Science.gov

Sample records for additional processing time

  1. The effect of silane addition timing on mixing processability and properties of silica reinforced rubber compound

    NASA Astrophysics Data System (ADS)

    Jeong, Hee-Hoon; Jin, Hyun-Ho; Ha, Sung-Ho; Jang, Suk-Hee; Kang, Yong-Gu; Han, Min-Hyun

    2016-03-01

    A series of experiments were performed to determine an optimum balance between processability and performance of a highly loaded silica compound. The experiments evaluated 4 different silane injection times. All mixing related to silane addition was conducted with a scaled up "Tandem" mixer line. With exception to silane addition timing, almost all operating conditions were controlled between experimental features. It was found that when the silane addition was introduced earlier in the mixing cycle both the reaction was more complete and the bound rubber content was higher. But processability indicators such as sheet forming and Mooney plasticity were negatively impacted. On the other hand, as silane injection was delayed to later in the mixing process the filler dispersion and good sheet forming was improved. However both the bound rubber content and Silane reaction completion were decreased. With the changes in silane addition time, the processability and properties of a silica compound can be controlled.

  2. The Role of Additional Processing Time and Lexical Constraint in Spoken Word Recognition

    ERIC Educational Resources Information Center

    LoCasto, Paul C.; Connine, Cynthia M.; Patterson, David

    2007-01-01

    Three phoneme monitoring experiments examined the manner in which additional processing time influences spoken word recognition. Experiment 1a introduced a version of the phoneme monitoring paradigm in which a silent interval is inserted prior to the word-final target phoneme. Phoneme monitoring reaction time decreased as the silent interval…

  3. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.; St. Clair, T. L.; Burks, H. D.; Stoakley, D. M.

    1987-01-01

    A method has been found for enhancing the melt flow of thermoplastic polyimides during processing. A high molecular weight 422 copoly(amic acid) or copolyimide was fused with approximately 0.05 to 5 pct by weight of a low molecular weight amic acid or imide additive, and this melt was studied by capillary rheometry. Excellent flow and improved composite properties on graphite resulted from the addition of a PMDA-aniline additive to LARC-TPI. Solution viscosity studies imply that amic acid additives temporarily lower molecular weight and, hence, enlarge the processing window. Thus, compositions containing the additive have a lower melt viscosity for a longer time than those unmodified.

  4. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Fletcher, James C. (Inventor); Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1992-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  5. Polyimide processing additives

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Stoakley, Diane M. (Inventor); Burks, Harold D. (Inventor)

    1993-01-01

    A process for preparing polyimides having enhanced melt flow properties is described. The process consists of heating a mixture of a high molecular weight poly-(amic acid) or polyimide with a low molecular weight amic acid or imide additive in the range of 0.05 to 15 percent by weight of the additive. The polyimide powders so obtained show improved processability, as evidenced by lower melt viscosity by capillary rheometry. Likewise, films prepared from mixtures of polymers with additives show improved processability with earlier onset of stretching by TMA.

  6. The Circadian Timing System: A Recent Addition in the Physiological Mechanisms Underlying Pathological and Aging Processes

    PubMed Central

    Arellanes-Licea, Elvira; Caldelas, Ivette; De Ita-Pérez, Dalia; Díaz-Muñoz, Mauricio

    2014-01-01

    Experimental findings and clinical observations have strengthened the association between physio-pathologic aspects of several diseases, as well as aging process, with the occurrence and control of circadian rhythms. The circadian system is composed by a principal pacemaker in the suprachiasmatic nucleus (SNC) which is in coordination with a number of peripheral circadian oscillators. Many pathological entities such as metabolic syndrome, cancer and cardiovascular events are strongly connected with a disruptive condition of the circadian cycle. Inadequate circadian physiology can be elicited by genetic defects (mutations in clock genes or circadian control genes) or physiological deficiencies (desynchronization between SCN and peripheral oscillators). In this review, we focus on the most recent experimental findings regarding molecular defects in the molecular circadian clock and the altered coordination in the circadian system that are related with clinical conditions such as metabolic diseases, cancer predisposition and physiological deficiencies associated to jet-lag and shiftwork schedules. Implications in the aging process will be also reviewed. PMID:25489492

  7. Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information.

    PubMed

    Honeine, Jean-Louis; Crisafulli, Oscar; Sozzi, Stefania; Schieppati, Marco

    2015-12-01

    We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs. PMID:26334013

  8. Understanding Solidification of Polythiophene Thin Films during Spin-Coating: Effects of Spin-Coating Time and Processing Additives

    PubMed Central

    Na, Jin Yeong; Kang, Boseok; Sin, Dong Hun; Cho, Kilwon; Park, Yeong Don

    2015-01-01

    Spin-coating has been used extensively in the fabrication of electronic devices; however, the effects of the processing parameters have not been fully explored. Here, we systematically characterize the effects of the spin-coating time on the microstructure evolution during semiconducting polymer solidification in an effort to establish the relationship between this parameter and the performances of the resulting polymer field-effect transistors (FETs). We found that a short spin-coating time of a few seconds dramatically improve the morphology and molecular order in a conjugated polymer thin film because the π-π stacking structures formed by the polymer molecules grow slowly and with a greater degree of order due to the residual solvent present in the wet film. The improved ordering is correlated with improved charge carrier transport in the FETs prepared from these films. We also demonstrated the effects of various processing additives on the resulting FET characteristics as well as on the film drying behavior during spin-coating. The physical properties of the additives are found to affect the film drying process and the resulting device performance. PMID:26299676

  9. Oil additive process

    SciTech Connect

    Bishop, H.

    1988-10-18

    This patent describes a method of making an additive comprising: (a) adding 2 parts by volume of 3% sodium hypochlorite to 45 parts by volume of diesel oil fuel to form a sulphur free fuel, (b) removing all water and foreign matter formed by the sodium hypochlorite, (c) blending 30 parts by volume of 24% lead naphthanate with 15 parts by volume of the sulphur free fuel, 15 parts by volume of light-weight material oil to form a blended mixture, and (d) heating the blended mixture slowly and uniformly to 152F.

  10. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  11. Computational Process Modeling for Additive Manufacturing (OSU)

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2015-01-01

    Powder-Bed Additive Manufacturing (AM) through Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) is being used by NASA and the Aerospace industry to "print" parts that traditionally are very complex, high cost, or long schedule lead items. The process spreads a thin layer of metal powder over a build platform, then melts the powder in a series of welds in a desired shape. The next layer of powder is applied, and the process is repeated until layer-by-layer, a very complex part can be built. This reduces cost and schedule by eliminating very complex tooling and processes traditionally used in aerospace component manufacturing. To use the process to print end-use items, NASA seeks to understand SLM material well enough to develop a method of qualifying parts for space flight operation. Traditionally, a new material process takes many years and high investment to generate statistical databases and experiential knowledge, but computational modeling can truncate the schedule and cost -many experiments can be run quickly in a model, which would take years and a high material cost to run empirically. This project seeks to optimize material build parameters with reduced time and cost through modeling.

  12. Energetic additive manufacturing process with feed wire

    SciTech Connect

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  13. Situ process for making multifunctional fuel additives

    SciTech Connect

    Carrier, R.C.; Allen, B.R.

    1984-02-28

    Disclosed is an in situ or ''one pot'' process for making a fuel additive comprising reacting an excess of at least one N-primary alkylalkylene diamine with maleic anhydride in the presence of from 20 to 36 weight percent of a mineral oil reaction diluent at a temperature ranging from ambient to about 225/sup 0/ F. and recovering a product containing a primary aliphatic hydrocarbon amino alkylene substituted asparagine, an N-primary alkylalkylene diamine in the reaction oil with the product having a by-product succinimide content not in excess of 1.0 weight percent, based on the weight of asparagine present.

  14. Exposure to chemical additives from polyvinyl chloride polymer extrusion processing

    SciTech Connect

    Lamb, C.S.

    1989-12-01

    The report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. Data on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was studied in the laboratory, process variables were estimated from an equipment manufacturer survey, and worker-activities and possible exposure sources were observed in an industrial survey. The purpose of the study was to develop a theoretical model to predict worker inhalation exposure to additives used during PVC extrusion processing. A model to estimate the generation rate of the additive from the polymer extrudate was derived from the mass transport equations governing diffusion. The mass flow rate, initial additive volatile weight fraction, off-gassing time, diffusivity, and slab thickness are required to determine the generation rate from the model.

  15. Fundamental Aspects of Selective Melting Additive Manufacturing Processes

    SciTech Connect

    van Swol, Frank B.; Miller, James E.

    2014-12-01

    Certain details of the additive manufacturing process known as selective laser melting (SLM) affect the performance of the final metal part. To unleash the full potential of SLM it is crucial that the process engineer in the field receives guidance about how to select values for a multitude of process variables employed in the building process. These include, for example, the type of powder (e.g., size distribution, shape, type of alloy), orientation of the build axis, the beam scan rate, the beam power density, the scan pattern and scan rate. The science-based selection of these settings con- stitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy, reactive, dynamic wetting followed by re-solidification. In addition, inherent to the process is its considerable variability that stems from the powder packing. Each time a limited number of powder particles are placed, the stacking is intrinsically different from the previous, possessing a different geometry, and having a different set of contact areas with the surrounding particles. As a result, even if all other process parameters (scan rate, etc) are exactly the same, the shape and contact geometry and area of the final melt pool will be unique to that particular configuration. This report identifies the most important issues facing SLM, discusses the fundamental physics associated with it and points out how modeling can support the additive manufacturing efforts.

  16. 43 CFR 3430.2-2 - Additional time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Additional time. 3430.2-2 Section 3430.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Preference Right Leases § 3430.2-2 Additional time. (a) If the...

  17. Ultrafast amplifier additive timing jitter characterization and control.

    PubMed

    Casanova, Alexis; D'Acremont, Quentin; Santarelli, Giorgio; Dilhaire, Stefan; Courjaud, Antoine

    2016-03-01

    We report on the characterization and long-term compensation of additive timing jitter introduced by a femtosecond ytterbium regenerative amplifier with a 100 kHz repetition rate. A balanced optical cross-correlation technique is used to generate a jitter error signal. This approach is well suited to characterize the additive timing jitter of Yb amplifiers seeded by narrow spectrum Yb oscillators. The balanced optical cross-correlator is in a noncollinear configuration allowing a background free coindence detection. This setup enables the measurement of additive timing jitter from the amplifier, with a noise floor of 300 as integrated from 10 Hz to 10 kHz. The measured additive timing jitter level is about 5 fs, integrated from 0.1 Hz to 10 kHz. The amplifier timing drift characterization and control are performed for more than an hour. PMID:26974074

  18. Method for controlling a laser additive process using intrinsic illumination

    NASA Astrophysics Data System (ADS)

    Tait, Robert; Cai, Guoshuang; Azer, Magdi; Chen, Xiaobin; Liu, Yong; Harding, Kevin

    2015-05-01

    One form of additive manufacturing is to use a laser to generate a melt pool from powdered metal that is sprayed from a nozzle. The laser net-shape machining system builds the part a layer at a time by following a predetermined path. However, because the path may need to take many turns, maintaining a constant melt pool may not be easy. A straight section may require one speed and power while a sharp bend would over melt the metal at the same settings. This paper describes a process monitoring method that uses the intrinsic IR radiation from the melt pool along with a process model configured to establish target values for the parameters associated with the manufacture or repair. This model is based upon known properties of the metal being used as well as the properties of the laser beam. An adaptive control technique is then employed to control process parameters of the machining system based upon the real-time weld pool measurement. Since the system uses the heat radiant from the melt pool, other previously deposited metal does not confuse the system as only the melted material is seen by the camera.

  19. EXPOSURE TO CHEMICAL ADDITIVES FROM POLYVINYL CHLORIDE POLYMER EXTRUSION PROCESSING

    EPA Science Inventory

    This report presents a model to predict worker inhalation exposure due to off-gassing of additives during polyvinyl chloride (PVC) extrusion processing. ata on off-gassing of additives were reviewed in the literature, the off-gassing at normal PVC processing temperatures was stud...

  20. Roles for RNA in Telomerase Nucleotide and Repeat Addition Processivity

    PubMed Central

    Lai, Cary K.; Miller, Michael C.; Collins, Kathleen

    2010-01-01

    Summary Telomerase is a ribonucleoprotein reverse transcriptase with two subunits critical for catalytic activity, the protein telomerase reverse transcriptase (TERT) and telomerase RNA. In this study, we establish additional roles of the telomerase RNA subunit by demonstrating that RNA motifs stimulate the processivity of nucleotide and repeat addition. These functions are both functionally and physically separable from the roles of other RNA motifs in establishing a properly defined template. Binding of Tetrahymena telomerase RNA stem IV to TERT enhances nucleotide addition processivity, while a cooperation of the RNA pseudoknot and stem IV promotes repeat addition processivity. The low processivity of DNA synthesis by telomerase ribonucleoproteins lacking the pseudoknot and/or stem IV can be rescued by addition of the deleted region in trans. These findings demonstrate RNA elements with roles in telomerase elongation processivity that are distinct from RNA elements that specify the internal template. PMID:12820978

  1. 43 CFR 3430.2-2 - Additional time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Additional time. 3430.2-2 Section 3430.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Preference Right Leases §...

  2. 43 CFR 3430.2-2 - Additional time.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Additional time. 3430.2-2 Section 3430.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Preference Right Leases §...

  3. 43 CFR 3430.2-2 - Additional time.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Additional time. 3430.2-2 Section 3430.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Preference Right Leases §...

  4. Porosity of additive manufacturing parts for process monitoring

    SciTech Connect

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-18

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  5. Porosity of additive manufacturing parts for process monitoring

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.; Garboczi, E. J.

    2014-02-01

    Some metal additive manufacturing processes can produce parts with internal porosity, either intentionally (with careful selection of the process parameters) or unintentionally (if the process is not well-controlled.) Material porosity is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants, since surface-breaking pores allow for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the process. We are developing an ultrasonic sensor for detecting changes in porosity in metal parts during fabrication on a metal powder bed fusion system, for use as a process monitor. This paper will describe our work to develop an ultrasonic-based sensor for monitoring part porosity during an additive build, including background theory, the development and detailed characterization of reference additive porosity samples, and a potential design for in-situ implementation.

  6. Simple Additivity of Stochastic Psychological Processes: Tests and Measures.

    ERIC Educational Resources Information Center

    Balakrishnan, J. D.

    1994-01-01

    Methods of testing relatively complete (distributional) models of internal psychological processes are described. It is shown that there is a sufficient condition for additive models to imply this property of the likelihood ratio. Also discussed are the examination of hazard rate functions of component processes and change in cumulative…

  7. Extreme times for volatility processes

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume; Perelló, Josep

    2007-04-01

    Extreme times techniques, generally applied to nonequilibrium statistical mechanical processes, are also useful for a better understanding of financial markets. We present a detailed study on the mean first-passage time for the volatility of return time series. The empirical results extracted from daily data of major indices seem to follow the same law regardless of the kind of index thus suggesting an universal pattern. The empirical mean first-passage time to a certain level L is fairly different from that of the Wiener process showing a dissimilar behavior depending on whether L is higher or lower than the average volatility. All of this indicates a more complex dynamics in which a reverting force drives volatility toward its mean value. We thus present the mean first-passage time expressions of the most common stochastic volatility models whose approach is comparable to the random diffusion description. We discuss asymptotic approximations of these models and confront them to empirical results with a good agreement with the exponential Ornstein-Uhlenbeck model.

  8. Cleaning Process Development for Metallic Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  9. Control of pyrite addition in coal liquefaction process

    DOEpatents

    Schmid, Bruce K.; Junkin, James E.

    1982-12-21

    Pyrite addition to a coal liquefaction process (22, 26) is controlled (118) in inverse proportion to the calcium content of the feed coal to maximize the C.sub.5 --900.degree. F. (482.degree. C.) liquid yield per unit weight of pyrite added (110). The pyrite addition is controlled in this manner so as to minimize the amount of pyrite used and thus reduce pyrite contribution to the slurry pumping load and disposal problems connected with pyrite produced slag.

  10. Residence times of branching diffusion processes

    NASA Astrophysics Data System (ADS)

    Dumonteil, E.; Mazzolo, A.

    2016-07-01

    The residence time of a branching Brownian process is the amount of time that the mother particle and all its descendants spend inside a domain. Using the Feynman-Kac formalism, we derive the residence-time equation as well as the equations for its moments for a branching diffusion process with an arbitrary number of descendants. This general approach is illustrated with simple examples in free space and in confined geometries where explicit formulas for the moments are obtained within the long time limit. In particular, we study in detail the influence of the branching mechanism on those moments. The present approach can also be applied to investigate other additive functionals of branching Brownian process.

  11. Time jitter versus additive noise in a game theory context

    NASA Astrophysics Data System (ADS)

    Zaidi, Abdellatif; Boyer, Remy; Duhamel, Pierre

    2005-03-01

    Imperfectly synchronized watermark communication is almost the most hostile watermark channel. A desynchronization attack can yield a very high probability of bit error rate by simply moving the watermark from elements it has been embedded in, inhibiting hence its reliable retrieval from the original. In this paper, we adress attacks that can be modelled by an Additive White Gaussian Noise and Jitter (AWGN&J) channel in a game theory context. The AWGN&J channel was initially introduced to model local time fluctuations in the context of magnetic recording media. This channel is first briefly presented and characterized in terms of induced objective and perceptual distorsions. Also, performance loss of the one-bit watermarking Spread-Spectrum based scheme over an AWGN&J channel is derived. Then, results are applied in a game theoretic context to answer some questions such as: (i) for a given distortion budget, and from the attacker point of view, what part should be allocated to the desynchronization, and what part should be allocated to the additive noise?, (ii) from the defender point of view, what is the worst distortion? and (iii) is there means to countermeasure the attacker (limit the amount of objective distorsion)?

  12. Effects of acetylacetone additions on PZT thin film processing

    SciTech Connect

    Schwartz, R.W.; Assink, R.A.; Dimos, D.; Sinclair, M.B.; Boyle, T.J.; Buchheit, C.D.

    1995-02-01

    Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. The authors discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

  13. 19 CFR 201.14 - Computation of time, additional hearings, postponements, continuances, and extensions of time.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Computation of time, additional hearings, postponements, continuances, and extensions of time. 201.14 Section 201.14 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION GENERAL RULES OF GENERAL APPLICATION Initiation and Conduct of Investigations § 201.14 Computation of time,...

  14. Detection of continuous-time quaternion signals in additive noise

    NASA Astrophysics Data System (ADS)

    Navarro-Moreno, Jesús; Ruiz-Molina, Juan Carlos; Oya, Antonia; Quesada-Rubio, José M.

    2012-12-01

    Different kinds of quaternion signal detection problems in continuous-time by using a widely linear processing are dealt with. The suggested solutions are based on an extension of the Karhunen-Loève expansion to the quaternion domain which provides uncorrelated scalar real-valued random coefficients. This expansion presents the notable advantage of transforming the original four-dimensional eigen problem to a one-dimensional problem. Firstly, we address the problem of detecting a quaternion deterministic signal in quaternion Gaussian noise and a version of Pitcher's Theorem is given. Also the particular case of a general quaternion Wiener noise is studied and an extension of the Cameron-Martin formula is presented. Finally, the problem of detecting a quaternion random signal in quaternion white Gaussian noise is tackled. In such a case, it is shown that the detector depends on the quaternion widely linear estimator of the signal.

  15. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-07-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  16. Additive Manufacturing of High-Entropy Alloys by Laser Processing

    NASA Astrophysics Data System (ADS)

    Ocelík, V.; Janssen, N.; Smith, S. N.; De Hosson, J. Th. M.

    2016-04-01

    This contribution concentrates on the possibilities of additive manufacturing of high-entropy clad layers by laser processing. In particular, the effects of the laser surface processing parameters on the microstructure and hardness of high-entropy alloys (HEAs) were examined. AlCoCrFeNi alloys with different amounts of aluminum prepared by arc melting were investigated and compared with the laser beam remelted HEAs with the same composition. Attempts to form HEAs coatings with a direct laser deposition from the mixture of elemental powders were made for AlCoCrFeNi and AlCrFeNiTa composition. A strong influence of solidification rate on the amounts of face-centered cubic and body-centered cubic phase, their chemical composition, and spatial distribution was detected for two-phase AlCoCrFeNi HEAs. It is concluded that a high-power laser is a versatile tool to synthesize interesting HEAs with additive manufacturing processing. Critical issues are related to the rate of (re)solidification, the dilution with the substrate, powder efficiency during cladding, and differences in melting points of clad powders making additive manufacturing processing from a simple mixture of elemental powders a challenging approach.

  17. The metallurgy and processing science of metal additive manufacturing

    SciTech Connect

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-01-01

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developed for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.

  18. The metallurgy and processing science of metal additive manufacturing

    DOE PAGESBeta

    Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; Dehoff, Ryan R.; Babu, Sudarsanam Suresh

    2016-03-07

    Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less

  19. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  20. 19 CFR 210.6 - Computation of time, additional hearings, postponements, continuances, and extensions of time.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Computation of time, additional hearings, postponements, continuances, and extensions of time. 210.6 Section 210.6 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Rules of General Applicability §...

  1. Structural order in additive processed bulk heterojunction organic solar cells

    NASA Astrophysics Data System (ADS)

    Rogers, James Thomas

    Considerable academic and industrial efforts have been dedicated to resolving scientific and technological issues associated with the fabrication of efficient plastic solar cells via solution deposition techniques. The most successful strategy used to generate solution processable devices implements a two component donor-acceptor type system composed of a (p-type) narrow bandgap conjugated polymer donor blended with a (n-type) fullerene acceptor. Due to the limited exciton diffusion lengths (~10 nm) inherent to these materials, efficient photoinduced charge generation requires heterojunction formation (i.e. donor/acceptor interfaces) in close proximity to the region of exciton generation. Maximal charge extraction therefore requires that donor and acceptor components form nanoscale phase separated percolating pathways to their respective electrodes. Devices exhibiting these structural characteristics are termed bulk heterojunction devices (BHJ). Although the BHJ architecture highlights the basic characteristics of functional donor-acceptor type organic solar cells, device optimization requires internal order within each phase and proper organization relative to the substrate in order to maximize charge transport efficiencies and minimize charge carrier recombination losses. The economic viability of BHJ solar cells hinges upon the minimization of processing costs; thus, commercially relevant processing techniques should generate optimal structural characteristics during film formation, eliminating the need for additional post deposition processing steps. Empirical optimization has shown that solution deposition using high boiling point additives (e.g. octanedithiol (ODT)) provides a simple and widely used fabrication method for maximizing the power conversion efficiencies of BHJ solar cells. This work will show using x-ray scattering that a small percentage of ODT (~2%) in chlorobenzene induces the nucleation of polymeric crystallites within 2 min of deposition

  2. Effects of chemical additives on microbial enhanced oil recovery processes

    SciTech Connect

    Bryant, R.S.; Chase, K.L.; Bertus, K.M.; Stepp, A.K.

    1989-12-01

    An extensive laboratory study has been conducted to determine (1) the role of the microbial cells and products in oil displacement, (2) the relative rates of transport of microbial cells and chemical products from the metabolism of nutrient in porous media, and (3) the effects of chemical additives on the oil recovery efficiency of microbial formulations. This report describes experiments relating to the effects of additives on oil recovery efficiency of microbial formulations. The effects of additives on the oil recovery efficiency of microbial formulations were determined by conducting oil displacement experiments in 1-foot-long Berea sandstone cores. Sodium tripolyphosphate (STPP), a low-molecular-weight polyacrylamide polymer, a lignosulfonate surfactant, and sodium bicarbonate were added to a microbial formulation at a concentration of 1%. The effects of using these additives in a preflush prior to injection of the microbial formulation were also evaluated. Oil-displacement experiments with and without a sodium bicarbonate preflush were conducted in 4-foot-long Berea sandstone cores, and samples of in situ fluids were collected at various times at four intermediate points along the core. The concentrations of metabolic products and microbes in the fluid samples were determined. 9 refs., 22 figs., 8 tabs.

  3. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  4. Process monitoring of additive manufacturing by using optical tomography

    SciTech Connect

    Zenzinger, Guenter E-mail: alexander.ladewig@mtu.de; Bamberg, Joachim E-mail: alexander.ladewig@mtu.de; Ladewig, Alexander E-mail: alexander.ladewig@mtu.de; Hess, Thomas E-mail: alexander.ladewig@mtu.de; Henkel, Benjamin E-mail: alexander.ladewig@mtu.de; Satzger, Wilhelm E-mail: alexander.ladewig@mtu.de

    2015-03-31

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  5. Process monitoring of additive manufacturing by using optical tomography

    NASA Astrophysics Data System (ADS)

    Zenzinger, Guenter; Bamberg, Joachim; Ladewig, Alexander; Hess, Thomas; Henkel, Benjamin; Satzger, Wilhelm

    2015-03-01

    Parts fabricated by means of additive manufacturing are usually of complex shape and owing to the fabrication procedure by using selective laser melting (SLM), potential defects and inaccuracies are often very small in lateral size. Therefore, an adequate quality inspection of such parts is rather challenging, while non-destructive-techniques (NDT) are difficult to realize, but considerable efforts are necessary in order to ensure the quality of SLM-parts especially used for aerospace components. Thus, MTU Aero Engines is currently focusing on the development of an Online Process Control system which monitors and documents the complete welding process during the SLM fabrication procedure. A high-resolution camera system is used to obtain images, from which tomographic data for a 3dim analysis of SLM-parts are processed. From the analysis, structural irregularities and structural disorder resulting from any possible erroneous melting process become visible and may be allocated anywhere within the 3dim structure. Results of our optical tomography (OT) method as obtained on real defects are presented.

  6. Part height control of laser metal additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Pan, Yu-Herng

    Laser Metal Deposition (LMD) has been used to not only make but also repair damaged parts in a layer-by-layer fashion. Parts made in this manner may produce less waste than those made through conventional machining processes. However, a common issue of LMD involves controlling the deposition's layer thickness. Accuracy is important, and as it increases, both the time required to produce the part and the material wasted during the material removal process (e.g., milling, lathe) decrease. The deposition rate is affected by multiple parameters, such as the powder feed rate, laser input power, axis feed rate, material type, and part design, the values of each of which may change during the LMD process. Using a mathematical model to build a generic equation that predicts the deposition's layer thickness is difficult due to these complex parameters. In this thesis, we propose a simple method that utilizes a single device. This device uses a pyrometer to monitor the current build height, thereby allowing the layer thickness to be controlled during the LMD process. This method also helps the LMD system to build parts even with complex parameters and to increase material efficiency.

  7. Fabrication of a Flexible Amperometric Glucose Sensor Using Additive Processes

    PubMed Central

    Du, Xiaosong; Durgan, Christopher J.; Matthews, David J.; Motley, Joshua R.; Tan, Xuebin; Pholsena, Kovit; Árnadóttir, Líney; Castle, Jessica R.; Jacobs, Peter G.; Cargill, Robert S.; Ward, W. Kenneth; Conley, John F.; Herman, Gregory S.

    2015-01-01

    This study details the use of printing and other additive processes to fabricate a novel amperometric glucose sensor. The sensor was fabricated using a Au coated 12.7 μm thick polyimide substrate as a starting material, where micro-contact printing, electrochemical plating, chloridization, electrohydrodynamic jet (e-jet) printing, and spin coating were used to pattern, deposit, chloridize, print, and coat functional materials, respectively. We have found that e-jet printing was effective for the deposition and patterning of glucose oxidase inks with lateral feature sizes between ~5 to 1000 μm in width, and that the glucose oxidase was still active after printing. The thickness of the permselective layer was optimized to obtain a linear response for glucose concentrations up to 32 mM and no response to acetaminophen, a common interfering compound, was observed. The use of such thin polyimide substrates allow wrapping of the sensors around catheters with high radius of curvature ~250 μm, where additive and microfabrication methods may allow significant cost reductions. PMID:26634186

  8. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control

    PubMed Central

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part’s porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  9. Porosity Measurements and Analysis for Metal Additive Manufacturing Process Control.

    PubMed

    Slotwinski, John A; Garboczi, Edward J; Hebenstreit, Keith M

    2014-01-01

    Additive manufacturing techniques can produce complex, high-value metal parts, with potential applications as critical metal components such as those found in aerospace engines and as customized biomedical implants. Material porosity in these parts is undesirable for aerospace parts - since porosity could lead to premature failure - and desirable for some biomedical implants - since surface-breaking pores allows for better integration with biological tissue. Changes in a part's porosity during an additive manufacturing build may also be an indication of an undesired change in the build process. Here, we present efforts to develop an ultrasonic sensor for monitoring changes in the porosity in metal parts during fabrication on a metal powder bed fusion system. The development of well-characterized reference samples, measurements of the porosity of these samples with multiple techniques, and correlation of ultrasonic measurements with the degree of porosity are presented. A proposed sensor design, measurement strategy, and future experimental plans on a metal powder bed fusion system are also presented. PMID:26601041

  10. Thermographic process monitoring in powderbed based additive manufacturing

    SciTech Connect

    Krauss, Harald Zaeh, Michael F.; Zeugner, Thomas

    2015-03-31

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  11. Thermographic process monitoring in powderbed based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Krauss, Harald; Zeugner, Thomas; Zaeh, Michael F.

    2015-03-01

    Selective Laser Melting is utilized to build metallic parts directly from CAD-Data by solidification of thin powder layers through application of a fast scanning laser beam. In this study layerwise monitoring of the temperature distribution is used to gather information about the process stability and the resulting part quality. The heat distribution varies with different kinds of parameters including scan vector length, laser power, layer thickness and inter-part distance in the job layout which in turn influence the resulting part quality. By integration of an off-axis mounted uncooled thermal detector the solidification as well as the layer deposition are monitored and evaluated. Errors in the generation of new powder layers usually result in a locally varying layer thickness that may cause poor part quality. For effect quantification, the locally applied layer thickness is determined by evaluating the heat-up of the newly deposited powder. During the solidification process space and time-resolved data is used to characterize the zone of elevated temperatures and to derive locally varying heat dissipation properties. Potential quality indicators are evaluated and correlated to the resulting part quality: Thermal diffusivity is derived from a simplified heat dissipation model and evaluated for every pixel and cool-down phase of a layer. This allows the quantification of expected material homogeneity properties. Maximum temperature and time above certain temperatures are measured in order to detect hot spots or delamination issues that may cause a process breakdown. Furthermore, a method for quantification of sputter activity is presented. Since high sputter activity indicates unstable melt dynamics this can be used to identify parameter drifts, improper atmospheric conditions or material binding errors. The resulting surface structure after solidification complicates temperature determination on the one hand but enables the detection of potential surface defects

  12. Timing of Getter Material Addition in Cementitious Wasteforms

    NASA Astrophysics Data System (ADS)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  13. Additive manufacturing of Inconel 718 using electron beam melting: Processing, post-processing, & mechanical properties

    NASA Astrophysics Data System (ADS)

    Sames, William James, V.

    Additive Manufacturing (AM) process parameters were studied for production of the high temperature alloy Inconel 718 using Electron Beam Melting (EBM) to better understand the relationship between processing, microstructure, and mechanical properties. Processing parameters were analyzed for impact on process time, process temperature, and the amount of applied energy. The applied electron beam energy was shown to be integral to the formation of swelling defects. Standard features in the microstructure were identified, including previously unidentified solidification features such as shrinkage porosity and non-equilibrium phases. The as-solidified structure does not persist in the bulk of EBM parts due to a high process hold temperature (˜1000°C), which causes in situ homogenization. The most significant variability in as-fabricated microstructure is the formation of intragranular delta-phase needles, which can form in samples produced with lower process temperatures (< 960°C). A novel approach was developed and demonstrated for controlling the temperature of cool down, thus providing a technique for in situ heat treatment of material. This technique was used to produce material with hardness of 478+/-7 HV with no post-processing, which exceeds the hardness of peak-aged Inconel 718. Traditional post-processing methods of hot isostatic pressing (HIP) and solution treatment and aging (STA) were found to result in variability in grain growth and phase solution. Recrystallization and grain structure are identified as possible mechanisms to promote grain growth. These results led to the conclusion that the first step in thermal post-processing of EBM Inconel 718 should be an optimized solution treatment to reset phase variation in the as-fabricated microstructure without incurring significant grain growth. Such an optimized solution treatment was developed (1120°C, 2hr) for application prior to aging or HIP. The majority of as-fabricated tensile properties met ASTM

  14. Additive manufacturing of stretchable tactile sensors: Processes, materials, and applications

    NASA Astrophysics Data System (ADS)

    Vatani, Morteza

    3D printing technology is becoming more ubiquitous every day especially in the area of smart structures. However, fabrication of multi-material, functional, and smart structures is problematic because of the process and material limitations. This thesis sought to develop a Direct Print Photopolymerization (DPP) fabrication technique that appreciably extends the manufacturing space for the 3D smart structures. This method employs a robotically controlled micro-extrusion of a filament equipped with a photopolymerization process. The ability to use polymers and ultimately their nanocomposites in this process is the advantage of the proposed process over the current fabrication methods in the fabrication of 3D structures featuring mechanical, physical, and electrical functionalities. In addition, this study focused to develop a printable, conductive, and stretchable nanocomposite based on a photocurable and stretchable liquid resin filled with multi-walled carbon nanotubes (MWNTs). This nanocomposite exhibited piezoresistivity, means its resistivity changes as it deforms. This property is a favorable factor in developing resistance based tactile sensors. They were also able to resist high tensile strains while they showed conductivity. Furthermore, this study offered a possible and low-cost method to have a unique and highly stretchable pressure sensitive polymer. This disruptive pressure sensitive polymer composed of an Ionic Liquid (IL) and a stretchable photopolymer embedded between two layers of Carbon Nanotube (CNTs) based stretchable electrodes. The developed IL-polymer showed both field effect property and piezoresistivity that can detect large tensile strains up 30%. In summary, this research study focused to present feasible methods and materials for printing a 3D smart structure especially in the context of flexible tactile sensors. This study provides a foundation for the future efforts in fabrication of skin like tactile sensors in three-dimensional motifs

  15. Pyrrolidinone derivatives as processing additives for solution processed organic solar cells

    NASA Astrophysics Data System (ADS)

    Vongsaysy, Uyxing; Pavageau, Bertrand; Servant, Laurent; Aziz, Hany

    2014-10-01

    Processing additives are widely used to increase the efficiency of solution processed organic solar cells. We use the Hansen solubility parameters (HSPs) to investigate novel processing additives. The HSPs predict pyrrolidinone derivatives to be efficient processing additives for OSC systems based on poly(3-hexylthiophene)/[6,6]-phenyl-C61- butyric acid methyl ester (P3HT/PCBM). Two pyrrolidinone derivatives are identified: 1-methyl-2-pyrrolidinone and 1- benzyl-2-pyrrolidinone. The processing additives are introduced with various concentrations in the formulation of P3HT and PCBM solution. The electrical characterizations show that the two processing additives significantly increase the short circuit current and thus the power conversion efficiency of the OSCs. The results thus highlight HSPs as an effective and relatively straightforward tool that can be employed to optimize OSC morphology from a theoretical standpoint. Such a tool will be invaluable for identifying additives for novel high efficiency polymer species as they are synthesized, and thus to streamline the device fabrication and device optimization process.

  16. Thermal processing of EVA encapsulants and effects of formulation additives

    SciTech Connect

    Pern, F.J.; Glick, S.H.

    1996-05-01

    The authors investigated the in-situ processing temperatures and effects of various formulation additives on the formation of ultraviolet (UV) excitable chromophores, in the thermal lamination and curing of ethylene-vinyl acetate (EVA) encapsulants. A programmable, microprocessor-controlled, double-bag vacuum laminator was used to study two commercial as formulated EVA films, A9918P and 15295P, and solution-cast films of Elvaxrm (EVX) impregnated with various curing agents and antioxidants. The results show that the actual measured temperatures of EVA lagged significantly behind the programmed profiles for the heating elements and were affected by the total thermal mass loaded inside the laminator chamber. The antioxidant Naugard P{trademark}, used in the two commercial EVA formulations, greatly enhances the formation of UV-excitable, short chromophores upon curing, whereas other tested antioxidants show little effect. A new curing agent chosen specifically for the EVA formulation modification produces little or no effect on chromophore formation, no bubbling problems in the glass/EVX/glass laminates, and a gel content of {approximately}80% when cured at programmed 155{degrees}C for 4 min. Also demonstrated is the greater discoloring effect with higher concentrations of curing-generated chromophores.

  17. From Time to Time: Processing Time Reference Violations in Dutch

    ERIC Educational Resources Information Center

    Dragoy, Olga; Stowe, Laurie A.; Bos, Laura S.; Bastiaanse, Roelien

    2012-01-01

    Time reference in Indo-European languages is marked on the verb. With tensed verb forms, the speaker can refer to the past (wrote, has written), present (writes, is writing) or future (will write). Reference to the past through verb morphology has been shown to be particularly vulnerable in agrammatic aphasia and both agrammatic and…

  18. Population Processes Sampled at Random Times

    NASA Astrophysics Data System (ADS)

    Beghin, Luisa; Orsingher, Enzo

    2016-04-01

    In this paper we study the iterated birth process of which we examine the first-passage time distributions and the hitting probabilities. Furthermore, linear birth processes, linear and sublinear death processes at Poisson times are investigated. In particular, we study the hitting times in all cases and examine their long-range behavior. The time-changed population models considered here display upward (birth process) and downward jumps (death processes) of arbitrary size and, for this reason, can be adopted as adequate models in ecology, epidemics and finance situations, under stress conditions.

  19. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-07-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  20. Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process

    NASA Astrophysics Data System (ADS)

    Book, Todd A.; Sangid, Michael D.

    2016-03-01

    Although additive manufacturing offers numerous performance advantages for different applications, it is not being used for critical applications due to uncertainties in structural integrity as a result of innate process variability and defects. To minimize uncertainty, the current approach relies on the concurrent utilization of process monitoring, post-processing, and non-destructive inspection in addition to an extensive material qualification process. This paper examines an alternative approach by evaluating the application of select surface process techniques, to include sliding severe plastic deformation (SPD) and fine particle shot peening, on direct metal laser sintering-produced AlSi10Mg materials. Each surface processing technique is compared to baseline as-built and post-processed samples as a proof of concept for surface enhancement. Initial results pairing sliding SPD with the manufacture's recommended thermal stress relief cycle demonstrated uniform recrystallization of the microstructure, resulting in a more homogeneous distribution of strain among the microstructure than as-built or post-processed conditions. This result demonstrates the potential for the in situ application of various surface processing techniques during the layerwise direct metal laser sintering build process.

  1. Combining Advanced Oxidation Processes: Assessment Of Process Additivity, Synergism, And Antagonism

    SciTech Connect

    Peters, Robert W.; Sharma, M.P.; Gbadebo Adewuyi, Yusuf

    2007-07-01

    This paper addresses the process interactions from combining integrated processes (such as advanced oxidation processes (AOPs), biological operations, air stripping, etc.). AOPs considered include: Fenton's reagent, ultraviolet light, titanium dioxide, ozone (O{sub 3}), hydrogen peroxide (H{sub 2}O{sub 2}), sonication/acoustic cavitation, among others. A critical review of the technical literature has been performed, and the data has been analyzed in terms of the processes being additive, synergistic, or antagonistic. Predictions based on the individual unit operations are made and compared against the behavior of the combined unit operations. The data reported in this paper focus primarily on treatment of petroleum hydrocarbons and chlorinated solvents. (authors)

  2. Real-Time "Garbage Collection" for List Processing

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    1987-01-01

    Two proposed algorithmic techniques for list processing enable immediate identification of computer memory cells having become inactive through disconnection from active cells, together with addition of these inactive cells to pool of reusable cells. These two "garbage collection" techniques reduce memory requirements of list processors or increase their speed or both. With both techniques, processing continuity maintained, enabling real-time processing.

  3. Analysis of time series from stochastic processes

    PubMed

    Gradisek; Siegert; Friedrich; Grabec

    2000-09-01

    Analysis of time series from stochastic processes governed by a Langevin equation is discussed. Several applications for the analysis are proposed based on estimates of drift and diffusion coefficients of the Fokker-Planck equation. The coefficients are estimated directly from a time series. The applications are illustrated by examples employing various synthetic time series and experimental time series from metal cutting. PMID:11088809

  4. Processing implicit control: evidence from reading times

    PubMed Central

    McCourt, Michael; Green, Jeffrey J.; Lau, Ellen; Williams, Alexander

    2015-01-01

    Sentences such as “The ship was sunk to collect the insurance” exhibit an unusual form of anaphora, implicit control, where neither anaphor nor antecedent is audible. The non-finite reason clause has an understood subject, PRO, that is anaphoric; here it may be understood as naming the agent of the event of the host clause. Yet since the host is a short passive, this agent is realized by no audible dependent. The putative antecedent to PRO is therefore implicit, which it normally cannot be. What sorts of representations subserve the comprehension of this dependency? Here we present four self-paced reading time studies directed at this question. Previous work showed no processing cost for implicit vs. explicit control, and took this to support the view that PRO is linked syntactically to a silent argument in the passive. We challenge this conclusion by reporting that we also find no processing cost for remote implicit control, as in: “The ship was sunk. The reason was to collect the insurance.” Here the dependency crosses two independent sentences, and so cannot, we argue, be mediated by syntax. Our Experiments 1–4 examined the processing of both implicit (short passive) and explicit (active or long passive) control in both local and remote configurations. Experiments 3 and 4 added either “3 days ago” or “just in order” to the local conditions, to control for the distance between the passive and infinitival verbs, and for the predictability of the reason clause, respectively. We replicate the finding that implicit control does not impose an additional processing cost. But critically we show that remote control does not impose a processing cost either. Reading times at the reason clause were never slower when control was remote. In fact they were always faster. Thus, efficient processing of local implicit control cannot show that implicit control is mediated by syntax; nor, in turn, that there is a silent but grammatically active argument in

  5. Microstructure-controllable Laser Additive Manufacturing Process for Metal Products

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Chin; Chuang, Chuan-Sheng; Lin, Ching-Chih; Wu, Chih-Hsien; Lin, De-Yau; Liu, Sung-Ho; Tseng, Wen-Peng; Horng, Ji-Bin

    Controlling the cooling rate of alloy during solidification is the most commonly used method for varying the material microstructure. However, the cooling rate of selective laser melting (SLM) production is constrained by the optimal parameter settings for a dense product. This study proposes a method for forming metal products via the SLM process with electromagnetic vibrations. The electromagnetic vibrations change the solidification process for a given set of SLM parameters, allowing the microstructure to be varied via magnetic flux density. This proposed method can be used for creating microstructure-controllable bio-implant products with complex shapes.

  6. Estimation of the lag time in a subsequent monomer addition model for fibril elongation.

    PubMed

    Shoffner, Suzanne K; Schnell, Santiago

    2016-08-01

    Fibrillogenesis, the production or development of protein fibers, has been linked to protein folding diseases. The progress curve of fibrils or aggregates typically takes on a sigmoidal shape with a lag phase, a rapid growth phase, and a final plateau regime. The study of the lag phase and the estimation of its critical timescale provide insight into the factors regulating the fibrillation process. However, methods to estimate a quantitative expression for the lag time rely on empirical expressions, which cannot connect the lag time to kinetic parameters associated with the reaction mechanisms of protein fibrillation. Here we introduce an approach for the estimation of the lag time using the governing rate equations of the elementary reactions of a subsequent monomer addition model for protein fibrillation as a case study. We show that the lag time is given by the sum of the critical timescales for each fibril intermediate in the subsequent monomer addition mechanism and therefore reveals causal connectivity between intermediate species. Furthermore, we find that single-molecule assays of protein fibrillation can exhibit a lag phase without a nucleation process, while dyes and extrinsic fluorescent probe bulk assays of protein fibrillation do not exhibit an observable lag phase during template-dependent elongation. Our approach could be valuable for investigating the effects of intrinsic and extrinsic factors to the protein fibrillation reaction mechanism and provides physicochemical insights into parameters regulating the lag phase. PMID:27250246

  7. Filamentous fungi for production of food additives and processing aids.

    PubMed

    Archer, David B; Connerton, Ian F; MacKenzie, Donald A

    2008-01-01

    Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic. PMID:18253709

  8. Nitrogen addition using a gas blow in an ESR process

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Momoi, Y.; Kajikawa, K.

    2016-07-01

    A new nitrogen method for adding in an ESR process using nitrogen gas blown in through the electrode was investigated. Nitrogen gas blown through a center bore of the electrode enabled contact between the nitrogen gas and the molten steel directly underneath the electrode tip. A ɸ 145mm diameter, laboratory-sized PESR furnace was used for the study on the reaction kinetics. Also, we carried out a water-model experiment in order to check the injection depth of the gas blown in the slag. The water model showed that the gas did not reach the upper surface of the molten metal and flowed on the bottom surface of the electrode only. An EPMA was carried out for a droplet remaining on the tip of the electrode after melting. The molten steel from the tip of the electrode shows that nitrogen gas absorption occurred at the tip of the electrode. The mass transfer coefficient was around 1.0x10-2 cm/sec in the system. This value is almost the same as the coefficient at the molten steel free surface.

  9. Timing in reward and decision processes

    PubMed Central

    Bermudez, Maria A.; Schultz, Wolfram

    2014-01-01

    Sensitivity to time, including the time of reward, guides the behaviour of all organisms. Recent research suggests that all major reward structures of the brain process the time of reward occurrence, including midbrain dopamine neurons, striatum, frontal cortex and amygdala. Neuronal reward responses in dopamine neurons, striatum and frontal cortex show temporal discounting of reward value. The prediction error signal of dopamine neurons includes the predicted time of rewards. Neurons in the striatum, frontal cortex and amygdala show responses to reward delivery and activities anticipating rewards that are sensitive to the predicted time of reward and the instantaneous reward probability. Together these data suggest that internal timing processes have several well characterized effects on neuronal reward processing. PMID:24446502

  10. A Modified Time-Delay Addition Method to Extract Resistive Leakage Current of MOSA

    NASA Astrophysics Data System (ADS)

    Khodsuz, Masume; Mirzaie, Mohammad

    2015-06-01

    Metal oxide surge arresters are one of the most important equipment for power system protection against switching and lightning over-voltages. High-energy stresses and environmental features are the main factors which degrade surge arresters. In order to verify surge arresters good condition, their monitoring is necessary. The majority of surge arrester monitoring techniques is based on total leakage current decomposition of their capacitive and resistive components. This paper introduces a new approach based on time-delay addition method to extract the resistive current from the total leakage current without measuring voltage signal. Surge arrester model for calculating leakage current has been performed in ATP-EMTP. In addition, the signal processing has been done using MATLAB software. To show the accuracy of the proposed method, experimental tests have been performed to extract resistive leakage current by the proposed method.

  11. Additional Nitrogen Fertilization at Heading Time of Rice Down-Regulates Cellulose Synthesis in Seed Endosperm

    PubMed Central

    Midorikawa, Keiko; Kuroda, Masaharu; Terauchi, Kaede; Hoshi, Masako; Ikenaga, Sachiko; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2014-01-01

    The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm. PMID:24905454

  12. Residence time statistics for N renewal processes.

    PubMed

    Burov, S; Barkai, E

    2011-10-21

    We present a study of residence time statistics for N renewal processes with a long tailed distribution of the waiting time. Such processes describe many nonequilibrium systems ranging from the intensity of N blinking quantum dots to the residence time of N Brownian particles. With numerical simulations and exact calculations, we show sharp transitions for a critical number of degrees of freedom N. In contrast to the expectation, the fluctuations in the limit of N→∞ are nontrivial. We briefly discuss how our approach can be used to detect nonergodic kinetics from the measurements of many blinking chromophores, without the need to reach the single molecule limit. PMID:22107497

  13. Ultrasonic online monitoring of additive manufacturing processes based on selective laser melting

    NASA Astrophysics Data System (ADS)

    Rieder, Hans; Dillhöfer, Alexander; Spies, Martin; Bamberg, Joachim; Hess, Thomas

    2015-03-01

    Additive manufacturing processes have become commercially available and are particularly interesting for the production of free-formed parts. Selective laser melting allows to manufacture components by localized melting of successive layers of metal powder. In order to be able to describe and to understand the complex dynamics of selective laser melting processes more accurately, online measurements using ultrasound have been performed for the first time. In this contribution, we report on the integration of the measurement technique into the manufacturing facility and on a variety of promising monitoring results.

  14. The time course of attentional modulation on emotional conflict processing.

    PubMed

    Zhou, Pingyan; Yang, Guochun; Nan, Weizhi; Liu, Xun

    2016-06-01

    Cognitive conflict resolution is critical to human survival in a rapidly changing environment. However, emotional conflict processing seems to be particularly important for human interactions. This study examined whether the time course of attentional modulation on emotional conflict processing was different from cognitive conflict processing during a flanker task. Results showed that emotional N200 and P300 effects, similar to colour conflict processing, appeared only during the relevant task. However, the emotional N200 effect preceded the colour N200 effect, indicating that emotional conflict can be identified earlier than cognitive conflict. Additionally, a significant emotional N100 effect revealed that emotional valence differences could be perceived during early processing based on rough aspects of input. The present data suggest that emotional conflict processing is modulated by top-down attention, similar to cognitive conflict processing (reflected by N200 and P300 effects). However, emotional conflict processing seems to have more time advantages during two different processing stages. PMID:25809920

  15. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  16. Time delays in correlated photoemission processes

    NASA Astrophysics Data System (ADS)

    Pazourek, R.; Nagele, S.; Burgdörfer, J.

