Science.gov

Sample records for additional protein factors

  1. Two additional human serum proteins structurally related to complement factor H: Evidence for a family of factor H-related genes

    SciTech Connect

    Skerka, C.; Timmann, C.; Horstmann, R.D. ); Zipfel, P.F.

    1992-05-15

    The authors identify and characterize two human serum proteins with an apparent molecular mass of 24 and 29 kDa, which are antigenically related to complement factor H. These proteins represent differently glycosylated forms and are encoded by the same mRNA. The corresponding cDNA clone is 1051 bp in size and hybridized to a 1.4-kb mRNA derived from human liver. The predicted translation product represents a protein of 270 amino acids, which displays a hydrophobic leader sequence, indicative of a secreted protein. The secreted part is organized in four short consensus repeats (SCR) and has a single putative N-linked glycosylation site. The predicted sequence is closely related to that of the previously described factor H-related proteins h37 and h42, which are also derived from a 1.4-kb mRNA. Amino acid comparison of these factor H-related proteins showed identical leader sequences, an exchange of three amino acids in SCR1, identical sequences of SCR2, and a lower degree of homology between SCR3-4 (h24 and h29) and SCR4-5 (h37 and h42). In addition, SCR3-4 of h24 and h29 display homology to SCR19-20 of human complement factor H. The relatedness of structural elements of the factor H-related proteins h24, h29, h37, and h42 and of factor H, suggests a function common to these proteins and indicates the existence of a gene family consisting of factor H and at least two factor H-related genes. 28 refs., 7 figs., 1 tab.

  2. Bioinformatics annotation of the hypothetical proteins found by omics techniques can help to disclose additional virulence factors.

    PubMed

    Hernández, Sergio; Gómez, Antonio; Cedano, Juan; Querol, Enrique

    2009-10-01

    The advent of genomics should have facilitated the identification of microbial virulence factors, a key objective for vaccine design. When the bacterial pathogen infects the host it expresses a set of genes, a number of them being virulence factors. Among the genes identified by techniques as microarrays, in vivo expression technology, signature-tagged mutagenesis and differential fluorescence induction there are many related to cellular stress, basal metabolism, etc., which cannot be directly involved in virulence, or at least cannot be considered useful candidates to be deleted for designing a live attenuated vaccine. Among the genes disclosed by these methodologies there are a number of hypothetical or unknown proteins. As they can hide some true virulence factors, we have reannotated all of these hypothetical proteins from several respiratory pathogens by a careful and in-depth analysis of each one. Although some of the re-annotations match with functions that can be related to microbial virulence, the identification of virulence factors remains difficult.

  3. Additional factors in chronic bronchitis.

    PubMed

    Cullen, K J; Elder, J; Adams, A R; Stenhouse, N S

    1970-02-14

    A review of persons with chronic bronchitis and controls without bronchitis showed several irritants around the home that aggravated cough, such as house dust, flowers and grasses, smoke, strong fumes, hair spray, insecticide, and soap powders. Most subjects with bronchitis were affected by exposure to one or more of these irritants for at least once a day for three months of the year or more. Out of 163 subjects with chronic bronchitis only six non-smokers were free of factors associated with pulmonary irritation. This evidence from non-smokers not exposed to air pollution adds further strength to the hypothesis that daily phlegm is caused by persistent inhalation of irritants.

  4. Elongation factors in protein synthesis.

    PubMed

    Kraal, B; Bosch, L; Mesters, J R; de Graaf, J M; Woudt, L P; Vijgenboom, E; Heinstra, P W; Zeef, L A; Boon, C

    1993-01-01

    Recent discoveries of elongation factor-related proteins have considerably complicated the simple textbook scheme of the peptide chain elongation cycle. During growth and differentiation the cycle may be regulated not only by factor modification but also factor replacement. In addition, rare tRNAs may have their own rare factor proteins. A special case is the acquisition of resistance by bacteria to elongation factor-directed antibiotics. Pertinent data from the literature and our own work with Escherichia coli and Streptomyces are discussed. The GTP-binding domain of EF-Tu has been studied extensively, but little molecular detail is available on the interactions with its other ligands or effectors, or on the way they are affected by the GTPase switch signal. A growing number of EF-Tu mutants obtained by ourselves and others are helping us in testing current ideas. We have found a synergistic effect between EF-Tu and EF-G in their uncoupled GTPase reactions on empty ribosomes. Only the EF-G reaction is perturbed by fluoroaluminates.

  5. 14 CFR 1203.406 - Additional classification factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Additional classification factors. 1203.406... PROGRAM Guides for Original Classification § 1203.406 Additional classification factors. In determining the appropriate classification category, the following additional factors should be considered:...

  6. Use of Vitelline Protein B as a Microencapsulating Additive

    NASA Technical Reports Server (NTRS)

    Ficht, Allison R. (Inventor); Carson, Ken (Inventor); Sheffield, Cynthia (Inventor); Waite, John Herbert (Inventor)

    2017-01-01

    The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.

  7. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  8. Peak compression factor of proteins.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2009-08-14

    An experimental protocol is proposed in order to measure with accuracy and precision the band compression factor G(12)(2) of a protein in gradient RPLC. Extra-column contributions to bandwidth and the dependency of both the retention factor and the reduced height equivalent to a theoretical plate (HETP) on the mobile phase composition were taken into account. The band compression factor of a small protein (insulin, MW kDa) was measured on a 2.1mm x 50mm column packed with 1.7 microm C(4)-bonded bridged ethylsiloxane BEH-silica particles, for 1 microL samples of dilute insulin solution (<0.05g/L). A linear gradient profile of acetonitrile (25-28% acetonitrile in water containing 0.1% trifluoroacetic acid) was applied during three different gradient times (5, 12.5, and 20 min). The mobile phase flow rate was set at 0.20 mL/min in order to avoid heat friction effects (maximum column inlet pressure 180 bar). The band compression factor of insulin is defined as the ratio of the experimental space band variance measured under gradient conditions to the reference space band variance, which would be observed if no thermodynamic compression would take place during gradient elution. It was 0.56, 0.71, and 0.76 with gradient times of 5, 12.5, and 20 min, respectively. These factors are 20-30% smaller than the theoretical band compression factors (0.79, 0.89, and 0.93) calculated from an equation derived from the well-known Poppe equation, later extended to any retention models and columns whose HETP depends on the mobile phase composition. This difference is explained in part by the omission in the model of the effect of the pressure gradient on the local retention factor of insulin during gradient elution. A much better agreement is obtained for insulin when this effect is taken into account. For lower molecular weight compounds, the pressure gradient has little effect but the finite retention of acetonitrile causes a distortion of the gradient shape during the migration of

  9. Identification of an additional protein involved in mannan biosynthesis

    PubMed Central

    Wang, Yan; Mortimer, Jennifer C; Davis, Jonathan; Dupree, Paul; Keegstra, Kenneth

    2013-01-01

    Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis-related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role. PMID:22966747

  10. 14 CFR § 1203.406 - Additional classification factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... INFORMATION SECURITY PROGRAM Guides for Original Classification § 1203.406 Additional classification factors... Services will coordinate with the Information Security Oversight Office (ISOO) Committee and the National... information must be reasonably uniform within the Government. (b) Applicability of classification...

  11. Influence of urea additives on micellar morphology/protein conformation.

    PubMed

    Gull, Nuzhat; Kumar, Sanjeev; Ahmad, Basir; Khan, Rizwan Hassan; Kabir-ud-Din

    2006-08-01

    The present study highlights the fact that the effect of additives (urea, monomethylurea, thiourea) on the supramolecular assemblies and proteins is strikingly similar. To investigate the effect, a viscometeric study on sphere-to-rod transition (s-->r) was undertaken in a system (3.5% tetradecyltrimethylammonium bromide+0.05 M NaBr + 1-pentanol [P.M. Lindemuth, G.L. Bertand, J. Phys. Chem. 97 (1993) 7769]) in the presence and absence of the said additives. [1-pentanol] needed for s-->r (i.e. [1-pentanol]s-->r) was determined from the relative viscosity versus [1-pentanol] profiles. It was observed that the additives preponed as well as postponed s-->r depending upon their nature and concentrations. These effects are explained in terms of increased polarity of the medium and the adsorption ability of urea/monomethylurea on the charged surfactant monomers of the micelle. In case of thiourea, postponement of s-->r was observed throughout which is attributed to its structure. To derive an analogy between micelles and proteins the additive-induced conformational changes of the protein, bovine serum albumin (BSA) was taken to monitor secondary structural changes and tryptophanyl fluorescence. A marked increase in secondary structure (far-UVCD) and increased tryptophanyl fluorescence with a marked blue shift in lambdamax was observed in presence of low concentrations of urea or alkylurea. This indicates that a more compact environment is created in presence of these additives, if added judiciously. Addition of thiourea to BSA caused a marked quenching without any significant change in lambdamax. The large decrease in tryptophanyl emission in presence of low thiourea concentrations seems to be specific and related to thiourea structure as no corresponding changes were observed in urea/alkylurea. All these effects pertaining to protein behavior fall in line with that of morphological observations on the present as well as surfactant systems studied earlier [S. Kumar, N

  12. Improvement of modal scaling factors using mass additive technique

    NASA Technical Reports Server (NTRS)

    Zhang, Qiang; Allemang, Randall J.; Wei, Max L.; Brown, David L.

    1987-01-01

    A general investigation into the improvement of modal scaling factors of an experimental modal model using additive technique is discussed. Data base required by the proposed method consists of an experimental modal model (a set of complex eigenvalues and eigenvectors) of the original structure and a corresponding set of complex eigenvalues of the mass-added structure. Three analytical methods,i.e., first order and second order perturbation methods, and local eigenvalue modification technique, are proposed to predict the improved modal scaling factors. Difficulties encountered in scaling closely spaced modes are discussed. Methods to compute the necessary rotational modal vectors at the mass additive points are also proposed to increase the accuracy of the analytical prediction.

  13. [Factors associated with the addition of salt to prepared food].

    PubMed

    de Castro, Raquel da Silva Assunção; Giatti, Luana; Barreto, Sandhi Maria

    2014-05-01

    The scope of this research was to investigate the potential differences between men and women in the addition of salt to prepared food. The study included 47,557 individuals aged 18 to 64 participating in the Risk and Protection Factors for Chronic Disease Surveillance System by Telephone Interview carried out in 26 Brazilian state capitals and the Federal District in 2006. Differences between men and women were tested by the chi-square test and the association magnitudes between the dependent and independent variables were estimated by the Odds Ratio obtained by Multiple Logistic Regression analysis. The prevalence of the addition of salt to prepared food was 8.3%, being higher among men (9,8% vs 6,9%, p < 0.01). After adjustment, the addition of salt to prepared food was higher in individuals with self-rated fair to poor health, reporting cardiovascular disease and living in the North of Brazil. Hypertensive individuals reported addition of less salt to prepared food. Educational level was not associated with salt usage. Men add more salt than women. Public health policies aimed at reducing salt intake by the population should take into account the gender differences in salt intake and the factors that contribute to such differences.

  14. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  15. Cross-Family Transcription Factor Interactions: An Additional Layer of Gene Regulation.

    PubMed

    Bemer, Marian; van Dijk, Aalt D J; Immink, Richard G H; Angenent, Gerco C

    2017-01-01

    Specific and dynamic gene expression strongly depends on transcription factor (TF) activity and most plant TFs function in a combinatorial fashion. They can bind to DNA and control the expression of the corresponding gene in an additive fashion or cooperate by physical interactions, forming larger protein complexes. The importance of protein-protein interactions between members of a particular plant TF family has long been recognised; however, a significant number of interfamily TF interactions has recently been reported. The biological implications and the molecular mechanisms involved in cross-family interactions have now started to be elucidated and the examples illustrate potential roles in the bridging of biological processes. Hence, cross-family TF interactions expand the molecular toolbox for plants with additional mechanisms to control and fine-tune robust gene expression patterns and to adapt to their continuously changing environment.

  16. MTHFR homozygous mutation and additional risk factors for cerebral infarction in a large Italian family.

    PubMed

    Del Balzo, Francesca; Spalice, Alberto; Perla, Massimo; Properzi, Enrico; Iannetti, Paola

    2009-01-01

    Several cases with cerebral infarctions associated with the C677T mutation in the methylenetetrahydrofolate reductase gene (MTHFR) have been reported. Given the large number of asymptomatic individuals with the MTHFR mutation, additional risk factors for cerebral infarction should be considered. This study describes a large family with the MTHFR mutation and a combination of heterozygous factor V Leiden mutations and different additional exogenous and endogenous thrombogenic risk factors. Psychomotor retardation and a left fronto-insular infarct associated with the MTHFR mutation together with diminished factor VII and low level of protein C was documented in the first patient. In the second patient, generalized epilepsy and a malacic area in the right nucleus lenticularis was associated with the MTHFR mutation and a low level of protein C. In the third patient, right hemiparesis and a left fronto-temporal porencephalic cyst were documented, together with the MTHFR mutation and hyperhomocysteinemia. An extensive search of additional circumstantial and genetic thrombogenic risk factors should be useful for prophylaxis and prognosis of infants with cerebral infarctions associated with the MTHFR mutation and of their related family members.

  17. A method for systematic purification from bovine plasma of six vitamin K-dependent coagulation factors: prothrombin, factor X, factor IX, protein S, protein C, and protein Z.

    PubMed

    Hashimoto, N; Morita, T; Iwanaga, S

    1985-05-01

    A systematic purification scheme is presented for the isolation of six vitamin K-dependent coagulation factors from bovine plasma in a functionally and biochemically pure state. The vitamin K-dependent proteins concentrated by the ordinary barium citrate adsorption were first separated into four fractions, fractions A, B, C, and D, by DEAE-Sephadex A-50 chromatography. From the pooled fraction A, protein S, factor IX, and prothrombin were purified by column chromatography on Blue-Sepharose CL-6B. Heparin-Sepharose chromatography of the pooled fraction B provided mainly pure factor IX, in addition to homogeneous prothrombin. A high degree of resolution of protein C and prothrombin from the pooled fraction C was obtained with a Blue-Sepharose column. This dye-ligand chromatographic procedure was also very effective for the separation of protein Z and factor X contained in the pooled fraction D. Thus, these preparative procedures allowed high recovery of milligram and gram quantities of six vitamin K-dependent proteins from 15 liters of plasma in only two chromatographic steps, except for protein S, which required three (the third step was rechromatography on Blue-Sepharose CL-6B).

  18. Affinity labeling of protein synthesis factors

    SciTech Connect

    Anthony, D.D.; Dever, T.E.; Abramson, R.D.; Lobur, M.; Merrick, W.C.

    1986-05-01

    The authors laboratory is interested in determining those eukaryotic protein synthesis factors which interact with nucleotides and mRNA. To study the binding the authors have used the nucleotides, their analogs, and mRNA analogs as listed below: (1) UV cross-linking with normal (/sup 32/P)XTP; (2) Oxidized GTP; (3) 3'p-azido benzoyl GDP (GTP); (4) 5'p-fluoro sulfonyl benzoyl guanosine; (5) 5'p-fluoro sulfonyl benzoyl adenosine; (6) oxidized mRNA. Currently, they are continuing their efforts to specifically label the proteins, and they are also trying to isolate a single labeled tryptic peptide from the proteins.

  19. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    PubMed Central

    Liu, Jiajian; Stormo, Gary D

    2005-01-01

    Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data. PMID:16014175

  20. An atomic view of additive mutational effects in a protein structure

    SciTech Connect

    Skinner, M.M.; Terwilliger, T.C.

    1996-04-01

    Substitution of a single amino acid in a protein will often lead to substantial changes in properties. If these properties could be altered in a rational way then proteins could be readily generated with functions tailored to specific uses. When amino acid substitutions are made at well-separated locations in a single protein, their effects are generally additive. Additivity of effects of amino acid substitutions is very useful because the properties of proteins with any combination of substitutions can be inferred directly from those of the proteins with single changes. It would therefore be of considerable interest to have a means of knowing whether substitutions at a particular pair of sites in a protein are likely to lead to additive effects. The structural basis for additivity of effects of mutations on protein function was examined by determining crystal structures of single and double mutants in the hydrophobic core of gene V protein. Structural effects of mutations were found to be cumulative when two mutations were made in a single protein. Additivity occurs in this case because the regions structurally affected by mutations at the two sites do not overlap even though the sites are separated by only 9 {angstrom}. Structural distortions induced by mutations in gene V protein decrease rapidly, but not isotropically, with distance from the site of mutation. It is anticipated that cases where structural and functional effects of mutations will be additive could be identified simply by examining whether the regions structurally affected by each component mutation overlap.

  1. Rational Design of Solution Additives for the Prevention of Protein Aggregation

    PubMed Central

    Baynes, Brian M.; Trout, Bernhardt L.

    2004-01-01

    We have developed a statistical-mechanical model of the effect of solution additives on protein association reactions. This model incorporates solvent radial distribution functions obtained from all-atom molecular dynamics simulations of particular proteins into simple models of protein interactions. In this way, the effects of additives can be computed along the entire association/dissociation reaction coordinate. We used the model to test our hypothesis that a class of large solution additives, which we term “neutral crowders,” can slow protein association and dissociation by being preferentially excluded from protein-protein encounter complexes, in a manner analogous to osmotic stress. The magnitude of this proposed “gap effect” was probed for two simple model systems: the association of two spheres and the association of two planes. Our results suggest that for a protein of 20 Å radius, an 8 Å additive can increase the free energy barrier for association and dissociation by as much as 3–6 kcal/mol. Because the proposed gap effect is present only for reactions involving multiple molecules, it can be exploited to develop novel additives that affect protein association reactions although having little or no effect on unimolecular reactions such as protein folding. This idea has many potential applications in areas such as the stabilization of proteins against aggregation during folding and in pharmaceutical formulations. PMID:15345542

  2. Rational design of solution additives for the prevention of protein aggregation.

    PubMed

    Baynes, Brian M; Trout, Bernhardt L

    2004-09-01

    We have developed a statistical-mechanical model of the effect of solution additives on protein association reactions. This model incorporates solvent radial distribution functions obtained from all-atom molecular dynamics simulations of particular proteins into simple models of protein interactions. In this way, the effects of additives can be computed along the entire association/dissociation reaction coordinate. We used the model to test our hypothesis that a class of large solution additives, which we term "neutral crowders," can slow protein association and dissociation by being preferentially excluded from protein-protein encounter complexes, in a manner analogous to osmotic stress. The magnitude of this proposed "gap effect" was probed for two simple model systems: the association of two spheres and the association of two planes. Our results suggest that for a protein of 20 A radius, an 8 A additive can increase the free energy barrier for association and dissociation by as much as 3-6 kcal/mol. Because the proposed gap effect is present only for reactions involving multiple molecules, it can be exploited to develop novel additives that affect protein association reactions although having little or no effect on unimolecular reactions such as protein folding. This idea has many potential applications in areas such as the stabilization of proteins against aggregation during folding and in pharmaceutical formulations.

  3. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  4. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  5. Fruit flies with additional expression of the elongation factor EF-1 alpha live longer.

    PubMed Central

    Shepherd, J C; Walldorf, U; Hug, P; Gehring, W J

    1989-01-01

    In Drosophila melanogaster, the decrease in protein synthesis that accompanies aging is preceded by a decrease in elongation factor EF-1 alpha protein and mRNA. Here we show that Drosophila transformed with a P-element vector containing an EF-1 alpha gene under control of hsp70 regulatory sequences have a longer life-span than control flies. Images PMID:2508089

  6. Ammonium Bicarbonate Addition Improves the Detection of Proteins by Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Honarvar, Elahe; Venter, Andre R.

    2017-03-01

    The analysis of protein by desorption electrospray ionization mass spectrometry (DESI-MS) is considered impractical due to a mass-dependent loss in sensitivity with increase in protein molecular weights. With the addition of ammonium bicarbonate to the DESI-MS analysis the sensitivity towards proteins by DESI was improved. The signal to noise ratio (S/N) improvement for a variety of proteins increased between 2- to 3-fold relative to solvent systems containing formic acid and more than seven times relative to aqueous methanol spray solvents. Three methods for ammonium bicarbonate addition during DESI-MS were investigated. The additive delivered improvements in S/N whether it was mixed with the analyte prior to sample deposition, applied over pre-prepared samples, or simply added to the desorption spray solvent. The improvement correlated well with protein pI but not with protein size. Other ammonium or bicarbonate salts did not produce similar improvements in S/N, nor was this improvement in S/N observed for ESI of the same samples. As was previously described for ESI, DESI also caused extensive protein unfolding upon the addition of ammonium bicarbonate.

  7. Cellular factors modulating the mechanism of tau protein aggregation

    PubMed Central

    Fontaine, Sarah N.; Sabbagh, Jonathan J.; Baker, Jeremy; Martinez-Licha, Carlos R.; Darling, April

    2015-01-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer’s disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer’s disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  8. Effects of protein and peptide addition on lipid oxidation in powder model system.

    PubMed

    Park, Eun Young; Murakami, Hiroshi; Mori, Tomohiko; Matsumura, Yasuki

    2005-01-12

    The effect of protein and peptide addition on the oxidation of eicosapentaenoic acid ethyl ester (EPE) encapsulated by maltodextrin (MD) was investigated. The encapsulated lipid (powder lipid) was prepared in two steps, i.e., mixing of EPE with MD solutions (+/- protein and peptides) to produce emulsions and freeze-drying of the resultant emulsions. EPE oxidation in MD powder progressed more rapidly in the humid state [relative humidity (RH) = 70%] than in the dry state (RH = 10%). The addition of soy protein, soy peptide, and gelatin peptides improved the oxidation stability of EPE encapsulated by MD, and the inhibition of lipid oxidation by the protein and the peptides was more dramatic in the humid state. Especially, the oxidation of EPE was almost perfectly suppressed when the lipid was encapsulated with MD + soy peptide during storage in the humid state for 7 days. Several physical properties such as the lipid particle size of the emulsions, the fraction of nonencapsulated lipids, scanning electron microscopy images of powder lipids, and the mobility of the MD matrix were investigated to find the modification of encapsulation behavior by the addition of the protein and peptides, but no significant change was observed. On the other hand, the protein and peptides exhibited a strong radical scavenging activity in the powder systems as well as in the solution systems. These results suggest that a chemical mechanism such as radical scavenging ability plays an important role in the suppression of EPE oxidation in MD powder by soy proteins, soy peptides, and gelatin peptides.

  9. Dairy proteins and soy proteins in infant foods nitrogen-to-protein conversion factors.

    PubMed

    Maubois, J-L; Lorient, D

    Protein content of any source is classically determined through the analysis of its nitrogen content done for more 100 years by the Kjeldahl method, and the obtained result is multiplied by a number named nitrogen conversion factor (NCF). The value of NCF is related to the amino acid composition of the protein source and to the eventual presence of side groups covalently bound to some amino acids of the protein chain. Consequently, the value of NCF cannot be identical for all sources of food proteins. The aim of this paper is to review the available knowledge on the two allowed protein sources for infant food formulas, milk and soybean, in order to bring the right scientific basis which should be used for the revision of both European legislation and Codex Standard for Infant Formulas.

  10. Addition of interleukin 1 (IL1) and IL17 soluble receptors to a tumour necrosis factor α soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3α and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation

    PubMed Central

    Chevrel, G; Garnero, P; Miossec, P

    2002-01-01

    Methods: A simplified model was set up to evaluate the effect of tumour necrosis factor α (TNFα) soluble receptors (sTNFR) used alone and in combination with soluble interleukin 1 receptor (sIL1R) and sIL17R on the production of markers of inflammation (IL6), of migration of dendritic cells (macrophage inhibitory protein-3α (MIP-3α)), and of matrix synthesis (C-propeptide of type 1 collagen (P1CP)). Synoviocytes were stimulated with supernatants of activated peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA). Soluble receptors (sR) were preincubated at 1 γg/ml alone or in combination with the supernatants before addition to RA synoviocytes. IL6, MIP-3α, and P1CP production was measured by enzyme linked immunosorbent assay (ELISA) in 48 hour synoviocyte supernatants. Results: IL6 production decreased by 16% with sTNFR alone compared with no sTNFR (p<0.001) and by 41% with the combination of the three sR (p<0.001). MIP-3α production decreased by 77% with sTNFR alone compared with no sTNFR (p<0.001) and by 98% with the combination of the three sR (p<0.001). In the presence of sTNFR alone, P1CP production increased by 25% compared with no sR (p<0.01). The combination of the three sR increased P1CP production by 48% (p<0.01). Conclusion: The effect of sTNFR on IL6, MIP-3α, and P1CP production by RA synoviocytes stimulated by activated PBMC supernatants was further enhanced when combined with sIL1R and sIL17R. PMID:12117682

  11. Effect of the addition of CMC on the aggregation behaviour of proteins

    NASA Astrophysics Data System (ADS)

    Yu, H.; Sabato, S. F.; D'Aprano, G.; Lacroix, M.

