroscopic boundary conditions, where the reflection kernel is the superposition of diffusive reflection, specular reflection and isotropic scattering. Macroscopic moments are defined using a polynomial of the frequency and wave vector of phonons. As an example, a system of moment equations, consisting of three directional and seven frequency moments, i.e., 63 moments in total, is used to study one-dimensional heat transfer, as well as Poiseuille flow of phonons. Our results show the importance of frequency dependency in relaxation times and macroscopic moments to predict rarefaction effects. Good agreement with data reported in the literature is obtained.
Phononic crystals of spherical particles: A tight binding approach
Mattarelli, M.; Secchi, M.; Montagna, M.
2013-11-07
The vibrational dynamics of a fcc phononic crystal of spheres is studied and compared with that of a single free sphere, modelled either by a continuous homogeneous medium or by a finite cluster of atoms. For weak interaction among the spheres, the vibrational dynamics of the phononic crystal is described by shallow bands, with low degree of dispersion, corresponding to the acoustic spheroidal and torsional modes of the single sphere. The phonon displacements are therefore related to the vibrations of a sphere, as the electron wave functions in a crystal are related to the atomic wave functions in a tight binding model. Important dispersion is found for the two lowest phonon bands, which correspond to zero frequency free translation and rotation of a free sphere. Brillouin scattering spectra are calculated at some values of the exchanged wavevectors of the light, and compared with those of a single sphere. With weak interaction between particles, given the high acoustic impedance mismatch in dry systems, the density of phonon states consist of sharp bands separated by large gaps, which can be well accounted for by a single particle model. Based on the width of the frequency gaps, tunable with the particle size, and on the small number of dispersive acoustic phonons, such systems may provide excellent materials for application as sound or heat filters.
Magnetic moments induce strong phonon renormalization in FeSi
Krannich, S.; Sidis, Y.; Lamago, D.; Heid, R.; Mignot, J.-M.; Löhneysen, H. v.; Ivanov, A.; Steffens, P.; Keller, T.; Wang, L.; Goering, E.; Weber, F.
2015-01-01
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron–phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron–phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe–Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin–phonon coupling and multiple interaction paths. PMID:26611619
Magnetic moments induce strong phonon renormalization in FeSi.
Krannich, S; Sidis, Y; Lamago, D; Heid, R; Mignot, J-M; Löhneysen, H v; Ivanov, A; Steffens, P; Keller, T; Wang, L; Goering, E; Weber, F
2015-01-01
The interactions of electronic, spin and lattice degrees of freedom in solids result in complex phase diagrams, new emergent phenomena and technical applications. While electron-phonon coupling is well understood, and interactions between spin and electronic excitations are intensely investigated, only little is known about the dynamic interactions between spin and lattice excitations. Noncentrosymmetric FeSi is known to undergo with increasing temperature a crossover from insulating to metallic behaviour with concomitant magnetic fluctuations, and exhibits strongly temperature-dependent phonon energies. Here we show by detailed inelastic neutron-scattering measurements and ab initio calculations that the phonon renormalization in FeSi is linked to its unconventional magnetic properties. Electronic states mediating conventional electron-phonon coupling are only activated in the presence of strong magnetic fluctuations. Furthermore, phonons entailing strongly varying Fe-Fe distances are damped via dynamic coupling to the temperature-induced magnetic moments, highlighting FeSi as a material with direct spin-phonon coupling and multiple interaction paths. PMID:26611619
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Hopkins, Patrick E.
2015-12-01
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot be accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.
First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene
Gu, Xiaokun; Yang, Ronggui
2015-01-14
There has been great interest in two-dimensional materials, beyond graphene, for both fundamental sciences and technological applications. Silicene, a silicon counterpart of graphene, has been shown to possess some better electronic properties than graphene. However, its thermal transport properties have not been fully studied. In this paper, we apply the first-principles-based phonon Boltzmann transport equation to investigate the thermal conductivity of silicene as well as the phonon scattering mechanisms. Although both graphene and silicene are two-dimensional crystals with similar crystal structure, we find that phonon transport in silicene is quite different from that in graphene. The thermal conductivity of silicene shows a logarithmic increase with respect to the sample size due to the small scattering rates of acoustic in-plane phonon modes, while that of graphene is finite. Detailed analysis of phonon scattering channels shows that the linear dispersion of the acoustic out-of-plane (ZA) phonon modes, which is induced by the buckled structure, makes the long-wavelength longitudinal acoustic phonon modes in silicene not as efficiently scattered as that in graphene. Compared with graphene, where most of the heat is carried by the acoustic out-of-plane (ZA) phonon modes, the ZA phonon modes in silicene only have ∼10% contribution to the total thermal conductivity, which can also be attributed to the buckled structure. This systematic comparison of phonon transport and thermal conductivity of silicene and graphene using the first-principle-based calculations shed some light on other two-dimensional materials, such as two-dimensional transition metal dichalcogenides.
Phonon-lifetimes in demixing systems
NASA Astrophysics Data System (ADS)
Davaasambuu, J.; Güthoff, F.; Petri, M.; Hradil, K.; Schober, H.; Ollivier, J.; Eckold, G.
2012-06-01
The dynamics of silver-alkali halide mixed single crystals (AgxNa1-xBr, x = 0.23, 0.35, 0.40 and 0.70) were studied by inelastic neutron scattering during the process of spinodal decomposition. Using the thermal three-axes spectrometer PUMA as well as the time-of-flight spectrometer IN5, the time evolution of phonons was observed in time-resolved, stroboscopic measurements. Complementary to the study of long wavelength acoustic phonons, as studied previously, we extended these investigations to Brillouin-zone boundary modes that are particularly sensitive to variations of the local structure. Starting from the homogeneous mixed phase the behaviour of these modes during demixing is observed in real-time. A simple dynamical model based on local structure variants helps to interpret the results. It is shown that the phonon lifetimes vary strongly during the phase separation and increase drastically during the coarsening process. Up to a critical size of precipitates of about 10 nm, zone-boundary modes are found to be strongly damped, while beyond the line widths are reduced to the experimental resolution. This finding leads to the conclusion that the typical mean free path of these modes is of the order of 10 nm, which corresponds to 20 unit cells.
Ab initio phonon limited transport
NASA Astrophysics Data System (ADS)
Verstraete, Matthieu
We revisit the thermoelectric (TE) transport properties of two champion materials, PbTe and SnSe, using fully first principles methods. In both cases the performance of the material is due to subtle combinations of structural effects, scattering, and phase space reduction. In PbTe anharmonic effects are completely opposite to the predicted quasiharmonic evolution of phonon frequencies and to frequently (and incorrectly) cited extrapolations of experiments. This stabilizes the material at high T, but also tends to enhance its thermal conductivity, in a non linear manner, above 600 Kelvin. This explains why PbTe is in practice limited to room temperature applications. SnSe has recently been shown to be the most efficient TE material in bulk form. This is mainly due to a strongly enhanced carrier concentration and electrical conductivity, after going through a phase transition from 600 to 800 K. We calculate the transport coefficients as well as the defect concentrations ab initio, showing excellent agreement with experiment, and elucidating the origin of the double phase transition as well as the new charge carriers. AH Romero, EKU Gross, MJ Verstraete, and O Hellman PRB 91, 214310 (2015) O. Hellman, IA Abrikosov, and SI Simak, PRB 84 180301 (2011)
Bloch oscillations of THz acoustic phonons in coupled nanocavity structures.
Lanzillotti-Kimura, N D; Fainstein, A; Perrin, B; Jusserand, B; Mauguin, O; Largeau, L; Lemaître, A
2010-05-14
Nanophononic Bloch oscillations and Wannier-Stark ladders have been recently predicted to exist in specifically tailored structures formed by coupled nanocavities. Using pump-probe coherent phonon generation techniques we demonstrate that Bloch oscillations of terahertz acoustic phonons can be directly generated and probed in these complex nanostructures. In addition, by Fourier transforming the time traces we had access to the proper eigenmodes in the frequency domain, thus evidencing the related Wannier-Stark ladder. The observed Bloch oscillation dynamics are compared with simulations based on a model description of the coherent phonon generation and photoelastic detection processes.
Yamasaka, Shuto; Nakamura, Yoshiaki; Ueda, Tomohiro; Takeuchi, Shotaro; Sakai, Akira
2015-01-01
Phonon transport in Si films was controlled using epitaxially-grown ultrasmall Ge nanodots (NDs) with ultrahigh density for the purpose of developing Si-based thermoelectric materials. The Si/Ge ND stacked structures, which were formed by the ultrathin SiO2 film technique, exhibited lower thermal conductivities than those of the conventional nanostructured SiGe bulk alloys, despite the stacked structures having a smaller Ge fraction. This came from the large thermal resistance caused by phonon scattering at the Si/Ge ND interfaces. The phonon scattering can be controlled by the Ge ND structure, which was independent of Si layer structure for carrier transport. These results demonstrate the effectiveness of ultrasmall epitaxial Ge NDs as phonon scattering sources, opening up a route for the realisation of Si-based thermoelectric materials. PMID:26434678
Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
Hofmann, F; Garg, J; Maznev, A A; Jandl, A; Bulsara, M; Fitzgerald, E A; Chen, G; Nelson, K A
2013-07-24
We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness. PMID:23817884
Optical phonon lasing and its detection in transport through semiconduc- tor double quantum dots
NASA Astrophysics Data System (ADS)
Okuyama, Rin; Eto, Mikio; Brandes, Tobias
2014-03-01
We theoretically propose optical phonon lasing for a double quantum dot (DQD) fabricated in a semiconductor substrate. No additional cavity or resonator is required. We show that the DQD couples to only two phonon modes that act as a natural cavity. The pumping to the upper level is realized by an electric current through the DQD under a finite bias. Using the rate equation in the Born-Markov-Secular approximation, we analyze the enhanced phonon emission when the level spacing in the DQD is tuned to the phonon energy. We find the phonon lasing when the pumping rate is much larger than the phonon decay rate, whereas anti-bunching of phonon emission is observed when the pumping rate is smaller.[1] Our theory can be also applicable to DQDs embedded in nanomechanical resonators to control the vibrating modes. We discuss detection of amplified modes using the electric current and its noise through the DQD, and another DQD fabricated nearby.
Single-photon scattering in an optomechanical Jaynes-Cummings model
NASA Astrophysics Data System (ADS)
Ng, K. H.; Law, C. K.
2016-04-01
We investigate an optomechanical system which realizes the Jaynes-Cummings (JC) model known in cavity QED. Such a system consists of a single photon and an optomechanical cavity with two optical cavity modes and one mechanical mode. Under the resonance condition when the mechanical frequency is close to the frequency difference between the optical modes, the photon and phonons can be strongly coupled. We present an analytic solution of single-photon scattering and show that the spectrum of the scattered photon exhibits excitation-number-dependent Rabi splitting of the JC model. In addition, we examine the response of the mechanical mode to a sequence of single photons, with one photon in the cavity at a time. We show that sequential photon scattering can efficiently excite the mechanical mode and generate sub-Poisson phonon statistics.
Electron-phonon relaxation and excited electron distribution in gallium nitride
NASA Astrophysics Data System (ADS)
Zhukov, V. P.; Tyuterev, V. G.; Chulkov, E. V.; Echenique, P. M.
2016-08-01
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy "tail" largely covers the conduction band. The shape of the high-energy "tail" strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi "tail" is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.
Phonon Mean Free Path Spectra Measured by Broadband Frequency Domain Thermoreflectance
NASA Astrophysics Data System (ADS)
Malen, Jonathan
2014-03-01
Nonmetallic crystalline materials conduct heat by the transport of quantized atomic lattice vibrations called phonons. Thermal conductivity depends on how far phonons travel between scattering events -- their mean free paths (MFPs). Due to the breadth of the phonon MFP spectrum, nanostructuring of materials and devices can reduce thermal conductivity from bulk by scattering long MFP phonons, while short MFP phonons are unaffected. We have developed a novel approach called Broadband Frequency Domain Thermoreflectance (BB-FDTR) that uses high-frequency laser heating to generate non-Fourier heat conduction that can sort phonons based on their MFPs. BB-FDTR outputs thermal conductivity as a function of heating frequency. Through non-equilibrium Boltzmann Transport Equation models this data can be converted to thermal conductivity accumulation, which describes how thermal conductivity is summed from phonons with different MFPs. Relative to alternative approaches, BB-FDTR yields order-of-magnitude improvements in the resolution and breadth of the thermal conductivity accumulation function. We will present data for GaAs, GaN, AlN, Si, and SiC that show interesting commonalities near their respective Debye temperatures and suggest that there may be a universal phonon MFP spectrum for small unit cell non-metals in the high temperature limit. At the time of this abstract submission we are also working on measurements of semiconductor alloys and select metals that will be presented if completed by the conference.
NASA Astrophysics Data System (ADS)
Fahy, Stephen; Murphy-Armando, Felipe; Trigo, Mariano; Savic, Ivana; Murray, Eamonn; Reis, David
We have calculated the time-evolution of carriers and generated phonons in Ge after ultrafast photo-excitation above the direct band-gap. The relevant electron-phonon and anharmonic phonon scattering rates are obtained from first-principles electronic structure calculations. Measurements of the x-ray diffuse scattering after excitation near the L point in the Brillouin zone find a relatively slow (5 ps, compared to the typical electron-phonon energy relaxation of the Gamma-L phonon) increase of the phonon population. We find this is due to emission caused by the scattering of electrons between the Delta and L valleys, after the initial depopulation of the Gamma valley. The relative slowness of this process is due to a combination of causes: (i) the finite time for the initial depopulation of the conduction Gamma valley; (ii) the associated electron-phonon coupling is relatively weaker (compared to Gamma-L, Gamma-Delta and Delta-Delta couplings) ; (iii) the TA associated phonon has a long lifetime and (iv) the depopulation of the Delta valley suppresses the phonon emission. Supported by Science Foundation Ireland, Grant 12/1A/1601.
The effect of the electron-phonon coupling on the thermal conductivity of silicon nanowires.
Wan, Wenhui; Xiong, Bangguo; Zhang, Wenxing; Feng, Ji; Wang, Enge
2012-07-25
The thermal conductivity of free-standing silicon nanowires (SiNWs) with diameters from 1-3 nm has been studied by using the one-dimensional Boltzmann's transport equation. Our model explicitly accounts for the Umklapp scattering process and electron-phonon coupling effects in the calculation of the phonon scattering rates. The role of the electron-phonon coupling in the heat transport is relatively small for large silicon nanowires. It is found that the effect of the electron-phonon coupling on the thermal conduction is enhanced as the diameter of the silicon nanowires decreases. Electrons in the conduction band scatter low-energy phonons effectively where surface modes dominate, resulting in a smaller thermal conductivity. Neglecting the electron-phonon coupling leads to overestimation of the thermal transport for ultra-thin SiNWs. The detailed study of the phonon density of states from the surface atoms and central atoms shows a better understanding of the nontrivial size dependence of the heat transport in silicon nanowire.
Coherent heat transport in 2D phononic crystals with acoustic impedance mismatch
NASA Astrophysics Data System (ADS)
Arantes, A.; Anjos, V.
2016-03-01
In this work we have calculated the cumulative thermal conductivities of micro-phononic crystals formed by different combinations of inclusions and matrices at a sub-Kelvin temperature regime. The low-frequency phonon spectra (up to tens of GHz) were obtained by solving the generalized wave equation for inhomogeneous media with the plane wave expansion method. The thermal conductivity was calculated from Boltzmann transport theory highlighting the role of the low-frequency thermal phonons and neglecting phonon-phonon scattering. A purely coherent thermal transport regime was assumed throughout the structures. Our findings show that the cumulative thermal conductivity drops dramatically when compared with their bulk counterpart. Depending on the structural composition this reduction may be attributed to the phonon group velocity due to a flattening of the phonon dispersion relation, the extinction of phonon modes in the density of states or due to the presence of complete band gaps. According to the contrast between the inclusions and the matrices, three types of two dimensional phononic crystals were considered: carbon/epoxy, carbon/polyethylene and tungsten/silicon, which correspond respectively to a moderate, strong and very strong mismatch in the mechanical properties of these materials.
Anharmonic phonons and magnons in BiFeO3
Delaire, Olivier A; Ma, Jie; Stone, Matthew B; Huq, Ashfia; Gout, Delphine J; Brown, Craig; Wang, Kefeng; Ren, Zhifeng
2012-01-01
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO3 were measured for temperatures 200 < T < 750K , using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO3 closely resembles that of similar Fe perovskites, such as LaFeO3, despite the cycloid modulation in BiFeO3. We do not find any evidence for a spin gap. A strong T-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
Phonon anharmonicity in silicon from 100 to 1500 K
Kim, D. S.; Smith, Hillary L.; Niedziela, Jennifer L.; Li, Chen W.; Abernathy, Douglas L.; Fultz, B.
2015-01-21
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes were $\\langle$Δε_{i}/ε_{i}ΔT$\\rangle$=₋0.07, giving a mean isobaric Grüneisen parameter of +6.95±0.67, which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15k_{B}/atom to the vibrational entropy, compared to 0.03k_{B}/atom from quasiharmonicity. Lastly, excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.
Reconciling perturbative approaches in phonon-assisted transport junctions.