    2015-09-01

    We theoretically study time-resolved two-photon double ionization (TPDI) of helium as probed by attosecond streaking. We review recent advances in the understanding of the photoelectric effect in the time domain and discuss the differences between one- and two-photon ionization, as well as one- and two-electron emission. We perform exact ab-initio simulations for attosecond streaking experiments in the sequential TPDI regime and compare the results to the two-electron Eisenbud-Wigner-Smith delay for the process. Our calculations directly show that the timing of the emission process sensitively depends on the energy sharing between the two outgoing electrons. In particular, we identify Fano-like interferences in the relative time delay of the two emitted electrons when the sequential ionization channel occurs via intermediate excited ionic (shake-up) states. Furthermore, we find that the photoemission time delays are only weakly dependent on the relative emission angle of the ejected electrons.

  17. Time-changed Ornstein-Uhlenbeck process

    NASA Astrophysics Data System (ADS)

    Gajda, Janusz; Wyłomańska, Agnieszka

    2015-04-01

    The Ornstein-Uhlenbeck process is one of the most popular systems used for financial data description. However, this process has also been examined in the context of many other phenomena. In this paper we consider the so-called time-changed Ornstein-Uhlenbeck process, in which time is replaced by an inverse subordinator of general infinite divisible distribution. Time-changed processes nowadays play an important role in various fields of mathematical physics, chemistry, and biology as well as in finance. In this paper we examine the main characteristics of the time-changed Ornstein-Uhlenbeck process, such as the covariance function. Moreover, we also prove the formula for a generalized fractional Fokker-Planck equation that describes the one-dimensional probability density function of the analyzed system. For three cases of subordinators we show the special forms of obtained general formulas. Furthermore, we mention how to simulate the trajectory of the Ornstein-Uhlenbeck process delayed by a general inverse subordinator.

  18. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  19. Processing PCM Data in Real Time

    NASA Technical Reports Server (NTRS)

    Wissink, T. L.

    1982-01-01

    Novel hardware configuration makes it possible for Space Shuttle launch processing system to monitor pulse-code-modulated data in real time. Using two microprogramable "option planes," incoming PCM data are monitored for changes at rate of one frame of data (80 16-bit words) every 10 milliseconds. Real-time PCM processor utilizes CPU in mini-computer and CPU's in two option planes.

  20. 22 CFR 1429.22 - Additional time after service by mail.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 2 2013-04-01 2009-04-01 true Additional time after service by mail. 1429.22 Section 1429.22 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... MISCELLANEOUS AND GENERAL REQUIREMENTS General Requirements § 1429.22 Additional time after service by...

  1. 22 CFR 1429.22 - Additional time after service by mail.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 2 2012-04-01 2009-04-01 true Additional time after service by mail. 1429.22 Section 1429.22 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... MISCELLANEOUS AND GENERAL REQUIREMENTS General Requirements § 1429.22 Additional time after service by...

  2. 22 CFR 1429.22 - Additional time after service by mail.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 2 2011-04-01 2009-04-01 true Additional time after service by mail. 1429.22 Section 1429.22 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... MISCELLANEOUS AND GENERAL REQUIREMENTS General Requirements § 1429.22 Additional time after service by...

  3. 22 CFR 1429.22 - Additional time after service by mail.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Additional time after service by mail. 1429.22 Section 1429.22 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... MISCELLANEOUS AND GENERAL REQUIREMENTS General Requirements § 1429.22 Additional time after service by...

  4. 22 CFR 1429.22 - Additional time after service by mail.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 2 2014-04-01 2014-04-01 false Additional time after service by mail. 1429.22 Section 1429.22 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY... MISCELLANEOUS AND GENERAL REQUIREMENTS General Requirements § 1429.22 Additional time after service by...

  5. How to Make Additional Time Matter: Integrating Individualized Tutorials into an Extended Day

    ERIC Educational Resources Information Center

    Kraft, Matthew A.

    2015-01-01

    Evidence on the effect of extending the school day is decidedly mixed because of the stark differences in how schools use additional time. In this paper, I focus narrowly on the effect of additional time used for individualized tutorials. In 2005, MATCH Charter Public High School integrated two hours of tutorials throughout an extended day. The…

  6. Controlling Contagion Processes in Time Varying Networks

    NASA Astrophysics Data System (ADS)

    Liu, Suyu; Perra, Nicola; Karsai, Marton; Vespignani, Alessandro

    2013-03-01

    The vast majority of strategies aimed at controlling contagion and spreading processes on networks consider the connectivity pattern of the system as quenched. In this paper, we consider the class of activity driven networks to analytically evaluate how different control strategies perform in time-varying networks. We consider the limit in which the evolution of the structure of the network and the spreading process are simultaneous yet independent. We analyze three control strategies based on node's activity patterns to decide the removal/immunization of nodes. We find that targeted strategies aimed at the removal of active nodes outperform by orders of magnitude the widely used random strategies. In time-varying networks however any finite time observation of the network dynamics provides only incomplete information on the nodes' activity and does not allow the precise ranking of the most active nodes as needed to implement targeted strategies. Here we develop a control strategy that focuses on targeting the egocentric time-aggregated network of a small control group of nodes.The presented strategy allows the control of spreading processes by removing a fraction of nodes much smaller than the random strategy while at the same time limiting the observation time on the system.

  7. Time Processing in Children with Tourette's Syndrome

    ERIC Educational Resources Information Center

    Vicario, Carmelo Mario; Martino, Davide; Spata, Felice; Defazio, Giovanni; Giacche, Roberta; Martino, Vito; Rappo, Gaetano; Pepi, Anna Maria; Silvestri, Paola Rosaria; Cardona, Francesco

    2010-01-01

    Background: Tourette syndrome (TS) is characterized by dysfunctional connectivity between prefrontal cortex and sub-cortical structures, and altered meso-cortical and/or meso-striatal dopamine release. Since time processing is also regulated by fronto-striatal circuits and modulated by dopaminergic transmission, we hypothesized that time…

  8. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems.

    PubMed

    Harinath, Eranda; Mann, George K I

    2008-06-01

    This paper describes a design and two-level tuning method for fuzzy proportional-integral derivative (FPID) controllers for a multivariable process where the fuzzy inference uses the inference of standard additive model. The proposed method can be used for any n x n multi-input-multi-output process and guarantees closed-loop stability. In the two-level tuning scheme, the tuning follows two steps: low-level tuning followed by high-level tuning. The low-level tuning adjusts apparent linear gains, whereas the high-level tuning changes the nonlinearity in the normalized fuzzy output. In this paper, two types of FPID configurations are considered, and their performances are evaluated by using a real-time multizone temperature control problem having a 3 x 3 process system. PMID:18558531

  9. Real-time fractal signal processing in the time domain

    NASA Astrophysics Data System (ADS)

    Hartmann, András; Mukli, Péter; Nagy, Zoltán; Kocsis, László; Hermán, Péter; Eke, András

    2013-01-01

    Fractal analysis has proven useful for the quantitative characterization of complex time series by scale-free statistical measures in various applications. The analysis has commonly been done offline with the signal being resident in memory in full length, and the processing carried out in several distinct passes. However, in many relevant applications, such as monitoring or forecasting, algorithms are needed to capture changes in the fractal measure real-time. Here we introduce real-time variants of the Detrended Fluctuation Analysis (DFA) and the closely related Signal Summation Conversion (SSC) methods, which are suitable to estimate the fractal exponent in one pass. Compared to offline algorithms, the precision is the same, the memory requirement is significantly lower, and the execution time depends on the same factors but with different rates. Our tests show that dynamic changes in the fractal parameter can be efficiently detected. We demonstrate the applicability of our real-time methods on signals of cerebral hemodynamics acquired during open-heart surgery.

  10. Monitoring Residual Solvent Additives and Their Effects in Solution Processed Solar Cells

    NASA Astrophysics Data System (ADS)

    Fogel, Derek M.; Basham, James I.; Engmann, Sebastian; Pookpanratana, Sujitra J.; Bittle, Emily G.; Jurchescu, Oana D.; Gundlach, David J.

    2015-03-01

    High boiling point solvent additives are a widely adopted approach for increasing bulk heterojunction (BHJ) solar cell efficiency. However, experiments show residual solvent can persist for hours after film deposition, and certain common additives are unstable or reactive. We report here on the effects of residual 1,8-diiodooctane on the electrical performance of poly(3-hexylthiophene-2,5-diyl) (P3HT): phenyl-C71-butyric acid methyl ester (PC[71]BM) BHJ photovoltaic cells. We optimized our fabrication process for efficiency at an active layer thickness of 220 nm, and all devices were processed in parallel to minimize unintentional variations between test structures. The one variable in this study is the active layer post spin drying time. Immediately following the cathode deposition, we measured the current-voltage characteristics at one sun equivalent illumination intensity, and performed impedance spectroscopy to quantify charge density, lifetime, and recombination process. Spectroscopic ellipsometry, FTIR, and XPS are also used to monitor residual solvent and correlated with electrical performance. We find that residual additive degrades performance by increasing the series resistance and lowering efficiency, fill factor, and free carrier lifetime.

  11. Catchment mixing processes and travel time distributions

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca

    2012-05-01

    This work focuses on the description and the use of the probability density functions (pdfs) of travel, residence and evapotranspiration times, which are comprehensive descriptors of the fate of rainfall water particles traveling through catchments, and provide key information on hydrologic flowpaths, partitioning of precipitation, circulation and turnover of pollutants. Exploiting some analytical solutions to the transport problem derived by Botter et al. (2011), this paper analyzes the features of travel, residence and evapotranspiration time pdfs resulting from different assumptions on the mixing processes occurring during streamflow formation and plant uptake (namely, complete mixing and translatory flow). The ensuing analytical solutions are analyzed through numerical Monte Carlo simulations of a stochastic model of soil moisture and streamflow dynamics. Travel and residence time pdfs are shown to be time-variant as they mirror the variability of the relevant hydrological fluxes. In particular, the temporal fluctuations of the mean residence time are shown to reflect rainfall dynamics, whereas the variability of the mean travel time is chiefly driven by streamflow dynamics, with lower frequency and higher amplitude fluctuations. Dry climates enhance the effect of the type of mixing on catchment transport features (e.g., mean travel times and seasonal dynamics of stream concentrations). The implications for the interpretation of tracer experiments are also discussed, showing through specific examples that models disregarding nonstationarity may significantly misestimate travel time pdfs.

  12. Processing of multi-digit additions in high math-anxious individuals: psychophysiological evidence

    PubMed Central

    Núñez-Peña, María Isabel; Suárez-Pellicioni, Macarena

    2015-01-01

    We investigated the time course of neural processing of multi-digit additions in high- (HMA) and low-math anxious (LMA) individuals. Seventeen HMA and 17 LMA individuals were presented with two-digit additions and were asked to perform a verification task. Behavioral data showed that HMA individuals were slower and more error prone than their LMA peers, and that incorrect solutions were solved more slowly and less accurately than correct ones. Moreover, HMA individuals tended to need more time and commit more errors when having to verify incorrect solutions than correct ones. ERPs time-locked to the presentation of the addends (calculation phase) and to the presentation of the proposed solution (verification phase) were also analyzed. In both phases, a P2 component of larger amplitude was found for HMA individuals than for their LMA peers. Because the P2 component is considered to be a biomarker of the mobilization of attentional resources toward emotionally negative stimuli, these results suggest that HMA individuals may have invested more attentional resources both when processing the addends (calculation phase) and when they had to report whether the proposed solution was correct or not (verification phase), as compared to their LMA peers. Moreover, in the verification phase, LMA individuals showed a larger late positive component (LPC) for incorrect solutions at parietal electrodes than their HMA counterparts. The smaller LPC shown by HMA individuals when verifying incorrect solutions suggests that these solutions may have been appeared more plausible to them than to their LMA counterparts. PMID:26347705

  13. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Two pilots and one... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.483 Flight time limitations: Two pilots and one additional...

  14. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Two pilots and one... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.483 Flight time limitations: Two pilots and one additional...

  15. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Two pilots and one... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.483 Flight time limitations: Two pilots and one additional...

  16. Time domain cyclostationarity signal-processing tools

    NASA Astrophysics Data System (ADS)

    Léonard, François

    2015-10-01

    This paper proposes four different time-domain tools to estimate first-order time cyclostationary signals without the need of a keyphasor signal. Applied to gearbox signals, these tacho-less methods appear intuitively simple, offer user-friendly graphic interfaces to visualize a pattern and allow the retrieval and removal of the selected cyclostationarity components in order to process higher-order spectra. Two of these tools can deal with time-varying operating conditions since they use an adaptive resampled signal driven by the vibration signal itself for order tracking. Three coherency indicators are proposed, one for every sample of the time pattern, one for each impact (tooth shock) observed in the gear mesh pattern, and one for the whole pattern. These indicators are used to detect a cyclostationarity and analyze the pattern repeatability. A gear mesh graph is also proposed to illustrate the cyclostationarity in 3D.

  17. Effect of enzyme concentration, addition of water and incubation time on increase in yield of starch from potato.

    PubMed

    Sit, Nandan; Agrawal, U S; Deka, Sankar C

    2014-05-01

    Enzymatic treatment process for starch extraction from potato was investigated using cellulase enzyme and compared with conventional process. The effects of three parameters, cellulase enzyme concentration, incubation time and addition of water were evaluated for increase in starch yield as compared to the conventional process i.e., without using enzyme. A two-level full factorial design was used to study the process. The results indicated that all the main parameters and their interactions are statistically significant. Enzyme concentration and incubation time had a positive effect on the increase in starch yield while addition of water had a negative effect. The increase in starch yield ranged from 1.9% at low enzyme concentration and incubation time and high addition of water to a maximum of 70% increase from conventional process in starch yield was achieved when enzyme concentration and incubation time were high and addition of water was low suggesting water present in the ground potato meal is sufficient for access to the enzyme with in the slurry ensuring adequate contact with the substrate. PMID:24803713

  18. Thermographic In-Situ Process Monitoring of the Electron Beam Melting Technology used in Additive Manufacturing

    SciTech Connect

    Dinwiddie, Ralph Barton; Dehoff, Ryan R; Lloyd, Peter D; Lowe, Larry E; Ulrich, Joseph B

    2013-01-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  19. Bifurcated method and apparatus for floating point addition with decreased latency time

    DOEpatents

    Farmwald, Paul M.

    1987-01-01

    Apparatus for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

  20. Beyond Traditional Sampling Synthesis: Real-Time Timbre Morphing Using Additive Synthesis

    NASA Astrophysics Data System (ADS)

    Haken, Lippold; Fitz, Kelly; Christensen, Paul

    Because of its theoretical advantage for making timbral manipulations, sine wave additive synthesis is an attractive alternative to sampling synthesis, which is currently the most popular method for real-time synthesizers. Nevertheless, until recently performers have seldom used additive synthesis because of the practical difficulty of accomplishing these timbral manipulations, which inherently require modification of large numbers of time-varying amplitude and frequency control functions.

  1. Oxidative dehydrogenation of ethane at millisecond contact times: Effect of H{sub 2} addition

    SciTech Connect

    Bodke, A.S.; Henning, D.; Schmidt, L.D.; Bharadwaj, S.S.; Maj, J.J.; Siddall, J.

    2000-04-01

    The oxidative dehydrogenation of ethane using Pt/{alpha}-Al{sub 2}O{sub 3} and various bimetallic catalysts operating at {approximately}1,000 C and very short contact times is examined with H{sub 2} addition to the feed. When H{sub 2} is added with a Pt catalyst, the ethylene selectivity rises from 65 to 72% but ethane conversion drops from 70 to 52%. However, using a Pt-Sn/{alpha}-Al{sub 2}O{sub 3} catalyst, the C{sub 2}H{sub 4} selectivity increases from 70 to greater than 85%, while the conversion remains {approximately}70%. The process also produces approximately as much H{sub 2} as is added to the feed. Effects of other metal promoters, sphere bed and fibermat supports, preheat, pressure, nitrogen dilution, and flow rate are examined in an effort to further elucidate the mechanism. Deactivation of the Pt-Sn catalyst is examined, and a simple method of regenerating the activity on-line is demonstrated. Possible mechanisms to explain high selectivities to ethylene are discussed. Although the process can be regarded as a simple two-step reaction sequence with the exothermic oxidation of hydrogen or ethane driving the endothermic dehydrogenation of ethane to ethylene, the exact contributions of heterogeneous or gas-phase reactions and their spatial variations within the catalyst are yet to be determined.

  2. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  3. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    DOE PAGESBeta

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; et al

    2016-01-27

    In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less

  4. Evaluation of alternative chemical additives for high-level waste vitrification feed preparation processing

    SciTech Connect

    Seymour, R.G.

    1995-06-07

    During the development of the feed processing flowsheet for the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), research had shown that use of formic acid (HCOOH) could accomplish several processing objectives with one chemical addition. These objectives included the decomposition of tetraphenylborate, chemical reduction of mercury, production of acceptable rheological properties in the feed slurry, and controlling the oxidation state of the glass melt pool. However, the DEPF research had not shown that some vitrification slurry feeds had a tendency to evolve hydrogen (H{sub 2}) and ammonia (NH{sub 3}) as the result of catalytic decomposition of CHOOH with noble metals (rhodium, ruthenium, palladium) in the feed. Testing conducted at Pacific Northwest Laboratory and later at the Savannah River Technical Center showed that the H{sub 2} and NH{sub 3} could evolve at appreciable rates and quantities. The explosive nature of H{sub 2} and NH{sub 3} (as ammonium nitrate) warranted significant mitigation control and redesign of both facilities. At the time the explosive gas evolution was discovered, the DWPF was already under construction and an immediate hardware fix in tandem with flowsheet changes was necessary. However, the Hanford Waste Vitrification Plant (HWVP) was in the design phase and could afford to take time to investigate flowsheet manipulations that could solve the problem, rather than a hardware fix. Thus, the HWVP began to investigate alternatives to using HCOOH in the vitrification process. This document describes the selection, evaluation criteria, and strategy used to evaluate the performance of the alternative chemical additives to CHOOH. The status of the evaluation is also discussed.

  5. Composting process design criteria. II. Detention time

    SciTech Connect

    Haug, R.T.

    1986-09-01

    Attention has always been directed to detention time as a criteria for design and operation of composting systems. Perhaps this is a logical outgrowth of work on liquid phase systems, where detention time is a fundamental parameter of design. Unlike liquid phase systems, however, the interpretation of detention time and actual values required for design have not been universally accepted in the case of composting. As a case in point, most compost systems incorporate facilities for curing the compost product. However, curing often is considered after the fact or as an add on with little relationship to the first stage, high-rate phase, whether reactor (in-vessel), static pile, or windrow. Design criteria for curing and the relationships between the first-stage, high-rate and second-stage, curing phases of a composting system have been unclear. In Part 2 of this paper, the concepts of hydraulic retention time (HRT) and solids residence time (SRT) are applied to the composting process. Definitions and design criteria for each are proposed. Based on these criteria, the first and second-stages can be designed and integrated into a complete composting system.

  6. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Qian, M.; Liu, N.; Zhang, X. Z.; Yang, G. Y.; Wang, J.

    2015-03-01

    An advantage of the powder-bed-based metal additive manufacturing (AM) processes is that the powder can be reused. The powder reuse or recycling times directly affect the affordability of the additively manufactured parts, especially for the AM of titanium parts. This study examines the influence of powder reuse times on the characteristics of Ti-6Al-4V powder, including powder composition, particle size distribution (PSD), apparent density, tap density, flowability, and particle morphology. In addition, tensile samples were manufactured and evaluated with respect to powder reuse times and sample locations in the powder bed. The following findings were made from reusing the same batch of powder 21 times for AM by selective electron beam melting: (i) the oxygen (O) content increased progressively with increasing reuse times but both the Al content and the V content remained generally stable (a small decrease only); (ii) the powder became less spherical with increasing reuse times and some particles showed noticeable distortion and rough surfaces after being reused 16 times; (iii) the PSD became narrower and few satellite particles were observed after 11 times of reuse; (iv) reused powder showed improved flowability; and (v) reused powder showed no measurable undesired influence on the AM process and the samples exhibited highly consistent tensile properties, irrespective of their locations in the powder bed. The implications of these findings were discussed.

  7. Additional technician tasks and turnaround time in the clinical Stat laboratory

    PubMed Central

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Maria; Lillo, Rosa; Leiva-Salinas, Carlos

    2016-01-01

    Introduction Many additional tasks in the Stat laboratory (SL) increase the workload. It is necessary to control them because they can affect the service provided by the laboratory. Our aim is to calculate these tasks, study their evolution over a 10 year period, and compare turnaround times (TAT) in summer period to the rest of the year. Materials and methods Additional tasks were classified as “additional test request” and “additional sample”. We collected those incidences from the laboratory information system (LIS), and calculated their evolution over time. We also calculated the monthly TAT for troponin for Emergency department (ED) patients, as the difference between the verification and LIS registration time. A median time of 30 minutes was our indicator target. TAT results and tests workload in summer were compared to the rest of the year. Results Over a 10-year period, the technologists in the SL performed 51,385 additional tasks, a median of 475 per month. The workload was significantly higher during the summer (45,496 tests) than the rest of the year (44,555 tests) (P = 0.019). The troponin TAT did not show this variation between summer and the rest of the year, complying always with our 30 minutes indicator target. Conclusion The technicians accomplished a significant number of additional tasks, and the workload kept increasing over the period of 10 years. That did not affect the TAT results. PMID:27346970

  8. Regulation of Soil Microbial Carbon-use Efficiency by Soil Moisture, Substrate Addition, and Incubation Time

    NASA Astrophysics Data System (ADS)

    Stark, J.

    2015-12-01

    Microbial carbon-use efficiency (CUE) is a key variable in biogeochemical cycling that regulates soil C sequestration, greenhouse gas emissions, and retention of inorganic nutrients. Microbial CUE is the fraction of C converted to biomass rather than respired as CO2. Biogeochemical models have been shown to be highly sensitive to variation in CUE; however, we currently have a poor understanding of how CUE responds to environmental variables such as soil moisture and nutrient limitations. We examined the effect of soil moisture and C supply on CUE in soil from a western hemlock / sitka spruce forest in Oregon, USA, using a novel technique which supplies 13C and 15N substrates through the gas phase so that water addition is not necessary. Soil samples (28 g oven-dry equiv. wt) at two water potentials (-0.03 and -3.55 MPa) were exposed to 13C-acetic acid vapor for either 6 or 30 sec to provide two different concentrations of acetate to soil microbial communities. The soils were also injected with small amounts of 15NH3 gas to allow quantification of microbial N assimilation rates and to provide an alternate method of calculating CUE. Rates of 13CO2 respiration were measured continuously during a 48-h incubation using cavity ring-down spectroscopy. Soil samples were extracted at seven time intervals (0, 0.5, 1.5, 4.5, 12, 24, and 48 h) in 0.5 M K2SO4 and analyzed for DO13C, microbial 13C, DO15N, inorganic 15N, and microbial 15N to calculate how gross rates of C and N assimilation and microbial CUE change with incubation time. As expected, microbial C and N assimilation rates and CUE increased with soil moisture and the quantity of acetate added; however, C:N assimilated was higher at lower soil moisture, suggesting that either C-storage compounds were being created, or that fungal communities were responsible for a greater proportion of the assimilation in drier soils. Assimilation rates and CUE also changed with incubation time, demonstrating that estimates of CUE

  9. Technical options for processing additional light tight oil volumes within the United States

    EIA Publications

    2015-01-01

    This report examines technical options for processing additional LTO volumes within the United States. Domestic processing of additional LTO would enable an increase in petroleum product exports from the United States, already the world’s largest net exporter of petroleum products. Unlike crude oil, products are not subject to export limitations or licensing requirements. While this is one possible approach to absorbing higher domestic LTO production in the absence of a relaxation of current limitations on crude exports, domestic LTO would have to be priced at a level required to encourage additional LTO runs at existing refinery units, debottlenecking, or possible additions of processing capacity.

  10. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE. CHAPTER 10B. PLASTICS ADDITIVES

    EPA Science Inventory

    The research presents an analysis of the chemicals used as additives in the production and processing of plastics, their environmental release, and occupational exposure. It describes in detail each chemical additive used in the plastics industry. The plastics additives are prese...

  11. Controlled short residence time coal liquefaction process

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-04

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

  12. Time- and Isomer-Resolved Measurements of Sequential Addition of Acetylene to the Propargyl Radical.

    PubMed

    Savee, John D; Selby, Talitha M; Welz, Oliver; Taatjes, Craig A; Osborn, David L

    2015-10-15

    Soot formation in combustion is a complex process in which polycyclic aromatic hydrocarbons (PAHs) are believed to play a critical role. Recent works concluded that three consecutive additions of acetylene (C2H2) to propargyl (C3H3) create a facile route to the PAH indene (C9H8). However, the isomeric forms of C5H5 and C7H7 intermediates in this reaction sequence are not known. We directly investigate these intermediates using time- and isomer-resolved experiments. Both the resonance stabilized vinylpropargyl (vp-C5H5) and 2,4-cyclopentadienyl (c-C5H5) radical isomers of C5H5 are produced, with substantially different intensities at 800 K vs 1000 K. In agreement with literature master equation calculations, we find that c-C5H5 + C2H2 produces only the tropyl isomer of C7H7 (tp-C7H7) below 1000 K, and that tp-C7H7 + C2H2 terminates the reaction sequence yielding C9H8 (indene) + H. This work demonstrates a pathway for PAH formation that does not proceed through benzene. PMID:26722791

  13. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  14. EFFECT OF STARCH ADDITION ON THE PERFORMANCE AND SLUDGE CHARACTERIZATION OF UASB PROCESS TREATING METHANOLIC WASTEWATER

    NASA Astrophysics Data System (ADS)

    Yan, Feng; Kobayashi, Takuro; Takahashi, Shintaro; Li, Yu-You; Omura, Tatsuo

    A mesophilic(35℃) UASB reactor treating synthetic wastewater containing methanol with addition of starch was continuously operated for over 430 days by changing the organic loading rate from 2.5 to 120kg-COD/m3.d. The microbial community structure of the granules was analyzed with the molecular tools and its metabolic characteristics were evaluated using specific methanogenic activity tests. The process was successfully operated with over 98% soluble COD removal efficiency at VLR 30kg-COD/m3.d for approximately 300 days, and granulation satisfactory proceeded. The results of cloning and fluorescence in situ hybridization analysis suggest that groups related the genus Methanomethylovorans and the genus Methanosaeta were predominant in the reactor although only the genus Methanomethylovorans was predominant in the reactor treating methanolic wastewater in the previous study. Abundance of the granules over 0.5 mm in diameter in the reactor treating methanolic wastewater with addition of starch was 3 times larger than that in the reactor treating methanolic wastewater. Specific methanogenic activity tests in this study indicate that the methanol-methane pathway and the methanol-H2/CO2-methane pathway were predominant, and however, there was a certain level of activity for acetate-methane pathway unlike the reactor treating methanolic wastewater. These results suggest addition of starch might be responsible for diversifying the microbial community and encouraging the granulation.

  15. Cyclic additional optical true time delay for microwave beam steering with spectral filtering.

    PubMed

    Cao, Z; Lu, R; Wang, Q; Tessema, N; Jiao, Y; van den Boom, H P A; Tangdiongga, E; Koonen, A M J

    2014-06-15

    Optical true time delay (OTTD) is an attractive way to realize microwave beam steering (MBS) due to its inherent features of broadband, low-loss, and compactness. In this Letter, we propose a novel OTTD approach named cyclic additional optical true time delay (CAO-TTD). It applies additional integer delays of the microwave carrier frequency to achieve spectral filtering but without disturbing the spatial filtering (beam steering). Based on such concept, a broadband MBS scheme for high-capacity wireless communication is proposed, which allows the tuning of both spectral filtering and spatial filtering. The experimental results match well with the theoretical analysis. PMID:24978496

  16. Valuation of OSA process and folic acid addition as excess sludge minimization alternatives applied in the activated sludge process.

    PubMed

    Martins, C L; Velho, V F; Ramos, S R A; Pires, A S C D; Duarte, E C N F A; Costa, R H R

    2016-01-01

    The aim of this study was to investigate the ability of the oxic-settling-anaerobic (OSA)-process and the folic acid addition applied in the activated sludge process to reduce the excess sludge production. The study was monitored during two distinct periods: activated sludge system with OSA-process, and activated sludge system with folic acid addition. The observed sludge yields (Yobs) were 0.30 and 0.08 kgTSS kg(-1) chemical oxygen demand (COD), control phase and OSA-process (period 1); 0.33 and 0.18 kgTSS kg(-1) COD, control phase and folic acid addition (period 2). The Yobs decreased by 73 and 45% in phases with the OSA-process and folic acid addition, respectively, compared with the control phases. The sludge minimization alternatives result in a decrease in excess sludge production, without negatively affecting the performance of the effluent treatment. PMID:26901714

  17. Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Hoyer, Peter; Schwarze, Dieter; Schaper, Mirko; Grothe, Richard; Wiesener, Markus; Grundmeier, Guido; Maier, Hans Jürgen

    2015-07-01

    In the biomedical sector, production of bioresorbable implants remains challenging due to improper dissolution rates or deficient strength of many candidate alloys. Promising materials for overcoming the prevalent drawbacks are iron-based alloys containing silver. However, due to immiscibility of iron and silver these alloys cannot be manufactured based on conventional processing routes. In this study, iron-manganese-silver alloys were for the first time synthesized by means of additive manufacturing. Based on combined mechanical, microscopic, and electrochemical studies, it is shown that silver particles well distributed in the matrix can be obtained, leading to cathodic sites in the composite material. Eventually, this results in an increased dissolution rate of the alloy. Stress-strain curves showed that the incorporation of silver barely affects the mechanical properties.

  18. Improvement of pattern collapse issue by additive-added D.I. water rinse process

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Naito, Ryoichiro; Kitada, Tomohiro; Kiba, Yukio; Yamada, Yoshiaki; Kobayashi, Masakazu; Ichikawa, Hiroyuki

    2003-06-01

    Reduction of critical dimension in lithography technology is aggressively promoted. At the same time, further resist thickness reduction is being pursued to increase the resolution capabilities of resist. However, thin film has its limitation because of etch requirements etc. As that result, the promotion of reduction results in increasing the aspect ratio, which leads to pattern collapse. It is well known that at drying step in developing process the capillary effect operates the photoresist pattern. If the force of the capillary effect is greater than the aggregation force of the resist pattern, the pattern collapse is generated. And the key parameters of the capillary effect are the space width between patterns, the aspect ratio, the contact angle of the D.I water rinse and the surface tension of rinse solution. Among these parameters the surface tension of rinse solution can be controlled by us. On the other hand, we've already reported that the penetration of TMAH and D.I water into the resist plays an important role on the lithographic latitude. For example, when we use the resist which TMA ion can be easily diffuse into, D.I water and TMA ion which are penetrated in the resist decreases the aggregation force of resist pattern and causes the pattern collapse even by the weak force against resist pattern. These results indicate that the swelling of photoresist by TMA ion and water is very important factor for controlling the pattern collapse. Currently, two methods are mainly tried to reduce the surface tension of rinse solution: SCF (Super Critical Fluid) and addition of additive to D.I water rinse. We used the latter method this time, because this technique has retrofittability and not special tool. And in this evaluation, we found that the degree of suppressing pattern collapse depends on the additive chemistry or formulation. With consideration given to process factors such as above, we investigated what factors contribute to suppressing pattern collapse

  19. Hydration process of cement in the presence of a cellulosic additive. A calorimetric investigation.

    PubMed

    Ridi, Francesca; Fratini, Emiliano; Mannelli, Francesca; Baglioni, Piero

    2005-08-01

    In the cement industry, the extrusion technique is used to produce flat shapes with improved resistance to compression. Extrusion is a plastic-forming process that consists of forcing a highly viscous plastic mixture through a shaped die. The material should be fluid enough to be mixed and to pass through the die, and on the other hand, the extruded specimen should be stiff enough to be handled without changing in shape or cracking. These characteristics are industrially obtained by adding cellulosic polymers to the mixture. The aim of this work is to understand the action mechanism of these additives on the major pure phases constituting a typical Portland cement: tricalcium silicate (C(3)S), dicalcium silicate (C(2)S), tricalcium aluminate (C(3)A), and tetracalcium iron-aluminate (C(4)AF). In particular, a methylhydroxyethyl cellulose (MHEC) was selected from the best-performing polymers for further study. The effect of this additive on the hydration kinetics (rate constants, activation energies, and diffusional constants) was evaluated by means of differential scanning calorimetry (DSC) while the hydration products were studied by using thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). MHEC addition in calcium silicate pastes produces an increase in the induction time without affecting the nucleation-and-growth period. A less dense CSH gel was deduced from the diffusional constants in the presence of MHEC. Moreover, CSH laminar features and poorly structured hydrates were noted during the first hours of hydration. In the case of the aluminous phases, the additive inhibits the growth of stable cubic hydrated phases (C(3)AH(6)), with the advantage of the metastable hexagonal phases being formed in the earliest minutes of hydration. PMID:16852857

  20. Ultimate capacity of linear time-invariant bosonic channels with additive Gaussian noise

    NASA Astrophysics Data System (ADS)

    Roy Bardhan, Bhaskar; Shapiro, Jeffrey H.

    2016-03-01

    Fiber-optic communications are moving to coherent detection in order to increase their spectral efficiency, i.e., their channel capacity per unit bandwidth. At power levels below the threshold for significant nonlinear effects, the channel model for such operation a linear time-invariant filter followed by additive Gaussian noise is one whose channel capacity is well known from Shannon's noisy channel coding theorem. The fiber channel, however, is really a bosonic channel, meaning that its ultimate classical information capacity must be determined from quantum-mechanical analysis, viz. from the Holevo-Schumacher-Westmoreland (HSW) theorem. Based on recent results establishing the HSW capacity of a linear (lossy or amplifying) channel with additive Gaussian noise, we provide a general continuous-time result, namely the HSW capacity of a linear time-invariant (LTI) bosonic channel with additive Gaussian noise arising from a thermal environment. In particular, we treat quasi-monochromatic communication under an average power constraint through a channel comprised of a stable LTI filter that may be attenuating at all frequencies or amplifying at some frequencies and attenuating at others. Phase-insensitive additive Gaussian noise-associated with the continuous-time Langevin noise operator needed to preserve free-field commutator brackets is included at the filter output. We compare the resulting spectral efficiencies with corresponding results for heterodyne and homodyne detection over the same channel to assess the increased spectral efficiency that might be realized with optimum quantum reception.

  1. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Two pilots and one additional flight crewmember. 121.483 Section 121.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  2. 14 CFR 121.483 - Flight time limitations: Two pilots and one additional flight crewmember.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Two pilots and one additional flight crewmember. 121.483 Section 121.483 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  3. Passivity and Passification of Memristor-Based Recurrent Neural Networks With Additive Time-Varying Delays.

    PubMed

    Rakkiyappan, Rajan; Chandrasekar, Arunachalam; Cao, Jinde

    2015-09-01

    This paper presents a new design scheme for the passivity and passification of a class of memristor-based recurrent neural networks (MRNNs) with additive time-varying delays. The predictable assumptions on the boundedness and Lipschitz continuity of activation functions are formulated. The systems considered here are based on a different time-delay model suggested recently, which includes additive time-varying delay components in the state. The connection between the time-varying delay and its upper bound is considered when estimating the upper bound of the derivative of Lyapunov functional. It is recognized that the passivity condition can be expressed in a linear matrix inequality (LMI) format and by using characteristic function method. For state feedback passification, it is verified that it is apathetic to use immediate or delayed state feedback. By constructing a Lyapunov-Krasovskii functional and employing Jensen's inequality and reciprocal convex combination technique together with a tighter estimation of the upper bound of the cross-product terms derived from the derivatives of the Lyapunov functional, less conventional delay-dependent passivity criteria are established in terms of LMIs. Moreover, second-order reciprocally convex approach is employed for deriving the upper bound for terms with inverses of squared convex parameters. The model based on the memristor with additive time-varying delays widens the application scope for the design of neural networks. Finally, pertinent examples are given to show the advantages of the derived passivity criteria and the significant improvement of the theoretical approaches. PMID:25415991

  4. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  5. Effect of ultrasound treatment, oil addition and storage time on lycopene stability and in vitro bioaccessibility of tomato pulp.

    PubMed

    Anese, Monica; Bot, Francesca; Panozzo, Agnese; Mirolo, Giorgio; Lippe, Giovanna

    2015-04-01

    This study was performed to investigate the influence of ultrasound processing on tomato pulp containing no sunflower oil, or increasing amounts (i.e. 2.5%, 5% and 10%), on lycopene concentration and in vitro bioaccessibility at time zero and during storage at 5 °C. Results confirmed previous findings in that ultrasonication was responsible for cell breakage and subsequent lycopene release in a highly viscous matrix. Neither the ultrasound process nor oil addition affected lycopene concentration. A decrease of approximately 35% lycopene content occurred at storage times longer than 15 days, due to isomerisation and oxidation reactions. No differences in lycopene in vitro bioaccessibility were found between the untreated and ultrasonically treated samples; this parameter decreased as a consequence of oil addition. Losses of lycopene in vitro bioaccessibility ranging between 50% and 80% occurred in the untreated and ultrasonically treated tomato pulps with and without oil during storage, mainly due to carotenoid degradation. PMID:25442608

  6. Integrated Project Scheduling and Staff Assignment with Controllable Processing Times

    PubMed Central

    Framinan, Jose M.

    2014-01-01

    This paper addresses a decision problem related to simultaneously scheduling the tasks in a project and assigning the staff to these tasks, taking into account that a task can be performed only by employees with certain skills, and that the length of each task depends on the number of employees assigned. This type of problems usually appears in service companies, where both tasks scheduling and staff assignment are closely related. An integer programming model for the problem is proposed, together with some extensions to cope with different situations. Additionally, the advantages of the controllable processing times approach are compared with the fixed processing times. Due to the complexity of the integrated model, a simple GRASP algorithm is implemented in order to obtain good, approximate solutions in short computation times. PMID:24895672

  7. New pyrometallurgical process of EAF dust treatment with CaO addition

    NASA Astrophysics Data System (ADS)

    Chairaksa-Fujimoto, Romchat; Inoue, Yosuke; Umeda, Naoyoshi; Itoh, Satoshi; Nagasaka, Tetsuya

    2015-08-01

    The non-carbothermic zinc pyrometallurgical processing of electric arc furnace (EAF) dust was investigated on a laboratory scale. The main objective of this process was to convert highly stable zinc ferrite (ZnFe2O4), which accounts for more than half of total zinc in the EAF dust, into ZnO and Ca2Fe2O5 by CaO addition. The EAF dust was mixed with CaO powder in various ratios, pressed into pellets, and heated in a muffle furnace in air at temperatures ranging from 700 to 1100°C for a predetermined holding time. All ZnFe2O4 was transformed into ZnO and Ca2Fe2O5 at a minimum temperature of 900°C within 1 h when sufficient CaO to achieve a Ca/Fe molar ratio of 1.1 was added. However, at higher temperatures, excess CaO beyond the stoichiometric ratio was required because it was consumed by reactions leading to the formation of compounds other than ZnFe2O4. The evaporation of halides and heavy metals in the EAF dust was also studied. These components could be preferentially volatilized into the gas phase at 1100°C when CaO was added.

  8. A real-time dashboard for managing pathology processes

    PubMed Central

    Halwani, Fawaz; Li, Wei Chen; Banerjee, Diponkar; Lessard, Lysanne; Amyot, Daniel; Michalowski, Wojtek; Giffen, Randy

    2016-01-01

    Context: The Eastern Ontario Regional Laboratory Association (EORLA) is a newly established association of all the laboratory and pathology departments of Eastern Ontario that currently includes facilities from eight hospitals. All surgical specimens for EORLA are processed in one central location, the Department of Pathology and Laboratory Medicine (DPLM) at The Ottawa Hospital (TOH), where the rapid growth and influx of surgical and cytology specimens has created many challenges in ensuring the timely processing of cases and reports. Although the entire process is maintained and tracked in a clinical information system, this system lacks pre-emptive warnings that can help management address issues as they arise. Aims: Dashboard technology provides automated, real-time visual clues that could be used to alert management when a case or specimen is not being processed within predefined time frames. We describe the development of a dashboard helping pathology clinical management to make informed decisions on specimen allocation and tracking. Methods: The dashboard was designed and developed in two phases, following a prototyping approach. The first prototype of the dashboard helped monitor and manage pathology processes at the DPLM. Results: The use of this dashboard helped to uncover operational inefficiencies and contributed to an improvement of turn-around time within The Ottawa Hospital's DPML. It also allowed the discovery of additional requirements, leading to a second prototype that provides finer-grained, real-time information about individual cases and specimens. Conclusion: We successfully developed a dashboard that enables managers to address delays and bottlenecks in specimen allocation and tracking. This support ensures that pathology reports are provided within time frame standards required for high-quality patient care. Given the importance of rapid diagnostics for a number of diseases, the use of real-time dashboards within pathology departments could

  9. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    SciTech Connect

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-18

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  10. Infrared thermography for laser-based powder bed fusion additive manufacturing processes

    NASA Astrophysics Data System (ADS)

    Moylan, Shawn; Whitenton, Eric; Lane, Brandon; Slotwinski, John

    2014-02-01

    Additive manufacturing (AM) has the potential to revolutionize discrete part manufacturing, but improvements in processing of metallic materials are necessary before AM will see widespread adoption. A better understanding of AM processes, resulting from physics-based modeling as well as direct process metrology, will form the basis for these improvements. Infrared (IR) thermography of AM processes can provide direct process metrology, as well as data necessary for the verification of physics-based models. We review selected works examining how IR thermography was implemented and used in various powder-bed AM processes. This previous work, as well as significant experience at the National Institute of Standards and Technology in temperature measurement and IR thermography for machining processes, shapes our own research in AM process metrology with IR thermography. We discuss our experimental design, as well as plans for future IR measurements of a laser-based powder bed fusion AM process.

  11. Experimental model and analytic solution for real-time observation of vehicle's additional steer angle

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Li, Liang; Pan, Deng; Cao, Chengmao; Song, Jian

    2014-03-01

    The current research of real-time observation for vehicle roll steer angle and compliance steer angle(both of them comprehensively referred as the additional steer angle in this paper) mainly employs the linear vehicle dynamic model, in which only the lateral acceleration of vehicle body is considered. The observation accuracy resorting to this method cannot meet the requirements of vehicle real-time stability control, especially under extreme driving conditions. The paper explores the solution resorting to experimental method. Firstly, a multi-body dynamic model of a passenger car is built based on the ADAMS/Car software, whose dynamic accuracy is verified by the same vehicle's roadway test data of steady static circular test. Based on this simulation platform, several influencing factors of additional steer angle under different driving conditions are quantitatively analyzed. Then ɛ-SVR algorithm is employed to build the additional steer angle prediction model, whose input vectors mainly include the sensor information of standard electronic stability control system(ESC). The method of typical slalom tests and FMVSS 126 tests are adopted to make simulation, train model and test model's generalization performance. The test result shows that the influence of lateral acceleration on additional steer angle is maximal (the magnitude up to 1°), followed by the longitudinal acceleration-deceleration and the road wave amplitude (the magnitude up to 0.3°). Moreover, both the prediction accuracy and the calculation real-time of the model can meet the control requirements of ESC. This research expands the accurate observation methods of the additional steer angle under extreme driving conditions.

  12. New Stabilization for Dynamical System with Two Additive Time-Varying Delays

    PubMed Central

    Yang, Fan; Chen, Xiaozhou

    2014-01-01

    This paper provides a new delay-dependent stabilization criterion for systems with two additive time-varying delays. The novel functional is constructed, a tighter upper bound of the derivative of the Lyapunov functional is obtained. These results have advantages over some existing ones because the combination of the delay decomposition technique and the reciprocally convex approach. Two examples are provided to demonstrate the less conservatism and effectiveness of the results in this paper. PMID:24701159

  13. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data.

    PubMed

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L J; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two 'one-process' models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a 'two-process' model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  14. Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data

    PubMed Central

    TAPAK, Leili; MAHJUB, Hossein; SADEGHIFAR, Majid; SAIDIJAM, Massoud; POOROLAJAL, Jalal

    2016-01-01

    Background: One substantial part of microarray studies is to predict patients’ survival based on their gene expression profile. Variable selection techniques are powerful tools to handle high dimensionality in analysis of microarray data. However, these techniques have not been investigated in competing risks setting. This study aimed to investigate the performance of four sparse variable selection methods in estimating the survival time. Methods: The data included 1381 gene expression measurements and clinical information from 301 patients with bladder cancer operated in the years 1987 to 2000 in hospitals in Denmark, Sweden, Spain, France, and England. Four methods of the least absolute shrinkage and selection operator, smoothly clipped absolute deviation, the smooth integration of counting and absolute deviation and elastic net were utilized for simultaneous variable selection and estimation under an additive hazards model. The criteria of area under ROC curve, Brier score and c-index were used to compare the methods. Results: The median follow-up time for all patients was 47 months. The elastic net approach was indicated to outperform other methods. The elastic net had the lowest integrated Brier score (0.137±0.07) and the greatest median of the over-time AUC and C-index (0.803±0.06 and 0.779±0.13, respectively). Five out of 19 selected genes by the elastic net were significant (P<0.05) under an additive hazards model. It was indicated that the expression of RTN4, SON, IGF1R and CDC20 decrease the survival time, while the expression of SMARCAD1 increase it. Conclusion: The elastic net had higher capability than the other methods for the prediction of survival time in patients with bladder cancer in the presence of competing risks base on additive hazards model. PMID:27114989

  15. Surface-consistent matching filters for time-lapse processing

    NASA Astrophysics Data System (ADS)

    Al Mutlaq, Mahdi H.

    The problem of mismatch between repeated time-lapse seismic surveys remains a challenge, particularly for land acquisition. In this dissertation, we present a new algorithm, which is an extension of the surface-consistent model, and which minimizes the mismatch between surveys, hence improving repeatability. We introduce the concept of surface-consistent matching filters (SCMF) for processing time-lapse seismic data, where matching filters are convolutional filters that minimize the sum-squared error between two signals. Since in the Fourier domain, a matching filter is the spectral ratio of the two signals, we extend the well known surface-consistent hypothesis such that the data term is a trace-by-trace spectral ratio of two datasets instead of only one (i.e. surface-consistent deconvolution). To avoid unstable division of spectra, we compute the spectral ratios in the time domain by first designing trace-sequential, least-squares matching filters, then Fourier transforming them. A subsequent least-squares solution then factors the trace-sequential matching filters into four operators: two surface-consistent (source and receiver), and two subsurface-consistent (offset and midpoint). We apply the algorithm to two datasets: a synthetic time-lapse model and field data from a CO2 monitoring site in Northern Alberta. In addition, two common time-lapse processing schemes (independent processing and simultaneous processing) are compared. We present a modification of the simultaneous processing scheme as a direct result of applying the new SCMF algorithm. The results of applying the SCMF together with the new modified simultaneous processing flow reveal the potential benefit of the method, however some challenges remain, specifically in the presence of random noise.

  16. Winter-time CO2 addition in high rate algal mesocosms for enhanced microalgal performance.

    PubMed

    Sutherland, Donna L; Montemezzani, Valerio; Mehrabadi, Abbas; Craggs, Rupert J

    2016-02-01

    Carbon limitation in domestic wastewater high rate algal ponds is thought to constrain microalgal photo-physiology and productivity and CO2 augmentation is often used to overcome this limitation in summer. However, the implications of carbon limitation during winter are poorly understood. This paper investigates the effects of 0.5%, 2%, 5% and 10% CO2 addition on the winter-time performance of wastewater microalgae in high rate algal mesocosms. Performance was measured in terms of light absorption, photosynthetic efficiency, biomass production and nutrient removal rates, along with community composition. Varying percentage CO2 addition and associated change in culture pH resulted in 3 distinct microalgal communities. Light absorption by the microalgae increased by up to 144% with CO2 addition, while a reduction in the package effect meant that there was less internal self-shading thereby increasing the efficiency of light absorption. Carbon augmentation increased the maximum rate of photosynthesis by up to 172%, which led to increased microalgal biovolume by up to 181% and an increase in total organic biomass for all treatments except 10% CO2. While 10% CO2 improved light absorption and photosynthesis this did not translate to enhanced microalgal productivity. Increased microalgal productivity with CO2 addition did not result in increased dissolved nutrient (nitrogen and phosphorus) removal. This experiment demonstrated that winter-time carbon augmentation up to 5% CO2 improved microalgal light absorption and utilisation, which ultimately increased microalgal biomass and is likely to enhance total annual microalgal areal productivity in HRAPs. PMID:26707731

  17. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  18. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1975-01-01

    The design, operation, and structure of the hybrid field effect light valve, a real-time input device for application to coherent optical data processing (CODP), is described. The device consists of a sandwich of thin films that electrically control the optical birefringence of a thin (2 micrometer) liquid crystal layer. It has high resolution (greater than 100 1/mm), contrast ratio (greater than 100:1), speed (10 sec on, 15 sec off) and input sensitivity (about 0.3 ergs/sq cm) in addition to cost and size advantages. Performance data for a laboratory model are presented.