    2004-09-01

    The effect of carboxymethylcellulose (CMC) on the aggregation of formulation based on calcium caseinate, commercial whey protein (WPC), and a 1:1 mixture of soy protein isolate (SPI) and whey protein isolate (WPI) was investigated. Protein aggregation could be observed upon addition of CMC, as demonstrated by size-exclusion chromatography. This aggregation behaviour was enhanced by means of physical treatments, such as heating at 90°C for 30 min or gamma-irradiation at 32 kGy. A synergy resulted from the combination of CMC to gamma-irradiation in Caseinate/CMC and SPI/WPI/CMC formulations. Furthermore, CMC prevented precipitation in irradiated protein solutions for a period of more than 3 months at 4°C.

  12. Germ cell mitogenic activity is associated with nerve growth factor-like protein(s).

    PubMed

    Onoda, M; Pflug, B; Djakiew, D

    1991-12-01

    The mitogenicity of germ cell proteins released from round spermatids (RS) and pachytene spermatocytes (PS) was investigated. Germ cells were isolated by centrifugal elutriation from 90-day-old rat testes and incubated in a supplement enriched culture media that lacked exogenous proteins. The conditioned culture media of RS and PS were dialysed/concentrated and lyophilized to prepare RS protein (RSP) and PS protein (PSP). Mitogenic activity of RSP and PSP was determined by 3H-thymidine incorporation into Swiss 3T3 fibroblasts. RSP and PSP stimulated 3H-thymidine incorporation by fibroblasts in a dose-dependent manner. At a higher concentration of RSP (300 micrograms/ml), fibroblast proliferation was stimulated from 6- to 20-fold of control cultures, whereas PSP (300 micrograms/ml) stimulated fibroblast proliferation 2.5-fold of control cultures. Since RSP exhibited substantially greater mitogenic activity than PSP we further investigated the RSP mitogenic substance(s) by immunoneutralization with antibodies against several growth factors. The mitogenic activity of RSP was significantly reduced by treatment with nerve growth factor (NGF) antibody, while neither the treatment of RSP with acidic fibroblast growth factor (aFGF) antibody, nor basic fibroblast growth factor (bFGF) antibody significantly modified the mitogenic activity of RSP. Interestingly, murine NGF-beta, recombinant human NGF-beta, and bovine serum albumin (BSA) did not exhibit mitogenic activity on 3T3 fibroblasts. Nevertheless, the presence of a NGF-like protein in RS and PS was confirmed by indirect immunofluorescence staining with a murine NGF antibody. Subsequently, a Western blot analysis with the NGF antibody identified two immunoreactive bands of 41 +/- 2 kDa and 51 +/- 1 kDa in both RSP and PSP under reduced conditions. These germ cell NGF-like proteins were apparently different from similarly prepared murine and human NGFs (13 kDa) in their molecular weight. Furthermore, neurite outgrowth

  13. 34 CFR 658.34 - What additional factors does the Secretary consider in selecting grant recipients?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional factors does the Secretary consider in selecting grant recipients? 658.34 Section 658.34 Education Regulations of the Offices of the Department of... STUDIES AND FOREIGN LANGUAGE PROGRAM How Does the Secretary Make a Grant? § 658.34 What additional...

  14. 34 CFR 658.34 - What additional factors does the Secretary consider in selecting grant recipients?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What additional factors does the Secretary consider in selecting grant recipients? 658.34 Section 658.34 Education Regulations of the Offices of the Department of... STUDIES AND FOREIGN LANGUAGE PROGRAM How Does the Secretary Make a Grant? § 658.34 What additional...

  15. 34 CFR 658.34 - What additional factors does the Secretary consider in selecting grant recipients?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional factors does the Secretary consider in selecting grant recipients? 658.34 Section 658.34 Education Regulations of the Offices of the Department of... STUDIES AND FOREIGN LANGUAGE PROGRAM How Does the Secretary Make a Grant? § 658.34 What additional...

  16. 34 CFR 658.34 - What additional factors does the Secretary consider in selecting grant recipients?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What additional factors does the Secretary consider in selecting grant recipients? 658.34 Section 658.34 Education Regulations of the Offices of the Department of... STUDIES AND FOREIGN LANGUAGE PROGRAM How Does the Secretary Make a Grant? § 658.34 What additional...

  17. 34 CFR 658.34 - What additional factors does the Secretary consider in selecting grant recipients?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What additional factors does the Secretary consider in selecting grant recipients? 658.34 Section 658.34 Education Regulations of the Offices of the Department of... STUDIES AND FOREIGN LANGUAGE PROGRAM How Does the Secretary Make a Grant? § 658.34 What additional...

  18. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.

  19. Phospha-Michael Addition as a New Click Reaction for Protein Functionalization.

    PubMed

    Lee, Yan-Jiun; Kurra, Yadagiri; Liu, Wenshe R

    2016-03-15

    A new type of click reaction between an alkyl phosphine and acrylamide was developed and applied for site-specific protein labeling in vitro and in live cells. Acrylamide is a small electrophilic olefin that readily undergoes phospha-Michael addition with an alkyl phosphine. Our kinetic study indicated a second-order rate constant of 0.07 m(-1)  s(-1) for the reaction between tris(2-carboxyethyl)phosphine and acrylamide at pH 7.4. To demonstrate its application in protein functionalization, we used a dansyl-phosphine conjugate to successfully label proteins that were site-specifically installed with N(ɛ) -acryloyl-l-lysine and employed a biotin-phosphine conjugate to selectively probe human proteins that were metabolically labeled with N-acryloyl-galactosamine.

  20. Effects of tumour necrosis factor on protein metabolism.

    PubMed

    Evans, D A; Jacobs, D O; Wilmore, D W

    1993-08-01

    Increased skeletal muscle breakdown and negative nitrogen balance are features of sepsis that may be mediated by cytokines. The effects of tumour necrosis factor (TNF) on protein metabolism were studied. When administered to anaesthetized dogs (0.57 x 10(5) units per kg body-weight over 6h), TNF caused urinary nitrogen excretion to increase (mean(s.e.m.) 165(15) mg kg-1 for dogs that received TNF versus 113(8) mg kg-1 for control animals, P < 0.01). Amino acid nitrogen release from the hindlimbs showed no change over the study period, indicating that the additional urinary nitrogen was not derived from peripheral protein stores. In a second study the same dose of TNF or saline was infused after the intestine had been removed. The mean(s.e.m.) urinary nitrogen excretion in control dogs that had undergone enterectomy (101(7) mg kg-1) was similar to that of intact animals, and addition of TNF did not significantly increase nitrogen excretion (86(18) mg kg-1). The results suggest that nitrogen excreted in the urine during administration of TNF is derived, at least initially, from the intestinal tract.

  1. Insulin-Like Growth Factor Binding Proteins--an Update.

    PubMed

    Bach, Leon A

    2015-12-01

    The insulin-like growth factor (IGF) system is essential for normal growth and development, and its perturbation is implicated in a number of diseases. IGF activity is finely regulated by a family of six high-affinity IGF binding proteins (IGFBPs). 1GFBPs usually inhibit IGF actions but may enhance them under certain conditions. Additionally, IGFBPs bind non-IGF ligands in the extracellular space, cell membrane, cytoplasm and nucleus, thereby modulating cell proliferation, survival and migration in an IGF-independent manner. IGFBP activity is regulated by transcriptional mechanisms as well as by post-translational modifications and proteolysis. Understanding the balance between the various actions of IGFBPs in vivo may lead to novel insights into disease processes and possible IGFBP-based therapeutics.

  2. Insulin-like growth factor binding proteins 4-6.

    PubMed

    Bach, Leon A

    2015-10-01

    Insulin-like growth factor binding proteins (IGFBPs) 4-6 have important roles as modulators of IGF actions. IGFBP-4 and IGFBP-6 predominantly inhibit IGF actions, whereas IGFBP-5 may enhance these actions under some circumstances. IGFBP-6 is unique among the IGFBPs for its marked IGF-II binding preference. IGFBPs 4-6 are found in the circulation as binary complexes with IGFs that can enter tissues. Additionally, about half of the circulating IGFBP-5 is found in ternary complexes with IGFs and an acid labile subunit; this high molecular complex cannot leave the circulation and acts as an IGF reservoir. IGFBPs 4-6 also have IGF-independent actions. These IGFBPs are regulated in a cell-specific manner and their dysregulation may play a role in a range of diseases including cancer. However, there is no clear clinical indication for measuring serum levels of these IGFBPs at present.

  3. Inhibitory action of amyloid precursor protein against human Hageman factor (factor XII).

    PubMed

    Niwano, H; Embury, P B; Greenberg, B D; Ratnoff, O D

    1995-02-01

    Amyloid precursor protein forms that contain Kunitz protease inhibitor domains are released from activated platelets, T-lymphocytes, and leukocytes and inhibit trypsin, plasmin, and activated factor XI. We investigated the effects of amyloid precursor protein isoforms on activated Hageman factor (factor XII), activated factor X (Stuart factor), and thrombin. Recombinant amyloid precursor proteins with or without the Kunitz domain, 770 and 695 amino acids, respectively, were produced in insect cells by Baculovirus expression (BAC770 and BAC695). Neither BAC695 nor BAC770 inhibited human alpha-thrombin or activated factor X. The partial thromboplastin time was prolonged by both amyloid precursor proteins, only one of which, BAC770, contains the Kunitz protease inhibitor domain. Both forms of amyloid precursor proteins inhibited ellagic acid-induced activation of Hageman factor but did not inhibit activated Hageman factor. Bismuth subgallate, which is an insoluble analog of ellagic acid, lost its ability to activate Hageman factor on being exposed to BAC770. Inhibition of ellagic acid-induced activation of Hageman factor by both forms of amyloid precursor protein was enhanced by heparin. These findings suggested that the heparin-binding domain of amyloid precursor proteins is not in the Kunitz domain. This heparin-binding domain may block the activation of Hageman factor by negatively charged agents. Thus, amyloid precursor proteins may be involved in the control of hemostasis, properties not all dependent on the Kunitz domain.

  4. Protein-Remodeling Factors As Potential Therapeutics for Neurodegenerative Disease

    PubMed Central

    Jackrel, Meredith E.; Shorter, James

    2017-01-01

    Protein misfolding is implicated in numerous neurodegenerative disorders including amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease. A unifying feature of patients with these disorders is the accumulation of deposits comprised of misfolded protein. Aberrant protein folding can cause toxicity through a loss or gain of protein function, or both. An intriguing therapeutic approach to counter these disorders is the application of protein-remodeling factors to resolve these misfolded conformers and return the proteins to their native fold and function. Here, we describe the application of protein-remodeling factors to alleviate protein misfolding in neurodegenerative disease. We focus on Hsp104, Hsp110/Hsp70/Hsp40, NMNAT, and HtrA1, which can prevent and reverse protein aggregation. While many of these protein-remodeling systems are highly promising, their activity can be limited. Thus, engineering protein-remodeling factors to enhance their activity could be therapeutically valuable. Indeed, engineered Hsp104 variants suppress neurodegeneration in animal models, which opens the way to novel therapeutics and mechanistic probes to help understand neurodegenerative disease. PMID:28293166

  5. 34 CFR 648.32 - What additional factors does the Secretary consider?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional factors does the Secretary consider? 648.32 Section 648.32 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF POSTSECONDARY EDUCATION, DEPARTMENT OF EDUCATION GRADUATE ASSISTANCE IN AREAS OF NATIONAL...

  6. 34 CFR 490.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional factor does the Secretary consider? 490.22 Section 490.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND...

  7. 34 CFR 490.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What additional factor does the Secretary consider? 490.22 Section 490.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND...

  8. 34 CFR 490.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What additional factor does the Secretary consider? 490.22 Section 490.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND...

  9. 34 CFR 490.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What additional factor does the Secretary consider? 490.22 Section 490.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND...

  10. 34 CFR 490.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional factor does the Secretary consider? 490.22 Section 490.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION LIFE SKILLS FOR STATE AND...

  11. 34 CFR 491.22 - What additional factor does the Secretary consider?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional factor does the Secretary consider? 491.22 Section 491.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION ADULT EDUCATION FOR THE...

  12. 34 CFR 401.22 - What additional factors may the Secretary consider?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional factors may the Secretary consider? 401.22 Section 401.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION INDIAN VOCATIONAL EDUCATION PROGRAM...

  13. 34 CFR 401.22 - What additional factors may the Secretary consider?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What additional factors may the Secretary consider? 401.22 Section 401.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION INDIAN VOCATIONAL EDUCATION PROGRAM...

  14. 34 CFR 477.22 - What additional factors does the Secretary consider?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional factors does the Secretary consider? 477.22 Section 477.22 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF VOCATIONAL AND ADULT EDUCATION, DEPARTMENT OF EDUCATION STATE PROGRAM ANALYSIS ASSISTANCE...

  15. Auditory-motor entrainment in vocal mimicking species: Additional ontogenetic and phylogenetic factors.

    PubMed

    Schachner, Adena

    2010-05-01

    We have recently found robust evidence of motor entrainment to auditory stimuli in multiple species of non-human animal, all of which were capable of vocal mimicry. In contrast, the ability remained markedly absent in many closely related species incapable of vocal mimicry. This suggests that vocal mimicry may be a necessary precondition for entrainment. However, within the vocal mimicking species, entrainment appeared non-randomly, suggesting that other components besides vocal mimicry play a role in the capacity and tendency to entrain. Here we discuss potential additional factors involved in entrainment. New survey data show that both male and female parrots are able to entrain, and that the entrainment capacity appears throughout the lifespan. We suggest routes for future study of entrainment, including both developmental studies in species known to entrain and further work to detect entrainment in species not well represented in our dataset. These studies may shed light on additional factors necessary for entrainment in addition to vocal mimicry.

  16. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse.

    PubMed

    Méndez Arias, Johanna; de Oliveira Moraes, Anelize; Modesto, Luiz Felipe Amarante; de Castro, Aline Machado; Pereira, Nei

    2017-02-01

    Poly(ethylene glycol) (PEG 4000) and bovine serum albumin (BSA) were investigated with the purpose of evaluating their influence on enzymatic hydrolysis of sugarcane bagasse. Effects of these supplements were assayed for different enzymatic cocktails (Trichoderma harzianum and Penicillium funiculosum) that acted on lignocellulosic material submitted to different pretreatment methods with varying solid (25 and 100 g/L) and protein (7.5 and 20 mg/g cellulose) loadings. The highest levels of glucose release were achieved using partially delignified cellulignin as substrate, along with the T. harzianum cocktail: increases of 14 and 18 % for 25 g/L solid loadings and of 33 and 43 % for 100 g/L solid loadings were reached for BSA and PEG supplementation, respectively. Addition of these supplements could maintain hydrolysis yield even for higher solid loadings, but for higher enzymatic cocktail protein loadings, increases in glucose release were not observed. Results indicate that synergism might occur among these additives and cellulase and xylanases. The use of these supplements, besides depending on factors such as pretreatment method of sugarcane bagasse, enzymatic cocktails composition, and solid and protein loadings, may not always lead to positive effects on the hydrolysis of lignocellulosic material, making it necessary further statistical studies, according to process conditions.

  17. Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives

    PubMed Central

    Han, Linjie; Ruotolo, Brandon T.

    2013-01-01

    Ion mobility–mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method. PMID:23539363

  18. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  19. Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3

    SciTech Connect

    Keegan, K.; Hayman, M.J. ); Johnson, D.E.; Williams, L.T. )

    1991-02-15

    The fibroblast growth factors are a family of polypeptide growth factors involved in a variety of activities including mitogenesis, angiogenesis, and wound healing. Fibroblast growth factor receptors (FGFRs) have previously been identified in chicken, mouse, and human and have been shown to contain an extracellular domain with either two or three immunoglobulin-like domains, a transmembrane domain, and a cytoplasmic tyrosine kinase domain. The authors have isolated a human cDNA for another tyrosine kinase receptor that is highly homologous to the previously described FGFR. Expression of this receptor cDNA in COS cells directs the expression of a 125-kDa glycoprotein. They demonstrate that this cDNA encodes a biologically active receptor by showing that human acidic and basic fibroblast growth factors activate this receptor as measured by {sup 45}Ca{sup 2+} efflux assays. These data establish the existence of an additional member of the FGFR family that they have named FGFR-3.

  20. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  1. How the hydrophobic factor drives protein folding.

    PubMed

    Baldwin, Robert L; Rose, George D

    2016-11-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki-Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484-7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470-3473] for the number of waters in alkane hydration shells.

  2. How the hydrophobic factor drives protein folding

    PubMed Central

    Baldwin, Robert L.; Rose, George D.

    2016-01-01

    How hydrophobicity (HY) drives protein folding is studied. The 1971 Nozaki–Tanford method of measuring HY is modified to use gases as solutes, not crystals, and this makes the method easy to use. Alkanes are found to be much more hydrophobic than rare gases, and the two different kinds of HY are termed intrinsic (rare gases) and extrinsic (alkanes). The HY values of rare gases are proportional to solvent-accessible surface area (ASA), whereas the HY values of alkanes depend on special hydration shells. Earlier work showed that hydration shells produce the hydration energetics of alkanes. Evidence is given here that the transfer energetics of alkanes to cyclohexane [Wolfenden R, Lewis CA, Jr, Yuan Y, Carter CW, Jr (2015) Proc Natl Acad Sci USA 112(24):7484–7488] measure the release of these shells. Alkane shells are stabilized importantly by van der Waals interactions between alkane carbon and water oxygen atoms. Thus, rare gases cannot form this type of shell. The very short (approximately picoseconds) lifetime of the van der Waals interaction probably explains why NMR efforts to detect alkane hydration shells have failed. The close similarity between the sizes of the opposing energetics for forming or releasing alkane shells confirms the presence of these shells on alkanes and supports Kauzmann's 1959 mechanism of protein folding. A space-filling model is given for the hydration shells on linear alkanes. The model reproduces the n values of Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473] for the number of waters in alkane hydration shells. PMID:27791131

  3. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    PubMed

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae.

  4. Factors governing the foldability of proteins.

    PubMed

    Klimov, D K; Thirumalai, D

    1996-12-01

    We use a three-dimensional lattice model of proteins to investigate systematically the global properties of the polypeptide chains that determine the folding to the native conformation starting from an ensemble of denatured conformations. In the coarse-grained description, the polypeptide chain is modeled as a heteropolymer consisting of N beads confined to the vertices of a simple cubic lattice. The interactions between the beads are taken from a random gaussian distribution of energies, with a mean value B0 < 0 that corresponds to the overall average hydrophobic interaction energy. We studied 56 sequences all with a unique ground state (native conformation) covering two values of N (15 and 27) and two values of B0. The smaller value of magnitude of B0 was chosen so that the average fraction of hydrophobic residues corresponds to that found in natural proteins. The higher value of magnitude of B0 was selected with the expectation that only the fully compact conformations would contribute to the thermodynamic behavior. For N = 15 the entire conformation space (compact as well as noncompact structures) can be exhaustively enumerated so that the thermodynamic properties can be exactly computed at all temperatures. The thermodynamic properties for the 27-mer chain were calculated using the slow cooling technique together with standard Monte Carlo simulations. The kinetics of approach to the native state for all the sequences was obtained using Monte Carlo simulations. For all sequences we find that there are two intrinsic characteristic temperatures, namely, T theta and Tf. At the temperature T theta the polypeptide chain makes a transition to a collapsed structure, while at Tf the chain undergoes a transition to the native conformation. We show that foldability of sequences can be characterized entirely in terms of these two temperatures. It is shown that fast folding sequences have small values of sigma = (T theta - Tf)/T theta whereas slow folders have larger

  5. Addition of carrageenan at different stages of winemaking for white wine protein stabilization.

    PubMed

    Marangon, Matteo; Stockdale, Vanessa J; Munro, Peter; Trethewey, Timra; Schulkin, Alex; Holt, Helen E; Smith, Paul A

    2013-07-03

    Carrageenan added at different stages of winemaking was assessed for its protein removal and impact on wine heat stability and on the chemical and sensorial profile of the wines. Carrageenan was added to a Semillon during fermentation and after fermentation and to finished wines, and the effect of each addition was compared to that of bentonite fining at the same time point. Data on protein concentration, heat stability, and bentonite requirement indicate that when added at the correct dosage carrageenan was very effective in stabilizing wines at dosages at least three times lower than those of bentonite. In addition, carrageenan treatment did not cause an increase in lees volume relative to bentonite and resulted in very similar chemical parameters to the unfined and bentonite-treated wine. Sensorially, although carrageenan-treated wine was significantly different from the unfined wine, the magnitude of difference did not vary significantly when compared to bentonite treatment. The feasibility of carrageenan use in a winery production setting will need to be determined by individual wineries, as technical issues including frothing, slower filterability, and risk of overfining will need to be considered relative to the benefits, particularly when carrageenan is used before or during fermentation.

  6. Sodium benzoate, a metabolite of cinnamon and a food additive, upregulates ciliary neurotrophic factor in astrocytes and oligodendrocytes

    PubMed Central

    Modi, Khushbu K.; Jana, Malabendu; Mondal, Susanta; Pahan, Kalipada

    2015-01-01

    Ciliary neurotrophic factor (CNTF) is a promyelinating trophic factor that plays an important role in multiple sclerosis (MS). However, mechanisms by which CNTF expression could be increased in the brain are poorly understood. Recently we have discovered anti-inflammatory and immunomodulatory activities of sodium benzoate (NaB), a metabolite of cinnamon and a widely-used food additive. Here, we delineate that NaB is also capable of increasing the mRNA and protein expression of CNTF in primary mouse astrocytes and oligodendrocytes and primary human astrocytes. Accordingly, oral administration of NaB and cinnamon led to the upregulation of astroglial and oligodendroglial CNTF in vivo in mouse brain. Induction of experimental allergic encephalomyelitis (EAE), an animal model of MS, reduced the level of CNTF in the brain, which was restored by oral administration of cinnamon. While investigating underlying mechanisms, we observed that NaB induced the activation of protein kinase A (PKA) and H-89, an inhibitor of PKA, abrogated NaB-induced expression of CNTF. The activation of cAMP response element binding (CREB) protein by NaB, the recruitment of CREB and CREB-binding protein to the CNTF promoter by NaB and the abrogation of NaB-induced expression of CNTF in astrocytes by siRNA knockdown of CREB suggest that NaB increases the expression of CNTF via the activation of CREB. These results highlight a novel myelinogenic property of NaB and cinnamon, which may be of benefit for MS and other demyelinating disorders. PMID:26399250

  7. Additive effects of microRNAs and transcription factors on CCL2 production in human white adipose tissue.

    PubMed

    Kulyté, Agné; Belarbi, Yasmina; Lorente-Cebrián, Silvia; Bambace, Clara; Arner, Erik; Daub, Carsten O; Hedén, Per; Rydén, Mikael; Mejhert, Niklas; Arner, Peter

    2014-04-01

    Adipose tissue inflammation is present in insulin-resistant conditions. We recently proposed a network of microRNAs (miRNAs) and transcription factors (TFs) regulating the production of the proinflammatory chemokine (C-C motif) ligand-2 (CCL2) in adipose tissue. We presently extended and further validated this network and investigated if the circuits controlling CCL2 can interact in human adipocytes and macrophages. The updated subnetwork predicted that miR-126/-193b/-92a control CCL2 production by several TFs, including v-ets erythroblastosis virus E26 oncogene homolog 1 (avian) (ETS1), MYC-associated factor X (MAX), and specificity protein 12 (SP1). This was confirmed in human adipocytes by the observation that gene silencing of ETS1, MAX, or SP1 attenuated CCL2 production. Combined gene silencing of ETS1 and MAX resulted in an additive reduction in CCL2 production. Moreover, overexpression of miR-126/-193b/-92a in different pairwise combinations reduced CCL2 secretion more efficiently than either miRNA alone. However, although effects on CCL2 secretion by co-overexpression of miR-92a/-193b and miR-92a/-126 were additive in adipocytes, the combination of miR-126/-193b was primarily additive in macrophages. Signals for miR-92a and -193b converged on the nuclear factor-κB pathway. In conclusion, TF and miRNA-mediated regulation of CCL2 production is additive and partly relayed by cell-specific networks in human adipose tissue that may be important for the development of insulin resistance/type 2 diabetes.

  8. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; de Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2014-01-01

    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses. PMID:28250372

  9. A Dominant Factor for Structural Classification of Protein Crystals.

    PubMed

    Qi, Fei; Fudo, Satoshi; Neya, Saburo; Hoshino, Tyuji

    2015-08-24

    With the increasing number of solved protein crystal structures, much information on protein shape and atom geometry has become available. It is of great interest to know the structural diversity for a single kind of protein. Our preliminary study suggested that multiple crystal structures of a single kind of protein can be classified into several groups from the viewpoint of structural similarity. In order to broadly examine this finding, cluster analysis was applied to the crystal structures of hemoglobin (Hb), myoglobin (Mb), human serum albumin (HSA), hen egg-white lysozyme (HEWL), and human immunodeficiency virus type 1 protease (HIV-1 PR), downloaded from the Protein Data Bank (PDB). As a result of classification by cluster analysis, 146 crystal structures of Hb were separated into five groups. The crystal structures of Mb (n = 284), HEWL (n = 336), HSA (n = 63), and HIV-1 PR (n = 488) were separated into six, five, three, and six groups, respectively. It was found that a major factor causing these structural separations is the space group of crystals and that crystallizing agents have an influence on the crystal structures. Amino acid mutation is a minor factor for the separation because no obvious point mutation making a specific cluster group was observed for the five kinds of proteins. In the classification of Hb and Mb, the species of protein source such as humans, rabbits, and mice is another significant factor. When the difference in amino sequence is large among species, the species of protein source is the primary factor causing cluster separation in the classification of crystal structures.