Agarwalla, Bijay Kumar; Segal, Dvira
2016-02-21
We present consistent results for molecular conduction using two central-complementary approaches: the non-equilibrium Green's function technique and the quantum master equation method. Our model describes electronic conduction in a donor-acceptor junction in which electron transfer is coupled to nuclear motion, modeled by a harmonic vibrational mode. This primary mode is further coupled to secondary phonon modes, a thermal bath. Assuming weak electron-phonon coupling but an arbitrary large molecule-metal hybridization, we compute several non-equilibrium transport quantities: the mean phonon number of the primary mode, charge current statistics. We further present scaling relations for the cumulants valid in the large voltage regime. Our analysis illustrates that the non-equilibrium Green's function technique and the quantum master equation method can be worked out consistently, when taking into account corresponding scattering processes. PMID:26896971
Phonon anharmonicity in silicon from 100 to 1500 K
Kim, D. S.; Smith, Hillary L.; Niedziela, Jennifer L.; Li, Chen W.; Abernathy, Douglas L.; Fultz, B.
2015-01-21
Inelastic neutron scattering was performed on silicon powder to measure the phonon density of states (DOS) from 100 to 1500 K. The mean fractional energy shifts with temperature of the modes weremore » $$\\langle$$Δεi/εiΔT$$\\rangle$$=₋0.07, giving a mean isobaric Grüneisen parameter of +6.95±0.67, which is significantly different from the isothermal parameter of +0.98. These large effects are beyond the predictions from quasiharmonic models using density functional theory or experimental data, demonstrating large effects from phonon anharmonicity. At 1500 K the anharmonicity contributes 0.15kB/atom to the vibrational entropy, compared to 0.03kB/atom from quasiharmonicity. Lastly, excellent agreement was found between the entropy from phonon DOS measurements and the reference NIST-JANAF thermodynamic entropy from calorimetric measurements.« less
NASA Astrophysics Data System (ADS)
Christianson, Caleb; Mukhopadhyay, Saikat; Sachse, Wolfgang; Stewart, Derek
2014-03-01
Phononic crystals are two- and three-dimensional structures with a periodic arrangement of two or more materials with different acoustic properties. Depending on the size, structure, and characteristics of the constituent materials, metamaterials with interesting acoustic properties can be formed. These crystals can be used to control the transmission of sound at selected frequencies, focus sound, or serve as waveguides. In this talk, we will focus on the transmission of ultrasonic waves through polydimethylsiloxane (PDMS) films with entrapped air bubbles. Two different theoretical models were used to predict ultrasonic transmission through air-PDMS crystals: (1) a simple scattering model for a series of partially reflective thin films and (2) the code MULTEL, which calculates the transmission using multiple scattering theory. A fabrication process was also developed to stack layers of the crystals with unprecedented alignment. We measured the ultrasonic transmission through the films using the ultrasonic through-transmission mode in a water bath and found an excellent agreement between the measured and calculated transmission. Additionally, we used these models to predict the performance of new phononic structures by scanning a large parameter space and showed how ultrasonic transmission through PDMS layers can be engineered by varying the dimensions, separation, and arrangement of air bubbles. This work was supported by the National Science Foundation.
Edwards, D.F.
1988-09-30
A tutorial presentation is given of Raman scattering in crystals. The physical concepts are emphasized rather than the detailed mathematical formalism. Starting with an introduction to the concepts of phonons and conservation laws, the effects of photon-phonon interactions are presented. This interaction concept is shown for a simple cubic crystal and is extended to a uniaxial crystal. The correlation table method is used for determining the number and symmetry of the Raman active modes. Finally, examples are given to illustrate the relative ease of using this group theoretical method and the predictions are compared with measured Raman spectra. 37 refs., 17 figs., 6 tabs.
Thermally triggered phononic gaps in liquids at THz scale
NASA Astrophysics Data System (ADS)
Bolmatov, Dima; Zhernenkov, Mikhail; Zav’Yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.
Nonlinear Transport and Noise Properties of Acoustic Phonons
NASA Astrophysics Data System (ADS)
Walczak, Kamil
We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.
Phonon properties of graphene derived from molecular dynamics simulations.
Koukaras, Emmanuel N; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos
2015-01-01
A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of χ = -0.05 cm(-1)/K for the Γ-E2g shift in agreement with reported experimental values.
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zav’yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials. PMID:26763899
Phonon properties of graphene derived from molecular dynamics simulations
Koukaras, Emmanuel N.; Kalosakas, George; Galiotis, Costas; Papagelis, Konstantinos
2015-01-01
A method that utilises atomic trajectories and velocities from molecular dynamics simulations has been suitably adapted and employed for the implicit calculation of the phonon dispersion curves of graphene. Classical potentials widely used in the literature were employed. Their performance was assessed for each individual phonon branch and the overall phonon dispersion, using available inelastic x-ray scattering data. The method is promising for systems with large scale periodicity, accounts for anharmonic effects and non-bonding interactions with a general environment, and it is applicable under finite temperatures. The temperature dependence of the phonon dispersion curves has been examined with emphasis on the doubly degenerate Raman active Γ-E2g phonon at the zone centre, where experimental results are available. The potentials used show diverse behaviour. The Tersoff-2010 potential exhibits the most systematic and physically sound behaviour in this regard, and gives a first-order temperature coefficient of χ = −0.05 cm−1/K for the Γ-E2g shift in agreement with reported experimental values. PMID:26316252
Thermally triggered phononic gaps in liquids at THz scale
Bolmatov, Dima; Zhernenkov, Mikhail; Zavyalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q.
2016-01-14
In this study we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to themore » transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials.« less
Thermally triggered phononic gaps in liquids at THz scale.
Bolmatov, Dima; Zhernenkov, Mikhail; Zav'yalov, Dmitry; Stoupin, Stanislav; Cunsolo, Alessandro; Cai, Yong Q
2016-01-01
In this paper we present inelastic X-ray scattering experiments in a diamond anvil cell and molecular dynamic simulations to investigate the behavior of phononic excitations in liquid Ar. The spectra calculated using molecular dynamics were found to be in a good agreement with the experimental data. Furthermore, we observe that, upon temperature increases, a low-frequency transverse phononic gap emerges while high-frequency propagating modes become evanescent at the THz scale. The effect of strong localization of a longitudinal phononic mode in the supercritical phase is observed for the first time. The evidence for the high-frequency transverse phononic gap due to the transition from an oscillatory to a ballistic dynamic regimes of motion is presented and supported by molecular dynamics simulations. This transition takes place across the Frenkel line thermodynamic limit which demarcates compressed liquid and non-compressed fluid domains on the phase diagram and is supported by calculations within the Green-Kubo phenomenological formalism. These results are crucial to advance the development of novel terahertz thermal devices, phononic lenses, mirrors, and other THz metamaterials. PMID:26763899
Phonon arithmetic in a trapped ion system.
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M S; Kim, Kihwan
2016-01-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897
Phonon arithmetic in a trapped ion system
Um, Mark; Zhang, Junhua; Lv, Dingshun; Lu, Yao; An, Shuoming; Zhang, Jing-Ning; Nha, Hyunchul; Kim, M. S.; Kim, Kihwan
2016-01-01
Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically. PMID:27097897
NASA Astrophysics Data System (ADS)
Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong
2016-06-01
The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.
Pseudogap and anharmonic phonon behavior in Ba8Ga16Ge30: An NMR study
NASA Astrophysics Data System (ADS)
Sirusi, Ali A.; Ross, Joseph H.
2016-08-01
We have performed 69Ga, 71Ga, and 137Ba NMR on Ba8Ga16Ge30, a clathrate semiconductor which has been of considerable interest due to its large figure of merit for thermoelectric applications. In measurements from 4 K to 450 K, we used measurements on the two Ga nuclei to separate the magnetic and electric quadrupole hyperfine contributions and thereby gain information about the metallic and phonon behavior. The results show the presence of a pseudogap in the Ga electronic states within the conduction band, superposed upon a large Ba contribution to the conduction band. Meanwhile the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors. These results provide evidence for enhanced anharmonicity of the propagative phonon modes over a wide range, providing experimental evidence for enhanced phonon-phonon scattering as a mechanism for the reduced thermal conductivity.
Pseudogap and anharmonic phonon behavior in Ba8Ga16Ge30: An NMR study.
Sirusi, Ali A; Ross, Joseph H
2016-08-01
We have performed (69)Ga, (71)Ga, and (137)Ba NMR on Ba8Ga16Ge30, a clathrate semiconductor which has been of considerable interest due to its large figure of merit for thermoelectric applications. In measurements from 4 K to 450 K, we used measurements on the two Ga nuclei to separate the magnetic and electric quadrupole hyperfine contributions and thereby gain information about the metallic and phonon behavior. The results show the presence of a pseudogap in the Ga electronic states within the conduction band, superposed upon a large Ba contribution to the conduction band. Meanwhile the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors. These results provide evidence for enhanced anharmonicity of the propagative phonon modes over a wide range, providing experimental evidence for enhanced phonon-phonon scattering as a mechanism for the reduced thermal conductivity. PMID:27497567
Experimental observation of interface-phonon-plasmon mode in n-GaAs/i-GaAs heterostructure
NASA Astrophysics Data System (ADS)
Volodin, V. A.; Sinyukov, M. P.; Semyagin, B. R.; Putyato, M. A.; Preobrazhenskiy, V. V.
2015-12-01
Interface-phonon-plasmon mode was observed for the first time in n-GaAs/i-GaAs heterostructure with the use of micro-Raman spectroscopy. To study this mode the geometry of the scattering in which the wave vectors of the incident and scattered light lie in the plane of the heterostructure was used. It was found that the frequency of interface-phonon-plasmon mode is less than the frequency of "volume" phonon-plasmon mode in the same heterostructure, which was observed in the geometry of the scattering with the wave vectors of the incident and scattered light directed perpendicular to the plane of the heterostructure. The frequency of interface-phonon-plasmon mode was calculated using continual model with boundary conditions, there is good agreement with the experimentally observed one.
Collective hypersonic excitations in strongly multiple scattering colloids.
Still, T; Gantzounis, G; Kiefer, D; Hellmann, G; Sainidou, R; Fytas, G; Stefanou, N
2011-04-29
Unprecedented low-dispersion high-frequency acoustic excitations are observed in dense suspensions of elastically hard colloids. The experimental phononic band structure for SiO(2) particles with different sizes and volume fractions is well represented by rigorous full-elastodynamic multiple-scattering calculations. The slow phonons, which do not relate to particle resonances, are localized in the surrounding liquid medium and stem from coherent multiple scattering that becomes strong in the close-packing regime. Such rich phonon-matter interactions in nanostructures, being still unexplored, can open new opportunities in phononics.
Piezoelectric surface acoustical phonon amplification in graphene on a GaAs substrate
Nunes, O. A. C.
2014-06-21
We study the interaction of Dirac Fermions in monolayer graphene on a GaAs substrate in an applied electric field by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (piezoelectric acoustical (PA)) and of the intrinsic deformation potential of acoustical phonons in graphene (deformation acoustical (DA)). We find that provided the dc field exceeds a threshold value, emission of piezoelectric (PA) and deformation (DA) acoustical phonons can be obtained in a wide frequency range up to terahertz at low and high temperatures. We found that the phonon amplification rate R{sup PA,DA} scales with T{sub BG}{sup S−1} (S=PA,DA), T{sub BG}{sup S} being the Block−Gru{sup ¨}neisen temperature. In the high-T Block−Gru{sup ¨}neisen regime, extrinsic PA phonon scattering is suppressed by intrinsic DA phonon scattering, where the ratio R{sup PA}/R{sup DA} scales with ≈1/√(n), n being the carrier concentration. We found that only for carrier concentration n≤10{sup 10}cm{sup −2}, R{sup PA}/R{sup DA}>1. In the low-T Block−Gru{sup ¨}neisen regime, and for n=10{sup 10}cm{sup −2}, the ratio R{sup PA}/R{sup DA} scales with T{sub BG}{sup DA}/T{sub BG}{sup PA}≈7.5 and R{sup PA}/R{sup DA}>1. In this regime, PA phonon dominates the electron scattering and R{sup PA}/R{sup DA}<1 otherwise. This study is relevant to the exploration of the acoustic properties of graphene and to the application of graphene as an acoustical phonon amplifier and a frequency-tunable acoustical phonon device.
Phonons with orbital angular momentum
Ayub, M. K.; Ali, S.; Mendonca, J. T.
2011-10-15
Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.
Decomposition model for phonon thermal conductivity of a monatomic lattice
NASA Astrophysics Data System (ADS)
Evteev, Alexander V.; Momenzadeh, Leila; Levchenko, Elena V.; Belova, Irina V.; Murch, Graeme E.
2014-12-01
An analytical treatment of decomposition of the phonon thermal conductivity of a crystal with a monatomic unit cell is developed on the basis of a two-stage decay of the heat current autocorrelation function observed in molecular dynamics simulations. It is demonstrated that the contributions from the acoustic short- and long-range phonon modes to the total phonon thermal conductivity can be presented in the form of simple kinetic formulas, consisting of products of the heat capacity and the average relaxation time of the considered phonon modes as well as the square of the average phonon velocity. On the basis of molecular dynamics calculations of the heat current autocorrelation function, this treatment allows for a self-consistent numerical evaluation of the aforementioned variables. In addition, the presented analysis allows, within the Debye approximation, for the identification of the temperature range where classical molecular dynamics simulations can be employed for the prediction of phonon thermal transport properties. As a case example, Cu is considered.
Lattice dynamics and spin-phonon interactions in multiferroic RMn2O5: Shell model calculations
NASA Astrophysics Data System (ADS)
Litvinchuk, A. P.
2009-08-01
The results of the shell model lattice dynamics calculations of multiferroic RMn2O5 materials (space group Pbam) are reported. Theoretical even-parity eigenmode frequencies are compared with those obtained experimentally in polarized Raman scattering experiments for R=Ho,Dy. Analysis of displacement patterns allows to identify vibrational modes which facilitate spin-phonon coupling by modulating the Mn-Mn exchange interaction and provides explanation of the observed anomalous temperature behavior of phonons.
Electron-hole asymmetry in the electron-phonon coupling in top-gated phosphorene transistor
NASA Astrophysics Data System (ADS)
Chakraborty, Biswanath; Nath Gupta, Satyendra; Singh, Anjali; Kuiri, Manabendra; Kumar, Chandan; Muthu, D. V. S.; Das, Anindya; Waghmare, U. V.; Sood, A. K.
2016-03-01
Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A g symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving π and σ bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.
Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube
Hayashi, Hiroyuki; Takahashi, Koji; Ikuta, Tatsuya; Nishiyama, Takashi; Takata, Yasuyuki; Zhang, Xing
2014-03-17
Phonon confinement and in situ thermal conductance measurements in an individual multi-walled carbon nanotube (MWNT) are reported. Focused ion beam (FIB) irradiation was used to successively shorten a 4.8 μm long MWNT, eventually yielding a 0.3 μm long MWNT. After the first FIB irradiation, a 41% reduction in conductance was achieved, compared with that of the pristine MWNT. This was because the contributions from phonons with long free paths were excluded by scattering at FIB-induced defects. Phonon transport in linked multiple-length nanotubes was also investigated.
Phonon dynamics of neptunium chalcogenides
NASA Astrophysics Data System (ADS)
Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.
2012-06-01
We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.
Gholamrezaie, Fatemeh; de Leeuw, Dago M; Meskers, Stefan C J
2016-06-01
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed. PMID:27276952
NASA Astrophysics Data System (ADS)
Gholamrezaie, Fatemeh; de Leeuw, Dago M.; Meskers, Stefan C. J.
2016-06-01
Scattering matrix theory is used to describe resonant optical properties of molecular monolayers. Three types of coupling are included: exciton-exciton, exciton-photon, and exciton-phonon coupling. We use the K-matrix formalism, developed originally to describe neutron scattering spectra in nuclear physics to compute the scattering of polaritons by phonons. This perturbation approach takes into account the three couplings and allows one to go beyond molecular exciton theory without the need of introducing additional boundary conditions for the polariton. We demonstrate that reflection, absorption, and extinction of light by 2D self-assembled monolayers of molecules containing quinque-thiophene chromophoric groups can be calculated. The extracted coherence length of the Frenkel exciton is discussed.
NASA Astrophysics Data System (ADS)
Chen, Gang
In this talk, we will discuss different modes of heat conduction in nanostructures. Ballistic transport happens when phonon mean free path is longer than the characteristic size of the structure. We will discuss how we compute phonon mean free path distributions based on first-principles and measure the distributions with optical pump-probe techniques by exploring ballistic phonon transport processes. In superlattice structures, ballistic phonon transport across the whole thickness of the superlattices implies phase coherence. We observed this coherent transport in GaAs/AlAs superlattices with fixed periodic thickness and varying number of periods. Simulations show that although high frequency phonons are scattering by roughness, remaining long wavelength phonons maintain their phase and traverse the superlattices ballistically. Accessing the coherent heat conduction regime opens a new venue for phonon engineering. We show further that phonon heat conduction localization happens in GaAs/AlAs superlattice by placing ErAs nanodots at interfaces. This heat-conduction localization phenomenon is confirmed by nonequilibrium atomic Green's function simulation. These ballistic and localization effects can be exploited to improve thermoelectric energy conversion materials via reducing their thermal conductivity. In another opposite, we will discuss phonon hydrodynamic transport mode in graphene via first-principle simulations. In this mode, phonons drift with an average velocity under a temperature gradient, similar to fluid flow in a pipe. Conditions for observing such phonon hydrodynamic modes will be discussed. Finally, we will talk about the one-dimensional nature of heat conduction in polymer chains. Such 1D nature can lead to divergent thermal conductivity. Inspired by simulation, we have experimentally demonstrated high thermal conductivity in ultra-drawn polyethylene nanofibers and sheets. Work supported by DOE Office of Basic Energy Sciences under Award Number: DE
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped–clamped boundary conditions.