  19. State to State and Charged Particle Kinetic Modeling of Time Filtering and Cs Addition

    SciTech Connect

    Capitelli, M.; Gorse, C.; Longo, S.; Diomede, P.; Pagano, D.

    2007-08-10

    We present here an account on the progress of kinetic simulation of non equilibrium plasmas in conditions of interest for negative ion production by using the 1D Bari code for hydrogen plasma simulation. The model includes the state to state kinetics of the vibrational level population of hydrogen molecules, plus a PIC/MCC module for the multispecies dynamics of charged particles. In particular we present new results for the modeling of two issues of great interest: the time filtering and the Cs addition via surface coverage.

  20. Complete positivity, finite-temperature effects, and additivity of noise for time-local qubit dynamics

    NASA Astrophysics Data System (ADS)

    Lankinen, Juho; Lyyra, Henri; Sokolov, Boris; Teittinen, Jose; Ziaei, Babak; Maniscalco, Sabrina

    2016-05-01

    We present a general model of qubit dynamics which entails pure dephasing and dissipative time-local master equations. This allows us to describe the combined effect of thermalization and dephasing beyond the usual Markovian approximation. We investigate the complete positivity conditions and introduce a heuristic model that is always physical and provides the correct Markovian limit. We study the effects of temperature on the non-Markovian behavior of the system and show that the noise additivity property discussed by Yu and Eberly [Phys. Rev. Lett. 97, 140403 (2006), 10.1103/PhysRevLett.97.140403] holds beyond the Markovian limit.

  1. OPAD-EDIFIS Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1997-01-01

    The Optical Plume Anomaly Detection (OPAD) detects engine hardware degradation of flight vehicles through identification and quantification of elemental species found in the plume by analyzing the plume emission spectra in a real-time mode. Real-time performance of OPAD relies on extensive software which must report metal amounts in the plume faster than once every 0.5 sec. OPAD software previously written by NASA scientists performed most necessary functions at speeds which were far below what is needed for real-time operation. The research presented in this report improved the execution speed of the software by optimizing the code without changing the algorithms and converting it into a parallelized form which is executed in a shared-memory multiprocessor system. The resulting code was subjected to extensive timing analysis. The report also provides suggestions for further performance improvement by (1) identifying areas of algorithm optimization, (2) recommending commercially available multiprocessor architectures and operating systems to support real-time execution and (3) presenting an initial study of fault-tolerance requirements.

  2. Patterns of response times and response choices to science questions: the influence of relative processing time.

    PubMed

    Heckler, Andrew F; Scaife, Thomas M

    2015-04-01

    We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics graphs. We found that response times of incorrect answers, resulting from comparing heights, were faster than response times of correct answers comparing slopes. This result alone might be explained by the fact that height was typically processed faster than slope for this kind of task, which we confirmed in a separate experiment. However, we hypothesize that the difference in response time is an indicator of the cause (rather than the result) of the response choice. To support this, we found that imposing a 3-s delay in responding increased the number of students comparing slopes (answering correctly) on the task. Additionally a significant proportion of students recognized the correct written rule (compare slope), but on the graph task they incorrectly compared heights. Finally, training either with repetitive examples or providing a general rule both improved scores, but only repetitive examples had a large effect on response times, thus providing evidence of dual paths or processes to a solution. Considering models of heuristics, information accumulation models, and models relevant to the Stroop effect, we construct a simple relative processing time model that could be viewed as a kind of fluency heuristic. The results suggest that misconception-like patterns of answers to some science questions commonly found on tests may be explained in part by automatic processes that involve the relative processing time of considered dimensions and a priority to answer quickly. PMID:25230833

  3. Analysis of Time to Event Outcomes in Randomized Controlled Trials by Generalized Additive Models

    PubMed Central

    Argyropoulos, Christos; Unruh, Mark L.

    2015-01-01

    Background Randomized Controlled Trials almost invariably utilize the hazard ratio calculated with a Cox proportional hazard model as a treatment efficacy measure. Despite the widespread adoption of HRs, these provide a limited understanding of the treatment effect and may even provide a biased estimate when the assumption of proportional hazards in the Cox model is not verified by the trial data. Additional treatment effect measures on the survival probability or the time scale may be used to supplement HRs but a framework for the simultaneous generation of these measures is lacking. Methods By splitting follow-up time at the nodes of a Gauss Lobatto numerical quadrature rule, techniques for Poisson Generalized Additive Models (PGAM) can be adopted for flexible hazard modeling. Straightforward simulation post-estimation transforms PGAM estimates for the log hazard into estimates of the survival function. These in turn were used to calculate relative and absolute risks or even differences in restricted mean survival time between treatment arms. We illustrate our approach with extensive simulations and in two trials: IPASS (in which the proportionality of hazards was violated) and HEMO a long duration study conducted under evolving standards of care on a heterogeneous patient population. Findings PGAM can generate estimates of the survival function and the hazard ratio that are essentially identical to those obtained by Kaplan Meier curve analysis and the Cox model. PGAMs can simultaneously provide multiple measures of treatment efficacy after a single data pass. Furthermore, supported unadjusted (overall treatment effect) but also subgroup and adjusted analyses, while incorporating multiple time scales and accounting for non-proportional hazards in survival data. Conclusions By augmenting the HR conventionally reported, PGAMs have the potential to support the inferential goals of multiple stakeholders involved in the evaluation and appraisal of clinical trial

  4. Locality and time irreversibility in quantum processes

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2014-06-01

    We discuss problems arising in three very different physical processes: an electron scattering on a nucleus, an experiment with delayed choice, and the cosmological Big Bang. We describe the role of soft and supersoft photons in solutions of the arising problems.

  5. Time reversal signal processing for communication.

    SciTech Connect

    Young, Derek P.; Jacklin, Neil; Punnoose, Ratish J.; Counsil, David T.

    2011-09-01

    Time-reversal is a wave focusing technique that makes use of the reciprocity of wireless propagation channels. It works particularly well in a cluttered environment with associated multipath reflection. This technique uses the multipath in the environment to increase focusing ability. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. It does not require controlled geometric placement of the transmit antennas. Unlike existing techniques it can work without line-of-sight. We have explored the performance of time-reversal focusing in a variety of simulated environments. We have also developed new algorithms to simultaneously focus at a location while nulling at an eavesdropper location. We have experimentally verified these techniques in a realistic cluttered environment.

  6. Restrictive Correlation Evaluation Of Processing Times In Target Tracking

    NASA Astrophysics Data System (ADS)

    Horn, O.; Ciccotelli, J.; Husson, R.

    1989-04-01

    As far as target tracking is concerned in the robotics field, the picture processing phase consists in finding out the location of the object in the scene within a minimum of time. Therefore, we require quite a new approach of "restrictive correlation" which combines optical function (real time edges extraction) and data processing functions (multilevel correlation). This latter as to show the best matching place between a model of the object and the search area. It consists of a multilevel thresholding followed by a model image mapping at each level. We find out the localization of the object by a weighting addition of each obtained result. The time required to obtain such a result is directly linked to the number of selected points at the thresholding stage.Therefore, we develop an analytical method to count the treated points according to the threshold levels. The grey levels of the picture's points are taken as a realization of a random process of which we measure the statistical characteristics (mean, standard deviation). If we refer to the theory of signal processing, this enables us to determine, by means of calculation, the number of points over a given threshold within an image for a kind of scene. These calculations are carried out for various levels. Afterward, their results are compared with the figures experimentally measured. On this way, we valid a relation which links the execution time of a correlation to its parameters. Consequently, this evaluation gives a quantitative criterion for the values which point out the limits with regard to the choice of thresholds ; the time available for the correlation being previously defined according to the amplitude of the search area and the maximal speed authorized for the target.

  7. Toward a Deterministic Polynomial Time Algorithm with Optimal Additive Query Complexity

    NASA Astrophysics Data System (ADS)

    Bshouty, Nader H.; Mazzawi, Hanna

    In this paper, we study two combinatorial search problems: The coin weighing problem with a spring scale (also known as the vector reconstructing problem using additive queries) and the problem of reconstructing weighted graphs using additive queries. Suppose we are given n identical looking coins. Suppose that m out of the n coins are counterfeit and the rest are authentic. Assume that we are allowed to weigh subsets of coins with a spring scale. It is known that the optimal number of weighing for identifying the counterfeit coins and their weights is at least Ω(mlog n/log m). We give a deterministic polynomial time adaptive algorithm for identifying the counterfeit coins and their weights using O(mlog n/log m+ mlog log m) weighings, assuming that the weight of the counterfeit coins are greater than the weight of the authentic coin. This algorithm is optimal when m ≤ n c/loglogn , where c is any constant. Also our weighing complexity is within loglogm times the optimal complexity for all m.

  8. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  9. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  10. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  11. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Advance declaration requirements for additionally planned production, processing, or consumption of Schedule 2 chemicals. 713.4 Section 713.4 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF...

  12. 15 CFR 713.4 - Advance declaration requirements for additionally planned production, processing, or consumption...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS ACTIVITIES INVOLVING...)(ii) of the CWCR will produce, process, or consume a Schedule 2 chemical above the applicable...)(ii) of the CWCR an additional Schedule 2 chemical above the applicable declaration threshold;...

  13. 25 CFR 1000.356 - May the trust evaluation process be used for additional reviews?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false May the trust evaluation process be used for additional reviews? 1000.356 Section 1000.356 Indians OFFICE OF THE ASSISTANT SECRETARY, INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ANNUAL FUNDING AGREEMENTS UNDER THE TRIBAL SELF-GOVERNMENT ACT AMENDMENTS TO...

  14. Spatial correlations, additivity, and fluctuations in conserved-mass transport processes

    NASA Astrophysics Data System (ADS)

    Das, Arghya; Chatterjee, Sayani; Pradhan, Punyabrata

    2016-06-01

    We exactly calculate two-point spatial correlation functions in steady state in a broad class of conserved-mass transport processes, which are governed by chipping, diffusion, and coalescence of masses. We find that the spatial correlations are in general short-ranged and, consequently, on a large scale, these transport processes possess a remarkable thermodynamic structure in the steady state. That is, the processes have an equilibrium-like additivity property and, consequently, a fluctuation-response relation, which help us to obtain subsystem mass distributions in the limit of subsystem size large.

  15. Electric poling-assisted additive manufacturing process for PVDF polymer-based piezoelectric device applications

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Tarbutton, Joshua A.

    2014-09-01

    This paper presents a new additive manufacturing (AM) process to directly and continuously print piezoelectric devices from polyvinylidene fluoride (PVDF) polymeric filament rods under a strong electric field. This process, called ‘electric poling-assisted additive manufacturing or EPAM, combines AM and electric poling processes and is able to fabricate free-form shape piezoelectric devices continuously. In this process, the PVDF polymer dipoles remain well-aligned and uniform over a large area in a single design, production and fabrication step. During EPAM process, molten PVDF polymer is simultaneously mechanically stresses in-situ by the leading nozzle and electrically poled by applying high electric field under high temperature. The EPAM system was constructed to directly print piezoelectric structures from PVDF polymeric filament while applying high electric field between nozzle tip and printing bed in AM machine. Piezoelectric devices were successfully fabricated using the EPAM process. The crystalline phase transitions that occurred from the process were identified by using the Fourier transform infrared spectroscope. The results indicate that devices printed under a strong electric field become piezoelectric during the EPAM process and that stronger electric fields result in greater piezoelectricity as marked by the electrical response and the formation of sharper peaks at the polar β crystalline wavenumber of the PVDF polymer. Performing this process in the absence of an electric field does not result in dipole alignment of PVDF polymer. The EPAM process is expected to lead to the widespread use of AM to fabricate a variety of piezoelectric PVDF polymer-based devices for sensing, actuation and energy harvesting applications with simple, low cost, single processing and fabrication step.

  16. Identifiability of Additive, Time-Varying Actuator and Sensor Faults by State Augmentation

    NASA Technical Reports Server (NTRS)

    Upchurch, Jason M.; Gonzalez, Oscar R.; Joshi, Suresh M.

    2014-01-01

    Recent work has provided a set of necessary and sucient conditions for identifiability of additive step faults (e.g., lock-in-place actuator faults, constant bias in the sensors) using state augmentation. This paper extends these results to an important class of faults which may affect linear, time-invariant systems. In particular, the faults under consideration are those which vary with time and affect the system dynamics additively. Such faults may manifest themselves in aircraft as, for example, control surface oscillations, control surface runaway, and sensor drift. The set of necessary and sucient conditions presented in this paper are general, and apply when a class of time-varying faults affects arbitrary combinations of actuators and sensors. The results in the main theorems are illustrated by two case studies, which provide some insight into how the conditions may be used to check the theoretical identifiability of fault configurations of interest for a given system. It is shown that while state augmentation can be used to identify certain fault configurations, other fault configurations are theoretically impossible to identify using state augmentation, giving practitioners valuable insight into such situations. That is, the limitations of state augmentation for a given system and configuration of faults are made explicit. Another limitation of model-based methods is that there can be large numbers of fault configurations, thus making identification of all possible configurations impractical. However, the theoretical identifiability of known, credible fault configurations can be tested using the theorems presented in this paper, which can then assist the efforts of fault identification practitioners.

  17. Rationalization of Microstructure Heterogeneity in INCONEL 718 Builds Made by the Direct Laser Additive Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; McAllister, Donald; Colijn, Hendrik; Mills, Michael; Farson, Dave; Nordin, Mark; Babu, Sudarsanam

    2014-09-01

    Simulative builds, typical of the tip-repair procedure, with matching compositions were deposited on an INCONEL 718 substrate using the laser additive manufacturing process. In the as-processed condition, these builds exhibit spatial heterogeneity in microstructure. Electron backscattering diffraction analyses showed highly misoriented grains in the top region of the builds compared to those of the lower region. Hardness maps indicated a 30 pct hardness increase in build regions close to the substrate over those of the top regions. Detailed multiscale characterizations, through scanning electron microscopy, electron backscattered diffraction imaging, high-resolution transmission electron microscopy, and ChemiSTEM, also showed microstructure heterogeneities within the builds in different length scales including interdendritic and interprecipitate regions. These multiscale heterogeneities were correlated to primary solidification, remelting, and solid-state precipitation kinetics of γ″ induced by solute segregation, as well as multiple heating and cooling cycles induced by the laser additive manufacturing process.

  18. Distinguishing Fast and Slow Processes in Accuracy - Response Time Data

    PubMed Central

    Coomans, Frederik; Hofman, Abe; Brinkhuis, Matthieu; van der Maas, Han L. J.; Maris, Gunter

    2016-01-01

    We investigate the relation between speed and accuracy within problem solving in its simplest non-trivial form. We consider tests with only two items and code the item responses in two binary variables: one indicating the response accuracy, and one indicating the response speed. Despite being a very basic setup, it enables us to study item pairs stemming from a broad range of domains such as basic arithmetic, first language learning, intelligence-related problems, and chess, with large numbers of observations for every pair of problems under consideration. We carry out a survey over a large number of such item pairs and compare three types of psychometric accuracy-response time models present in the literature: two ‘one-process’ models, the first of which models accuracy and response time as conditionally independent and the second of which models accuracy and response time as conditionally dependent, and a ‘two-process’ model which models accuracy contingent on response time. We find that the data clearly violates the restrictions imposed by both one-process models and requires additional complexity which is parsimoniously provided by the two-process model. We supplement our survey with an analysis of the erroneous responses for an example item pair and demonstrate that there are very significant differences between the types of errors in fast and slow responses. PMID:27167518

  19. Effects of different additives on the performance of spray dryer system during incineration process.

    PubMed

    Wey, M Y; Peng, C Y; Wu, H Y; Chiang, B C; Liu, Z S

    2002-06-01

    The spray dryer system was conventionally employed to remove the SOx, NOx, and HCl in the flue gas. However, the removal efficiency of acid gas in the practical incineration flue gas, which contains dust, heavy metals, and acid gas itself, was seldom mentioned in the literature. The alkaline sorbents possess large specific surface that was a main factor on the adsorption of heavy metals and acid gas. Therefore, the primary objective of this study was focused on the effect of different additives on the removal efficiency of acid gas and heavy metals (Cr, Cd and Pb). The mass and element size distribution of heavy metals in fly ash under different additives were also investigated. The results indicated that the removal efficiency of HCl in the spray dryer system was higher than 97.8%. The effects of additives on the removal efficiency of HCl, however, were undistinguished. In the desulfurization process, the highest removal efficiency was 71.3% when the additive of amorphous SiO2 was added in the spray dryer system. The removal efficiency was 66.0% with the additive of CaCl2 and 63.1% without any additives, respectively. It was also found that the spray dryer system could decrease the concentration of metal in fly ash but increase the amount of fly ash. In addition, amorphous SiO2 in the alkaline sorbent tended to increase the adsorption of heavy metal on reactant, because it could enhance the dispersion of alkaline sorbent. PMID:12118621

  20. 36 CFR 219.56 - Objection time periods and process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Objection time periods and process. 219.56 Section 219.56 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING Pre-Decisional Administrative Review Process § 219.56 Objection time periods and process. (a) Time to file an objection. For a...

  1. Multiscale simulation process and application to additives in porous composite battery electrodes

    NASA Astrophysics Data System (ADS)

    Wieser, Christian; Prill, Torben; Schladitz, Katja

    2015-03-01

    Structure-resolving simulation of porous materials in electrochemical cells such as fuel cells and lithium ion batteries allows for correlating electrical performance with material morphology. In lithium ion batteries characteristic length scales of active material particles and additives range several orders of magnitude. Hence, providing a computational mesh resolving all length scales is not reasonably feasible and requires alternative approaches. In the work presented here a virtual process to simulate lithium ion batteries by bridging the scales is introduced. Representative lithium ion battery electrode coatings comprised of μm-scale graphite particles as active material and a nm-scale carbon/polymeric binder mixture as an additive are imaged with synchrotron radiation computed tomography (SR-CT) and sequential focused ion beam/scanning electron microscopy (FIB/SEM), respectively. Applying novel image processing methodologies for the FIB/SEM images, data sets are binarized to provide a computational grid for calculating the effective mass transport properties of the electrolyte phase in the nanoporous additive. Afterwards, the homogenized additive is virtually added to the micropores of the binarized SR-CT data set representing the active particle structure, and the resulting electrode structure is assembled to a virtual half-cell for electrochemical microheterogeneous simulation. Preliminary battery performance simulations indicate non-negligible impact of the consideration of the additive.

  2. RNA polymerase pausing regulates translation initiation by providing additional time for TRAP-RNA interaction.

    PubMed

    Yakhnin, Alexander V; Yakhnin, Helen; Babitzke, Paul

    2006-11-17

    RNA polymerase (RNAP) pause sites have been identified in several prokaryotic genes. Although the presumed biological function of RNAP pausing is to allow synchronization of RNAP position with regulatory factor binding and/or RNA folding, a direct causal link between pausing and changes in gene expression has been difficult to establish. RNAP pauses at two sites in the Bacillus subtilis trpEDCFBA operon leader. Pausing at U107 and U144 participates in transcription attenuation and trpE translation control mechanisms, respectively. Substitution of U144 caused a substantial pausing defect in vitro and in vivo. These mutations led to increased trp operon expression that was suppressed by overproduction of TRAP, indicating that pausing at U144 provides additional time for TRAP to bind to the nascent transcript and promote formation of an RNA structure that blocks translation of trpE. These results establish that pausing is capable of playing a role in regulating translation in bacteria. PMID:17114058

  3. The effects of Na/K additives and flyash on NO reduction in a SNCR process.

    PubMed

    Hao, Jiangtao; Yu, Wei; Lu, Ping; Zhang, Yufei; Zhu, Xiuming

    2015-03-01

    An experimental study of Na/K additives and flyash on NO reduction during the selective non-catalytic reduction (SNCR) process were carried out in an entrained flow reactor (EFR). The effects of reaction temperature (Tr), water vapor, Na/K additives (NaCl, KCl, Na2CO3) and flyash characteristics on NO reduction were analyzed. The results indicated that NO removal efficiency shows a pattern of increasing first and decreasing later with the increase of the temperature at Tr=850-1150°C. Water vapor can improve the performance of NO reduction, and the NO reduction of 70.5% was obtained while the flue gas containing 4% water vapor at 950°C. Na/K additives have a significant promoting effect on NO reduction and widen the SNCR temperature window, the promoting effect of the test additives is ordered as Na2CO3>KCl>NaCl. NO removal efficiency with 125ppm Na2CO3 and 4% water vapor can reach up to 84.9% at the optimal reaction temperature. The additive concentration has no significant effects on NO reduction while its concentration is above 50ppm. Addition of circulating fluidized combustion (CFB) flyash deteriorates NO reduction significantly. However, CFB flyash and Na/K additives will get a coupling effect on NO reduction during the SNCR process, and the best NO reduction can reach 72.3% while feeding Na2CO3-impregnated CFB flyash at 125ppm Na2CO3 and Tr=950°C. PMID:25532766

  4. A diagnostic process extended in time as a fuzzy model

    NASA Astrophysics Data System (ADS)

    Rakus-Andersson, Elisabeth; Gerstenkorn, Tadeusz

    1999-03-01

    The paper refers to earlier results obtained by the authors and constitutes their essential complement and extension by introducing to a diagnostic model the assumption that the decision concerning the diagnosis is based on observations of symptoms carried out repeatedly, by stages, which may have effect in a change of these symptoms in increasing time. The model concerns the observations of symptoms at an individual patient at a time interval. The changes of the symptoms give some additional information, sometimes very important in the diagnostic process when the clinical picture of a patient in a certain interval of time differs from that one which has been received from the beginning of the disease. It may occur that the change in the intensity of a symptom decides an acceptance of another diagnosis after some time when the patient does not feel better. The aim is to fix an optimal diagnosis on the basis of clinical symptoms typical of several morbid units with respect to the changes of these symptoms in time. In order to solve such a posed problem the authors apply the method of fuzzy relation equations which are modelled by means of logical rules of inference. Moreover, in the final decision concerning the choice of a proper diagnosis, a normed Euclidean distance is introduced as a measure between a real decision and an "ideal" decision. A simple example presents the practical action of the method to show its relevance to a possible user.

  5. Surface Modified Particles By Multi-Step Addition And Process For The Preparation Thereof

    SciTech Connect

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2006-01-17

    The present invention relates to a new class of surface modified particles and to a multi-step surface modification process for the preparation of the same. The multi-step surface functionalization process involves two or more reactions to produce particles that are compatible with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through organic linking groups.

  6. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    SciTech Connect

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Ali, M.N.; Chen, Nan

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  7. Reactive nanophase oxide additions to melt-processed high-T(sub c) superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Brandel, B. P.; Lanagan, M. T.; Hu, J.; Miller, D. J.; Sengupta, S.; Parker, J. C.; Ali, M. N.; Chen, Nan

    1994-10-01

    Nanophase TiO2 and Al2O3 powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa2Cu3O(x) and TlBa2Ca2Cu3O(x) powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O2 above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density J(sub c)) increased dramatically with the oxide additions. At 35-50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J(sub c), probably because of inducing a depression of the transition temperature.

  8. From lab to industrial: PZT nanoparticles synthesis and process control for application in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Hsien-Lin

    Lead Zirconate Titanate (PZT) nanoparticles hold many promising current and future applications, such as PZT ink for 3-D printing or seeds for PZT thick films. One common method is hydrothermal growth, in which temperature, duration time, or mineralizer concentrations are optimized to produce PZT nanoparticles with desired morphology, controlled size and size distribution. A modified hydrothermal process is used to fabricate PZT nanoparticles. The novelty is to employ a high ramping rate (e.g., 20 deg C/min) to generate abrupt supersaturation so as to promote burst nucleation of PZT nanoparticles as well as a fast cooling rate (e.g., 5 deg C/min) with a controlled termination of crystal growth. As a result, PZT nanoparticles with a size distribution ranging from 200 nm to 800 nm are obtained with cubic morphology and good crystallinity. The identification of nanoparticles is confirmed through use of X-ray diffractometer (XRD). XRD patterns are used to compare sample variations in their microstructures such as lattice parameter. A cubic morphology and particle size are also examined via SEM images. The hydrothermal process is further modified with excess lead (from 20% wt. to 80% wt.) to significantly reduce amorphous phase and agglomeration of the PZT nanoparticles. With a modified process, the particle size still remains within the 200 nm to 800 nm. Also, the crystal structures (microstructure) of the samples show little variations. Finally, a semi-continuous hydrothermal manufacturing process was developed to substantially reduce the fabrication time and maintained the same high quality as the nanoparticles prepared in an earlier stage. In this semi-continuous process, a furnace is maintained at the process temperature (200 deg C), whereas autoclaves containing PZT sol are placed in and out of the furnace to control the ramp-up and cooling rates. This setup eliminates an extremely time-consuming step of cooling down the furnace, thus saving tremendous amount of

  9. Vector processing enhancements for real-time image analysis.

    SciTech Connect

    Shoaf, S.; APS Engineering Support Division

    2008-01-01

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  10. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    DOE PAGESBeta

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less

  11. Foreword: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control

    SciTech Connect

    Carpenter, John S.; Beese, Allison M.; Bourell, David L.; Hamilton, Reginald F.; Mishra, Rajiv; Sears, James

    2015-06-26

    Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. This symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.

  12. 36 CFR 219.56 - Objection time periods and process.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Objection time periods and... AGRICULTURE PLANNING Pre-Decisional Administrative Review Process § 219.56 Objection time periods and process. (a) Time to file an objection. For a new plan, plan amendment, or plan revision for which...

  13. 36 CFR 219.56 - Objection time periods and process.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Objection time periods and... AGRICULTURE PLANNING Pre-Decisional Administrative Review Process § 219.56 Objection time periods and process. (a) Time to file an objection. For a new plan, plan amendment, or plan revision for which...

  14. Nonparametric directionality measures for time series and point process data.

    PubMed

    Halliday, David M

    2015-06-01

    The need to determine the directionality of interactions between neural signals is a key requirement for analysis of multichannel recordings. Approaches most commonly used are parametric, typically relying on autoregressive models. A number of concerns have been expressed regarding parametric approaches, thus there is a need to consider alternatives. We present an alternative nonparametric approach for construction of directionality measures for bivariate random processes. The method combines time and frequency domain representations of bivariate data to decompose the correlation by direction. Our framework generates two sets of complementary measures, a set of scalar measures, which decompose the total product moment correlation coefficient summatively into three terms by direction and a set of functions which decompose the coherence summatively at each frequency into three terms by direction: forward direction, reverse direction and instantaneous interaction. It can be undertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to either time series or point-process (spike train) data or mixtures of the two (hybrid data). In this paper, we demonstrate application to spike train data using simulated cortical neurone networks and application to experimental data from isolated muscle spindle sensory endings subject to random efferent stimulation. PMID:25958923

  15. Integration of Consonant and Pitch Processing as Revealed by the Absence of Additivity in Mismatch Negativity

    PubMed Central

    Gong, Diankun; Chen, Sifan; Kendrick, Keith M.; Yao, Dezhong

    2012-01-01

    Consonants, unlike vowels, are thought to be speech specific and therefore no interactions would be expected between consonants and pitch, a basic element for musical tones. The present study used an electrophysiological approach to investigate whether, contrary to this view, there is integrative processing of consonants and pitch by measuring additivity of changes in the mismatch negativity (MMN) of evoked potentials. The MMN is elicited by discriminable variations occurring in a sequence of repetitive, homogeneous sounds. In the experiment, event-related potentials (ERPs) were recorded while participants heard frequently sung consonant-vowel syllables and rare stimuli deviating in either consonant identity only, pitch only, or in both dimensions. Every type of deviation elicited a reliable MMN. As expected, the two single-deviant MMNs had similar amplitudes, but that of the double-deviant MMN was also not significantly different from them. This absence of additivity in the double-deviant MMN suggests that consonant and pitch variations are processed, at least at a pre-attentive level, in an integrated rather than independent way. Domain-specificity of consonants may depend on higher-level processes in the hierarchy of speech perception. PMID:22693614

  16. Reconsolidation of Motor Memories Is a Time-Dependent Process

    PubMed Central

    de Beukelaar, Toon T.; Woolley, Daniel G.; Alaerts, Kaat; Swinnen, Stephan P.; Wenderoth, Nicole

    2016-01-01

    Reconsolidation is observed when a consolidated stable memory is recalled, which renders it transiently labile and requires re-stabilization. Motor memory reconsolidation has previously been demonstrated using a three-day design: on day 1 the memory is encoded, on day 2 it is reactivated and experimentally manipulated, and on day 3 memory strength is tested. The aim of the current study is to determine specific boundary conditions in order to consistently degrade motor memory through reconsolidation paradigms. We investigated a sequence tapping task (n = 48) with the typical three-day design and confirmed that reactivating the motor sequence briefly (10 times tapping the learned motor sequence) destabilizes the memory trace and makes it susceptible to behavioral interference. By systematically varying the time delay between memory reactivation and interference while keeping all other aspect constant we found that a short delay (i.e., 20 s) significantly decreased performance on day 3, whereas performance was maintained or small (but not significant) improvements were observed for longer delays (i.e., 60 s). We also tested a statistical model that assumed a linear effect of the different time delays (0 s, 20 s, 40 s, 60 s) on the performance changes from day 2 to day 3. This linear model revealed a significant effect consistent with the interpretation that increasing time delays caused a gradual change from performance degradation to performance conservation across groups. These findings indicate that re-stabilizing motor sequence memories during reconsolidation does not solely rely on additional motor practice but occurs with the passage of time. This study provides further support for the hypothesis that reconsolidation is a time-dependent process with a transition phase from destabilization to re-stabilization. PMID:27582698

  17. Reconsolidation of Motor Memories Is a Time-Dependent Process.

    PubMed

    de Beukelaar, Toon T; Woolley, Daniel G; Alaerts, Kaat; Swinnen, Stephan P; Wenderoth, Nicole

    2016-01-01

    Reconsolidation is observed when a consolidated stable memory is recalled, which renders it transiently labile and requires re-stabilization. Motor memory reconsolidation has previously been demonstrated using a three-day design: on day 1 the memory is encoded, on day 2 it is reactivated and experimentally manipulated, and on day 3 memory strength is tested. The aim of the current study is to determine specific boundary conditions in order to consistently degrade motor memory through reconsolidation paradigms. We investigated a sequence tapping task (n = 48) with the typical three-day design and confirmed that reactivating the motor sequence briefly (10 times tapping the learned motor sequence) destabilizes the memory trace and makes it susceptible to behavioral interference. By systematically varying the time delay between memory reactivation and interference while keeping all other aspect constant we found that a short delay (i.e., 20 s) significantly decreased performance on day 3, whereas performance was maintained or small (but not significant) improvements were observed for longer delays (i.e., 60 s). We also tested a statistical model that assumed a linear effect of the different time delays (0 s, 20 s, 40 s, 60 s) on the performance changes from day 2 to day 3. This linear model revealed a significant effect consistent with the interpretation that increasing time delays caused a gradual change from performance degradation to performance conservation across groups. These findings indicate that re-stabilizing motor sequence memories during reconsolidation does not solely rely on additional motor practice but occurs with the passage of time. This study provides further support for the hypothesis that reconsolidation is a time-dependent process with a transition phase from destabilization to re-stabilization. PMID:27582698

  18. Management Of Airborne Reconnaissance Images Through Real-Time Processing

    NASA Astrophysics Data System (ADS)

    Endsley, Neil H.

    1985-12-01

    Digital reconnaissance images gathered by low-altitude over-flights with resolutions on the order of a few feet and fields of view up to 120 degrees can generate millions of pixels per second. Storing this data in-flight, transmitting it to the ground, and analyzing it presents significant problems to the tactical community. One potential solution is in-flight preview and pruning of the data where an operator keeps or transmits only those image segments which on first view contain potential intelligence data. To do this, the images must be presented to the operator in a geometrically correct form. Wide-angle dis-tortion, distortions induced by yaw, pitch, roll and altitude variations, and distortions due to non-ideal alignment of the focal plane array must be removed so the operator can quickly assess the scene content and make decisions on which image segments to keep. When multiple sensors are used with a common field of view, they must be mutually coregistered to permit multispectral or multimode processing to exploit these rich data dimensions. In addition, the operator should be able to alter the apparent point of view of the image, i.e., be able to zoom in and out, rotate, and roam through the displayed field of view while maintaining geometric and radiometric precision. These disparate requirements have a common feature in the ability to perform real-time image geometry manipulation. The role of image geometry manipulation, or image warping, is reviewed and a "strawman" system dis-cussed which incorporates the Pipelined Resampling Processor (PRP). The PRP is a real-time image warping processor discussed at this conference in previous years"2'3". Actual results from the PRP prototype are presented. In addition, other image processing aids such as image enhancement and object classification are discussed as they apply to reconnaissance applications.

  19. Vitrification of F006 plating waste sludge by Reactive Additive Stabilization Process (RASP)

    SciTech Connect

    Martin, H.L.; Jantzen, C.M.; Pickett, J.B.

    1994-06-01

    Solidification into glass of nickel-on-uranium plating wastewater treatment plant sludge (F006 Mixed Waste) has been demonstrated at the Savannah River She (SRS). Vitrification using high surface area additives, the Reactive Additive Stabilization Process (RASP), greatly enhanced the solubility and retention of heavy metals In glass. The bench-scale tests using RASP achieved 76 wt% waste loading In both soda-lime-silica and borosilicate glasses. The RASP has been Independently verified by a commercial waste management company, and a contract awarded to vitrify the approximately 500,000 gallons of stored waste sludge. The waste volume reduction of 89% will greatly reduce the disposal costs, and delisting of the glass waste is anticipated. This will be the world`s first commercial-scale vitrification system used for environmental cleanup of Mixed Waste. Its stabilization and volume reduction abilities are expected to set standards for the future of the waste management Industry.

  20. Investigation of the effects of short chain processing additives on polymers

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Stclair, T. L.; Pratt, J. R.

    1986-01-01

    The effects of low level concentrations of several short chain processing additives on the properties of the 4,4'-bis(3,4-dicarboxyphenoxy) diphenylsulfide dianhydride (BDSDA)/4,4'-diaminodiphenyl ether (ODA)/1,3'-diaminobenzene (m-phenylene diamine) (MPA) (422) copolyimide were investigated. It was noted that 5 percent MPD/phthalic anhydride (PA) is more effective than 5 percent ODA/PA and BDSDA/aniline (AN) in strengthening the host material. However, the introduction of 10 percent BDSDA/AN produces disproportionately high effects on free volume and free electron density in the host copolyimide.

  1. Crystallization processes in poly(ethylene terephthalate) as modified by polymer additives and fiber reinforcement

    SciTech Connect

    Reinsch, V.E.; Rebenfeld, L.

    1993-12-31

    The effect of fiber reinforcement on the crystallization of poly(ethylene terephthalate) (PET) was investigated using differential scanning calorimetry. The objective of the study was to determine how the effects of fiber reinforcement on PET crystallization are modified by the presence of polymer additives. The interaction of fiber effects and nucleating and plasticizing agents was studied. Unidirectional fiber composites were prepared using aramid and glass fibers in PET. The rate of crystallization of PET, as reflected by crystallization half-time, it seem to depend on reinforcing fiber type, crystallization temperature, and presence of nucleant or plasticizer. However, degree of crytallinity of PET is largely unaffected by the presence of additives and reinforcing fibers. Crystallization kinetics are analyzed using a series Avrami model for PET volume crystallized as a function of time. The using a series Arami model for PET volume crystallized as a function of time. The crystalline morphology of fiber reinforced PET was studied using polarized light microscopy. Results concerning nucleation density, chain mobility, and growth morphology are used in explaining differences seen in crystallization kinetics in fiber reinforced systems.

  2. A review of processable high temperature resistant addition-type laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.

  3. Scanning laser ultrasound and wavenumber spectroscopy for in-process inspection of additively manufactured parts

    NASA Astrophysics Data System (ADS)

    Koskelo, EliseAnne C.; Flynn, Eric B.

    2016-04-01

    We present a new in-process laser ultrasound inspection technique for additive manufacturing. Ultrasonic energy was introduced to the part by attaching an ultrasonic transducer to the printer build-plate and driving it with a single-tone, harmonic excitation. The full-field response of the part was measured using a scanning laser Doppler vibrometer after each printer layer. For each scan, we analyzed both the local amplitudes and wavenumbers of the response in order to identify defects. For this study, we focused on the detection of delamination between layers in a fused deposition modeling process. Foreign object damage, localized heating damage, and the resulting delamination between layers were detected in using the technique as indicated by increased amplitude and wavenumber responses within the damaged area.

  4. 3D Machine Vision and Additive Manufacturing: Concurrent Product and Process Development

    NASA Astrophysics Data System (ADS)

    Ilyas, Ismet P.

    2013-06-01

    The manufacturing environment rapidly changes in turbulence fashion. Digital manufacturing (DM) plays a significant role and one of the key strategies in setting up vision and strategic planning toward the knowledge based manufacturing. An approach of combining 3D machine vision (3D-MV) and an Additive Manufacturing (AM) may finally be finding its niche in manufacturing. This paper briefly overviews the integration of the 3D machine vision and AM in concurrent product and process development, the challenges and opportunities, the implementation of the 3D-MV and AM at POLMAN Bandung in accelerating product design and process development, and discusses a direct deployment of this approach on a real case from our industrial partners that have placed this as one of the very important and strategic approach in research as well as product/prototype development. The strategic aspects and needs of this combination approach in research, design and development are main concerns of the presentation.

  5. Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition.

    PubMed

    Shirai, Marianne Ayumi; Olivato, Juliana Bonametti; Garcia, Patrícia Salomão; Müller, Carmen Maria Olivera; Grossmann, Maria Victória Eiras; Yamashita, Fabio

    2013-10-01

    Biodegradable films were produced using the blown extrusion method from blends that contained cassava thermoplastic starch (TPS), poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA) with two different extrusion processes. The choice of extrusion process did not have a significant effect on the mechanical properties, water vapor permeability (WVP) or viscoelasticity of the films, but the addition of PLA decreased the elongation, blow-up ratio (BUR) and opacity and increased the elastic modulus, tensile strength and viscoelastic parameters of the films. The films with 20% PLA exhibited a lower WVP due to the hydrophobic nature of this polymer. Morphological analyses revealed the incompatibility between the polymers used. PMID:23910321

  6. 36 CFR 218.10 - Objection time periods and process.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Objection time periods and... Objection time periods and process. (a) Time to file an objection. Written objections, including any... of objectors to ensure that their objection is received in a timely manner. (b) Computation of...

  7. Process for producing biodiesel, lubricants, and fuel and lubricant additives in a critical fluid medium

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.

    2005-05-03

    A process for producing alkyl esters useful in biofuels and lubricants by transesterifying glyceride- or esterifying free fatty acid-containing substances in a single critical phase medium is disclosed. The critical phase medium provides increased reaction rates, decreases the loss of catalyst or catalyst activity and improves the overall yield of desired product. The process involves the steps of dissolving an input glyceride- or free fatty acid-containing substance with an alcohol or water into a critical fluid medium; reacting the glyceride- or free fatty acid-containing substance with the alcohol or water input over either a solid or liquid acidic or basic catalyst and sequentially separating the products from each other and from the critical fluid medium, which critical fluid medium can then be recycled back in the process. The process significantly reduces the cost of producing additives or alternatives to automotive fuels and lubricants utilizing inexpensive glyceride- or free fatty acid-containing substances, such as animal fats, vegetable oils, rendered fats, and restaurant grease.

  8. Effect of silver addition on mechanical properties of melt-processed Sm-Ba-Cu-O bulk superconductor

    SciTech Connect

    Sakai, Naomichi; Miyamoto, Takeshi; Seo, Seokjong; Nariki, Shinya; Murakami, Masato

    1999-11-01

    The authors have studied mechanical properties of melt-processed single-grain Sm-Ba-Cu-O (Sm123+Sm211) bulks with and without silver doping. Tensile stress is induced by thermal stress during heat treatment, and also induced by applying magnetic fields. It is found that the silver addition was effective in decreasing the thermal stress and increasing the tensile strength of the Sm-Ba-Cu-O bulk. The tensile strength of the silver doped sample was 37.4MPa, which is about one and half times larger than that of the undoped sample.

  9. Lateralization of High-Frequency Clicks Based on Interaural Time: Additivity of Information across Frequency

    NASA Astrophysics Data System (ADS)

    Wenzel, Elizabeth Marie

    Lateralization performance based on interaural differences of time (IDTs) was measured for trains of Gaussian clicks which varied in spectral content. In the first experiment, thresholds ((DELTA)IDTs) were measured as a function of the number of clicks in the train (n = 1 to 32), the interclick interval (ICI = 2.5 or 5 ms), and the spectral content (1 vs. 2 or 4 carriers). Subjects' performance was compared to perfect statistical summation which predicts slopes of -.50 when log-(DELTA)IDT vs. long -n is plotted. The results showed that increasing the spectral content of the clicks decreased the intercepts of the log -log functions (decreased thresholds) while having little effect on their slopes. Shortening the ICIs caused the slopes of the functions to decrease in absolute value. To estimate the bandwidth of frequency-interaction in lateralization, d's were measured for clicks with constant IDTs (n = 1) with a fixed carrier (FF = 4000, 5200, 6000 or 7200 Hz), both alone and combined with a second click whose carrier (F) varied from 3500 to 8500 Hz. Performance in combined conditions was compared to independent summation of the information carried by the two frequency-bands. Performance improved as the separation between F and FF increased until the level predicted by independence was reached. The final experiment investigated the interaction of frequency content with IDT. d's were measured as a function of the IDT in clicks with carriers of 5200, 6000 or 7200 Hz, both alone and combined with a 4000-Hz click with a fixed IDT. Performance in combined conditions was again compared to independent additivity. The improvement with frequency was explained by an increase in the number of samples of the IDT reaching the binaural centers due to spread of excitation along the basilar membrane. Less than independent summation was explained by correlation between overlapping bands which reduced the amount of information exciting independent channels. The data also suggest that

  10. Dissociations and Interactions between Time, Numerosity and Space Processing

    ERIC Educational Resources Information Center

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1-3 assessed time and numerosity independently…

  11. Simulation of Simple Controlled Processes with Dead-Time.

    ERIC Educational Resources Information Center

    Watson, Keith R.; And Others

    1985-01-01

    The determination of closed-loop response of processes containing dead-time is typically not covered in undergraduate process control, possibly because the solution by Laplace transforms requires the use of Pade approximation for dead-time, which makes the procedure lengthy and tedious. A computer-aided method is described which simplifies the…

  12. Precipitation process in a Mg–Gd–Y alloy grain-refined by Al addition

    SciTech Connect

    Dai, Jichun; Zhu, Suming; Easton, Mark A.; Xu, Wenfan; Wu, Guohua; Ding, Wenjiang

    2014-02-15

    The precipitation process in Mg–10Gd–3Y (wt.%) alloy grain-refined by 0.8 wt.% Al addition has been investigated by transmission electron microscopy. The alloy was given a solution treatment at 520 °C for 6 h plus 550 °C for 7 h before ageing at 250 °C. Plate-shaped intermetallic particles with the 18R-type long-period stacking ordered structure were observed in the solution-treated state. Upon isothermal ageing at 250 °C, the following precipitation sequence was identified for the α-Mg supersaturated solution: β″ (D0{sub 19}) → β′ (bco) → β{sub 1} (fcc) → β (fcc). The observed precipitation process and age hardening response in the Al grain-refined Mg–10Gd–3Y alloy are compared with those reported in the Zr grain-refined counterpart. - Highlights: • The precipitation process in Mg–10Gd–3Y–0.8Al (wt.%) alloy has been investigated. • Particles with the 18R-type LPSO structure were observed in the solution state. • Upon ageing at 250 °C, the precipitation sequence is: β″ → β′ → β1 (fcc) → β. • The Al grain-refined alloy has a lower hardness than the Zr refined counterpart.

  13. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    SciTech Connect

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  14. 36 CFR 218.10 - Objection time periods and process.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Objection time periods and process. 218.10 Section 218.10 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PREDECISIONAL ADMINISTRATIVE REVIEW PROCESSES Predecisional Administrative Review Process for Hazardous Fuel Reduction Projects Authorized...

  15. Dissociations and interactions between time, numerosity and space processing

    PubMed Central

    Cappelletti, Marinella; Freeman, Elliot D.; Cipolotti, Lisa

    2009-01-01

    This study investigated time, numerosity and space processing in a patient (CB) with a right hemisphere lesion. We tested whether these magnitude dimensions share a common magnitude system or whether they are processed by dimension-specific magnitude systems. Five experimental tasks were used: Tasks 1–3 assessed time and numerosity independently and time and numerosity jointly. Tasks 4 and 5 investigated space processing independently and space and numbers jointly. Patient CB was impaired at estimating time and at discriminating between temporal intervals, his errors being underestimations. In contrast, his ability to process numbers and space was normal. A unidirectional interaction between numbers and time was found in both the patient and the control subjects. Strikingly, small numbers were perceived as lasting shorter and large numbers as lasting longer. In contrast, number processing was not affected by time, i.e. short durations did not result in perceiving fewer numbers and long durations in perceiving more numbers. Numbers and space also interacted, with small numbers answered faster when presented on the left side of space, and the reverse for large numbers. Our results demonstrate that time processing can be selectively impaired. This suggests that mechanisms specific for time processing may be partially independent from those involved in processing numbers and space. However, the interaction between numbers and time and between numbers and space also suggests that although independent, there maybe some overlap between time, numbers and space. These data suggest a partly shared mechanism between time, numbers and space which may be involved in magnitude processing or may be recruited to perform cognitive operations on magnitude dimensions. PMID:19501604

  16. Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Dehoff, Ryan R.; Lloyd, Peter D.; Lowe, Larry E.; Ulrich, Joe B.

    2013-05-01

    Oak Ridge National Laboratory (ORNL) has been utilizing the ARCAM electron beam melting technology to additively manufacture complex geometric structures directly from powder. Although the technology has demonstrated the ability to decrease costs, decrease manufacturing lead-time and fabricate complex structures that are impossible to fabricate through conventional processing techniques, certification of the component quality can be challenging. Because the process involves the continuous deposition of successive layers of material, each layer can be examined without destructively testing the component. However, in-situ process monitoring is difficult due to metallization on inside surfaces caused by evaporation and condensation of metal from the melt pool. This work describes a solution to one of the challenges to continuously imaging inside of the chamber during the EBM process. Here, the utilization of a continuously moving Mylar film canister is described. Results will be presented related to in-situ process monitoring and how this technique results in improved mechanical properties and reliability of the process.

  17. The effect of activated carbon addition on membrane bioreactor processes for wastewater treatment and reclamation - A critical review.

    PubMed

    Skouteris, George; Saroj, Devendra; Melidis, Paraschos; Hai, Faisal I; Ouki, Sabèha

    2015-06-01

    This review concentrates on the effect of activated carbon (AC) addition to membrane bioreactors (MBRs) treating wastewaters. Use of AC-assisted MBRs combines adsorption, biodegradation and membrane filtration. This can lead to advanced removal of recalcitrant pollutants and mitigation of membrane fouling. The relative contribution of adsorption and biodegradation to overall removal achieved by an AC-assisted MBR process can vary, and "biological AC" may not fully develop due to competition of target pollutants with bulk organics in wastewater. Thus periodic replenishment of spent AC is necessary. Sludge retention time (SRT) governs the frequency of spent AC withdrawal and addition of fresh AC, and is an important parameter that significantly influences the performance of AC-assisted MBRs. Of utmost importance is AC dosage because AC overdose may aggravate membrane fouling, increase sludge viscosity, impair mass transfer and reduce sludge dewaterability. PMID:25801795

  18. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  19. Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1993-07-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150{degrees}C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150{degrees}C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150{degrees}C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs.

  20. [Adaptive reactions of dehydrogenation processes in root voles during additional impacts of the physical nature].

    PubMed

    Kudiasheva, A G; Taskaev, A I

    2011-01-01

    Variations of the dehydrogenation enzyme activity (succinate dehydrogenase, pyruvate dehydrogenase, lactate dehydrogenase) in the heart muscle, liver and brain of root voles (Microtus oeconomus Pall.) and their progeny associated with additional stress effects (chronic low-level gamma-irradiation, short-term exposure to cold) have been studied. Root voles (parents) were caught in the areas with a normal and high-level natural radioactivity in the Republic of Komi. It has been revealed that the direction of shifts of the dehydrogenation enzyme activity in response to the factors of the physical nature is determined by the initial level of the oxidation process in tissues of root voles and their progeny that haven't been subjected to these actions. The reaction of root voles and their progeny (1-3 generations) from the radium zone has lower reserve functional possibilities in relation to the additional exposure as compared with the animals from the control zone. In some cases, chronic low-level irradiation and short-term cooling lead to leveling of differences between groups of animals which initially varied from each other in biochemical indexes. PMID:22279768

  1. Effects of Wait Time When Communicating with Children Who Have Sensory and Additional Disabilities

    ERIC Educational Resources Information Center

    Johnson, Nicole; Parker, Amy T.

    2013-01-01

    Introduction: This study utilized wait-time procedures to determine if they are effective in helping children with deafblindness or multiple disabilities that include a visual impairment communicate in their home. Methods: A single subject with an alternating treatment design was used for the study. Zero- to one-second wait time was utilized…

  2. Addition of random run FM noise to the KPW time scale algorithm

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2002-01-01

    The KPW (Kalman plus weights) time scale algorithm uses a Kalman filter to provide frequency and drift information to a basic time scale equation. This paper extends the algorithm to three-state clocks nd gives results for a simulated eight-clock ensemble.