  10. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    NASA Astrophysics Data System (ADS)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  11. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase.

    PubMed

    Mosig, G; Breschkin, A M

    1975-04-01

    Gene 32 of bacteriophage T4 is essential for DNA replication, recombination, and repair. In an attempt to clarify the role of the corresponding gene product, we have looked for mutations that specifically inactivate one but not all of its functions and for compensating suppressor mutations in other genes. Here we describe a gene 32 ts mutant that does not produce progeny, but in contrast to an am mutant investigated by others, is capable of some primary and secondary DNA replication and of forming "joint" recombinational intermediates after infection of Escherichia coli B at the restrictive temperature. However, parental and progeny DNA strands are not ligated to covalently linked "recombinant" molecules, and single strands of vegetative DNA do not exceed unit length. Progeny production as well as capacity for covalent linkage in this gene 32 ts mutant are partially restored by additional rII mutations. Suppression by rII depends on functioning host ligase [EC 6.5.1.2; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming, NMN-forming)]. This gene 32 ts mutation (unlike some others) in turn suppresses the characteristic plaque morphology of rII mutants. We conclude that gene 32 protein, in addition to its role in DNA replication and in the formation of "joint" recombinational intermediates, interacts with T4 ligase [EC 6.5.1.1; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming)] when recombining DNA strands are covalently linked. The protein of the mutant that we describe here is mainly defective in this interaction, thus inactivating T4 ligase in recombination. Suppressing rII mutations facilitate substitution of host ligase. There is suggestive evidence that these interactions occur at the membrane.

  12. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.

    PubMed

    Zadok, Uri; Asato, Alfred E; Sheves, Mordechai

    2005-06-14

    The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.

  13. Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse.

    PubMed

    Florencio, Camila; Badino, Alberto C; Farinas, Cristiane S

    2016-12-01

    Addition of surfactants, polymers, and non-catalytic proteins can improve the enzymatic hydrolysis of lignocellulosic materials by blocking the exposed lignin surfaces, but involves extra expense. Here, soybean protein, one of the cheapest proteins available, was evaluated as an alternative additive for the enzymatic hydrolysis of pretreated sugarcane bagasse. The effect of the enzyme source was investigated using enzymatic cocktails from A. niger and T. reesei cultivated under solid-state, submerged, and sequential fermentation. The use of soybean protein led to approximately 2-fold increases in hydrolysis, relative to the control, for both A. niger and T. reesei enzymatic cocktails from solid-state fermentation. The effect was comparable to that of BSA. Moreover, the use of soybean protein and a 1:1 combination of A. niger and T. reesei enzymatic cocktails resulted in 54% higher glucose release, compared to the control. Soybean protein is a potential cost-effective additive for use in the biomass conversion process.

  14. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease

    PubMed Central

    2013-01-01

    Background Expression and activity of the fibroblast growth factor (FGF) 21 hormone-like protein are associated with development of several metabolic disorders. This study was designed to investigate whether serum FGF21 level was also associated with the metabolic syndrome-related cardiovascular disease, atherosclerosis, and its clinical features in a Chinese cohort. Methods Two-hundred-and-fifty-three subjects visiting the Cardiology Department (Sixth People's Hospital affiliated to Shanghai JiaoTong University) were examined by coronary arteriography (to diagnose coronary artery disease (CAD)) and hepatic ultrasonography (to diagnose non-alcoholic fatty liver disease (NAFLD)). Serum FGF21 level was measured by enzyme-linked immunosorbent assay and analyzed for correlation to subject and clinical characteristics. The independent factors of CAD were determined by multivariate logistic regression analysis. Results Subjects with NAFLD showed significantly higher serum FGF21 than those without NAFLD (388.0 pg/mL (253.0-655.4) vs. 273.3 pg/mL (164.9-383.7), P < 0.01). Subjects with CAD showed significantly higher serum FGF21, regardless of NAFLD diagnosis (P < 0.05). Serum FGF21 level significantly elevated with the increasing number of metabolic disorders (P for trend < 0.01). After adjustment of age, sex, and BMI, FGF21 was positively correlated with total cholesterol (P < 0.05) and triglyceride (P < 0.01). FGF21 was identified as an independent factor of CAD (odds ratio = 2.984, 95% confidence interval: 1.014-8.786, P < 0.05). Conclusions Increased level of serum FGF21 is associated with NAFLD, metabolic disorders and CAD. PMID:23981342

  15. Polydom: a secreted protein with pentraxin, complement control protein, epidermal growth factor and von Willebrand factor A domains.

    PubMed Central

    Gilgès, D; Vinit, M A; Callebaut, I; Coulombel, L; Cacheux, V; Romeo, P H; Vigon, I

    2000-01-01

    To identify extracellular proteins with epidermal growth factor (EGF) domains that are potentially involved in the control of haemopoiesis, we performed degenerate reverse-transcriptase-mediated PCR on the murine bone-marrow stromal cell line MS-5 and isolated a new partial cDNA encoding EGF-like domains related to those in the Notch proteins. Cloning and sequencing of the full-length cDNA showed that it encoded a new extracellular multi-domain protein that we named polydom. This 387 kDa mosaic protein contained a signal peptide followed by a new association of eight different protein domains, including a pentraxin domain and a von Willebrand factor type A domain, ten EGF domains, and 34 complement control protein modules. The human polydom mRNA is strongly expressed in placenta, its expression in the other tissues being weak or undetectable. The particular multidomain structure of the encoded protein suggests an important biological role in cellular adhesion and/or in the immune system. PMID:11062057

  16. Clumping factor A, von Willebrand factor-binding protein and von Willebrand factor anchor Staphylococcus aureus to the vessel wall.

    PubMed

    Claes, J; Liesenborghs, L; Peetermans, M; Veloso, T R; Missiakas, D; Schneewind, O; Mancini, S; Entenza, J M; Hoylaerts, M F; Heying, R; Verhamme, P; Vanassche, T

    2017-02-09

    Essentials Staphylococcus aureus (S. aureus) binds to endothelium via von Willebrand factor (VWF). Secreted VWF-binding protein (vWbp) mediates S. aureus adhesion to VWF under shear stress. vWbp interacts with VWF and the Sortase A-dependent surface protein Clumping factor A (ClfA). VWF-vWbp-ClfA anchor S. aureus to vascular endothelium under shear stress.

  17. Interaction of Leptospira elongation factor Tu with plasminogen and complement factor H: a metabolic leptospiral protein with moonlighting activities.

    PubMed

    Wolff, Danielly G; Castiblanco-Valencia, Mónica M; Abe, Cecília M; Monaris, Denize; Morais, Zenaide M; Souza, Gisele O; Vasconcellos, Sílvio A; Isaac, Lourdes; Abreu, Patrícia A E; Barbosa, Angela S

    2013-01-01

    The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities.

  18. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins

    PubMed Central

    Ledda, Fernanda; Paratcha, Gustavo

    2016-01-01

    Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders. PMID:27555809

  19. Hybrid proteins of Cobra Venom Factor and cobra C3: tools to identify functionally important regions in Cobra Venom Factor.

    PubMed

    Hew, Brian E; Wehrhahn, Daniel; Fritzinger, David C; Vogel, Carl-Wilhelm

    2012-09-15

    Cobra Venom Factor (CVF) is the complement-activating protein in cobra venom. CVF is structurally and functionally highly homologous to complement component C3. CVF, like C3b, the activated form of C3, forms a bimolecular complex with Factor B in serum, called C3/C5 convertase, an enzyme which activates complement components C3 and C5. Despite the high degree of homology, the two C3/C5 convertases exhibit significant functional differences. The most important difference is that the convertase formed with CVF (CVF,Bb) is physico-chemically far more stable than the convertase formed with C3b (C3b,Bb). In addition, the CVF,Bb convertase and CVF are completely resistant to inactivation by the complement regulatory proteins Factor H and Factor I. Furthermore, the CVF,Bb enzyme shows efficient C5-cleaving activity in fluid phase. In contrast, the C3b,Bb enzyme is essentially devoid of fluid-phase C5-cleaving activity. By taking advantage of the high degree of sequence identity at both the amino acid (85%) and DNA levels (93%) between CVF and cobra C3, we created hybrid proteins of CVF and cobra C3 where sections, or only a few amino acids, of the CVF sequence were replaced with the homologous amino acid sequence of cobra C3. In a first set of experiments, we created five hybrid proteins, termed H1 through H5, where the cobra C3 substitutions collectively spanned the entire length of the CVF protein. We also created three additional hybrid proteins where only four or five amino acid residues in CVF were exchanged with the corresponding amino acid residues from cobra C3. Collectively, these hybrid proteins, representing loss-of-function mutants of CVF, allowed the identification of regions and individual amino acid residues important for the CVF-specific functions. The results include the observation that the CVF β-chain is crucially important for forming a stable convertase, whereas the CVF α-chain appears to harbor no CVF-specific functions. Furthermore, the CVF

  20. Factors which Limit the Value of Additional Redundancy in Human Rated Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Joel M.; Stott, James E.; Ring, Robert W.; Hatfield, Spencer; Kaltz, Gregory M.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has embarked on an ambitious program to return humans to the moon and beyond. As NASA moves forward in the development and design of new launch vehicles for future space exploration, it must fully consider the implications that rule-based requirements of redundancy or fault tolerance have on system reliability/risk. These considerations include common cause failure, increased system complexity, combined serial and parallel configurations, and the impact of design features implemented to control premature activation. These factors and others must be considered in trade studies to support design decisions that balance safety, reliability, performance and system complexity to achieve a relatively simple, operable system that provides the safest and most reliable system within the specified performance requirements. This paper describes conditions under which additional functional redundancy can impede improved system reliability. Examples from current NASA programs including the Ares I Upper Stage will be shown.

  1. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  2. Use of additives to enhance the properties of cottonseed protein as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein is currently being used commercially as a “green” wood adhesive. Previous work in this laboratory has shown that cottonseed protein isolate, tested on maple wood veneer, produced higher adhesive strength and hot water resistance relative to soy protein. In the present study, cottonseed...

  3. Two RNA recognition motif-containing proteins are plant mitochondrial editing factors

    PubMed Central

    Shi, Xiaowen; Hanson, Maureen R.; Bentolila, Stéphane

    2015-01-01

    Post-transcriptional C-to-U RNA editing occurs in plant plastid and mitochondrial transcripts. Members of the Arabidopsis RNA-editing factor interacting protein (RIP) family and ORRM1 (Organelle RNA Recognition Motif-containing protein 1) have been recently characterized as essential components of the chloroplast RNA editing apparatus. ORRM1 belongs to a distinct clade of RNA Recognition Motif (RRM)-containing proteins, most of which are predicted to be organelle-targeted. Here we report the identification of two proteins, ORRM2 (organelle RRM protein 2) and ORRM3 (organelle RRM protein 3), as the first members of the ORRM clade to be identified as mitochondrial editing factors. Transient silencing of ORRM2 and ORRM3 resulted in reduced editing efficiency at ∼6% of the mitochondrial C targets. In addition to an RRM domain at the N terminus, ORRM3 carries a glycine-rich domain at the C terminus. The N-terminal RRM domain by itself provides the editing activity of ORRM3. In yeast-two hybrid assays, ORRM3 interacts with RIP1, ORRM2 and with itself. Transient silencing of ORRM2 in the orrm3 mutant further impairs the editing activity at sites controlled by both ORRM2 and ORRM3. Identification of the effect of ORRM2 and ORRM3 on RNA editing reveals a previously undescribed role of RRM-containing proteins as mitochondrial RNA editing factors. PMID:25800738

  4. Regulation of myocardin factor protein stability by the LIM-only protein FHL2

    PubMed Central

    Hinson, Jeremiah S.; Medlin, Matt D.; Taylor, Joan M.; Mack, Christopher P.

    2008-01-01

    Extensive evidence indicates that serum response factor (SRF) regulates muscle-specific gene expression and that myocardin family SRF cofactors are critical for smooth muscle cell differentiation. In a yeast two hybrid screen for novel SRF binding partners expressed in aortic SMC, we identified four and a half LIM domain protein 2 (FHL2) and confirmed this interaction by GST pull-down and coimmunoprecipitation assays. FHL2 also interacted with all three myocardin factors and enhanced myocardin and myocardin-related transcription factor (MRTF)-A-dependent transactivation of smooth muscle α-actin, SM22, and cardiac atrial natriuretic factor promoters in 10T1/2 cells. The expression of FHL2 increased myocardin and MRTF-A protein levels, and, importantly, this effect was due to an increase in protein stability not due to an increase in myocardin factor mRNA expression. Treatment of cells with proteasome inhibitors MG-132 and lactacystin strongly upregulated endogenous MRTF-A protein levels and resulted in a substantial increase in ubiquitin immunoreactivity in MRTF-A immunoprecipitants. Interestingly, the expression of FHL2 attenuated the effects of RhoA and MRTF-B on promoter activity, perhaps through decreased MRTF-B nuclear localization or decreased SRF-CArG binding. Taken together, these data indicate that myocardin factors are regulated by proteasome-mediated degradation and that FHL2 regulates SRF-dependent transcription by multiple mechanisms, including stabilization of myocardin and MRTF-A. PMID:18586895

  5. Epidermal growth factor-stimulated protein phosphorylation in rat hepatocytes

    SciTech Connect

    Connelly, P.A.; Sisk, R.B.; Johnson, R.M.; Garrison, J.C.

    1987-05-01

    Epidermal growth factor (EGF) causes a 6-fold increase in the phosphorylation state of a cytosolic protein (pp36, M/sub r/ = 36,000, pI = 5.5) in hepatocytes isolated from fasted, male, Wistar rats. Stimulation of /sup 32/P incorporation is observed as early as 1 min following treatment of hepatocytes with EGF and is still present at 30 min after exposure to the growth factor. The phosphate incorporated into pp36 in response to EGF is located predominantly in serine but not tyrosine residues. Phosphorylation of pp36 does not occur in response to insulin or to agents which specifically activate the cAMP-dependent protein kinase (S/sub p/ -cAMPS), protein kinase C (PMA) or Ca/sup 2 +//calmodulin-dependent protein kinases (A23187) in these cells. Prior treatment of hepatocytes with the cAMP analog, S/sub p/-cAMPS, or ADP-ribosylation of N/sub i/, the inhibitory GTP-binding protein of the adenylate cyclase complex, does not prevent EGF-stimulated phosphorylation of pp36. However, as seen in other cell types, pretreatment of hepatocytes with PMA abolishes all EGF-mediated responses including phosphorylation of pp36. These results suggest that EGP specifically activates an uncharacterized, serine protein kinase in hepatocytes that is distal to the intrinsic EGF receptor tyrosine protein kinase. The rapid activation of this kinase suggests that it may play an important role in the early response of the cell to EGF.

  6. Sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition.

    PubMed

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2015-08-01

    The sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition were investigated. Rice bran protein concentrate (RBPC) was hydrolyzed by alcalase. Sucrose, glucose or fructose was added to the liquid rice bran protein hydrolysate (LRBPH) and subsequently spray dried. The sensory aroma intensities of the hydrolysates were evaluated. Results showed that after spray drying, the rice bran protein concentrate powder (RBPC-P) had higher sweet and cocoa-like aroma intensities than RBPC (p ≤ 0.05) and hydrolyzed rice bran protein powder (HRBPP) had higher milk powder-like aroma intensities than LRBPH (p ≤ 0.05). The sweet, cocoa-like and milk powder-like aroma intensities in hydrolyzed rice bran protein powder with fructose addition (HRBPP-F) were significantly higher (p ≤ 0.05) than those of hydrolyzed rice bran protein powder with sucrose or glucose addition (HRBPP-S or HRBPP-G). HRBPP-F had the highest overall aroma liking score. These results also indicate that spray drying and sugar addition could improve the sensory aroma characteristics of alcalase hydrolyzed RBPC.

  7. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  8. Interplay between trigger factor and other protein biogenesis factors on the ribosome

    NASA Astrophysics Data System (ADS)

    Bornemann, Thomas; Holtkamp, Wolf; Wintermeyer, Wolfgang

    2014-06-01

    Nascent proteins emerging from translating ribosomes in bacteria are screened by a number of ribosome-associated protein biogenesis factors, among them the chaperone trigger factor (TF), the signal recognition particle (SRP) that targets ribosomes synthesizing membrane proteins to the membrane and the modifying enzymes, peptide deformylase (PDF) and methionine aminopeptidase (MAP). Here, we examine the interplay between these factors both kinetically and at equilibrium. TF rapidly scans the ribosomes until it is stabilized on ribosomes presenting TF-specific nascent chains. SRP binding to those complexes is strongly impaired. Thus, TF in effect prevents SRP binding to the majority of ribosomes, except those presenting SRP-specific signal sequences, explaining how the small amount of SRP in the cell can be effective in membrane targeting. PDF and MAP do not interfere with TF or SRP binding to translating ribosomes, indicating that nascent-chain processing can take place before or in parallel with TF or SRP binding.

  9. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  10. Eukaryotic damaged DNA-binding proteins: DNA repair proteins or transcription factors?

    SciTech Connect

    Protic, M.

    1994-12-31

    Recognition and removal of structural defects in the genome, caused by diverse physical and chemical agents, are among the most important cell functions. Proteins that recognize and bind to modified DNA, and thereby initiate damage-induced recovery processes, have been identified in prokaryotic and eukaryotic cells. Damaged DNA-binding (DDB) proteins from prokaryotes are either DNA repair enzymes or noncatalytic subunits of larger DNA repair complexes that participate in excision repair, or in recombinational repair and SOS-mutagenesis. Although the methods employed may not have allowed detection of all eukaryotic DDB proteins and identification of their functions, it appears that during evolution cells have developed a wide array of DDB proteins that can discriminate among the diversity of DNA conformations found in the eukaryotic nucleus, as well as a gene-sharing feature found in DDB proteins that also act as transcription factors.

  11. Targeted genes and interacting proteins of hypoxia inducible factor-1

    PubMed Central

    Liu, Wei; Shen, Shao-Ming; Zhao, Xu-Yun; Chen, Guo-Qiang

    2012-01-01

    Heterodimeric transcription factor hypoxia inducible factor-1 (HIF-1) functions as a master regulator of oxygen homeostasis in almost all nucleated mammalian cells. The fundamental process adapted to cellular oxygen alteration largely depends on the refined regulation on its alpha subunit, HIF-1α. Recent studies have unraveled expanding and critical roles of HIF-1α, involving in a multitude of developmental, physiological, and pathophysiological processes. This review will focus on the current knowledge of HIF-1α-targeting genes and its interacting proteins, as well as the concomitant functional relationships between them. PMID:22773957

  12. Autoantibodies in rheumatoid arthritis: rheumatoid factors and anticitrullinated protein antibodies.

    PubMed

    Song, Y W; Kang, E H

    2010-03-01

    Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disease, characterized by chronic, erosive polyarthritis and by the presence of various autoantibodies in serum and synovial fluid. Since rheumatoid factor (RF) was first described, a number of other autoantibodies have been discovered in RA patients. The autoantigens recognized by these autoantibodies include cartilage components, chaperones, enzymes, nuclear proteins and citrullinated proteins. However, the clinical significances and pathogenic roles of these antibodies are largely unknown except for RF and anticitrullinated protein antibodies (ACPAs), whose clinical usefulness has been acknowledged due to their acceptable sensitivities and specificities, and prognostic values. This review presents and discusses the current state of the art regarding RF and ACPA in RA.

  13. Integrating products of Bessel functions with an additional exponential or rational factor

    NASA Astrophysics Data System (ADS)

    Van Deun, Joris; Cools, Ronald

    2008-04-01

    We provide two MATLAB programs to compute integrals of the form ex∏i=1kJν_i(ax)dxand 0∞xr+x∏i=1kJν_i(ax)dx with Jν_i(x) the Bessel function of the first kind and (real) order ν. The parameter m is a real number such that ∑ν+m>-1 (to assure integrability near zero), r is real and the numbers c and a are all strictly positive. The program can deliver accurate error estimates. Program summaryProgram title: BESSELINTR, BESSELINTC Catalogue identifier: AEAH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1601 No. of bytes in distributed program, including test data, etc.: 13 161 Distribution format: tar.gz Programming language: Matlab (version ⩾6.5), Octave (version ⩾2.1.69) Computer: All supporting Matlab or Octave Operating system: All supporting Matlab or Octave RAM: For k Bessel functions our program needs approximately ( 500+140k) double precision variables Classification: 4.11 Nature of problem: The problem consists in integrating an arbitrary product of Bessel functions with an additional rational or exponential factor over a semi-infinite interval. Difficulties arise from the irregular oscillatory behaviour and the possible slow decay of the integrand, which prevents truncation at a finite point. Solution method: The interval of integration is split into a finite and infinite part. The integral over the finite part is computed using Gauss-Legendre quadrature. The integrand on the infinite part is approximated using asymptotic expansions and this approximation is integrated exactly with the aid of the upper incomplete gamma function. In the case where a rational factor is present, this factor is first expanded in a Taylor series around infinity. Restrictions: Some (and eventually all

  14. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    PubMed

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

  15. Evaluation of additives required for periodontal disease formulation using basic fibroblast growth factor.

    PubMed

    Sato, Yasuhiko; Oba, Takuma; Natori, Nobuyuki; Danjo, Kazumi

    2010-12-01

    To design a suitable periodontal disease formulation using basic fibroblast growth factor (bFGF), legally available thickeners were evaluated focusing on their viscosity, extrusive force from a syringe, flow property and inertness to bFGF. Thirteen candidate thickeners showed appropriate viscosity (about 1×10⁴ mPa·s), and further evaluations were conducted on them. Flow property was evaluated by the tilting test tube method. As a result, most thickener solutions with the optimum viscosity showed appropriate flow time (about 100 s) and the flow time did not depend on thickener concentration, whereas the extrusive force from a syringe depended on thickener concentration despite the thickener type and grade. Thickener solutions of 2-3% showed ideal result (10-20 N) and thickener solutions prepared outside of the concentration range (2-3%) were found to show unsuitable extrusive force. Consequently, to obtain required properties for a dental drug formulation, thickener solutions needed to show adequate viscosity (about 1×10⁴ mPa·s) at 2-3% thickener concentration. In addition, several types of cellulose derivatives showed inertness to the bFGF because of their structure, without strong ionic dissociable groups, and neutral pH. Overall, the present work demonstrates that some water-soluble cellulose derivatives, such as hydroxypropylcellulose (HPC) and hydroxyethylcellulose (HEC), were suggested to have required properties for a dental drug formulation including bFGF.

  16. Bladder explosion during transurethral resection of prostate: Bladder diverticula as an additional risk factor

    PubMed Central

    Vincent, D. Paul

    2017-01-01

    Vesical explosion during transurethral resection of the prostate (TURP) is a very rare occurrence. Very few cases have been reported in the literature. The literature was reviewed pertaining to the etiology of bladder explosion during transurethral resection. The underlying mechanism for intravesical explosion is the generation and trapping of explosive gasses under the dome of the bladder which eventually detonates when it comes into contact with the cautery electrode during TURP. Various techniques have been suggested to prevent this dreaded complication. A 75-year-old male with chronic retention of urine underwent TURP. There was Grade 2 trilobar enlargement of the prostate. There were multiple diverticula with one large diverticulum in the dome of the bladder. During hemostasis, there was a loud pop sound and the bladder exploded. Lower midline laparotomy was performed and the intraperitoneal bladder rupture was repaired. He had an uneventful postoperative recovery, and he is asymptomatic at 6 months of follow-up. Even though all the precautions were taken to avoid this complication, bladder rupture was encountered. The presence of multiple diverticula is being suggested as an additional risk factor for this complication as the bladder is thinned out and also possibly due to trapping of air bubble within the diverticulum. In such cases where there are multiple bladder diverticula, the employment of a suprapubic trocar for continuous drainage of the air bubble, could well be a practical consideration. PMID:28216933

  17. Effect of the addition of conventional additives and whey proteins concentrates on technological parameters, physicochemical properties, microstructure and sensory attributes of sous vide cooked beef muscles.