NASA Astrophysics Data System (ADS)
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2016-09-01
This article proposes a nonlinear tri-interleaved piezoelectric topology based on the synchronized switch damping on inductor (SSDI) technique, which can be applied to phononic metamaterials for elastic wave control and effective low-frequency vibration reduction. A comparison of the attenuation performance is made between piezoelectric phononic metamaterial with distributed SSDI topology (each SSDI shunt being independently connected to a single piezoelectric element) and piezoelectric phononic metamaterial with the proposed electronic topology. Theoretical results show excellent band gap hybridization (near-coupling between Bragg scattering mechanism and wideband resonance mechanism induced by synchronized switch damping networks in piezoelectric phononic metamaterials) with the proposed electronic topology over the investigated frequency domain. Furthermore, piezoelectric phononic metamaterials with proposed electronic topology generated a better low-frequency broadband gap, which is experimentally validated by measuring the harmonic response of a piezoelectric phononic metamaterial beam under clamped-clamped boundary conditions.
Hopkins, Patrick E.; Duda, John C.; Kaehr, Bryan; Wang Zhou, Xiao; Peter Yang, C.-Y.; Jones, Reese E.
2013-11-18
We study the scattering mechanisms driving electron-phonon relaxation in thin gold films via pump-probe time-domain thermoreflectance. Electron-electron scattering can enhance the effective rate of electron-phonon relaxation when the electrons are out of equilibrium with the phonons. In order to correctly and consistently infer electron-phonon coupling factors in films on different substrates, we must account for the increase in steady-state lattice temperature due to laser heating. Our data provide evidence that a thermalized electron population will not directly exchange energy with the substrate during electron-phonon relaxation, whereas this pathway can exist between a non-equilibrium distribution of electrons and a non-metallic substrate.
NASA Astrophysics Data System (ADS)
Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver
2015-06-01
Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.
Nomura, Masahiro; Kage, Yuta; Müller, David; Moser, Dominik; Paul, Oliver
2015-06-01
Electrical and thermal properties of polycrystalline Si thin films with two-dimensional phononic patterning were investigated at room temperature. Electrical and thermal conductivities for the phononic crystal nanostructures with a variety of radii of the circular holes were measured to systematically investigate the impact of the nanopatterning. The concept of phonon-glass and electron-crystal is valid in the investigated electron and phonon transport systems with the neck size of 80 nm. The thermal conductivity is more sensitive than the electrical conductivity to the nanopatterning due to the longer mean free path of the thermal phonons than that of the charge carriers. The values of the figure of merit ZT were 0.065 and 0.035, and the enhancement factors were 2 and 4 for the p-doped and n-doped phononic crystals compared to the unpatterned thin films, respectively, when the characteristic size of the phononic crystal nanostructure is below 100 nm. The greater enhancement factor of ZT for the n-doped sample seems to result from the strong phonon scattering by heavy phosphorus atoms at the grain boundaries.
NASA Astrophysics Data System (ADS)
Hao, Qing; Xiao, Yue; Zhao, Hongbo
2016-08-01
In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.
Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces
NASA Astrophysics Data System (ADS)
Giri, Ashutosh; Gaskins, John T.; Donovan, Brian F.; Szwejkowski, Chester; Warzoha, Ronald J.; Rodriguez, Mark A.; Ihlefeld, Jon; Hopkins, Patrick E.
2015-03-01
We study the electron and phonon thermal coupling mechanisms at interfaces between gold films with and without Ti adhesion layers on various substrates via pump-probe time-domain thermoreflectance. The coupling between the electronic and the vibrational states is increased by more than a factor of five with the inclusion of an ˜3 nm Ti adhesion layer between the Au film and the non-metal substrate. Furthermore, we show an increase in the rate of relaxation of the electron system with increasing electron and lattice temperatures induced by the laser power and attribute this to enhanced electron-electron scattering, a transport channel that becomes more pronounced with increased electron temperatures. The inclusion of the Ti layer also results in a linear dependence of the electron-phonon relaxation rate with temperature, which we attribute to the coupling of electrons at and near the Ti/substrate interface. This enhanced electron-phonon coupling due to electron-interface scattering is shown to have negligible influence on the Kapitza conductances between the Au/Ti and the substrates at longer time scales when the electrons and phonons in the metal have equilibrated. These results suggest that only during highly nonequilibrium conditions between the electrons and phonons (Te ≫ Tp) does electron-phonon scattering at an interface contribute to thermal boundary conductance.
Mechanisms of nonequilibrium electron-phonon coupling and thermal conductance at interfaces
Giri, Ashutosh; Gaskins, John T.; Donovan, Brian F.; Szwejkowski, Chester; Hopkins, Patrick E.; Warzoha, Ronald J.; Rodriguez, Mark A.; Ihlefeld, Jon
2015-03-14
We study the electron and phonon thermal coupling mechanisms at interfaces between gold films with and without Ti adhesion layers on various substrates via pump-probe time-domain thermoreflectance. The coupling between the electronic and the vibrational states is increased by more than a factor of five with the inclusion of an ∼3 nm Ti adhesion layer between the Au film and the non-metal substrate. Furthermore, we show an increase in the rate of relaxation of the electron system with increasing electron and lattice temperatures induced by the laser power and attribute this to enhanced electron-electron scattering, a transport channel that becomes more pronounced with increased electron temperatures. The inclusion of the Ti layer also results in a linear dependence of the electron-phonon relaxation rate with temperature, which we attribute to the coupling of electrons at and near the Ti/substrate interface. This enhanced electron-phonon coupling due to electron-interface scattering is shown to have negligible influence on the Kapitza conductances between the Au/Ti and the substrates at longer time scales when the electrons and phonons in the metal have equilibrated. These results suggest that only during highly nonequilibrium conditions between the electrons and phonons (T{sub e} ≫ T{sub p}) does electron-phonon scattering at an interface contribute to thermal boundary conductance.
Matsushita, Stephane Yu; Matsui, Kazuki; Kato, Hiroki; Suto, Shozo; Yamada, Taro
2014-03-14
We have measured the surface phonon dispersion curves on the hydrogen-terminated Si(110)-(1×1) surface with the two-dimensional space group of p2mg along the two highly symmetric and rectangular directions of ΓX{sup ¯} and ΓX{sup ′¯} using high-resolution electron-energy-loss spectroscopy. All the essential energy-loss peaks on H:Si(110) were assigned to the vibrational phonon modes by using the selection rules of inelastic electron scattering including the glide-plane symmetry. Actually, the surface phonon modes of even-symmetry to the glide plane (along ΓX{sup ¯}) were observed in the first Brillouin zone, and those of odd-symmetry to the glide plane were in the second Brillouin zone. The detailed assignment was made by referring to theoretical phonon dispersion curves of Gräschus et al. [Phys. Rev. B 56, 6482 (1997)]. We found that the H–Si stretching and bending modes, which exhibit highly anisotropic dispersion, propagate along ΓX{sup ¯} direction as a one-dimensional phonon. Judging from the surface structure as well as our classical and quantum mechanical estimations, the H–Si stretching phonon propagates by a direct repulsive interaction between the nearest neighbor H atoms facing each other along ΓX{sup ¯}, whereas the H–Si bending phonon propagates by indirect interaction through the substrate Si atomic linkage.
ERIC Educational Resources Information Center
Hamilton, M. W.
2007-01-01
A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…
Raman and infrared study of 4f electron-phonon coupling in HoVO3
NASA Astrophysics Data System (ADS)
Roberge, B.; Balli, M.; Jandl, S.; Fournier, P.; Palstra, T. T. M.; Nugroho, A. A.
2016-11-01
First-order Raman scattering and multiphonons are studied in RVO3 (R = Ho and Y) as a function of temperature in the orthorhombic and monoclinic phases. Raman spectra of HoVO3 and YVO3 unveil similar features since both compounds have nearly identical R-radii. However, the most important difference lies in the transition temperature involving the V3+ orbitals, the V3+ magnetic moments as well as the crystallographic structure. Particularly, the magnetic and orbital reorientations occur at T N2 = 40 K for HoVO3 instead T N2 =77 K in the case of YVO3. For both systems, anomalous phonon shifts which are related to spin-phonon coupling are observed below the V3+ magnetic ordering temperature (T N1 ≈ 110 K) while additional phonon anomalies are exclusively observed in HoVO3 around T * ≈ 15 K. On the other hand, infrared (IR) transmittance measurements as a function of temperature reveal Ho3+5I8 → 5I7 excitations and additional excitations assigned as vibronics. These latter combined with drastic changes in Ho3+5I8 → 5I7 excitations at T N2, are indicative of a strong coupling between the Ho3+ ions and the ligand field. This could explain the large magnetocaloric capacity shown by HoVO3.
Raman and infrared study of 4f electron-phonon coupling in HoVO3.
Roberge, B; Balli, M; Jandl, S; Fournier, P; Palstra, T T M; Nugroho, A A
2016-11-01
First-order Raman scattering and multiphonons are studied in RVO3 (R = Ho and Y) as a function of temperature in the orthorhombic and monoclinic phases. Raman spectra of HoVO3 and YVO3 unveil similar features since both compounds have nearly identical R-radii. However, the most important difference lies in the transition temperature involving the V(3+) orbitals, the V(3+) magnetic moments as well as the crystallographic structure. Particularly, the magnetic and orbital reorientations occur at T N2 = 40 K for HoVO3 instead T N2 =77 K in the case of YVO3. For both systems, anomalous phonon shifts which are related to spin-phonon coupling are observed below the V(3+) magnetic ordering temperature (T N1 ≈ 110 K) while additional phonon anomalies are exclusively observed in HoVO3 around T (*) ≈ 15 K. On the other hand, infrared (IR) transmittance measurements as a function of temperature reveal Ho(3+5)I8 → (5)I7 excitations and additional excitations assigned as vibronics. These latter combined with drastic changes in Ho(3+5)I8 → (5)I7 excitations at T N2, are indicative of a strong coupling between the Ho(3+) ions and the ligand field. This could explain the large magnetocaloric capacity shown by HoVO3. PMID:27603503
NASA Astrophysics Data System (ADS)
Qian, Jun
This research work contains two main parts: the theoretical study of confined phonon modes and electron states in confined graphene nanostructures; the experimental part including two topics about fabricating a graphene-FET aptamer-sensor for cocaine detection and the study of the electronic transport properties of dsDNA. In the theory part, we study the confined optical phonon modes in graphene nanoribbons (GNR) and rectangular graphene quantum dots (RGQD) by the elastic continuum model. The carrier states are studied by effective mass approximation. The phonon bottleneck effect is expected in general for RGQDs. The scattering rates are calculated for specific RGQDs with carefully chosen dimensions to fulfill the momentum and energy conservation conditions. In the experimental part, we have developed a combined technique of semiconductor processes and molecular biological protocols to fabricate a signal-off graphene-FET aptamer-sensor for cocaine. In addition, DNA transport properties were studied by STM on GNP-dsDNA-Au conjugates in atmospheric condition. The dsDNA-complexes exhibit as a slightly n-type semiconductor by simulated with a Landauer-type model. A geometrical model is proposed to explain the distinct I-V spectra.
On surface Raman scattering and luminescence radiation in boron carbide.
Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O
2010-02-01
The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.
Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2
NASA Astrophysics Data System (ADS)
Jonker, Berend; Kioseoglou, George; Hanbicki, Aubrey; Currie, Marc; Friedman, Adam; NRL / U. Crete Collaboration; NRL / U. Crete Collaboration
We probe the valley population dynamics in MoSe2 and MoS2 by selectively populating the K and K' valleys with circularly polarized light while systematically varying the laser excitation energy. For both systems, the difference in the excitation energy and photoluminescence emission energy, d E =Epump - EPL, governs the depopulation of carriers in each valley. Adding more energy above a distinct threshold characteristic of the longitudinal acoustic (LA) phonon for each material enables inter-valley scattering and produces a sharp decrease in the observed circular polarization. LA phonons in these two systems have different energies (30 meV for MoS2 and 19 meV for MoSe2) , and we show that the threshold for the excess energy required to initiate the depolarization process clearly reflects the material specific phonon energy. In addition, our results show that independent of how many carriers are excited, i.e. whether you create neutral or charged excitons, the scattering process is the same. We find that the key parameter for the depolarization process is the extra kinetic energy of the exciton - depolarization is due to intervalley scattering that begins to occur when the exciton energy exceeds a threshold corresponding to twice the LA phonon energy. This work was supported by core programs at NRL, and by the Air Force Office of Scientific Research #AOARD 14IOA018-134141.
Phonon hydrodynamics in two-dimensional materials
NASA Astrophysics Data System (ADS)
Marzari, Nicola
2015-03-01
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific and technological applications of novel layered materials. Here, we use third order density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene and related materials (boron nitride, functionalized derivatives, transition-metal dichalcogenides...). Very good agreement is obtained with experimental data, where available, together with a microscopic understanding of the collective character of heat-carrying excitations, and the unusual length scales involved. Last, and at variance with typical three-dimensional solids, normal processes dominate over Umklapp scattering well above cryogenic conditions, extending to room temperature and more. As a result, novel hydrodynamics regimes, hitherto typically confined to ultra-low temperatures, become readily apparent. Work done in collaboration with Andrea Cepellotti, Giorgia Fugallo, Lorenzo Paulatto, Michele Lazzeri, and Francesco Mauri.
Phonon thermal transport at the nanoscale
NASA Astrophysics Data System (ADS)
Wilson, Richard Brian
A comprehensive description of how heat and temperature evolve on nanometer to submicron length-scales does not yet exist because of gaps in our fundamental understanding of interfacial thermal transport and nondiffusive thermal transport. In this dissertation, I address these gaps in fundamental understanding. Interfaces often dominate the thermal response in nanoscale systems. However, a microscopic description of how heat is transported across crystal boundaries remains elusive. I present time-domain thermoreflectance (TDTR) experiments that improve our fundamental understanding of interfacial thermal transport. I show that, for clean interfaces between the two crystals, G derived from TDTR data usually lies in the range 0.25 Gmax < G < 0.7G max, where Gmax is the maximum possible conductance predicted by simple theory. Notable exceptions are Al/Si 0.99Ge0.01, and Al/Si0.2Ge0.8, where G < 0.25Gmax. Analyzing TDTR data of Al/SiGe alloys with either a two-channel diffusive model or a two-channel ballistic/diffusive model explains the unusually low thermal conductances. Both models predict a significant reduction in the effective thermal conductivity of semiconductor alloys near an interface as a result of disparate heat flux boundary conditions for different groups of phonons in combination with weak coupling between different groups of phonons in the near interface region of the crystal. While it is well established that Fourier theory can break down in nanoscale thermal transport problems, various theories for how and why Fourier theory breaks down do not adequately describe existing experiments. I characterize the relationship between the failure of Fourier theory, phonon mean-free-paths, important length-scales of the temperature-profile, and interfacial-phonon scattering by TDTR experiments on nonmetallic crystals. When crystals are heated by a laser with a radius of less than two microns, Fourier theory overpredicts the materials ability to carry heat away
Early-stage relaxation of electrons by phonon emission.
NASA Astrophysics Data System (ADS)
Castella, Hervé; Kuznetsov, A. V.; Wilkins, J. W.
1998-03-01
Pump-probe experiments give insight into the relaxation of electrons during the first femtoseconds after the optical excitation. A theoretical description of this early-time regime requires a proper treatment of retardation effects for the different scattering processes. The scattering of electrons by optical phonons is investigated within the S-matrix formalism.(A. V. Kuznetsov, Ann. Phys. 258), 157 (1997) This perturbative scheme is directly compared to the non-equilibrium Green's function technique of Kadanoff and Baym. The scheme is used to numerically compute both the interband polarization and the momentum distribution function for a bulk semiconductor excited by a short laser pulse.
NASA Astrophysics Data System (ADS)
Sakuragi, Mina; Koiwai, Kazunori; Nakamura, Kouji; Masunaga, Hiroyasu; Ogawa, Hiroki; Sakurai, Kazuo
2011-01-01
PEGylated liposomes composed of a benzamidine derivative (TRX), hydrogenated soybean phosphatidylcholine (HSPC), and N-(monomethoxy-polyethyleneglycolcarbamyl) distearoyl phosphatidylethanolamine (PEG-PE) were examined in terms of how the addition of TRX affects their structures with small angle x-ray scattering (SAXS) as well as transmission electron microscopy (TEM). TEM images showed the presence of unilamella vesicles for both with and without TRX, though a small amount of multilamella vesicles were observed in absence of TRX. We analyzed SAXS profiles at contained TRX composition combined with contrast variation technique by adding PEG solution and unilamella vesicle model could be reproduced. Subsequently, we analyzed SAXS profiles at no TRX composition. The mixture model of unilamella and multilamella vesicle was reconstructed and we estimated about 10 % multilamella vesicles from a fitting parameter.
Incoherent neutron scattering in acetanilide and three deuterated derivatives
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José
1991-03-01
Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.
Femtosecond electron imaging of defect-modulated phonon dynamics
NASA Astrophysics Data System (ADS)
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2016-04-01
Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps-1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics.