  3. Time to Learn, Time to Develop? Change Processes in Three Schools with Weak National Time Regulation

    ERIC Educational Resources Information Center

    Nyroos, Mikaela

    2007-01-01

    This article analyses change of time use and time allocation in three schools participating in a Swedish five-year national experiment in which State regulation of teaching time was weakened. Participating schools could freely decide how to use and distribute teaching time. The experiment was launched at a late stage in a 25-year decentralisation…

  4. Microbiological and physicochemical characterization of dry-cured Halal goat meat. Effect of salting time and addition of olive oil and paprika covering.

    PubMed

    Cherroud, Sanâa; Cachaldora, Aida; Fonseca, Sonia; Laglaoui, Amin; Carballo, Javier; Franco, Inmaculada

    2014-10-01

    The objective of this work was to define a simple technological process for dry-cured Halal goat meat elaboration. The aims of this study were to analyze physicochemical parameters and to enumerate the microbial population at the end of the different manufacturing processes (two salting times and the addition of olive oil and paprika covering) on 36 units of meat product. A total of 532 strains were isolated from several selective culture media and then identified using classical and molecular methods. In general, salt effect and the addition of olive oil and paprika were significant for all the studied microbial groups as well as on NaCl content and water activity. Molecular analysis proves that staphylococci, especially Staphylococcus xylosus and Staphylococcus equorum, were the most common naturally occurring microbiota. The best manufacturing process would be obtained with a longer salting time and the addition of the olive oil and paprika covering. PMID:24950081

  5. A digital process for additive manufacturing of occlusal splints: a clinical pilot study.

    PubMed

    Salmi, Mika; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Ingman, Tuula; Mäkitie, Antti

    2013-07-01

    The aim of this study was to develop and evaluate a digital process for manufacturing of occlusal splints. An alginate impression was taken from the upper and lower jaws of a patient with temporomandibular disorder owing to cross bite and wear of the teeth, and then digitized using a table laser scanner. The scanned model was repaired using the 3Data Expert software, and a splint was designed with the Viscam RP software. A splint was manufactured from a biocompatible liquid photopolymer by stereolithography. The system employed in the process was SLA 350. The splint was worn nightly for six months. The patient adapted to the splint well and found it comfortable to use. The splint relieved tension in the patient's bite muscles. No sign of tooth wear or significant splint wear was detected after six months of testing. Modern digital technology enables us to manufacture clinically functional occlusal splints, which might reduce costs, dental technician working time and chair-side time. Maximum-dimensional errors of approximately 1 mm were found at thin walls and sharp corners of the splint when compared with the digital model. PMID:23614943

  6. A digital process for additive manufacturing of occlusal splints: a clinical pilot study

    PubMed Central

    Salmi, Mika; Paloheimo, Kaija-Stiina; Tuomi, Jukka; Ingman, Tuula; Mäkitie, Antti

    2013-01-01

    The aim of this study was to develop and evaluate a digital process for manufacturing of occlusal splints. An alginate impression was taken from the upper and lower jaws of a patient with temporomandibular disorder owing to cross bite and wear of the teeth, and then digitized using a table laser scanner. The scanned model was repaired using the 3Data Expert software, and a splint was designed with the Viscam RP software. A splint was manufactured from a biocompatible liquid photopolymer by stereolithography. The system employed in the process was SLA 350. The splint was worn nightly for six months. The patient adapted to the splint well and found it comfortable to use. The splint relieved tension in the patient's bite muscles. No sign of tooth wear or significant splint wear was detected after six months of testing. Modern digital technology enables us to manufacture clinically functional occlusal splints, which might reduce costs, dental technician working time and chair-side time. Maximum-dimensional errors of approximately 1 mm were found at thin walls and sharp corners of the splint when compared with the digital model. PMID:23614943

  7. High-Challenge Teaching for Senior English as an Additional Language Learners in Times of Change

    ERIC Educational Resources Information Center

    Alford, Jennifer; Jetnikoff, Anita

    2011-01-01

    This paper will present a brief overview of the recent shifts within English and EAL/D (English as an additional language/dialect) curriculum documents and their focus on critical literacy, using the Queensland context as a case in point. The English syllabus landscape in Queensland has continued to morph in recent years. From 2002 to 2009,…

  8. Reducing Design Cycle Time and Cost Through Process Resequencing

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  9. Synthesis mechanism of nanoporous Sn3O4 nanosheets by hydrothermal process without any additives

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-Hua; Tan, Rui-Qin; Yang, Ye; Xu, Wei; Li, Jia; Shen, Wen-Feng; Wu, Guo-Qiang; Zhu, You-Liang; Yang, Xu-Feng; Song, Wei-Jie

    2015-06-01

    Nanoporous anorthic-phase Sn3O4 nanosheets are successfully fabricated via a hydrothermal process without any additives. With the pH value of the precursor increasing from 2.0 to 11.8, the valence of the precursor changes from mixed valence (the ratio of Sn2+ to Sn4+ is 2.7:1) to pure bivalent, and the product transformed from Sn3O4 to SnO mesocrystals. When doping SbCl3 to the alkaline precursor, the valence of the precursor shows mixed valence with the ratio of Sn2+ to Sn4+ being 2.6:1 and Sn3O4 is synthesized after the hydrothermal process. The valence state of Sn species in the precursor is the key factor of the formation of Sn3O4. The synthesis mechanism is discussed and proposed. These experimental results expand the knowledge base that can be used to guide technological applications of intermediate tin oxide materials. Project supported by the National Natural Science Foundation of China (Grant Nos. 21377063, 51102250, 21203226, and 21205127) and the Personnel Training Foundation of Quzhou University (Grant No. BSYJ201412).

  10. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  11. Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support

    NASA Astrophysics Data System (ADS)

    Smith, Jacob; Xiong, Wei; Yan, Wentao; Lin, Stephen; Cheng, Puikei; Kafka, Orion L.; Wagner, Gregory J.; Cao, Jian; Liu, Wing Kam

    2016-04-01

    Additive manufacturing (AM) methods for rapid prototyping of 3D materials (3D printing) have become increasingly popular with a particular recent emphasis on those methods used for metallic materials. These processes typically involve an accumulation of cyclic phase changes. The widespread interest in these methods is largely stimulated by their unique ability to create components of considerable complexity. However, modeling such processes is exceedingly difficult due to the highly localized and drastic material evolution that often occurs over the course of the manufacture time of each component. Final product characterization and validation are currently driven primarily by experimental means as a result of the lack of robust modeling procedures. In the present work, the authors discuss primary detrimental hurdles that have plagued effective modeling of AM methods for metallic materials while also providing logical speculation into preferable research directions for overcoming these hurdles. The primary focus of this work encompasses the specific areas of high-performance computing, multiscale modeling, materials characterization, process modeling, experimentation, and validation for final product performance of additively manufactured metallic components.

  12. Sensitive, time-resolved, broadband spectroscopy of single transient processes

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Baev, Ivan; Hellmig, Ortwin; Sengstock, Klaus; Baev, Valery M.

    2015-09-01

    Intracavity absorption spectroscopy with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of transient gain and absorption in electrically excited Xe and Kr plasmas. The achieved time resolution for broadband spectral recording of a single process is 25 µs. For pulsed-periodic processes, the time resolution is limited by the laser pulse duration, which is set here to 3 µs. This pulse duration also predefines the effective absorption path length, which amounts to 900 m. The presented technique can be applied to multicomponent analysis of single transient processes such as shock tube experiments, pulse detonation engines, or explosives.

  13. Infrared Signature Analysis: Real Time Monitoring Of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Bangs, Edmund R.

    1988-01-01

    The ability to monitor manufacturing processes in an adaptive control mode and perform an inspection in real time is of interest to fabricators in the pressure vessel, aerospace, automotive, nuclear and shipbuilding industries. Results of a series of experiments using infrared thermography as the principal sensing mode are presented to show how artificial intelligence contained in infrared isotherm, contains vast critical process variables. Image processing computer software development has demonstrated in a spot welding application how the process can be monitored and controlled in real time. The IR vision sensor program is now under way. Research thus far has focused on fusion welding, resistance spot welding and metal removal.

  14. Real time speech recognition on a distributed digital processing array

    NASA Astrophysics Data System (ADS)

    Simpson, P.; Roberts, J. B. G.

    1983-08-01

    A compact digital signal processor based on the architecture of the ICL Distributed Array Processor (DAP) is under development for MOD applications in Radar, ESM, Image Processing, etc. This Memorandum examines its applicability to speech recognition. In such a distributed processor, optimum mapping of the problem on to the array of processors is vital for efficiency. Three mappings of a dynamic time warping algorithm for isolated word recognition are examined, leading to a feasbile real time capability for continuous speech processing. The compatibility found between dynamic programming methods and this class of machine enlarges the scope of signal processing algorithms foreseen as amenable to parallel processing.

  15. Value Addition to Sulfate Waste Pickle Liquor of Steel Industry Using Hydrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Agrawal, Archana; Sahu, K. K.

    2009-12-01

    The solvent extraction of concentrated acid was investigated from sulfate waste pickle liquors using Cyanex 923 (trialkylphosphine oxide (TRPO); manufactured by Cytec Industries Inc., Woodland Park, NJ; provided by Cyanamid Canada Inc. (Markham, Canada)) as an extractant. The effect of various parameters was studied such as extractant concentration, organic-to-aqueous phase ratio, temperature. and retention time on acid extraction from the waste pickle liquor to the organic phase, After the saturation of the organic phase with sulfuric acid, stripping studies were performed to back-extract the pure acid into the aqueous phase. The raffinate of the solvent extraction process that contains both ferrous and ferric iron as well as trace impurities was subjected to oxidation and hydrothermal treatment to precipitate iron with a well-defined pseudo-cubic morphology and a high coercivity value that renders it suitable for high-grade ferrite production.

  16. Course Development Cycle Time: A Framework for Continuous Process Improvement.

    ERIC Educational Resources Information Center

    Lake, Erinn

    2003-01-01

    Details Edinboro University's efforts to reduce the extended cycle time required to develop new courses and programs. Describes a collaborative process improvement framework, illustrated data findings, the team's recommendations for improvement, and the outcomes of those recommendations. (EV)

  17. Equivalence of time and aperture domain additive noise in ultrasound coherence

    PubMed Central

    Bottenus, Nick B.; Trahey, Gregg E.

    2015-01-01

    Ultrasonic echoes backscattered from diffuse media, recorded by an array transducer and appropriately focused, demonstrate coherence predicted by the van Cittert–Zernike theorem. Additive noise signals from off-axis scattering, reverberation, phase aberration, and electronic (thermal) noise can all superimpose incoherent or partially coherent signals onto the recorded echoes, altering the measured coherence. An expression is derived to describe the effect of uncorrelated random channel noise in terms of the noise-to-signal ratio. Equivalent descriptions are made in the aperture dimension to describe uncorrelated magnitude and phase apodizations of the array. Binary apodization is specifically described as an example of magnitude apodization and adjustments are presented to minimize the artifacts caused by finite signal length. The effects of additive noise are explored in short-lag spatial coherence imaging, an image formation technique that integrates the calculated coherence curve of acquired signals up to a small fraction of the array length for each lateral and axial location. A derivation of the expected contrast as a function of noise-to-signal ratio is provided and validation is performed in simulation. PMID:25618045

  18. Processing time using Datatrieve-11, clunks, and FORTRAN

    SciTech Connect

    Horning, R.R.; Goode, W.E.

    1983-01-01

    Although Datatrieve-11 processes dates with 100-ns resolution using clunks, it has no provision for processing time. This paper describes a set of Datatrieve-11 procedures and FORTRAN-callable subroutines for handling time, as well as dates, expressed in clunks. Although the FORTRAN-callable subroutines use RMS modules, these modules can be extracted from the appropriate RMS library, allowing FORTRAN programs to be linked to an FCS library instead of to RMS.

  19. An architecture for heuristic control of real-time processes

    NASA Technical Reports Server (NTRS)

    Raulefs, P.; Thorndyke, P. W.

    1987-01-01

    Abstract Process management combines complementary approaches of heuristic reasoning and analytical process control. Management of a continuous process requires monitoring the environment and the controlled system, assessing the ongoing situation, developing and revising planned actions, and controlling the execution of the actions. For knowledge-intensive domains, process management entails the potentially time-stressed cooperation among a variety of expert systems. By redesigning a blackboard control architecture in an object-oriented framework, researchers obtain an approach to process management that considerably extends blackboard control mechanisms and overcomes limitations of blackboard systems.

  20. Reaction Time and Movement Time as Measures of Stimulus Evaluation and Response Processes.

    ERIC Educational Resources Information Center

    Houlihan, Michael; And Others

    1994-01-01

    Three studies involving 16 college students explored cognitive processes reflected by reaction time (RT) and movement time (MT). The hypothesis that correlations of RT and MT with measures of intelligence are due to effects on a common stage of information processing cannot be rejected on the basis of study findings. (SLD)

  1. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds.

    PubMed

    Dean, David; Jonathan, Wallace; Siblani, Ali; Wang, Martha O; Kim, Kyobum; Mikos, Antonios G; Fisher, John P

    2012-03-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP(®) (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory(®). To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO(2)) as a dye, Irgacure(®) 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity. PMID:23066427

  2. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds

    PubMed Central

    Dean, David; Wallace, Jonathan; Siblani, Ali; Wang, Martha O.; Kim, Kyobum; Mikos, Antonios G.; Fisher, John P.

    2012-01-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP® (Texas Instruments, Dallas, TX) chip. One such additive manufacturing device is the envisionTEC (Ferndale, MI) Perfactory®. To use cDLP we integrate a photo-crosslinkable polymer, a photo-initiator, and a biocompatible dye. The dye attenuates light, thereby limiting the depth of polymerization. In this study we fabricated scaffolds using the well-studied resorbable polymer, poly(propylene fumarate) (PPF), titanium dioxide (TiO2) as a dye, Irgacure® 819 (BASF [Ciba], Florham Park, NJ) as an initiator, and diethyl fumarate as a solvent to control viscosity. PMID:23066427

  3. Simulation of Powder Layer Deposition in Additive Manufacturing Processes Using the Discrete Element Method

    SciTech Connect

    Herbold, E. B.; Walton, O.; Homel, M. A.

    2015-10-26

    This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulations emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.

  4. Efficient Bayesian inference for natural time series using ARFIMA processes

    NASA Astrophysics Data System (ADS)

    Graves, Timothy; Gramacy, Robert; Franzke, Christian; Watkins, Nicholas

    2016-04-01

    Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. We present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators [1]. In addition we show how the method can be used to perform joint inference of the stability exponent and the memory parameter when ARFIMA is extended to allow for alpha-stable innovations. Such models can be used to study systems where heavy tails and long range memory coexist. [1] Graves et al, Nonlin. Processes Geophys., 22, 679-700, 2015; doi:10.5194/npg-22-679-2015.

  5. Naming-Speed Processes, Timing, and Reading: A Conceptual Review.

    ERIC Educational Resources Information Center

    Wolf, Maryanne; Bowers, Patricia Greig; Biddle, Kathleen

    2000-01-01

    This article reviews evidence for seven central questions about the role of naming-speed deficits in developmental reading disabilities. Cross-sectional, longitudinal, and cross-linguistic research on naming-speed processes, timing processes, and reading is presented. An evolving model of visual naming illustrates areas of difference and areas of…

  6. 5 CFR 2411.8 - Time limits for processing requests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Time limits for processing requests. 2411.8 Section 2411.8 Administrative Personnel FEDERAL LABOR RELATIONS AUTHORITY, GENERAL COUNSEL OF THE FEDERAL LABOR RELATIONS AUTHORITY AND FEDERAL SERVICE IMPASSES PANEL GENERAL PROVISIONS AVAILABILITY OF OFFICIAL INFORMATION § 2411.8 Time limits...

  7. Speech processing based on short-time Fourier analysis

    SciTech Connect

    Portnoff, M.R.

    1981-06-02

    Short-time Fourier analysis (STFA) is a mathematical technique that represents nonstationary signals, such as speech, music, and seismic signals in terms of time-varying spectra. This representation provides a formalism for such intuitive notions as time-varying frequency components and pitch contours. Consequently, STFA is useful for speech analysis and speech processing. This paper shows that STFA provides a convenient technique for estimating and modifying certain perceptual parameters of speech. As an example of an application of STFA of speech, the problem of time-compression or expansion of speech, while preserving pitch and time-varying frequency content is presented.

  8. Investigating critical effects of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose tablets.

    PubMed

    Patadia, Riddhish; Vora, Chintan; Mittal, Karan; Mashru, Rajashree

    2016-01-01

    The research envisaged focuses on vital impacts of variegated lubricants, glidants and hydrophilic additives on lag time of press coated ethylcellulose (EC) tablets using prednisone as a model drug. Several lubricants and glidants such as magnesium stearate, colloidal SiO2, sodium stearyl fumarate, talc, stearic acid, polyethylene glycol (6000) and glyceryl behenate were investigated to understand their effects on lag time by changing their concentrations in outer coat. Further, the effects of hydrophilic additives on lag time were examined for hydroxypropylmethylcellulose (E5), hydroxypropylcellulose (EF and SSL), povidone (K30), copovidone, polyethylene glycol (4000), lactose and mannitol. In vitro drug release testing revealed that each selected lubricant/glidant, if present even at concentration of 0.25% w/w, significantly reduced the lag time of press coated tablets. Specifically, colloidal SiO2 and/or magnesium stearate were detrimental while other lubricants/glidants were relatively less injurious. Among hydrophilic additives, freely water soluble fillers had utmost influence in lag time, whereas, comparatively less impact was observed with polymeric binders. Concisely, glidant and lubricant should be chosen to have minimal impact on lag time and further judicious selection of hydrophilic additives should be exercised for modulating lag time of pulsatile release formulations. PMID:25566928

  9. Understanding salinisation processes for a restored coastal wetland at the Baltic Sea in Germany using Generalised Additive Models

    NASA Astrophysics Data System (ADS)

    Selle, Benny; Gräff, Thomas

    2015-04-01

    This contribution reports on the analysis of monitoring data for a 490 ha coastal wetland called Hütelmoor at the Baltic Sea in Germany. Protection measures against sand erosion on the adjacent coastline began in 1963 and stopped seawater intrusions. The wetland was intensively drained and agriculturally used from 1970 until 1989. During the last 25 years, a realignment scheme was implemented which included the termination of beach and dune nourishment, drainage measures as well as agricultural activity. From 2011, water levels and the electrical conductivity were measured for several monitoring wells in the area to better understand the re-salinisation and re-wetting processes including its implications for the development of habitat for flora and fauna. Time series of electrical conductivity were analysed using Generalised Additive Models with additional data on the hydraulic gradient between the water levels in the observation wells and the Baltic sea, rainfall and potential evapotranspiration. Using this analysis, we were able to separate out different processes governing groundwater salinity for the Hütelmoor including dilution from groundwater recharge and seawater intrusion.

  10. Vectran Fiber Time-Dependent Behavior and Additional Static Loading Properties

    NASA Technical Reports Server (NTRS)

    Fette, Russell B.; Sovinski, Marjorie F.

    2004-01-01

    Vectran HS appears from literature and testing to date to be an ideal upgrade from Kevlar braided cords for many long-term, static-loading applications such as tie-downs on solar arrays. Vectran is a liquid crystalline polymer and exhibits excellent tensile properties. The material has been touted as a zero creep product. Testing discussed in this report does not support this statement, though the creep is on the order of four times slower than with similar Kevlar 49 products. Previous work with Kevlar and new analysis of Vectran testing has led to a simple predictive model for Vectran at ambient conditions. The mean coefficient of thermal expansion (negative in this case) is similar to Kevlar 49, but is not linear. A positive transition in the curve occurs near 100 C. Out-gassing tests show that the material performs well within parameters for most space flight applications. Vectran also offers increased abrasion resistance, minimal moisture regain, and similar UV degradation. The effects of material construction appear to have a dramatic effect in stress relaxation for braided Vectran. To achieve the improved relaxation rate, upgrades must also examine alternate construction or preconditioning methods. This report recommends Vectran HS as a greatly improved replacement material for applications where time-dependent relaxation is a major factor.

  11. Efficient maximum likelihood parameterization of continuous-time Markov processes

    PubMed Central

    McGibbon, Robert T.; Pande, Vijay S.

    2015-01-01

    Continuous-time Markov processes over finite state-spaces are widely used to model dynamical processes in many fields of natural and social science. Here, we introduce a maximum likelihood estimator for constructing such models from data observed at a finite time interval. This estimator is dramatically more efficient than prior approaches, enables the calculation of deterministic confidence intervals in all model parameters, and can easily enforce important physical constraints on the models such as detailed balance. We demonstrate and discuss the advantages of these models over existing discrete-time Markov models for the analysis of molecular dynamics simulations. PMID:26203016

  12. Survival-time statistics for sample space reducing stochastic processes

    NASA Astrophysics Data System (ADS)

    Yadav, Avinash Chand

    2016-04-01

    Stochastic processes wherein the size of the state space is changing as a function of time offer models for the emergence of scale-invariant features observed in complex systems. I consider such a sample-space reducing (SSR) stochastic process that results in a random sequence of strictly decreasing integers {x (t )},0 ≤t ≤τ , with boundary conditions x (0 )=N and x (τ ) = 1. This model is shown to be exactly solvable: PN(τ ) , the probability that the process survives for time τ is analytically evaluated. In the limit of large N , the asymptotic form of this probability distribution is Gaussian, with mean and variance both varying logarithmically with system size: <τ >˜lnN and στ2˜lnN . Correspondence can be made between survival-time statistics in the SSR process and record statistics of independent and identically distributed random variables.

  13. Processing of noisy magnetotelluric data using digital filters and additional data selection criteria

    NASA Astrophysics Data System (ADS)

    Fontes, S. L.; Harinarayana, T.; Dawes, G. J. K.; Hutton, V. R. S.

    1988-10-01

    Although the magnetotelluric (MT) method is known to be effective and fast in probing the electrical conductivity structure of the Earth at crustal depths, the results are often degraded by industrial and cultural noise. To obtain reliable processed results for modelling, it is first necessary to extract or select the natural signals from the contaminated time series. Various noise-reduction techniques based on digital filters are discussed with special reference to persistent noise signals, e.g. from power lines, DC-operated railways and electrical fences. Both previously suggested techniques (delay-line and notch filtering) and two other procedures (maximum entropy extension and deconvolution filtering) are applied to both synthetic data and to field observations from southern Scotland and the Italian Alps. Better quality data sets and more geophysically acceptable Earth models are shown to result. Noise of a more intermittent nature has recently been observed in MT observations near the development site of the geothermal power station on Milos, Greece. Large highly coherent electromagnetic field signals were observed to coincide with the opening and closure of the valves on the test wells. In this case, meaningful apparent resistivity curves could be obtained from an undisturbed subset of the previously accepted data, which had been selected mainly on the basis of signal power. Delay-line filtering is shown to be superior to notch filtering in eliminating non-sinusoidal noise, while both the MEM extension and the window deconvolution techniques are found to be useful in spike removal. These studies illustrate that use of an automatic data selection procedure should only be undertaken with great care in areas where the cultural noise is high. In such cases, continuous time-domain monitoring of the MT signals is recommended. The appropriate techniques of noise reduction can then be applied.

  14. High-density FPGAs for real-time video processing

    NASA Astrophysics Data System (ADS)

    Nordhauser, Steven; Beckstead, Jeffrey A.; Castracane, James; Koltai, Peter J.; Mouzakes, Jason; Simkulet, Michelle D.

    1997-04-01

    The use of an off-the-shelf general purpose processing system supplied by Giga Operations as applied to real-time video applications is described. The system is modular enough to be used in many scientific and industrial applications and powerful enough to maintain the throughput required for real-time video processing. This hardware and the associated programming environment has enabled InterScience to pursue research in real-time data compression, real-time Electronic Speckle Pattern Interferometry (ESPI) image processing, and industrial quality control and manufacturing. The system is based on Xilinx 4000 series field programmable gate arrays with associated static and dynamic random access memory in an architecture optimized for video processing on either the VL-Bus or PCI. This paper will focus on the design and development of a real-time frame subtractor for ESPI using this technology. Examples of the improvement in research capability provided by real-time frame subtraction are shown, including images from biomedical experiments. Further applications, based on this system are described. These include real-time data compression, quality control for production lines as part of an automated inspection system and a multi-camera security system allowing motion estimation to automatically prioritize camera selection.

  15. An intelligent processing environment for real-time simulation

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Wells, Buren Earl, Jr.

    1988-01-01

    The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.

  16. Near Real-Time Processing of Proteomics Data Using Hadoop.

    PubMed

    Hillman, Chris; Ahmad, Yasmeen; Whitehorn, Mark; Cobley, Andy

    2014-03-01

    This article presents a near real-time processing solution using MapReduce and Hadoop. The solution is aimed at some of the data management and processing challenges facing the life sciences community. Research into genes and their product proteins generates huge volumes of data that must be extensively preprocessed before any biological insight can be gained. In order to carry out this processing in a timely manner, we have investigated the use of techniques from the big data field. These are applied specifically to process data resulting from mass spectrometers in the course of proteomic experiments. Here we present methods of handling the raw data in Hadoop, and then we investigate a process for preprocessing the data using Java code and the MapReduce framework to identify 2D and 3D peaks. PMID:27447310

  17. Analysis of electron capture process in charge pumping sequence using time domain measurements

    SciTech Connect

    Hori, Masahiro Watanabe, Tokinobu; Ono, Yukinori; Tsuchiya, Toshiaki

    2014-12-29

    A method for analyzing the electron capture process in the charge pumping (CP) sequence is proposed and demonstrated. The method monitors the electron current in the CP sequence in time domain. This time-domain measurements enable us to directly access the process of the electron capture to the interface defects, which are obscured in the conventional CP method. Using the time-domain measurements, the rise time dependence of the capture process is systematically investigated. We formulate the capture process based on the rate equation and derive an analytic form of the current due to the electron capture to the defects. Based on the formula, the experimental data are analyzed and the capture cross section is obtained. In addition, the time-domain data unveil that the electron capture process completes before the electron channel opens, or below the threshold voltage in a low frequency range of the pulse.

  18. Food additives

    MedlinePlus

    Food additives are substances that become part of a food product when they are added during the processing or making of that food. "Direct" food additives are often added during processing to: Add nutrients ...

  19. Design and development of a layer-based additive manufacturing process for the realization of metal parts of designed mesostructure

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Bryant

    Low-density cellular materials, metallic bodies with gaseous voids, are a unique class of materials that are characterized by their high strength, low mass, good energy absorption characteristics, and good thermal and acoustic insulation properties. In an effort to take advantage of this entire suite of positive mechanical traits, designers are tailoring the cellular mesostructure for multiple design objectives. Unfortunately, existing cellular material manufacturing technologies limit the design space as they are limited to certain part mesostructure, material type, and macrostructure. The opportunity that exists to improve the design of existing products, and the ability to reap the benefits of cellular materials in new applications is the driving force behind this research. As such, the primary research goal of this work is to design, embody, and analyze a manufacturing process that provides a designer the ability to specify the material type, material composition, void morphology, and mesostructure topology for any conceivable part geometry. The accomplishment of this goal is achieved in three phases of research: (1) Design---Following a systematic design process and a rigorous selection exercise, a layer-based additive manufacturing process is designed that is capable of meeting the unique requirements of fabricating cellular material geometry. Specifically, metal parts of designed mesostructure are fabricated via three-dimensional printing of metal oxide ceramic powder followed by post-processing in a reducing atmosphere. (2) Embodiment ---The primary research hypothesis is verified through the use of the designed manufacturing process chain to successfully realize metal parts of designed mesostructure. (3) Modeling & Evaluation ---The designed manufacturing process is modeled in this final research phase so as to increase understanding of experimental results and to establish a foundation for future analytical modeling research. In addition to an analysis of

  20. Ultrafast Optical Signal Processing Based Upon Space-Time Dualities

    NASA Astrophysics Data System (ADS)

    van Howe, James; Xu, Chris

    2006-07-01

    The last two decades have seen a wealth of optical instrumentation based upon the concepts of space-time duality. A historical overview of how this beautiful framework has been exploited to develop instruments for optical signal processing is presented. The power of this framework is then demonstrated by reviewing four devices in detail based upon space-time dualities that have been experimentally demonstrated: 1) a time-lens timing-jitter compensator for ultralong-haul dense-wavelength-division-multiplexed dispersion-managed soliton transmission, 2) a multiwavelength pulse generator using time-lens compression, 3) a programmable ultrafast optical delay line by use of a time-prism pair, and 4) an enhanced ultrafast optical delay line by use of soliton propagation between a time-prism pair.

  1. Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    PubMed Central

    Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons

    2011-01-01

    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767

  2. Real-Time Fault Classification for Plasma Processes

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2011-01-01

    Plasma process tools, which usually cost several millions of US dollars, are often used in the semiconductor fabrication etching process. If the plasma process is halted due to some process fault, the productivity will be reduced and the cost will increase. In order to maximize the product/wafer yield and tool productivity, a timely and effective fault process detection is required in a plasma reactor. The classification of fault events can help the users to quickly identify fault processes, and thus can save downtime of the plasma tool. In this work, optical emission spectroscopy (OES) is employed as the metrology sensor for in-situ process monitoring. Splitting into twelve different match rates by spectrum bands, the matching rate indicator in our previous work (Yang, R.; Chen, R.S. Sensors 2010, 10, 5703–5723) is used to detect the fault process. Based on the match data, a real-time classification of plasma faults is achieved by a novel method, developed in this study. Experiments were conducted to validate the novel fault classification. From the experimental results, we may conclude that the proposed method is feasible inasmuch that the overall accuracy rate of the classification for fault event shifts is 27 out of 28 or about 96.4% in success. PMID:22164001

  3. Controlling Contagion Processes in Time-Varying Networks

    NASA Astrophysics Data System (ADS)

    Perra, Nicola; Liu, Suyu; Karsai, Marton; Vespignani, Alessandro

    2014-03-01

    The vast majority of strategies aimed at controlling contagion processes on networks considers the connectivity pattern of the system as either quenched or annealed. However, in the real world many networks are highly dynamical and evolve in time concurrently to the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for time-varying networks. We consider the removal/immunization of individual nodes according the their activity in the network and develop a block variable mean-field approach that allows the derivation of the equations describing the evolution of the contagion process concurrently to the network dynamic. We derive the critical immunization threshold and assess the effectiveness of the control strategies. Finally, we validate the theoretical picture by simulating numerically the information spreading process and control strategies in both synthetic networks and a large-scale, real-world mobile telephone call dataset.

  4. Historical Time-Domain: Data Archives, Processing, and Distribution

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.; Griffin, R. Elizabeth

    2012-04-01

    The workshop on Historical Time-Domain Astronomy (TDA) was attended by a near-capacity gathering of ~30 people. From information provided in turn by those present, an up-to-date overview was created of available plate archives, progress in their digitization, the extent of actual processing of those data, and plans for data distribution. Several recommendations were made for prioritising the processing and distribution of historical TDA data.

  5. Processing system for real-time holographic video computation

    NASA Astrophysics Data System (ADS)

    Nwodoh, Thomas A.; Bove, V. Michael, Jr.; Watlington, John A.; Benton, Stephen A.

    1999-08-01

    This paper discusses the Chidi holographic video processing system (called Holo-Chidi) used for real-time computation of computer generated holograms and the subsequent display of the holograms at video frame rates. Chidi is a reconfigurable multimedia processing system designed at the MIT Media Laboratory for real-time synthesis and analysis of multimedia data in general and digital video frames in particular. Holo-Chidi which is an adaptation of Chidi, comprises two main components: the sets of processor cards and the display interface cards.

  6. Time reversibility from visibility graphs of nonstationary processes

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Flanagan, Ryan

    2015-08-01

    Visibility algorithms are a family of methods to map time series into networks, with the aim of describing the structure of time series and their underlying dynamical properties in graph-theoretical terms. Here we explore some properties of both natural and horizontal visibility graphs associated to several nonstationary processes, and we pay particular attention to their capacity to assess time irreversibility. Nonstationary signals are (infinitely) irreversible by definition (independently of whether the process is Markovian or producing entropy at a positive rate), and thus the link between entropy production and time series irreversibility has only been explored in nonequilibrium stationary states. Here we show that the visibility formalism naturally induces a new working definition of time irreversibility, which allows us to quantify several degrees of irreversibility for stationary and nonstationary series, yielding finite values that can be used to efficiently assess the presence of memory and off-equilibrium dynamics in nonstationary processes without the need to differentiate or detrend them. We provide rigorous results complemented by extensive numerical simulations on several classes of stochastic processes.

  7. Processing of pitch and time sequences in music.

    PubMed

    Neuhaus, Christiane; Knösche, Thomas R

    2008-08-15

    Pitch and duration -- either as written symbols or in auditory form -- are the basic structural properties in tones that form a melodic sequence. From the cognitive perspective, it is still a matter of debate whether, and at which processing stage, these two factors are processed independently or interdependently. The present study addresses this issue from the neuroscientist's point of view by measuring event-related potentials (ERPs) in musicians and non-musicians. Either the pitches or the durations of the tones, or both, were permuted randomly over a set of melodies in order to remove all sequential ordering with respect to these factors. Effects of both, pitch and time order, on the peak amplitudes of the P1-N1-P2 complex were observed. ANOVA revealed that sequential processing may depend on the different levels of skill in analytical hearing. For musicians, strong interaction effects for all three ERP components corroborated the interdependence of pitch and time processing. Musicians also seem to rely on coherent time structure more than non-musicians and showed enlarged P1 and P2 components whenever tone duration, either with or without preserved pitch, was at random. Non-musicians tend to use ordered pitch relations for perceptual orientation, and main effects without any interactions might indicate some kind of independent processing of both dimensions at some processing stages. PMID:18584960

  8. 26 CFR 301.6110-5 - Notice and time requirements; actions to restrain disclosure; actions to obtain additional...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Internal Revenue Service determines that the request constitutes a request for disclosure of the... the Internal Revenue Service has determined that additional disclosure of information other than the... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Notice and time requirements; actions...

  9. 38 CFR 20.304 - Rule 304. Filing additional evidence does not extend time limit for appeal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Rule 304. Filing additional evidence does not extend time limit for appeal. 20.304 Section 20.304 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS (CONTINUED) BOARD OF VETERANS' APPEALS: RULES OF PRACTICE Filing § 20.304 Rule 304. Filing...

  10. Toward real-time remote processing of laparoscopic video.

    PubMed

    Ronaghi, Zahra; Duffy, Edward B; Kwartowitz, David M

    2015-10-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and use small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery uses the images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, California). The video streams generate approximately 360 MB of data per second, demonstrating a trend toward increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process, and visualize data in real time is essential for the performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We have performed image processing algorithms on a high-definition head phantom video (1920 × 1080 pixels) and transferred the video using a message passing interface. The total transfer time is around 53 ms or 19 fps. We will optimize and parallelize these algorithms to reduce the total time to 30 ms. PMID:26668817

  11. Real-time image processing architecture for robot vision

    NASA Astrophysics Data System (ADS)

    Persa, Stelian; Jonker, Pieter P.

    2000-10-01

    This paper presents a study of the impact of MMX technology and PIII Streaming SIMD (Single Instruction stream, Multiple Data stream). Extensions in image processing and machine vision application, which, because of their hard real time constrains, is an undoubtedly challenging task. A comparison with traditional scalar code and with other parallel SIMD architecture (IMPA-VISION board) is discussed with emphasis of the particular programming strategies for speed optimization. More precisely we discuss the low level and intermediate level image processing algorithms, which are best suited for parallel SIMD implementation. High-level image processing algorithms are more suitable for parallel implementation on MIMD architectures. While the IMAP-VISION system performs better because of the large number of processing elements, the MMX processor and PIII (with Streaming SIMD Extensions) remains a good candidate for low-level image processing.

  12. Preliminary evaluation of feeder and lint slide moisture addition on ginning, fiber quality, and textile processing of western cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the effects of moisture addition at the gin stand feeder conditioning hopper and/or the battery condenser slide on gin performance and Western cotton fiber quality and textile processing. The test treatments included no moisture addition, feeder hopper hum...

  13. Modeling and optimum time performance for concurrent processing

    NASA Astrophysics Data System (ADS)

    Mielke, Roland R.; Stoughton, John W.; Som, Sukhamoy

    1988-08-01

    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example.

  14. Modeling and optimum time performance for concurrent processing

    NASA Technical Reports Server (NTRS)

    Mielke, Roland R.; Stoughton, John W.; Som, Sukhamoy

    1988-01-01

    The development of a new graph theoretic model for describing the relation between a decomposed algorithm and its execution in a data flow environment is presented. Called ATAMM, the model consists of a set of Petri net marked graphs useful for representing decision-free algorithms having large-grained, computationally complex primitive operations. Performance time measures which determine computing speed and throughput capacity are defined, and the ATAMM model is used to develop lower bounds for these times. A concurrent processing operating strategy for achieving optimum time performance is presented and illustrated by example.

  15. Real-time hierarchically distributed processing network interaction simulation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Wu, C.

    1987-01-01

    The Telerobot Testbed is a hierarchically distributed processing system which is linked together through a standard, commercial Ethernet. Standard Ethernet systems are primarily designed to manage non-real-time information transfer. Therefore, collisions on the net (i.e., two or more sources attempting to send data at the same time) are managed by randomly rescheduling one of the sources to retransmit at a later time interval. Although acceptable for transmitting noncritical data such as mail, this particular feature is unacceptable for real-time hierarchical command and control systems such as the Telerobot. Data transfer and scheduling simulations, such as token ring, offer solutions to collision management, but do not appropriately characterize real-time data transfer/interactions for robotic systems. Therefore, models like these do not provide a viable simulation environment for understanding real-time network loading. A real-time network loading model is being developed which allows processor-to-processor interactions to be simulated, collisions (and respective probabilities) to be logged, collision-prone areas to be identified, and network control variable adjustments to be reentered as a means of examining and reducing collision-prone regimes that occur in the process of simulating a complete task sequence.

  16. 12 CFR 404.5 - Time for processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Records Under the Freedom of Information Act. § 404.5 Time for processing. (a) General. Ex-Im Bank... unusual circumstances exist. Ex-Im Bank shall provide written notice to the requester whenever such..., then Ex-Im Bank shall offer the requester the opportunity to: (1) Alter the request so that it may...

  17. 12 CFR 404.5 - Time for processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Records Under the Freedom of Information Act. § 404.5 Time for processing. (a) General. Ex-Im Bank... unusual circumstances exist. Ex-Im Bank shall provide written notice to the requester whenever such..., then Ex-Im Bank shall offer the requester the opportunity to: (1) Alter the request so that it may...

  18. 36 CFR 218.10 - Objection time periods and process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Objection time periods and process. 218.10 Section 218.10 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF... Hazardous Fuel Reduction Projects Authorized by the Healthy Forests Restoration Act of 2003 §...

  19. Signal processing for the TOPAZ Time Projection Chamber

    SciTech Connect

    Ikeda, H.; Iwasaki, H.; Iwata, S.; Kobayashi, M.; Matsuda, T.; Nakamura, K.; Yamauchi, M.; Aihara, H.; Enomoto, R.; Fujii, H.

    1987-02-01

    The signals from the TOPAZ Time Projection Chamber, after being processed by a low noise preamplifier and a shaper amplifier, are recorded by a CCD based digitizer system. The system achieved an integral operation in the environment of FASTBUS with Sector Sequencers and FPI.

  20. Time to Teach: Teaching-Learning Processes in Primary Schools.

    ERIC Educational Resources Information Center

    Bennett, Neville

    A model of the teaching-learning process identifies and describes varied behavioral dimensions of the classroom and how they relate to pupil achievement. The model is based on the assumption that the total amount of engaged time on a particular topic is the most important determinant of achievement and has the components of: (1) quantity of…

  1. The Time Course of Morphological Processing in a Second Language

    ERIC Educational Resources Information Center

    Clahsen, Harald; Balkhair, Loay; Schutter, John-Sebastian; Cunnings, Ian

    2013-01-01

    We report findings from psycholinguistic experiments investigating the detailed timing of processing morphologically complex words by proficient adult second (L2) language learners of English in comparison to adult native (L1) speakers of English. The first study employed the masked priming technique to investigate "-ed" forms with a group of…

  2. The Timing of Island Effects in Nonnative Sentence Processing

    ERIC Educational Resources Information Center

    Felser, Claudia; Cunnings, Ian; Batterham, Claire; Clahsen, Harald

    2012-01-01

    Using the eye-movement monitoring technique in two reading comprehension experiments, this study investigated the timing of constraints on wh-dependencies (so-called island constraints) in first- and second-language (L1 and L2) sentence processing. The results show that both L1 and L2 speakers of English are sensitive to extraction islands during…

  3. Detonation of highly dilute porous explosives; II: Influence of inert additives on the structure of the front, the parameters, and the reaction time

    SciTech Connect

    Shvedov, K.K.; Aniskin, A.I.; Dremin, A.N.; Il'in, A.N.

    1982-06-01

    For the detonation of porous explosives with inert additives, as for the detonation of individual porous explosives, the basic postulates and conclusions of the modern gasdynamic theory of detonation are valid. The influence of solid, refractory inert additives on the decomposition mechanism of porous explosives depends on the individual properties of the explosives and mainly on the dispersity of the additives. With the elimination of pronounced heating of the additives in mixtures with TNT, a certain positive influence on the appearance of decomposition sources and the total reaction time is observed. In cases with hexogen, no such influence is observed, which is evidently the result of physical inhomogeneity of the porous structure of the charge and the sufficiently high detonation pressures of the mixtures. The basic influence of inert additives on the critical diameter, front structure, detonation parameters, and reaction time of porous explosives is exerted through processes of energy absorption in the reaction region and factors leading to energy losses may lead to ambiguity of the detonation conditions in a system with specified chemical potential energy. The state of the additive in the reaction region must be taken into account for reliable theoretical description of the detonation conditions of porous explosives with a large content of inert additives.

  4. Combined action of time-delay and colored cross-associated multiplicative and additive noises on stability and stochastic resonance for a stochastic metapopulation system

    NASA Astrophysics Data System (ADS)

    Wang, Kang-Kang; Zong, De-Cai; Wang, Ya-Jun; Li, Sheng-Hong

    2016-05-01

    In this paper, the transition between the stable state of a big density and the extinction state and stochastic resonance (SR) for a time-delayed metapopulation system disturbed by colored cross-correlated noises are investigated. By applying the fast descent method, the small time-delay approximation and McNamara and Wiesenfeld's SR theory, we investigate the impacts of time-delay, the multiplicative, additive noises and colored cross-correlated noise on the SNR and the shift between the two states of the system. Numerical results show that the multiplicative, additive noises and time-delay can all speed up the transition from the stable state to the extinction state, while the correlation noise and its correlation time can slow down the extinction process of the population system. With respect to SNR, the multiplicative noise always weakens the SR effect, while noise correlation time plays a dual role in motivating the SR phenomenon. Meanwhile, time-delay mainly plays a negative role in stimulating the SR phenomenon. Conversely, it could motivate the SR effect to increase the strength of the cross-correlation noise in the SNR-β plot, while the increase of additive noise intensity will firstly excite SR, and then suppress the SR effect.

  5. Real-Time Monitoring of Psychotherapeutic Processes: Concept and Compliance

    PubMed Central

    Schiepek, Günter; Aichhorn, Wolfgang; Gruber, Martin; Strunk, Guido; Bachler, Egon; Aas, Benjamin

    2016-01-01

    Objective: The feasibility of a high-frequency real-time monitoring approach to psychotherapy is outlined and tested for patients' compliance to evaluate its integration to everyday practice. Criteria concern the ecological momentary assessment, the assessment of therapy-related cognitions and emotions, equidistant time sampling, real-time nonlinear time series analysis, continuous participative process control by client and therapist, and the application of idiographic (person-specific) surveys. Methods: The process-outcome monitoring is technically realized by an internet-based device for data collection and data analysis, the Synergetic Navigation System. Its feasibility is documented by a compliance study on 151 clients treated in an inpatient and a day-treatment clinic. Results: We found high compliance rates (mean: 78.3%, median: 89.4%) amongst the respondents, independent of the severity of symptoms or the degree of impairment. Compared to other diagnoses, the compliance rate was lower in the group diagnosed with personality disorders. Conclusion: The results support the feasibility of high-frequency monitoring in routine psychotherapy settings. Daily collection of psychological surveys allows for the assessment of highly resolved, equidistant time series data which gives insight into the nonlinear qualities of therapeutic change processes (e.g., pattern transitions, critical instabilities). PMID:27199837

  6. Modeling operators' emergency response time for chemical processing operations.

    PubMed

    Murray, Susan L; Harputlu, Emrah; Mentzer, Ray A; Mannan, M Sam

    2014-01-01

    Operators have a crucial role during emergencies at a variety of facilities such as chemical processing plants. When an abnormality occurs in the production process, the operator often has limited time to either take corrective actions or evacuate before the situation becomes deadly. It is crucial that system designers and safety professionals can estimate the time required for a response before procedures and facilities are designed and operations are initiated. There are existing industrial engineering techniques to establish time standards for tasks performed at a normal working pace. However, it is reasonable to expect the time required to take action in emergency situations will be different than working at a normal production pace. It is possible that in an emergency, operators will act faster compared to a normal pace. It would be useful for system designers to be able to establish a time range for operators' response times for emergency situations. This article develops a modeling approach to estimate the time standard range for operators taking corrective actions or following evacuation procedures in emergency situations. This will aid engineers and managers in establishing time requirements for operators in emergency situations. The methodology used for this study combines a well-established industrial engineering technique for determining time requirements (predetermined time standard system) and adjustment coefficients for emergency situations developed by the authors. Numerous videos of workers performing well-established tasks at a maximum pace were studied. As an example, one of the tasks analyzed was pit crew workers changing tires as quickly as they could during a race. The operations in these videos were decomposed into basic, fundamental motions (such as walking, reaching for a tool, and bending over) by studying the videos frame by frame. A comparison analysis was then performed between the emergency pace and the normal working pace operations

  7. Corrosion Resistance of Powder Metallurgy Processed TiC/316L Composites with Mo Additions

    NASA Astrophysics Data System (ADS)

    Lin, Shaojiang; Xiong, Weihao

    2015-06-01

    To find out the effects of Mo addition on corrosion resistance of TiC/316L stainless steel composites, TiC/316L composites with addition of different contents of Mo were prepared by powder metallurgy. The corrosion resistance of these composites was evaluated by the immersion tests and polarization curves experiments. Results indicated that Mo addition decreased the corrosion rates of TiC/316L composites in H2SO4 solution in the case of Mo content below 2% whereas it displayed an opposite effect when Mo content was above that value. It was found that with an increase in the Mo content, the pitting corrosion resistance increased monotonically for TiC/316L composites in NaCl solution.

  8. Age, Time, and Decision Making: From Processing Speed to Global Time Horizons

    PubMed Central

    Löckenhoff, Corinna E.

    2013-01-01

    Time and time perceptions are integral to decision making because any meaningful choice is embedded in a temporal context and requires the evaluation of future preferences and outcomes. The present review examines the influence of chronological age on time perceptions and horizons and discusses implications for decision making across the life span. Time influences and interacts with decision making in multiple ways. Specifically, this review examines the following topic areas: (1) processing speed and decision time, (2) internal clocks and time estimation, (3) mental representations of future time and intertemporal choice, and (4) global time horizons. For each aspect, patterns of age differences and implications for decision strategies and quality are discussed. The conclusion proposes frameworks to integrate different lines of research and identifies promising avenues for future inquiry. PMID:22023567

  9. Intensification of catalytic cracking process by addition of heavy catalytic gasoil

    SciTech Connect

    Serikov, P.Yu.; Zaitseva, N.P.; Smidovich, E.V.

    1987-11-01

    The addition of heavy catalytic gasoil to cat cracker feed as a means of reducing the formation of coke was investigated. A vacuum gasoil was used as the feedstock, and a lube oil solvent extract and heavy catalytic gasoil were used as the activating additives. Data showed that feedstocks with the highest kinetic stability had the lowest coke formation in cracking. Kinetic stability was determined by the viscometric method. Test results show that heavy catalytic gasoil has a greater effect on reducing coke yield than the extract used.

  10. Processing of indexical information requires time: Evidence from change deafness

    PubMed Central

    Vitevitch, Michael S.; Donoso, Alexander

    2011-01-01

    Studies of change detection have increased our understanding of attention, perception, and memory. In two innovative experiments we showed that the change detection phenomenon can be used to examine other areas of cognition—specifically, the processing of linguistic and indexical information in spoken words. One hypothesis suggests that cognitive resources must be used to process indexical information, whereas an alternative suggests that it is processed more slowly than linguistic information. Participants performed a lexical decision task and were asked whether the voice presenting the stimuli changed. Nonwords varying in their likeness to real words were used in the lexical decision task to encourage participants to vary the amount of cognitive resources/processing time. More cognitive resources/processing time are required to make a lexical decision with word-like nonwords. Participants who heard word-like nonwords were more likely to detect the change when it occurred (Experiment 1) and were more confident that the voice was the same when it did not change (Experiment 2). These results suggest that indexical information is processed more slowly than linguistic information and demonstrate how change detection can provide insight to other areas of cognition. PMID:21678230

  11. Unified dead-time compensation structure for SISO processes with multiple dead times.

    PubMed

    Normey-Rico, Julio E; Flesch, Rodolfo C C; Santos, Tito L M

    2014-11-01

    This paper proposes a dead-time compensation structure for processes with multiple dead times. The controller is based on the filtered Smith predictor (FSP) dead-time compensator structure and it is able to control stable, integrating, and unstable processes with multiple input/output dead times. An equivalent model of the process is first computed in order to define the predictor structure. Using this equivalent model, the primary controller and the predictor filter are tuned to obtain an internally stable closed-loop system which also attempts some closed-loop specifications in terms of set-point tracking, disturbance rejection, and robustness. Some simulation case studies are used to illustrate the good properties of the proposed approach. PMID:25245526

  12. Effects of additives on the processing and properties of LARC-TPI polyimide

    NASA Technical Reports Server (NTRS)

    Elandjian, L.; Haghighat, R.; Lusignea, R.; Wallis, R.