    PubMed

    Szerman, N; Gonzalez, C B; Sancho, A M; Grigioni, G; Carduza, F; Vaudagna, S R

    2012-03-01

    Beef muscles submitted to four enhancement treatments (1.88% whey protein concentrate (WPC)+1.25% sodium chloride (NaCl); 1.88% modified whey protein concentrate (MWPC)+1.25%NaCl; 0.25% sodium tripolyphosphate (STPP)+1.25%NaCl; 1.25%NaCl) and a control treatment (non-injected muscles) were sous vide cooked. Muscles with STPP+NaCl presented a significantly higher total yield (106.5%) in comparison to those with WPC/MWPC+NaCl (94.7% and 92.9%, respectively), NaCl alone (84.8%) or controls (72.1%). Muscles with STPP+NaCl presented significantly lower shear force values than control ones; also, WPC/MWPC+NaCl added muscles presented similar values than those from the other treatments. After cooking, muscles with STPP+NaCl or WPC/MWPC+NaCl depicted compacted and uniform microstructures. Muscles with STPP+NaCl showed a pink colour, meanwhile other treatment muscles presented colours between pinkish-grey and grey-brown. STPP+NaCl added samples presented the highest values of global tenderness and juiciness. The addition of STPP+NaCl had a better performance than WPC/MWPC+NaCl. However, the addition of WPC/MWPC+NaCl improved total yield in comparison to NaCl added or control ones.

  18. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues.

    PubMed

    Kim, Jung-Hoon; Ji, Chang-Jun; Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.

  19. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  20. Rapid detection of the addition of soybean proteins to cheese and other dairy products by reversed-phase perfusion chromatography.

    PubMed

    García, M C; Marina, M L

    2006-04-01

    The undeclared addition of soybean proteins to milk products is forbidden and a method is needed for food control and enforcement. This paper reports the development of a chromatographic method for routine analysis enabling the detection of the addition of soybean proteins to dairy products. A perfusion chromatography column and a linear binary gradient of acetonitrile-water-0.1% (v/v) trifluoroacetic acid at a temperature of 60 degrees C were used. A very simple sample treatment consisting of mixing the sample with a suitable solvent (Milli-Q water or bicarbonate buffer (pH=11)) and centrifuging was used. The method enabled the separation of soybean proteins from milk proteins in less than 4 min (at a flow-rate of 3 ml/min). The method has been successfully applied to the detection of soybean proteins in milk, cheese, yogurt, and enteral formula. The correct quantitation of these vegetable proteins has also been possible in milk adulterated at origin with known sources of soybean proteins. The application of the method to samples adulterated at origin also leads to interesting conclusions as to the effect of the processing conditions used for the preparation of each dairy product on the determination of soybean proteins.

  1. BIMOLECULAR FLUORESCENCE COMPLEMENTATION ANALYSIS OF INDUCIBLE PROTEIN INTERACTIONS: EFFECTS OF FACTORS AFFECTING PROTEIN FOLDING ON FLUORESCENT PROTEIN FRAGMENT ASSOCIATION

    PubMed Central

    Robida, Aaron M; Kerppola, Tom K

    2009-01-01

    Bimolecular fluorescence complementation (BiFC) analysis enables visualization of the subcellular locations of protein interactions in living cells. We investigated the temporal resolution and the quantitative accuracy of BiFC analysis using fragments of different fluorescent proteins. We determined the kinetics of BiFC complex formation in response to the rapamycin-inducible interaction between the FK506 binding protein (FKBP) and the FKBP-rapamycin binding domain (FRB). Fragments of YFP fused to FKBP and FRB produced detectable BiFC complex fluorescence 10 minutes after rapamycin addition and a ten-fold increase in the mean fluorescence intensity in 8 hours. The N-terminal fragment of the Venus fluorescent protein fused to FKBP produced constitutive BiFC complexes with several C-terminal fragments fused to FRB. A chimeric N-terminal fragment containing residues from Venus and YFP produced either constitutive or inducible BiFC complexes depending on the temperature at which the cells were cultured. The concentrations of inducers required for half-maximal induction of BiFC complex formation by all fluorescent protein fragments tested were consistent with the affinities of the inducers for unmodified FKBP and FRB. Treatment of the FK506 inhibitor of FKBP-FRB interaction prevented the formation of BiFC complexes by FKBP and FRB fusions, but did not disrupt existing BiFC complexes. Proteins synthesized prior to rapamycin addition formed BiFC complexes with the same efficiency as newly synthesized proteins. Inhibitors of protein synthesis attenuated BiFC complex formation independent of their effects on fusion protein synthesis. The kinetics at which they inhibited BiFC complex formation suggest that they prevented association of the fluorescent protein fragments, but not the slow maturation of BiFC complex fluorescence. Agents that induce the unfolded protein response also reduced formation of BiFC complexes. The effects of these agents were suppressed by cellular

  2. Revisiting automated G-protein coupled receptor modeling: the benefit of additional template structures for a neurokinin-1 receptor model.

    PubMed

    Kneissl, Benny; Leonhardt, Bettina; Hildebrandt, Andreas; Tautermann, Christofer S

    2009-05-28

    The feasibility of automated procedures for the modeling of G-protein coupled receptors (GPCR) is investigated on the example of the human neurokinin-1 (NK1) receptor. We use a combined method of homology modeling and molecular docking and analyze the information content of the resulting docking complexes regarding the binding mode for further refinements. Moreover, we explore the impact of different template structures, the bovine rhodopsin structure, the human beta(2) adrenergic receptor, and in particular a combination of both templates to include backbone flexibility in the target conformational space. Our results for NK1 modeling demonstrate that model selection from a set of decoys can in general not solely rely on docking experiments but still requires additional mutagenesis data. However, an enrichment factor of 2.6 in a nearly fully automated approach indicates that reasonable models can be created automatically if both available templates are used for model construction. Thus, the recently resolved GPCR structures open new ways to improve the model building fundamentally.

  3. ProFold: Protein Fold Classification with Additional Structural Features and a Novel Ensemble Classifier

    PubMed Central

    2016-01-01

    Protein fold classification plays an important role in both protein functional analysis and drug design. The number of proteins in PDB is very large, but only a very small part is categorized and stored in the SCOPe database. Therefore, it is necessary to develop an efficient method for protein fold classification. In recent years, a variety of classification methods have been used in many protein fold classification studies. In this study, we propose a novel classification method called proFold. We import protein tertiary structure in the period of feature extraction and employ a novel ensemble strategy in the period of classifier training. Compared with existing similar ensemble classifiers using the same widely used dataset (DD-dataset), proFold achieves 76.2% overall accuracy. Another two commonly used datasets, EDD-dataset and TG-dataset, are also tested, of which the accuracies are 93.2% and 94.3%, higher than the existing methods. ProFold is available to the public as a web-server. PMID:27660761

  4. Rapid addition of unlabeled silent solubility tags to proteins using a new substrate-fused sortase reagent.

    PubMed

    Amer, Brendan R; Macdonald, Ramsay; Jacobitz, Alex W; Liauw, Brandon; Clubb, Robert T

    2016-03-01

    Many proteins can't be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate.

  5. Rapid Addition of Unlabeled Silent Solubility Tags to Proteins Using a New Substrate-Fused Sortase Reagent

    PubMed Central

    Amer, Brendan R.; Macdonald, Ramsay; Jacobitz, Alex W.; Liauw, Brandon; Clubb, Robert T.

    2016-01-01

    Many proteins can’t be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate. PMID:26852413

  6. Fission Yeast CSL Proteins Function as Transcription Factors

    PubMed Central

    Oravcová, Martina; Teska, Mikoláš; Půta, František; Folk, Petr; Převorovský, Martin

    2013-01-01

    Background Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. Methodology/Principal Findings Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. Conclusions/Significance Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family. PMID:23555033

  7. How protein chemists learned about the hydrophobic factor.

    PubMed Central

    Tanford, C.

    1997-01-01

    It is generally accepted today that the hydrophobic force is the dominant energetic factor that leads to the folding of polypeptide chains into compact globular entities. This principle was first explicitly introduced to protein chemists in 1938 by Irving Langmuir, past master in the application of hydrophobicity to other problems, and was enthusiastically endorsed by J.D. Bernal. But both proposal and endorsement came in the course of a debate about a quite different structural principle, the so-called "cyclol hypothesis" proposed by D. Wrinch, which soon proved to be theoretically and experimentally unsupportable. Being a more tangible idea, directly expressed in structural terms, the cyclol hypothesis received more attention than the hydrophobic principle and the latter never actually entered the mainstream of protein science until 1959, when it was thrust into the limelight in a lucid review by W. Kauzmann. A theoretical paper by H.S. Frank and M. Evans, not itself related to protein folding, probably played a major role in the acceptance of the hydrophobicity concept by protein chemists because it provided a crude but tangible picture of the origin of hydrophobicity per se in terms of water structure. PMID:9194199

  8. In Silico Analysis of Tumor Necrosis Factor α-Induced Protein 8-Like-1 (TIPE1) Protein

    PubMed Central

    Su, Zhaoliang; Wang, Shengjun; Xu, Huaxi

    2015-01-01

    Tumor necrosis factor α-induced protein 8 (TNFAIP8)-like protein 1 (TIPE1) was a member of TNFAIP8 family. Previous studies have shown that TIPE1 could induce apoptosis in hepatocellular carcinoma. In this study, we attempted to predict its potential structure. Bioinformatic analysis of TIPE1 was performed to predict its potential structure using the bioinfomatic web services or softwares. The results showed that the amino acid sequences of TIPE1 were well conserved in mammals. No signal peptide and no transmembrane domain existed in human TIPE1. The aliphatic index of TIPE1 was 100.75 and the theoretical pI was 9.57. TIPE1 was a kind of stable protein and its grand average of hydropathicity was -0.108. Various post-translational modifications were also speculated to exist in TIPE1. In addition, the results of Swiss-Model Server and Swiss-Pdb Viewer program revealed that the predicted three-dimensional structure of TIPE1 protein was stable and it may accord with the rule of stereochemistry. TIPE1 was predicted to interact with FBXW5, caspase8 and so on. In conclusion, TIPE1 may be a stable protein with no signal peptide and no transmembrane domain. The bioinformatic analysis of TIPE1 will provide the basis for the further study on the function of TIPE1. PMID:26207809

  9. Dose response of whey protein isolate in addition to a typical mixed meal on blood amino acids and hormonal concentrations.

    PubMed

    Forbes, Scott C; McCargar, Linda; Jelen, Paul; Bell, Gordon J

    2014-04-01

    The purpose was to investigate the effects of a controlled typical 1-day diet supplemented with two different doses of whey protein isolate on blood amino acid profiles and hormonal concentrations following the final meal. Nine males (age: 29.6 ± 6.3 yrs) completed four conditions in random order: a control (C) condition of a typical mixed diet containing ~10% protein (0.8 g·kg1), 65% carbohydrate, and 25% fat; a placebo (P) condition calorically matched with carbohydrate to the whey protein conditions; a low-dose condition of 0.8 grams of whey protein isolate per kilogram body mass per day (g·kg1·d1; W1) in addition to the typical mixed diet; or a high-dose condition of 1.6 g·kg1·d1 (W2) of supplemental whey protein in addition to the typical mixed diet. Following the final meal, significant (p < .05) increases in total amino acids, essential amino acids (EAA), branch-chained amino acids (BCAA), and leucine were observed in plasma with whey protein supplementation while no changes were observed in the control and placebo conditions. There was no significant group difference for glucose, insulin, testosterone, cortisol, or growth hormone. In conclusion, supplementing a typical daily food intake consisting of 0.8 g of protein·kg1·d1 with a whey protein isolate (an additional 0.8 or 1.6 g·kg1·d1) significantly elevated total amino acids, EAA, BCAA, and leucine but had no effect on glucose, insulin, testosterone, cortisol, or growth hormone following the final meal. Future acute and chronic supplementation research examining the physiological and health outcomes associated with elevated amino acid profiles is warranted.

  10. Effective protein-protein interaction from structure factor data of a lysozyme solution

    SciTech Connect

    Abramo, M. C.; Caccamo, C.; Costa, D.; Ruberto, R.; Wanderlingh, U.; Cavero, M.; Pellicane, G.

    2013-08-07

    We report the determination of an effective protein-protein central potential for a lysozyme solution, obtained from the direct inversion of the total structure factor of the system, as extracted from small angle neutron scattering. The inversion scheme rests on a hypernetted-chain relationship between the effective potential and the structural functions, and is preliminarily tested for the case of a Lennard-Jones interaction. The characteristics of our potential are discussed in comparison with current models of effective interactions in complex fluids. The phase behavior predictions are also investigated.

  11. Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma

    PubMed Central

    Rosas-Salazar, Christian; James, Kristina; Escobar, Gabriel; Gebretsadik, Tebeb; Li, Sherian Xu; Carroll, Kecia N.; Walsh, Eileen; Mitchel, Edward; Das, Suman; Kumar, Rajesh; Yu, Chang; Dupont, William D.; Hartert, Tina V.

    2016-01-01

    Background Environmental exposures that occur in utero and during early life may contribute to the development of childhood asthma through alteration of the human microbiome. The objectives of this study were to estimate the cumulative effect and relative importance of environmental exposures on the risk of childhood asthma. Methods We conducted a population-based birth cohort study of mother-child dyads who were born between 1995 and 2003 and were continuously enrolled in the PRIMA (Prevention of RSV: Impact on Morbidity and Asthma) cohort. The individual and cumulative impact of maternal urinary tract infections (UTI) during pregnancy, maternal colonization with group B streptococcus (GBS), mode of delivery, infant antibiotic use, and older siblings at home, on the risk of childhood asthma were estimated using logistic regression. Dose-response effect on childhood asthma risk was assessed for continuous risk factors: number of maternal UTIs during pregnancy, courses of infant antibiotics, and number of older siblings at home. We further assessed and compared the relative importance of these exposures on the asthma risk. In a subgroup of children for whom maternal antibiotic use during pregnancy information was available, the effect of maternal antibiotic use on the risk of childhood asthma was estimated. Results Among 136,098 singleton birth infants, 13.29% developed asthma. In both univariate and adjusted analyses, maternal UTI during pregnancy (odds ratio [OR] 1.2, 95% confidence interval [CI] 1.18, 1.25; adjusted OR [AOR] 1.04, 95%CI 1.02, 1.07 for every additional UTI) and infant antibiotic use (OR 1.21, 95%CI 1.20, 1.22; AOR 1.16, 95%CI 1.15, 1.17 for every additional course) were associated with an increased risk of childhood asthma, while having older siblings at home (OR 0.92, 95%CI 0.91, 0.93; AOR 0.85, 95%CI 0.84, 0.87 for each additional sibling) was associated with a decreased risk of childhood asthma, in a dose-dependent manner. Compared with vaginal

  12. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities.

  13. Addition and correction: the NF-kappa B-like DNA binding activity observed in Dictyostelium nuclear extracts is due to the GBF transcription factor.

    PubMed

    Traincard, F; Ponte, E; Pun, J; Coukell, B; Veron, M

    2001-10-01

    We have previously reported that a NF-kappa B transduction pathway was likely to be present in the cellular slime mold Dictyostelium discoideum. This conclusion was based on several observations, including the detection of developmentally regulated DNA binding proteins in Dictyostelium nuclear extracts that bound to bona fide kappa B sequences. We have now performed additional experiments which demonstrate that the protein responsible for this NF-kappa B-like DNA binding activity is the Dictyostelium GBF (G box regulatory element binding factor) transcription factor. This result, along with the fact that no sequence with significant similarity to components of the mammalian NF-kappa B pathway can be found in Dictyostelium genome, now almost entirely sequenced, led us to reconsider our previous conclusion on the occurrence of a NF-kappa B signal transduction pathway in Dictyostelium.

  14. Secretion of soluble complement inhibitors factor H and factor H-like protein (FHL-1) by ovarian tumour cells.

    PubMed

    Junnikkala, S; Hakulinen, J; Jarva, H; Manuelian, T; Bjørge, L; Bützow, R; Zipfel, P F; Meri, S

    2002-11-04

    We observed that the soluble complement regulators factor H and factor H-like protein were abundantly present in ascites samples as well as in primary tumours of patients with ovarian cancer. RT-PCR and immunoblotting analyses showed that the two complement inhibitors were constitutively produced by the ovarian tumour cell lines SK-OV-3 and Caov-3, but not PA-1 or SW626 cells. The amounts of factor H-like protein secreted were equal to those of factor H. This is exceptional, because e.g. in normal human serum the concentration of factor H-like protein is below 1/10th of that of factor H. In ascites samples the mean level of factor H-like protein (130+/-55 microg ml(-1)) was 5.5-fold higher than in normal human serum (24+/-3 microg ml(-1)). Ovarian tumour cells thus preferentially synthesise factor H-like protein, the alternatively spliced short variant of factor H. The tumour cells were found to bind both (125)I-labelled factor H and recombinant factor H-like protein to their surfaces. Surprisingly, the culture supernatants of all of the ovarian tumour cell lines studied, including those of PA-1 and SW626 that did not produce factor H/factor H-like protein, promoted factor I-mediated cleavage of C3b to inactive iC3b. Subsequently, the PA-1 and SW626 cell lines were found to secrete a soluble form of the membrane cofactor protein (CD46). Thus, our studies reveal two novel complement resistance mechanisms of ovarian tumour cells: (i) production of factor H-like protein and factor H and (ii) secretion of soluble membrane cofactor protein. Secretion of soluble complement inhibitors could protect ovarian tumour cells against humoral immune attack and pose an obstacle for therapy with monoclonal antibodies.

  15. Dauricine inhibits insulin-like growth factor-I-induced hypoxia inducible factorprotein accumulation and vascular endothelial growth factor expression in human breast cancer cells

    PubMed Central

    Tang, Xu-dong; Zhou, Xin; Zhou, Ke-yuan

    2009-01-01

    Aim: To investigate the effects of dauricine (Dau) on insulin-like growth factor-I (IGF-I)-induced hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human breast cancer cells (MCF-7). Methods: Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of Dau, followed by incubation with IGF-I for 6 h. HIF-1α and VEGF protein expression levels were analyzed by Western blotting and ELISA, respectively. HIF-1α and VEGF mRNA levels were determined by real-time PCR. In vitro angiogenesis was observed via the human umbilical vein endothelial cell (HUVEC) tube formation assay. An in vitro invasion assay on HUVECs was performed. Results: Dau significantly inhibited IGF-I-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-I. Mechanistically, Dau suppressed IGF-I-induced HIF-1α and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway. In addition, Dau reduced IGF-I-induced HIF-1α protein accumulation by inhibiting its synthesis as well as by promoting its degradation. Functionally, Dau inhibited angiogenesis in vitro. Moreover, Dau had a direct effect on IGF-I-induced invasion of HUVECs. Conclusion: Dau inhibits human breast cancer angiogenesis by suppressing HIF-1α protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anticancer activities of Dau in human breast cancer. PMID:19349962

  16. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  17. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    PubMed

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  18. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE.

    PubMed

    Kondyurin, Alexey; Nosworthy, Neil J; Bilek, Marcela M M

    2011-05-17

    Horseradish peroxidase (HRP) was immobilized onto both plasticized and unplasticized polyvinylchloride (PVC) and ultrahigh molecular weight polyethylene (UHMWPE). Plasma immersion ion implantation (PIII) in a nitrogen plasma with 20 kV bias was used to facilitate covalent immobilization and to improve the wettability of the surfaces. The surfaces and immobilized protein were studied using attenuated total reflection infrared (ATR-IR) spectroscopy and water contact angle measurements. Protein elution on exposure to repeated sodium dodecyl sulfate (SDS) washing was used to assess the strength of HRP immobilization. The presence of low molecular weight components (plasticizer, additives in solvent, unreacted monomers, adsorbed molecules on surface) was found to have a major influence on the strength of immobilization and the conformation of the protein on the samples not exposed to the PIII treatment. A phenomenological model considering interactions between the low molecular weight components, the protein molecule, and the surface is developed to explain these observations.

  19. Recombinant Expression, Purification, and Functional Characterisation of Connective Tissue Growth Factor and Nephroblastoma-Overexpressed Protein

    PubMed Central

    Bohr, Wilhelm; Kupper, Michael; Hoffmann, Kurt; Weiskirchen, Ralf

    2010-01-01

    The CCN family of proteins, especially its prominent member, the Connective tissue growth factor (CTGF/CCN2) has been identified as a possible biomarker for the diagnosis of fibrotic diseases. As a downstream mediator of TGF-β1 signalling, it is involved in tissue scarring, stimulates interstitial deposition of extracellular matrix proteins, and promotes proliferation of several cell types. Another member of this family, the Nephroblastoma-Overexpressed protein (NOV/CCN3), has growth-inhibiting properties. First reports further suggest that these two CCN family members act opposite to each other in regulating extracellular matrix protein expression and reciprocally influence their own expression when over-expressed. We have established stable HEK and Flp-In-293 clones as productive sources for recombinant human CCN2/CTGF. In addition, we generated an adenoviral vector for recombinant expression of rat NOV and established protocols to purify large quantities of these CCN proteins. The identity of purified human CCN2/CTGF and rat CCN3/NOV was proven by In-gel digest followed by ESI-TOF/MS mass spectrometry. The biological activity of purified proteins was demonstrated using a Smad3-sensitive reporter gene and BrdU proliferation assay in permanent cell line EA•hy 926 cells. We further demonstrate for the first time that both recombinant CCN proteins are N-glycosylated. PMID:21209863

  20. Surface protein imprinted core-shell particles for high selective lysozyme recognition prepared by reversible addition-fragmentation chain transfer strategy.

    PubMed

    Li, Qinran; Yang, Kaiguang; Liang, Yu; Jiang, Bo; Liu, Jianxi; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2014-12-24

    A novel kind of lysozyme (Lys) surface imprinted core-shell particles was synthesized by reversible addition-fragmentation chain transfer (RAFT) strategy. With controllable polymer shell chain length, such particles showed obviously improved selectivity for protein recognition. After the RAFT initial agent and template protein was absorbed on silica particles, the prepolymerization solution, with methacrylic acid and 2-hydroxyethyl methacrylate as the monomers, and N,N'-methylenebis(acrylamide) as the cross-linker, was mixed with the silica particles, and the polymerization was performed at 40 °C in aqueous phase through the oxidation-reduction initiation. Ater polymerization, with the template protein removal and destroying dithioester groups with hexylamine, the surface Lyz imprinted particles were obtained with controllable polymer chain length. The binding capacity of the Lys imprinted particles could reach 5.6 mg protein/g material, with the imprinting factor (IF) as 3.7, whereas the IF of the control material prepared without RAFT strategy was only 1.6. The absorption equilibrium could be achieved within 60 min. Moreover, Lys could be selectively recognized by the imprinted particles from both a four-proteins mixture and egg white sample. All these results demonstrated that these particles prepared by RAFT strategy are promising to achieve the protein recognition with high selectivity.

  1. Factors influencing post-exercise plasma protein carbonyl concentration.

    PubMed

    Wadley, Alex J; Turner, James E; Aldred, Sarah

    2016-01-01

    Exercise of sufficient intensity and duration can cause acute oxidative stress. Plasma protein carbonyl (PC) moieties are abundant, chemically stable, and easily detectable markers of oxidative stress that are widely used for the interpretation of exercise-induced changes in redox balance. Despite many studies reporting acute increases in plasma PC concentration in response to exercise, some studies, including those from our own laboratory have shown decreases. This review will discuss the differences between studies reporting increases, decreases, and no change in plasma PC concentration following exercise in humans; highlighting participant physiology (i.e. training status) and study design (i.e. intensity, duration, and novelty of the exercise bout) as the main factors driving the direction of the PC response to exercise. The role of the 20S proteasome system is proposed as a possible mechanism mediating the clearance of plasma PC following exercise. Resting and exercise-induced differences in plasma protein composition and balance between tissues are also discussed. We suggest that exercise may stimulate the clearance of plasma PC present at baseline, whereas simultaneously increasing reactive oxygen species production that facilitates the formation of new PC groups. The balance between these two processes likely explains why some studies have reported no change or even decreases in plasma PC level post-exercise when other biomarkers of oxidative stress (e.g. markers of lipid peroxidation) were elevated. Future studies should determine factors that influence the balance between PC clearance and formation following acute exercise.

  2. The addition of granulocyte-colony stimulating factor shifts the dose limiting toxicity and markedly increases the maximum tolerated dose and activity of the kinesin spindle protein inhibitor SB-743921 in patients with relapsed or refractory lymphoma: results of an international, multicenter phase I/II study.

    PubMed

    O'Connor, Owen A; Gerecitano, John; Van Deventer, Henrik; Hainsworth, John; Zullo, Kelly M; Saikali, Khalil; Seroogy, Joseph; Wolff, Andrew; Escandón, Rafael

    2015-01-01

    This was a phase I study of SB-743921 (SB-921) in patients with relapsed/refractory lymphoma. Previous studies established that neutropenia was the only dose limiting toxicity (DLT). The primary objective was to determine the DLT, maximum tolerated dose (MTD) and efficacy of SB-921 with and without granulocyte-colony stimulating factor (G-CSF). Sixty-eight patients were enrolled, 42 without G-CSF, 26 with G-CSF. In the cohort without G-CSF, SB-921 doses ranged from 2 to 7 mg/m(2), with 6 mg/m(2) being the MTD. In the cohort with G-CSF support, doses of 6-10 mg/m(2) were administered, with 9 mg/m(2) being the MTD, representing a 50% increase in dose density. Fifty-six patients were evaluable for efficacy. Four of 55 patients experienced a partial response (three in Hodgkin lymphoma and one in non-Hodgkin lymphoma, all at doses ≥ 6 mg/m(2)); 19 patients experienced stable disease, 33 patients developed progression of disease. G-CSF shifted the DLT from neutropenia to thrombocytopenia, allowing for a 50% increase in dose density. Responses were seen at higher doses with G-CSF support.