Phonon localization drives polar nanoregions in a relaxor ferroelectric
Manley, Michael E; Lynn, Jeffrey; Specht, Eliot D; Delaire, Olivier A; Bishop, Alan; Sahul, Raffi; Budai, John D
2014-01-01
Relaxor ferroelectrics1, which are utilized as actuators and sensors2-4, exemplify a class of poorly understood materials where interplay between disorder and phase instability results in inhomogeneous nanoregions. There is no definitive explanation for the onset of relaxor behavior (Burns temperature5, Td) or the origin of polar nanoregions (PNRs). Here we show a vibrational mode that localizes on cooling to Td, remains localized as PNRs form, and then delocalizes as PNRs grow using neutron scattering on relaxor (Pb(Mg1/3Nb2/3)O3)0.69-(PbTiO3)0.31 (PMN-31%PT). Although initially appearing like intrinsic local modes (ILMs)6-10, these modes differ below Td as they form a resonance with the ferroelectric phonon. At the resonance, nanoregions of standing ferroelectric phonons develop with a coherence length matching the PNRs. The size, shape, distribution, and temporal fluctuations of PNRs, and our observations, are explained by ferroelectric phonons trapped by disordered resonance modes via Anderson localization11-13. Our results show the size and shape of PNRs are not dictated by complex structural details, as always assumed, but by a phonon resonance wavevector. This simplification could guide the design of next generation relaxors.
Femtosecond electron imaging of defect-modulated phonon dynamics.
Cremons, Daniel R; Plemmons, Dayne A; Flannigan, David J
2016-01-01
Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps(-1)) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790
Optical phonons in PbTe/CdTe multilayer heterostructures
Novikova, N. N.; Yakovlev, V. A.; Kucherenko, I. V.; Karczewski, G.; Aleshchenko, Yu. A.; Muratov, A. V.; Zavaritskaya, T. N.; Melnik, N. N.
2015-05-15
The infrared reflection spectra of PbTe/CdTe multilayer nanostructures grown by molecular-beam epitaxy are measured in the frequency range of 20–5000 cm{sup −1} at room temperature. The thicknesses and high-frequency dielectric constants of the PbTe and CdTe layers and the frequencies of the transverse optical (TO) phonons in these structures are determined from dispersion analysis of the spectra. It is found that the samples under study are characterized by two TO phonon frequencies, equal to 28 and 47 cm{sup −1}. The first frequency is close to that of TO phonons in bulk PbTe, and the second is assigned to the optical mode in structurally distorted interface layers. The Raman-scattering spectra upon excitation with the radiation of an Ar{sup +} laser at 514.5 nm are measured at room and liquid-nitrogen temperatures. The weak line at 106 cm{sup −1} observed in these spectra is attributed to longitudinal optical phonons in the interface layers.
Femtosecond electron imaging of defect-modulated phonon dynamics
Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.
2016-01-01
Precise manipulation and control of coherent lattice oscillations via nanostructuring and phonon-wave interference has the potential to significantly impact a broad array of technologies and research areas. Resolving the dynamics of individual phonons in defect-laden materials presents an enormous challenge, however, owing to the interdependent nanoscale and ultrafast spatiotemporal scales. Here we report direct, real-space imaging of the emergence and evolution of acoustic phonons at individual defects in crystalline WSe2 and Ge. Via bright-field imaging with an ultrafast electron microscope, we are able to image the sub-picosecond nucleation and the launch of wavefronts at step edges and resolve dispersion behaviours during propagation and scattering. We discover that the appearance of speed-of-sound (for example, 6 nm ps−1) wavefronts are influenced by spatially varying nanoscale strain fields, taking on the appearance of static bend contours during propagation. These observations provide unprecedented insight into the roles played by individual atomic and nanoscale features on acoustic-phonon dynamics. PMID:27079790
YPHON: A package for calculating phonons of polar materials
NASA Astrophysics Data System (ADS)
Wang, Yi; Chen, Long-Qing; Liu, Zi-Kui
2014-11-01
In our recent works, we have developed a mixed-space approach within the framework of direct method for the first-principle calculation of phonon properties. It makes full use of the accuracy of the force constants calculated in the real space and the dipole-dipole interactions in the reciprocal space, making the accurate phonon calculation possible with the direct method for polar materials. In this paper, an efficient C++ implementation of the mixed-space approach, YPHON, is provided as open source, including demos and Linux scripts for extracting input data to YPHON from the output of VASP.5. The functions of the current package include the calculations of: (1) the phonon dispersions; (2) the phonon density of states; (3) the neutron scattering section weighted phonon density of state; (4) the phonons of the high symmetry structure using the force constants from low symmetry structure; (5) the phonon dispersions of random alloys; and (6) the analysis of the vibrational modes using the point group theory. Catalogue identifier: AETS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETS_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 567815 No. of bytes in distributed program, including test data, etc.: 9763594 Distribution format: tar.gz Programming language: C++, Linux scripts. Computer: Linux systems with a g++ or C++ compiler. Operating system: Linux. RAM: Ranges from a few Mbytes to a few Gbytes, dynamically depending on the system size. Classification: 7.8. External routines: GSL-the GNU Scientific Library (GSL) is a numerical library for C and C++ programmers. VASP.5 or later for the calculations of force constants and dielectric constants and Born effective charge for polar materials. Nature of problem: This package has the purpose of computing
Zhou, X.J.
2010-04-30
thought possible only a decade ago. This revolution of the ARPES technique and its scientific impact result from dramatic advances in four essential components: instrumental resolution and efficiency, sample manipulation, high quality samples and well-matched scientific issues. The purpose of this treatise is to go through the prominent results obtained from ARPES on cuprate superconductors. Because there have been a number of recent reviews on the electronic structures of high-T{sub c} materials, we will mainly present the latest results not covered previously, with a special attention given on the electron-phonon interaction in cuprate superconductors. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these materials. ARPES experiments have been instrumental in identifying the electronic structure, observing and detailing the electron-phonon mode coupling behavior, and mapping the doping evolution of the high-T{sub c} cuprates. The spectra evolve from the strongly coupled, polaronic spectra seen in underdoped cuprates to the Migdal-Eliashberg like spectra seen in the optimally and overdoped cuprates. In addition to the marked doping dependence, the cuprates exhibit pronounced anisotropy with direction in the Brillouin zone: sharp quasiparticles along the nodal direction that broaden significantly in the anti-nodal region of the underdoped cuprates, an anisotropic electron-phonon coupling vertex for particular modes identified in the optimal and overdoped compounds, and preferential scattering across the two parallel pieces of Fermi surface in the antinodal region for all doping levels. This also contributes to the pseudogap effect. To the extent that the Migdal-Eliashberg picture applies, the spectra of the cuprates bear resemblance to that
Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling.
Pradip, R; Piekarz, P; Bosak, A; Merkel, D G; Waller, O; Seiler, A; Chumakov, A I; Rüffer, R; Oleś, A M; Parlinski, K; Krisch, M; Baumbach, T; Stankov, S
2016-05-01
Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69 K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO. PMID:27203332
Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide
NASA Astrophysics Data System (ADS)
Koch, R. J.; Fryska, S.; Ostler, M.; Endlich, M.; Speck, F.; Hänsel, T.; Schaefer, J. A.; Seyller, Th.
2016-03-01
Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well.
Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide.
Koch, R J; Fryska, S; Ostler, M; Endlich, M; Speck, F; Hänsel, T; Schaefer, J A; Seyller, Th
2016-03-11
Using inelastic electron scattering in combination with dielectric theory simulations on differently prepared graphene layers on silicon carbide, we demonstrate that the coupling between the 2D plasmon of graphene and the surface optical phonon of the substrate cannot be quenched by modification of the interface via intercalation. The intercalation rather provides additional modes like, e.g., the silicon-hydrogen stretch mode in the case of hydrogen intercalation or the silicon-oxygen vibrations for water intercalation that couple to the 2D plasmons of graphene. Furthermore, in the case of bilayer graphene with broken inversion symmetry due to charge imbalance between the layers, we observe a similar coupling of the 2D plasmon to an internal infrared-active mode, the LO phonon mode. The coupling of graphene plasmons to vibrational modes of the substrate surface and internal infrared active modes is envisioned to provide an excellent tool for tailoring the plasmon band structure of monolayer and bilayer graphene for plasmonic devices such as plasmon filters or plasmonic waveguides. The rigidity of the effect furthermore suggests that it may be of importance for other 2D materials as well. PMID:27015502
Lattice Waves, Spin Waves, and Neutron Scattering
DOE R&D Accomplishments Database
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
NASA Astrophysics Data System (ADS)
Isaienko, Oleksandr; Robel, István
2016-03-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, István
2016-01-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881
Isaienko, Oleksandr; Robel, István
2016-01-01
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7-20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to the oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ((2)) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. The pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations P(NL) of the impulsively excited phonons and those of parametrically amplified waves. PMID:26975881
Effects of temperature and pressure on phonons in FeSi1–xAlx
Delaire, O.; Al-Qasir, I. I.; Ma, J.; dos Santos, A. M.; Sales, B. C.; Mauger, L.; Stone, M. B.; Abernathy, D. L.; Xiao, Y.; Somayazulu, M.
2013-05-31
The effects of temperature and pressure on phonons in B20 compounds FeSi1–xAlx were measured using inelastic neutron scattering and nuclear-resonant inelastic x-ray scattering. The effect of hole doping through Al substitution is compared to results of alloying with Co (electron doping) in Fe₁₋xCoxSi. While the temperature dependence of phonons in FeSi is highly anomalous, doping with either type of carriers leads to a recovery of the normal quasiharmonic behavior. Density functional theory (DFT) computations of the electronic band structure and phonons were performed. The anomaly in the temperature dependence of the phonons in undoped FeSi was related to the narrowmore » band gap, and its sensitivity to the effect of thermal disordering by phonons. On the other hand, the pressure dependence of phonons at room temperature in undoped FeSi follows the quasiharmonic behavior and is well reproduced by the DFT calculations.« less
Phonon-assisted nonlinear optical processes in ultrashort-pulse pumped optical parametric amplifiers
Isaienko, Oleksandr; Robel, Istvan
2016-03-15
Optically active phonon modes in ferroelectrics such as potassium titanyl phosphate (KTP) and potassium titanyl arsenate (KTA) in the ~7–20 THz range play an important role in applications of these materials in Raman lasing and terahertz wave generation. Previous studies with picosecond pulse excitation demonstrated that the interaction of pump pulses with phonons can lead to efficient stimulated Raman scattering (SRS) accompanying optical parametric oscillation or amplification processes (OPO/OPA), and to efficient polariton-phonon scattering. In this work, we investigate the behavior of infrared OPAs employing KTP or KTA crystals when pumped with ~800-nm ultrashort pulses of duration comparable to themore » oscillation period of the optical phonons. We demonstrate that under conditions of coherent impulsive Raman excitation of the phonons, when the effective χ(2) nonlinearity cannot be considered instantaneous, the parametrically amplified waves (most notably, signal) undergo significant spectral modulations leading to an overall redshift of the OPA output. Furthermore, the pump intensity dependence of the redshifted OPA output, the temporal evolution of the parametric gain, as well as the pump spectral modulations suggest the presence of coupling between the nonlinear optical polarizations PNL of the impulsively excited phonons and those of parametrically amplified waves.« less
Neutron and x-ray scattering studies of premartensitic phenomena
Shapiro, S.M.
1987-01-01
This paper discusses neutron and x-ray investigations of some metallic alloys which are known to exhibit martensitic transformations. It is shown that precursor effects are usually present in the diffuse scattering and in the phonon dispersion curves, but the transition cannot be described in terms of the soft mode picture used in the Landau and Devonshire theory to describe structural phase transitions. In addition, it is noted that it is inappropriate to look at these microstructures as incommensurate systems, but more correctly as a coherent coexistence of two phases.
Nonadiabatic effects in the phonon dispersion of Mg1 -xAlxB2
NASA Astrophysics Data System (ADS)
d'Astuto, Matteo; Heid, Rolf; Renker, Burkhard; Weber, Frank; Schober, Helmut; De la Peña-Seaman, Omar; Karpinski, Janusz; Zhigadlo, Nikolai D.; Bossak, Alexei; Krisch, Michael
2016-05-01
Superconducting MgB2 shows an E2 g zone center phonon, as measured by Raman spectroscopy, that is very broad in energy and temperature dependent. The Raman shift and lifetime show large differences with the values elsewhere in the Brillouin zone measured by inelastic x-ray scattering (IXS), where its dispersion can be accounted for by standard harmonic phonon theory, adding only a moderate electron-phonon coupling. Here we show that the effects rapidly disappear when electron-phonon coupling is switched off by Al substitution on the Mg sites. Moreover, using IXS with very high wave-vector resolution in MgB2, we can follow the dispersion connecting the Raman and the IXS signal, in agreement with a theory using only electron-phonon coupling but without strong anharmonic terms. The observation is important in order to understand the effects of electron-phonon coupling on zone center phonon modes in MgB2, and also in all metals characterized by a small Fermi velocity in a particular direction, typical for layered compounds.
Geometric tuning of thermal conductivity in three-dimensional anisotropic phononic crystals.
Wei, Zhiyong; Wehmeyer, Geoff; Dames, Chris; Chen, Yunfei
2016-10-01
Molecular dynamics simulations are performed to investigate the thermal transport properties of a three-dimensional (3D) anisotropic phononic crystal consisting of silicon nanowires and films. The calculation shows that the in-plane thermal conductivity is negatively correlated with the out-of-plane thermal conductivity upon making geometric changes, whether varying the nanowire diameter or the film thickness. This enables the anisotropy ratio of thermal conductivity to be tailored over a wide range, in some cases by more than a factor of 20. Similar trends in thermal conductivity are also observed from an independent phonon ray tracing simulation considering only diffuse boundary scattering effects, though the range of anisotropy ratios is smaller than that obtained in MD simulation. By analyzing the phonon dispersion relation with varied geometric parameters, it is found that increasing the nanowire diameter increases the out-of-plane acoustic phonon group velocities, but reduces the in-plane longitudinal and fast transverse acoustic phonon group velocities. The calculated phonon irradiation further verified the negative correlation between the in-plane and the out-of-plane thermal conductivity. The proposed 3D phononic crystal may find potential application in thermoelectrics, energy storage, catalysis and sensing applications owing to its widely tailorable thermal conductivity.
Ab initio phonon dispersion in crystalline naphthalene using van der Waals density functionals
NASA Astrophysics Data System (ADS)
Brown-Altvater, Florian; Rangel, Tonatiuh; Neaton, Jeffrey B.
2016-05-01
Acene molecular crystals are of current interest in organic optoelectronics, both as active materials and for exploring and understanding new phenomena. Phonon scattering can be an important facilitator and dissipation mechanism in charge separation and carrier transport processes. Here, we carry out density functional theory (DFT) calculations of the structure and the full phonon dispersion of crystalline naphthalene, a well-characterized acene crystal for which detailed neutron-diffraction measurements, as well as infrared and Raman spectroscopy, are available. We evaluate the performance, relative to experiments, of DFT within the local density approximation (LDA); the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE); and a recent van der Waals-corrected nonlocal correlation (vdW-DF-cx) functional. We find that the vdW-DF-cx functional accurately predicts lattice parameters of naphthalene within 1%. Intermolecular and intramolecular phonon frequencies across the Brillouin zone are reproduced within 7.8% and 1%, respectively. As expected, LDA (PBE) underestimates (overestimates) the lattice parameters and overestimates (underestimates) phonon frequencies, demonstrating their shortcomings for predictive calculations of weakly bound materials. If the unit cell is fixed to the experimental lattice parameters, PBE is shown to lead to improved phonon frequencies. Our study provides a detailed understanding of the phonon spectrum of naphthalene, and highlights the importance of including van der Waals dispersion interactions in predictive calculations of lattice parameters and phonon frequencies of molecular crystals and related organic materials.
Damped soft phonons and diffuse scattering in 40%Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-60%PbTiO{sub 3}
Stock, C.; Ellis, D.; Swainson, I. P.; Xu, Guangyong; Hiraka, H.; Shirane, G.; Zhong, Z.; Luo, H.; Zhao, X.; Viehland, D.; Birgeneau, R. J.
2006-02-01
Using neutron elastic and inelastic scattering and high-energy x-ray diffraction, we present a comparison of 40% Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-60% PbTiO{sub 3} (PMN-60PT) with pure Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3} (PMN) and PbTiO{sub 3} (PT). We measure the structural properties of PMN-60PT to be identical to pure PT, however, the lattice dynamics are exactly that previously found in relaxors PMN and Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3} (PZN). PMN-60PT displays a well-defined macroscopic structural transition from a cubic to tetragonal unit cell at 550 K. The diffuse scattering is shown to be weak indicating that the structural distortion is long-range in PMN-60PT and short-range polar correlations (polar nanoregions) are not present. Even though polar nanoregions are absent, the soft optic mode is short-lived for wave vectors near the zone center. Therefore PMN-60PT displays the same waterfall effect as prototypical relaxors PMN and PZN. We conclude that it is random fields resulting from the intrinsic chemical disorder which is the reason for the broad transverse optic mode observed in PMN and PMN-60PT near the zone center and not due to the formation of short-ranged polar correlations. Through our comparison of PMN, PMN-60PT, and pure PT, we interpret the dynamic and static properties of the PMN-xPT system in terms of a random field model in which the cubic anisotropy term dominates with increasing doping of PbTiO{sub 3}.