    1990-01-01

    The blending of LARC-TPI polyimide with the thermotropic liquid crystal polymer designated Xydar and with four different oligomeric imide materials has facilitated the resulting resin systems' processing into films while enhancing their mechanical properties and lowering their coefficient of thermal expansion to virtually zero. Two film-formation processes have been evaluated: (1) the casting of polyamic acid films followed by thermal imidization and biaxial stretching, and (2) the blown-film melt-extrusion of fully imidized LARC-TPI polymer. The best results have been obtained through the use of Xydar as a processing aid at levels in the 10-30 percent range.

  13. Process Drama: The Use of Affective Space to Reduce Language Anxiety in the Additional Language Learning Classroom

    ERIC Educational Resources Information Center

    Piazzoli, Erika

    2011-01-01

    This paper describes a research project designed to find out what happens when process drama strategies are applied to an advanced level of additional language learning. In order to answer this question, the author designed and facilitated six process drama workshops as part of a third-year course of Italian at a university in Brisbane, Australia.…

  14. 12 CFR 390.128 - If the FDIC requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete my application, how will it process my application? 390.128 Section 390.128 Banks and Banking... additional information to complete my application, how will it process my application? (a) You may use the... will notify you that it has extended the period before the end of the initial 15-day period and...

  15. EFFECT OF A WHOLE-CATCHMENT N ADDITION ON STREAM DETRITUS PROCESSING

    EPA Science Inventory

    The Bear Brook Watershed in Maine (BBWM) is a paired catchment study investigating ecosystem effects of N and S deposition. Because of the decade long (NH4)2SO4 addition, the treatment catchment has higher stream NO3 and enriched foliar N concentrations compared to the reference ...

  16. Process for lowering the dielectric constant of polyimides using diamic acid additives

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M. (Inventor); St.clair, Anne K. (Inventor)

    1990-01-01

    Linear aromatic polyimides with low dielectric constants are produced by adding a diamic acid additive to the polyamic acid resin formed by the condensation of an aromatic dianhydride with an aromatic diamine. The resulting modified polyimide is a better electrical insulator than state-of-the-art commercially available polyimides.

  17. 46 CFR 39.1009 - Additional tank vessel vapor processing unit requirements-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... engineering requirements of 46 CFR chapter I, subchapter F. (b) Electrical equipment comprising the... the electrical engineering requirements of 46 CFR chapter I, subchapter J. (c) In addition to... comply with applicable requirements of 33 CFR part 154, subpart P. (d) When differences between...

  18. 46 CFR 39.1009 - Additional tank vessel vapor processing unit requirements-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineering requirements of 46 CFR chapter I, subchapter F. (b) Electrical equipment comprising the... the electrical engineering requirements of 46 CFR chapter I, subchapter J. (c) In addition to... comply with applicable requirements of 33 CFR part 154, subpart P. (d) When differences between...

  19. The addition of silicon carbide to surrogate nuclear fuel kernels made by the internal gelation process

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Hunn, J. D.; Birdwell, J. F.; Lindemer, T. B.; Collins, J. L.

    2010-06-01

    The US Department of Energy plans to use the internal gelation process to make tristructural isotropic (TRISO)-coated transuranic (TRU) fuel particles. The focus of this work is to develop TRU fuel kernels with high crush strengths, good ellipticity, and adequately dispersed silicon carbide (SiC). The submicron SiC particles in the TRU kernels are to serve as getters for excess oxygen and to potentially sequester palladium, rhodium, and ruthenium, which could damage the coatings during irradiation. Zirconium oxide microspheres stabilized with yttrium were used as surrogates because zirconium and TRU microspheres from the internal gelation process are amorphous and encounter similar processing problems. The hardness of SiC required modifications to the experimental system that was used to make uranium carbide kernels. Suitable processing conditions and equipment changes were identified so that the SiC could be homogeneously dispersed in gel spheres for subsequent calcination into strong spherical kernels.

  20. Recurrence plots of discrete-time Gaussian stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramdani, Sofiane; Bouchara, Frédéric; Lagarde, Julien; Lesne, Annick

    2016-09-01

    We investigate the statistical properties of recurrence plots (RPs) of data generated by discrete-time stationary Gaussian random processes. We analytically derive the theoretical values of the probabilities of occurrence of recurrence points and consecutive recurrence points forming diagonals in the RP, with an embedding dimension equal to 1. These results allow us to obtain theoretical values of three measures: (i) the recurrence rate (REC) (ii) the percent determinism (DET) and (iii) RP-based estimation of the ε-entropy κ(ε) in the sense of correlation entropy. We apply these results to two Gaussian processes, namely first order autoregressive processes and fractional Gaussian noise. For these processes, we simulate a number of realizations and compare the RP-based estimations of the three selected measures to their theoretical values. These comparisons provide useful information on the quality of the estimations, such as the minimum required data length and threshold radius used to construct the RP.

  1. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies

    NASA Astrophysics Data System (ADS)

    Min, Jae-Hong; Gelo, Nikolas J.; Jo, Hongki

    2016-04-01

    The newly developed smartphone application, named RINO, in this study allows measuring absolute dynamic displacements and processing them in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit (GPU), in addition to already powerful CPU and memories, embedded high-speed/ resolution camera, and open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop filter enable accurate and fast image processing, allowing up to 240fps for complete displacement calculation and real-time display. The performances of the developed smartphone application are experimentally validated, showing comparable accuracy with those of conventional laser displacement sensor.

  2. The effects of practice on speed of information processing using the Adjusting-Paced Serial Addition Test (Adjusting-PSAT) and the Computerized Tests of Information Processing (CTIP).

    PubMed

    Baird, B J; Tombaugh, Thomas N; Francis, M

    2007-01-01

    Three experiments were conducted to determine the effects of practice on the Adjusting-Paced Serial Addition Task (Adjusting-PSAT) (Tombaugh, 1999) and the Computerized Tests of Information Processing (CTIP) (Tombaugh & Rees, 2000). The Adjusting-PSAT is a computerized modification of the Paced Auditory Serial Addition Test (PASAT) (Gronwall, 1977) that makes the interval between digits contingent on the correctness of the response. This titration procedure permits a threshold value to be derived that represents the shortest presentation interval in which a person can process the digits to produce the correct sum. The CTIP consists of three reaction time tests that are progressively more difficult. Results showed that robust practice effects occurred with the Adjusting-PSAT, with the greatest increase in performance occurring on the first retest trial. Practice effects were equally prominent regardless of whether the first retest trial occurred 20A min, 1 week, or 3 months after the first administration. These gains were maintained for periods up to 6 months and were independent of modality of presentation (visual or auditory) and type of number list (easy or hard). In contrast to the findings with the Adjusting-PSAT, only minimal practice effects were observed with the CTIP. The major clinical implication of the study is that the high reliability coefficients for the CTIP, the lack of anxiety associated with its administration, and its insensitivity to variables such as numerical and verbal ability make the CTIP ideally suited for the serial evaluation of cognitive status. These characteristics also make the CTIP a viable alternative to the Adjusting-PSAT or PASAT for measuring speed of information processing. If the Adjusting-PSAT is administered repeatedly in clinical evaluations, a "dual baseline" or "run in" procedure should be used, with the second administration serving as the baseline measurement. PMID:17523883

  3. Dichotomy Boundary Glaciation Models: Implications for Timing and Glacial Processes

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2008-12-01

    An integrated system with glacial features exists at 34E, 41N in the Deuteronilus-Protonilus Mensae region. This 30,000 km2 valley system is typical of dozens of fretted valleys in this region along the dichotomy boundary. We compare features described in current geological observations with results from the University of Maine Ice Sheet Model (UMISM) that we feel support the glacial interpretation of these features and also allow speculation as to the timing and processes responsible for the formation of these features. Geological observations identify evidence for a number of features that are felt to be indicative of glacial flow. These include: 1) localized alcoves from which emanate narrow, lobate concentric-ridged flows interpreted to be remnants of debris-covered glaciers; 2) alcove depressions perhaps indicating sublimation of material from relict ice-rich accumulation zones; 3) plateau-ridge remnants between alcoves typical of glacially eroded aretes; 4) horseshoe-shaped ridges upstream of topographic obstacles; 5) convergence and merging of LVF fabric in the down-valley direction; 6) deformation, distortion and folding of LVF in the vicinity of convergence; 7) LVF with pits and elongated troughs in distorted areas; 8) distinctive lobe-shaped termini with associated pitting where the LVF emerges into the northern lowlands. This evidence defines a coherent, unified flow regime extending from the upper valley reaches down to the northern lowlands. Additional support for the glacial hypothesis comes from a GCM for a dusty-atmosphere Mars with obliquity set to 35o and a water source in the Tharsis region. The GCM generates a pattern of ice accumulation in good agreement with these geological observations. This climate is what one might expect to follow a high- obliquity excursion of the sort that built ice sheets on the Tharsis volcanoes. UMISM as used here is an adaptation for the Martian environment of a thermo-mechanically coupled shallow- ice approximation

  4. Expert system and process optimization techniques for real-time monitoring and control of plasma processes

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.

    1991-03-01

    To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).

  5. Towards real-time remote processing of laparoscopic video

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Duffy, Edward B.; Kwartowitz, David M.

    2015-03-01

    Laparoscopic surgery is a minimally invasive surgical technique where surgeons insert a small video camera into the patient's body to visualize internal organs and small tools to perform surgical procedures. However, the benefit of small incisions has a drawback of limited visualization of subsurface tissues, which can lead to navigational challenges in the delivering of therapy. Image-guided surgery (IGS) uses images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic camera system of interest is the vision system of the daVinci-Si robotic surgical system (Intuitive Surgical, Sunnyvale, CA, USA). The video streams generate approximately 360 megabytes of data per second, demonstrating a trend towards increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Processing this data on a bedside PC has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. The ability to acquire, process and visualize data in real-time is essential for performance of complex tasks as well as minimizing risk to the patient. As a result, utilizing high-speed networks to access computing clusters will lead to real-time medical image processing and improve surgical experiences by providing real-time augmented laparoscopic data. We aim to develop a medical video processing system using an OpenFlow software defined network that is capable of connecting to multiple remote medical facilities and HPC servers.

  6. Stable continuous-time autoregressive process driven by stable subordinator

    NASA Astrophysics Data System (ADS)

    Wyłomańska, Agnieszka; Gajda, Janusz

    2016-02-01

    In this paper we examine the continuous-time autoregressive moving average process driven by α-stable Lévy motion delayed by inverse stable subordinator. This process can be applied to high-frequency data with visible jumps and so-called "trapping-events". Those properties are often visible in financial time series but also in amorphous semiconductors, technical data describing the rotational speed of a machine working under various load regimes or data related to indoor air quality. We concentrate on the main characteristics of the examined subordinated process expressed in the language of the measures of dependence which are main tools used in statistical investigation of real data. However, because the analyzed system is based on the α-stable distribution therefore we cannot consider here the correlation (or covariance) as a main measure which indicates at the dependence inside the process. In the paper we examine the codifference, the more general measure of dependence defined for wide class of processes. Moreover we present the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the simulated data analysis.

  7. Complex processes from dynamical architectures with time-scale hierarchy.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor

    2011-01-01

    The idea that complex motor, perceptual, and cognitive behaviors are composed of smaller units, which are somehow brought into a meaningful relation, permeates the biological and life sciences. However, no principled framework defining the constituent elementary processes has been developed to this date. Consequently, functional configurations (or architectures) relating elementary processes and external influences are mostly piecemeal formulations suitable to particular instances only. Here, we develop a general dynamical framework for distinct functional architectures characterized by the time-scale separation of their constituents and evaluate their efficiency. Thereto, we build on the (phase) flow of a system, which prescribes the temporal evolution of its state variables. The phase flow topology allows for the unambiguous classification of qualitatively distinct processes, which we consider to represent the functional units or modes within the dynamical architecture. Using the example of a composite movement we illustrate how different architectures can be characterized by their degree of time scale separation between the internal elements of the architecture (i.e. the functional modes) and external interventions. We reveal a tradeoff of the interactions between internal and external influences, which offers a theoretical justification for the efficient composition of complex processes out of non-trivial elementary processes or functional modes. PMID:21347363

  8. Radiation processing of thermoplastic starch by blending aromatic additives: Effect of blend composition and radiation parameters

    NASA Astrophysics Data System (ADS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Coqueret, Xavier

    2013-03-01

    This paper reports on the effects of electron beam (EB) irradiation on poly α-1,4-glucose oligomers (maltodextrins) in the presence of water and of various aromatic additives, as model blends for gaining a better understanding at a molecular level the modifications occurring in amorphous starch-lignin blends submitted to ionizing irradiation for improving the properties of this type of bio-based thermoplastic material. A series of aromatic compounds, namely p-methoxy benzyl alcohol, benzene dimethanol, cinnamyl alcohol and some related carboxylic acids namely cinnamic acid, coumaric acid, and ferulic acid, was thus studied for assessing the ability of each additive to counteract chain scission of the polysaccharide and induce interchain covalent linkages. Gel formation in EB-irradiated blends comprising of maltodextrin was shown to be dependent on three main factors: the type of aromatic additive, presence of glycerol, and irradiation dose. The chain scission versus grafting phenomenon as a function of blend composition and dose were studied using Size Exclusion Chromatography by determining the changes in molecular weight distribution (MWD) from Refractive Index (RI) chromatograms and the presence of aromatic grafts onto the maltodextrin chains from UV chromatograms. The occurrence of crosslinking was quantified by gel fraction measurements allowing for ranking the cross-linking efficiency of the additives. When applying the method to destructurized starch blends, gel formation was also shown to be strongly affected by the moisture content of the sample submitted to irradiation. The results demonstrate the possibility to tune the reactivity of tailored blend for minimizing chain degradation and control the degree of cross-linking.

  9. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  10. Critical time scales for advection-diffusion-reaction processes

    NASA Astrophysics Data System (ADS)

    Ellery, Adam J.; Simpson, Matthew J.; McCue, Scott W.; Baker, Ruth E.

    2012-04-01

    The concept of local accumulation time (LAT) was introduced by Berezhkovskii and co-workers to give a finite measure of the time required for the transient solution of a reaction-diffusion equation to approach the steady-state solution [A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Biophys. J.BIOJAU0006-349510.1016/j.bpj.2010.07.045 99, L59 (2010); A. M. Berezhkovskii, C. Sample, and S. Y. Shvartsman, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.83.051906 83, 051906 (2011)]. Such a measure is referred to as a critical time. Here, we show that LAT is, in fact, identical to the concept of mean action time (MAT) that was first introduced by McNabb [A. McNabb and G. C. Wake, IMA J. Appl. Math.IJAMDM0272-496010.1093/imamat/47.2.193 47, 193 (1991)]. Although McNabb's initial argument was motivated by considering the mean particle lifetime (MPLT) for a linear death process, he applied the ideas to study diffusion. We extend the work of these authors by deriving expressions for the MAT for a general one-dimensional linear advection-diffusion-reaction problem. Using a combination of continuum and discrete approaches, we show that MAT and MPLT are equivalent for certain uniform-to-uniform transitions; these results provide a practical interpretation for MAT by directly linking the stochastic microscopic processes to a meaningful macroscopic time scale. We find that for more general transitions, the equivalence between MAT and MPLT does not hold. Unlike other critical time definitions, we show that it is possible to evaluate the MAT without solving the underlying partial differential equation (pde). This makes MAT a simple and attractive quantity for practical situations. Finally, our work explores the accuracy of certain approximations derived using MAT, showing that useful approximations for nonlinear kinetic processes can be obtained, again without treating the governing pde directly.

  11. Real-time garbage collection for list processing

    NASA Technical Reports Server (NTRS)

    Shuler, R. L., Jr. (Inventor)

    1986-01-01

    In a list processing system, small reference counters are maintained in conjunction with memory cells for the purpose of identifying memory cells that become available for re-use. The counters are updated as references to the cells are created and destroyed, and when a counter of a cell is decremented to logical zero the cell is immediately returned to a list of free cells. In those cases where a counter must be incremented beyond the maximum value that can be represented in a small counter, the cell is restructured so that the additional reference count can be represented. The restructuring involves allocating an additional cell, distributing counter, tag, and pointer information among the two cells, and linking both cells appropriately into the existing list structure.

  12. 77 FR 23239 - Bryant Mountain, LLC; Notice of Additional Scoping Meetings, Extension of Time To File Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... Time To File Comments on the PAD and Scoping Document, and Identification of Issues and Associated... comments on the Pre- Application Document (PAD) and Scoping Document 1 (SD1). b. Type of Filing: Notice of..., filed with the Commission a PAD (including a proposed process plan and schedule), pursuant to 18 CFR...

  13. Optimizing the performance of a reactor by reducing the retention time and addition of glycerin for anaerobically digesting manure

    PubMed Central

    Timmerman, Maikel; Schuman, Els; van Eekert, Miriam; van Riel, Johan

    2015-01-01

    Anaerobic digestion of manure is a widely accepted technology for energy production. However, only a minimal portion of the manure production in the EU is anaerobically digested and occurs predominantly in codigestion plants. There is substantial potential for biogas plants that primarily operate on manure (>90%); however, the methane yields of manure are less compared to coproducts, which is one of the reasons for manure-based biogas plants often being economically non-viable. Therefore, it is essential to begin increasing the efficiency of these biogas plants. This study investigated the effect of decreasing retention time and introducing a moderate amount of glycerin on the biogas production as methods to improve efficiency. An experiment has been conducted with two different manure types in four biogas reactors. The results of the study demonstrated that, first, it was possible to decrease the retention time to 10–15 days; however, the effect on biogas production varied per manure type. Secondly, the biogas production almost triples at a retention time of 15.6 days with an addition of 4% glycerin. The relative production-enhancing effect of glycerin did not vary significantly with both manure types. However, the absolute production-enhancing effect of glycerin differed per manure type since the biogas production per gram VS differed per manure type. Thirdly, the positive effect of the glycerin input declines with shorter retention times. Therefore, the effect of glycerin addition depends on the manure type and retention time. PMID:25401272

  14. A rapid process of YBa2Cu3O7-δ thin film fabrication using trifluoroacetate metal-organic deposition with polyethylene glycol additive

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Feng, Feng; Shi, Kai; Zhai, Wei; Qu, Timing; Huang, Rongxia; Tang, Xiao; Wang, Xiaohao; Hu, Qingyu; Grivel, Jean-Claude; Han, Zhenghe

    2013-05-01

    Trifluoroacetate metal-organic deposition (TFA-MOD) is a promising technique to fabricate YBa2Cu3O7-δ (YBCO) superconducting films. However, its slow pyrolysis process, which usually takes more than 10 h, constitutes a barrier for industrial production. In this study, polyethylene glycol (PEG) was utilized to reduce the stress generation inside the coated films when the strong pyrolysis reactions happen. With the addition of 30 wt% PEG2000 to the precursor solution, a smooth film surface could be obtained through a rapid pyrolysis process of 15 min. After the optimizations of the crystallization and oxygenation processes, mass percentage and molecular weight of PEG additive, YBCO thin films with Jc of about 4.5 MA cm-2 (77 K, self-field) could be routinely fabricated using (20-30) wt% PEG(1000-2000) additive with a total treatment time of about 2 h including the 15 min pyrolysis process time. The effects of PEG additive were discussed using one of the mechanisms of buckling formation. The reduction of compressive stress by PEG additive was suggested to be the reason for preventing buckling.

  15. Studies in astronomical time series analysis: Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1979-01-01

    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  16. The Effects of Polyphosphate Additives on Campylobacter Survival in Processed Chicken Exudates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter spp. are responsible for a large number of food-borne illness cases worldwide. Despite being sensitive to oxygen and nutritionally fastidious, Campylobacter spp. are able to survive in food processing environments and reach consumers in sufficient numbers to cause disease. To investi...

  17. PowerPoint Presentations: A Creative Addition to the Research Process.

    ERIC Educational Resources Information Center

    Perry, Alan E.

    2003-01-01

    Contends that the requirement of a PowerPoint presentation as part of the research process would benefit students in the following ways: learning how to conduct research; starting their research project sooner; honing presentation and public speaking skills; improving cooperative and social skills; and enhancing technology skills. Outlines the…

  18. Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water.

    PubMed

    Liu, Ting; Chen, Zhong-lin; Yu, Wen-zheng; Shen, Ji-min; Gregory, John

    2011-08-01

    A novel two-stage coagulant addition strategy applied in a coagulation-ultrafiltration (UF) process for treatment of humic-rich water at neutral pH was investigated in this study. When aluminum sulfate (alum) doses were set at a ratio of 3:1 added during rapid mix stage and half way through flocculation stage, the integrated process of two-stage alum addition achieved almost the same organic matter removal as that of conventional one-stage alum addition at the same overall dose. Whereas membrane fouling could be effectively mitigated by the two-stage addition exhibited by trans-membrane pressure (TMP) developments. The TMP developments were found to be primarily attributed to external fouling on membrane surface, which was closely associated with floc characteristics. The results of jar tests indicated that the average size of flocs formed in two-stage addition mode roughly reached one half larger than that in one-stage addition mode, which implied a beneficial effect on membrane fouling reduction. Moreover, the flocs with more irregular structure and lower effective density resulted from the two-stage alum addition, which caused higher porosity of cake layer formed by such flocs on membrane surface. Microscopic observations of membrane surface demonstrated that internal fouling in membrane pores could be also remarkably limited by two-stage alum addition. It is likely that the freshly formed hydroxide precipitates were distinct in surface characteristics from the aged precipitates due to formation of more active groups or adsorption of more labile aluminum species. Consequently, the flocs could further connect and aggregate to contribute to preferable properties for filtration performance of the coagulation-UF process. As a simple and efficient approach, two-stage coagulant addition strategy could have great practical significance in coagulation-membrane processes. PMID:21704354

  19. Finite-Time Fluctuations for the Totally Asymmetric Exclusion Process

    NASA Astrophysics Data System (ADS)

    Prolhac, Sylvain

    2016-03-01

    The one-dimensional totally asymmetric simple exclusion process, a Markov process describing classical hard-core particles hopping in the same direction, is considered on a periodic lattice of L sites. The relaxation to the nonequilibrium steady state, which occurs on the time scale t ˜L3 /2 for large L , is studied for the half-filled system with N =L /2 particles. Using large L asymptotics of Bethe ansatz formulas for the eigenstates, exact expressions depending explicitly on the rescaled time t /L3 /2 are obtained for the average and two-point function of the local density, and for the current fluctuations for simple (stationary, flat and step) initial conditions, relating previous results for the infinite system to stationary large deviations. The final formulas have a nice interpretation in terms of a functional integral with the action of a scalar field in a linear potential.

  20. Finite-Time Fluctuations for the Totally Asymmetric Exclusion Process.

    PubMed

    Prolhac, Sylvain

    2016-03-01

    The one-dimensional totally asymmetric simple exclusion process, a Markov process describing classical hard-core particles hopping in the same direction, is considered on a periodic lattice of L sites. The relaxation to the nonequilibrium steady state, which occurs on the time scale t∼L^{3/2} for large L, is studied for the half-filled system with N=L/2 particles. Using large L asymptotics of Bethe ansatz formulas for the eigenstates, exact expressions depending explicitly on the rescaled time t/L^{3/2} are obtained for the average and two-point function of the local density, and for the current fluctuations for simple (stationary, flat and step) initial conditions, relating previous results for the infinite system to stationary large deviations. The final formulas have a nice interpretation in terms of a functional integral with the action of a scalar field in a linear potential. PMID:26991165

  1. The exit-time problem for a Markov jump process

    SciTech Connect

    Burch, N.; D'Elia, Marta; Lehoucq, Richard B.

    2014-12-15

    The purpose of our paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. Furthermore, this calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  2. The exit-time problem for a Markov jump process

    NASA Astrophysics Data System (ADS)

    Burch, N.; D'Elia, M.; Lehoucq, R. B.

    2014-12-01

    The purpose of this paper is to consider the exit-time problem for a finite-range Markov jump process, i.e, the distance the particle can jump is bounded independent of its location. Such jump diffusions are expedient models for anomalous transport exhibiting super-diffusion or nonstandard normal diffusion. We refer to the associated deterministic equation as a volume-constrained nonlocal diffusion equation. The volume constraint is the nonlocal analogue of a boundary condition necessary to demonstrate that the nonlocal diffusion equation is well-posed and is consistent with the jump process. A critical aspect of the analysis is a variational formulation and a recently developed nonlocal vector calculus. This calculus allows us to pose nonlocal backward and forward Kolmogorov equations, the former equation granting the various moments of the exit-time distribution.

  3. Music and Sound in Time Processing of Children with ADHD

    PubMed Central

    Carrer, Luiz Rogério Jorgensen

    2015-01-01

    ADHD involves cognitive and behavioral aspects with impairments in many environments of children and their families’ lives. Music, with its playful, spontaneous, affective, motivational, temporal, and rhythmic dimensions can be of great help for studying the aspects of time processing in ADHD. In this article, we studied time processing with simple sounds and music in children with ADHD with the hypothesis that children with ADHD have a different performance when compared with children with normal development in tasks of time estimation and production. The main objective was to develop sound and musical tasks to evaluate and correlate the performance of children with ADHD, with and without methylphenidate, compared to a control group with typical development. The study involved 36 participants of age 6–14 years, recruited at NANI-UNIFESP/SP, subdivided into three groups with 12 children in each. Data was collected through a musical keyboard using Logic Audio Software 9.0 on the computer that recorded the participant’s performance in the tasks. Tasks were divided into sections: spontaneous time production, time estimation with simple sounds, and time estimation with music. Results: (1) performance of ADHD groups in temporal estimation of simple sounds in short time intervals (30 ms) were statistically lower than that of control group (p < 0.05); (2) in the task comparing musical excerpts of the same duration (7 s), ADHD groups considered the tracks longer when the musical notes had longer durations, while in the control group, the duration was related to the density of musical notes in the track. The positive average performance observed in the three groups in most tasks perhaps indicates the possibility that music can, in some way, positively modulate the symptoms of inattention in ADHD. PMID:26441688

  4. Effects of a noncoplanar biphenyldiamine on the processing and properties of addition polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.; Moore, Brad W.

    1992-01-01

    Addition curing polyimides, prepared from noncoplanar 2,2'-bis(trifluoromethyl) 4,4' diaminobiphenyl (BTDB) with various dianhydrides were evaluated as high temperature polymer matrix materials. T sub g of these polymers were measured by mechanical methods as well as by thermal mechanical analysis. Physical and mechanical properties as well as the thermo-oxidative stability of neat resins and the corresponding G40-600 graphite fiber reinforced composites were compared to that of PMR-II-50 and V-CAP-75.

  5. Characterization of a binary karst aquifer using process time scales

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Wagner, Thomas

    2013-04-01

    Within "a theoretical framework for the interpretation of karst spring signals" (Covington, EGU2012-853-1) process length scales that characterize the travel distances required for damping pulses of physicochemical parameters of spring waters such as electrical conductivity and temperature were derived (Covington et al., J. Geophys. Res., 2012). These length scales can be converted to corresponding process time scales characterizing the travel times needed for damping the pulses. This is particularly convenient if the travel distance is unknown. In this case the time lag between the increase of spring discharge and subsequent physicochemical responses at the spring may provide an estimate of the travel time. In binary karst aquifers with localized recharge from a sinking stream, the recharge pulse can be directly observed and thus travel times are readily obtained from the time delay of the physicochemical spring responses. If the spring response is strongly damped travel times can be inferred from artificial tracer testing. In this work, time scales for carbonate dissolution and heat transport were used for characterizing the binary Lurbach-Tanneben karst aquifer (Austria). This aquifer receives allogenic recharge from the sinking stream Lurbach and is drained by two springs, namely the Hammerbach and the Schmelzbach. The two springs show different thermal responses to two recharge events in December 2008: Whereas the temperature of the Schmelzbach responds within one day after the flood pulse in the Lurbach, the temperature signal is strongly damped at the Hammerbach. The evaluation based on the thermal time scale thus suggests that the Schmelzbach spring is fed by conduits with hydraulic diameters at least in the order of decimetres. In contrast, the damping of the thermal responses at the Hammerbach may be due to lower hydraulic diameters and/or longer residence times. Interestingly, the Hammerbach did show thermal responses in the time before a flood event in

  6. Linking subsurface temperature and hillslope processes through geologic time

    NASA Astrophysics Data System (ADS)

    Barnhart, Katherine; Anderson, Robert

    2015-04-01

    Many periglacial hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through time over many scales up to climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape over the geologic timescales on which such landscapes evolve, we explore the effects of slope, aspect, latitude, atmosphere, and time before present on the expected energy balance at the surface of the earth and the resulting subsurface temperature field. We begin by calculating top-of-atmosphere insolation at any time in the Quaternary, honoring the variations in orbit over Milankovitch timescales. We then incorporate spatial and temporal variations in incoming short-wave radiation on sub-daily timescales due to elevation, latitude, aspect, and shading. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. We then solve for the subsurface temperature field using a numerical model that acknowledges depth-varying material properties, water content, and phase change. With these tools we target variations in regolith production and motion over the long timescales on which periglacial hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including frost heave and creep. Our intention is not to parameterize all operative processes, but to include sufficient

  7. HPC enabled real-time remote processing of laparoscopic surgery

    NASA Astrophysics Data System (ADS)

    Ronaghi, Zahra; Sapra, Karan; Izard, Ryan; Duffy, Edward; Smith, Melissa C.; Wang, Kuang-Ching; Kwartowitz, David M.

    2016-03-01

    Laparoscopic surgery is a minimally invasive surgical technique. The benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures. One particular laparoscopic system is the daVinci-si robotic surgical system. The video streams generate approximately 360 megabytes of data per second. Real-time processing this large stream of data on a bedside PC, single or dual node setup, has become challenging and a high-performance computing (HPC) environment may not always be available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate, it is required that each 11.9 MB video frame be processed by a server and returned within 1/30th of a second. We have implement and compared performance of compression, segmentation and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 GPUs per node. Our computing framework will also enable reliability using replication of computation. We will securely transfer the files to remote HPC clusters utilizing an OpenFlow-based network service, Steroid OpenFlow Service (SOS) that can increase performance of large data transfers over long-distance and high bandwidth networks. As a result, utilizing high-speed OpenFlow- based network to access computing clusters with GPUs will improve surgical procedures by providing real-time medical image processing and laparoscopic data.

  8. A conceptual framework for intelligent real-time information processing

    NASA Technical Reports Server (NTRS)

    Schudy, Robert

    1987-01-01

    By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.

  9. Process for improving mechanical properties of epoxy resins by addition of cobalt ions

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K. (Inventor)

    1984-01-01

    A resin product useful as an adhesive, composite or casting resin is described as well as the process used in its preparation to improve its flexural strength mechanical property characteristics. Improved flexural strength is attained with little or no change in density, thermal stability or moisture resistance by chemically incorporating 1.2% to 10.6% by weight Co(3) ions in an epoxidized resin system.

  10. Ecotoxicity of arsenic contaminated sludge after mixing with soils and addition into composting and vermicomposting processes.

    PubMed

    Vašíčková, Jana; Maňáková, Blanka; Šudoma, Marek; Hofman, Jakub

    2016-11-01

    Sludge coming from remediation of groundwater contaminated by industry is usually managed as hazardous waste despite it might be considered for further processing as a source of nutrients. The ecotoxicity of phosphorus rich sludge contaminated with arsenic was evaluated after mixing with soil and cultivation with Sinapis alba, and supplementation into composting and vermicomposting processes. The Enchytraeus crypticus and Folsomia candida reproduction tests and the Lactuca sativa root growth test were used. Invertebrate bioassays reacted sensitively to arsenic presence in soil-sludge mixtures. The root elongation of L. sativa was not sensitive and showed variable results. In general, the relationship between invertebrate tests results and arsenic mobile concentration was indicated in majority endpoints. Nevertheless, significant portion of the results still cannot be satisfactorily explained by As chemistry data. Composted and vermicomposted sludge mixtures showed surprisingly high toxicity on all three tested organisms despite the decrease in arsenic mobility, probably due to toxic metabolites of bacteria and earthworms produced during these processes. The results from the study indicated the inability of chemical methods to predict the effects of complex mixtures on living organisms with respect to ecotoxicity bioassays. PMID:27348256

  11. Surface Modified Particles By Multi-Step Michael-Type Addition And Process For The Preparation Thereof

    SciTech Connect

    Cook, Ronald Lee; Elliott, Brian John; Luebben, Silvia DeVito; Myers, Andrew William; Smith, Bryan Matthew

    2005-05-03

    A new class of surface modified particles and a multi-step Michael-type addition surface modification process for the preparation of the same is provided. The multi-step Michael-type addition surface modification process involves two or more reactions to compatibilize particles with various host systems and/or to provide the particles with particular chemical reactivities. The initial step comprises the attachment of a small organic compound to the surface of the inorganic particle. The subsequent steps attach additional compounds to the previously attached organic compounds through reactive organic linking groups. Specifically, these reactive groups are activated carbon—carbon pi bonds and carbon and non-carbon nucleophiles that react via Michael or Michael-type additions.

  12. Next generation strong lensing time delay estimation with Gaussian processes

    NASA Astrophysics Data System (ADS)

    Hojjati, Alireza; Linder, Eric V.

    2014-12-01

    Strong gravitational lensing forms multiple, time delayed images of cosmological sources, with the "focal length" of the lens serving as a cosmological distance probe. Robust estimation of the time delay distance can tightly constrain the Hubble constant as well as the matter density and dark energy. Current and next generation surveys will find hundreds to thousands of lensed systems but accurate time delay estimation from noisy, gappy light curves is potentially a limiting systematic. Using a large sample of blinded light curves from the Strong Lens Time Delay Challenge we develop and demonstrate a Gaussian process cross correlation technique that delivers an average bias within 0.1% depending on the sampling, necessary for subpercent Hubble constant determination. The fits are accurate (80% of them within one day) for delays from 5-100 days and robust against cadence variations shorter than six days. We study the effects of survey characteristics such as cadence, season, and campaign length, and derive requirements for time delay cosmology: in order not to bias the cosmology determination by 0.5 σ , the mean time delay fit accuracy must be better than 0.2%.

  13. Space and Time Scale Variability and Interdependencies in Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Feddes, Reinder A.

    1995-09-01

    The atmospheric, hydrologic, and terrestrial components of the earth's systems operate on different time and space scales. Resolving these scaling incongruities as well as understanding and modeling the complex interaction of land surface processes at the different scales represents a major challenge for hydrologists, ecologists and meteorologists alike. This book presents the contributions of hydrologists, meteorologists, and ecologists to the first IHP/IAHS George Kovacs Colloqium on global hydrology and climate change. It deals with time and space scale variations with reference to several topics including soil water balance, ecosystems and interaction of flow systems, and macroscale hydrologic modeling. This book will be of great use to researchers, engineers and forecasters with an interest in space and time scale variability.

  14. Lifetime effectiveness of mifamurtide addition to chemotherapy in nonmetastatic and metastatic osteosarcoma: a Markov process model analysis.

    PubMed

    Song, Hyun Jin; Lee, Jun Ah; Han, Euna; Lee, Eui-Kyung

    2015-09-01

    The mortality and progression rates in osteosarcoma differ depending on the presence of metastasis. A decision model would be useful for estimating long-term effectiveness of treatment with limited clinical trial data. The aim of this study was to explore the lifetime effectiveness of the addition of mifamurtide to chemotherapy for patients with metastatic and nonmetastatic osteosarcoma. The target population was osteosarcoma patients with or without metastasis. A Markov process model was used, whose time horizon was lifetime with a starting age of 13 years. There were five health states: disease-free (DF), recurrence, post-recurrence disease-free, post-recurrence disease-progression, and death. Transition probabilities of the starting state, DF, were calculated from the INT-0133 clinical trials for chemotherapy with and without mifamurtide. Quality-adjusted life-years (QALY) increased upon addition of mifamurtide to chemotherapy by 10.5 % (10.13 and 9.17 QALY with and without mifamurtide, respectively) and 45.2 % (7.23 and 4.98 QALY with and without mifamurtide, respectively) relative to the lifetime effectiveness of chemotherapy in nonmetastatic and metastatic osteosarcoma, respectively. Life-years gained (LYG) increased by 10.1 % (13.10 LYG with mifamurtide and 11.90 LYG without mifamurtide) in nonmetastatic patients and 42.2 % (9.43 LYG with mifamurtide and 6.63 LYG without mifamurtide) in metastatic osteosarcoma patients. The Markov model analysis showed that chemotherapy with mifamurtide improved the lifetime effectiveness compared to chemotherapy alone in both nonmetastatic and metastatic osteosarcoma. Relative effectiveness of the therapy was higher in metastatic than nonmetastatic osteosarcoma over lifetime. However, absolute lifetime effectiveness was higher in nonmetastatic than metastatic osteosarcoma. PMID:25835978

  15. Parallel Processing of Distributed Video Coding to Reduce Decoding Time

    NASA Astrophysics Data System (ADS)

    Tonomura, Yoshihide; Nakachi, Takayuki; Fujii, Tatsuya; Kiya, Hitoshi

    This paper proposes a parallelized DVC framework that treats each bitplane independently to reduce the decoding time. Unfortunately, simple parallelization generates inaccurate bit probabilities because additional side information is not available for the decoding of subsequent bitplanes, which degrades encoding efficiency. Our solution is an effective estimation method that can calculate the bit probability as accurately as possible by index assignment without recourse to side information. Moreover, we improve the coding performance of Rate-Adaptive LDPC (RA-LDPC), which is used in the parallelized DVC framework. This proposal selects a fitting sparse matrix for each bitplane according to the syndrome rate estimation results at the encoder side. Simulations show that our parallelization method reduces the decoding time by up to 35[%] and achieves a bit rate reduction of about 10[%].

  16. Effect of cycle time on fungal morphology, broth rheology, and recombinant enzyme productivity during pulsed addition of limiting carbon source.

    PubMed

    Bhargava, Swapnil; Wenger, Kevin S; Rane, Kishore; Rising, Vanessa; Marten, Mark R

    2005-03-01

    For many years, high broth viscosity has remained a key challenge in large-scale filamentous fungal fermentations. In previous studies, we showed that broth viscosity could be reduced by pulsed addition of limiting carbon during fed-batch fermentation. The objective in this study was to determine how changing the frequency of pulsed substrate addition affects fungal morphology, broth rheology, and recombinant enzyme productivity. To accomplish this, a series of duplicate fed-batch fermentations were performed in 20-L fermentors with a recombinant glucoamylase producing strain of Aspergillus oryzae. The total cycle time for substrate pulsing was varied over a wide range (30-2,700 s), with substrate added only during the first 30% of each cycle. As a control, a fermentation was conducted with continuous substrate feeding, and in all fermentations the same total amount of substrate was added. Results show that the total biomass concentration remained relatively unaltered, while a substantial decrease in the mean projected area of fungal elements (i.e., average size) was observed with increasing cycle time. This led to reduced broth viscosity and increased oxygen uptake rate. However, high values of cycle time (i.e., 900-2,700 s) showed a significant increase in fungal conidia formation and significantly reduced recombinant enzyme productivity, suggesting that the fungi channeled substrate to storage compounds rather than to recombinant protein. In addition to explaining the effect of cycle time on fermentation performance, these results may aid in explaining the discrepancies observed on scale-up to larger fermentors. PMID:15643626

  17. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems.

    PubMed

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-01-01

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015. PMID:26633395

  18. Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems

    PubMed Central

    Fernandez-Llatas, Carlos; Lizondo, Aroa; Monton, Eduardo; Benedi, Jose-Miguel; Traver, Vicente

    2015-01-01

    The definition of efficient and accurate health processes in hospitals is crucial for ensuring an adequate quality of service. Knowing and improving the behavior of the surgical processes in a hospital can improve the number of patients that can be operated on using the same resources. However, the measure of this process is usually made in an obtrusive way, forcing nurses to get information and time data, affecting the proper process and generating inaccurate data due to human errors during the stressful journey of health staff in the operating theater. The use of indoor location systems can take time information about the process in an unobtrusive way, freeing nurses, allowing them to engage in purely welfare work. However, it is necessary to present these data in a understandable way for health professionals, who cannot deal with large amounts of historical localization log data. The use of process mining techniques can deal with this problem, offering an easily understandable view of the process. In this paper, we present a tool and a process mining-based methodology that, using indoor location systems, enables health staff not only to represent the process, but to know precise information about the deployment of the process in an unobtrusive and transparent way. We have successfully tested this tool in a real surgical area with 3613 patients during February, March and April of 2015. PMID:26633395

  19. Improving Emergency Department Door to Doctor Time and Process Reliability

    PubMed Central

    El Sayed, Mazen J.; El-Eid, Ghada R.; Saliba, Miriam; Jabbour, Rima; Hitti, Eveline A.

    2015-01-01

    Abstract The aim of this study is to determine the effectiveness of using lean management methods on improving emergency department door to doctor times at a tertiary care hospital. We performed a before and after study at an academic urban emergency department with 49,000 annual visits after implementing a series of lean driven interventions over a 20 month period. The primary outcome was mean door to doctor time and the secondary outcome was length of stay of both admitted and discharged patients. A convenience sample from the preintervention phase (February 2012) was compared to another from the postintervention phase (mid-October to mid-November 2013). Individual control charts were used to assess process stability. Postintervention there was a statistically significant decrease in the mean door to doctor time measure (40.0 minutes ± 53.44 vs 25.3 minutes ± 15.93 P < 0.001). The postintervention process was more statistically in control with a drop in the upper control limits from 148.8 to 72.9 minutes. Length of stay of both admitted and discharged patients dropped from 2.6 to 2.0 hours and 9.0 to 5.5 hours, respectively. All other variables including emergency department visit daily volumes, hospital occupancy, and left without being seen rates were comparable. Using lean change management techniques can be effective in reducing door to doctor time in the Emergency Department and improving process reliability. PMID:26496278

  20. Near Real Time Processing Chain for Suomi NPP Satellite Data

    NASA Astrophysics Data System (ADS)

    Monsorno, Roberto; Cuozzo, Giovanni; Costa, Armin; Mateescu, Gabriel; Ventura, Bartolomeo; Zebisch, Marc

    2014-05-01

    Since 2009, the EURAC satellite receiving station, located at Corno del Renon, in a free obstacle site at 2260 m a.s.l., has been acquiring data from Aqua and Terra NASA satellites equipped with Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. The experience gained with this local ground segmenthas given the opportunity of adapting and modifying the processing chain for MODIS data to the Suomi NPP, the natural successor to Terra and Aqua satellites. The processing chain, initially implemented by mean of a proprietary system supplied by Seaspace and Advanced Computer System, was further developed by EURAC's Institute for Applied Remote Sensing engineers. Several algorithms have been developed using MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data to produce Snow Cover, Particulate Matter estimation and Meteo maps. These products are implemented on a common processor structure based on the use of configuration files and a generic processor. Data and products have then automatically delivered to the customers such as the Autonomous Province of Bolzano-Civil Protection office. For the processing phase we defined two goals: i) the adaptation and implementation of the products already available for MODIS (and possibly new ones) to VIIRS, that is one of the sensors onboard Suomi NPP; ii) the use of an open source processing chain in order to process NPP data in Near Real Time, exploiting the knowledge we acquired on parallel computing. In order to achieve the second goal, the S-NPP data received and ingested are sent as input to RT-STPS (Real-time Software Telemetry Processing System) software developed by the NASA Direct Readout Laboratory 1 (DRL) that gives as output RDR files (Raw Data Record) for VIIRS, ATMS (Advanced Technology Micorwave Sounder) and CrIS (Cross-track Infrared Sounder)sensors. RDR are then transferred to a server equipped with CSPP2 (Community Satellite Processing Package) software developed by the University of

  1. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    NASA Astrophysics Data System (ADS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Hoye, Nicholas; Curiri, Dominic; Kapoor, Ajay

    2015-03-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  2. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    SciTech Connect

    Raguvarun, K. Balasubramaniam, Krishnan Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  3. Features of quasistable laminar flows of He II and an additional dissipative process

    NASA Astrophysics Data System (ADS)

    Gritsenko, I. A.; Klokol, K. A.; Sokolov, S. S.; Sheshin, G. A.

    2016-03-01

    Quasistable laminar flow of He II at a temperature of 140 mK is studied experimentally. The liquid flow was excited by a vibrating quartz tuning fork with a resonance frequency of about 24 kHz. It was found that for velocities of the tuning fork oscillations from 0.046 to 0.16 m/s, the He II flow can be both quasistable laminar and turbulent. Transitions between these flow regimes were observed. When the velocity of the tuning fork oscillations increases more rapidly, the velocity at which the quasistable flow becomes unstable and undergoes a transition to a turbulent flow is higher. Mechanisms for the dissipation of the energy of the oscillating tines of the tuning fork in the quasistable laminar flow regime are analyzed. It is found that there is an additional mechanism for dissipation of the energy of the oscillating tuning fork beyond internal friction in the quartz. This mechanism is associated with mutual friction owing to scattering of thermal excitations of He II on quantized vortices and leads to a cubic dependence of the exciting force on the fluid velocity.

  4. Experiments to Populate and Validate a Processing Model for Polyurethane Foam: Additional Data for Structural Foams.

    SciTech Connect

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry; Long, Kevin Nicholas; Russick, Edward M.

    2015-01-01

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18 is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150 o C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.

  5. A post-processing algorithm for time domain pitch trackers

    NASA Astrophysics Data System (ADS)

    Specker, P.

    1983-01-01

    This paper describes a powerful post-processing algorithm for time-domain pitch trackers. On two successive passes, the post-processing algorithm eliminates errors produced during a first pass by a time-domain pitch tracker. During the second pass, incorrect pitch values are detected as outliers by computing the distribution of values over a sliding 80 msec window. During the third pass (based on artificial intelligence techniques), remaining pitch pulses are used as anchor points to reconstruct the pitch train from the original waveform. The algorithm produced a decrease in the error rate from 21% obtained with the original time domain pitch tracker to 2% for isolated words and sentences produced in an office environment by 3 male and 3 female talkers. In a noisy computer room errors decreased from 52% to 2.9% for the same stimuli produced by 2 male talkers. The algorithm is efficient, accurate, and resistant to noise. The fundamental frequency micro-structure is tracked sufficiently well to be used in extracting phonetic features in a feature-based recognition system.

  6. Real-Time Plasma Process Condition Sensing and Abnormal Process Detection

    PubMed Central

    Yang, Ryan; Chen, Rongshun

    2010-01-01

    The plasma process is often used in the fabrication of semiconductor wafers. However, due to the lack of real-time etching control, this may result in some unacceptable process performances and thus leads to significant waste and lower wafer yield. In order to maximize the product wafer yield, a timely and accurately process fault or abnormal detection in a plasma reactor is needed. Optical emission spectroscopy (OES) is one of the most frequently used metrologies in in-situ process monitoring. Even though OES has the advantage of non-invasiveness, it is required to provide a huge amount of information. As a result, the data analysis of OES becomes a big challenge. To accomplish real-time detection, this work employed the sigma matching method technique, which is the time series of OES full spectrum intensity. First, the response model of a healthy plasma spectrum was developed. Then, we defined a matching rate as an indictor for comparing the difference between the tested wafers response and the health sigma model. The experimental results showed that this proposal method can detect process faults in real-time, even in plasma etching tools. PMID:22219683

  7. CAUSAL INFERENCE FOR CONTINUOUS-TIME PROCESSES WHEN COVARIATES ARE OBSERVED ONLY AT DISCRETE TIMES

    PubMed Central

    Zhang, Mingyuan; Joffe, Marshall M.; Small, Dylan S.

    2013-01-01

    Most of the work on the structural nested model and g-estimation for causal inference in longitudinal data assumes a discrete-time underlying data generating process. However, in some observational studies, it is more reasonable to assume that the data are generated from a continuous-time process and are only observable at discrete time points. When these circumstances arise, the sequential randomization assumption in the observed discrete-time data, which is essential in justifying discrete-time g-estimation, may not be reasonable. Under a deterministic model, we discuss other useful assumptions that guarantee the consistency of discrete-time g-estimation. In more general cases, when those assumptions are violated, we propose a controlling-the-future method that performs at least as well as g-estimation in most scenarios and which provides consistent estimation in some cases where g-estimation is severely inconsistent. We apply the methods discussed in this paper to simulated data, as well as to a data set collected following a massive flood in Bangladesh, estimating the effect of diarrhea on children’s height. Results from different methods are compared in both simulation and the real application. PMID:24339454

  8. Real-time reprogrammable low-level image processing: edge detection and edge tracking accelerator

    NASA Astrophysics Data System (ADS)

    Meribout, M.; Hou, Kun M.