  3. Insulin-Like Growth Factor Binding Proteins: A Structural Perspective

    PubMed Central

    Forbes, Briony E.; McCarthy, Peter; Norton, Raymond S.

    2012-01-01

    Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that regulate processes such as cell migration and apoptosis by modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, linker, and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarizes structural studies reported so far and highlights features important for binding not only IGF but also other partners. We also highlight future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease. PMID:22654863

  4. 34 CFR 377.22 - What additional factors does the Secretary consider in making grants?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Secretary considers the following factors in making grants under this program: (a) The diversity of... funded projects. (b) The diversity of clients to be served, in order to ensure that a variety...

  5. 34 CFR 377.22 - What additional factors does the Secretary consider in making grants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Secretary considers the following factors in making grants under this program: (a) The diversity of... funded projects. (b) The diversity of clients to be served, in order to ensure that a variety...

  6. 34 CFR 377.22 - What additional factors does the Secretary consider in making grants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Secretary considers the following factors in making grants under this program: (a) The diversity of... funded projects. (b) The diversity of clients to be served, in order to ensure that a variety...

  7. 34 CFR 377.22 - What additional factors does the Secretary consider in making grants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Secretary considers the following factors in making grants under this program: (a) The diversity of... funded projects. (b) The diversity of clients to be served, in order to ensure that a variety...

  8. 34 CFR 377.22 - What additional factors does the Secretary consider in making grants?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Secretary considers the following factors in making grants under this program: (a) The diversity of... funded projects. (b) The diversity of clients to be served, in order to ensure that a variety...

  9. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., such as a password or response to a challenge question. (2) Something the practitioner is, biometric... modules or one-time-password devices. (c) If one factor is a biometric, the biometric subsystem...

  10. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., such as a password or response to a challenge question. (2) Something the practitioner is, biometric... modules or one-time-password devices. (c) If one factor is a biometric, the biometric subsystem...

  11. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., such as a password or response to a challenge question. (2) Something the practitioner is, biometric... modules or one-time-password devices. (c) If one factor is a biometric, the biometric subsystem...

  12. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., such as a password or response to a challenge question. (2) Something the practitioner is, biometric... modules or one-time-password devices. (c) If one factor is a biometric, the biometric subsystem...

  13. 21 CFR 1311.115 - Additional requirements for two-factor authentication.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., such as a password or response to a challenge question. (2) Something the practitioner is, biometric... modules or one-time-password devices. (c) If one factor is a biometric, the biometric subsystem...

  14. Coagulation factor V mediates inhibition of tissue factor signaling by activated protein C in mice

    PubMed Central

    Liang, Hai Po H.; Kerschen, Edward J.; Basu, Sreemanti; Hernandez, Irene; Zogg, Mark; Jia, Shuang; Hessner, Martin J.; Toso, Raffaella; Rezaie, Alireza R.; Fernández, José A.; Camire, Rodney M.; Ruf, Wolfram; Griffin, John H.

    2015-01-01

    The key effector molecule of the natural protein C pathway, activated protein C (aPC), exerts pleiotropic effects on coagulation, fibrinolysis, and inflammation. Coagulation-independent cell signaling by aPC appears to be the predominant mechanism underlying its highly reproducible therapeutic efficacy in most animal models of injury and infection. In this study, using a mouse model of Staphylococcus aureus sepsis, we demonstrate marked disease stage–specific effects of the anticoagulant and cell signaling functions of aPC. aPC resistance of factor (f)V due to the R506Q Leiden mutation protected against detrimental anticoagulant effects of aPC therapy but also abrogated the anti-inflammatory and mortality-reducing effects of the signaling-selective 5A-aPC variant that has minimal anticoagulant function. We found that procofactor V (cleaved by aPC at R506) and protein S were necessary cofactors for the aPC-mediated inhibition of inflammatory tissue-factor signaling. The anti-inflammatory cofactor function of fV involved the same structural features that govern its cofactor function for the anticoagulant effects of aPC, yet its anti-inflammatory activities did not involve proteolysis of activated coagulation factors Va and VIIIa. These findings reveal a novel biological function and mechanism of the protein C pathway in which protein S and the aPC-cleaved form of fV are cofactors for anti-inflammatory cell signaling by aPC in the context of endotoxemia and infection. PMID:26341257

  15. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  16. Chemical Chaperones Improve Protein Secretion and Rescue Mutant Factor VIII in Mice with Hemophilia A

    PubMed Central

    Milanov, Peter; Abriss, Daniela; Ungerer, Christopher; Quade-Lyssy, Patricia; Simpson, Jeremy C.; Pepperkok, Rainer; Seifried, Erhard; Tonn, Torsten

    2012-01-01

    Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII), which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX) plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P). We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking. PMID:22973456

  17. Solvation free energy of the peptide group: its model dependence and implications for the additive-transfer free-energy model of protein stability.

    PubMed

    Tomar, Dheeraj S; Asthagiri, D; Weber, Valéry

    2013-09-17

    The group-additive decomposition of the unfolding free energy of a protein in an osmolyte solution relative to that in water poses a fundamental paradox: whereas the decomposition describes the experimental results rather well, theory suggests that a group-additive decomposition of free energies is, in general, not valid. In a step toward resolving this paradox, here we study the peptide-group transfer free energy. We calculate the vacuum-to-solvent (solvation) free energies of (Gly)n and cyclic diglycine (cGG) and analyze the data according to experimental protocol. The solvation free energies of (Gly)n are linear in n, suggesting group additivity. However, the slope interpreted as the free energy of a peptide unit differs from that for cGG scaled by a factor of half, emphasizing the context dependence of solvation. However, the water-to-osmolyte transfer free energies of the peptide unit are relatively independent of the peptide model, as observed experimentally. To understand these observations, a way to assess the contribution to the solvation free energy of solvent-mediated correlation between distinct groups is developed. We show that linearity of solvation free energy with n is a consequence of uniformity of the correlation contributions, with apparent group-additive behavior in the water-to-osmolyte transfer arising due to their cancellation. Implications for inferring molecular mechanisms of solvent effects on protein stability on the basis of the group-additive transfer model are suggested.

  18. Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition for sensitive and selective protein biosensing.

    PubMed

    Su, Zhaohong; Xu, Haitao; Xu, Xiaolin; Zhang, Yi; Ma, Yan; Li, Chaorong; Xie, Qingji

    2017-03-01

    Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition (a Michael addition) for sensitive and selective protein (with thrombin as the model) biosensing is reported, with a detection limit down to 20 fM for thrombin. Briefly, the thiol addition reaction of a gold electrode-supported 1,6-hexanedithiol (HDT) with p-benzoquinone (BQ) yielded BQ-HDT/Au, and the similar reaction of thiolated thrombin aptamer (TTA) with activated BQ-HDT/Au under 0.3V led to formation of a gold electrode-supported novel electrochemical probe TTA-BQ-HDT/Au. The thus-prepared TTA-BQ-HDT/Au exhibits a pair of well-defined redox peaks of quinone moiety, and the TTA-thrombin interaction can sensitively decrease the electrochemical signal. Herein the thiol addition acts as an effective and convenient binding protocols for aptasensing, and a new method (electrochemical conversion of Michael addition complex for signal generation) for the fabrication of biosensor is presented. The cyclic voltammetry (CV) was used to characterize the film properties. In addition, the proposed amperometric aptasensor exhibits good sensitivity, selectivity, and reproducibility. The aptasensor also has acceptable recovery for detection in complex protein sample.

  19. [Effect of the addition of soy flour and whey protein concentrate on bread quality and mineral dialyzability].

    PubMed

    Visentín, Alexis N; Drago, Silvina R; Osella, Carlos A; de la Torre, María A; Sánchez, Hugo D; González, Rolando J

    2009-09-01

    The effects of the addition of soy flour and whey protein concentrate (WPC) on dough properties and mold bread quality were studied. Farinograph and alveograph were used to evaluate dough properties. Mold bread quality was evaluated by assessing sensory attributes using a trained panel and analyzing some nutritional characteristics, such as: protein chemical score, available lysine, and potential availability of fortified iron and also of the intrinsic calcium and zinc. Addition of soy flour and WPC caused significant changes on dough properties. Chemical score of bread was increased from 40.2 to 41.4 when 6% WPC was used, from 40.2 to 52.2 when 6% soy flour was added and up to 60.0 when substitution was made with 6% WPC plus 6% soy flour. This last improvement was obtained without impairing sensory attributes. The highest value of available lysine loss during baking, corresponded to the blend containing WPC, but it was reduced when WPC was used together with soy flour. WPC addition increased calcium content but reduced potential availability of iron and zinc. This negative effect on iron availability was overcome by adding mineral absorption promoters, being EDTA the most effective. On the other hand addition of 6% soy flour improved protein value without affecting mineral availability.

  20. Effect of ferrite addition above the base ferrite on the coupling factor of wireless power transfer for vehicle applications

    NASA Astrophysics Data System (ADS)

    Batra, T.; Schaltz, E.; Ahn, S.

    2015-05-01

    Power transfer capability of wireless power transfer systems is highly dependent on the magnetic design of the primary and secondary inductors and is measured quantitatively by the coupling factor. The inductors are designed by placing the coil over a ferrite base to increase the coupling factor and reduce magnetic emissions to the surroundings. Effect of adding extra ferrite above the base ferrite at different physical locations on the self-inductance, mutual inductance, and coupling factor is under investigation in this paper. The addition can increase or decrease the mutual inductance depending on the placement of ferrite. Also, the addition of ferrite increases the self-inductance of the coils, and there is a probability for an overall decrease in the coupling factor. Correct placement of ferrite, on the other hand, can increase the coupling factor relatively higher than the base ferrite as it is closer to the other inductor. Ferrite being a heavy compound of iron increases the inductor weight significantly and needs to be added judiciously. Four zones have been identified in the paper, which shows different sensitivity to addition of ferrite in terms of the two inductances and coupling factor. Simulation and measurement results are presented for different air gaps between the coils and at different gap distances between the ferrite base and added ferrite. This paper is beneficial in improving the coupling factor while adding minimum weight to wireless power transfer system.

  1. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    NASA Astrophysics Data System (ADS)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2006-07-01

    Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive chemical potential

  2. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin† †Electronic supplementary information (ESI) available: Information on materials, instrumentation, experimental details and additional data on preparation of proteins, crystal structure analysis, resonance Raman and FTIR spectroscopy, reaction of reduced I119H with O2, consumption of H2O2, and oxidation reactions of guaiacol and 1,4-cyclohexadiene. The atomic coordinates and structure factors (PDB code 3WHN) have been deposited into the Protein Data Bank, http://www.rcsb.org/. See DOI: 10.1039/c3cc48108e Click here for additional data file.

    PubMed Central

    Okamoto, Yasunori; Sugimoto, Hiroshi; Takano, Yu; Hirota, Shun; Kurtz, Donald M.; Shiro, Yoshitsugu

    2014-01-01

    The O2-binding carboxylate-bridged diiron site in DcrH-Hr was engineered in an effort to perform the H2O2-dependent oxidation of external substrates. A His residue was introduced near the diiron site in place of a conserved residue, Ile119. The I119H variant promotes the oxidation of guaiacol and 1,4-cyclohexadiene upon addition of H2O2. PMID:24400317

  3. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  4. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  5. Risk Factors for Additional Surgery after Iatrogenic Perforations due to Endoscopic Submucosal Dissection

    PubMed Central

    Kim, Gi Jun; Ji, Jeong Seon; Kim, Byung Wook; Choi, Hwang

    2017-01-01

    Objectives. Endoscopic resection (ER) is commonly performed to treat gastric epithelial neoplasms and subepithelial tumors. The aim of this study was to predict the risk factors for surgery after ER-induced perforation. Methods. We retrospectively reviewed the data on patients who received gastric endoscopic submucosal dissection (ESD) or endoscopic mucosal resection (EMR) between January 2010 and March 2015. Patients who were confirmed to have perforation were classified into surgery and nonsurgery groups. We aimed to determine the risk factors for surgery in patients who developed iatrogenic gastric perforations. Results. A total of 1183 patients underwent ER. Perforation occurred in 69 (5.8%) patients, and 9 patients (0.8%) required surgery to manage the perforation. In univariate analysis, anterior location of the lesion, a subepithelial lesion, two or more postprocedure pain killers within 24 hrs, and increased heart rate within 24 hrs after the procedure were the factors related to surgery. In logistic regression analysis, the location of the lesion at the anterior wall and using two or more postprocedure pain killers within 24 hrs were risk factors for surgery. Conclusion. Most cases of perforations after ER can be managed conservatively. When a patient requires two or more postprocedure pain killers within 24 hrs and the lesion is located on the anterior wall, early surgery should be considered instead of conservative management. PMID:28316622

  6. Addition of capsaicin and exchange of carbohydrate with protein counteract energy intake restriction effects on fullness and energy expenditure.

    PubMed

    Smeets, Astrid J; Janssens, Pilou L H R; Westerterp-Plantenga, Margriet S

    2013-04-01

    Energy intake restriction causes a yo-yo effect by decreasing energy expenditure (EE) and decreasing fullness. We investigated the 24-h effect of protein and capsaicin, singly or combined, on fullness and EE during 20% energy intake restriction. The 24 participants (12 male, 12 female; BMI, 25.2 ± 0.4 kg/m(2); age, 27 ± 4 y; body fat, 25.6 ± 5.7%; 3-factor eating questionnaire, F1: 6 ± 2, F2: 4 ± 2, F3: 3 ± 2) underwent eight 36-h sessions in a respiration chamber. The study had a randomized crossover design with 8 randomly sequenced conditions. The participants were fed 100 or 80% of their daily energy requirements. There were 2 control (C) conditions: 100%C and 80%C; 2 conditions with capsaicin (Caps): 100%Caps and 80%Caps; 2 conditions with elevated protein (P): 100%P and 80%P; and 2 conditions with a mixture of protein and capsaicin (PCaps): 100%PCaps and 80%PCaps. Appetite profile, EE, and substrate oxidation were monitored. Compared with 100%C, the 80%C group had expected negative energy-balance effects with respect to total EE, diet-induced thermogenesis, and fullness, whereas the 80%Caps diet counteracted these effects, and the 80%P and 80%PCaps diets exceeded these effects (P < 0.01). In energy balance and negative energy balance, fat balance was more negative in the 80%Caps, P, and PCaps groups than in the 80%C group (P < 0.05) and respiratory quotient values were lower. A negative protein balance was prevented with the 80%P and 80%PCaps diets compared with the 80%C diet. Our results suggest that protein and capsaicin, consumed singly or mixed, counteracted the energy intake restriction effects on fullness and EE. During energy restriction, protein and capsaicin promoted a negative fat balance and protein treatments also prevented a negative protein balance.

  7. Expression and Protein Interaction Analyses Reveal Combinatorial Interactions of LBD Transcription Factors During Arabidopsis Pollen Development.

    PubMed

    Kim, Mirim; Kim, Min-Jung; Pandey, Shashank; Kim, Jungmook

    2016-11-01

    LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor gene family members play key roles in diverse aspects of plant development. LBD10 and LBD27 have been shown to be essential for pollen development in Arabidopsis thaliana. From the previous RNA sequencing (RNA-Seq) data set of Arabidopsis pollen, we identified the mRNAs of LBD22, LBD25 and LBD36 in addition to LBD10 and LBD27 in Arabidopsis pollen. Here we conducted expression and cellular analysis using GFP:GUS (green fluorescent protein:β-glucuronidase) reporter gene and subcellular localization assays using LBD:GFP fusion proteins expressed under the control of their own promoters in Arabidopsis. We found that these LBD proteins display spatially and temporally distinct and overlapping expression patterns during pollen development. Bimolecular fluorescence complementation and GST (glutathione S-transferase) pull-down assays demonstrated that protein-protein interactions occur among the LBDs exhibiting overlapping expression during pollen development. We further showed that LBD10, LBD22, LBD25, LBD27 and LBD36 interact with each other to form heterodimers, which are localized to the nucleus in Arabidopsis protoplasts. Taken together, these results suggest that combinatorial interactions among LBD proteins may be important for their function in pollen development in Arabidopsis.

  8. Xeroderma pigmentosum complementation group A protein acts as a processivity factor.

    PubMed

    Lambert, M W; Yang, L

    2000-05-19

    We have previously shown that endonucleases present in a protein complex, which has specificity for cyclobutane pyrimidine dimers, locate sites of damage in DNA by a processive mechanism of action in normal human lymphoblastoid cells. In contrast, the endonucleases present in this complex from xeroderma pigmentosum complementation group A (XPA) cells locate damage sites by a distributive or significantly less processive mechanism. Since the XPA protein has been shown to be responsible for the DNA repair defect in XPA cells, this protein was examined for involvement in the mechanism of target site location of these endonucleases. A recombinant XPA protein, produced by expression of the normal XPA cDNA in E. coli, was isolated and purified. The results show that the recombinant XPA protein was able to correct the defect in ability of the XPA endonucleases to act by a processive mechanism of action on UVC irradiated DNA. These studies indicate that the XPA protein, in addition to a role in damage recognition or damage verification, may function as a processivity factor.

  9. Modification of the protein corona-nanoparticle complex by physiological factors.

    PubMed

    Braun, Nicholas J; DeBrosse, Madeleine C; Hussain, Saber M; Comfort, Kristen K

    2016-07-01

    Nanoparticle (NP) effects in a biological system are driven through the formation and structure of the protein corona-NP complex, which is dynamic by nature and dependent upon factors from both the local environment and NP physicochemical parameters. To date, considerable data has been gathered regarding the structure and behavior of the protein corona in blood, plasma, and traditional cell culture medium. However, there exists a knowledge gap pertaining to the protein corona in additional biological fluids and following incubation in a dynamic environment. Using 13nm gold NPs (AuNPs), functionalized with either polyethylene glycol or tannic acid, we demonstrated that both particle characteristics and the associated protein corona were altered when exposed to artificial physiological fluids and under dynamic flow. Furthermore, the magnitude of observed behavioral shifts were dependent upon AuNP surface chemistry. Lastly, we revealed that exposure to interstitial fluid produced protein corona modifications, reshaping of the nano-cellular interface, modified AuNP dosimetry, and induction of previously unseen cytotoxicity. This study highlights the need to elucidate both NP and protein corona behavior in biologically representative environments in an effort to increase accurate interpretation of data and transfer of this knowledge to efficacy, behavior, and safety of nano-based applications.

  10. RNA-Binding Proteins: Splicing Factors and Disease

    PubMed Central

    Fredericks, Alger M.; Cygan, Kamil J.; Brown, Brian A.; Fairbrother, William G.

    2015-01-01

    Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions. PMID:25985083

  11. Protein-Protein Interactions of the Baculovirus Per Os Infectivity Factors in the PIF Complex.

    PubMed

    Zheng, Qin; Shen, Yunwang; Kon, Xiangshuo; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng

    2017-01-28

    After ingestion of occlusion bodies, the occlusion-derived viruses (ODVs) of baculoviruses establish the first round of infection within the larval host midgut cells. Several ODV envelope proteins, called per os infectivity factors (PIFs), have been shown to be essential for oral infection. Eight PIFs have been identified to date, including P74, PIFs1-6, and Ac110. At least six PIFs: P74, PIFs1-4, PIF6, together with three other ODV-specific proteins: Ac5, P95 (Ac83), and Ac108, have been reported to form a complex on the ODV surface. In this study, in order to understand the interactions of these PIFs, the direct protein-protein interactions of the nine components of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) PIF complex were investigated using yeast two-hybrid (Y2H) combined with bimolecular fluorescence complementation (BiFC) assay. Six direct interactions comprising PIF1-PIF2, PIF1-PIF3, PIF1-PIF4, PIF1-P95, PIF2-PIF3, and PIF3-PIF4, were identified in Y2H analysis, and these results were further verified by BiFC. For P74, PIF6, Ac5 and Ac108, no direct interaction was identified. P95 (Ac83) was identified to interact with PIF1 and further Y2H analysis of the truncations and deletion mutants showed that the predicted P95 chitin-binding domain and PIF1 100-200aa were responsible for P95 interaction with PIF1. Furthermore, a summary of the protein-protein interactions of PIFs reported so far, comprising 10 reciprocal interactions and 2 self-interactions, is presented, which will facilitate our understanding of the characteristic of PIF complex.

  12. Impact of bentonite additions during vinification on protein stability and volatile compounds of Albariño wines.

    PubMed

    Lira, Eugenio; Rodríguez-Bencomo, Juan José; Salazar, Fernando N; Orriols, Ignacio; Fornos, Daniel; López, Francisco

    2015-03-25

    Today, bentonite continues to be one of the most used products to remove proteins in white wines in order to avoid their precipitation in bottles. However, excessive use of bentonite has negative effects on the aroma of final wine, so the optimization of the dose and the time of its application are important for winemakers. This paper analyzes how applying an equal dose of bentonite at different stages (must clarification; beginning, middle, and end of fermentation) affects the macromolecular profile, protein stability, physical-chemical characteristics and aromatic profile of the wine obtained. The results showed the addition during fermentation (especially in the middle and at the end) reduced the total dose required for protein stabilization of Albariño wines and maintained the sensory characteristics of this variety.

  13. Effect of antibiotic, Lacto-lase and probiotic addition in chicken feed on protein and fat content of chicken meat

    NASA Astrophysics Data System (ADS)

    Azhar, Noor Amiza; Abdullah, Aminah

    2015-09-01

    This research was conducted to investigate the effect of chicken feed additives (antibiotic, Lacto-lase® and probiotic) on protein and fat content of chicken meat. Chicken fed with control diet (corn-soy based diet) served as a control. The treated diets were added with zinc bacitracin (antibiotic), different amount of Lacto-lase® (a mixture of probiotic and enzyme) and probiotic. Chicken were slaughtered at the age of 43-48 days. Each chicken was divided into thigh, breast, drumstick, drumette and wing. Protein content in chicken meat was determined by using macro-Kjeldahl method meanwhile Soxhlet method was used to analyse fat content. The result of the study showed that the protein content of chicken breast was significantly higher (p≤0.05) while thigh had the lowest protein content (p≤0.05). Antibiotic fed chicken was found to have the highest protein content among the treated chickens but there was no significant different with 2g/kg Lacto-lase® fed chicken (p>0.05). All thighs were significantly higher (p≤0.05) in fat content except for drumette of control chicken while breast contained the lowest fat content compared to other chicken parts studied. The control chicken meat contained significantly higher (p≤0.05) amount of fat compared to the other treated chickens. Chicken fed with 2g/kg Lacto-lase® had the lowest (p≤0.05) fat content. The result of this study indicated that the addition of Lacto-lase® as a replacement of antibiotic in chicken feed will not affect the content of protein and fat of chicken meat.

  14. The Application of Additive Factors Methodology to Workload Assessment in a Dynamic System Monitoring Task.

    DTIC Science & Technology

    1980-12-01

    resources, task interference will be greater, and changes in the difficulty of one task will be more likely to derogate performance of the other. It...number of items in short term memory and response latency suggesting the presence of a comparison process between test stimulus onset and response...execution. Each additional item in memory adds approximately 38ms to the response latency. The essentially equivalent slopes for positive and negative

  15. Associations between individual cow factors and milk-protein production.

    PubMed

    Sargeant, J M; Martin, S W; Lissemore, K D; Leslie, K E; Gibson, J P; Scott, H M; Kelton, D F

    1998-02-06

    Associations between stage of lactation, cow characteristics, and protein production were evaluated using data from a 2-year period on 75 Ontario, 5 Alberta, and 3 Nova Scotia dairy farms. Individual-cow protein production was defined by 305-day protein yield and by the estimated breeding value for protein yield. Lactation curves for average daily protein yield were computed by parity, breed, and season of calving. Mean protein yield was highest in early lactation. However, there was no pronounced peak in daily protein yield. Parity was positively associated with 305-day protein yield and negatively associated with the estimated breeding values for protein yield. First-calf heifers had lower protein yields in early lactation and a slower rate of decline in protein yield in late lactation, as compared to later parity cows. Holstein cows had higher unadjusted protein yields and lower protein yields after adjusting for milk yield than other breeds. Holstein cows had significantly higher protein yields early in lactation compared to other breeds, but the rate of decline in protein production in late lactation was also greater. Season was associated with 305-day protein yield; the highest protein yields occurred in cows calving in the fall and winter months, but these cows had the greatest rate of decline in protein production in late lactation.