Phonon dispersion relation in PbTiO3
NASA Astrophysics Data System (ADS)
Tomeno, Izumi; Fernandez-Baca, Jaime; Marty, Karol; Oka, Kunihiko; Tsunoda, Yorihiko
2013-03-01
The phonon dispersion relations for cubic PbTiO3 (Tc = 763 K) have been determined along the high symmetry directions at T = 793 K using inelastic neutron scattering. A set of the TO branches drops significantly toward the zone center. This is quite different from the soft mode anomaly in the Pb-based relaxors, named as the waterfall phenomenon. The zone-center TO mode energy softens with decreasing temperature from 1173 to 793 K. The TA branch along [ ξ , ξ , ξ ] shows significant softening around ξ = 0.25 and 0.5. These two anomalies persist up to 1173 K and are weakly temperature dependent. Moreover, the TA branches along [1,0,0] and [1,1,0] soften in the entire q range as the temperature approaches Tc. Although the phonon softening occurs simultaneously, the softening of the zone center TO mode plays an important role in the single phase transition. The phonon dispersion relations for cubic and tetragonal PbTiO3 are discussed in connection with BaTiO3, KTaO3, Pb(Zn1/3Nb2/3)O3, and Pb(Mg1/3Nb2/3)O3. U.S.-Japan cooperative program on neutron scattering
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-01
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pair of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. This proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra. PMID:26785835
Giant phonon anomaly associated with superconducting fluctuations in the pseudogap phase of cuprates
Liu, Ye-Hua; Konik, Robert M.; Rice, T. M.; Zhang, Fu-Chun
2016-01-20
The pseudogap in underdoped cuprates leads to significant changes in the electronic structure, and was later found to be accompanied by anomalous fluctuations of superconductivity and certain lattice phonons. Here we propose that the Fermi surface breakup due to the pseudogap, leads to a breakup of the pairing order into two weakly coupled sub-band amplitudes, and a concomitant low energy Leggett mode due to phase fluctuations between them. This increases the temperature range of superconducting fluctuations containing an overdamped Leggett mode. In this range inter-sub-band phonons show strong damping due to resonant scattering into an intermediate state with a pairmore » of overdamped Leggett modes. In the ordered state, the Leggett mode develops a finite energy, changing the anomalous phonon damping into an anomaly in the dispersion. Finally, this proposal explains the intrinsic connection between the anomalous pseudogap phase, enhanced superconducting fluctuations and giant anomalies in the phonon spectra.« less
Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene
Araujo, Paulo T.; Mafra, Daniela L.; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S.
2012-01-01
In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS2, WSe2, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications. PMID:23264879
Heat Transport in Spin Chains with Weak Spin-Phonon Coupling.
Chernyshev, A L; Rozhkov, A V
2016-01-01
The heat transport in a system of S=1/2 large-J Heisenberg spin chains, describing closely Sr(2)CuO(3) and SrCuO(2) cuprates, is studied theoretically at T≪J by considering interactions of the bosonized spin excitations with optical phonons and defects. Treating rigorously the multiboson processes, we derive a microscopic spin-phonon scattering rate that adheres to an intuitive picture of phonons acting as thermally populated defects for the fast spin excitations. The mean-free path of the latter exhibits a distinctive T dependence reflecting a critical nature of spin chains and gives a close description of experiments. By the naturalness criterion of realistically small spin-phonon interaction, our approach stands out from previous considerations that require large coupling constants to explain the data and thus imply a spin-Peierls transition, absent in real materials. PMID:26799043
Lan, Tian; Li, Chen W.; Hellman, O.; Kim, D. S.; Muñoz, Jorge A.; Smith, Hillary; Abernathy, Douglas L.; Fultz, B.
2015-08-11
Although the rutile structure of TiO2 is stable at high temperatures, the conventional quasiharmonic approximation predicts that several acoustic phonons decrease anomalously to zero frequency with thermal expansion, incorrectly predicting a structural collapse at temperatures well below 1000 K. In this paper, inelastic neutron scattering was used to measure the temperature dependence of the phonon density of states (DOS) of rutile TiO2 from 300 to 1373 K. Surprisingly, these anomalous acoustic phonons were found to increase in frequency with temperature. First-principles calculations showed that with lattice expansion, the potentials for the anomalous acoustic phonons transform from quadratic to quartic, stabilizingmore » the rutile phase at high temperatures. In these modes, the vibrational displacements of adjacent Ti and O atoms cause variations in hybridization of 3d electrons of Ti and 2p electrons of O atoms. Finally, with thermal expansion, the energy variation in this “phonon-tracked hybridization” flattens the bottom of the interatomic potential well between Ti and O atoms, and induces a quarticity in the phonon potential.« less
Evolution of molecular crystal optical phonons near structural phase transitions
NASA Astrophysics Data System (ADS)
Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea
Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.
Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors
NASA Astrophysics Data System (ADS)
Pistol, M. E.; Monemar, B.
1986-05-01
A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.
Rumyantsev, Vladimir V; Shtaerman, Esfir Y
2008-02-01
Peculiarities of scattering of TM-polarized light wave by a diamond-like crystalline nano-layer are studied. They are due to specific dispersion of n-phonon polaritons localized in the layer. The IR polaritons discussed here (relating to diamond and Si crystals which are nonpolar materials) will only appear if some of the vibration modes become polar, e.g., due to the presence of the surface. As a result of mixing of g- and u-modes of ion oscillations along the (111)-direction in the near-surface layer, it is possible to observe additional (with respect to bulk) scattering of coherent electromagnetic waves of the Stokes and anti-Stokes frequencies. beta-particles can be utilized as an independent tool of study of new semiconductors, in particular thin diamond films. The effect associated with response of a quasi-two-dimensional diamond-like layer to the moving electron field is considered. beta-particle field induces phonon excitation modes to arise in the material. Coupled with the beta-particle electromagnetic modes they generate polaritons. Spectral density of the radiation intensity of the flashed phonon polaritons has been estimated as a function of the layer thickness as well as of the scattering angle and the beta-particle velocity.
Phonon-drag thermopower in 3D Dirac semimetals
NASA Astrophysics Data System (ADS)
Kubakaddi, S. S.
2015-11-01
A theory of low-temperature phonon-drag thermopower S g in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S g, in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S g is found to increase rapidly for about T < 1 K and nearly levels off for higher T. It is also seen that S g increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S g ~ T 8 (T 4) and S g ~ n\\text{e}-5/3 (n\\text{e}-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S d shows that S g dominates (and is much greater than) S d for about T > 0.2 K. Herring’s law S g μ p ~ T -1, relating phonon limited mobility μ p and S g in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.
Phonon-drag thermopower in 3D Dirac semimetals.
Kubakaddi, S S
2015-11-18
A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T < 1 K and nearly levels off for higher T. It is also seen that S(g) increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S(g) ~ T(8) (T(4)) and S(g) ~ n(e)(-5/3)(n(e)(-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T > 0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase. PMID:26490643
Nonlinear control of high-frequency phonons in spider silk.
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk's dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Nonlinear control of high-frequency phonons in spider silk
NASA Astrophysics Data System (ADS)
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Confinement effects on Brillouin scattering in semiconductor nanowire photonic crystal
NASA Astrophysics Data System (ADS)
Mante, Pierre-Adrien; Anttu, Nicklas; Zhang, Wei; Wallentin, Jesper; Chen, I.-Ju; Lehmann, Sebastian; Heurlin, Magnus; Borgström, Magnus T.; Pistol, Mats-Erik; Yartsev, Arkady
2016-07-01
Scattering of photons by phonons, or Brillouin scattering, enables manipulation and control of light and has led to revolutionary applications, from slow light to saser and cooling of micromechanical resonators. Recently, enhanced light and sound interaction has been demonstrated in waveguides. However, the design of the waveguide geometry tunes and alters the phonon and photon dispersion simultaneously. Here we investigate, through femtosecond pump-probe spectroscopy and theoretical modeling, the light and sound interaction in a bottom-up fabricated vertical nanowire photonic crystal. In such a system, the phonon dispersion can be tuned by varying the geometry of the constituent nanowires. In contrast, the placement of the nanowires in the photonic crystal can be used for tuning optical array modes, without altering the phonon dispersion. We demonstrate the forward and backward scattering, by acoustic phonons in the nanowires, of (1) such optical array modes and (2) guided modes of the constituent nanowires. Furthermore, our results reveal an enhanced interaction of array modes with phonons that we attribute to the specific scattering mechanism. Our results enable the design of a photonic crystal with separately tailored photon and phonon dispersion for Brillouin scattering. We anticipate these advances to be a starting point for enhanced control of light at the nanoscale.
Peng, Y. Y.; Hashimoto, M.; Sala, M. Moretti; Amorese, A.; Brookes, N. B.; Dellea, G.; Lee, W. -S.; Minola, M.; Schmitt, T.; Yoshida, Y.; et al
2015-08-24
In this paper, magnetic excitations in the optimally doped high-Tc superconductor Bi1.5Pb0.55Sr1.6La0.4CuO6+δ (OP-Bi2201, Tc ≃ 34 K) are investigated by Cu L3 edge resonant inelastic x-ray scattering (RIXS), below and above the pseudogap opening temperature. At both temperatures the broad spectral distribution disperses along the (1,0) direction up to ~350 meV at zone boundary, similar to other hole-doped cuprates. However, above ~0.22 reciprocal lattice units, we observe a concurrent intensity decrease for magnetic excitations and quasielastic signals with weak temperature dependence. This anomaly seems to indicate a coupling between magnetic, lattice, and charge modes in this compound. We also comparemore » the magnetic excitation spectra near the antinodal zone boundary in the single layer OP-Bi2201 and in the bilayer optimally doped Bi1.5Pb0.6Sr1.54CaCu2O8+δ (OP-Bi2212, Tc ≃ 96 K). Finally, the strong similarities in the paramagnon dispersion and in their energy at zone boundary indicate that the strength of the superexchange interaction and the short-range magnetic correlation cannot be directly related to Tc, not even within the same family of cuprates.« less
Dean M. P.; Howard, C.A.; Withers, F.
2011-12-19
Graphene phonons are measured as a function of electron doping via the addition of potassium adatoms. In the low doping regime, the in-plane carbon G peak hardens and narrows with increasing doping, analogous to the trend seen in graphene doped via the field effect. At high dopings, beyond those accessible by the field effect, the G peak strongly softens and broadens. This is interpreted as a dynamic, nonadiabatic renormalization of the phonon self-energy. At dopings between the light and heavily doped regimes, we find a robust inhomogeneous phase where the potassium coverage is segregated into regions of high and low density. The phonon energies, linewidths, and tunability are notably very similar for one- to four-layer potassium-doped graphene, but significantly different to bulk potassium-doped graphite.
Sound and heat revolutions in phononics
NASA Astrophysics Data System (ADS)
Maldovan, Martin
2013-11-01
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics. PMID:24226887
Sound and heat revolutions in phononics.
Maldovan, Martin
2013-11-14
The phonon is the physical particle representing mechanical vibration and is responsible for the transmission of everyday sound and heat. Understanding and controlling the phononic properties of materials provides opportunities to thermally insulate buildings, reduce environmental noise, transform waste heat into electricity and develop earthquake protection. Here I review recent progress and the development of new ideas and devices that make use of phononic properties to control both sound and heat. Advances in sonic and thermal diodes, optomechanical crystals, acoustic and thermal cloaking, hypersonic phononic crystals, thermoelectrics, and thermocrystals herald the next technological revolution in phononics.
NASA Astrophysics Data System (ADS)
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-05-01
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes.
Anomalous Infrared Spectra of Hybridized Phonons in Type-I Clathrate Ba8Ga16Ge30
NASA Astrophysics Data System (ADS)
Iwamoto, Kei; Kushibiki, Shunsuke; Honda, Hironori; Kajitani, Shuhei; Mori, Tatsuya; Matsumoto, Hideki; Toyota, Naoki; Suekuni, Koichiro; Avila, Marcos A.; Takabatake, Toshiro
2013-02-01
The optical conductivity spectra of the rattling phonons in the clathrate Ba8Ga16Ge30 are investigated in detail by use of the terahertz time-domain spectroscopy. The experiment has revealed that the lowest-lying vibrational mode of Ba(2)2+ ions consist of a sharp Lorentzian peak at 1.2 THz superimposed on a broad tail weighted in the lower frequency regime around 1.0 THz. With decreasing temperature, an unexpected linewidth broadening of the phonon peak is observed, together with monotonic softening of the phonon peak and enhancement of the tail structure. These observed anomalies are discussed in terms of impurity scattering effects on the hybridized phonon system of rattling and acoustic phonons.
Zhernenkov, Mikhail; Bolmatov, Dima; Soloviov, Dmitry; Zhernenkov, Kirill; Toperverg, Boris P.; Cunsolo, Alessandro; Bosak, Alexey; Cai, Yong Q.
2016-01-01
The passive transport of molecules through a cell membrane relies on thermal motions of the lipids. However, the nature of transmembrane transport and the precise mechanism remain elusive and call for a comprehensive study of phonon excitations. Here we report a high resolution inelastic X-ray scattering study of the in-plane phonon excitations in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine above and below the main transition temperature. In the gel phase, for the first time, we observe low-frequency transverse modes, which exhibit a phonon gap when the lipid transitions into the fluid phase. We argue that the phonon gap signifies the formation of short-lived nanometre-scale lipid clusters and transient pores, which facilitate the passive molecular transport across the bilayer plane. Our findings suggest that the phononic motion of the hydrocarbon tails provides an effective mechanism of passive transport, and illustrate the importance of the collective dynamics of biomembranes. PMID:27175859
Nanoscale control of phonon excitations in graphene
Kim, Hyo Won; Ko, Wonhee; Ku, JiYeon; Jeon, Insu; Kim, Donggyu; Kwon, Hyeokshin; Oh, Youngtek; Ryu, Seunghwa; Kuk, Young; Hwang, Sung Woo; Suh, Hwansoo
2015-01-01
Phonons, which are collective excitations in a lattice of atoms or molecules, play a major role in determining various physical properties of condensed matter, such as thermal and electrical conductivities. In particular, phonons in graphene interact strongly with electrons; however, unlike in usual metals, these interactions between phonons and massless Dirac fermions appear to mirror the rather complicated physics of those between light and relativistic electrons. Therefore, a fundamental understanding of the underlying physics through systematic studies of phonon interactions and excitations in graphene is crucial for realising graphene-based devices. In this study, we demonstrate that the local phonon properties of graphene can be controlled at the nanoscale by tuning the interaction strength between graphene and an underlying Pt substrate. Using scanning probe methods, we determine that the reduced interaction due to embedded Ar atoms facilitates electron–phonon excitations, further influencing phonon-assisted inelastic electron tunnelling. PMID:26109454
NASA Astrophysics Data System (ADS)
Adu, Kofi Wi
either introduce strain or suppress strain depending on the dry oxidation route; in situ suppresses strain where as ex situ induces strain and (b) the asymmetric lineshape in the phonon mode is affected by the strain and the thickness of the oxide layer. Finally, we have used photoluminescence to demonstrate that twinning superlattice of GaAs nanowires of classical size d ≥ 30nm can exhibit quantum confinement effects e.g., a red shift in the band gap (as predicted by theoretical investigations). In addition, Raman scattering spectrum from the GaAs twinning superlattice reveals a new strongly enhanced peak at 515 cm-1 that is not observed in the bulk. We attribute this peak to an undetermined twinning.
Effect of small scattering centers on the thermoelectric properties of p-type SiGe alloys
NASA Technical Reports Server (NTRS)
Beaty, John S.; Rolfe, Jonathan L.; Vandersande, Jan W.
1991-01-01
Theory predicts that the addition of ultra-fine, inert, phonon-scattering centers to thermoelectric materials will reduce their thermal conductivity. To investigate this prediction, ultrafine particulates (20 to 120 A) of silicon nitride have been added to boron-doped, p-type, 80/20 SiGe. All of the SiGe samples produced from ultrafine powder have lower thermal conductivities than standard SiGe, but high-temperature heat treatment increases the thermal conductivity back to the value for standard SiGe. However, the SiGe samples with silicon nitride, inert, phonon-scattering centers retained the lower thermal conductivity after several heat treatments. A reduction of approximately 25 percent in thermal conductivity has been achieved in these samples. The magnitude of the reduction agrees with theoretical predictions.
Theory of scattering of electromagnetic waves of the microwave range in a turbid medium
NASA Astrophysics Data System (ADS)
Konstantinov, O. V.; Matveentsev, A. V.
2013-02-01
The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.
Phonon assisted resonant tunnelling and its phonons control
NASA Astrophysics Data System (ADS)
Kusmartsev, F. V.; Krevchik, V. D.; Semenov, M. B.; Filatov, D. O.; Shorokhov, A. V.; Bukharaev, A. A.; Dakhnovsky, Y.; Nikolaev, A. V.; Pyataev, N. A.; Zaytsev, R. V.; Krevchik, P. V.; Egorov, I. A.; Yamamoto, K.; Aringazin, A. K.