    1993-10-01

    Currently, in image processing, segmentation algorithms comprise between real time video rate processing and accurate results. In this paper, we present an efficient and not recursive algorithm filter originated from Deriche filter. This algorithm is implemented in hardware by using FPGA technology. Thus, it permits video rate edge detection. In addition, the FPGA board is used as an edge tracking accelerator, it allows us to greatly reduce execution time by avoiding scanning the whole image. We also present the architecture of our vision system dedicated to build 3D scene every 200 ms.

  9. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  10. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  11. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  12. Basic processes in time-projection like detectors

    SciTech Connect

    Sauli, F.

    1984-01-01

    There is a general feeling that unpleasant surprises may still appear in the operation of time projection chambers, and that some modifications of the original design (e.g., the choice of the wire and pad geometry and of the gas mixing) may result in improved performances. The purpose of these notes is, after a short discussion of some physical processes involved in the TPC-like detectors operation, to point out the areas where detailed information is still lacking and where problems have been found or may be expected. If possible, a solution or a line of research are offered to overcome the problems.

  13. Boundary Sensitivities for Diffusion Processes in Time Dependent Domains

    SciTech Connect

    Costantini, C. Gobet, E. Karoui, N. El

    2006-09-15

    We study the sensitivity, with respect to a time dependent domain D{sub s}, of expectations of functionals of a diffusion process stopped at the exit from D{sub s} or normally reflected at the boundary of D{sub s}. We establish a differentiability result and give an explicit expression for the gradient that allows the gradient to be computed by Monte Carlo methods. Applications to optimal stopping problems and pricing of American options, to singular stochastic control and others are discussed.

  14. From empirical data to time-inhomogeneous continuous Markov processes

    NASA Astrophysics Data System (ADS)

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G.

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60 % of tested matrices, typically 80 % to 90 % , and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed.

  15. An Algorithm for Network Real Time Kinematic Processing

    NASA Astrophysics Data System (ADS)

    Malekzadeh, A.; Asgari, J.; Amiri-Simkooei, A. R.

    2015-12-01

    NRTK1 is an efficient method to achieve precise real time positioning from GNSS measurements. In this paper we attempt to improve NRTK algorithm by introducing a new strategy. In this strategy a precise relocation of master station observations is performed using Sagnac effect. After processing the double differences, the tropospheric and ionospheric errors of each baseline can be estimated separately. The next step is interpolation of these errors for the atmospheric errors mitigation of desired baseline. Linear and kriging interpolation methods are implemented in this study. In the new strategy the RINEX2 data of the master station is re-located and is converted to the desired virtual observations. Then the interpolated corrections are applied to the virtual observations. The results are compared by the classical method of VRS generation. 1 Network Real Time Kinematic 2 Receiver Independent Exchange Format

  16. From empirical data to time-inhomogeneous continuous Markov processes.

    PubMed

    Lencastre, Pedro; Raischel, Frank; Rogers, Tim; Lind, Pedro G

    2016-03-01

    We present an approach for testing for the existence of continuous generators of discrete stochastic transition matrices. Typically, existing methods to ascertain the existence of continuous Markov processes are based on the assumption that only time-homogeneous generators exist. Here a systematic extension to time inhomogeneity is presented, based on new mathematical propositions incorporating necessary and sufficient conditions, which are then implemented computationally and applied to numerical data. A discussion concerning the bridging between rigorous mathematical results on the existence of generators to its computational implementation is presented. Our detection algorithm shows to be effective in more than 60% of tested matrices, typically 80% to 90%, and for those an estimate of the (nonhomogeneous) generator matrix follows. We also solve the embedding problem analytically for the particular case of three-dimensional circulant matrices. Finally, a discussion of possible applications of our framework to problems in different fields is briefly addressed. PMID:27078320

  17. Reducing neural network training time with parallel processing

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Lamarsh, William J., II

    1995-01-01

    Obtaining optimal solutions for engineering design problems is often expensive because the process typically requires numerous iterations involving analysis and optimization programs. Previous research has shown that a near optimum solution can be obtained in less time by simulating a slow, expensive analysis with a fast, inexpensive neural network. A new approach has been developed to further reduce this time. This approach decomposes a large neural network into many smaller neural networks that can be trained in parallel. Guidelines are developed to avoid some of the pitfalls when training smaller neural networks in parallel. These guidelines allow the engineer: to determine the number of nodes on the hidden layer of the smaller neural networks; to choose the initial training weights; and to select a network configuration that will capture the interactions among the smaller neural networks. This paper presents results describing how these guidelines are developed.

  18. A programmable microcomputer for real time speech processing

    NASA Technical Reports Server (NTRS)

    Apelewicz, T.; Schilling, D. L.

    1977-01-01

    The implementation of a programmable microprocessor for real time speech processing is described. The design of a fast special-purpose computer operating at 150 nsec per instruction time reduces the problem of speech encoding and decoding to a software problem. Each instruction is a twelve-bit word, and the information conveyed by a word is explained. The microprocessor is controlled by two clocks - the A/D clock, or input sampling clock, which loads the digital input into the input register and presets the counter to a value set by the external switches; and the instruction clock, or system clock, which operates at 6 MHz. At this system clock rate and a sampling clock rate of 30 KHz, 200 instructions can be executed between samples, and for many speech encoding and decoding algorithms, 200 instructions are more than enough. The microcomputer is being used to test various delta modulator encoding algorithms.

  19. Shades of Emotion: What the Addition of Sunglasses or Masks to Faces Reveals about the Development of Facial Expression Processing

    ERIC Educational Resources Information Center

    Roberson, Debi; Kikutani, Mariko; Doge, Paula; Whitaker, Lydia; Majid, Asifa

    2012-01-01

    Three studies investigated developmental changes in facial expression processing, between 3 years-of-age and adulthood. For adults and older children, the addition of sunglasses to upright faces caused an equivalent decrement in performance to face inversion. However, younger children showed "better" classification of expressions of faces wearing…

  20. 12 CFR 516.220 - If OTS requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete my application, how will it process my application? 516.220 Section 516.220 Banks and Banking... Standard Treatment § 516.220 If OTS requests additional information to complete my application, how will it... your response. OTS will notify you that it has extended the period before the end of the initial...

  1. 12 CFR 116.220 - If the OCC requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... complete my application, how will it process my application? 116.220 Section 116.220 Banks and Banking... Treatment § 116.220 If the OCC requests additional information to complete my application, how will it... that it has extended the period before the end of the initial 15-day period and will briefly...

  2. 12 CFR 516.220 - If OTS requests additional information to complete my application, how will it process my...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... complete my application, how will it process my application? 516.220 Section 516.220 Banks and Banking... Standard Treatment § 516.220 If OTS requests additional information to complete my application, how will it... your response. OTS will notify you that it has extended the period before the end of the initial...

  3. Quantifying time-inhomogeneous stochastic introgression processes with hazard rates.

    PubMed

    Ghosh, Atiyo; Serra, Maria Conceição; Haccou, Patsy

    2012-06-01

    Introgression is the permanent incorporation of genes from one population into another through hybridization and backcrossing. It is currently of particular concern as a possible mechanism for the spread of modified crop genes to wild populations. The hazard rate is the probability per time unit that such an escape takes place, given that it has not happened before. It is a quantitative measure of introgression risk that takes the stochastic elements inherent in introgression processes into account. We present a methodology to calculate the hazard rate for situations with time-varying gene flow from a crop to a large recipient wild population. As an illustration, several types of time-inhomogeneity are examined, including deterministic periodicity as well as random variation. Furthermore, we examine the effects of an extended fitness bottleneck of hybrids and backcrosses in combination with time-varying gene flow. It is found that bottlenecks decrease the hazard rate, but also slow down and delay its changes in reaction to changes in gene flow. Furthermore, we find that random variation in gene flow generates a lower hazard rate than analogous deterministic variation. We discuss the implications of our findings for crop management and introgression risk assessment. PMID:22178309

  4. Optimizing process time of laser drilling processes in solar cell manufacturing by coaxial camera control

    NASA Astrophysics Data System (ADS)

    Jetter, Volker; Gutscher, Simon; Blug, Andreas; Knorz, Annerose; Ahrbeck, Christopher; Nekarda, Jan; Carl, Daniel

    2014-03-01

    In emitter wrap through (EWT) solar cells, laser drilling is used to increase the light sensitive area by removing emitter contacts from the front side of the cell. For a cell area of 156 x 156 mm2, about 24000 via-holes with a diameter of 60 μm have to be drilled into silicon wafers with a thickness of 200 μm. The processing time of 10 to 20 s is determined by the number of laser pulses required for safely opening every hole on the bottom side. Therefore, the largest wafer thickness occurring in a production line defines the processing time. However, wafer thickness varies by roughly +/-20 %. To reduce the processing time, a coaxial camera control system was integrated into the laser scanner. It observes the bottom breakthrough from the front side of the wafer by measuring the process emissions of every single laser pulse. To achieve the frame rates and latency times required by the repetition rate of the laser (10 kHz), a camera based on cellular neural networks (CNN) was used where the images are processed directly on the camera chip by 176 x 144 sensor-processor-elements. One image per laser pulse is processed within 36 μs corresponding to a maximum pulse rate of 25 kHz. The laser is stopped when all of the holes are open on the bottom side. The result is a quality control system in which the processing time of a production line is defined by average instead of maximum wafer thickness.

  5. Effect of Nano-Particle Addition on Grain Structure Evolution of Friction Stir-Processed Al 6061 During Postweld Annealing

    NASA Astrophysics Data System (ADS)

    Guo, Junfeng; Lee, Bing Yang; Du, Zhenglin; Bi, Guijun; Tan, Ming Jen; Wei, Jun

    2016-06-01

    The fabrication of nano-composites is challenging because uniform dispersion of nano-sized reinforcements in metallic substrate is difficult to achieve using powder metallurgy or liquid processing methods. In the present study, Al-based nano-composites reinforced with Al2O3 particles have been successfully fabricated using friction stir processing. The effects of nano-Al2O3 particle addition on grain structure evolution of friction stir-processed Al matrix during post-weld annealing were investigated. It was revealed that the pinning effect of Al2O3 particles retarded grain growth and completely prevented abnormal grain growth during postweld annealing at 470°C. However, abnormal grain growth can still occur when the composite material was annealed at 530°C. The mechanism involved in the grain structure evolution and the effect of nano-sized particle addition on the mechanical properties were discussed therein.

  6. A novel approach for phosphorus recovery and no wasted sludge in enhanced biological phosphorus removal process with external COD addition.

    PubMed

    Xia, Cheng-Wang; Ma, Yun-Jie; Zhang, Fang; Lu, Yong-Ze; Zeng, Raymond J

    2014-01-01

    In enhanced biological phosphorus removal (EBPR) process, phosphorus (P) in wastewater is removed via wasted sludge without actual recovery. A novel approach to realize phosphorus recovery with special external chemical oxygen demand (COD) addition in EBPR process was proposed. During the new operating approach period, it was found that (1) no phosphorus was detected in the effluent; (2) with an external addition of 10 % of influent COD amount, 79 % phosphorus in the wastewater influent was recovered; (3) without wasted sludge, the MLVSS concentration in the system increased from 2,010 to 3,400 mg/L and kept stable after day 11 during 24-day operating period. This demonstrates that the novel approach is feasible to realize phosphorus recovery with no wasted sludge discharge in EBPR process. Furthermore, this approach decouples P removal and sludge age, which may enhance the application of membrane bioreactor for P removal. PMID:24122666

  7. The effect of exercise training with an additional inspiratory load on inspiratory muscle fatigue and time-trial performance.

    PubMed

    McEntire, Serina J; Smith, Joshua R; Ferguson, Christine S; Brown, Kelly R; Kurti, Stephanie P; Harms, Craig A

    2016-08-01

    The purpose was to determine the effect of moderate-intensity exercise training (ET) on inspiratory muscle fatigue (IMF) and if an additional inspiratory load during ET (ET+IL) would further improve inspiratory muscle strength, IMF, and time-trial performance. 15 subjects were randomly divided to ET (n=8) and ET+IL groups (n=7). All subjects completed six weeks of exercise training three days/week at ∼70%V̇O2peak for 30min. The ET+IL group breathed through an inspiratory muscle trainer (15% PImax) during exercise. 5-mile, and 30-min time-trials were performed pre-training, weeks three and six. Inspiratory muscle strength increased (p<0.05) for both groups to a similar (p>0.05) extent. ET and ET+IL groups improved (p<0.05) 5-mile time-trial performance (∼10% and ∼18%) and the ET+IL group was significantly faster than ET at week 6. ET and ET+IL groups experienced less (p<0.05) IMF compared to pre-training following the 5-mile time-trial. In conclusion, these data suggest ET leads to less IMF, ET+IL improves inspiratory muscle strength and IMF, but not different than ET alone. PMID:27195511

  8. Echo movement and evolution from real-time processing.

    NASA Technical Reports Server (NTRS)

    Schaffner, M. R.

    1972-01-01

    Preliminary experimental data on the effectiveness of conventional radars in measuring the movement and evolution of meteorological echoes when the radar is connected to a programmable real-time processor are examined. In the processor programming is accomplished by conceiving abstract machines which constitute the actual programs used in the methods employed. An analysis of these methods, such as the center of gravity method, the contour-displacement method, the method of slope, the cross-section method, the contour crosscorrelation method, the method of echo evolution at each point, and three-dimensional measurements, shows that the motions deduced from them may differ notably (since each method determines different quantities) but the plurality of measurement may give additional information on the characteristics of the precipitation.

  9. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  10. Augmenting synthetic aperture radar with space time adaptive processing

    NASA Astrophysics Data System (ADS)

    Riedl, Michael; Potter, Lee C.; Ertin, Emre

    2013-05-01

    Wide-area persistent radar video offers the ability to track moving targets. A shortcoming of the current technology is an inability to maintain track when Doppler shift places moving target returns co-located with strong clutter. Further, the high down-link data rate required for wide-area imaging presents a stringent system bottleneck. We present a multi-channel approach to augment the synthetic aperture radar (SAR) modality with space time adaptive processing (STAP) while constraining the down-link data rate to that of a single antenna SAR system. To this end, we adopt a multiple transmit, single receive (MISO) architecture. A frequency division design for orthogonal transmit waveforms is presented; the approach maintains coherence on clutter, achieves the maximal unaliased band of radial velocities, retains full resolution SAR images, and requires no increase in receiver data rate vis-a-vis the wide-area SAR modality. For Nt transmit antennas and N samples per pulse, the enhanced sensing provides a STAP capability with Nt times larger range bins than the SAR mode, at the cost of O(log N) more computations per pulse. The proposed MISO system and the associated signal processing are detailed, and the approach is numerically demonstrated via simulation of an airborne X-band system.

  11. Crystallization of calcium carbonate (CaCO3) in a flowing system: Influence of Cu2+ additives on induction time and crystalline phase transformation

    NASA Astrophysics Data System (ADS)

    Usmany, Y.; Putranto, W. A.; Bayuseno, A. P.; Muryanto, S.

    2016-04-01

    Scaling of calcium carbonate (CaCO3) is commonly found in piping systems in oil, gas, desalination and other chemical processes. The scale may create technical problems, leading to the reduction of heat transfer, increase of energy consumption and unscheduled equipment shutdown. This paper presents crystallization scaling experiments and evaluation of the effect of Cu2+ additives on the induction time and calcium carbonate transformation. The crystals precursors were prepared using equimolar of CaCl2 and Na2CO3 resulted in concentrations of 3000 ppm Ca2+ in the solution. The Cu2+ in amounts of 0, 1 and 10 ppm was separately added in the solution. The flow rates (20, 35, and 60 mL/min) and elevated temperatures (27, 35 and 45°C) were selected in the study. The induction time for crystallization of CaCO3 was observed by measuring the solution conductivity over time, while the phase transformation of calcium carbonate was examined by XRD method and SEM/EDX. It was found that the conductivity remained steady for a certain period reflecting to the induction time of crystal formation, and then decreased sharply afterwards,. The induction time was increased from 34 and 48 minutes in the presence of Cu additives (1 and 10 ppm), depending on the flow rates and temperature observed. In all the experiments, the Cu2+ addition leads to the reduction of mass of crystals. Apparently, the presence of Cu2+ could inhibit the CaCO3 crystallization. In the absence of Cu2+ and at elevated temperature, the crystals obtained were a mixture of vaterite and calcite. In the presence of Cu2+ and at elevated temperature, the crystals formed were aragonite and calcite. Here, the presence of Cu2+ additives might have controlled the crystal transformation of CaCO3.

  12. Volatility: A hidden Markov process in financial time series

    NASA Astrophysics Data System (ADS)

    Eisler, Zoltán; Perelló, Josep; Masoliver, Jaume

    2007-11-01

    Volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely related to the risk of holding a certain asset. Despite its popularity on trading floors, volatility is unobservable and only the price is known. Diffusion theory has many common points with the research on volatility, the key of the analogy being that volatility is a time-dependent diffusion coefficient of the random walk for the price return. We present a formal procedure to extract volatility from price data by assuming that it is described by a hidden Markov process which together with the price forms a two-dimensional diffusion process. We derive a maximum-likelihood estimate of the volatility path valid for a wide class of two-dimensional diffusion processes. The choice of the exponential Ornstein-Uhlenbeck (expOU) stochastic volatility model performs remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index. The main results are that (i) the distribution of estimated volatility is lognormal, which is consistent with the expOU model, (ii) the estimated volatility is related to trading volume by a power law of the form σ∝V0.55 , and (iii) future returns are proportional to the current volatility, which suggests some degree of predictability for the size of future returns.

  13. Timing the impact of literacy on visual processing

    PubMed Central

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W.; Cohen, Laurent; Dehaene, Stanislas

    2014-01-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼100–150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  14. Volatility: a hidden Markov process in financial time series.

    PubMed

    Eisler, Zoltán; Perelló, Josep; Masoliver, Jaume

    2007-11-01

    Volatility characterizes the amplitude of price return fluctuations. It is a central magnitude in finance closely related to the risk of holding a certain asset. Despite its popularity on trading floors, volatility is unobservable and only the price is known. Diffusion theory has many common points with the research on volatility, the key of the analogy being that volatility is a time-dependent diffusion coefficient of the random walk for the price return. We present a formal procedure to extract volatility from price data by assuming that it is described by a hidden Markov process which together with the price forms a two-dimensional diffusion process. We derive a maximum-likelihood estimate of the volatility path valid for a wide class of two-dimensional diffusion processes. The choice of the exponential Ornstein-Uhlenbeck (expOU) stochastic volatility model performs remarkably well in inferring the hidden state of volatility. The formalism is applied to the Dow Jones index. The main results are that (i) the distribution of estimated volatility is lognormal, which is consistent with the expOU model, (ii) the estimated volatility is related to trading volume by a power law of the form sigma proportional, variant V0.55, and (iii) future returns are proportional to the current volatility, which suggests some degree of predictability for the size of future returns. PMID:18233716

  15. Integrated time-lapse geoelectrical imaging of wetland hydrological processes

    NASA Astrophysics Data System (ADS)

    Uhlemann, S. S.; Sorensen, J. P. R.; House, A. R.; Wilkinson, P. B.; Roberts, C.; Gooddy, D. C.; Binley, A. M.; Chambers, J. E.

    2016-03-01

    Wetlands provide crucial habitats, are critical in the global carbon cycle, and act as key biogeochemical and hydrological buffers. The effectiveness of these services is mainly controlled by hydrological processes, which can be highly variable both spatially and temporally due to structural complexity and seasonality. Spatial analysis of 2-D geoelectrical monitoring data integrated into the interpretation of conventional hydrological data has been implemented to provide a detailed understanding of hydrological processes in a riparian wetland. A two-layered hydrological system was observed in the peat. In the lower part of the peat, upwelling of deeper groundwater from underlying deposits was considered the driver for a 30% increase in peat resistivity during Winter/Spring. In Spring/Summer there was a 60% decrease in resistivity in the near-surface peats due to plant transpiration and/or microbial activity. Water exchange between the layers only appeared to be initiated following large drops in the encircling surface water stage. For the first time, we demonstrated that automated interpretation of geoelectrical data can be used to quantify ground movement in the vertical direction. Here, we applied this method to quantify shrink-swell of expandable soils, affecting hydrological parameters, such as, porosity and permeability. This study shows that an integrated interpretation of hydrological and geophysical data can significantly improve the understanding of wetland hydrological processes. Potentially, this approach can provide the basis for the evaluation of ecosystem services and may aid in the optimization of wetland management strategies.

  16. Timing the impact of literacy on visual processing.

    PubMed

    Pegado, Felipe; Comerlato, Enio; Ventura, Fabricio; Jobert, Antoinette; Nakamura, Kimihiro; Buiatti, Marco; Ventura, Paulo; Dehaene-Lambertz, Ghislaine; Kolinsky, Régine; Morais, José; Braga, Lucia W; Cohen, Laurent; Dehaene, Stanislas

    2014-12-01

    Learning to read requires the acquisition of an efficient visual procedure for quickly recognizing fine print. Thus, reading practice could induce a perceptual learning effect in early vision. Using functional magnetic resonance imaging (fMRI) in literate and illiterate adults, we previously demonstrated an impact of reading acquisition on both high- and low-level occipitotemporal visual areas, but could not resolve the time course of these effects. To clarify whether literacy affects early vs. late stages of visual processing, we measured event-related potentials to various categories of visual stimuli in healthy adults with variable levels of literacy, including completely illiterate subjects, early-schooled literate subjects, and subjects who learned to read in adulthood (ex-illiterates). The stimuli included written letter strings forming pseudowords, on which literacy is expected to have a major impact, as well as faces, houses, tools, checkerboards, and false fonts. To evaluate the precision with which these stimuli were encoded, we studied repetition effects by presenting the stimuli in pairs composed of repeated, mirrored, or unrelated pictures from the same category. The results indicate that reading ability is correlated with a broad enhancement of early visual processing, including increased repetition suppression, suggesting better exemplar discrimination, and increased mirror discrimination, as early as ∼ 100-150 ms in the left occipitotemporal region. These effects were found with letter strings and false fonts, but also were partially generalized to other visual categories. Thus, learning to read affects the magnitude, precision, and invariance of early visual processing. PMID:25422460

  17. Behavioral processes underlying the decline of narcissists' popularity over time.

    PubMed

    Leckelt, Marius; Küfner, Albrecht C P; Nestler, Steffen; Back, Mitja D

    2015-11-01

    Following a dual-pathway approach to the social consequences of grandiose narcissism, we investigated the behavioral processes underlying (a) the decline of narcissists' popularity in social groups over time and (b) how this is differentially influenced by the 2 narcissism facets admiration and rivalry. In a longitudinal laboratory study, participants (N = 311) first provided narcissism self-reports using the Narcissistic Personality Inventory and the Narcissistic Admiration and Rivalry Questionnaire, and subsequently interacted with each other in small groups in weekly sessions over the course of 3 weeks. All sessions were videotaped and trained raters coded participants' behavior during the interactions. Within the sessions participants provided mutual ratings on assertiveness, untrustworthiness, and likability. Results showed that (a) over time narcissists become less popular and (b) this is reflected in an initially positive but decreasing effect of narcissistic admiration as well as an increasing negative effect of narcissistic rivalry. As hypothesized, these patterns of results could be explained by means of 2 diverging behavioral pathways: The negative narcissistic pathway (i.e., arrogant-aggressive behavior and being seen as untrustworthy) plays an increasing role and is triggered by narcissistic rivalry, whereas the relevance of the positive narcissistic pathway (i.e., dominant-expressive behavior and being seen as assertive) triggered by narcissistic admiration decreases over time. These findings underline the utility of a behavioral pathway approach for disentangling the complex effects of personality on social outcomes. PMID:26191958

  18. A novel time-domain signal processing algorithm for real time ventricular fibrillation detection

    NASA Astrophysics Data System (ADS)

    Monte, G. E.; Scarone, N. C.; Liscovsky, P. O.; Rotter S/N, P.

    2011-12-01

    This paper presents an application of a novel algorithm for real time detection of ECG pathologies, especially ventricular fibrillation. It is based on segmentation and labeling process of an oversampled signal. After this treatment, analyzing sequence of segments, global signal behaviours are obtained in the same way like a human being does. The entire process can be seen as a morphological filtering after a smart data sampling. The algorithm does not require any ECG digital signal pre-processing, and the computational cost is low, so it can be embedded into the sensors for wearable and permanent applications. The proposed algorithms could be the input signal description to expert systems or to artificial intelligence software in order to detect other pathologies.

  19. Determining the Volume of Additive Solution and Residual Plasma in Whole Blood Filtered and Buffy Coat Processed Red Cell Concentrates

    PubMed Central

    Jordan, Andrew; Acker, Jason P.

    2016-01-01

    Summary Background Residual plasma in transfused red cell concentrates (RCCs) has been associated with adverse transfusion outcomes. Despite this, there is no consensus on the standard procedure for measuring residual plasma volume. Methods The volumes of residual plasma and additive solution were measured in RCCs processed using two separation methods: whole blood filtration (WBF) and buffy coat (BC)/RCC filtration. The concentration of mannitol and albumin in RCC components was measured using colorimetric assays. Mannitol concentration was used to calculate additive solution volume. Residual plasma volume was calculated using two methods. Results Calculated RCC supernatant volumes were much lower in BC-processed components compared to WBF-processed components (BC = 97 ± 6 ml, WBF = 109 ± 4 ml; p < 0.05). Calculated additive solution volumes were greater in WBF- than in BC-processed components (BC = 81 ± 4 ml, WBF = 105 ± 2 ml; p < 0.05). Absolute residual plasma volume varied significantly based on the calculation method used. Conclusion Disparity between plasma volume calculation methods was observed. Efforts should be made to standardize residual plasma volume measurement methods in order to accurately assess the impact of residual plasma on transfusion outcomes. PMID:27330533

  20. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  1. Hydro-gel environment and solution additives modify calcite growth mechanism to an accretion process of amorphous nanospheres

    NASA Astrophysics Data System (ADS)

    Gal, A.; Kahil, K.; Habraken, W.; Gur, D.; Fratzl, P.; Addadi, L.; Weiner, S.

    2013-12-01

    Various biominerals form via the transformation of a transient amorphous precursor phase into a mature crystalline phase. The mature biominerals usually exhibit morphology reminiscent of aggregated nanoparticles. Although these observations suggest an accretion-based growth process consisting on nanoparticles, the key factors that control the accretion process are unknown. We investigated the transformation of solid amorphous calcium carbonate (ACC) into calcite. When plant cystoliths, a biogenic stable ACC phase, are transformed into calcite in vitro by immersion in water, calcite crystals grow in two distinct steps (Gal et al., Angewandte Chemie, 2013). First, rhombohedral crystals grow that show flat facets as expected from ion-by-ion growth. These crystals then grow by the aggregation and crystallization of the original ACC nanospheres leading to a surface morphology dominated by aggregated spheres. The transformation process occurs within an organic hydro-gel that originates from inside the cystoliths. We tested the importance of the gel phase to the transformation process by transforming synthetic ACC into calcite inside various gels. In all the investigated systems: in gelatin, agarose, and pectin gels, calcite crystals grew that showed the nanosphere aggregation morphology. In additional experiments we demonstrated that also other additives, such as phosphate ions and biogenic macromolecules, that slow down ACC dissolution and calcite precipitation from ions can induce the accretion process dominance (see figure attached). These experiments show that although in solution the dominant process is dissolution to ions of the ACC and crystal growth by ion-by-ion mechanism, the presence of an additive that slows the ion-mediated processes makes the ACC nanospheres stable long enough to interact with the crystal surface. As a result, the metastable ACC nanospheres undergo secondary nucleation on the crystal surface without dissolving. These experiments highlight

  2. Performing forward-viewing endoscopy at time of pancreaticobiliary EUS and ERCP may detect additional upper gastrointestinal lesions

    PubMed Central

    Thomas, Ashby; Vamadevan, Arunan S; Slattery, Eoin; Sejpal, Divyesh V; Trindade, Arvind J

    2016-01-01

    Background and study aims: It is unknown whether significant incidental upper gastrointestinal lesions are missed when using non-forward-viewing endoscopes without completing a forward-viewing exam in linear endoscopic ultrasound (EUS) or endoscopic retrograde cholangiopancreatography (ERCP) exams. We evaluated whether significant upper GI lesions are missed during EUS and ERCP when upper endoscopy is not performed routinely with a gastroscope. Patients and methods: A retrospective analysis was performed in which an EGD with a forward-viewing gastroscope was performed after using a non-forward-viewing endoscope (linear echoendoscope, duodenoscope, or both) during a single procedure. Upper gastrointestinal tract findings were recorded separately for each procedure. Significant lesions found with a forward-viewing gastroscope were defined as findings that led to a change in the patient’s medication regimen, additional endoscopic surveillance/interventions, or the need for other imaging studies. Results: A total of 168 patients were evaluated. In 83 patients, a linear echoendoscope was used, in 52 patients a duodenoscope was used, and in 33 patients both devices were used. Clinically significant additional lesions diagnosed with a gastroscope but missed by a non-forward-viewing endoscope were found in 30 /168 patients (18 %). EGD after linear EUS resulted in additional lesion findings in 17 /83 patients (20.5 %, χ2 = 13.385, P = 0.00025). EGD after use of a duodenoscope resulted in additional lesions findings in 10 /52 patients (19.2 %, χ2 = 9.987, P = 0.00157). EGD after the use of both a linear echoendoscope and a duodenoscope resulted in additional lesions findings in 3/33 patients (9 %, χ2 = 3.219, P = 0.07). Conclusion: Non forward-viewing endoscopes miss a significant amount of incidental upper gastrointestinal lesions during pancreaticobiliary endoscopy. Performing an EGD with a gastroscope at the time of linear EUS or

  3. The work of the European Union Reference Laboratory for Food Additives (EURL) and its support for the authorisation process of feed additives in the European Union: a review

    PubMed Central

    von Holst, Christoph; Robouch, Piotr; Bellorini, Stefano; de la Huebra, María José González; Ezerskis, Zigmas

    2016-01-01

    ABSTRACT This paper describes the operation of the European Union Reference Laboratory for Feed Additives (EURL) and its role in the authorisation procedure of feed additives in the European Union. Feed additives are authorised according to Regulation (EC) No. 1831/2003, which introduced a completely revised authorisation procedure and also established the EURL. The regulations authorising feed additives contain conditions of use such as legal limits of the feed additives, which require the availability of a suitable method of analysis for official control purposes under real world conditions. It is the task of the EURL to evaluate the suitability of analytical methods as proposed by the industry for this purpose. Moreover, the paper shows that one of the major challenges is the huge variety of the methodology applied in feed additive analysis, thus requiring expertise in quite different analytical areas. In order to cope with this challenge, the EURL is supported by a network of national reference laboratories (NRLs) and only the merged knowledge of all NRLs allows for a scientifically sound assessment of the analytical methods. PMID:26540604

  4. A real-time optical data processing device

    NASA Technical Reports Server (NTRS)

    Jacobson, A.; Grinberg, J.; Bleha, W.; Miller, L.; Fraas, L.; Myer, G.; Boswell, D.

    1976-01-01

    A novel liquid-crystal electro-optical device useful as a real-time input device in coherent optical data processing is described. The device is a special adaptation of an ac photoactivated liquid-crystal light valve, and utilizes a hybrid field effect (45 deg twisted nematic effect in OFF state and pure optical birefringence of the liquid crystal in ON state). A thin-film sandwich exerts photoelectric control over the optical birefringence of a thin liquid-crystal layer. Liquid-crystal layer thickness is successfully reduced without image degradation. The device offers high resolution (better than 100 lines/mm), contrast (better than 100/1), high speed (10 msec ON, 15 msec OFF), high input sensitivity, low power input, low fabrication cost, and can be operated at below 10 V rms. Preliminary measurements on device performance in level slicing, filtering, contrast reversal, and edge enhancement are under way.

  5. The psychophysiology of real-time financial risk processing.

    PubMed

    Lo, Andrew W; Repin, Dmitry V

    2002-04-01

    A longstanding controversy in economics and finance is whether financial markets are governed by rational forces or by emotional responses. We study the importance of emotion in the decision-making process of professional securities traders by measuring their physiological characteristics (e.g., skin conductance, blood volume pulse, etc.) during live trading sessions while simultaneously capturing real-time prices from which market events can be detected. In a sample of 10 traders, we find statistically significant differences in mean electrodermal responses during transient market events relative to no-event control periods, and statistically significant mean changes in cardiovascular variables during periods of heightened market volatility relative to normal-volatility control periods. We also observe significant differences in these physiological responses across the 10 traders that may be systematically related to the traders' levels of experience. PMID:11970795

  6. The Time Course of Verb Processing in Dutch Sentences

    PubMed Central

    Shapiro, Lewis P.; Wester, Femke; Swinney, David A.; Bastiaanse, Roelien

    2012-01-01

    The verb has traditionally been characterized as the central element in a sentence. Nevertheless, the exact role of the verb during the actual ongoing comprehension of a sentence as it unfolds in time remains largely unknown. This paper reports the results of two Cross-Modal Lexical Priming (CMLP) experiments detailing the pattern of verb priming during on-line processing of Dutch sentences. Results are contrasted with data from a third CMLP experiment on priming of nouns in similar sentences. It is demonstrated that the meaning of a matrix verb remains active throughout the entire matrix clause, while this is not the case for the meaning of a subject head noun. Activation of the meaning of the verb only dissipates upon encountering a clear signal as to the start of a new clause. PMID:19452278

  7. Accessible high performance computing solutions for near real-time image processing for time critical applications

    NASA Astrophysics Data System (ADS)

    Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek

    2009-09-01

    High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.

  8. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts.

    PubMed

    Stavroulakis, P I; Leach, R K

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement. PMID:27131645

  9. Invited Review Article: Review of post-process optical form metrology for industrial-grade metal additive manufactured parts

    NASA Astrophysics Data System (ADS)

    Stavroulakis, P. I.; Leach, R. K.

    2016-04-01

    The scope of this review is to investigate the main post-process optical form measurement technologies available in industry today and to determine whether they are applicable to industrial-grade metal additive manufactured parts. An in-depth review of the operation of optical three-dimensional form measurement technologies applicable to metal additive manufacturing is presented, with a focus on their fundamental limitations. Looking into the future, some alternative candidate measurement technologies potentially applicable to metal additive manufacturing will be discussed, which either provide higher accuracy than currently available techniques but lack measurement volume, or inversely, which operate in the appropriate measurement volume but are not currently accurate enough to be used for industrial measurement.

  10. Hybrid integrated optic modules for real-time signal processing

    NASA Technical Reports Server (NTRS)

    Tsai, C. S.

    1984-01-01

    The most recent progress on four relatively new hybrid integrated optic device modules in LiNbO3 waveguides and one in YIG/GGG waveguide that are currently being studied are discussed. The five hybrid modules include a time-integrating acoustooptic correlator, a channel waveguide acoustooptic frequency shifter/modulator, an electrooptic channel waveguide total internal reflection moculator/switch, an electrooptic analog-to-digital converter using a Fabry-Perot modulator array, and a noncollinear magnetooptic modulator using magnetostatic surface waves. All of these devices possess the desirable characteristics of very large bandwidth (GHz or higher), very small substrate size along the optical path (typically 1.5 cm or less), single-mode optical propagation, and low drive power requirement. The devices utilize either acoustooptic, electrooptic or magnetooptic effects in planar or channel waveguides and, therefore, act as efficient interface devices between a light wave and temporal signals. Major areas of application lie in wideband multichannel optical real-time signal processing and communications. Some of the specific applications include spectral analysis and correlation of radio frequency (RF) signals, fiber-optic sensing, optical computing and multiport switching/routing, and analog-to-digital conversion of wide RF signals.

  11. The Real-Time Processing of Sluiced Sentences

    PubMed Central

    Wolfinger, Katie; Spellman, Lisa; Shapiro, Lewis P.

    2012-01-01

    Ellipsis refers to an element that is absent from the input but whose meaning can nonetheless be recovered from context. In this cross-modal priming study, we examined the online processing of Sluicing, an ellipsis whose antecedent is an entire clause: The handyman threw a book to the programmer but I don’t know which book the handyman threw to the programmerellipsis. To understand such an elliptical construction, the listener arguably must ‘fill in’ the missing material (“the handyman threw___ to the programmer”) based on that which occurs in the antecedent clause. We aimed to determine the point in time in which reconstruction of the sluiced sentence is attempted and whether such a complex antecedent is re-accessed by the ellipsis. Out of the two antecedent constituents for which we probed, only the Object (programmer) was found active in the elliptical clause, confirming that an antecedent is attributed to the sluice in real time. Possible reasons for the non-observation of the Subject (handyman) are considered. We also suggest that ellipses are detected earlier in coordinated than subordinated sentences. PMID:20229060

  12. Analog signal processing for the Time Projection Chamber

    SciTech Connect

    Jared, R.C.; Landis, D.A.; Goulding, F.S.

    1981-10-01

    The Time Projection Chamber (TPC) is a large gas filled cylindrical detector designed to provide 3-D images of tracks radiating from the center of the detector where e/sup +/e/sup -/ collisions occur. Ionization along the tracks is drifted in an electric field to the end planes which are equipped with a large array of proportional wires and position pads (17,000 channels). The wire signals are used to derive radial data while the pad signals provide the azmuthal information. The axial dimension is determined using the drift time of the ionization. Preamplifiers mounted in the ends of the chamber feed the signals to remote amplifiers whose outputs drive Charge Coupled Devices (CCD). The CCDs are normally clocked at 10 MHz and hold a 45.5 ..mu..s history (445 CCD buckets) of analog drift information from the TPC. During readout the clock is changed to 20 KHz and 17,000 CCD outputs are digitized (9 bits) in parallel. The non-zero data is then transferred to buffer memories associated with the digitizers. This paper emphasizes the analog signal processing part of the system.

  13. Applications of Time-Reversal Processing for Planetary Surface Communications

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.

    2007-01-01

    Due to the power constraints imposed on wireless sensor and communication networks deployed on a planetary surface during exploration, energy efficient transfer of data becomes a critical issue. In situations where groups of nodes within a network are located in relatively close proximity, cooperative communication techniques can be utilized to improve the range, data rate, power efficiency, and lifetime of the network. In particular, if the point-to-point communication channels on the network are well modeled as frequency non-selective, distributed or cooperative beamforming can employed. For frequency-selective channels, beamforming itself is not generally appropriate, but a natural generalization of it, time-reversal communication (TRC), can still be effective. Time-reversal processing has been proposed and studied previously for other applications, including acoustical imaging, electromagnetic imaging, underwater acoustic communication, and wireless communication channels. In this paper, we study both the theoretical advantages and the experimental performance of cooperative TRC for wireless communication on planetary surfaces. We give a brief introduction to TRC and present several scenarios where TRC could be profitably employed during planetary exploration. We also present simulation results illustrating the performance of cooperative TRC employed in a complex multipath environment and discuss the optimality of cooperative TRC for data aggregation in wireless sensor networks

  14. Collaborative Technology Assessments Of Transient Field Processing And Additive Manufacturing Technologies As Applied To Gas Turbine Components

    SciTech Connect

    Ludtka, Gerard Michael; Dehoff, Ryan R.; Szabo, Attila; Ucok, Ibrahim

    2016-01-01

    ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy. Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.

  15. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes.

    PubMed

    Travers, L M; Simmons, L W; Garcia-Gonzalez, F

    2016-05-01

    Polyandry is widespread despite its costs. The sexually selected sperm hypotheses ('sexy' and 'good' sperm) posit that sperm competition plays a role in the evolution of polyandry. Two poorly studied assumptions of these hypotheses are the presence of additive genetic variance in polyandry and sperm competitiveness. Using a quantitative genetic breeding design in a natural population of Drosophila melanogaster, we first established the potential for polyandry to respond to selection. We then investigated whether polyandry can evolve through sexually selected sperm processes. We measured lifetime polyandry and offensive sperm competitiveness (P2 ) while controlling for sampling variance due to male × male × female interactions. We also measured additive genetic variance in egg-to-adult viability and controlled for its effect on P2 estimates. Female lifetime polyandry showed significant and substantial additive genetic variance and evolvability. In contrast, we found little genetic variance or evolvability in P2 or egg-to-adult viability. Additive genetic variance in polyandry highlights its potential to respond to selection. However, the low levels of genetic variance in sperm competitiveness suggest that the evolution of polyandry may not be driven by sexy sperm or good sperm processes. PMID:26801640

  16. Fusion of product and process data: Batch-mode and real-time streaming

    SciTech Connect

    Vincent De Sapio; Spike Leonard

    1999-12-01

    In today's DP product realization enterprise it is imperative to reduce the design-to-fabrication cycle time and cost while improving the quality of DP parts (reducing defects). Much of this challenge resides in the inherent gap between the product and process worlds. The lack of seamless, bi-directional flow of information prevents true concurrency in the product realization world. This report addresses a framework for product-process data fusion to help achieve next generation product realization. A fundamental objective is to create an open environment for multichannel observation of process date, and subsequent mapping of that data onto product geometry. In addition to the sensor-based observation of manufacturing processes, model-based process data provides an important complement to empirically acquired data. Two basic groups of manufacturing models are process physics, and machine kinematics and dynamics. Process physics addresses analytical models that describe the physical phenomena of the process itself. Machine kinematic and dynamic models address the mechanical behavior of the processing equipment. As a secondary objective, an attempt has been made in this report to address part of the model-based realm through the development of an open object-oriented library and toolkit for machine kinematics and dynamics. Ultimately, it is desirable to integrate design definition, with all types of process data; both sensor-based and model-based. Collectively, the goal is to allow all disciplines within the product realization enterprise to have a centralized medium for the fusion of product and process data.

  17. Additive Fabrication of Conductive Patterns by a Template Transfer Process Based on Benzotriazole Adsorption As a Separation Layer.

    PubMed

    Chang, Yu; Yang, Zhen-Guo

    2016-06-01

    The traditional subtractive process to fabricate conductive patterns is environmentally harmful, wasteful, and limited in line width. The additive process, including direct printing of conductive paste or ink, direct printing of catalytic ink, laser-induced forward transfer, etc., can solve these problems. However, the current additive process also faces many difficulties such as low electrical and adhesion properties, low pattern thickness, high cost, etc. Benzotriazole (BTA), as widely used corrosion inhibitor, can be adsorbed onto a copper surface. The electroplated copper film on BTA-adsorbed copper foil shows poor adhesion. On the basis of this phenomenon, a novel template transfer process to additively fabricate conductive patterns has been developed. A permeant antiadhesive mask is printed on carrier copper foil, and then, BTA is adsorbed onto the exposed area of the carrier foil, thus forming the template. The template is electroplated to grow conductive patterns in the exposed parts, and then can be adhered to the flexible substrate. The substrate is peeled off, with the transfer of the conductive patterns to the substrate, to form the designed conductive patterns on PET. By reimmersing the template into BTA solution, the template can be used again. The mechanism of BTA adsorption and the reason for the low peeling strength are researched using Raman spectra, XPS and electrochemical impedance spectroscopy. Copper patterns more than 20 μm in thickness can be prepared on PET, the resistivity of the prepared copper patterns is 2.01 μΩ cm, which is about the same as bulk copper, and the peeling strength of the pattern on PET is measured to be 6.97 N/cm. This template transfer process, with no waste, low pollution, high electrical and adhesion properties, and low cost, shows high potential in the large scale manufacturing of electronic devices, such as RFID circuitry, FPCs, etc. PMID:27171553

  18. Time Reversal Signal Processing in Communications - A Feasibility Study

    SciTech Connect

    Meyer, A W; Candy, J V; Poggio, A J

    2002-01-30

    A typical communications channel is subjected to a variety of signal distortions, including multipath, that corrupt the information being transmitted and reduce the effective channel capacity. The mitigation of the multipath interference component is an ongoing concern for communication systems operating in complex environments such as might be experienced inside buildings, urban environments, and hilly or heavily wooded areas. Communications between mobile units and distributed sensors, so important to national security, are dependent upon flawless conveyance of information in complex environments. The reduction of this multipath corruption necessitates better channel equalization, i.e., the removal of channel distortion to extract the transmitted information. But, the current state of the art in channel equalization either requires a priori knowledge of the channel or the use of a known training sequence and adaptive filtering. If the ''assumed'' model within the equalization processor does not at least capture the dominant characteristics of the channel, then the received information may still be highly distorted and possibly useless. Also, the processing required for classical equalization is demanding in computational resources. To remedy this situation, many techniques have been investigated to replace classical equalization. Such a technique, the subject of this feasibility study, is Time Reversal Signal Processing (TRSP). Multipath is particularly insidious and a major factor in the deterioration of communication channels. Unlike most other characteristics that corrupt a communications channel, the detrimental effects of multipath cannot be overcome by merely increasing the transmitted power. Although the power in a signal diminishes as a function of the distance between the transmitter and receiver, multipath further degrades a signal by creating destructive interference that results in a loss of received power in a very localized area, a loss often

  19. Process for fabricating device structures for real-time process control of silicon doping

    DOEpatents

    Weiner, Kurt H.

    2001-01-01

    Silicon device structures designed to allow measurement of important doping process parameters immediately after the doping step has occurred. The test structures are processed through contact formation using standard semiconductor fabrication techniques. After the contacts have been formed, the structures are covered by an oxide layer and an aluminum layer. The aluminum layer is then patterned to expose the contact pads and selected regions of the silicon to be doped. Doping is then performed, and the whole structure is annealed with a pulsed excimer laser. But laser annealing, unlike standard annealing techniques, does not effect the aluminum contacts because the laser light is reflected by the aluminum. Once the annealing process is complete, the structures can be probed, using standard techniques, to ascertain data about the doping step. Analysis of the data can be used to determine probable yield reductions due to improper execution of the doping step and thus provide real-time feedback during integrated circuit fabrication.

  20. A functional circuit model of interaural time difference processing.

    PubMed

    McColgan, Thomas; Shah, Sahil; Köppl, Christine; Carr, Catherine; Wagner, Hermann

    2014-12-01

    Inputs from the two sides of the brain interact to create maps of interaural time difference (ITD) in the nucleus laminaris of birds. How inputs from each side are matched with high temporal precision in ITD-sensitive circuits is unknown, given the differences in input path lengths from each side. To understand this problem in birds, we modeled the geometry of the input axons and their corresponding conduction velocities and latencies. Consistent with existing physiological data, we assumed a common latency up to the border of nucleus laminaris. We analyzed two biological implementations of the model, the single ITD map in chickens and the multiple maps of ITD in barn owls. For binaural inputs, since ipsi- and contralateral initial common latencies were very similar, we could restrict adaptive regulation of conduction velocity to within the nucleus. Other model applications include the simultaneous derivation of multiple conduction velocities from one set of measurements and the demonstration that contours with the same ITD cannot be parallel to the border of nucleus laminaris in the owl. Physiological tests of the predictions of the model demonstrate its validity and robustness. This model may have relevance not only for auditory processing but also for other computational tasks that require adaptive regulation of conduction velocity. PMID:25185809

  1. Coastal erosion: Processes, timing and magnitudes at the bluff toe

    USGS Publications Warehouse

    Carter, C.H.; Guy, D.E., Jr.

    1988-01-01

    Five Lake Erie bluffs (one interlaminated clay and silt, three clay-rich diamicts and one shale) were surveyed at about 2-week intervals and after wind storms for up to 5 years. Erosion of the bluff toes along this low-energy coast occurred during northeast wind storms, which produced surges of up to 1 m and surf-zone waves of up to 1.2 m. Wave impact and/or uprush caused quarrying, which removed most of the toe material, and abrasion. There were from 1 to 23 erosion events/sites, with maximum magnitudes of erosion ranging from 12 to 55 cm/event. Timing and magnitude were linked to erodibility, maximum water level, storm surge, storm duration and beach width. A threshold maximum water level and a threshold surge were necessary for erosion. At these thresholds, the beach was submerged and wave energy was directly expended on the toe. Erosion did not take place when there was shorefast ice or when debris slopes shielded the toe from waves. The originally cohesive toe materials are easily eroded when they weather to an essentially noncohesive state. Wave erosion is the crucial erosion process; removal of material from the toe prevents the development of a stable slope. ?? 1988.

  2. A functional circuit model of interaural time difference processing

    PubMed Central

    McColgan, Thomas; Shah, Sahil; Köppl, Christine; Carr, Catherine

    2014-01-01

    Inputs from the two sides of the brain interact to create maps of interaural time difference (ITD) in the nucleus laminaris of birds. How inputs from each side are matched with high temporal precision in ITD-sensitive circuits is unknown, given the differences in input path lengths from each side. To understand this problem in birds, we modeled the geometry of the input axons and their corresponding conduction velocities and latencies. Consistent with existing physiological data, we assumed a common latency up to the border of nucleus laminaris. We analyzed two biological implementations of the model, the single ITD map in chickens and the multiple maps of ITD in barn owls. For binaural inputs, since ipsi- and contralateral initial common latencies were very similar, we could restrict adaptive regulation of conduction velocity to within the nucleus. Other model applications include the simultaneous derivation of multiple conduction velocities from one set of measurements and the demonstration that contours with the same ITD cannot be parallel to the border of nucleus laminaris in the owl. Physiological tests of the predictions of the model demonstrate its validity and robustness. This model may have relevance not only for auditory processing but also for other computational tasks that require adaptive regulation of conduction velocity. PMID:25185809

  3. GPUs for real-time processing in HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Deri, L.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Messina, A.; Sozzi, M.; Pantaleo, F.; Paolucci, Ps; Rossetti, D.; Simula, F.; Tosoratto, L.; Vicini, P.; Gap Collaboration

    2014-06-01

    We describe a pilot project (GAP - GPU Application Project) for the use of GPUs (Graphics processing units) for online triggering applications in High Energy Physics experiments. Two major trends can be identified in the development of trigger and DAQ systems for particle physics experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a fully software data selection system ("trigger-less"). The innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software not only in high level trigger levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerators in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughputs, the use of such devices for real-time applications in high energy physics data acquisition and trigger systems is becoming relevant. We discuss in detail the use of online parallel computing on GPUs for synchronous low-level triggers with fixed latency. In particular we show preliminary results on a first test in the CERN NA62 experiment. The use of GPUs in high level triggers is also considered, the CERN ATLAS experiment being taken as a case study of possible applications.