  16. Modeling of human factor Va inactivation by activated protein C

    PubMed Central

    2012-01-01

    Background Because understanding of the inventory, connectivity and dynamics of the components characterizing the process of coagulation is relatively mature, it has become an attractive target for physiochemical modeling. Such models can potentially improve the design of therapeutics. The prothrombinase complex (composed of the protease factor (F)Xa and its cofactor FVa) plays a central role in this network as the main producer of thrombin, which catalyses both the activation of platelets and the conversion of fibrinogen to fibrin, the main substances of a clot. A key negative feedback loop that prevents clot propagation beyond the site of injury is the thrombin-dependent generation of activated protein C (APC), an enzyme that inactivates FVa, thus neutralizing the prothrombinase complex. APC inactivation of FVa is complex, involving the production of partially active intermediates and “protection” of FVa from APC by both FXa and prothrombin. An empirically validated mathematical model of this process would be useful in advancing the predictive capacity of comprehensive models of coagulation. Results A model of human APC inactivation of prothrombinase was constructed in a stepwise fashion by analyzing time courses of FVa inactivation in empirical reaction systems with increasing number of interacting components and generating corresponding model constructs of each reaction system. Reaction mechanisms, rate constants and equilibrium constants informing these model constructs were initially derived from various research groups reporting on APC inactivation of FVa in isolation, or in the presence of FXa or prothrombin. Model predictions were assessed against empirical data measuring the appearance and disappearance of multiple FVa degradation intermediates as well as prothrombinase activity changes, with plasma proteins derived from multiple preparations. Our work integrates previously published findings and through the cooperative analysis of in vitro

  17. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers.

    PubMed

    Narayanan, Saravanakumar; Walter, Stefan; Reif, Bernd

    2006-05-01

    In analogy to human prions, a domain of the translation-termination protein in Saccharomyces cerevisiae, Sup35, can switch its conformation from a soluble functional state, [psi-], to a conformation, [PSI+], that facilitates aggregation and impairs its native function. Overexpression of the molecular chaperone Hsp104 abolishes the [PSI+] phenotype and restores the normal function of Sup35. We have recently shown that Hsp104 interacts preferably with low oligomeric species of a Sup35 derived peptide, Sup35[5-26]; however, due to possible exchange between different oligomeric states, it was not possible to obtain information on the distribution and stability of the oligomeric state. We show here, that low-molecular-weight oligomers (Sup35[5-26])n (n approximately = 4-6) are indeed important for the fibril formation and disassembly process. We find that Hsp104 is able to disaggregate Sup35[5-26] fibrils by substraction of hexameric to decameric Sup35[5-26] oligomers. This disaggregation effect does not require assistance from other chaperones and is independent of ATP at high Hsp104 concentrations. Furthermore, we demonstrate that critical oligomers have a preference for alpha-helical conformations. The conformational reorganization into beta-sheet structures seems to occur only upon incorporation of these oligomers into fibrillar structures. The results are demonstrated by using an equilibrium dialysis experiment that employed different molecular-weight cut-off membranes. A combination of thioflavin-T (ThT) fluorescence and UV measurements allowed the quantification of fibril formation and the amount of peptide diffusing out of the dialysis bag. CD and NMR spectroscopy data were combined to obtain structural information.

  18. Fungal colonization - an additional risk factor for diseased dogs and cats?

    PubMed

    Biegańska, Małgorzata; Dardzińska, Weronika; Dworecka-Kaszak, Bożena

    2014-01-01

    The aim of the presented mini-review is to review the literature data referring to opportunistic mycoses in pet dogs and cats suffering from other concurrent diseases, comparable to human medical disorders with high risk of secondary mycoses. This review also presents the preliminary results of a project aimed at understanding the fungal colonization and occurrence of secondary mycoses in pets suffering from metabolic disorders, neoplasms and viral infections. The incidence of opportunistic mycoses is higher in such individuals, mostly because of their impaired immunity. The main risk factors are primary and secondary types of immunodeficiency connected with anti-cancer treatment or neoplastic disease itself. Moreover, literature data and the results of our investigations show that Candida yeasts are prevalent among diabetic animals and indicate that these fungi are the main etiological agents of secondary infections of the oral cavity, GI and urogenital tracts. Other important conditions possibly favoring the development of mycoses are concurrent infections of cats with FeLV and FIV viruses. Thus, in all cases of the mentioned underlying diseases, animals should be carefully monitored by repeated mycological examination, together with inspection of other parameters. Also, the prophylaxis of opportunistic mycoses should be carefully considered alike other factors influencing the prognosis and the outcome of primary diseases.

  19. Implementing a Rational and Consistent Nomenclature for Serine/Arginine-Rich Protein Splicing Factors (SR Proteins) in Plants

    PubMed Central

    Barta, Andrea; Kalyna, Maria; Reddy, Anireddy S.N.

    2010-01-01

    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species. PMID:20884799

  20. Implementing a rational and consistent nomenclature for serine/arginine-rich protein splicing factors (SR proteins) in plants.

    PubMed

    Barta, Andrea; Kalyna, Maria; Reddy, Anireddy S N

    2010-09-01

    Growing interest in alternative splicing in plants and the extensive sequencing of new plant genomes necessitate more precise definition and classification of genes coding for splicing factors. SR proteins are a family of RNA binding proteins, which function as essential factors for constitutive and alternative splicing. We propose a unified nomenclature for plant SR proteins, taking into account the newly revised nomenclature of the mammalian SR proteins and a number of plant-specific properties of the plant proteins. We identify six subfamilies of SR proteins in Arabidopsis thaliana and rice (Oryza sativa), three of which are plant specific. The proposed subdivision of plant SR proteins into different subfamilies will allow grouping of paralogous proteins and simple assignment of newly discovered SR orthologs from other plant species and will promote functional comparisons in diverse plant species.

  1. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase.

    PubMed Central

    Cai, H; Smola, U; Wixler, V; Eisenmann-Tappe, I; Diaz-Meco, M T; Moscat, J; Rapp, U; Cooper, G M

    1997-01-01

    The Raf protein kinases function downstream of Ras guanine nucleotide-binding proteins to transduce intracellular signals from growth factor receptors. Interaction with Ras recruits Raf to the plasma membrane, but the subsequent mechanism of Raf activation has not been established. Previous studies implicated hydrolysis of phosphatidylcholine (PC) in Raf activation; therefore, we investigated the role of the epsilon isotype of protein kinase C (PKC), which is stimulated by PC-derived diacylglycerol, as a Raf activator. A dominant negative mutant of PKC epsilon inhibited both proliferation of NIH 3T3 cells and activation of Raf in COS cells. Conversely, overexpression of active PKC epsilon stimulated Raf kinase activity in COS cells and overcame the inhibitory effects of dominant negative Ras in NIH 3T3 cells. PKC epsilon also stimulated Raf kinase in baculovirus-infected Spodoptera frugiperda Sf9 cells and was able to directly activate Raf in vitro. Consistent with its previously reported activity as a Raf activator in vitro, PKC alpha functioned similarly to PKC epsilon in both NIH 3T3 and COS cell assays. In addition, constitutively active mutants of both PKC alpha and PKC epsilon overcame the inhibitory effects of dominant negative mutants of the other PKC isotype, indicating that these diacylglycerol-regulated PKCs function as redundant activators of Raf-1 in vivo. PMID:9001227

  2. Factors influencing the performance of English as an Additional Language nursing students: instructors' perspectives.

    PubMed

    Donnelly, Tam Truong; McKiel, Elaine; Hwang, Jihye

    2009-09-01

    The increasing number of immigrants in Canada has led to more nursing students for whom English is an additional language (EAL). Limited language skills, cultural differences, and a lack of support can pose special challenges for these students and the instructors who teach them. Using a qualitative research methodology, in-depth interviews with fourteen EAL nursing students and two focus group interviews with nine instructors were conducted. In this paper, the instructors' perspectives are presented. Data acquired from the instructors suggest that the challenges experienced by EAL students and instructors reside in a lack of awareness and support at the institutional and structural levels rather than solely on capacities of individual EAL students or instructors. From this study, identification of supportive activities for nurse educators and education sector decision makers emerged.

  3. The PB1 Domain in Auxin Response Factor and Aux/IAA Proteins: A Versatile Protein Interaction Module in the Auxin Response[OPEN

    PubMed Central

    2015-01-01

    An integral part of auxin-regulated gene expression involves the interplay of two types of transcription factors, the DNA binding auxin response factor (ARF) activators and the interacting auxin/indole acetic acid (Aux/IAA) repressors. Insight into the mechanism of how these transcription factors interact with one another has recently been revealed from crystallographic information on ARF5 and ARF7 C-terminal domains (i.e., a protein-protein interaction domain referred to as domain III/IV that is related to domain III/IV in Aux/IAA proteins). Three-dimensional structures showed that this domain in ARF5 and ARF7 conforms to a well-known PB1 (Phox and Bem1) domain that confers protein-protein interactions with other PB1 domain proteins through electrostatic contacts. Experiments verifying the importance of charged amino acids in conferring ARF and Aux/IAA interactions have confirmed the PB1 domain structure. Some in planta experiments designed to test the validity of PB1 interactions in the auxin response have led to updated models for auxin-regulated gene expression and raised many questions that will require further investigation. In addition to the PB1 domain, a second protein interaction module that functions in ARF-ARF dimerization and facilitates DNA binding has recently been revealed from crystallography studies on the ARF1 and ARF5 DNA binding domains. PMID:25604444

  4. The GAGA factor regulatory network: Identification of GAGA factor associated proteins

    PubMed Central

    Blokhina, Tatiana; Wolle, Daniel; Aoki, Tsutomu; Ryabykh, Vladimir; Yates, John R.; Shidlovskii, Yulii V.; Georgiev, Pavel; Schedl, Paul

    2017-01-01

    The Drosophila GAGA factor (GAF) has an extraordinarily diverse set of functions that include the activation and silencing of gene expression, nucleosome organization and remodeling, higher order chromosome architecture and mitosis. One hypothesis that could account for these diverse activities is that GAF is able to interact with partners that have specific and dedicated functions. To test this possibility we used affinity purification coupled with high throughput mass spectrometry to identify GAF associated partners. Consistent with this hypothesis the GAF interacting network includes a large collection of factors and complexes that have been implicated in many different aspects of gene activity, chromosome structure and function. Moreover, we show that GAF interactions with a small subset of partners is direct; however for many others the interactions could be indirect, and depend upon intermediates that serve to diversify the functional capabilities of the GAF protein. PMID:28296955

  5. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  6. The impact of antioxidant addition on flavor of cheddar and mozzarella whey and cheddar whey protein concentrate.

    PubMed

    Liaw, I W; Eshpari, H; Tong, P S; Drake, M A

    2010-08-01

    Lipid oxidation products are primary contributors to whey ingredient off-flavors. The objectives of this study were to evaluate the impact of antioxidant addition in prevention of flavor deterioration of fluid whey and spray-dried whey protein. Cheddar and Mozzarella cheeses were manufactured in triplicate. Fresh whey was collected, pasteurized, and defatted by centrifugal separation. Subsequently, 0.05% (w/w) ascorbic acid or 0.5% (w/w) whey protein hydrolysate (WPH) were added to the pasteurized whey. A control with no antioxidant addition was also evaluated. Wheys were stored at 3 degrees C and evaluated after 0, 2, 4, 6, and 8 d. In a subsequent experiment, selected treatments were then incorporated into liquid Cheddar whey and processed into whey protein concentrate (WPC). Whey and WPC flavors were documented by descriptive sensory analysis, and volatile components were evaluated by solid phase micro-extraction with gas chromatography mass spectrometry. Cardboard flavors increased in fluid wheys with storage. Liquid wheys with ascorbic acid or WPH had lower cardboard flavor across storage compared to control whey. Lipid oxidation products, hexanal, heptanal, octanal, and nonanal increased in liquid whey during storage, but liquid whey with added ascorbic acid or WPH had lower concentrations of these products compared to untreated controls. Mozzarella liquid whey had lower flavor intensities than Cheddar whey initially and after refrigerated storage. WPC with added ascorbic acid or WPH had lower cardboard flavor and lower concentrations of pentanal, heptanal, and nonanal compared to control WPC. These results suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to flavor of spray-dried whey protein. Practical Application: Lipid oxidation products are primary contributors to whey ingredient off-flavors. Flavor plays a critical and limiting role in widespread use of dried whey ingredients, and enhanced understanding

  7. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    PubMed

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  8. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties

    PubMed Central

    Beaumont, Elodie; Roch, Emmanuelle; Chopin, Lucie; Roingeard, Philippe

    2016-01-01

    Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system. PMID:26966906

  9. The addition of whey protein to a carbohydrate-electrolyte drink does not influence post-exercise rehydration.

    PubMed

    Hobson, Ruth; James, Lewis

    2015-01-01

    The addition of whey protein to a carbohydrate-electrolyte drink has been shown to enhance post-exercise rehydration when a volume below that recommended for full fluid balance restoration is provided. We investigated if this held true when volumes sufficient to restore fluid balance were consumed and if differences might be explained by changes in plasma albumin content. Sixteen participants lost ~1.9% of their pre-exercise body mass by cycling in the heat and rehydrated with 150% of body mass lost with either a 60 g · L(-1) carbohydrate drink (CHO) or a 60 g · L(-1) carbohydrate, 20 g · L(-1) whey protein isolate drink (CHO-P). Urine and blood samples were collected pre-exercise, post-exercise, post-rehydration and every hour for 4 h post-rehydration. There was no difference between trials for total urine production (CHO 1057 ± 319 mL; CHO-P 970 ± 334 mL; P = 0.209), drink retention (CHO 51 ± 12%; CHO-P 55 ± 15%; P = 0.195) or net fluid balance (CHO -393 ± 272 mL; CHO-P -307 ± 331 mL; P = 0.284). Plasma albumin content relative to pre-exercise was increased from 2 to 4 h during CHO-P only. These results demonstrate that the addition of whey protein isolate to a carbohydrate-electrolyte drink neither enhances nor inhibits rehydration. Therefore, where post-exercise protein ingestion might benefit recovery, this can be consumed without effecting rehydration.

  10. Dual-stage growth factor release within 3D protein-engineered hydrogel niches promotes adipogenesis

    PubMed Central

    Greenwood-Goodwin, Midori; Teasley, Eric S.; Heilshorn, Sarah C.

    2014-01-01

    Engineered biomimetic microenvironments from hydrogels are an emerging strategy to achieve lineage-specific differentiation in vitro. In addition to recapitulating critical matrix cues found in the native three-dimensional (3D) niche, the hydrogel can also be designed to deliver soluble factors that are present within the native inductive microenvironment. We demonstrate a versatile materials approach for the dual-stage delivery of multiple soluble factors within a 3D hydrogel to induce adipogenesis. We use a Mixing-Induced Two-Component Hydrogel (MITCH) embedded with alginate microgels to deliver two pro-adipogenic soluble factors, fibroblast growth factor 1 (FGF-1) and bone morphogenetic protein 4 (BMP-4) with two distinct delivery profiles. We show that dual-stage delivery of FGF-1 and BMP-4 to human adipose-derived stromal cells (hADSCs) significantly increases lipid accumulation compared with the simultaneous delivery of both growth factors together. Furthermore, dual-stage growth factor delivery within a 3D hydrogel resulted in substantially more lipid accumulation compared to identical delivery profiles in 2D cultures. Gene expression analysis shows upregulation of key adipogenic markers indicative of brown-like adipocytes. These data suggest that dual-stage release of FGF-1 and BMP-4 within 3D microenvironments can promote the in vitro development of mature adipocytes. PMID:25309741

  11. Prospective evaluation of Protein C and Factor VIII in prediction of cancer-associated thrombosis

    PubMed Central

    Tafur, AJ; Dale, G; Cherry, M; Wren, JD; Mansfield, AS; Comp, P; Rathbun, S; Stoner, JA

    2015-01-01

    Venous thromboembolism (VTE) is a preventable disease, yet it is one of the leading causes of death among patients with cancer. Improving risk stratification mechanisms will allow us to personalize thromboprophylaxis strategies. We sought to evaluate Collagen and Thrombin Activated Platelets (COAT-platelets) as well as protein C and factor VIII as biomarkers predictive of cancer-associated thrombosis in a prospective cohort of patients with cancer. Protein C was selected as a candidate based on bioinformatics prediction. Blood samples were collected before chemotherapy. All specimen processing was blinded to clinical data. Surveillance and adjudication of the main outcome of VTE was performed for up to 1 year. We used Cox proportional hazard regression to measure the association of biomarkers and incident events using SAS 9.2 for all statistical analysis. Death was modeled as a competing event. Among 241 patients followed for an average of 10.4 months, 15% died and 13% developed a VTE. COAT-platelets were not predictive of VTE. Low levels of pre-chemotherapy protein C (< 118 %) (HR 2.5; 95%CI 1.1–5.5) and high baseline factor VIII (> 261 % I) (HR 3.0; 95%CI 1.1–8.0) were predictive of VTE after adjusting for age, Khorana prediction risk, metastatic disease and D dimer. In addition, low protein C was predictive of overall mortality independent of age, metastatic disease and functional status (HR 2.8; 95%CI 1.3–6.0). Addition of these biomarkers to Cancer-VTE risk prediction models may add to risk stratification and patient selection to optimize thrombo-prophylaxis. PMID:26475410

  12. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation.

    PubMed

    Niebler, Stephan; Angele, Peter; Kujat, Richard; Bosserhoff, Anja K

    2015-01-01

    The transcription factor AP-2ε (activating enhancer-binding protein epsilon) is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4) strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1), the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2'-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  13. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro

    2017-02-01

    The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability

  14. Platelet-activating factor (PAF)-dependent biochemical, morphologic, and physiologic responses of human platelets: Demonstration of translocation of protein kinase C associated with protein phosphorylation

    SciTech Connect

    Block, L.H.; Abraham, W.M.; Groscurth, P.; Qiao, B.Y.; Perruchoud, A.P. )

    1989-10-01

    Platelet-activating factor (PAF) is a potent stimulus for platelet aggregation and secretion. PAF has been shown to stimulate the phosphatidylinositol (PI) pathway in platelets, which implies that PAF should activate protein kinase C. In this study, measurements of PI metabolites, the elevation of intracellular free calcium concentration, (Ca2+)i, the activation of protein kinase C, and the phosphorylation of platelet proteins (using a two-dimensional gel electrophoretic technique) were performed before and after the addition of 10(-8) M PAF to human platelets. These findings were correlated with morphologic changes in the platelets as determined by immunoelectron microscopic studies on the cytoskeleton and by X-ray analysis of dense bodies. The results show that PAF stimulates the production of PI metabolites and causes an increase in the membrane-associated activity of protein kinase C. These changes are accompanied by a rise in the (Ca2+)i and protein phosphorylation. The increase in protein kinase C activity reaches a maximum at approximately 60 s, a time frame that is consistent with the protein phosphorylation and the subsequent morphologic and secretory events. X-ray analysis revealed two types of dense bodies containing various amounts of calcium which appeared to be released sequentially after PAF activation. These results suggest that the protein phosphorylation that controls the physiologic events resulting from PAF activation of human platelets is catalyzed by protein kinase C.

  15. Platelet-activating factor (PAF)-dependent biochemical, morphologic, and physiologic responses of human platelets: demonstration of translocation of protein kinase C associated with protein phosphorylation.

    PubMed

    Block, L H; Abraham, W M; Groscurth, P; Qiao, B Y; Perruchoud, A P

    1989-10-01

    Platelet-activating factor (PAF) is a potent stimulus for platelet aggregation and secretion. PAF has been shown to stimulate the phosphatidylinositol (PI) pathway in platelets, which implies that PAF should activate protein kinase C. In this study, measurements of PI metabolites, the elevation of intracellular free calcium concentration, (Ca2+)i, the activation of protein kinase C, and the phosphorylation of platelet proteins (using a two-dimensional gel electrophoretic technique) were performed before and after the addition of 10(-8) M PAF to human platelets. These findings were correlated with morphologic changes in the platelets as determined by immunoelectron microscopic studies on the cytoskeleton and by X-ray analysis of dense bodies. The results show that PAF stimulates the production of PI metabolites and causes an increase in the membrane-associated activity of protein kinase C. These changes are accompanied by a rise in the (Ca2+)i and protein phosphorylation. The increase in protein kinase C activity reaches a maximum at approximately 60 s, a time frame that is consistent with the protein phosphorylation and the subsequent morphologic and secretory events. X-ray analysis revealed two types of dense bodies containing various amounts of calcium which appeared to be released sequentially after PAF activation. These results suggest that the protein phosphorylation that controls the physiologic events resulting from PAF activation of human platelets is catalyzed by protein kinase C.

  16. Frameshift Mutation Confers Function as Virulence Factor to Leucine-Rich Repeat Protein from Acidovorax avenae

    PubMed Central

    Kondo, Machiko; Hirai, Hiroyuki; Furukawa, Takehito; Yoshida, Yuki; Suzuki, Aika; Kawaguchi, Takemasa; Che, Fang-Sik

    2017-01-01

    Many plant pathogens inject type III (T3SS) effectors into host cells to suppress host immunity and promote successful infection. The bacterial pathogen Acidovorax avenae causes brown stripe symptom in many species of monocotyledonous plants; however, individual strains of each pathogen infect only one host species. T3SS-deleted mutants of A. avenae K1 (virulent to rice) or N1141 (virulent to finger millet) caused no symptom in each host plant, suggesting that T3SS effectors are involved in the symptom formation. To identify T3SS effectors as virulence factors, we performed whole-genome and predictive analyses. Although the nucleotide sequence of the novel leucine-rich repeat protein (Lrp) gene of N1141 had high sequence identity with K1 Lrp, the amino acid sequences of the encoded proteins were quite different due to a 1-bp insertion within the K1 Lrp gene. An Lrp-deleted K1 strain (KΔLrp) did not cause brown stripe symptom in rice (host plant for K1); by contrast, the analogous mutation in N1141 (NΔLrp) did not interfere with infection of finger millet. In addition, NΔLrp retained the ability to induce effector-triggered immunity (ETI), including hypersensitive response cell death and expression of ETI-related genes. These data indicated that K1 Lrp functions as a virulence factor in rice, whereas N1141 Lrp does not play a similar role in finger millet. Yeast two-hybrid screening revealed that K1 Lrp interacts with oryzain α, a pathogenesis-related protein of the cysteine protease family, whereas N1141 Lrp, which contains LRR domains, does not. This specific interaction between K1 Lrp and oryzain α was confirmed by Bimolecular fluorescence complementation assay in rice cells. Thus, K1 Lrp protein may have acquired its function as virulence factor in rice due to a frameshift mutation. PMID:28101092

  17. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein

    PubMed Central

    Lyonnais, Sébastien; Tarrés-Soler, Aleix; Rubio-Cosials, Anna; Cuppari, Anna; Brito, Reicy; Jaumot, Joaquim; Gargallo, Raimundo; Vilaseca, Marta; Silva, Cristina; Granzhan, Anton; Teulade-Fichou, Marie-Paule; Eritja, Ramon; Solà, Maria

    2017-01-01

    The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria. PMID:28276514

  18. Identification of a plant serine-arginine-rich protein similar to the mammalian splicing factor SF2/ASF.

    PubMed

    Lazar, G; Schaal, T; Maniatis, T; Goodman, H M

    1995-08-15

    We show that the higher plant Arabidopsis thaliana has a serine-arginine-rich (SR) protein family whose members contain a phosphoepitope shared by the animal SR family of splicing factors. In addition, we report the cloning and characterization of a cDNA encoding a higher-plant SR protein from Arabidopsis, SR1, which has striking sequence and structural homology to the human splicing factor SF2/ASF. Similar to SF2/ASF, the plant SR1 protein promotes splice site switching in mammalian nuclear extracts. A novel feature of the Arabidopsis SR protein is a C-terminal domain containing a high concentration of proline, serine, and lysine residues (PSK domain), a composition reminiscent of histones. This domain includes a putative phosphorylation site for the mitotic kinase cyclin/p34cdc2.

  19. Influence of parenteral administration routes and additional factors on vaccine safety and immunogenicity: a review of recent literature.

    PubMed

    Herzog, Christian

    2014-03-01

    Vaccines have to be administered via an appropriate route, i.e. a route, which is optimal regarding safety, immunogenicity and practicability. In addition, there are factors, such as body site, needle length, injection technique, depth of injection, type of antigen, vaccine formulation, adjuvants, age, sex, race/ethnicity, body mass, and pre-existing immunity, which can have an impact on the reactogenicity and tolerability and/or on the immunogenicity of a given vaccine. For parenteral vaccine administration there are currently three routes licensed: intramuscular, subcutaneous and intradermal, either by using conventional hypodermic needles or by using alternative or needle-free injection devices. The factors potentially impacting on the 'performance' of a given route of administration, as reported in recent literature, are outlined and discussed in view of their importance. These factors need to be accounted and controlled for when designing vaccine studies and should be reported in a transparent and standardised way in publications.

  20. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    PubMed Central

    Lakhssassi, Naoufal; Liu, Shiming; Bekal, Sadia; Zhou, Zhou; Colantonio, Vincent; Lambert, Kris; Barakat, Abdelali; Meksem, Khalid

    2017-01-01

    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN. PMID:28338077

  1. Influence of boron addition to Ti-13Zr-13Nb alloy on MG63 osteoblast cell viability and protein adsorption.

    PubMed

    Majumdar, P; Singh, S B; Dhara, S; Chakraborty, M

    2015-01-01

    Cell proliferation, cell morphology and protein adsorption on near β-type Ti-13Zr-13Nb (TZN) alloy and Ti-13Zr-13Nb-0.5B (TZNB) composite have been investigated and compared to evaluate the effect of boron addition which has been added to the Ti alloy to improve their poor tribological properties by forming in situ TiB precipitates. MG63 cell proliferation on substrates with different chemistry but the same topography was compared. The MTT assay test showed that the cell viability on the TZN alloy was higher than the boron containing TZNB composite after 36 h of incubation and the difference was pronounced after 7 days. However, both the materials showed substantially higher cell attachment than the control (polystyrene). For the same period of incubation in fetal bovine serum (FBS), the amount of protein adsorbed on the surface of boron free TZN samples was higher than that in the case of boron containing TZNB composite. The presence of boron in the TZN alloy influenced protein adsorption and cell response and they are lower in TZNB than in TZN as a result of the associated difference in chemical characteristics.