2016-09-01
We observe a series of sharp resonant features in the tunnelling differential conductance of InAs quantum dots. We found that dissipative quantum tunnelling has a strong influence on the operation of nano-devices. Because of such tunnelling the current-voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunnelling current is related to a creation of a dilute instanton-anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
Electron-phonon interaction and excited states relaxation in carbon nanotubes
NASA Astrophysics Data System (ADS)
Perebeinos, Vasili
2008-03-01
We will discuss the role of electron-phonon interaction on excited states relaxation and phonon spectra in carbon nanotubes (CNTs). The electron-phonon interaction leads to the polaronic effects of the charge carriers, but it also renormalizes the energy and the lifetime of phonons. We present a theoretical model that predicts the changes induced in the phonon modes of CNTs as a function of the charge carrier doping, i.e. position of the Fermi level. In agreement with the predictions, our experiments show sharpening and blue shifts of the G-phonons of metallic CNTs, but only blue shifts for semiconducting CNTs, making the Raman scattering a useful probe of local doping of CNTs [1]. The non-equilibrium dynamics of charge carriers under external electric field is determined by the electron-phonon scattering. The hot carriers under unipolar transport conditions can be produced, leading to the strong impact excitation and light emission, which intensity is determined by electric field, phonon scattering, and impact excitation cross section [2, 3]. In the reverse process of photoconductivity, light is absorbed creating excited states. We will discuss electronic relaxation of high energy excited states leading to the free carriers, contributing to the photoconductivity, and phonon relaxation, leading to the bound excitons [4]. The later can contribute to the photocurrent only after ionization by the external field [5]. Finally, we will discuss the role of phonons in the long puzzling question regarding the nature of the dominant decay channel of the low energy excited states and the potential of optoelectronic applications of CNTs. [1] J.C. Tsang, M. Freitag, V. Perebeinos, J. Liu, and Ph. Avouris, Nature Nanotechnology 2, 725 (2007); [2] J. Chen, V. Perebeinos, M. Freitag, J. Tsang, Q. Fu, J. Liu, Ph. Avouris, Science 310, 1171 (2005); [3] V. Perebeinos and Ph. Avouris, Phys. Rev. B. 74, 121410(R), (2006); [4] T. Hertel, V. Perebeinos, J. Crochet, K. Arnold, M. Kappes
NASA Astrophysics Data System (ADS)
Cheaito, Ramez; Gaskins, John T.; Caplan, Matthew E.; Donovan, Brian F.; Foley, Brian M.; Giri, Ashutosh; Duda, John C.; Szwejkowski, Chester J.; Constantin, Costel; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.; Hopkins, Patrick E.
2015-01-01
The advances in phonon spectroscopy in homogeneous solids have unveiled extremely useful physics regarding the contribution of phonon energies and mean-free paths to the thermal transport in solids. However, as material systems decrease to length scales less than the phonon mean-free paths, thermal transport can become much more impacted by scattering and transmission across interfaces between two materials than the intrinsic relaxation in the homogeneous solid. To elucidate the fundamental interactions driving this thermally limiting interfacial phonon scattering process, we analytically derive and experimentally measure a thermal boundary conductance accumulation function. We develop a semiclassical theory to calculate the thermal boundary conductance accumulation function across interfaces using the diffuse mismatch model, and validate this derivation by measuring the interface conductance between eight different metals on native oxide/silicon substrates and four different metals on sapphire substrates. Measurements were performed at room temperature using time-domain thermoreflectance and represent the first-reported values for interface conductance across several metal/native oxide/silicon and metal/sapphire interfaces. The various metal films provide a variable bandwidth of phonons incident on the metal/substrate interface. This method of varying phonons' cutoff frequency in the film while keeping the same substrate allows us to mimic the accumulation of thermal boundary conductance and thus provides a direct method to experimentally validate our theory. We show that the accumulation function can be written as the product of a weighted average of the interfacial phonon transmission function and the accumulation of the temperature derivative of the phonon flux incident on the interface; this provides the framework to extract an average, spectrally dependent phonon transmissivity from a series of thermal boundary conductance measurements. Our approach provides
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering
Trigo, M.; Chen, J.; Vishwanath, V.H.; Sheu, Y.M.; Graber, T.; Henning, R.; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.
2011-03-03
We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.
NASA Astrophysics Data System (ADS)
Tsatsoulis, T.; Illg, C.; Haag, M.; Mueller, B. Y.; Zhang, L.; Fähnle, M.
2016-04-01
During ultrafast demagnetization after the excitation of ferromagnetic films with femtosecond laser pulses, the angular momentum of the electronic system is transferred to the lattice via electron-phonon scatterings. The actual amount of transfer is calculated for Ni and Fe by considering spin-phonon eigenmodes, which have a sharp angular momentum. Because the considered Hamiltonian is not isotropic, the total angular momentum is not conserved.
Propagation of phonons in nanocrystalline ZrO{sub 2}: Y{sub 2}O{sub 3} ceramics
Barabanenkov, Yu. N. Ivanov, V. V.; Ivanov, S. N.; Salamatov, E. I.; Taranov, A. V.; Khazanov, E. N.; Khasanov, O. L.
2006-01-15
Phonon transfer in yttrium-oxide (Y{sub 2}O{sub 3}) stabilized ZrO{sub 2} ceramics is studied experimentally in the range of helium temperatures (1.7-3.8 K). A model of the structure of the intergranular layer in the ceramic is considered, which explains the temperature dependence of the phonon diffusion coefficient, makes it possible to determine the intergranular layer parameters (density, velocity of sound, and thickness), and gives an idea about its structure. Scattering of injected phonons from resonance vibrations of nanoceramic grains is discussed.
Edge phonons in black phosphorus
NASA Astrophysics Data System (ADS)
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-07-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.
Edge phonons in black phosphorus.
Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
Edge phonons in black phosphorus
Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.
2016-01-01
Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813
NASA Astrophysics Data System (ADS)
Wang, Mingchao; Lin, Shangchao
2015-12-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices.
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30–110 ps and mean free path of 0.5–2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
Wang, Mingchao; Lin, Shangchao
2015-01-01
The elastic modulus of carbyne, a one-dimensional carbon chain, was recently predicted to be much higher than graphene. Inspired by this discovery and the fundamental correlation between elastic modulus and thermal conductivity, we investigate the intrinsic thermal transport in two carbon allotropes: carbyne and cumulene. Using molecular dynamics simulations, we discover that thermal conductivities of carbyne and cumulene at the quantum-corrected room temperature can exceed 54 and 148 kW/m/K, respectively, much higher than that for graphene. Such conductivity is attributed to high phonon energies and group velocities, as well as reduced scattering from non-overlapped acoustic and optical phonon modes. The prolonged spectral acoustic phonon lifetime of 30-110 ps and mean free path of 0.5-2.5 μm exceed those for graphene, and allow ballistic phonon transport along micron-length carbon chains. Tensile extensions can enhance the thermal conductivity of carbyne due to the increased phonon density of states in the acoustic modes and the increased phonon lifetime from phonon bandgap opening. These findings provide fundamental insights into phonon transport and band structure engineering through tensile deformation in low-dimensional materials, and will inspire studies on carbyne, cumulene, and boron nitride chains for their practical deployments in nano-devices. PMID:26658143
Nanocrystalline nanowires: 2. Phonons.
Allen, Philip B
2007-01-01
Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.
Self-sustained coherent phonon generation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Navarro-Urrios, D.; Gomis-Bresco, J.; Alzina, F.; Capuj, N. E.; García, P. D.; Colombano, M. F.; Chavez-Angel, E.; Sotomayor-Torres, C. M.
2016-09-01
Optical forces can set tiny objects in states of mechanical self-sustained oscillation, spontaneously generating periodic signals by extracting power from steady sources. Miniaturized self-sustained coherent phonon sources are interesting for applications such as mass-force sensing, intra-chip metrology and intra-chip time-keeping among others. In this paper, we review several mechanisms and techniques that can drive a mechanical mode into the lasing regime by exploiting the radiation pressure force in optomechanical cavities, namely stimulated emission, dynamical back-action, forward stimulated Brillouin scattering and self-pulsing.
THz metamaterials made of phonon-polariton materials
NASA Astrophysics Data System (ADS)
Kafesaki, M.; Basharin, A. A.; Economou, E. N.; Soukoulis, C. M.
2014-08-01
In this paper, we demonstrate numerically various phenomena and possibilities that can be realized in THz metamaterials made of phonon-polariton materials. Such phenomena include hyperbolic dispersion relation, subwavelength imaging using backward propagation and backward radiation, total transmission and subwavelength guiding exploiting Mie-resonant scattering in permittivity near zero host, and toroidal dipolar response. The systems that we use to demonstrate most of these phenomena are two-dimensional periodic systems of μm-scale rods in a host, where both rods and host are made of polaritonic alkali-halide materials.
Access to phases of coherent phonon excitations by femtosecond ultraviolet photoelectron diffraction
NASA Astrophysics Data System (ADS)
Greif, M.; Kasmi, L.; Castiglioni, L.; Lucchini, M.; Gallmann, L.; Keller, U.; Osterwalder, J.; Hengsberger, M.
2016-08-01
Coherent phonons are an excellent tool to investigate the interplay between electronic and structural dynamics. The displacive excitation of coherent phonons in elemental bismuth is one of the most widely studied processes for this purpose. We employ time-resolved photoelectron diffraction to access the structural dynamics by recording the photoemission intensity from one initial state as a function of emission angle. In comparison with tight-binding and single-scattering cluster calculations, this allows electronic and structural effects to be disentangled. Hence, the full dynamics of the hot electron gas and of coherently excited phonons can be accessed in a single experiment. As a major result the phase lag between the coherent phonons and the modulation of the electronic structure can be determined with high precision. The phonon phase lag with respect to the modulation of the electronic structure is about 2.85 ±0.21 rad, thus significantly smaller than π . The difference is not due to phonon decay by energy dissipation into low-energy modes, but rather caused by the very early evolution of the highly excited electron distribution.
Universal phonon mean free path spectra in crystalline semiconductors at high temperature
Freedman, Justin P.; Leach, Jacob H.; Preble, Edward A.; Sitar, Zlatko; Davis, Robert F.; Malen, Jonathan A.
2013-01-01
Thermal conductivity in non-metallic crystalline materials results from cumulative contributions of phonons that have a broad range of mean free paths. Here we use high frequency surface temperature modulation that generates non-diffusive phonon transport to probe the phonon mean free path spectra of GaAs, GaN, AlN, and 4H-SiC at temperatures near 80 K, 150 K, 300 K, and 400 K. We find that phonons with MFPs greater than 230 ± 120 nm, 1000 ± 200 nm, 2500 ± 800 nm, and 4200 ± 850 nm contribute 50% of the bulk thermal conductivity of GaAs, GaN, AlN, and 4H-SiC near room temperature. By non-dimensionalizing the data based on Umklapp scattering rates of phonons, we identified a universal phonon mean free path spectrum in small unit cell crystalline semiconductors at high temperature. PMID:24129328
NASA Astrophysics Data System (ADS)
Colognesi, D.; Formisano, F.; Ramirez-Cuesta, A. J.; Ulivi, L.
2009-04-01
In the present paper we report inelastic neutron scattering measurements on solid low-pressure hydrogen deuteride at three different temperatures (between 4.5 and 15.6 K) using the time-of-flight spectrometers BRISP at ILL (France) and TOSCA-II at ISIS, RAL (UK). The measured double-differential cross sections give access to the proton component of the HD self-inelastic structure factor. Processed BRISP data were employed to verify the applicability of the generalized Young and Koppel model to solid HD in our kinematic range and to obtain the mean-square displacement of the molecular centers of mass. In addition, a large broadening of the first two rotational peaks was observed. A reasonable result for the density of phonon states from TOSCA-II data has been obtained, although a rigorous extraction was not possible, due to the overlap among the various spectral components. The intensity loss in the extracted density of phonon states was interpreted as the effect the phonon-roton resonance in solid hydrogen deuteride. Finally the two Bose-corrected moments of the HD phonon spectrum, related to the molecular mean-square displacement and mean kinetic energy, were simulated through a path integral Monte Carlo code. The former quantity was compared to the mentioned experimental estimates.
Elastic and inelastic scattering of He atoms from Bi(111)
NASA Astrophysics Data System (ADS)
Tamtögl, A.; Mayrhofer-Reinhartshuber, M.; Balak, N.; Ernst, W. E.; Rieder, K. H.
2010-08-01
Elastic and inelastic scattering of helium atoms has been used to study the Bi(111) surface. Sharp diffraction peaks are found with results in excellent agreement with previous structure determinations of the Bi(111) surface. The rather large first order peaks with respect to the zero order peak indicate a stronger surface corrugation than observed in helium scattering from other metallic surfaces. Time-of-flight spectra of scattered He atoms clearly reveal two inelastic scattering maxima, which allow a first report on phonon creation and annihilation events on the Bi(111) surface. An estimate of the group velocity shows that the phonon creation peak is likely to correspond to a Rayleigh mode.
Computational Study of In-Plane Phonon Transport in Si Thin Films
Wang, Xinjiang; Huang, Baoling
2014-01-01
We have systematically investigated the in-plane thermal transport in Si thin films using an approach based on the first-principles calculations and lattice dynamics. The effects of phonon mode depletion induced by the phonon confinement and the corresponding variation in interphonon scattering, which may be important for the thermal conductivities of ultra-thin films but are often neglected in precedent studies, are considered in this study. The in-plane thermal conductivities of Si thin films with different thicknesses have been predicted over a temperature range from 80 K to 800 K and excellent agreements with experimental results are found. The validities of adopting the bulk phonon properties and gray approximation of surface specularity in thin film studies have been clarified. It is found that in ultra-thin films, while the phonon depletion will reduce the thermal conductivity of Si thin films, its effect is largely offset by the reduction in the interphonon scattering rate. The contributions of different phonon modes to the thermal transport and isotope effects in Si films with different thicknesses under various temperatures are also analyzed. PMID:25228061
Full-dispersion Monte Carlo simulation of phonon transport in micron-sized graphene nanoribbons
Mei, S. Knezevic, I.; Maurer, L. N.; Aksamija, Z.
2014-10-28
We simulate phonon transport in suspended graphene nanoribbons (GNRs) with real-space edges and experimentally relevant widths and lengths (from submicron to hundreds of microns). The full-dispersion phonon Monte Carlo simulation technique, which we describe in detail, involves a stochastic solution to the phonon Boltzmann transport equation with the relevant scattering mechanisms (edge, three-phonon, isotope, and grain boundary scattering) while accounting for the dispersion of all three acoustic phonon branches, calculated from the fourth-nearest-neighbor dynamical matrix. We accurately reproduce the results of several experimental measurements on pure and isotopically modified samples [S. Chen et al., ACS Nano 5, 321 (2011);S. Chen et al., Nature Mater. 11, 203 (2012); X. Xu et al., Nat. Commun. 5, 3689 (2014)]. We capture the ballistic-to-diffusive crossover in wide GNRs: room-temperature thermal conductivity increases with increasing length up to roughly 100 μm, where it saturates at a value of 5800 W/m K. This finding indicates that most experiments are carried out in the quasiballistic rather than the diffusive regime, and we calculate the diffusive upper-limit thermal conductivities up to 600 K. Furthermore, we demonstrate that calculations with isotropic dispersions overestimate the GNR thermal conductivity. Zigzag GNRs have higher thermal conductivity than same-size armchair GNRs, in agreement with atomistic calculations.
Nonharmonic phonons in α-iron at high temperatures
NASA Astrophysics Data System (ADS)
Mauger, L.; Lucas, M. S.; Muñoz, J. A.; Tracy, S. J.; Kresch, M.; Xiao, Yuming; Chow, Paul; Fultz, B.
2014-08-01
Phonon densities of states (DOS) of bcc α-Fe57 were measured from room temperature through the 1044 K Curie transition and the 1185 K fcc γ-Fe phase transition using nuclear resonant inelastic x-ray scattering. At higher temperatures all phonons shift to lower energies (soften) with thermal expansion, but the low transverse modes soften especially rapidly above 700 K, showing strongly nonharmonic behavior that persists through the magnetic transition. Interatomic force constants for the bcc phase were obtained by iteratively fitting a Born-von Kármán model to the experimental phonon spectra using a genetic algorithm optimization. The second-nearest-neighbor fitted axial force constants weakened significantly at elevated temperatures. An unusually large nonharmonic behavior is reported, which increases the vibrational entropy and accounts for a contribution of 35 meV/atom in the free energy at high temperatures. The nonharmonic contribution to the vibrational entropy follows the thermal trend of the magnetic entropy, and may be coupled to magnetic excitations. A small change in vibrational entropy across the α-γ structural phase transformation is also reported.
Nonsymmorphic Phononic Metamaterials: shaping waves over multiple length scales
NASA Astrophysics Data System (ADS)
Koh, Cheongyang; Thomas, Edwin
2012-02-01
The vector nature of the phonon makes rational design of phononic metamaterials challenging, despite potential in unique wave propagation behavior, such as negative refraction and hyper-lensing. While most designs to date focus on the ``meta-atom'' (building block) design, their ``spatial arrangement'' (non-locality) is equally instrumental in dispersion engineering. Here, we present a generalized design framework (DF) for PMM design, utilizing both ``global'' and ``local'' symmetry concepts. We demonstrate, utilizing specific properties of nonsymmorphic plane groups, PMMs possessing i) a low-frequency in-plane complete spectral gap (ICSG) of 102% (CSG of 88%), ii) a set of polychromatic ICSGs totaling over 100% in normalized gap size. Within the same DF, we further integrate broken symmetry states (BSS) (edge states, waveguides, etc) with designed polarization, (de)localization and group velocities. In particular, we demonstrate how these BSS may be utilized to elucidate signatures of complex polarization fields through phonon-structure interactions, leading to interesting applications in elastic-wave imaging, as well as information retrieval by probing polarization states of scattering bodies over multiple scales.
Wide-stopband aperiodic phononic filters
NASA Astrophysics Data System (ADS)
Rostem, K.; Chuss, D. T.; Denis, K. L.; Wollack, E. J.
2016-06-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6–10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Wide-Stopband Aperiodic Phononic Filters
NASA Technical Reports Server (NTRS)
Rostem, Karwan; Chuss, David; Denis, K. L.; Wollack, E. J.