  4. Time-dependent corticosteroid modulation of prefrontal working memory processing

    PubMed Central

    Henckens, Marloes J. A. G.; van Wingen, Guido A.; Joëls, Marian; Fernández, Guillén

    2011-01-01

    Corticosteroids are potent modulators of human higher cognitive function. They are released in response to stress, and are thought to be involved in the modulation of cognitive function by inducing distinct rapid nongenomic, and slow genomic changes, affecting neural plasticity throughout the brain. However, their exact effects on the neural correlates of higher-order cognitive function as performed by the prefrontal cortex at the human brain system level remain to be elucidated. Here, we targeted these time-dependent effects of corticosteroids on prefrontal cortex processing in humans using a working memory (WM) paradigm during functional MRI scanning. Implementing a randomized, double-blind, placebo-controlled design, 72 young, healthy men received 10 mg hydrocortisone either 30 min (rapid corticosteroid effects) or 240 min (slow corticosteroid effects), or placebo before a numerical n-back task with differential load (0- to 3-back). Corticosteroids’ slow effects appeared to improve working memory performance and increased neuronal activity during WM performance in the dorsolateral prefrontal cortex depending on WM load, whereas no effects of corticosteroids’ rapid actions were observed. Thereby, the slow actions of corticosteroids seem to facilitate adequate higher-order cognitive functioning, which may support recovery in the aftermath of stress exposure. PMID:21436038

  5. GPUs for real-time processing in HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Lamanna, G.; Ammendola, R.; Bauce, M.; Biagioni, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Graverini, E.; Lamanna, G.; Lonardo, A.; Messina, A.; Pantaleo, F.; Paolucci, P. S.; Piandani, R.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.

    2014-06-01

    We describe a pilot project for the use of Graphics Processing Units (GPUs) for online triggering applications in High Energy Physics (HEP) experiments. Two major trends can be identified in the development of trigger and DAQ systems for HEP experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a pure software selection system (trigger-less). The very innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software both at low- and high-level trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughputs, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming very attractive. We discuss in details the use of online parallel computing on GPUs for synchronous low-level trigger with fixed latency. In particular we show preliminary results on a first test in the NA62 experiment at CERN. The use of GPUs in high-level triggers is also considered, the ATLAS experiment (and in particular the muon trigger) at CERN will be taken as a study case of possible applications.

  6. Patterning of nanodiamond tracks and nanocrystalline diamond films using a micropipette for additive direct-write processing.

    PubMed

    Taylor, Alice C; Edgington, Robert; Jackman, Richard B

    2015-04-01

    The ability to pattern the seeding of nanodiamonds (NDs), and thus selectively control areas of diamond growth, is a useful capability for many applications, including photonics, microelectromechanical systems (MEMS) prototyping, and biomaterial design. A microprinting technique using a computer-driven micropipette has been developed to deposit patterns of ND monolayers from an unreactive water/glycerol ND ink to 5-μm resolution. The concentration and composition of the ND solution were optimized to realize high-density monolayers of NDs and consistent ND printing. Subsequent nanocrystalline diamond (NCD) patterns grown using chemical vapor deposition showed a high level of compliance with the printed ND pattern. This "direct-write", bottom-up, and additive process offers a versatile and simple alternative to pattern diamond. The process has the particular advantage that it does not require lithography or destructive processing such as reactive-ion etching (RIE) and, pertinently, does not involve reactive chemicals that could alter the surface chemistry of NDs. Furthermore, given that this process obviates the use of conventional lithography, substrates that are not suitable for lithographic processing (e.g., excessively small or three-dimensional structured substrates) can be inscribed with ND patterns. The technique also allows for the growth of discrete, localized, single-crystal nanodiamonds with applications in quantum technology. PMID:25669757

  7. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. PMID:26488900

  8. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Du, Bing; Wei, Qin; Tran, Ngoc Han; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Li, Jianxin

    2016-06-01

    The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling. PMID:26852274

  9. Possible overlapping time frames of acquisition and consolidation phases in object memory processes: a pharmacological approach.

    PubMed

    Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos

    2016-01-01

    In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when administered within 2 min after the acquisition trial. Likewise, both PDE5-I and PDE4-I reversed the scopolamine deficit model when administered within 2 min after the learning trial. PDE5-I was effective up to 45 min after the acquisition trial and PDE4-I was effective when administered between 3 and 5.5 h after the acquisition trial. Taken together, our study suggests that acetylcholine, cGMP, and cAMP are all involved in acquisition processes and that cGMP and cAMP are also involved in early and late consolidation processes, respectively. Most important, these pharmacological studies suggest that acquisition processes continue for some time after the learning trial where they share a short common time frame with early consolidation processes. Additional brain concentration measurements of the drugs suggest that these acquisition processes can continue up to 4-6 min after learning. PMID:26670184

  10. Microbial ecology and performance of ammonia oxidizing bacteria (AOB) in biological processes treating petrochemical wastewater with high strength of ammonia: effect of Na(2)CO(3) addition.

    PubMed

    Whang, L M; Yang, K H; Yang, Y F; Han, Y L; Chen, Y J; Cheng, S S

    2009-01-01

    This study evaluated nitrification performance and microbial ecology of AOB in a full-scale biological process, powder activated carbon treatment (PACT), and a pilot-scale biological process, moving bed biofilm reactor (MBBR), treating wastewater collected from a petrochemical industry park. The petrochemical influent wastewater characteristics showed a relative low carbon to nitrogen ratio around 1 with average COD and ammonia concentrations of 310 mg/L and 325 mg-N/L, respectively. The average nitrification efficiency of the full-scale PACT process was around 11% during this study. For the pilot-scale MBBR, the average nitrification efficiency was 24% during the Run I operation mode, which provided a slightly better performance in nitrification than that of the PACT process. During the Run II operation, the pH control mode was switched from addition of NaOH to Na(2)CO(3), leading to a significant improvement in nitrification efficiency of 51%. In addition to a dramatic change in nitrification performance, the microbial ecology of AOB, monitored with the terminal restriction fragment length polymorphism (T-RFLP) molecular methodology, was found to be different between Runs I and II. The amoA-based TRFLP results indicated that Nitrosomonas europaea lineage was the dominant AOB population during Run I operation, while Nitrosospira-like AOB was dominant during Run II operation. To confirm the effects of Na(2)CO(3) addition on the nitrification performance and AOB microbial ecology observed in the MBBR process, batch experiments were conducted. The results suggest that addition of Na(2)CO(3) as a pH control strategy can improve nitrification performance and also influence AOB microbial ecology as well. Although the exact mechanisms are not clear at this time, the results showing the effects of adding different buffering chemicals such as NaOH or Na(2)CO(3) on AOB populations have never been demonstrated until this study. PMID:19182331

  11. Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV).

    PubMed

    Trudeau, Michaela P; Verma, Harsha; Sampedro, Fernando; Urriola, Pedro E; Shurson, Gerald C; McKelvey, Jessica; Pillai, Suresh D; Goyal, Sagar M

    2016-01-01

    Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120-145°C for up to 30 min or irradiated at 0-50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability. PMID:27341670

  12. Comparison of Thermal and Non-Thermal Processing of Swine Feed and the Use of Selected Feed Additives on Inactivation of Porcine Epidemic Diarrhea Virus (PEDV)

    PubMed Central

    Trudeau, Michaela P.; Verma, Harsha; Sampedro, Fernando; Urriola, Pedro E.; Shurson, Gerald C.; McKelvey, Jessica; Pillai, Suresh D.; Goyal, Sagar M.

    2016-01-01

    Infection with porcine epidemic diarrhea virus (PEDV) causes diarrhea, vomiting, and high mortality in suckling pigs. Contaminated feed has been suggested as a vehicle of transmission for PEDV. The objective of this study was to compare thermal and electron beam processing, and the inclusion of feed additives on the inactivation of PEDV in feed. Feed samples were spiked with PEDV and then heated to 120–145°C for up to 30 min or irradiated at 0–50 kGy. Another set of feed samples spiked with PEDV and mixed with Ultracid P (Nutriad), Activate DA (Novus International), KEM-GEST (Kemin Agrifood), Acid Booster (Agri-Nutrition), sugar or salt was incubated at room temperature (~25°C) for up to 21 days. At the end of incubation, the virus titers were determined by inoculation of Vero-81 cells and the virus inactivation kinetics were modeled using the Weibull distribution model. The Weibull kinetic parameter delta represented the time or eBeam dose required to reduce virus concentration by 1 log. For thermal processing, delta values ranged from 16.52 min at 120°C to 1.30 min at 145°C. For eBeam processing, a target dose of 50 kGy reduced PEDV concentration by 3 log. All additives tested were effective in reducing the survival of PEDV when compared with the control sample (delta = 17.23 days). Activate DA (0.81) and KEM-GEST (3.28) produced the fastest inactivation. In conclusion, heating swine feed at temperatures over 130°C or eBeam processing of feed with a dose over 50 kGy are effective processing steps to reduce PEDV survival. Additionally, the inclusion of selected additives can decrease PEDV survivability. PMID:27341670

  13. Extracting Dwell Time Sequences from Processive Molecular Motor Data

    PubMed Central

    Milescu, Lorin S.; Yildiz, Ahmet; Selvin, Paul R.; Sachs, Frederick

    2006-01-01

    Processive molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into mechanical energy by hydrolyzing ATP. The mechanical energy is used for moving in discrete steps along the cytoskeleton and carrying a molecular load. Single-molecule recordings of motor position along a substrate polymer appear as a stochastic staircase. Recordings of other single molecules, such as F1-ATPase, RNA polymerase, or topoisomerase, have the same appearance. We present a maximum likelihood algorithm that extracts the dwell time sequence from noisy data, and estimates state transition probabilities and the distribution of the motor step size. The algorithm can handle models with uniform or alternating step sizes, and reversible or irreversible kinetics. A periodic Markov model describes the repetitive chemistry of the motor, and a Kalman filter allows one to include models with variable step size and to correct for baseline drift. The data are optimized recursively and globally over single or multiple data sets, making the results objective over the full scale of the data. Local binary algorithms, such as the t-test, do not represent the behavior of the whole data set. Our method is model-based, and allows rapid testing of different models by comparing the likelihood scores. From data obtained with current technology, steps as small as 8 nm can be resolved and analyzed with our method. The kinetic consequences of the extracted dwell sequence can be further analyzed in detail. We show results from analyzing simulated and experimental kinesin and myosin motor data. The algorithm is implemented in the free QuB software. PMID:16905607

  14. Time Analysis of Hydrogeodeformative Processes in the Territory of Armenia

    NASA Astrophysics Data System (ADS)

    Pashayan, R. A.; Avetyan, R. G.

    2008-12-01

    In the present work the analysis of data of hydrogeodynamic supervision of hydrogeodeformative chinks is given taking into account seismic mode. The characteristics of the locations of chinks are given, starting with block structure of earth crust of Armenia. Hydrogeodynamic mode was compared with areas of tectonic stress. The character of distribution of hydrogeodeformative processes in time and space is studied. The method of hydrogeodynamic monitoring of earth crust was used and is being used now to supervise the data of level of waters of hydrogeodynamic chinks of the region, hydrodeformative processes and seismic mode. Large-scale zones of the earth crust are allocated in the territory of Armenia, geodynamics of which conditions seismicity of the territory. The folded zone of Armenia is the largest zone which stretches from suburbs of Gjumry to north-west to Megry to south-east. Eight hydrogeodynamic chinks function within a zone. Four chinks are located in the Somheto-Karabakh zone. One chink is located in the Kafansky zone and another one in Priaraksinsky depression. High informativness have chinks, which are located from 0.2 to 3 km from a break [3]. It indicates that in fault structures the influence of such factors, as deformation of environment and tensosensitivity of systems on formation of hydrogeodinamic effects is higher, than in the block. According to the water level of chinks hydrogeodynamic effects were marked in form of bay rising before earthquake as well as variations of water level on other chinks of observed deformation field. Though effects preceding earthquake were also observed they were very weak as there was decrease of tectonic stresses of environment moving off from epicenter of earthquake source. From the above mentioned we may conclude that - The revealed periodic variations of water levels of chinks (¹ 11, 18. 27) may be identified with influence of tide-generating forces. - Low-amplitude periodic variations of underground water

  15. Reaction time in gait initiation depends on the time available for affective processing.

    PubMed

    Gélat, Thierry; Chapus, Carole Ferrel

    2015-11-16

    Previous studies have reported that reaction time in gait initiation was affected by emotion eliciting pictures. This study examined the effect of a change in the delay between image onset and the imperative "go" on reaction time. From a standing posture, 19 young adults had to walk (several steps) toward pleasant or unpleasant images in two conditions. In the short condition, the word "go" appeared 500ms after image onset and participants were instructed to initiate gait as soon as possible after the word go appeared. In the long condition, the same procedure was used but the word "go" appeared 3000ms after image onset. Results demonstrated that motor responses were faster for pleasant pictures than unpleasant ones in the short condition. In contrast, no significant difference was found between both categories of pictures in the long condition. Moreover, we found that self ratings of valence of unpleasant pictures were less unpleasant in the long condition than in the short one whereas there was no difference for pleasant pictures between both conditions. This result reflected a change in the affective significance of unpleasant pictures in the long condition. We also found in the long condition, that the body was inclined forward and to the stance limb during the standing posture and importantly with a similar extent for pleasant and unpleasant pictures. This change clearly reflected a facilitation of the gait initiation process. Overall, results suggested that this gait facilitation when confronted to unpleasant pictures resulted from emotional regulation processes enabling to reappraise these pictures and to override the initial avoidance tendency that they caused. PMID:26455865

  16. Real-Time Data Processing Systems and Products at the Alaska Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Hansen, R. A.

    2007-05-01

    The Alaska Earthquake Information Center (AEIC) receives data from over 400 seismic sites located within the state boundaries and the surrounding regions and serves as a regional data center. In 2007, the AEIC reported ~20,000 seismic events, with the largest event of M6.6 in Andreanof Islands. The real-time earthquake detection and data processing systems at AEIC are based on the Antelope system from BRTT, Inc. This modular and extensible processing platform allows an integrated system complete from data acquisition to catalog production. Multiple additional modules constructed with the Antelope toolbox have been developed to fit particular needs of the AEIC. The real-time earthquake locations and magnitudes are determined within 2-5 minutes of the event occurrence. AEIC maintains a 24/7 seismologist-on-duty schedule. Earthquake alarms are based on the real- time earthquake detections. Significant events are reviewed by the seismologist on duty within 30 minutes of the occurrence with information releases issued for significant events. This information is disseminated immediately via the AEIC website, ANSS website via QDDS submissions, through e-mail, cell phone and pager notifications, via fax broadcasts and recorded voice-mail messages. In addition, automatic regional moment tensors are determined for events with M>=4.0. This information is posted on the public website. ShakeMaps are being calculated in real-time with the information currently accessible via a password-protected website. AEIC is designing an alarm system targeted for the critical lifeline operations in Alaska. AEIC maintains an extensive computer network to provide adequate support for data processing and archival. For real-time processing, AEIC operates two identical, interoperable computer systems in parallel.

  17. Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task.

    PubMed

    Audiffren, Michel; Tomporowski, Phillip D; Zagrodnik, James

    2008-11-01

    The immediate and short-term after effects of a bout of aerobic exercise on young adults' information processing were investigated. Seventeen participants performed an auditory two-choice reaction time (RT) task before, during, and after 40 min of ergometer cycling. In a separate session, the same sequence of testing was completed while seated on an ergometer without pedalling. Results indicate that exercise (1) improves the speed of reactions by energizing motor outputs; (2) interacts with the arousing effect of a loud auditory signal suggesting a direct link between arousal and activation; (3) gradually reduces RT and peaks between 15 and 20 min; (4) effects on RT disappear very quickly after exercise cessation; and (5) effects on motor processes cannot be explained by increases in body temperature caused by exercise. Taken together, these results support a selective influence of acute aerobic exercise on motor adjustment stage. PMID:18930445

  18. EFFECT OF MINOR ADDITIONS OF HYDROGEN TO ARGON SHIELDING GAS WHEN WELDING AUSTENITIC STAINLESS STEEL WITH THE GTAW PROCESS

    SciTech Connect

    CANNELL, G.R.

    2004-12-15

    This paper provides the technical basis to conclude that the use of hydrogen containing shielding gases during welding of austenitic stainless steels will not lead to hydrogen induced cracking (HIC) of the weld or weld heat affected zone. Argon-hydrogen gas mixtures, with hydrogen additions up to 35% [1], have been successfully used as the shielding gas in gas tungsten arc welding (GTAW) of austenitic stainless steels. The addition of hydrogen improves weld pool wettability, bead shape control, surface cleanliness and heat input. The GTAW process is used extensively for welding various grades of stainless steel and is preferred when a very high weld quality is desired, such as that required for closure welding of nuclear materials packages. The use of argon-hydrogen gas mixtures for high-quality welding is occasionally questioned, primarily because of concern over the potential for HIC. This paper was written specifically to provide a technical basis for using an argon-hydrogen shielding gas in conjunction with the development, at the Savannah River Technology Center (SRTC), of an ''optimized'' closure welding process for the DOE standardized spent nuclear fuel canister [2]. However, the basis developed here can be applied to other applications in which the use of an argon-hydrogen shielding gas for GTAW welding of austenitic stainless steels is desired.

  19. Generalized Gibbs ensembles for time-dependent processes

    SciTech Connect

    Chomaz, Ph.; Juillet, O.

    2005-11-01

    An information theory description of finite systems explicitly evolving in time is presented for classical as well as quantum mechanics. We impose a variational principle on the Shannon entropy at a given time while the constraints are set at a former time. The resulting density matrix deviates from the Boltzmann kernel and contains explicit time odd components which can be interpreted as collective flows. Applications include quantum Brownian motion, linear response theory, out of equilibrium situations for which the relevant information is collected within different time scales before entropy saturation, and the dynamics of the expansion.

  20. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    NASA Astrophysics Data System (ADS)

    Gesta, E.; Skovmand, O.; Espuche, E.; Fulchiron, R.

    2015-12-01

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives' ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  1. Installation of semiconductor crystal growth and processing facilities in the Building 166 addition at Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1990-08-01

    A new addition has been constructed to Building 166 at Lawrence Livermore National Laboratory (LLNL). This addition is intended to contain facilities as described below. The Metalorganic Chemical Vapor Deposition (MOCVD) facility is a proposed facility for the growth of semiconductor crystals composed of various combinations of gallium, aluminum, indium, arsenic, phosphorous, antimony, silicon, and zinc. This facility will utilize hazardous metal hydride gases (arsine, silane, and disilane) and pyrophoric materials (metal alkyls). The MOCVD process has been intensively developed over the past 10 years and is being safetly utilized in over 75 locations worldwide in both research and manufacturing applications. All equipment in the LLNL MOCVD facility is commercially available and is typical of that used in similar facilities in both industry and academia. The Semiconductor Device Fabrication (SDF) facility is a proposed facility for the fabrication of semiconductor devices from crystals grown in the MOCVD facility. General laboratory chemicals and silane gas will be utilized in this facility. The remaining space in the building addition will consist of an optics laboratory and general purpose work area. The only hazardous materials to be used in these areas are small quantities of common laboratory solvents. For the purposes of this Environmental Assessment, these areas will be considered to be part of the SDF. 27 refs., 4 figs., 6 tabs.

  2. Impact of Influenza on Outpatient Visits, Hospitalizations, and Deaths by Using a Time Series Poisson Generalized Additive Model

    PubMed Central

    Guo, Ru-ning; Zheng, Hui-zhen; Ou, Chun-quan; Huang, Li-qun; Zhou, Yong; Zhang, Xin; Liang, Can-kun; Lin, Jin-yan; Zhong, Hao-jie; Song, Tie; Luo, Hui-ming

    2016-01-01

    Background The disease burden associated with influenza in developing tropical and subtropical countries is poorly understood owing to the lack of a comprehensive disease surveillance system and information-exchange mechanisms. The impact of influenza on outpatient visits, hospital admissions, and deaths has not been fully demonstrated to date in south China. Methods A time series Poisson generalized additive model was used to quantitatively assess influenza-like illness (ILI) and influenza disease burden by using influenza surveillance data in Zhuhai City from 2007 to 2009, combined with the outpatient, inpatient, and respiratory disease mortality data of the same period. Results The influenza activity in Zhuhai City demonstrated a typical subtropical seasonal pattern; however, each influenza virus subtype showed a specific transmission variation. The weekly ILI case number and virus isolation rate had a very close positive correlation (r = 0.774, P < 0.0001). The impact of ILI and influenza on weekly outpatient visits was statistically significant (P < 0.05). We determined that 10.7% of outpatient visits were associated with ILI and 1.88% were associated with influenza. ILI also had a significant influence on the hospitalization rates (P < 0.05), but mainly in populations <25 years of age. No statistically significant effect of influenza on hospital admissions was found (P > 0.05). The impact of ILI on chronic obstructive pulmonary disease (COPD) was most significant (P < 0.05), with 33.1% of COPD-related deaths being attributable to ILI. The impact of influenza on the mortality rate requires further evaluation. Conclusions ILI is a feasible indicator of influenza activity. Both ILI and influenza have a large impact on outpatient visits. Although ILI affects the number of hospital admissions and deaths, we found no consistent influence of influenza, which requires further assessment. PMID:26894876

  3. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

    NASA Astrophysics Data System (ADS)

    Acharya, Ranadip; Das, Suman

    2015-09-01

    This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously "non-weldable" hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

  4. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... duty for more than 30 hours. Such a crewmember is considered to be on continuous duty from the time...

  5. 14 CFR 121.485 - Flight time limitations: Three or more pilots and an additional flight crewmember.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Three or more... OPERATIONS Flight Time Limitations: Flag Operations § 121.485 Flight time limitations: Three or more pilots... excess of seven days may be given at any time before the pilot is again scheduled for flight duty on...

  6. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  7. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  8. 14 CFR 121.485 - Flight time limitations: Three or more pilots and an additional flight crewmember.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Three or more... OPERATIONS Flight Time Limitations: Flag Operations § 121.485 Flight time limitations: Three or more pilots... excess of seven days may be given at any time before the pilot is again scheduled for flight duty on...

  9. 14 CFR 121.485 - Flight time limitations: Three or more pilots and an additional flight crewmember.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Three or more... OPERATIONS Flight Time Limitations: Flag Operations § 121.485 Flight time limitations: Three or more pilots... excess of seven days may be given at any time before the pilot is again scheduled for flight duty on...

  10. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... hours before beginning flight duty, one half of the time spent in deadhead transportation must...

  11. 14 CFR 121.485 - Flight time limitations: Three or more pilots and an additional flight crewmember.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Three or more... OPERATIONS Flight Time Limitations: Flag Operations § 121.485 Flight time limitations: Three or more pilots... excess of seven days may be given at any time before the pilot is again scheduled for flight duty on...

  12. Aluminizing Oil Casing Steel N80 by a Low-Temperature Pack Processing Modified with Zinc Addition

    NASA Astrophysics Data System (ADS)

    Huang, Min; Wang, Yu; Zhang, Xiao Yong

    Different aluminide coatings were prepared on oil casing steel N80 at a relatively lower temperature of 530°C for 2 h by pack powder modified with different content of zinc (Zn). The cross-sectional microstructure, element distribution and properties of as-aluminized oil casing steel N80 were investigated by SEM, EDS, micro-hardness test and electrochemical corrosion measurement. Results show that aluminide coating with around 50 μm in thickness can be successfully achieved by a low-temperature pack aluminizing processing with the addition of Zn. Zn in the pack powder can enhance the uniformity and continuity of the coating layer, while it has little effect on the thickness of as-packed coating with the increasing content of Zn from 38.8 wt.% to 84.4 wt.%. As the content of Zn is over 58.8 wt.%, two layer coating consisting of pure Zn layer and Fe-Al aluminide layer can be formed on oil casing steel N80 substrate. Furthermore, oil casing steel N80 with aluminizing coating shows a higher microhardness than that of original one except in the depth range of pure Zn layer, but the microhardness of oil casing steel substrate does not decrease after aluminizing which can be inferred that low-temperature aluminizing processing reported here will not bring any damages on the mechanical properties of oil casing steel N80. Additionally, a lower self-corrosion current density of oil casing steel N80 with aluminizing coating also indicates that low-temperature aluminizing processing is helpful to the corrosion resistance of oil casing steel N80.

  13. Language processing is not a race against time.

    PubMed

    Baggio, Giosuè; Vicario, Carmelo M

    2016-01-01

    We agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation. PMID:27562073

  14. Derivation of sequential, real-time, process-control programs

    NASA Technical Reports Server (NTRS)

    Marzullo, Keith; Schneider, Fred B.; Budhiraja, Navin

    1991-01-01

    The use of weakest-precondition predicate transformers in the derivation of sequential, process-control software is discussed. Only one extension to Dijkstra's calculus for deriving ordinary sequential programs was found to be necessary: function-valued auxiliary variables. These auxiliary variables are needed for reasoning about states of a physical process that exists during program transitions.

  15. 37 CFR 102.6 - Time limits and expedited processing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... properly process the particular request: (i) The need to search for and collect the requested records from field facilities or other establishments separate from the office processing the request; (ii) The need... records that are the subject of a single request; or (iii) The need for consultation, which shall...

  16. 15 CFR 4.6 - Time limits and expedited processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... need for consultation, which shall be conducted with all practicable speed, with another component or... to the extent reasonably necessary to properly process the particular request: (i) The need to search... office processing the request; (ii) The need to search for, collect, and appropriately examine...

  17. 37 CFR 102.6 - Time limits and expedited processing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... processing. 102.6 Section 102.6 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... properly process the particular request: (i) The need to search for and collect the requested records from... to search for, collect, and appropriately examine a voluminous amount of separate and...

  18. Replication timing and its emergence from stochastic processes

    PubMed Central

    Bechhoefer, John; Rhind, Nicholas

    2012-01-01

    The temporal organization of DNA replication has puzzled cell biologists since before the mechanism of replication was understood. The realization that replication timing correlates with important features, such as transcription, chromatin structure and genome evolution, and is misregulated in cancer and aging has only deepened the fascination. Many ideas about replication timing have been proposed, but most have been short on mechanistic detail. However, recent work has begun to elucidate basic principles of replication timing. In particular, mathematical modeling of replication kinetics in several systems has shown that the reproducible replication timing patterns seen in population studies can be explained by stochastic origin firing at the single-cell level. This work suggests that replication timing need not be controlled by a hierarchical mechanism that imposes replication timing from a central regulator, but instead results from simple rules that affect individual origins. PMID:22520729

  19. Severe storms measurement system real time data processing and displays

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.

    1980-01-01

    The objectives of the system are to provide the system operator with real time system performance check and to provide data recording of all SSMS data. Meteorologists are provided with real time indication of meteorological data measurements including aid for directing flight profiles in real time and aid for directing SSMS operations. A day-to-day feedback is provided to meteorologists, system operators, and flight crews for flight planning on subsequent flight tests days.

  20. Real-time optical monitoring of the wastewater treatment process.

    PubMed

    Tomperi, Jani; Koivuranta, Elisa; Kuokkanen, Anna; Juuso, Esko; Leiviskä, Kauko

    2016-01-01

    One activated sludge process line was optically monitored in situ by a novel image analysis equipment. The results of the image analysis were studied to find out dependencies to the process variables of the wastewater treatment plant (WWTP) and to the quality of the treated wastewater. The quality parameter of the treated wastewater, suspended solids, was modelled using the image analysis results. The model can be used for evaluating the performance of the WWTP and for the better control for stable effluent quality. It was shown that the results of the online optical monitoring reveal useful information from the process and can be used in forecasting the quality of biologically treated wastewater. The optical monitoring method together with process measurements has an important role in keeping the process in stable operating conditions and avoiding environmental risks. PMID:26238162

  1. Medical Image Processing Using Real-Time Optical Fourier Technique

    NASA Astrophysics Data System (ADS)

    Rao, D. V. G. L. N.; Panchangam, Appaji; Sastry, K. V. L. N.; Material Science Team

    2001-03-01

    Optical Image Processing Techniques are inherently fast in view of parallel processing. A self-adaptive Optical Fourier Processing system using photo induced dichroism in a Bacteriorhodopsin film was experimentally demonstrated for medical image processing. Application of this powerful analog all-optical interactive technique for cancer diagnostics is illustrated with mammograms and Pap smears. Micro calcification clusters buried in surrounding tissue showed up clearly in the processed image. By playing with one knob, which rotates the analyzer in the optical system, either the micro calcification clusters or the surrounding dense tissue can be selectively displayed. Bacteriorhodopsin films are stable up to 140^oC and environmental friendly. As no interference is involved in the experiments, vibration isolation and even a coherent light source are not required. It may be possible to develop a low-cost rugged battery operated portable signal-enhancing magnifier.

  2. Methods for real-time speech processing on Unix

    SciTech Connect

    Romberger, A.

    1982-01-01

    The author discusses computer programming done at the University of California, Berkeley, in support of research work in the area of speech analysis and synthesis. The purpose of this programming is to set up a system for doing real-time speech sampling using the Unix operating system. Two alternative approaches to real time work on Unix are discussed. The first approach is to do the real-time input/output on a secondary (satellite) machine that is not running Unix. The second approach is to do the real-time input/output on the main machine with the aid of special hardware.

  3. Efficient allocation of heterogeneous response times in information spreading process

    NASA Astrophysics Data System (ADS)

    Cui, Ai-Xiang; Wang, Wei; Tang, Ming; Fu, Yan; Liang, Xiaoming; Do, Younghae

    2014-09-01

    Recently, the impacts of spatiotemporal heterogeneities of human activities on spreading dynamics have attracted extensive attention. In this paper, we intend to understand how the heterogeneous distribution of response times at the individual level influences information spreading. Based on the uncorrelated scale-free networks without degree-degree correlation, we study the susceptible-infected spreading dynamics with adjustable power-law response time distribution, and find that the stronger the heterogeneity of response times is, the faster the information spreading is in the early and middle stages. Following a given heterogeneity, the procedure of reducing the correlation between the response times and degrees of individuals can also accelerate the spreading dynamics in the early and middle stages. However, the dynamics in the late stage is slightly more complicated, and there is an optimal value of the full prevalence time (i.e., the time for full infection on a network) changing with the heterogeneity of response times and the response time-degree correlation, respectively. The optimal phenomena result from the efficient allocation of heterogeneous response times.

  4. Linkages Between Biotic and Abiotic Belowground Processes in a Mojave Desert Ecosystem: Responses to Experimental Nitrogen and Water Additions

    NASA Astrophysics Data System (ADS)

    Verburg, P. S.; Marion, G. M.; Young, A. C.; Glanzmann, I.; Stevenson, B.; Arnone, J. A.; Nowak, R. S.

    2007-05-01

    Fine roots play a critical role in nutrient acquisition and water uptake. Yet it is unclear how fine roots in arid environments respond to increased nitrogen deposition and rainfall, two important global change factors in arid lands in the southwestern United States. In addition it is unclear how changes in root activity may impact soil CO2 concentrations, an important parameter affecting carbonate dynamics. We measured fine root length density (RLD) and soil CO2 concentrations for two years in experimentally manipulated plots in a Mojave Desert ecosystem. The study was conducted at the Mojave Global Change Facility located at the Nevada Test Site 60 miles northwest of Las Vegas. The treatments included: 1) three 25 mm water additions during the summer, 2) one nitrogen addition in the fall equivalent to 40 kg per hectare per year, 3) a combined water and nitrogen addition and, 4) untreated controls. Root data were collected using minirhizotron imaging approximately every 90 days underneath shrubs and intershrub areas. Soil CO2 concentrations were collected at the same sampling times and locations at 10, 40 and 90 cm depth using gas wells. The RLD showed clear seasonal patterns with the fastest increase in RLD occurring between February and April. During the winter the increase in RLD was higher underneath shrubs than in intershrub areas but during the summer months increases in RLD were similar under shrubs and in intershrub areas. Water additions slightly increased root mortality during the summer but this increase in mortality was not large enough to cause consistent differences in RLD between control and irrigated plots. Nitrogen addition had no effect on root dynamics in any of the plots. In contrast to RLD, irrigation consistently increased soil CO2 concentrations at all depths during the summer even when roots were not actively growing anymore. We speculate that the increased mortality under irrigation causes increased heterotrophic respiration which may

  5. Integrating real-time digital signal processing capability into a large research and development facility

    NASA Astrophysics Data System (ADS)

    Manges, W. W.; Mallinak-Glassell, J. T.; Breeding, J. E.; Jansen, J. M., Jr.; Tate, R. M.; Bentz, R. R.

    The Instrumentation and Controls Division at Oak Ridge National Laboratory recently developed and installed a large scale, real-time measurement system for the world's largest pressurized water tunnel. This water tunnel, the Large Cavitation Channel (LCC) provides a research and development facility for the study of acoustic phenomena to aid in model testing of new naval ship and submarine designs. The LCC design required the development of a near-field beamformer in addition to extending the range of real-time processing capability to frequencies unavailable at other facilities. The beamformer acquires and processes time-domain acoustic data at 9.5 MB/s from up to 45 hydrophones while performing 200 million floating-point operations per second, producing a time-integrated, spatially filtered, frequency-domain data set with improved signal-to-noise ratio. The acoustic processing software provides for the real-time analysis of acoustic data. Up to 128 facility sensors are sampled, time stamped, and stored at 600 kB/s. The system generates information for acoustic phenomena and facility measurements in real-time so that the operator can make facility adjustments to control the running equipment. This real-time control of facility conditions requires that the measurement system integrate facility and acoustic data for simultaneous display to the operator in engineering units via high-end workstations. A dual-host minicomputer configuration with high-end workstations connected via an Ethernet networking cluster controls and integrates measurement and display subsystems. The hardware and software architecture is described in this paper.

  6. Real-time dielectric-film thickness measurement system for plasma processing chamber wall monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Yong; Chung, Chin-Wook

    2015-12-01

    An in-situ real-time processing chamber wall monitoring system was developed. In order to measure the thickness of the dielectric film, two frequencies of small sinusoidal voltage (˜1 V) signals were applied to an electrically floated planar type probe, which is positioned at chamber wall surface, and the amplitudes of the currents and the phase differences between the voltage and current were measured. By using an equivalent sheath circuit model including a sheath capacitance, the dielectric thickness can be obtained. Experiments were performed in various plasma condition, and reliable dielectric film thickness was obtained regardless of the plasma properties. In addition, availability in commercial chamber for plasma enhanced chemical vapor deposition was verified. This study is expected to contribute to the control of etching and deposition processes and optimization of periodic maintenance in semiconductor manufacturing process.

  7. Parental Regulation of Teenagers' Time: Processes and Meanings

    ERIC Educational Resources Information Center

    Sarre, Sophie

    2010-01-01

    Parental regulation of teenagers' time is pervasive. Parents attempt to constrain, well into adolescence, what their children do with their time, when they do it and how long they do it for. This article draws on interviews with 14- to 16-year-olds in the UK to explore teenagers' experiences of parents' temporal regulation, and whether their…

  8. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-06-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  9. Additive Manufacturing of Single-Crystal Superalloy CMSX-4 Through Scanning Laser Epitaxy: Computational Modeling, Experimental Process Development, and Process Parameter Optimization

    NASA Astrophysics Data System (ADS)

    Basak, Amrita; Acharya, Ranadip; Das, Suman

    2016-08-01

    This paper focuses on additive manufacturing (AM) of single-crystal (SX) nickel-based superalloy CMSX-4 through scanning laser epitaxy (SLE). SLE, a powder bed fusion-based AM process was explored for the purpose of producing crack-free, dense deposits of CMSX-4 on top of similar chemistry investment-cast substrates. Optical microscopy and scanning electron microscopy (SEM) investigations revealed the presence of dendritic microstructures that consisted of fine γ' precipitates within the γ matrix in the deposit region. Computational fluid dynamics (CFD)-based process modeling, statistical design of experiments (DoE), and microstructural characterization techniques were combined to produce metallurgically bonded single-crystal deposits of more than 500 μm height in a single pass along the entire length of the substrate. A customized quantitative metallography based image analysis technique was employed for automatic extraction of various deposit quality metrics from the digital cross-sectional micrographs. The processing parameters were varied, and optimal processing windows were identified to obtain good quality deposits. The results reported here represent one of the few successes obtained in producing single-crystal epitaxial deposits through a powder bed fusion-based metal AM process and thus demonstrate the potential of SLE to repair and manufacture single-crystal hot section components of gas turbine systems from nickel-based superalloy powders.

  10. Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Yang, X. I. A.; Marusic, I.; Meneveau, C.

    2016-06-01

    Townsend [Townsend, The Structure of Turbulent Shear Flow (Cambridge University Press, Cambridge, UK, 1976)] hypothesized that the logarithmic region in high-Reynolds-number wall-bounded flows consists of space-filling, self-similar attached eddies. Invoking this hypothesis, we express streamwise velocity fluctuations in the inertial layer in high-Reynolds-number wall-bounded flows as a hierarchical random additive process (HRAP): uz+=∑i=1Nzai . Here u is the streamwise velocity fluctuation, + indicates normalization in wall units, z is the wall normal distance, and ai's are independently, identically distributed random additives, each of which is associated with an attached eddy in the wall-attached hierarchy. The number of random additives is Nz˜ln(δ /z ) where δ is the boundary layer thickness and ln is natural log. Due to its simplified structure, such a process leads to predictions of the scaling behaviors for various turbulence statistics in the logarithmic layer. Besides reproducing known logarithmic scaling of moments, structure functions, and correlation function [" close="]3/2 uz(x ) uz(x +r ) >, new logarithmic laws in two-point statistics such as uz4(x ) > 1 /2, 1/3, etc. can be derived using the HRAP formalism. Supporting empirical evidence for the logarithmic scaling in such statistics is found from the Melbourne High Reynolds Number Boundary Layer Wind Tunnel measurements. We also show that, at high Reynolds numbers, the above mentioned new logarithmic laws can be derived by assuming the arrival of an attached eddy at a generic point in the flow field to be a Poisson process [Woodcock and Marusic, Phys. Fluids 27, 015104 (2015), 10.1063/1.4905301]. Taken together, the results provide new evidence supporting the essential ingredients of the attached eddy hypothesis to describe streamwise velocity fluctuations of large, momentum transporting eddies in wall-bounded turbulence, while

  11. Raman Based Process Monitor For Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Schlahta, Stephan N.

    2008-05-27

    ABSTRACT A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval.

  12. Raman Based Process Monitor for Continuous Real-Time Analysis Of High Level Radioactive Waste Components

    SciTech Connect

    Bryan, S.; Levitskaia, T.; Schlahta, St.

    2008-07-01

    A new monitoring system was developed at Pacific Northwest National Laboratory (PNNL) to quickly generate real-time data/analysis to facilitate a timely response to the dynamic characteristics of a radioactive high level waste stream. The developed process monitor features Raman and Coriolis/conductivity instrumentation configured for the remote monitoring, MatLab-based chemometric data processing, and comprehensive software for data acquisition/storage/archiving/display. The monitoring system is capable of simultaneously and continuously quantifying the levels of all the chemically significant anions within the waste stream including nitrate, nitrite, phosphate, carbonate, chromate, hydroxide, sulfate, and aluminate. The total sodium ion concentration was also determined independently by modeling inputs from on-line conductivity and density meters. In addition to the chemical information, this monitoring system provides immediate real-time data on the flow parameters, such as flow rate and temperature, and cumulative mass/volume of the retrieved waste stream. The components and analytical tools of the new process monitor can be tailored for a variety of complex mixtures in chemically harsh environments, such as pulp and paper processing liquids, electroplating solutions, and radioactive tank wastes. The developed monitoring system was tested for acceptability before it was deployed for use in Hanford Tank S-109 retrieval activities. The acceptance tests included performance inspection of hardware, software, and chemometric data analysis to determine the expected measurement accuracy for the different chemical species that are encountered during S-109 retrieval. (authors)

  13. Real Time Data Processing for Optical Remote Sensing Payloads

    NASA Astrophysics Data System (ADS)

    Wohlfeil, J.; Börner, A.; Buder, M.; Ernst, I.; Krutz, D.; Reulke, R.

    2012-07-01

    The application of operational systems for remote sensing requires new approaches for data processing. It has to be the goal to derive user relevant information close the sensor itself and to downlink this information to a ground station or to provide them as input to an actuator of the space-borne platform. A complete automation of data processing is an essential first step for a thematic onboard data processing. In a second step, an appropriate onboard computer system has to be de-signed being able to fulfill the requirements. In this paper, standard data processing steps will be introduced correcting systematic errors during image capturing. A new hardware operating system, which is the interface between FPGA hardware and data processing algorithms, gives the opportunity to implement complex data processing modules in an effective way. As an example the derivation the camera's orientation based on data of an optical payload is described in detail. The thereby derived absolute or relative orientation is essential for high level data products. This will be illustrated by means of an onboard image matcher

  14. 14 CFR 121.485 - Flight time limitations: Three or more pilots and an additional flight crewmember.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Three or more... OPERATIONS Flight Time Limitations: Flag Operations § 121.485 Flight time limitations: Three or more pilots... his base and who is a pilot on an airplane that has a crew of three or more pilots and an...

  15. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Crew of three or... OPERATIONS Flight Time Limitations: Supplemental Operations § 121.523 Flight time limitations: Crew of three... operations may schedule an airman for flight deck duty as a flight engineer, or navigator in a crew of...

  16. 14 CFR 121.521 - Flight time limitations: Crew of two pilots and one additional airman as required.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Crew of two pilots...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.521 Flight time limitations: Crew of two pilots and one...

  17. 14 CFR 121.521 - Flight time limitations: Crew of two pilots and one additional airman as required.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Crew of two pilots...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.521 Flight time limitations: Crew of two pilots and one...

  18. 14 CFR 121.521 - Flight time limitations: Crew of two pilots and one additional airman as required.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Crew of two pilots...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.521 Flight time limitations: Crew of two pilots and one...

  19. 14 CFR 121.521 - Flight time limitations: Crew of two pilots and one additional airman as required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Crew of two pilots...: CERTIFICATION AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.521 Flight time limitations: Crew of two pilots and one...

  20. Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array

    PubMed Central

    Ustun, Teoman E.; Iftimia, Nicusor V.; Ferguson, R. Daniel; Hammer, Daniel X.

    2008-01-01

    Real-time display of processed Fourier domain optical coherence tomography (FDOCT) images is important for applications that require instant feedback of image information, for example, systems developed for rapid screening or image-guided surgery. However, the computational requirements for high-speed FDOCT image processing usually exceeds the capabilities of most computers and therefore display rates rarely match acquisition rates for most devices. We have designed and developed an image processing system, including hardware based upon a field programmable gated array, firmware, and software that enables real-time display of processed images at rapid line rates. The system was designed to be extremely flexible and inserted in-line between any FDOCT detector and any Camera Link frame grabber. Two versions were developed for spectrometer-based and swept source-based FDOCT systems, the latter having an additional custom high-speed digitizer on the front end but using all the capabilities and features of the former. The system was tested in humans and monkeys using an adaptive optics retinal imager, in zebrafish using a dual-beam Doppler instrument, and in human tissue using a swept source microscope. A display frame rate of 27 fps for fully processed FDOCT images (1024 axial pixels×512 lateral A-scans) was achieved in the spectrometer-based systems. PMID:19045902

  1. Migration of additive molecules in a polymer filament obtained by melt spinning: Influence of the fiber processing steps

    SciTech Connect

    Gesta, E.; Skovmand, O.; Espuche, E. Fulchiron, R.

    2015-12-17

    The purpose of this study is to understand the influence of the yarn processing on the migration of additives molecules, especially insecticide, within polyethylene (PE) yarns. Yarns were manufactured in the laboratory focusing on three key-steps (spinning, post-stretching and heat-setting). Influence of each step on yarn properties was investigated using tensile tests, differential scanning calorimetry and wide-angle X-ray diffraction. The post-stretching step was proved to be critical in defining yarn mechanical and structural properties. Although a first orientation of polyethylene crystals was induced during spinning, the optimal orientation was only reached by post-stretching. The results also showed that the heat-setting did not significantly change these properties. The presence of additives crystals at the yarn surface was evidenced by scanning-electron microscopy. These studies performed at each yarn production step allowed a detailed analysis of the additives’ ability to migrate. It is concluded that while post-stretching decreased the migration rate, heat-setting seems to boost this migration.

  2. Advantages of Parallel Processing and the Effects of Communications Time

    NASA Technical Reports Server (NTRS)

    Eddy, Wesley M.; Allman, Mark

    2000-01-01

    Many computing tasks involve heavy mathematical calculations, or analyzing large amounts of data. These operations can take a long time to complete using only one computer. Networks such as the Internet provide many computers with the ability to communicate with each other. Parallel or distributed computing takes advantage of these networked computers by arranging them to work together on a problem, thereby reducing the time needed to obtain the solution. The drawback to using a network of computers to solve a problem is the time wasted in communicating between the various hosts. The application of distributed computing techniques to a space environment or to use over a satellite network would therefore be limited by the amount of time needed to send data across the network, which would typically take much longer than on a terrestrial network. This experiment shows how much faster a large job can be performed by adding more computers to the task, what role communications time plays in the total execution time, and the impact a long-delay network has on a distributed computing system.

  3. Processing of the Liquid Xenon calorimeter's signals for timing measurements

    NASA Astrophysics Data System (ADS)

    Epshteyn, L. B.; Yudin, Yu V.

    2014-09-01

    One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.

  4. Characterization and comparative study of coal combustion residues from a primary and additional flue gas secondary desulfurization process

    SciTech Connect

    Gomes, S.; Francois, M.; Evrard, O.; Pellissier, C.

    1998-11-01

    An extensive characterization and comparative study was done on two flue gas desulfurization (FGD) residues derived from the same coal. LR residues (originated from Loire/Rhone in the south of Lyon, France) are obtained after a primary desulfurization process (SO{sub 2} is trapped by reaction with CaO at a temperature of about 1100 C), and LM residues (originating from La Maxe, near Metz in the east of France) are obtained after an additional secondary desulfurization process (SO{sub 2} is removed further by reaction with Ca(OH){sub 2} at a temperature of about 120 C). Various and complementary investigation methods were used to determine their chemical, physical, and mineralogical properties: x-ray fluorescence and diffraction, scanning electron microscopy, differential scanning calorimetry, thermogravimetry analysis, granulometric distribution, pycnometric density, BET specific surface area and pH, conductivity measurements, and chemical analysis of their insoluble fraction. The FGD residues contain basically two main components: a silico-aluminous fly ash part and calcic FGD phases. In the LR residues the two components can be considered as independent, whereas they are linked in the LM residues because chemical reactions have occurred, leading to the formation of silico-calcic gel CSH, hydrated aluminate AFm, and AFt phases.

  5. Additive Manufacturing of 17-4 PH Stainless Steel: Post-processing Heat Treatment to Achieve Uniform Reproducible Microstructure

    NASA Astrophysics Data System (ADS)

    Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.

    2016-03-01

    17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.

  6. Separation of Lead from Crude Antimony by Pyro-Refining Process with NaPO3 Addition

    NASA Astrophysics Data System (ADS)

    Ye, Longgang; Hu, Yuejie; Xia, Zhimei; Chen, Yongming

    2016-04-01

    The main purpose of this study was to separate lead from crude antimony through an oxidation pyro-refining process and by using sodium metaphosphate as a lead elimination reagent. The process parameters that will affect the refining results were optimized experimentally under controlled conditions, such as the sodium metaphosphate charging dosage, the refining temperature and duration, and the air flow rate, to determine their effect on the lead content in refined antimony and the lead removal rate. A minimum lead content of 0.0522 wt.% and a 98.6% lead removal rate were obtained under the following optimal conditions: W_{{{NaPO}_{{3}} }} = 15% W Sb (where W represents weight), a refining temperature of 800°C, a refining time of 30 min, and an air flow rate of 3 L/min. X-ray diffractometry and scanning electron microscopy showed that high-purity antimony was obtained. The smelting operation is free from smoke or ammonia pollution when using monobasic sodium phosphate or ammonium dihydrogen phosphate as the lead elimination reagent. However, this refining process can also remove a certain amount of sulfur, cobalt, and silicon simultaneously, and smelting results also suggest that sodium metaphosphate can be used as a potential lead elimination reagent for bismuth and copper refining.