  2. Protein modification during anti-viral heat-treatment bioprocessing of factor VIII concentrates, factor IX concentrates, and model proteins in the presence of sucrose.

    PubMed

    Smales, C Mark; Pepper, Duncan S; James, David C

    2002-01-05

    To ensure the optimal safety of plasma derived and new generation recombinant proteins, heat treatment is customarily applied in the manufacturing of such biopharmaceuticals as a means of viral inactivation. In subjecting proteins to anti-viral heat-treatment it is necessary to use high concentrations of thermostabilizing excipients to prevent protein damage, and it is therefore imperative that the correct balance between bioprocessing conditions, maintenance of protein integrity and virus kill is found. In this study we have utilized model proteins (lysozyme, fetuin, and human serum albumin) and plasma-derived therapeutic proteins (factor VIII and factor IX) to investigate the protein modifications that occur during anti-viral heat treatment. Specifically, we investigated the relationship between bioprocessing conditions and the type and extent of protein modification under a variety of industrially relevant wet and lyophilized heat treatments using sucrose as a thermostabilizing agent. Heat treatment led to the formation of disulfide crosslinks and aggregates in proteins containing free cysteine residues. Terminal oligosaccharide sialic acid residues were hydrolyzed from the glycan moieties of glycoproteins during anti-viral heat treatment. Heat treatment promoted sucrose hydrolysis to yield glucose and fructose, leading, in turn, to the glycation of lysine amino groups in those proteins containing di-lysine motifs. During extended hear treatments, 1,2-dicarbonyl type advanced glycation end-products were also formed. Glycation-type modifications were more prevalent in wet heat-treated protein formulations.

  3. Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality.

    PubMed

    Sarwar Gilani, G; Wu Xiao, Chao; Cockell, Kevin A

    2012-08-01

    Dietary antinutritional factors have been reported to adversely affect the digestibility of protein, bioavailability of amino acids and protein quality of foods. Published data on these negative effects of major dietary antinutritional factors are summarized in this manuscript. Digestibility and the quality of mixed diets in developing countries are considerably lower than of those in developed regions. For example, the digestibility of protein in traditional diets from developing countries such as India, Guatemala and Brazil is considerably lower compared to that of protein in typical North American diets (54-78 versus 88-94 %). Poor digestibility of protein in the diets of developing countries, which are based on less refined cereals and grain legumes as major sources of protein, is due to the presence of less digestible protein fractions, high levels of insoluble fibre, and/or high concentrations of antinutritional factors present endogenously or formed during processing. Examples of naturally occurring antinutritional factors include glucosinolates in mustard and canola protein products, trypsin inhibitors and haemagglutinins in legumes, tannins in legumes and cereals, gossypol in cottonseed protein products, and uricogenic nucleobases in yeast protein products. Heat/alkaline treatments of protein products may yield Maillard reaction compounds, oxidized forms of sulphur amino acids, D-amino acids and lysinoalanine (LAL, an unnatural nephrotoxic amino acid derivative). Among common food and feed protein products, soyabeans are the most concentrated source of trypsin inhibitors. The presence of high levels of dietary trypsin inhibitors from soyabeans, kidney beans or other grain legumes have been reported to cause substantial reductions in protein and amino acid digestibility (up to 50 %) and protein quality (up to 100 %) in rats and/or pigs. Similarly, the presence of high levels of tannins in sorghum and other cereals, fababean and other grain legumes can cause

  4. Homologous Transcription Factors DUX4 and DUX4c Associate with Cytoplasmic Proteins during Muscle Differentiation

    PubMed Central

    Ansseau, Eugénie; Matteotti, Christel; Yip, Cassandre; Liu, Jian; Leroy, Baptiste; Hubeau, Céline; Gerbaux, Cécile; Cloet, Samuel; Wauters, Armelle; Zorbo, Sabrina; Meyer, Pierre; Pirson, Isabelle; Laoudj-Chenivesse, Dalila; Wattiez, Ruddy; Harper, Scott Q.; Belayew, Alexandra; Coppée, Frédérique

    2016-01-01

    Hundreds of double homeobox (DUX) genes map within 3.3-kb repeated elements dispersed in the human genome and encode DNA-binding proteins. Among these, we identified DUX4, a potent transcription factor that causes facioscapulohumeral muscular dystrophy (FSHD). In the present study, we performed yeast two-hybrid screens and protein co-purifications with HaloTag-DUX fusions or GST-DUX4 pull-down to identify protein partners of DUX4, DUX4c (which is identical to DUX4 except for the end of the carboxyl terminal domain) and DUX1 (which is limited to the double homeodomain). Unexpectedly, we identified and validated (by co-immunoprecipitation, GST pull-down, co-immunofluorescence and in situ Proximal Ligation Assay) the interaction of DUX4, DUX4c and DUX1 with type III intermediate filament protein desmin in the cytoplasm and at the nuclear periphery. Desmin filaments link adjacent sarcomere at the Z-discs, connect them to sarcolemma proteins and interact with mitochondria. These intermediate filament also contact the nuclear lamina and contribute to positioning of the nuclei. Another Z-disc protein, LMCD1 that contains a LIM domain was also validated as a DUX4 partner. The functionality of DUX4 or DUX4c interactions with cytoplasmic proteins is underscored by the cytoplasmic detection of DUX4/DUX4c upon myoblast fusion. In addition, we identified and validated (by co-immunoprecipitation, co-immunofluorescence and in situ Proximal Ligation Assay) as DUX4/4c partners several RNA-binding proteins such as C1QBP, SRSF9, RBM3, FUS/TLS and SFPQ that are involved in mRNA splicing and translation. FUS and SFPQ are nuclear proteins, however their cytoplasmic translocation was reported in neuronal cells where they associated with ribonucleoparticles (RNPs). Several other validated or identified DUX4/DUX4c partners are also contained in mRNP granules, and the co-localizations with cytoplasmic DAPI-positive spots is in keeping with such an association. Large muscle RNPs were

  5. Protein Destabilization as a Common Factor in Diverse Inherited Disorders

    PubMed Central

    Redler, Rachel L.; Das, Jhuma; Diaz, Juan R.

    2015-01-01

    Protein destabilization by amino acid substitutions is proposed to play a prominent role in widespread inherited human disorders, not just those known to involve protein misfolding and aggregation. To test this hypothesis, we computationally evaluate the effects on protein stability of all possible amino acid substitutions in 20 disease-associated proteins with multiple identified pathogenic missense mutations. For 18 of the 20 proteins studied, substitutions at known positions of pathogenic mutations are significantly more likely to destabilize the native protein fold (as indicated by more positive values of ΔΔG). Thus, positions identified as sites of disease-associated mutations, as opposed to non-disease-associated sites, are predicted to be more vulnerable to protein destabilization upon amino acid substitution. This finding supports the notion that destabilization of native protein structure underlies the pathogenicity of broad set of missense mutations, even in cases where reduced protein stability and/or aggregation are not characteristic of the disease state. PMID:26584803

  6. Cellulose synthase interacting protein: a new factor in cellulose synthesis.

    PubMed

    Gu, Ying; Somerville, Chris

    2010-12-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the recent identification of a novel component. CSI1, which encodes CESA interacting protein 1 (CSI1) in Arabidopsis. CSI1, as the first non-CESA proteins associated with cellulose synthase complexes, opens up many opportunities.

  7. Tissue Factor Pathway Inhibitor: Multiple Anticoagulant Activities for a Single Protein.

    PubMed

    Mast, Alan E

    2016-01-01

    Tissue factor (TF) pathway inhibitor (TFPI) is an anticoagulant protein that inhibits early phases of the procoagulant response. Alternatively spliced isoforms of TFPI are differentially expressed by endothelial cells and human platelets and plasma. The TFPIβ isoform localizes to the endothelium surface where it is a potent inhibitor of TF-factor VIIa complexes that initiate blood coagulation. The TFPIα isoform is present in platelets. TFPIα contains a stretch of 9 amino acids nearly identical to those found in the B-domain of factor V that are well conserved in mammals. These amino acids provide exosite binding to activated factor V, which allows for TFPIα to inhibit prothrombinase during the initiation phase of blood coagulation. Endogenous inhibition at this point in the coagulation cascade was only recently recognized and has provided a biochemical rationale to explain the pathophysiological mechanisms underlying several clinical disorders. These include the east Texas bleeding disorder that is caused by production of an altered form of factor V with high affinity for TFPI and a paradoxical procoagulant effect of heparins. In addition, these findings have led to ideas for pharmacological targeting of TFPI that may reduce bleeding in hemophilia patients.

  8. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins.

    PubMed

    Wei, Saisai; Wang, Hongbo; Lu, Chunwan; Malmut, Sarah; Zhang, Jianqiao; Ren, Shumei; Yu, Guohua; Wang, Wei; Tang, Dale D; Yan, Chunhong

    2014-03-28

    Mutant p53 proteins (mutp53) often acquire oncogenic activities, conferring drug resistance and/or promoting cancer cell migration and invasion. Although it has been well established that such a gain of function is mainly achieved through interaction with transcriptional regulators, thereby modulating cancer-associated gene expression, how the mutp53 function is regulated remains elusive. Here we report that activating transcription factor 3 (ATF3) bound common mutp53 (e.g. R175H and R273H) and, subsequently, suppressed their oncogenic activities. ATF3 repressed mutp53-induced NFKB2 expression and sensitized R175H-expressing cancer cells to cisplatin and etoposide treatments. Moreover, ATF3 appeared to suppress R175H- and R273H-mediated cancer cell migration and invasion as a consequence of preventing the transcription factor p63 from inactivation by mutp53. Accordingly, ATF3 promoted the expression of the metastasis suppressor SHARP1 in mutp53-expressing cells. An ATF3 mutant devoid of the mutp53-binding domain failed to disrupt the mutp53-p63 binding and, thus, lost the activity to suppress mutp53-mediated migration, suggesting that ATF3 binds to mutp53 to suppress its oncogenic function. In line with these results, we found that down-regulation of ATF3 expression correlated with lymph node metastasis in TP53-mutated human lung cancer. We conclude that ATF3 can suppress mutp53 oncogenic function, thereby contributing to tumor suppression in TP53-mutated cancer.

  9. Glycan structure of Gc Protein-derived Macrophage Activating Factor as revealed by mass spectrometry.

    PubMed

    Borges, Chad R; Rehder, Douglas S

    2016-09-15

    Disagreement exists regarding the O-glycan structure attached to human vitamin D binding protein (DBP). Previously reported evidence indicated that the O-glycan of the Gc1S allele product is the linear core 1 NeuNAc-Gal-GalNAc-Thr trisaccharide. Here, glycan structural evidence is provided from glycan linkage analysis and over 30 serial glycosidase-digestion experiments which were followed by analysis of the intact protein by electrospray ionization mass spectrometry (ESI-MS). Results demonstrate that the O-glycan from the Gc1F protein is the same linear trisaccharide found on the Gc1S protein and that the hexose residue is galactose. In addition, the putative anti-cancer derivative of DBP known as Gc Protein-derived Macrophage Activating Factor (GcMAF, which is formed by the combined action of β-galactosidase and neuraminidase upon DBP) was analyzed intact by ESI-MS, revealing that the activating E. coli β-galactosidase cleaves nothing from the protein-leaving the glycan structure of active GcMAF as a Gal-GalNAc-Thr disaccharide, regardless of the order in which β-galactosidase and neuraminidase are applied. Moreover, glycosidase digestion results show that α-N-Acetylgalactosamindase (nagalase) lacks endoglycosidic function and only cleaves the DBP O-glycan once it has been trimmed down to a GalNAc-Thr monosaccharide-precluding the possibility of this enzyme removing the O-glycan trisaccharide from cancer-patient DBP in vivo.

  10. Template-dependent nucleotide addition in the reverse (3′-5′) direction by Thg1-like protein

    PubMed Central

    Kimura, Shoko; Suzuki, Tateki; Chen, Meirong; Kato, Koji; Yu, Jian; Nakamura, Akiyoshi; Tanaka, Isao; Yao, Min

    2016-01-01

    Thg1-like protein (TLP) catalyzes the addition of a nucleotide to the 5′-end of truncated transfer RNA (tRNA) species in a Watson-Crick template–dependent manner. The reaction proceeds in two steps: the activation of the 5′-end by adenosine 5′-triphosphate (ATP)/guanosine 5′-triphosphate (GTP), followed by nucleotide addition. Structural analyses of the TLP and its reaction intermediates have revealed the atomic detail of the template-dependent elongation reaction in the 3′-5′ direction. The enzyme creates two substrate binding sites for the first- and second-step reactions in the vicinity of one reaction center consisting of two Mg2+ ions, and the two reactions are executed at the same reaction center in a stepwise fashion. When the incoming nucleotide is bound to the second binding site with Watson-Crick hydrogen bonds, the 3′-OH of the incoming nucleotide and the 5′-triphosphate of the tRNA are moved to the reaction center where the first reaction has occurred. That the 3′-5′ elongation enzyme performs this elaborate two-step reaction in one catalytic center suggests that these two reactions have been inseparable throughout the process of protein evolution. Although TLP and Thg1 have similar tetrameric organization, the tRNA binding mode of TLP is different from that of Thg1, a tRNAHis-specific G−1 addition enzyme. Each tRNAHis binds to three of the four Thg1 tetramer subunits, whereas in TLP, tRNA only binds to a dimer interface and the elongation reaction is terminated by measuring the accepter stem length through the flexible β-hairpin. Furthermore, mutational analyses show that tRNAHis is bound to TLP in a similar manner as Thg1, thus indicating that TLP has a dual binding mode. PMID:27051866

  11. Effect on the healing of periapical perforations in dogs of the addition of growth factors to calcium hydroxide.

    PubMed

    Kim, M; Kim, B; Yoon, S

    2001-12-01

    The purpose of this study was to investigate the effect of the addition of platelet-derived growth factor-BB and insulin-like growth factor-I to calcium hydroxide in the repair of apical perforations in dogs. Fifty-one premolar teeth of four beagle dogs were used. After developing periapical lesions root apices were artificially perforated. The teeth were divided into the three groups: group 1, the apical perforations were not sealed; group 2, the perforated areas were obturated with calcium hydroxide; and group 3, calcium hydroxide plus growth factors was applied to the sites of perforation. All canals were filled by a lateral condensation technique. Animals were killed 12 wk later, and sections were hematoxylin & eosin-stained and immunostained for osteonectin. The amount of inflammation was evaluated histomorphologically. The one-way ANOVA test demonstrated that the three groups were significantly different from one another. In group 3 there was no inflammatory reaction of apical tissue, and the connective tissue adjacent to the newly formed hard tissue was strongly immunostained for osteonectin. Most sections in group 1 showed no apical healing. Moderate healing was found in group 2. In conclusion the combination of platelet-derived growth factor-BB and insulin-like growth factor-I with calcium hydroxide improved healing of apical perforation in dogs.

  12. Additive Promotion of Viral Internal Ribosome Entry Site-Mediated Translation by Far Upstream Element-Binding Protein 1 and an Enterovirus 71-Induced Cleavage Product

    PubMed Central

    Hung, Chuan-Tien; Kung, Yu-An; Li, Mei-Ling; Lee, Kuo-Ming; Liu, Shih-Tung; Shih, Shin-Ru

    2016-01-01

    The 5' untranslated region (5' UTR) of the enterovirus 71 (EV71) RNA genome contains an internal ribosome entry site (IRES) that is indispensable for viral protein translation. Due to the limited coding capacity of their RNA genomes, EV71 and other picornaviruses typically recruit host factors, known as IRES trans-acting factors (ITAFs), to mediate IRES-dependent translation. Here, we show that EV71 viral proteinase 2A is capable of cleaving far upstream element-binding protein 1 (FBP1), a positive ITAF that directly binds to the EV71 5' UTR linker region to promote viral IRES-driven translation. The cleavage occurs at the Gly-371 residue of FBP1 during the EV71 infection process, and this generates a functional cleavage product, FBP11-371. Interestingly, the cleavage product acts to promote viral IRES activity. Footprinting analysis and gel mobility shift assay results showed that FBP11-371 similarly binds to the EV71 5' UTR linker region, but at a different site from full-length FBP1; moreover, FBP1 and FBP11-371 were found to act additively to promote IRES-mediated translation and virus yield. Our findings expand the current understanding of virus-host interactions with regard to viral recruitment and modulation of ITAFs, and provide new insights into translational control during viral infection. PMID:27780225

  13. Development and regional expression of beta nerve growth factor messenger RNA and protein in the rat central nervous system.

    PubMed Central

    Whittemore, S R; Ebendal, T; Lärkfors, L; Olson, L; Seiger, A; Strömberg, I; Persson, H

    1986-01-01

    The presence of nerve growth factor (NGF) mRNA and protein in the rat central nervous system is documented. Blot-hybridization analysis showed an abundance of NGF mRNA in the hippocampus, cerebral cortex, and olfactory bulb. Enzyme immunoassay confirmed significant levels of a NGF-like protein in the hippocampus and cerebral cortex. Bioassay of a NGF-like immunoaffinity-purified protein from these regions was physiologically indistinguishable from NGF. Immunohistochemistry revealed a widespread distribution of NGF-like reactivity in the adult brain, preferentially in fiber tracts. NGF mRNA accumulation began at birth, with adult levels reached 3 weeks postnatally. Enzyme immunoassay detected the presence of a NGF-like protein in the embryonic rat brain. Postnatally, the level of NGF-like protein reached a maximum at 3 weeks. Additionally, a distinct fetal form of NGF may exist. Images PMID:3456170

  14. Screening for Host Factors Directly Interacting with RSV Protein: Microfluidics.

    PubMed

    Kipper, Sarit; Avrahami, Dorit; Bajorek, Monika; Gerber, Doron

    2016-01-01

    We present a high-throughput microfluidics platform to identify novel host cell binding partners of respiratory syncytial virus (RSV) matrix (M) protein. The device consists of thousands of reaction chambers controlled by micro-mechanical valves. The microfluidic device is mated to a microarray-printed custom-made gene library. These genes are then transcribed and translated on-chip, resulting in a protein array ready for binding to RSV M protein.Even small viral proteome, such as that of RSV, presents a challenge due to the fact that viral proteins are usually multifunctional and thus their interaction with the host is complex. Protein microarrays technology allows the interrogation of protein-protein interactions, which could possibly overcome obstacles by using conventional high throughput methods. Using microfluidics platform we have identified new host interactors of M involved in various cellular pathways. A number of microfluidics based assays have already provided novel insights into the virus-host interactome, and the results have important implications for future antiviral strategies aimed at targets of viral protein interactions with the host.

  15. Screening bicyclic peptide libraries for protein-protein interaction inhibitors: discovery of a tumor necrosis factor-α antagonist.

    PubMed

    Lian, Wenlong; Upadhyaya, Punit; Rhodes, Curran A; Liu, Yusen; Pei, Dehua

    2013-08-14

    Protein-protein interactions represent a new class of exciting but challenging drug targets, because their large, flat binding sites lack well-defined pockets for small molecules to bind. We report here a methodology for chemical synthesis and screening of large combinatorial libraries of bicyclic peptides displayed on rigid small-molecule scaffolds. With planar trimesic acid as the scaffold, the resulting bicyclic peptides are effective for binding to protein surfaces such as the interfaces of protein-protein interactions. Screening of a bicyclic peptide library against tumor necrosis factor-α (TNFα) identified a potent antagonist that inhibits the TNFα-TNFα receptor interaction and protects cells from TNFα-induced cell death. Bicyclic peptides of this type may provide a general solution for inhibition of protein-protein interactions.

  16. Glucocorticoids and protein kinase A coordinately modulate transcription factor recruitment at a glucocorticoid-responsive unit.

    PubMed Central

    Espinás, M L; Roux, J; Pictet, R; Grange, T

    1995-01-01

    The rat tyrosine aminotransferase gene is a model system to study transcriptional regulation by glucocorticoid hormones. We analyzed transcription factor binding to the tyrosine aminotransferase gene glucocorticoid-responsive unit (GRU) at kb -2.5, using in vivo footprinting studies with both dimethyl sulfate and DNase I. At this GRU, glucocorticoid activation triggers a disruption of the nucleosomal structure. We show here that various regulatory pathways affect transcription factor binding to this GRU. The binding differs in two closely related glucocorticoid-responsive hepatoma cell lines. In line H4II, glucocorticoid induction promotes the recruitment of hepatocyte nuclear factor 3 (HNF3), presumably through the nucleosomal disruption. However, the footprint of the glucocorticoid receptor (GR) is not visible, even though a regular but transient interaction of the GR is necessary to maintain HNF3 binding. In contrast, in line FTO2B, HNF3 binds to the GRU in the absence of glucocorticoids and nucleosomal disruption, showing that a "closed" chromatin conformation does not repress the binding of certain transcription factors in a uniform manner. In FTO2B cells, the footprint of the GR is detectable, but this requires the activation of protein kinase A. In addition, protein kinase A stimulation also improves the recruitment of HNF3 independently of glucocorticoids and enhances the glucocorticoid response mediated by this GRU in an HNF3-dependent manner. In conclusion, the differences in the behavior of this regulatory sequence in the two cell lines show that various regulatory pathways are integrated at this GRU through modulation of interrelated events: transcription factor binding to DNA and nucleosomal disruption. PMID:7565684

  17. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    NASA Astrophysics Data System (ADS)

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-10-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype.

  18. Stretching human mesenchymal stromal cells on stiffness-customized collagen type I generates a smooth muscle marker profile without growth factor addition

    PubMed Central

    Rothdiener, Miriam; Hegemann, Miriam; Uynuk-Ool, Tatiana; Walters, Brandan; Papugy, Piruntha; Nguyen, Phong; Claus, Valentin; Seeger, Tanja; Stoeckle, Ulrich; Boehme, Karen A.; Aicher, Wilhelm K.; Stegemann, Jan P.; Hart, Melanie L.; Kurz, Bodo; Klein, Gerd; Rolauffs, Bernd

    2016-01-01

    Using matrix elasticity and cyclic stretch have been investigated for inducing mesenchymal stromal cell (MSC) differentiation towards the smooth muscle cell (SMC) lineage but not in combination. We hypothesized that combining lineage-specific stiffness with cyclic stretch would result in a significantly increased expression of SMC markers, compared to non-stretched controls. First, we generated dense collagen type I sheets by mechanically compressing collagen hydrogels. Atomic force microscopy revealed a nanoscale stiffness range known to support myogenic differentiation. Further characterization revealed viscoelasticity and stable biomechanical properties under cyclic stretch with >99% viable adherent human MSC. MSCs on collagen sheets demonstrated a significantly increased mRNA but not protein expression of SMC markers, compared to on culture flasks. However, cyclic stretch of MSCs on collagen sheets significantly increased both mRNA and protein expression of α-smooth muscle actin, transgelin, and calponin versus plastic and non-stretched sheets. Thus, lineage-specific stiffness and cyclic stretch can be applied together for inducing MSC differentiation towards SMCs without the addition of recombinant growth factors or other soluble factors. This represents a novel stimulation method for modulating the phenotype of MSCs towards SMCs that could easily be incorporated into currently available methodologies to obtain a more targeted control of MSC phenotype. PMID:27775041

  19. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors required during Trypanosoma cruzi parasitophorous vacuole development.

    PubMed

    Cueto, Juan Agustín; Vanrell, María Cristina; Salassa, Betiana Nebaí; Nola, Sébastien; Galli, Thierry; Colombo, María Isabel; Romano, Patricia Silvia

    2016-12-19

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is an obligate intracellular parasite that exploits different host vesicular pathways to invade the target cells. Vesicular and target soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are key proteins of the intracellular membrane fusion machinery. During the early times of T. cruzi infection, several vesicles are attracted to the parasite contact sites in the plasma membrane. Fusion of these vesicles promotes the formation of the parasitic vacuole and parasite entry. In this work, we study the requirement and the nature of SNAREs involved in the fusion events that take place during T. cruzi infection. Our results show that inhibition of N-ethylmaleimide-sensitive factor protein, a protein required for SNARE complex disassembly, impairs T. cruzi infection. Both TI-VAMP/VAMP7 and cellubrevin/VAMP3, two v-SNAREs of the endocytic and exocytic pathways, are specifically recruited to the parasitophorous vacuole membrane in a synchronized manner but, although VAMP3 is acquired earlier than VAMP7, impairment of VAMP3 by tetanus neurotoxin fails to reduce T. cruzi infection. In contrast, reduction of VAMP7 activity by expression of VAMP7's longin domain, depletion by small interfering RNA or knockout, significantly decreases T. cruzi infection susceptibility as a result of a minor acquisition of lysosomal components to the parasitic vacuole. In addition, overexpression of the VAMP7 partner Vti1b increases the infection, whereas expression of a KIF5 kinesin mutant reduces VAMP7 recruitment to vacuole and, concomitantly, T. cruzi infection. Altogether, these data support a key role of TI-VAMP/VAMP7 in the fusion events that culminate in the T. cruzi parasitophorous vacuole development.