2016-01-01
We demonstrate that a phonon stopband can be synthesized from an aperiodic structure comprising a discrete set of phononic filter stages. Each element of the set has a dispersion relation that defines a complete bandgap when calculated under a Bloch boundary condition. Hence, the effective stopband width in an aperiodic phononic filter (PnF) may readily exceed that of a phononic crystal with a single lattice constant or a coherence scale. With simulations of multi-moded phononic waveguides, we discuss the effects of finite geometry and mode-converting junctions on the phonon transmission in PnFs. The principles described may be utilized to form a wide stopband in acoustic and surface wave media. Relative to the quantum of thermal conductance for a uniform mesoscopic beam, a PnF with a stopband covering 1.6-10.4 GHz is estimated to reduce the thermal conductance by an order of magnitude at 75 mK.
Unifying Brillouin scattering and cavity optomechanics
NASA Astrophysics Data System (ADS)
Van Laer, Raphaël; Baets, Roel; Van Thourhout, Dries
2016-05-01
So far, Brillouin scattering and cavity optomechanics have been mostly disconnected branches of research, although both deal with photon-phonon coupling. This begs for the development of a broader theory that contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities, and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects, such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities, and gain coefficients, thus reflecting the similarities in the underlying physics.
Temperature Dependence of Phonons in Pyrolitic Graphite
DOE R&D Accomplishments Database
Brockhouse, B. N.; Shirane, G.
1977-01-01
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4°K and 1500°C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes.
Zhang, J.-Z.; Dyson, A.; Ridley, B. K.
2015-01-14
Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation (ER) of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation (PD) and ER time due to both half-space and interface phonons are calculated as functions of the electron temperature T{sub e} using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby, particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: With no hot phonons or screening, the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for ER time with the two phonon models (within a 5% of deviation). However, the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the PD values obtained from the DC and 3DP models are in general different in the spontaneous phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register's scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the ER: their contribution is enhanced in the spontaneous emission process but is dramatically reduced after including the HPE. Our calculation with both
Phonon-assisted transient electroluminescence in Si
Cheng, Tzu-Huan; Chu-Su, Yu; Liu, Chien-Sheng; Lin, Chii-Wann
2014-06-30
The phonon-replica infrared emission is observed at room temperature from indirect band gap Si light-emitting diode under forward bias. With increasing injection current density, the broadened electroluminescence spectrum and band gap reduction are observed due to joule heating. The spectral-resolved temporal response of electroluminescence reveals the competitiveness between single (TO) and dual (TO + TA) phonon-assisted indirect band gap transitions. As compared to infrared emission with TO phonon-replica, the retarder of radiative recombination at long wavelength region (∼1.2 μm) indicates lower transition probability of dual phonon-replica before thermal equivalent.
Phonon-mediated negative differential conductance in molecular quantum dots
NASA Astrophysics Data System (ADS)
Zazunov, Alex; Feinberg, Denis; Martin, Thierry
2006-03-01
Transport through a single-molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy using a carbon nanotube contacted by a scanning tunneling microscope tip [Nature 432, 371 (2004)], where negative differential conductance of the breathing-mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A “half-shuttle” mechanism is also introduced. A quantum kinetic formulation allows us to derive rate equations. Assuming asymmetric tunneling rates and in the absence of the half-shuttle coupling, negative differential conductance (NDC) is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in the absence of a gate, the “floating” level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study
Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory
2014-05-07
Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.
Giant electrothermal conductivity and spin-phonon coupling in an antiferromagnetic oxide.
Chiorescu, C; Neumeier, J J; Cohn, J L
2008-12-19
The application of weak electric fields ( less, similar 100 V/cm) is found to dramatically enhance the lattice thermal conductivity of the antiferromagnetic insulator CaMnO3 over a broad range of temperature about the Néel ordering point (125 K). The effect is coincident with field-induced detrapping of bound electrons, suggesting that phonon scattering associated with short- and long-ranged antiferromagnetic order is suppressed in the presence of the mobilized charge. This interplay between bound charge and spin-phonon coupling might allow for the reversible control of spin fluctuations using weak external fields.
Large phonon entropy drives the metallization of vanadium dioxide (VO2)
NASA Astrophysics Data System (ADS)
Hong, Jiawang
2015-03-01
Vanadium dioxide (VO2) exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. This MIT in VO2 has attracted intense interest from both fundamental and technological perspectives. However, most studies performed in the past 50 years have focused on the electronic structure and energetics of the transition, ignoring the role of phonons and their entropic contribution to the phase stability. Much of the reason is that the standard tool of neutron scattering does not yield coherent scattering from V nuclei, and first-principles methods with harmonic approximation cannot capture the stable phonons for the rutile phase. We close this gap by using a combination of ab initio molecular dynamics calculations and neutron/x-ray scattering to establish that the entropy driving the MIT is dominated by soft, anharmonic phonons of the metallic phase. The MIT results from the competition between lower electronic energy in insulating M1 phase due to the Peierls instability, and the higher entropy of the metallic rutile phase resulting from soft anharmonic phonons. This understanding of the role of lattice dynamics and their relationship to electronic structure provides a critical component for developing more complete physical models of phase competition in functional transition metal oxides. Theoretical calculations were performed using the NERSC at LBNL. Modeling of neutron data was performed in CAMM, measurements were funded by the US DOE, BES, Materials Science and Engineering Division.
Acoustic add-drop filters based on phononic crystal ring resonators
NASA Astrophysics Data System (ADS)
Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin
2016-01-01
We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.
NASA Astrophysics Data System (ADS)
Puurtinen, T. A.; Maasilta, I. J.
2014-12-01
In a previous publication [I. J. Maasilta, AIP Advances 1, 041704 (2011)], we discussed the formalism and some computational results for phononic thermal conduction in the suspended membrane geometry for radial heat flow from a central source, which is a common geometry for some low-temperature detectors, for example. We studied the case where only diffusive surface scattering is present, the so called Casimir limit, which can be experimentally relevant at temperatures below ˜ 10 K in typical materials, and even higher for ultrathin samples. Here, we extend our studies to much thinner membranes, obtaining numerical results for geometries which are more typical in experiments. In addition, we interpret the results in terms of the small signal and differential thermal conductance, so that guidelines for designing devices, such as low-temperature bolometric detectors, are more easily obtained. Scaling with membrane dimensions is shown to differ significantly from the bulk scattering, and, in particular, thinning the membrane is shown to lead to a much stronger reduction in thermal conductance than what one would envision from the simplest bulk formulas.
Phonon and magnon heat transport and drag effects
NASA Astrophysics Data System (ADS)
Heremans, Joseph P.
2014-03-01
Thermoelectric generators and coolers constitute today's solid-state energy converters. The two goals in thermoelectrics research are to enhance the thermopower while simultaneously maintaining a high electrical conductivity of the same material, and to minimize its lattice thermal conductivity without affecting its electronic properties. Up to now the lattice thermal conductivity has been minimized by using alloy scattering and, more recently, nanostructuring. In the first part of the talk, a new approach to minimize the lattice thermal conductivity is described that affects phonon scattering much more than electron scattering. This can be done by selecting potential thermoelectric materials that have a very high anharmonicity, because this property governs phonon-phonon interaction probability. Several possible types of chemical bonds will be described that exhibit such high anharmonicity, and particular emphasis will be put on solids with highly-polarizable lone-pair electrons, such as the rock salt I-V-VI2 compounds (e.g. NaSbSe2). The second part of the talk will give an introduction to a completely new class of solid-state thermal energy converters based on spin transport. One configuration for such energy converters is based on the recently discovered spin-Seebeck effect (SSE). This quantity is expressed in the same units as the conventional thermopower, and we have recently shown that it can be of the same order of magnitude. The main advantage of SSE converters is that the problem of optimization is now distributed over two different materials, a ferromagnet in which a flux of magnetization is generated by a thermal gradient, and a normal metal where the flux of magnetization is converted into electrical power. The talk will focus on the basic physics behind the spin-Seebeck effect. Recent developments will then be described based on phonon-drag of spin polarized electrons. This mechanism has made it possible to reach magnitudes of SSE that are comparable
Brillouin scattering self-cancellation.
Florez, O; Jarschel, P F; Espinel, Y A V; Cordeiro, C M B; Mayer Alegre, T P; Wiederhecker, G S; Dainese, P
2016-01-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it. PMID:27283092
Brillouin scattering self-cancellation
NASA Astrophysics Data System (ADS)
Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.
2016-06-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancing or suppressing it.
Brillouin scattering self-cancellation
Florez, O.; Jarschel, P. F.; Espinel, Y. A. V.; Cordeiro, C. M. B.; Mayer Alegre, T. P.; Wiederhecker, G. S.; Dainese, P.
2016-01-01
The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain-induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result, proper material and structure engineering allows one to control each contribution individually. Here, we experimentally demonstrate the perfect cancellation of Brillouin scattering arising from Rayleigh acoustic waves by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon–phonon interaction, enhancing or suppressing it. PMID:27283092
Impulsive Stimulated Raman Excitation of Coherent Phonons in Antimony
NASA Astrophysics Data System (ADS)
Garrett, G. A.; Albrecht, T. F.; Whitaker, J. F.; Merlin, R.
1996-03-01
We present results of femtosecond pump-probe measurements on Sb using a mode-locked Ti:Sapphire laser. As in a previous study,(T.K. Cheng, et al.), Appl. Phys. Lett. 57, 1004 (1990) we observed oscillations associated with the A_1g phonon. But unlike this study, we also observed Eg oscillations at low temperatures that obeyed the standard Raman selection rules. This observation is inconsistent with previously suggested phenomenological(H.J. Zeiger, et al.), Phys. Rev. B 45, 768 (1992) and microscopic(A.V. Kuznetsov and C.J. Stanton, Phys. Rev. Lett. 73), 3242 (1994) DECP (displacive excitation of coherent phonons) models. Our results can be explained in the context of ISRS (impulsive stimulated Raman scattering) through incorporation of a complex Raman tensor. In using a complex tensor, we account for the observation that the relative intensity of the two modes differ from that measured in spontaneous Raman scattering. DECP models can also be shown to relate to ISRS under strong resonant conditions.
Drag of electrons in graphene by substrate surface polar phonons
NASA Astrophysics Data System (ADS)
Koniakhin, S. V.; Nalitov, A. V.
2016-09-01
It is known that electron scattering by surface polar phonons (SPPs) of the substrate reduces their mobility in supported graphene. However, there is no experimental evidence for the contribution of the drag of electrons by SPPs to thermoelectric phenomena in graphene: graphene thermopower exhibits good agreement with Mott's law, which means that the diffusion contribution to the thermopower is dominant in a wide range of carrier densities and temperatures. Here we develop a complete theory of drag of electrons in graphene by SPPs. By solving the Boltzmann transport equation for electrons scattered by SPPs we derive SPP-drag contribution to the thermopower in graphene. Compared to diffusion thermopower, obtained values appear to be one order of magnitude lower for various substrates. This can be explained by the low occupation number of the SPPs and short mean free path of such phonons stemming from their small group velocity. We conclude that experiments on thermopower in graphene can be treated within the framework of Mott's law.
NASA Astrophysics Data System (ADS)
Kiefer, M.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Münster, A.; Petricca, F.; Potzel, W.; Pröbst, F.; Reindl, F.; Roth, S.; Rottler, K.; Sailer, C.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Sivers, M. v.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Türkoğlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.
2016-06-01
The CRESST experiment (Cryogenic Rare Event Search with Superconducting Thermometers) searches for dark matter via the phonon and light signals of elastic scattering processes in scintillating crystals. The discrimination between a possible dark matter signal and background is based on the light yield. We present a new method for evaluating the two characteristics of a phonon/light detector module that determine how much of the deposited energy is converted to scintillation light and how efficiently a module detects the produced light. In contrast to former approaches with dedicated setups, we developed a method which allows us to use data taken with the cryogenic setup, during a dark matter search phase. In this way, we accounted for the entire process that occurs in a detector module, and obtained information on the light emission of the crystal as well as information on the performance of the module (light transport and detection). We found that with the detectors operated in CRESST-II phase 1, about 20% of the produced scintillation light is detected. A part of the light is likely absorbed by creating meta-stable excitations in the scintillating crystals. The light not detected is not absorbed entirely, as an additional light detector can help to increase the fraction of detected light.
Splash, pop, sizzle: Information processing with phononic computing
Sklan, Sophia R.
2015-05-15
Phonons, the quanta of mechanical vibration, are important to the transport of heat and sound in solid materials. Recent advances in the fundamental control of phonons (phononics) have brought into prominence the potential role of phonons in information processing. In this review, the many directions of realizing phononic computing and information processing are examined. Given the relative similarity of vibrational transport at different length scales, the related fields of acoustic, phononic, and thermal information processing are all included, as are quantum and classical computer implementations. Connections are made between the fundamental questions in phonon transport and phononic control and the device level approach to diodes, transistors, memory, and logic. .
Polarized light scattering from individual semiconductor nanowires
NASA Astrophysics Data System (ADS)
Wu, Jian
This thesis addresses the light scattering, particularly Raman and Rayleigh scattering from quasi one dimensional semiconductor nanowires, such as Zn1-xMnxS and GaP nanowires. Many of the results stem from measurements of individual wires. Four original works are presented in the thesis: (1) The growth of diluted magnetic semiconductor (DMS) Zn1-xMnxS (0≤x<0.6) nanowires using a three-zone furnace and two solid sources is reported (Chapter 2.4). The vibrational properties of the DMS nanowires with different Zn/Mn ratios were studied by correlating their Raman scattering spectra with the composition and structure measured by x-Ray energy dispersive spectroscopy (XEDS) and selected area electron diffraction (SAD). We find that the transverse optical (TO) phonon band disappears at the lowest Mn concentrations, while the longitudinal optical (LO) phonon band position was found insensitive to x. Three additional Raman bands were observed between the ZnS q=0 TO and LO phonons when Mn atoms were present in the nanowires (Chapter 5); (2) Polarized Raman scattering on individual crystalline GaP nanowires with diameters 40 individual crystalline GaP nanowires with diameters 40
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids.
NASA Astrophysics Data System (ADS)
Plemmons, Dayne; Flannigan, David
Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
Temperature-Dependent Mean Free Path Spectra of Thermal Phonons Along the c-Axis of Graphite.
Zhang, Hang; Chen, Xiangwen; Jho, Young-Dahl; Minnich, Austin J
2016-03-01
Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids. PMID:26840052
Lattice Boltzmann modeling of phonon transport
NASA Astrophysics Data System (ADS)
Guo, Yangyu; Wang, Moran
2016-06-01
A novel lattice Boltzmann scheme is proposed for phonon transport based on the phonon Boltzmann equation. Through the Chapman-Enskog expansion, the phonon lattice Boltzmann equation under the gray relaxation time approximation recovers the classical Fourier's law in the diffusive limit. The numerical parameters in the lattice Boltzmann model are therefore rigorously correlated to the bulk material properties. The new scheme does not only eliminate the fictitious phonon speed in the diagonal direction of a square lattice system in the previous lattice Boltzmann models, but also displays very robust performances in predicting both temperature and heat flux distributions consistent with analytical solutions for diverse numerical cases, including steady-state and transient, macroscale and microscale, one-dimensional and multi-dimensional phonon heat transport. This method may provide a powerful numerical tool for deep studies of nonlinear and nonlocal heat transports in nanosystems.
The phonon Hall effect: theory and application.
Zhang, Lifa; Ren, Jie; Wang, Jian-Sheng; Li, Baowen
2011-08-01
We present a systematic theory of the phonon Hall effect in a ballistic crystal lattice system, and apply it on the kagome lattice which is ubiquitous in various real materials. By proposing a proper second quantization for the non-Hermitian in the polarization-vector space, we obtain a new heat current density operator with two separate contributions: the normal velocity responsible for the longitudinal phonon transport, and the anomalous velocity manifesting itself as the Hall effect of transverse phonon transport. As exemplified in kagome lattices, our theory predicts that the direction of Hall conductivity at low magnetic field can be reversed by tuning the temperatures, which we hope can be verified by experiments in the future. Three phonon-Hall-conductivity singularities induced by phonon-band-topology change are discovered as well, which correspond to the degeneracies at three different symmetric center points, Γ, K, X, in the wavevector space of the kagome lattice.
Phononic crystals and elastodynamics: Some relevant points
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-15
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phononic crystals and elastodynamics: Some relevant points
NASA Astrophysics Data System (ADS)
Aravantinos-Zafiris, N.; Sigalas, M. M.; Kafesaki, M.; Economou, E. N.
2014-12-01
In the present paper we review briefly some of the first works on wave propagation in phononic crystals emphasizing the conditions for the creation of acoustic band-gaps and the role of resonances to the band-gap creation. We show that useful conclusions in the analysis of phononic band gap structures can be drawn by considering the mathematical similarities of the basic classical wave equation (Helmholtz equation) with Schrödinger equation and by employing basic solid state physics concepts and conclusions regarding electronic waves. In the second part of the paper we demonstrate the potential of phononic systems to be used as elastic metamaterials. This is done by demonstrating negative refraction in phononic crystals and subwavelength waveguiding in a linear chain of elastic inclusions, and by proposing a novel structure with close to pentamode behavior. Finally the potential of phononic structures to be used in liquid sensor applications is discussed and demonstrated.
Phonon Drag Dislocations at High Pressures
Wolfer, W.G.
1999-10-19
Phonon drag on dislocations is the dominant process which determines the flow stress of metals at elevated temperatures and at very high plastic deformation rates. The dependence of the phonon drag on pressure or density is derived using a Mie-Grueneisen equation of state. The phonon drag is shown to increase nearly linearly with temperature but to decrease with density or pressure. Numerical results are presented for its variation for shock-loaded copper and aluminum. In these cases, density and temperature increase simultaneously, resulting in a more modest net increase in the dislocation drag coefficient. Nevertheless, phonon drag increases by more than an order of magnitude during shock deformations which approach melting. Since the dependencies of elastic moduli and of the phonon drag coefficient on pressure and temperature are fundamentally different, the effect of pressure on the constitutive law for plastic deformation can not simply be accounted for by its effect on the elastic shear modulus.