  7. Separation of Lead from Crude Antimony by Pyro-Refining Process with NaPO3 Addition

    NASA Astrophysics Data System (ADS)

    Ye, Longgang; Hu, Yuejie; Xia, Zhimei; Chen, Yongming

    2016-06-01

    The main purpose of this study was to separate lead from crude antimony through an oxidation pyro-refining process and by using sodium metaphosphate as a lead elimination reagent. The process parameters that will affect the refining results were optimized experimentally under controlled conditions, such as the sodium metaphosphate charging dosage, the refining temperature and duration, and the air flow rate, to determine their effect on the lead content in refined antimony and the lead removal rate. A minimum lead content of 0.0522 wt.% and a 98.6% lead removal rate were obtained under the following optimal conditions: W_{{{NaPO}_{{3}} }} = 15% W Sb (where W represents weight), a refining temperature of 800°C, a refining time of 30 min, and an air flow rate of 3 L/min. X-ray diffractometry and scanning electron microscopy showed that high-purity antimony was obtained. The smelting operation is free from smoke or ammonia pollution when using monobasic sodium phosphate or ammonium dihydrogen phosphate as the lead elimination reagent. However, this refining process can also remove a certain amount of sulfur, cobalt, and silicon simultaneously, and smelting results also suggest that sodium metaphosphate can be used as a potential lead elimination reagent for bismuth and copper refining.

  8. Bidirectional Interference between Timing and Concurrent Memory Processing in Children

    ERIC Educational Resources Information Center

    Rattat, Anne-Claire

    2010-01-01

    This study investigated the nature of resources involved in duration processing in 5- and 8-year-olds. The children were asked to reproduce the duration of a visual or auditory stimulus. They performed this task either alone or concurrently with an executive task (Experiment 1) or with a digit or visuospatial memory task (Experiment 2). The…

  9. The Real-Time Processing of Sluiced Sentences

    ERIC Educational Resources Information Center

    Poirier, Josee; Wolfinger, Katie; Spellman, Lisa; Shapiro, Lewis P.

    2010-01-01

    Ellipsis refers to an element that is absent from the input but whose meaning can nonetheless be recovered from context. In this cross-modal priming study, we examined the online processing of Sluicing, an ellipsis whose antecedent is an entire clause: "The handyman threw a book to the programmer but I don't know which book" the handyman threw to…

  10. 29 CFR 1401.34 - Time for processing requests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... made: (1) The need to search for and collect the requested records from the field facilities or other establishments that are separate from the office processing the request; (2) The need to search for, collect and appropriately examine a voluminous amount of records which are demanded in a single request; or (3) The need...

  11. Influence of NH4Cl Powder Addition for Fabrication of Aluminum Nitride Coating in Reactive Atmospheric Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Shahien, Mohammed; Yamada, Motohiro; Yasui, Toshiaki; Fukumoto, Masahiro

    2011-01-01

    Reactive plasma spray is the key to fabricating aluminum nitride (AlN) thermally sprayed coatings. It was possible to fabricate AlN/Al composite coatings using atmospheric plasma spray process through plasma nitriding of Al powders (Al 30 μm). The nitriding reaction and the AlN content could be improved by controlling the spray distance and the feedstock powder particle size. Increasing the spray distance and/or using smaller particle size of Al powders improved the in-flight nitriding reaction. However, it was difficult to fabricate thick and dense AlN coatings with an increase in the spray distance and/or when using fine particles. Thus, the coatings thickness was suppressed because of the complete nitriding of some particles (formation of AlN particles) during flight, which prevents the particle deposition. Furthermore, the excessive vaporization of Al fine particles (due to increased particle temperature) decreased the deposition efficiency. To fabricate thick AlN coatings in the reactive plasma spray process, improving the nitriding reaction of the large Al particles at short spray distance is required to decrease the vaporization of Al particles during flight. This study investigated the influence of adding ammonium chloride (NH4Cl) powders on the nitriding process of large Al powders and on the microstructure of the fabricated coatings. It was possible to fabricate thick AlN coatings at 100 mm spray distance with small addition of NH4Cl powders to the Al feedstock powders (30 μm). Addition of NH4Cl to the starting Al powders promoted the formation of AlN through changing the reaction path to vapor-phase nitridation chlorination-nitridation sequences as confirmed by the thermodynamic analysis of possible intermediate reactions. This changes the nitriding reaction to a mild way, so it is more controlled with no explosive mode and with relatively low heating rates. Thus, NH4Cl acts as a catalyst, nitrogen source, and diluent agent. Furthermore, the evolved

  12. Spike timing and visual processing in the retinogeniculocortical pathway.

    PubMed Central

    Usrey, W Martin

    2002-01-01

    Although the visual response properties of neurons along the retinogeniculocortical pathway have been studied for decades, relatively few studies have examined how individual neurons along the pathway communicate with each other. Recent studies in the cat (Felis domestica) now show that the strength of these connections is very dynamic and spike timing plays an important part in determining whether action potentials will be transferred from pre- to postsynaptic cells. This review explores recent progress in our understanding of what role spike timing has in establishing different patterns of geniculate activity and how these patterns ultimately drive the cortex. PMID:12626007

  13. HOW DO IMMIGRANTS SPEND THEIR TIME?: THE PROCESS OF ASSIMILATION.

    PubMed

    Hamermesh, Daniel S; Trejo, Stephen J

    2013-04-01

    Sharp differences in time use by nativity emerge when activities are distinguished by incidence and intensity in recent U.S. data. A model with daily fixed costs for assimilating activities predicts immigrants are less likely than natives to undertake such activities on a given day; but those who do will spend relatively more time on them. Activities such as purchasing, education, and market work conform to the model. Other results suggest that fixed costs for assimilating activities are higher for immigrants with poor English proficiency or who originate in less developed countries. An analysis of comparable Australian data yields similar results. PMID:24443631

  14. Sample data processing in an additive and reproducible taxonomic workflow by using character data persistently linked to preserved individual specimens

    PubMed Central

    Kilian, Norbert; Henning, Tilo; Plitzner, Patrick; Müller, Andreas; Güntsch, Anton; Stöver, Ben C.; Müller, Kai F.; Berendsohn, Walter G.; Borsch, Thomas

    2015-01-01

    We present the model and implementation of a workflow that blazes a trail in systematic biology for the re-usability of character data (data on any kind of characters of pheno- and genotypes of organisms) and their additivity from specimen to taxon level. We take into account that any taxon characterization is based on a limited set of sampled individuals and characters, and that consequently any new individual and any new character may affect the recognition of biological entities and/or the subsequent delimitation and characterization of a taxon. Taxon concepts thus frequently change during the knowledge generation process in systematic biology. Structured character data are therefore not only needed for the knowledge generation process but also for easily adapting characterizations of taxa. We aim to facilitate the construction and reproducibility of taxon characterizations from structured character data of changing sample sets by establishing a stable and unambiguous association between each sampled individual and the data processed from it. Our workflow implementation uses the European Distributed Institute of Taxonomy Platform, a comprehensive taxonomic data management and publication environment to: (i) establish a reproducible connection between sampled individuals and all samples derived from them; (ii) stably link sample-based character data with the metadata of the respective samples; (iii) record and store structured specimen-based character data in formats allowing data exchange; (iv) reversibly assign sample metadata and character datasets to taxa in an editable classification and display them and (v) organize data exchange via standard exchange formats and enable the link between the character datasets and samples in research collections, ensuring high visibility and instant re-usability of the data. The workflow implemented will contribute to organizing the interface between phylogenetic analysis and revisionary taxonomic or monographic work

  15. Reading Times and the Detection of Event Shift Processing

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Copeland, David E.

    2010-01-01

    When people read narratives, they often need to update their situation models as the described events change. Previous research has shown little to no increases in reading times for spatial shifts but consistent increases for temporal shifts. On this basis, researchers have suggested that spatial updating does not regularly occur, whereas temporal…

  16. Processing Time Shifts Affects the Execution of Motor Responses

    ERIC Educational Resources Information Center

    Sell, Andrea J.; Kaschak, Michael P.

    2011-01-01

    We explore whether time shifts in text comprehension are represented spatially. Participants read sentences involving past or future events and made sensibility judgment responses in one of two ways: (1) moving toward or away from their body and (2) pressing the toward or away buttons without moving. Previous work suggests that spatial…

  17. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Lishun; Sun, Junfen

    2014-12-01

    Polyvinylidene fluoride (PVDF) membrane and PVDF membrane with phenolphthalein polyethersulfone (PES-C) addition were prepared via thermally induced phase separation (TIPS) method by using diphenyl carbonate (DPC) and dimethyl acetamide (DMAc) as mixed diluents. The effects of coagulation temperature and pre-evaporation time on structure and properties of membranes were studied. The changes of sewage flux in MBR and the attenuation coefficient of sewage flux were investigated. The resistance distributions of PVDF and PVDF/PES-C membranes were compared by resistance analysis. Membrane composition and structure were characterized by ATR-FTIR, TGA, SEM and AFM. The foulant on membranes was analyzed by FTIR. The contact angle of PVDF/PES-C membrane was lower than that of PVDF membrane. A thinner skin layer and a porous cellular support layer formed in PVDF/PES-C membrane and resulted in a higher porosity and pure water flux. The pure water flux and porosity of PVDF/PES-C membrane increased with rising coagulation temperature and decreased with extending pre-evaporation time. The flux attenuation coefficient, the cake layer resistance and internal fouling resistance of PVDF/PES-C membrane in MBR were smaller than those of PVDF membrane in MBR. The FTIR spectrum of foulant on membrane indicated that the foulant on PVDF/PES-C membrane was mostly composed of protein and polysaccharide, while the foulant on pure PVDF membrane included biopolymer clusters besides protein and polysaccharide.

  18. Timely online chatter detection in end milling process

    NASA Astrophysics Data System (ADS)

    Fu, Yang; Zhang, Yun; Zhou, Huamin; Li, Dequn; Liu, Hongqi; Qiao, Haiyu; Wang, Xiaoqiang

    2016-06-01

    Chatter is one of the most unexpected and uncontrollable phenomenon during the milling operation. It is very important to develop an effective monitoring method to identify the chatter as soon as possible, while existing methods still cannot detect it before the workpiece has been damaged. This paper proposes an energy aggregation characteristic-based Hilbert-Huang transform method for online chatter detection. The measured vibration signal is firstly decomposed into a series of intrinsic mode functions (IMFs) using ensemble empirical mode decomposition. Feature IMFs are then selected according to the majority energy rule. Subsequently Hilbert spectral analysis is applied on these feature IMFs to calculate the Hilbert time/frequency spectrum. Two indicators are proposed to quantify the spectrum and thresholds are automatically calculated using Gaussian mixed model. Milling experiments prove the proposed method to be effective in protecting the workpiece from severe chatter damage within acceptable time complexity.

  19. Neural processing of amplitude and formant rise time in dyslexia.

    PubMed

    Peter, Varghese; Kalashnikova, Marina; Burnham, Denis

    2016-06-01

    This study aimed to investigate how children with dyslexia weight amplitude rise time (ART) and formant rise time (FRT) cues in phonetic discrimination. Passive mismatch responses (MMR) were recorded for a/ba/-/wa/contrast in a multiple deviant odd-ball paradigm to identify the neural response to cue weighting in 17 children with dyslexia and 17 age-matched control children. The deviant stimuli had either partial or full ART or FRT cues. The results showed that ART did not generate an MMR in either group, whereas both partial and full FRT cues generated MMR in control children while only full FRT cues generated MMR in children with dyslexia. These findings suggest that children, both controls and those with dyslexia, discriminate speech based on FRT cues and not ART cues. However, control children have greater sensitivity to FRT cues in speech compared to children with dyslexia. PMID:27017263

  20. Thermodynamic second law in a feedback process with time delay

    NASA Astrophysics Data System (ADS)

    Um, Jaegon; Kwon, Chulan; Park, Hyunggyu

    We investigate a realistic feedback process repeated in multiple steps where a feedback protocol from measurement is applied with delay and maintains for a finite duration until next step. Unlike a feedback without delay, a composite system consists of the system and two memories where previous and present measurement outcomes are stored, leading to the 3-state Shannon entropy for the composite system. Then according to the thermodynamic second law, the change of the 3-state Shannon entropy provides the upper bound for heat flow from reservoir to system during the feedback and relaxation process. However, if the feedback protocol is depending on memory states sequentially, it turns out that the tighter bound for heat production can be obtained by integrating out the irrelevant memory state. We exemplify a cold damping case where a velocity of a particle is measured and a dissipative protocol is applied by feedback, and it is confirmed that the Shannon-entropy change of the reduced composite system gives the tighter bound for heat production.

  1. Earthquake early warning system using real-time signal processing

    SciTech Connect

    Leach, R.R. Jr.; Dowla, F.U.

    1996-02-01

    An earthquake warning system has been developed to provide a time series profile from which vital parameters such as the time until strong shaking begins, the intensity of the shaking, and the duration of the shaking, can be derived. Interaction of different types of ground motion and changes in the elastic properties of geological media throughout the propagation path result in a highly nonlinear function. We use neural networks to model these nonlinearities and develop learning techniques for the analysis of temporal precursors occurring in the emerging earthquake seismic signal. The warning system is designed to analyze the first-arrival from the three components of an earthquake signal and instantaneously provide a profile of impending ground motion, in as little as 0.3 sec after first ground motion is felt at the sensors. For each new data sample, at a rate of 25 samples per second, the complete profile of the earthquake is updated. The profile consists of a magnitude-related estimate as well as an estimate of the envelope of the complete earthquake signal. The envelope provides estimates of damage parameters, such as time until peak ground acceleration (PGA) and duration. The neural network based system is trained using seismogram data from more than 400 earthquakes recorded in southern California. The system has been implemented in hardware using silicon accelerometers and a standard microprocessor. The proposed warning units can be used for site-specific applications, distributed networks, or to enhance existing distributed networks. By producing accurate, and informative warnings, the system has the potential to significantly minimize the hazards of catastrophic ground motion. Detailed system design and performance issues, including error measurement in a simple warning scenario are discussed in detail.

  2. Space–time-bounded quantum fields for detection processes

    PubMed Central

    Aguayo, Fernando J.; Jaroszkiewicz, George

    2014-01-01

    We discuss a quantum field detection model comprising two types of detection procedures: maximal detection, where the initial state of the system and detectors undergoes an irreversible evolution, and minimal detection, where the system–detector interaction consists of a small, reversible coupling and posterior maximal detection performed over the detector system. Combined, these detection procedures allow for a time-dependent description of signalling experiments involving yes/no type of questions. A particular minimal detection model, stable in the presence of the vacuum, is presented and studied, successfully reproducing the localization of the state after a detection. PMID:24711717

  3. Processing 3D flash LADAR point-clouds in real-time for flight applications

    NASA Astrophysics Data System (ADS)

    Craig, R.; Gravseth, I.; Earhart, R. P.; Bladt, J.; Barnhill, S.; Ruppert, L.; Centamore, C.

    2007-04-01

    Ball Aerospace & Technologies Corp. has demonstrated real-time processing of 3D imaging LADAR point-cloud data to produce the industry's first time-of-flight (TOF) 3D video capability. This capability is uniquely suited to the rigorous demands of space and airborne flight applications and holds great promise in the area of autonomous navigation. It will provide long-range, three dimensional video information to autonomous flight software or pilots for immediate use in rendezvous and docking, proximity operations, landing, surface vision systems, and automatic target recognition and tracking. This is enabled by our new generation of FPGA based "pixel-tube" processors, coprocessors and their associated algorithms which have led to a number of advancements in high-speed wavefront processing along with additional advances in dynamic camera control, and space laser designs based on Ball's CALIPSO LIDAR. This evolution in LADAR is made possible by moving the mechanical complexity required for a scanning system into the electronics, where production, integration, testing and life-cycle costs can be significantly reduced. This technique requires a state of the art TOF read-out integrated circuit (ROIC) attached to a sensor array to collect high resolution temporal data, which is then processed through FPGAs. The number of calculations required to process the data is greatly reduced thanks to the fact that all points are captured at the same time and thus correlated. This correlation allows extremely efficient FPGA processing. This capability has been demonstrated in prototype form at both Marshal Space Flight Center and Langley Research Center on targets that represent docking and landing scenarios. This report outlines many aspects of this work as well as aspects of our recent testing at Marshall's Flight Robotics Laboratory.

  4. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  5. Just noticeable difference level estimation in real-time digital signal processing

    NASA Astrophysics Data System (ADS)

    Piotrowski, Zbigniew; Rudkowski, Wojciech

    2008-01-01

    Modern state-of-the art watermarking systems use precise algorithms for ensure perceptual transparency of the additional signal in the host signal presence. Various Human Auditory System (HAS) models are implemented but only few of them are computationally effective giving reliable acoustic masking effect. This paper presents efficient algorithm and its implementation for Just Noticeable Difference level estimation using HAS for data hiding application. Implementation is based on effective Johnston [1] HAS model and real-time processing using TMS 320C6713 DSK board. The results of implementation as well as subjective fidelity test using standard ITU-R BS 1116.1 are described and illustrated. Numerical results of DSP real-time implementation are compared with the Matlab off-line HAS computational model.

  6. Efficient Bayesian inference for natural time series using ARFIMA processes

    NASA Astrophysics Data System (ADS)

    Graves, T.; Gramacy, R. B.; Franzke, C. L. E.; Watkins, N. W.

    2015-11-01

    Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. In this paper we present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators. For CET we also extend our method to seasonal long memory.

  7. Gamma radiation induced synthesis of poly(N-isopropylacrylamide) mediated by Reversible Addition-Fragmentation Chain Transfer (RAFT) process

    NASA Astrophysics Data System (ADS)

    Kiraç, Feyza; Güven, Olgun

    2015-07-01

    Poly(N-isopropylacrylamide) (PNiPAAm) is synthesized by gamma radiation induced Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization. The monomer is polymerized in the presence of two different trithiocarbonate-based RAFT agents i.e., Cyanomethyldodecyltrithiocarbonate (CDTC) and 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DMPA) in dimethylformamide (DMF) at room temperature under nitrogen atmosphere. Number-average molecular weights (Mn) and dispersities of the polymers were determined by Size Exclusion Chromatography (SEC). Dispersities (Ɖ) of the resulting polymers are narrow, i.e., Ɖ≤1.18, indicating the occurrence of well-controlled polymerization via radiation induced RAFT process. %Conversion is determined by gravimetric method and also confirmed by Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy. By selecting proper [Monomer]/[RAFT] ratio and controlling conversion it is possible to synthesize PNiPAAm in the molecular weight range of 2400-72400 with extremely low molecular weight distributions with the anticipation of preparing corresponding size-controlled nanogels. The phase transition of PNiPAAm with low dispersity synthesized by RAFT is sharper than PNiPAAm synthesized by free radical polymerization.

  8. Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing

    NASA Astrophysics Data System (ADS)

    Chung, C. K.; Liao, M. W.; Lin, S. L.

    2010-04-01

    Pyrex glass etching using laser ablation is an important technology for the microfluid application to lab-on-a-chip devices but suffers from the formation of surface crack. In this article, the addition of nonionic surfactant to water for glass ablation using water-assisted CO2 laser processing (WACLAP) has been investigated to enhance ablation rate and to eliminate conventional surface defects of cracks in air. WACLAP for Pyrex glass ablation can reduce thermal-stress-induced crack with water cooling and hydrophilic nonionic surfactant to water can enhance ablation performance. Compared to pure water, the 15% weight percent Lauramidopropyl Betaine surfactant solutions for WACLAP can enhance ablation rate from 13.6 to 25 μm/pass of Pyrex glass ablation at a linear laser energy density of 2.11 J/cm, i.e., 24 W power, 114 mm/s scanning speed, and obtain through-wafer etching at 3.16 J/cm for 20 passes without cracks on the surface. Effect of surfactant concentration and linear energy density on WACLAP was also examined. The possible mechanism of surfactant-enhanced phenomenon was discussed by the Newton’s law of viscosity of surfactant solution.

  9. Assessing the addition of mineral processing waste to green waste-derived compost: an agronomic, environmental and economic appraisal.

    PubMed

    Jones, D L; Chesworth, S; Khalid, M; Iqbal, Z

    2009-01-01

    The overall aim of this study was to evaluate the benefit of mixing two large volume wastes, namely mineral processing waste and source-segregated green waste compost, on the growth performance of plants targeted towards high (horticulture/agriculture) and low (amenity/restoration) value markets. The secondary aims were to evaluate the influence of mineral waste type on plant growth performance and to undertake a simple economic analysis of the use of mineral-compost mixtures in land restoration. Our results showed that in comparison to organic wastes, mineral wastes contained a low available nutrient content which reduces compost quality. This is supported by growth trials with tomato, wheat and grass which showed that, irrespective of mineral source, plants performed poorly in compost blended with mineral waste in comparison to those grown in green waste or peat-based compost alone. In terms of consumer confidence, unlike other wastes (e.g. biosolids and construction/demolition waste) the mineral quarry wastes can be expected to be free of potentially toxic elements, however, the production costs of compost-mineral waste mixtures and subsequent transport costs may limit its widespread use. In addition, handling of the material can be difficult under wet conditions and effective blending may require the purchase of specialist equipment. From our results, we conclude that mineral fines may prove useful for low quality, low value landscaping activities close to the source of production but are unsuited to high value markets. PMID:18809319

  10. Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR Green I dye

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Mi, Lijuan; Cao, Xueyan; Zhang, Xiaodong; Fan, Chunhai; Hu, Jun

    2008-06-01

    Gold nanoparticles (AuNPs) have been proven to be able to improve the specificity or increase the efficiency of a polymerase chain reaction (PCR) when a suitable amount of AuNPs was used. However, there is still a lack of systematic evaluation of AuNPs in real-time PCR. In this study, DNA degradation and the fluorescence quenching effect of AuNPs were first tested in real-time PCR. Then two different kinds of Taq DNA polymerase, native and recombinant Taq polymerase, were employed to evaluate the AuNPs' effect on the threshold cycle (CT) values, standard curves and melting curves in real-time PCR. Different ratios of the amount of native Taq DNA polymerase to the amount of AuNPs were also tested. It was found that AuNPs could be applied in real-time PCR with correlation coefficient R2>0.989. The combination of 2.09 nM AuNPs with 3.75 U of native Taq DNA polymerase could make the amplification curves shift to the left and enhance the efficiency of the real-time PCR (0.628 39 without AuNPs compared with 0.717 89 with 2.09 nM AuNPs), thus enabling faster detection in comparison with those of control samples. However, no improvement ability of AuNPs was found in real-time PCR based on recombinant rTaq DNA polymerase. Besides, the results suggest that a complex interaction exists between AuNPs and native Taq DNA polymerase.

  11. Inactivation of Cerebellar Cortical Crus II Disrupts Temporal Processing of Absolute Timing but not Relative Timing in Voluntary Movements

    PubMed Central

    Yamaguchi, Kenji; Sakurai, Yoshio

    2016-01-01

    Several recent studies have demonstrated that the cerebellum plays an important role in temporal processing at the scale of milliseconds. However, it is not clear whether intrinsic cerebellar function involves the temporal processing of discrete or continuous events. Temporal processing during discrete events functions by counting absolute time like a stopwatch, while during continuous events it measures events at intervals. During the temporal processing of continuous events, animals might respond to rhythmic timing of sequential responses rather than to the absolute durations of intervals. Here, we tested the contribution of the cerebellar cortex to temporal processing of absolute and relative timings in voluntary movements. We injected muscimol and baclofen to a part of the cerebellar cortex of rats. We then tested the accuracy of their absolute or relative timing prediction using two timing tasks requiring almost identical reaching movements. Inactivation of the cerebellar cortex disrupted accurate temporal prediction in the absolute timing task. The rats formed two groups based on the changes to their timing accuracy following one of two distinct patterns which can be described as longer or shorter declines in the accuracy of learned intervals. However, a part of the cerebellar cortical inactivation did not affect the rats’ performance of relative timing tasks. We concluded that a part of the cerebellar cortex, Crus II, contributes to the accurate temporal prediction of absolute timing and that the entire cerebellar cortex may be unnecessary in cases in which accurately knowing the absolute duration of an interval is not required for temporal prediction. PMID:26941621

  12. Relativity Based on Physical Processes Rather Than Space-Time

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  13. Food additives.

    PubMed

    Berglund, F

    1978-01-01

    The use of additives to food fulfils many purposes, as shown by the index issued by the Codex Committee on Food Additives: Acids, bases and salts; Preservatives, Antioxidants and antioxidant synergists; Anticaking agents; Colours; Emulfifiers; Thickening agents; Flour-treatment agents; Extraction solvents; Carrier solvents; Flavours (synthetic); Flavour enhancers; Non-nutritive sweeteners; Processing aids; Enzyme preparations. Many additives occur naturally in foods, but this does not exclude toxicity at higher levels. Some food additives are nutrients, or even essential nutritents, e.g. NaCl. Examples are known of food additives causing toxicity in man even when used according to regulations, e.g. cobalt in beer. In other instances, poisoning has been due to carry-over, e.g. by nitrate in cheese whey - when used for artificial feed for infants. Poisonings also occur as the result of the permitted substance being added at too high levels, by accident or carelessness, e.g. nitrite in fish. Finally, there are examples of hypersensitivity to food additives, e.g. to tartrazine and other food colours. The toxicological evaluation, based on animal feeding studies, may be complicated by impurities, e.g. orthotoluene-sulfonamide in saccharin; by transformation or disappearance of the additive in food processing in storage, e.g. bisulfite in raisins; by reaction products with food constituents, e.g. formation of ethylurethane from diethyl pyrocarbonate; by metabolic transformation products, e.g. formation in the gut of cyclohexylamine from cyclamate. Metabolic end products may differ in experimental animals and in man: guanylic acid and inosinic acid are metabolized to allantoin in the rat but to uric acid in man. The magnitude of the safety margin in man of the Acceptable Daily Intake (ADI) is not identical to the "safety factor" used when calculating the ADI. The symptoms of Chinese Restaurant Syndrome, although not hazardous, furthermore illustrate that the whole ADI

  14. Tropical Tropospheric Ozone from SHADOZ (Southern Hemisphere ADditional Ozonesondes) Network: A Project for Satellite Research, Process Studies, Education

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Oltmans, Samuel J.; Schmidlin, Francis J.; Coetzee, G. J. R.; Hoegger, Bruno; Kirchhoff, V. W. J. H.; Ogawa, Toshihiro; Kawakami, Shuji; Posny, Francoise

    2002-01-01

    The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. The period covered is 1998-2000. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. Campaign data were collected on a trans-Atlantic oceanographic cruise and during SAFARI-2000 in Zambia. The ozone data, with simultaneous temperature profiles to approx. 7 hPa and relative humidity to approx. 200 hPa, reside at: . SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Total, stratospheric and tropospheric column ozone amounts peak between August and November and are lowest between March and May. Tropospheric ozone variability over the Indian and Pacific Ocean displays influences of the Indian Ocean Dipole and convective mixing. Pollution transport from Africa and South America is a seasonal feature. Tropospheric ozone seasonality over the Atlantic Basin shows effects of regional subsidence and recirculation as well as biomass burning. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this.

  15. Human movement analysis with image processing in real time

    NASA Astrophysics Data System (ADS)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  16. Predictive active disturbance rejection control for processes with time delay.

    PubMed

    Zheng, Qinling; Gao, Zhiqiang

    2014-07-01

    Active disturbance rejection control (ADRC) has been shown to be an effective tool in dealing with real world problems of dynamic uncertainties, disturbances, nonlinearities, etc. This paper addresses its existing limitations with plants that have a large transport delay. In particular, to overcome the delay, the extended state observer (ESO) in ADRC is modified to form a predictive ADRC, leading to significant improvements in the transient response and stability characteristics, as shown in extensive simulation studies and hardware-in-the-loop tests, as well as in the frequency response analysis. In this research, it is assumed that the amount of delay is approximately known, as is the approximated model of the plant. Even with such uncharacteristic assumptions for ADRC, the proposed method still exhibits significant improvements in both performance and robustness over the existing methods such as the dead-time compensator based on disturbance observer and the Filtered Smith Predictor, in the context of some well-known problems of chemical reactor and boiler control problems. PMID:24182516

  17. Implementation of real-time digital endoscopic image processing system

    NASA Astrophysics Data System (ADS)

    Song, Chul Gyu; Lee, Young Mook; Lee, Sang Min; Kim, Won Ky; Lee, Jae Ho; Lee, Myoung Ho

    1997-10-01

    Endoscopy has become a crucial diagnostic and therapeutic procedure in clinical areas. Over the past four years, we have developed a computerized system to record and store clinical data pertaining to endoscopic surgery of laparascopic cholecystectomy, pelviscopic endometriosis, and surgical arthroscopy. In this study, we developed a computer system, which is composed of a frame grabber, a sound board, a VCR control board, a LAN card and EDMS. Also, computer system controls peripheral instruments such as a color video printer, a video cassette recorder, and endoscopic input/output signals. Digital endoscopic data management system is based on open architecture and a set of widely available industry standards; namely Microsoft Windows as an operating system, TCP/IP as a network protocol and a time sequential database that handles both images and speech. For the purpose of data storage, we used MOD and CD- R. Digital endoscopic system was designed to be able to store, recreate, change, and compress signals and medical images. Computerized endoscopy enables us to generate and manipulate the original visual document, making it accessible to a virtually unlimited number of physicians.

  18. Chimpanzees remember the results of one-by-one addition of food items to sets over extended time periods.

    PubMed

    Beran, Michael J; Beran, Mary M

    2004-02-01

    Four chimpanzees were highly accurate in selecting the larger of two concurrent accumulations of bananas in two opaque containers over a span of 20 min. One at a time, bananas were placed into the containers, which were outside the chimpanzees' cages. The chimpanzees never saw more than one banana at a time, and there were no cues indicating the locations of the bananas after they were placed into the containers. The performance of these animals matched that of human infants and young children in similar tests. The chimpanzees were successful even when the sets to be compared were sufficiently large (5 vs. 8, 5 vs. 10, and 6 vs. 10) to cast doubt on the possibility that the chimpanzees were using an object file mechanism. These chimpanzees are the first nonhuman animals to demonstrate extended memory for accumulated quantity. PMID:14738515

  19. Intensifying instruction: Does additional instructional time make a difference for the most at-risk first graders?

    PubMed

    Harn, Beth A; Linan-Thompson, Sylvia; Roberts, Gregory

    2008-01-01

    Research is clear on the benefit of early intervention efforts and the importance of intensive instructional supports; however, understanding which features to intensify is less clear. General intervention features of group size, instructional delivery, and time are areas schools can consider manipulating to intensify instruction. Also, each of these features can vary along a continuum making them easier or more challenging for schools to implement. What is unclear is if implementing very intensive interventions early in school (first grade), which require significantly more school resources, provides accordingly accelerated student learning. This article investigates the role of intensifying instructional time for the most at-risk first graders in schools implementing research-based instructional and assessment practices within multitiered instructional support systems. Results indicate that students receiving more intensive intervention made significantly more progress across a range of early reading measures. Intervention features, limitations, recommendations for practice, and implications for treatment resisters are discussed. PMID:18354932

  20. Real Time Implementation of Wiener Model PI (WMPI) Controller in a Conical Tank Liquid Level Process

    NASA Astrophysics Data System (ADS)

    Bhaba, P. K.; Sathishbabu, S.; Asokan, A.; Karunanithi, T.

    Level control is very important for the successful operation of most chemical and biochemical industries since it is through the proper control of flows and levels that the desired production rates and inventories can be achieved. The aim of this study was the development and real time implementation of a Wiener Model based PI Controller (WMPIC) for a conical tank level process. The conical tank level process exhibits severe static non-linear behavior and dynamic characteristics. Here, a WMPIC structure was developed by the way of compensating the process static non-linearity. Tuning rules suggested by PadmaSree-Srinivas-Chidambaram (2004) and Ziegler-Nichols (1942) were considered here for designing the controller. The real time implementation results of wiener model based PI controller were compared with those obtained using a conventional Linear PI Controller (LPIC). The performance of these controllers was analyzed in terms of Integral Square Error (ISE) criterion. In addition to this, the robustness of the controllers was also analyzed.

  1. Real-Time Detection Methods to Monitor TRU Compositions in UREX+Process Streams

    SciTech Connect

    McDeavitt, Sean; Charlton, William; Indacochea, J Ernesto; taleyarkhan, Rusi; Pereira, Candido

    2013-03-01

    The U.S. Department of Energy has developed advanced methods for reprocessing spent nuclear fuel. The majority of this development was accomplished under the Advanced Fuel Cycle Initiative (AFCI), building on the strong legacy of process development R&D over the past 50 years. The most prominent processing method under development is named UREX+. The name refers to a family of processing methods that begin with the Uranium Extraction (UREX) process and incorporate a variety of other methods to separate uranium, selected fission products, and the transuranic (TRU) isotopes from dissolved spent nuclear fuel. It is important to consider issues such as safeguards strategies and materials control and accountability methods. Monitoring of higher actinides during aqueous separations is a critical research area. By providing on-line materials accountability for the processes, covert diversion of the materials streams becomes much more difficult. The importance of the nuclear fuel cycle continues to rise on national and international agendas. The U.S. Department of Energy is evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The objective of this consortium was to develop real time detection methods to monitor the efficacy of the UREX+ process and to safeguard the separated

  2. Discretization of Continuous Time Discrete Scale Invariant Processes: Estimation and Spectra

    NASA Astrophysics Data System (ADS)

    Rezakhah, Saeid; Maleki, Yasaman

    2016-07-01

    Imposing some flexible sampling scheme we provide some discretization of continuous time discrete scale invariant (DSI) processes which is a subsidiary discrete time DSI process. Then by introducing some simple random measure we provide a second continuous time DSI process which provides a proper approximation of the first one. This enables us to provide a bilateral relation between covariance functions of the subsidiary process and the new continuous time processes. The time varying spectral representation of such continuous time DSI process is characterized, and its spectrum is estimated. Also, a new method for estimation time dependent Hurst parameter of such processes is provided which gives a more accurate estimation. The performance of this estimation method is studied via simulation. Finally this method is applied to the real data of S & P500 and Dow Jones indices for some special periods.

  3. Processes at the sediment water interface after addition of organic matter and lime to an acid mine pit lake mesocosm

    SciTech Connect

    Matthias Koschorreck; Elke Bozau; Rene Froemmichen; Walter Geller; Peter Herzsprung; Katrin Wendt-Potthoff

    2007-03-01

    A strategy to neutralize acidic pit lakes was tested in a field mesocosm of 4500 m{sup 3} volume in the Acidic Pit Mine Lake 111 in the Koyne-Plessa lignite mining district of Lusatia, Germany. Carbokalk, a byproduct from sugar production, and wheat straw was applied near to the sediment surface to stimulate in lake microbial alkalinity generation by sulfate and iron reduction. The biogeochemical processes at the sediment-water interface were studied over 3 years by geochemical monitoring and an in situ microprofiler. Substrate addition generated a reactive zone at the sediment surface where sulfate and iron reduction proceeded. Gross sulfate reduction reached values up to 10 mmol m{sup -2} d{sup -1}. The neutralization rates between 27 and 0 meq m{sup -2} d{sup -1} were considerably lower than in previous laboratory experiments. The precipitation of ferric iron minerals resulted in a growing acidic sediment layer on top of the neutral sediment. In this layer sulfate reduction was observed but iron sulfides could not precipitate. In the anoxic sediment H{sub 2}S was oxidized by ferric iron minerals. H{sub 2}S partly diffused to the water column where it was oxidized. As a result the net formation of iron sulfides decreased after 1 year although gross sulfate reduction rates continued to be high. The rate of iron reduction exceeded the sulfate reduction rate, which resulted in high fluxes of ferrous iron out of the sediment. 46 refs., 6 figs., 1 tab.

  4. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    NASA Technical Reports Server (NTRS)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    timing model. A discrepancy provides an estimate of the spacecraft position offset, since an error in position will relate to the measured time offset of a pulse along the line of sight to the pulsar. XNAV researchers have been developing additional enhanced approaches to process the photon TOAs to arrive at an estimate of spacecraft position, including those using maximum-likelihood estimation, digital phase locked loops, and "single photon processing" schemes that utilize all available time data associated with each photon. Using pulsars from separate, non-coplanar locations provides range and range-rate measurements in each pulsar s direction. Combining these different pulsar measurements solves for offsets in position and velocity in three dimensions, and provides accurate overall navigation for deep space vehicles.

  5. Additive Manufacturing Infrared Inspection

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell

    2014-01-01

    Additive manufacturing is a rapid prototyping technology that allows parts to be built in a series of thin layers from plastic, ceramics, and metallics. Metallic additive manufacturing is an emerging form of rapid prototyping that allows complex structures to be built using various metallic powders. Significant time and cost savings have also been observed using the metallic additive manufacturing compared with traditional techniques. Development of the metallic additive manufacturing technology has advanced significantly over the last decade, although many of the techniques to inspect parts made from these processes have not advanced significantly or have limitations. Several external geometry inspection techniques exist such as Coordinate Measurement Machines (CMM), Laser Scanners, Structured Light Scanning Systems, or even traditional calipers and gages. All of the aforementioned techniques are limited to external geometry and contours or must use a contact probe to inspect limited internal dimensions. This presentation will document the development of a process for real-time dimensional inspection technique and digital quality record of the additive manufacturing process using Infrared camera imaging and processing techniques.

  6. Lie Algebraic Discussions for Time-Inhomogeneous Linear Birth-Death Processes with Immigration

    NASA Astrophysics Data System (ADS)

    Ohkubo, Jun

    2014-10-01

    Analytical solutions for time-inhomogeneous linear birth-death processes with immigration are derived. While time-inhomogeneous linear birth-death processes without immigration have been studied by using a generating function approach, the processes with immigration are here analyzed by Lie algebraic discussions. As a result, a restriction for time-inhomogeneity of the birth-death process is understood from the viewpoint of the finiteness of the dimensionality of the Lie algebra.

  7. Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography.

    PubMed

    Schaefer, Alexander W; Reynolds, J Joshua; Marks, Daniel L; Boppart, Stephen A

    2004-01-01

    We present the development and use of a real-time digital signal processing (DSP)-based optical coherence tomography (OCT) and Doppler OCT system. Images of microstructure and transient fluid-flow profiles are acquired using the DSP architecture for real-time processing of computationally intensive calculations. This acquisition system is readily configurable for a wide range of real-time signal processing and image processing applications in OCT. PMID:14723509

  8. Modeling of time dependent localized flow shear stress and its impact on cellular growth within additive manufactured titanium implants

    PubMed Central

    Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R

    2014-01-01

    Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988

  9. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors

    NASA Astrophysics Data System (ADS)

    Khodja, Mohamed; Belouchrani, Adel; Abed-Meraim, Karim

    2012-12-01

    This article deals with the application of Spatial Time-Frequency Distribution (STFD) to the direction finding problem using the Multiple Signal Classification (MUSIC)algorithm. A comparative performance analysis is performed for the method under consideration with respect to that using data covariance matrix when the received array signals are subject to calibration errors in a non-stationary environment. An unified analytical expression of the Direction Of Arrival (DOA) error estimation is derived for both methods. Numerical results show the effect of the parameters intervening in the derived expression on the algorithm performance. It is particularly observed that for low Signal to Noise Ratio (SNR) and high Signal to sensor Perturbation Ratio (SPR) the STFD method gives better performance, while for high SNR and for the same SPR both methods give similar performance.

  10. Zoom-TOFMS: addition of a constant-momentum-acceleration "zoom" mode to time-of-flight mass spectrometry.

    PubMed

    Dennis, Elise A; Gundlach-Graham, Alexander W; Ray, Steven J; Enke, Christie G; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M

    2014-11-01

    In this study, we demonstrate the performance of a new mass spectrometry concept called zoom time-of-flight mass spectrometry (zoom-TOFMS). In our zoom-TOFMS instrument, we combine two complementary types of TOFMS: conventional, constant-energy acceleration (CEA) TOFMS and constant-momentum acceleration (CMA) TOFMS to provide complete mass-spectral coverage as well as enhanced resolution and duty factor for a narrow, targeted mass region, respectively. Alternation between CEA- and CMA-TOFMS requires only that electrostatic instrument settings (i.e., reflectron and ion optics) and ion acceleration conditions be changed. The prototype zoom-TOFMS instrument has orthogonal-acceleration geometry, a total field-free distance of 43 cm, and a direct-current glow-discharge ionization source. Experimental results demonstrate that the CMA-TOFMS "zoom" mode offers resolution enhancement of 1.6 times over single-stage acceleration CEA-TOFMS. For the atomic mass range studied here, the maximum resolving power at full-width half-maximum observed for CEA-TOFMS was 1,610 and for CMA-TOFMS the maximum was 2,550. No difference in signal-to-noise (S/N) ratio was observed between the operating modes of zoom-TOFMS when both were operated at equivalent repetition rates. For a 10-kHz repetition rate, S/N values for CEA-TOFMS varied from 45 to 990 and from 67 to 10,000 for CMA-TOFMS. This resolution improvement is the result of a linear TOF-to-mass scale and the energy-focusing capability of CMA-TOFMS. Use of CMA also allows ions outside a given m/z range to be rejected by simple ion-energy barriers to provide a substantial improvement in duty factor. PMID:24866712

  11. As Time Goes By: Evidence for Two Systems in Processing Space--Time Metaphors.

    ERIC Educational Resources Information Center

    Gentner, Dedre; Imai, Mutsumi; Boroditsky, Lera

    2002-01-01

    Three experiments investigated the psychological status of the "ego-moving" and "time-moving" metaphors by asking subjects to carry out temporal inferences stated in terms of spatial metaphors. Results provide evidence that people use spatial metaphors in temporal reasoning. Implications for the status of metaphoric systems are discussed.…

  12. Patterns of Response Times and Response Choices to Science Questions: The Influence of Relative Processing Time

    ERIC Educational Resources Information Center

    Heckler, Andrew F.; Scaife, Thomas M.

    2015-01-01

    We report on five experiments investigating response choices and response times to simple science questions that evoke student "misconceptions," and we construct a simple model to explain the patterns of response choices. Physics students were asked to compare a physical quantity represented by the slope, such as speed, on simple physics…

  13. Time-Resolved XAFS Spectroscopic Studies of B-H and N-H Oxidative Addition to Transition Metal Catalysts Relevant to Hydrogen Storage

    SciTech Connect

    Bitterwolf, Thomas E.

    2014-12-09

    Successful catalytic dehydrogenation of aminoborane, H3NBH3, prompted questions as to the potential role of N-H oxidative addition in the mechanisms of these processes. N-H oxidative addition reactions are rare, and in all cases appear to involve initial dative bonding to the metal by the amine lone pairs followed by transfer of a proton to the basic metal. Aminoborane and its trimethylborane derivative block this mechanism and, in principle, should permit authentic N-H oxidative attrition to occur. Extensive experimental work failed to confirm this hypothesis. In all cases either B-H complexation or oxidative addition of solvent C-H bonds dominate the chemistry.

  14. Highly Efficient, Reproducible, Uniform (CH3 NH3 )PbI3 Layer by Processing Additive Dripping for Solution-Processed Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Kim, Hansol; Jeong, Hanbin; Lee, Jae Kwan

    2016-09-01

    A processing additive dripping (PAD) approach to forming highly efficient (CH3 NH3 )PbI3 (MAPbI3 ) perovskite layers was investigated. A MAPbI3 (CB/DIO) perovskite film fabricated by this approach, which included briefly dripping chlorobenzene incorporating a small amount of diiodooctane (DIO) during casting of a MAPbI3 perovskite precursor dissolved in dimethylformamide, exhibited superior smooth, uniform morphologies with high crystallinity and large grains and revealed completely homogeneous surface coverage. The surface coverage and morphology of the substrate significantly affected the photovoltaic performance of planar heterojunction (PHJ) perovskite solar cells (PrSCs), resulting in a power conversion efficiency of 11.45 % with high open-circuit voltage of 0.91 V and the highest fill factor of 80.87 %. Moreover, the PAD approach could effectively provide efficient MAPbI3 (CB/DIO) perovskite layers for highly efficient, reproducible, uniform PHJ PrSC devices without performance loss or variation even over larger active areas. PMID:27414840

  15. 48 CFR 852.271-72 - Time spent by counselee in counseling process.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... counseling process. 852.271-72 Section 852.271-72 Federal Acquisition Regulations System DEPARTMENT OF... Clauses 852.271-72 Time spent by counselee in counseling process. As prescribed in 871.212, insert the following clause: Time Spent by Counselee in Counseling Process (APR 1984) The contractor agrees that...

  16. Space Takes Time: Concentration Dependent Output Codes from Primary Olfactory Networks Rapidly Provide Additional Information at Defined Discrimination Thresholds

    PubMed Central

    Daly, Kevin C.; Bradley, Samual; Chapman, Phillip D.; Staudacher, Erich M.; Tiede, Regina; Schachtner, Joachim

    2016-01-01

    As odor concentration increases, primary olfactory network representations expand in spatial distribution, temporal complexity and duration. However, the direct relationship between concentration dependent odor representations and the psychophysical thresholds of detection and discrimination is poorly understood. This relationship is absolutely critical as thresholds signify transition points whereby representations become meaningful to the organism. Here, we matched stimulus protocols for psychophysical assays and intracellular recordings of antennal lobe (AL) projection neurons (PNs) in the moth Manduca sexta to directly compare psychophysical thresholds and the output representations they elicit. We first behaviorally identified odor detection and discrimination thresholds across an odor dilution series for a panel of structurally similar odors. We then characterized spatiotemporal spiking patterns across a population of individually filled and identified AL PNs in response to those odors at concentrations below, at, and above identified thresholds. Using spatial and spatiotemporal based analyses we observed that each stimulus produced unique representations, even at sub-threshold concentrations. Mean response latency did not decrease and the percent glomerular activation did not increase with concentration until undiluted odor. Furthermore, correlations between spatial patterns for odor decreased, but only significantly with undiluted odor. Using time-integrated Euclidean distance (ED) measures, we determined that added spatiotemporal information was present at the discrimination but not detection threshold. This added information was evidenced by an increase in integrated distance between the sub-detection and discrimination threshold concentrations (of the same odor) that was not present in comparison of the sub-detection and detection threshold. After consideration of delays for information to reach the AL we find that it takes ~120–140 ms for the AL to

  17. Ergodicity breaking, ageing, and confinement in generalized diffusion processes with position and time dependent diffusivity

    NASA Astrophysics Data System (ADS)

    Cherstvy, Andrey G.; Metzler, Ralf

    2015-05-01

    We study generalized anomalous diffusion processes whose diffusion coefficient D(x, t) ∼ D0|x|αtβ depends on both the position x of the test particle and the process time t. This process thus combines the features of scaled Brownian motion and heterogeneous diffusion parent processes. We compute the ensemble and time averaged mean squared displacements of this generalized diffusion process. The scaling exponent of the ensemble averaged mean squared displacement is shown to be the product of the critical exponents of the parent processes, and describes both subdiffusive and superdiffusive systems. We quantify the amplitude fluctuations of the time averaged mean squared displacement as function of the length of the time series and the lag time. In particular, we observe a weak ergodicity breaking of this generalized diffusion process: even in the long time limit the ensemble and time averaged mean squared displacements are strictly disparate. When we start to observe this process some time after its initiation we observe distinct features of ageing. We derive a universal ageing factor for the time averaged mean squared displacement containing all information on the ageing time and the measurement time. External confinement is shown to alter the magnitudes and statistics of the ensemble and time averaged mean squared displacements.

  18. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    NASA Astrophysics Data System (ADS)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  19. Global processing takes time: A meta-analysis on local-global visual processing in ASD.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan

    2015-05-01

    What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. PMID:25420221

  20. Effect of tetrasodium pyrophosphate concentration and cooking time on the physicochemical properties of process cheese.

    PubMed

    Shirashoji, N; Aoyagi, H; Jaeggi, J J; Lucey, J A

    2016-09-01

    Tetrasodium pyrophosphate (TSPP) is widely used as an emulsifying salt (ES) in process cheese. Previous reports have indicated that TSPP exhibits some unusual properties, including the gelation of milk proteins at specific ES concentrations. We studied the effect of various concentrations (0.25-2.75%) of TSPP and cooking times (0-20min) on the rheological, textural, and physical properties of pasteurized process Cheddar cheese using a central composite rotatable experimental design. Cheeses were made with a constant pH value to avoid pH as a confounding factor. Modeling of the textural properties of process cheese made with TSPP exhibited complex behavior, with polynomial models (cubic) giving better predictions (higher coefficient of determination values) than simpler quadratic models. Meltability indices (degree of flow from the UW MeltProfiler (University of Wisconsin-Madison), loss tangent value at 60°C from rheological testing, and Schreiber melt area) initially decreased with increasing TSPP concentrations, but above a critical ES concentration (~1.0%) meltability increased at higher TSPP concentrations. The storage modulus values measured at 70°C for process cheese initially increased with increasing TSPP concentration, but above a concentration of 1% ES, the storage modulus values decreased. Cooking time had little effect on the various melting or rheological properties. With an increase in TSPP concentration, the insoluble Ca and P contents increased, suggesting that TSPP addition resulted in the formation of insoluble calcium pyrophosphate complexes; some of which were likely associated with caseins. A portion of the added TSPP remained in the soluble phase. The acid-base buffering profiles also indicated that calcium pyrophosphate complexes were formed in cheese made with TSPP. In milk systems, low levels of TSPP have been shown to induce protein crosslinking and gelation, whereas at higher TSPP concentrations milk gelation was inhibited due to