Raman study of surface optical phonons in hydrothermally obtained ZnO(Mn) nanoparticles
NASA Astrophysics Data System (ADS)
Hadžić, B.; Romčević, N.; Romčević, M.; Kuryliszyn-Kudelska, I.; Dobrowolski, W.; Narkiewicz, U.; Sibera, D.
2016-08-01
Nanocrystalline samples of ZnO(Mn) were synthesized by hydrothermal method. The morphology of the samples was studied by HRTEM and SEM. X-ray diffraction was used to determine composition of the samples (ZnO and ZnMn2O4) and the mean crystalline size (from 16 to 99 nm). In this paper we report the experimental spectra of Raman scattering (from 100 to 1600 cm-1) with surface optical phonons (SOP) in range of 497-538 cm-1 as well as formation of new phases MnO, Mn3O4 and ZnMnO3. The phonon of registered phase's exhibit effects connected to phase concentration, while the SOP phonon mode exhibit significant confinement effect.
Phonon and magnetic structure in δ-plutonium from density-functional theory
NASA Astrophysics Data System (ADS)
Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.
2015-10-01
We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.
Phonon and magnetic structure in δ-plutonium from density-functional theory
Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.
2015-10-30
We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment (DLM) method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, However, the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments.
The graphene phonon dispersion with C{sup 12} and C{sup 13} isotopes
Whiteway, Eric; Bernard, Simon; Yu, Victor; Hilke, Michael; Austing, D. Guy
2013-12-04
Using very uniform large scale chemical vapor deposition grown graphene transferred onto silicon, we were able to identify 15 distinct Raman lines associated with graphene monolayers. This was possible thanks to a combination of different carbon isotopes and different Raman laser energies and extensive averaging without increasing the laser power. This allowed us to obtain a detailed experimental phonon dispersion relation for many points in the Brillouin zone. We further identified a D+D' peak corresponding to a double phonon process involving both an inter- and intra-valley phonon. In order to both eliminate substrate effects and to probe large areas, we undertook to study Raman scattering for large scale chemical vapor deposition (CVD) grown graphene using two different isotopes (C12 and C13) so that we can effectively exclude and subtract the substrate contributions, since a heavier mass downshifts only the vibrational properties, while keeping all other properties the same.
NASA Astrophysics Data System (ADS)
Hyun Oh, Jung; Shin, Mincheol; Jang, Moon-Gyu
2012-02-01
Using a Green's function method based on an elastic wave equation, the effects of surface roughness and the nanowire-contact interface scattering on phonon thermal conductivity are studied at low temperatures. It is found that the interface geometry between a nanowire and its contacts affects the transmission function at small energies related to the gapless modes and it gives rise to deviated results from the universal conductance. It is also shown that the surface roughness is crucial in the suppression of phonon thermal conductivity with reducing the nanowire size by averaging the transmission function over the rough-surface configurations. Furthermore, the phonon mean free path is proportional to the ratio of the correlation length and roughness heights quadratically as well as the cross-section area of the nanowire.
Probing electron-phonon excitations in molecular junctions by quantum interference.
Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P
2016-02-11
Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices.
Raman spectroscopy of magneto-phonon resonances in graphene and graphite
NASA Astrophysics Data System (ADS)
Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron
2012-08-01
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
Phonon modes and Raman intensity profiles in zinc-blende BN/GaN superlattices
NASA Astrophysics Data System (ADS)
Talwar, Devki N.; Lenze, Benjamin A.; Czak, Jason E.; Bensaoula, Abdelhak
2014-01-01
By exploiting both an elastic continuum and a linear-chain model (LCM) we have systematically investigated the phonon characteristics in a series of unconventional short-period zb (BN)m/(GaN)n (0 0 1) superlattices (SLs)—selecting m or n values between 2 and 10. The calculated longitudinal folded-acoustic modes and the doublets near the phonon wavevector \\vert \\vec{{q}}_{s} \\vert are shown to have stronger dependence on the SL periods dSL. In the framework of a bond-polarizability scheme and using a second-nearest neighbour LCM, our simulated results for the phonon dispersions and Raman intensity profiles have revealed not only the major expected trends of the vibrational characteristics observed experimentally in many conventional SLs but also elicited some interesting contrasts. We expect that the outcome of the present study will encourage experimentalists to utilize Raman scattering spectroscopy, perform material characterizations and authenticate our theoretical conjectures.
Phonon and magnetic structure in δ-plutonium from density-functional theory
Söderlind, Per; Zhou, F.; Landa, A.; Klepeis, J. E.
2015-01-01
We present phonon properties of plutonium metal obtained from a combination of density-functional-theory (DFT) electronic structure and the recently developed compressive sensing lattice dynamics (CSLD). The CSLD model is here trained on DFT total energies of several hundreds of quasi-random atomic configurations for best possible accuracy of the phonon properties. The calculated phonon dispersions compare better with experiment than earlier results obtained from dynamical mean-field theory. The density-functional model of the electronic structure consists of disordered magnetic moments with all relativistic effects and explicit orbital-orbital correlations. The magnetic disorder is approximated in two ways: (i) a special quasi-random structure and (ii) the disordered-local-moment method within the coherent potential approximation. Magnetism in plutonium has been debated intensely, but the present magnetic approach for plutonium is validated by the close agreement between the predicted magnetic form factor and that of recent neutron-scattering experiments. PMID:26514238
Ultra-wide acoustic band gaps in pillar-based phononic crystal strips
Coffy, Etienne Lavergne, Thomas; Addouche, Mahmoud; Euphrasie, Sébastien; Vairac, Pascal; Khelif, Abdelkrim
2015-12-07
An original approach for designing a one dimensional phononic crystal strip with an ultra-wide band gap is presented. The strip consists of periodic pillars erected on a tailored beam, enabling the generation of a band gap that is due to both Bragg scattering and local resonances. The optimized combination of both effects results in the lowering and the widening of the main band gap, ultimately leading to a gap-to-midgap ratio of 138%. The design method used to improve the band gap width is based on the flattening of phononic bands and relies on the study of the modal energy distribution within the unit cell. The computed transmission through a finite number of periods corroborates the dispersion diagram. The strong attenuation, in excess of 150 dB for only five periods, highlights the interest of such ultra-wide band gap phononic crystal strips.
NASA Astrophysics Data System (ADS)
Jia, Lin; Ju, Shenghong; Liang, Xingang; Zhang, Xing
2016-09-01
Using the atomistic Green’s functions method in combination with the Landauer formula, we show that the phonon transmission and thermal conductance of periodic rectangular-shaped and triangular-shaped Si/Ge interfaces are both enhanced and tunable by roughness. For triangular-shaped interface, there is maximum phonon transmission and conductance with increasing roughness height, and the conductance can be tuned maximally by 22.3% compared with the flat interface. The maximum conductance of rectangular-shaped interface is enhanced by about 11.1%. The competing mechanisms between the broadening frequency transport window of rough interface and the increasing diffusing phonon scattering at the interface with higher roughness introduce the maximum transmission and conductance. Similar result is also obtained in non-periodic interfaces. The presented results provide insights into the thermal design of interfaces in nanoscale devices.
NASA Astrophysics Data System (ADS)
Delaire, Olivier
For a fixed configuration of ions on a given crystalline lattice, low energy excitations around the static average configuration can be thermally activated and will contribute to the entropy of the system. As such, phonons, spin-waves or electronic excitations have their own entropic contribution. This thesis investigates the entropic effects of lattice vibrations in transition metal alloys, both from experimental and computational points of view. Using inelastic neutron scattering, it is shown that a few percent of substitutional impurities from the transition metal series strongly affect the phonon density of states (DOS) of pure vanadium. Alloying with 6% Pt solutes produces a strong stiffening of the phonon DOS, inducing a large and negative vibrational entropy of mixing, which overcomes the increase in configurational entropy. A systematic study of chemical trends for different transition metal impurities was conducted. A previously unknown correlation is established between the vibrational entropy of alloying and the difference in electronegativity of the solute and the host. Density-functional theory calculations were conducted and confirmed the occurrence of systematic charge-transfers correlating with the electronegativity, which affect the interatomic force-constants and the phonons. The effect of impurities on the anomalous temperature-dependence of phonons in vanadium is investigated. It is found that the solutes which affect the phonon density of states most strongly at room temperature also suppress the anomalous temperature behavior. Electron-phonon and phonon-phonon couplings are examined as potential sources of this effect, through a careful accounting of their contributions to the heat capacity, based on inelastic neutron scattering experiments, calorimetry measurements and electronic structure calculations. Finally, the changes in the phonon DOS and the vibrational entropy across the low-temperature martensitic phase transformation in Fe71Ni 29
Neutron Compton scattering as a molecular characterization technique: A study on NaHF{sub 2}
Colognesi, D.; Pietropaolo, A.; Senesi, R.; Ramirez-Cuesta, A. J.
2007-11-01
Inelastic neutron scattering experiments were performed at intermediate and high momentum transfers, up to 85-90 A ring {sup -1}, to study the proton momentum distribution in polycrystalline sodium hydrogen fluoride (NaHF{sub 2}) at low temperature (below 5 K). The H mean kinetic energy was extracted and compared to the results from hydrogen-projected density of phonon states derived from intermediate momentum transfer inelastic neutron scattering and lattice dynamics simulations. A reasonable agreement between the two figures was found. In addition, relevant aspects of high momentum transfer neutron scattering from NaHF{sub 2} were explored in detail, ranging from an alternative evaluation of final state effects to the role played by the instrumental resolution and to the possibility to reconstruct the potential felt by a proton from its momentum distribution.
Wang, Jing; Chen, Di; Wallace, Joseph; Gigax, Jonathan; Wang, Xuemei; Shao, Lin
2014-05-12
Through integrated molecular dynamics (MD) simulations and experimental studies, we demonstrated the feasibility of an ion-irradiation-and-annealing based phonon engineering technique to enhance thermal conductivity of carbon nanotube (CNT) films. Upon ion irradiation of CNT films, both inter-tube defects and intra-tube defects are introduced. Our MD simulations show that inter-tube defects created between neighboring tubes are much more stable than intra-tube defects created on tube graphitic planes. Upon thermal annealing, intra-tube defects are preferentially removed but inter-tube defects stay. Consequently, axial phonon transport increases due to reduced phonon scattering and off-axial phonon transport is sustained due to the high stability of inter-tube defects, leading to a conductivity enhancement upon annealing. The modeling predictions agree with experimental observations that thermal conductivities of CNT films were enhanced after 2 MeV hydrogen ion irradiations and conductivities were further enhanced upon post irradiation annealing.
Measurement of the phonon mean free path spectra and the universality in the high temperature limit
NASA Astrophysics Data System (ADS)
Regner, Keith; Freedman, Justin; Sitar, Zlatko; Leach, Jacob; Davis, Robert; Malen, Jonathan
2013-03-01
Here, we use broadband frequency domain thermoreflectance (BB-FDTR) to measure thermal conductivity accumulation functions (kaccum) of Si, GaAs, GaN, AlN, and SiC at temperatures of 80 K, 150 K, 300 K, and 400 K and show that they collapse to a universal accumulation function (kuniv) in the high temperature limit. BB-FDTR is a novel technique developed to measure the spectral contributions of phonons to bulk thermal conductivity as a function of phonon MFP i.e., kaccum. BB-FDTR uses a heterodyne approach allowing for continuous resolution of the phonon MFP spectrum spanning two orders of magnitude (0.3 - 8 μm in Si at T = 300 K). Results in Si and GaAs compare favorably to numerical predictions (Esfarjani, et al., PRB, 2011) (Luo et al., arXiv, 2012) and show that phonons with long MFPs (>1 μm) contribute significantly to the bulk thermal conductivity at T = 300 K. Next, we present a method to predict kaccum as the temperature of the material approaches its Debye temperature. Using the measured spectra at T = 400 K and assuming Umklapp scattering as the dominant scattering mechanism, kuniv was found to exist in GaAs, GaN, and Si after normalizing the phonon MFP. The existence of kuniv suggests that the phonon MFP spectrum is a universal feature of matter in the high temperature limit, and can be used to predict kaccum for any crystalline semiconductor near its Debye temperature.
Magnetically induced phonon splitting in A Cr2O4 spinels from first principles
NASA Astrophysics Data System (ADS)
Wysocki, Aleksander L.; Birol, Turan
2016-04-01
We study the magnetically-induced phonon splitting in cubic A Cr2O4 (A =Mg , Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr2O4 compared to ZnCr2O4 and MgCr2O4 , is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)], 10.1103/PhysRevLett.96.205505 that includes only the nearest neighbor exchange. Using this model with materials specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.
Dispersion relation of the optical phonon frequencies in AlN/GaN superlattices
NASA Astrophysics Data System (ADS)
Medeiros, S. K.; Albuquerque, E. L.; Farias, G. A.; Vasconcelos, M. S.; Anselmo, D. H. A. L.
2005-05-01
In this work we study the dispersion relation of the phonon frequencies in heterojunctions composed by III-V nitride materials (GaN and AlN). We are concerned with the superlattice structure, namely /substrate /AlN /AlxGa1-xN/GaN/AlxGa1-xN/, where the substrate is here considered to be a transparent dielectric medium like sapphire. We make use of a model based on the Fröhlich Hamiltonian, taking into account the macroscopic theory known as the continuum dielectric model. The optical phonon modes are modelled considering only the electromagnetic boundary conditions, in the absence of charge transfer between ions. Numerical results of the confined optical phonon dispersion are presented, characterizing three distinct optical phonon classes designated as interface (IF), half-space (HS) and propagating (PR) modes. Furthermore, due to the dielectric anisotropy presented in the nitride, some additional peculiarities will be presented, like dispersive confined modes.
Magnetically induced phonon splitting in ACr2O4 spinels from first principles
Wysocki, Aleksander L.; Birol, Turan
2016-04-22
We study the magnetically-induced phonon splitting in cubic ACr2O4 (A=Mg, Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr2O4 compared to ZnCr2O4 and MgCr2O4, is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)] that includes only the nearest neighbor exchange. In conclusion, using this model with materialsmore » specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.« less
Observation of coherent delocalized phonon-like modes in DNA under physiological conditions
NASA Astrophysics Data System (ADS)
González-Jiménez, Mario; Ramakrishnan, Gopakumar; Harwood, Thomas; Lapthorn, Adrian J.; Kelly, Sharon M.; Ellis, Elizabeth M.; Wynne, Klaas
2016-06-01
Underdamped terahertz-frequency delocalized phonon-like modes have long been suggested to play a role in the biological function of DNA. Such phonon modes involve the collective motion of many atoms and are prerequisite to understanding the molecular nature of macroscopic conformational changes and related biochemical phenomena. Initial predictions were based on simple theoretical models of DNA. However, such models do not take into account strong interactions with the surrounding water, which is likely to cause phonon modes to be heavily damped and localized. Here we apply state-of-the-art femtosecond optical Kerr effect spectroscopy, which is currently the only technique capable of taking low-frequency (GHz to THz) vibrational spectra in solution. We are able to demonstrate that phonon modes involving the hydrogen bond network between the strands exist in DNA at physiologically relevant conditions. In addition, the dynamics of the solvating water molecules is slowed down by about a factor of 20 compared with the bulk.
Phonon-induced diamagnetic force and its effect on the lattice thermal conductivity.
Jin, Hyungyu; Restrepo, Oscar D; Antolin, Nikolas; Boona, Stephen R; Windl, Wolfgang; Myers, Roberto C; Heremans, Joseph P
2015-06-01
Phonons are displacements of atoms around their rest positions in a crystalline solid. They carry sound and heat, but are not classically associated with magnetism. Here, we show that phonons are, in fact, sensitive to magnetic fields, even in diamagnetic materials. We do so by demonstrating experimentally that acoustic phonons in a diamagnetic semiconductor (InSb) scatter more strongly from one another when a magnetic field is applied. We attribute this observation to the magnetic-field sensitivity of the anharmonicity of the interatomic bonds that govern the probability of phonon-phonon interactions. The displacements of atoms locally affect the orbital motion of valence band electrons, which, in the presence of an external magnetic field, spatially modulates the orbital diamagnetism around the displaced atoms. The spatial gradient in magnetic moment results in an anharmonic magnetic force exerted on the displaced atom. The process is modelled by ab initio calculations that, without the use of a single adjustable parameter, reproduce the observed 12% decrease in the lattice thermal conductivity under a 7 T magnetic field at a temperature of 5.2 K. PMID:25799325
Flow stabilization by subsurface phonons
Hussein, M. I.; Biringen, S.; Bilal, O. R.; Kucala, A.
2015-01-01
The interaction between a fluid and a solid surface in relative motion represents a dynamical process that is central to the problem of laminar-to-turbulent transition (and consequent drag increase) for air, sea and land vehicles, as well as long-range pipelines. This problem may in principle be alleviated via a control stimulus designed to impede the generation and growth of instabilities inherent in the flow. Here, we show that phonon motion underneath a surface may be tuned to passively generate a spatio-temporal elastic deformation profile at the surface that counters these instabilities. We theoretically demonstrate this phenomenon and the underlying mechanism of frequency-dependent destructive interference of the unstable flow waves. The converse process of flow destabilization is illustrated as well. This approach provides a condensed-matter physics treatment to fluid–structure interaction and a new paradigm for flow control. PMID:27547095