  20. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    PubMed

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation.

  1. Additional copies of the proteolipid protein gene causing Pelizaeus-Merzbacher disease arise by separate integration into the X chromosome.

    PubMed

    Hodes, M E; Woodward, K; Spinner, N B; Emanuel, B S; Enrico-Simon, A; Kamholz, J; Stambolian, D; Zackai, E H; Pratt, V M; Thomas, I T; Crandall, K; Dlouhy, S R; Malcolm, S

    2000-07-01

    The proteolipid protein gene (PLP) is normally present at chromosome Xq22. Mutations and duplications of this gene are associated with Pelizaeus-Merzbacher disease (PMD). Here we describe two new families in which males affected with PMD were found to have a copy of PLP on the short arm of the X chromosome, in addition to a normal copy on Xq22. In the first family, the extra copy was first detected by the presence of heterozygosity of the AhaII dimorphism within the PLP gene. The results of FISH analysis showed an additional copy of PLP in Xp22.1, although no chromosomal rearrangements could be detected by standard karyotype analysis. Another three affected males from the family had similar findings. In a second unrelated family with signs of PMD, cytogenetic analysis showed a pericentric inversion of the X chromosome. In the inv(X) carried by several affected family members, FISH showed PLP signals at Xp11.4 and Xq22. A third family has previously been reported, in which affected members had an extra copy of the PLP gene detected at Xq26 in a chromosome with an otherwise normal banding pattern. The identification of three separate families in which PLP is duplicated at a noncontiguous site suggests that such duplications could be a relatively common but previously undetected cause of genetic disorders.

  2. A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pkc1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans.

    PubMed

    Adler, Amos; Park, Yoon-Dong; Larsen, Peter; Nagarajan, Vijayaraj; Wollenberg, Kurt; Qiu, Jin; Myers, Timothy G; Williamson, Peter R

    2011-06-10

    Eukaryotic cells utilize complex signaling systems to detect their environments, responding and adapting as new conditions arise during evolution. The basidiomycete fungus Cryptococcus neoformans is a leading cause of AIDS-related death worldwide and utilizes the calcineurin and protein kinase C-1 (Pkc1) signaling pathways for host adaptation and expression of virulence. In the present studies, a C-terminal zinc finger transcription factor, homologous both to the calcineurin-responsive zinc fingers (Crz1) of ascomycetes and to the Pkc1-dependent specificity protein-1 (Sp1) transcription factors of metazoans, was identified and named SP1 because of its greater similarity to the metazoan factors. Structurally, the Cryptococcus neoformans Sp1 (Cn Sp1) protein was found to have acquired an additional zinc finger motif from that of Crz1 and showed Pkc1-dependent phosphorylation, nuclear localization, and whole genome epistatic associations under starvation conditions. Transcriptional targets of Cn Sp1 shared functional similarities with Crz1 factors, such as cell wall synthesis, but gained the regulation of processes involved in carbohydrate metabolism, including trehalose metabolism, and lost others, such as the induction of autophagy. In addition, overexpression of Cn Sp1 in a pkc1Δ mutant showed restoration of altered phenotypes involved in virulence, including cell wall stability, nitrosative stress, and extracellular capsule production. Cn Sp1 was also found to be important for virulence of the fungus using a mouse model. In summary, these data suggest an evolutionary shift in C-terminal zinc finger proteins during fungal evolution, transforming them from calcineurin-dependent to PKC1-dependent transcription factors, helping to shape the role of fungal pathogenesis of C. neoformans.

  3. Protein synthesis elongation factor EF-1 alpha expression and longevity in Drosophila melanogaster.

    PubMed Central

    Shikama, N; Ackermann, R; Brack, C

    1994-01-01

    It has been proposed that the decline in protein synthesis observed in aging organisms may result from a decrease in elongation factor EF-1 alpha. Transgenic Drosophila melanogaster flies carrying an additional copy of the EF-1 alpha gene under control of a heat-inducible promoter have an extended lifespan, further indicating that the EF-1 alpha gene may play an important role in determining longevity. To test this hypothesis, we have quantitated EF-1 alpha mRNA, EF-1 alpha protein, and the EF-1 alpha complex-formation activity in these transgenic flies. Furthermore, we have tested whether the transgene construct is functional--i.e., whether transgenic mRNA is induced when flies are grown at higher temperature. The results show that although there is a clear difference in mean lifespan between the EF-1 alpha transgenic (E) flies and the control transgenic (C) flies, E flies do not express more EF-1 alpha protein or mRNA than C flies kept at the same experimental conditions. Although the transgene can be induced when E flies are heat-shocked at 37 degrees C, transgenic mRNA is not detectable in E flies aged at 29 degrees C. In both lines, the loss in catalytic activity with age is the same. We conclude that the E flies examined here do not live longer because of overexpressing the EF-1 alpha gene. Images PMID:8183891

  4. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor.

    PubMed

    Aqeilan, Rami I; Palamarchuk, Alexey; Weigel, Ronald J; Herrero, Juan J; Pekarsky, Yuri; Croce, Carlo M

    2004-11-15

    The WWOX gene encodes a tumor suppressor WW domain-containing protein, Wwox. Alterations of WWOX have been demonstrated in multiple types of cancer, and introduction of Wwox into Wwox-negative tumor cells has resulted in tumor suppression and apoptosis. The Wwox protein contains two WW domains that typically bind proline-rich motifs and mediate protein-protein interactions. Recently, we have described functional cross-talk between the Wwox protein and the p53 homologue, p73. To further explore the biological function of Wwox, we investigated other interacting candidates. In this report, we demonstrate a physical and functional association between AP-2gamma transcription factor and the Wwox protein. AP-2gamma at 20q13.2 encodes a transcription factor and is frequently amplified in breast carcinoma. We show that Wwox binds to the PPPY motif of AP-2gamma via its first WW domain. Alterations of tyrosine 33 in the first WW domain of Wwox or the proline-rich motif in AP-2gamma dramatically reduce this interaction. In addition, our results demonstrate that Wwox expression triggers redistribution of nuclear AP-2gamma to the cytoplasm, hence suppressing its transactivating function. Our results suggest that Wwox tumor suppressor protein inhibits AP-2gamma oncogenic activity by sequestering it in the cytoplasm.

  5. A survey of PPR proteins identifies DYW domains like those of land plant RNA editing factors in diverse eukaryotes.

    PubMed

    Schallenberg-Rüdinger, Mareike; Lenz, Henning; Polsakiewicz, Monika; Gott, Jonatha M; Knoop, Volker

    2013-01-01

    The pentatricopeptide repeat modules of PPR proteins are key to their sequence-specific binding to RNAs. Gene families encoding PPR proteins are greatly expanded in land plants where hundreds of them participate in RNA maturation, mainly in mitochondria and chloroplasts. Many plant PPR proteins contain additional carboxyterminal domains and have been identified as essential factors for specific events of C-to-U RNA editing, which is abundant in the two endosymbiotic plant organelles. Among those carboxyterminal domain additions to plant PPR proteins, the so-called DYW domain is particularly interesting given its similarity to cytidine deaminases. The frequency of organelle C-to-U RNA editing and the diversity of DYW-type PPR proteins correlate well in plants and both were recently identified outside of land plants, in the protist Naegleria gruberi. Here we present a systematic survey of PPR protein genes and report on the identification of additional DYW-type PPR proteins in the protists Acanthamoeba castellanii, Malawimonas jakobiformis, and Physarum polycephalum. Moreover, DYW domains were also found in basal branches of multi-cellular lineages outside of land plants, including the alga Nitella flexilis and the rotifers Adineta ricciae and Philodina roseola. Intriguingly, the well-characterized and curious patterns of mitochondrial RNA editing in the slime mold Physarum also include examples of C-to-U changes. Finally, we identify candidate sites for mitochondrial RNA editing in Malawimonas, further supporting a link between DYW-type PPR proteins and C-to-U editing, which may have remained hitherto unnoticed in additional eukaryote lineages.

  6. Adiponectin Provides Additional Information to Conventional Cardiovascular Risk Factors for Assessing the Risk of Atherosclerosis in Both Genders

    PubMed Central

    Yoon, Jin-Ha; Kim, Sung-Kyung; Choi, Ho-June; Choi, Soo-In; Cha, So-Youn; Koh, Sang-Baek

    2013-01-01

    Background This study evaluated the relation between adiponectin and atherosclerosis in both genders, and investigated whether adiponectin provides useful additional information for assessing the risk of atherosclerosis. Methods We measured serum adiponectin levels and other cardiovascular risk factors in 1033 subjects (454 men, 579 women) from the Korean Genomic Rural Cohort study. Carotid intima–media-thickness (CIMT) was used as measure of atherosclerosis. Odds ratios (ORs) with 95% confidence intervals (95% CI) were calculated using multiple logistic regression, and receiver operating characteristic curves (ROC), the category-free net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were calculated. Results After adjustment for conventional cardiovascular risk factors, such as age, waist circumference, smoking history, low-density and high-density lipoprotein cholesterol, triglycerides, systolic blood pressure and insulin resistance, the ORs (95%CI) of the third tertile adiponectin group were 0.42 (0.25–0.72) in men and 0.47 (0.29–0.75) in women. The area under the curve (AUC) on the ROC analysis increased significantly by 0.025 in men and 0.022 in women when adiponectin was added to the logistic model of conventional cardiovascular risk factors (AUC in men: 0.655 to 0.680, p = 0.038; AUC in women: 0.654 to 0.676, p = 0.041). The NRI was 0.32 (95%CI: 0.13–0.50, p<0.001), and the IDI was 0.03 (95%CI: 0.01–0.04, p<0.001) for men. For women, the category-free NRI was 0.18 (95%CI: 0.02–0.34, p = 0.031) and the IDI was 0.003 (95%CI: −0.002–0.008, p = 0.189). Conclusion Adiponectin and atherosclerosis were significantly related in both genders, and these relationships were independent of conventional cardiovascular risk factors. Furthermore, adiponectin provided additional information to conventional cardiovascular risk factors regarding the risk of atherosclerosis. PMID:24116054

  7. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis

    PubMed Central

    Zhang, Zhiyong; Zheng, Xixi; Yang, Jun; Messing, Joachim; Wu, Yongrui

    2016-01-01

    The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI. These findings show that three important traits—nutritional quality, calories, and yield—are linked through the same transcription factors. PMID:27621432

  8. Human chorionic gonadotropin promotes expression of protein absorption factors in the intestine of goldfish (Carassius auratus).

    PubMed

    Zhou, Y; Hao, G; Zhong, H; Wu, Q; Lu, S Q; Zhao, Q; Liu, Z

    2015-07-27

    Protein use is crucial for the ovulation and spawning of fish. Currently, limited information is available regarding the expression of protein absorption factors during the breeding seasons of teleosts and thus how various proteins involved in this process is not well-understood. The expression of CDX2, CREB, gluatamate dehydrogenase, LAT2, aminopeptidase N, PepT1, and SP1 were significantly elevated from the non-breeding season to the breeding season in female goldfish, and all proteins except PepT1 and SP1 were elevated in male goldfish. Injection of human chorionic gonadotropin upregulated the expression of all proteins except for aminopeptidase N in female goldfish and SP1 in male goldfish, suggesting a luteinizing hormone-inductive effect on protein absorption factors. Protein use in the intestine is increased during the breeding seasons as a result of increased luteinizing hormone.

  9. Protein kinase A activation of the surfactant protein B gene is mediated by phosphorylation of thyroid transcription factor 1.

    PubMed

    Yan, C; Whitsett, J A

    1997-07-11

    Thyroid transcription factor 1 (TTF-1) is a homeodomain-containing nuclear transcription factor expressed in epithelial cells of the lung and thyroid. TTF-1 binds to and activates the transcription of genes expressed selectively in the respiratory epithelium including pulmonary surfactant A, B, C and Clara cell secretory protein. Transfection with a plasmid encoding the cyclic AMP-dependent protein kinase (protein kinase A; PKA) catalytic subunit, Cat-beta, stimulated the phosphorylation of a TTF-1-flag fusion protein 6-7-fold in H441 pulmonary adenocarcinoma cells. Recombinant TTF-1 was phosphorylated by purified PKA catalytic subunit in the presence of [gamma-32P]ATP. PKA catalytic subunit family members, Cat-alpha and Cat-beta, markedly enhanced the transcriptional activation of surfactant B gene promoters by TTF-1 in vitro. Peptide mapping was used to identify a PKA phosphorylation site at the NH2 terminus of TTF-1. A 17-amino acid synthetic peptide comprising this site completely inhibited the PKA-dependent phosphorylation of TTF-1 in vitro. A substitution mutation of TTF-1 (Thr9 two head right arrow Ala) abolished phosphorylation by PKA and reduced transactivation of the surfactant B gene promoter. Transfection with a plasmid encoding the cAMP regulatory element binding factor inhibited transcriptional activity of the surfactant protein B gene promoter. Phosphorylation of TTF-1 mediates PKA-dependent activation of surfactant protein B gene transcription.

  10. The La protein counteracts cisplatin-induced cell death by stimulating protein synthesis of anti-apoptotic factor Bcl2

    PubMed Central

    Heise, Tilman; Kota, Venkatesh; Brock, Alexander; Morris, Amanda B.; Rodriguez, Reycel M.; Zierk, Avery W.; Howe, Philip H.; Sommer, Gunhild

    2016-01-01

    Up-regulation of anti-apoptotic factors is a critical mechanism of cancer cell resistance and often counteracts the success of chemotherapeutic treatment. Herein, we identified the cancer-associated RNA-binding protein La as novel factor contributing to cisplatin resistance. Our data demonstrate that depletion of the RNA-binding protein La in head and neck squamous cell carcinoma cells (HNSCC) increases the sensitivity toward cisplatin-induced cell death paralleled by reduced expression of the anti-apoptotic factor Bcl2. Furthermore, it is shown that transient expression of Bcl2 in La-depleted cells protects against cisplatin-induced cell death. By dissecting the underlying mechanism we report herein, that the La protein is required for Bcl2 protein synthesis in cisplatin-treated cells. The RNA chaperone La binds in close proximity to the authentic translation start site and unwinds a secondary structure embedding the authentic AUG. Altogether, our data support a novel model, whereby cancer-associated La protein contributes to cisplatin resistance by stimulating the translation of anti-apoptotic factor Bcl2 in HNSCC cells. PMID:27105491

  11. The La protein counteracts cisplatin-induced cell death by stimulating protein synthesis of anti-apoptotic factor Bcl2.

    PubMed

    Heise, Tilman; Kota, Venkatesh; Brock, Alexander; Morris, Amanda B; Rodriguez, Reycel M; Zierk, Avery W; Howe, Philip H; Sommer, Gunhild

    2016-05-17

    Up-regulation of anti-apoptotic factors is a critical mechanism of cancer cell resistance and often counteracts the success of chemotherapeutic treatment. Herein, we identified the cancer-associated RNA-binding protein La as novel factor contributing to cisplatin resistance. Our data demonstrate that depletion of the RNA-binding protein La in head and neck squamous cell carcinoma cells (HNSCC) increases the sensitivity toward cisplatin-induced cell death paralleled by reduced expression of the anti-apoptotic factor Bcl2. Furthermore, it is shown that transient expression of Bcl2 in La-depleted cells protects against cisplatin-induced cell death. By dissecting the underlying mechanism we report herein, that the La protein is required for Bcl2 protein synthesis in cisplatin-treated cells. The RNA chaperone La binds in close proximity to the authentic translation start site and unwinds a secondary structure embedding the authentic AUG. Altogether, our data support a novel model, whereby cancer-associated La protein contributes to cisplatin resistance by stimulating the translation of anti-apoptotic factor Bcl2 in HNSCC cells.

  12. Interaction of grape ASR proteins with a DREB transcription factor in the nucleus.

    PubMed

    Saumonneau, Amélie; Agasse, Alice; Bidoyen, Marie-Thérèse; Lallemand, Magali; Cantereau, Anne; Medici, Anna; Laloi, Maryse; Atanassova, Rossitza

    2008-10-15

    ASR proteins (abscissic acid, stress, ripening induced) are involved in plant responses to developmental and environmental signals but their biological functions remain to be elucidated. Grape ASR gene (VvMSA) encodes a new transcription factor regulating the expression of a glucose transporter. Here, we provide evidence for some polymorphism of grape ASRs and their identification as chromosomal non-histone proteins. By the yeast two-hybrid approach, a protein partner of VvMSA is isolated and characterized as an APETALA2 domain transcription factor. Interaction of the two proteins is further demonstrated by the BiFC approach and the exclusive nuclear localization of the heterodimer is visualized.

  13. Liquid-Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein-Protein Interactions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2015-09-08

    Dual variable domain immunoglobulin proteins (DVD-Ig proteins) are large molecules (MW ∼ 200 kDa) with increased asymmetry because of their extended Y-like shape, which results in increased formulation challenges. Liquid-liquid phase separation (LLPS) of protein solutions into protein-rich and protein-poor phases reduces solution stability at intermediate concentrations and lower temperatures, and is a serious concern in formulation development as therapeutic proteins are generally stored at refrigerated conditions. In the current work, LLPS was studied for a DVD-Ig protein molecule as a function of solution conditions by measuring solution opalescence. LLPS of the protein was confirmed by equilibrium studies and by visually observing under microscope. The protein does not undergo any structural change after phase separation. Protein-protein interactions were measured by light scattering (kD) and Tcloud (temperature that marks the onset of phase separation). There is a good agreement between kD measured in dilute solution with Tcloud measured in the critical concentration range. Results indicate that the increased complexity of the molecule (with respect to size, shape, and charge distribution on the molecule) increases contribution of specific and nonspecific interactions in solution, which are affected by formulation factors, resulting in LLPS for DVD-Ig protein.

  14. Microparticulation of whey protein: related factors affecting the solubility.

    PubMed

    Lieske, B; Konrad, G

    1994-10-01

    Solubility of Simplesse 100, the only whey-based fat substitute, was found to be good, considering the fact that technology for preparation of Simplesse 100 is a sequence of thermal steps. To characterize this phenomen, gel chromatography on Sephadex G-100, Sephacryl S-1000 and SDS-PAGE were used, supported by high-speed separation, UV studies and analytical procedures. Results show that the unusual solubility characteristic of microparticulated whey protein is related to two molecular effects: (1) optimal defolding of protein molecules and (2) stabilization of the defolded status by carbohydrate. Both effects were considered to favour non-covalent bonds, which contribute to the outstanding physico-functional and nutritive properties of microparticles.

  15. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    PubMed

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  16. Tumor necrosis factor receptor-associated protein 1 improves hypoxia-impaired energy production in cardiomyocytes through increasing activity of cytochrome c oxidase subunit II.

    PubMed

    Xiang, Fei; Ma, Si-Yuan; Zhang, Dong-Xia; Zhang, Qiong; Huang, Yue-Sheng

    2016-10-01

    Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1 and cytochrome c oxidase subunit II on energy production in hypoxic cardiomyocytes. Hypoxia repressed ATP production in cultured cardiomyocytes, whereas overexpression of tumor necrosis factor receptor-associated protein 1 significantly improved ATP production. Conversely, knockdown of tumor necrosis factor receptor-associated protein 1 facilitated the hypoxia-induced decrease in ATP synthesis. Further investigation revealed that tumor necrosis factor receptor-associated protein 1 induced the expression and activity of cytochrome c oxidase subunit II, a component of cytochrome c oxidase that is important in mitochondrial respiratory chain function. Moreover, lentiviral-mediated overexpression of cytochrome c oxidase subunit II antagonized the decrease in ATP synthesis caused by knockdown of tumor necrosis factor receptor-associated protein 1, whereas knockdown of cytochrome c oxidase subunit II attenuated the increase in ATP synthesis caused by overexpression of tumor necrosis factor receptor-associated protein 1. In addition, inhibition of cytochrome c oxidase subunit II by a specific inhibitor sodium azide suppressed the ATP sy nthesis induced by overexpressed tumor necrosis factor receptor-associated protein 1. Hence, tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes from hypoxia at least partly via potentiation of energy generation, and cytochrome c oxidase subunit II is one of the downstream effectors that mediates the tumor necrosis factor receptor-associated protein 1-mediated energy generation program.

  17. Dietary protein intake and skeletal-muscle protein metabolism in rats. Studies with salt-washed ribosomes and transfer factors

    PubMed Central

    Alexis, S. D.; Basta, S.; Young, Vernon R.

    1972-01-01

    1. Aspects of skeletal muscle protein synthesis in vitro were studied in young rats given a low-protein diet for up to 10 days and during re-feeding with an adequate diet. 2. Partially purified muscle transfer factors (transferases I and II), crude and purified (NH4Cl-washed) ribosomes and a pH5 enzyme fraction were prepared for this purpose. 3. A marked decrease in the capacity of crude ribosomes to carry out cell-free polypeptide synthesis occurred within 4 days of feeding the low-protein diet. 4. The capacity of salt-washed ribosomes to promote amino acid polymerization, in the presence of added transfer factors and aminoacyl-tRNA, was only slightly decreased by the dietary treatment. 5. However, the capacity of salt-washed ribosomes to bind 14C-labelled aminoacyl-tRNA was decreased by feeding the low-protein diet. 6. The capacity of the pH5 enzyme fraction to promote amino acid incorporation in a complete cell-free system was decreased within 2 days of feeding the low-protein diet. There is no evidence that the change is associated with aminoacyl-tRNA synthetase or binding enzyme activities of the pH5 fractions. 7. These changes are discussed in relation to the diminished rate of protein synthesis in the intact muscle cell when rats are given a low-protein diet. PMID:4634827

  18. Trigger factor: a soluble protein that folds pro-OmpA into a membrane-assembly-competent form

    SciTech Connect

    Crooke, E.; Wickner, W.

    1987-08-01

    Pro-OmpA that is synthesized in vitro can assemble into bacterial inner membrane vesicles in the presence of ATP and NADH. The authors have purified pro-OmpA to determine which additional soluble proteins are necessary for its membrane assembly. (/sup 35/S)Pro-OmpA was bound to Sepharose-linked antibody to OmpA, then eluted with 8 M urea and chromatographed on an anion-exchange resin in 8 M urea. This pro-OmpA is purified 2000-fold and is radiochemically pure. After dialysis, it is soluble but incompetent for membrane assembly. Addition of an Escherichia coli cytoplasmic fraction (S100) to the assembly reaction does not allow translocation. However, when S100 is added to pro-OmpA prior to dialysis, full assembly competence is restored, suggesting that a soluble factor, termed trigger factor, triggers the folding of pro-OmpA into an assembly-competent form as the urea is removed. They noted that, prior to the last purification step, the immunoaffinity-purified pro-OmpA was partially competent for membrane assembly without addition of trigger factor. To test whether trigger factor had bound to the antibody column by means of its association with pro-OmpA, the crude pro-OmpA was acid-denatured prior to immunoadsorption. In this experiment, the trigger factor did not bind to the anti-OmpA column, and S100 was required for renaturation of this (/sup 35/S)pro-OmpA. As suggested by this experiment, the crude (/sup 35/S)pro-OmpA was in complex with other proteins. Sedimentation velocity studies showed that the trigger factor has an apparent molecular weight of approx. = 60,000. They propose that it is required for translocation-competent folding of pro-OmpA and other precursor proteins.

  19. The use of insulin like-growth factor II messenger RNA binding protein-3 in diagnostic pathology.

    PubMed

    Findeis-Hosey, Jennifer J; Xu, Haodong

    2011-03-01

    The histologic distinction between reactive processes and malignant neoplasms and between low-grade and high-grade tumors is not always straightforward and is sometimes extremely challenging. This is especially the case when the diagnostic material is a small biopsy specimen or a cytology specimen with scant cellularity. In addition, suboptimal processing and crush artifact may limit accurate diagnosis. A reliable diagnostic biomarker that preferentially highlights malignant processes and high-grade tumors would be very valuable in segregating these entities from reactive processes and low-grade lesions. Recent extensive studies have shown that an oncoprotein, insulin like-growth factor II messenger RNA binding protein-3, is not only a prognostic biomarker but also a diagnostic molecule. This review focuses on discussing the value of insulin like-growth factor II messenger RNA binding protein-3 in diagnostic pathology, with a focus on utilization of insulin like-growth factor II messenger RNA binding protein-3 in the discrimination of benign effusions from malignant effusions, malignant mesothelioma from mesothelial hyperplasia, carcinoids from high-grade neuroendocrine carcinomas, low-grade dysplasia from high-grade dysplasia, hepatocellular carcinoma from hepatic adenoma, cholangiocarcinoma and metastatic pancreatic ductal carcinoma from benign bile duct lesions, melanoma from nevi, and follicular thyroid carcinoma from follicular adenoma of the thyroid, as well as examining insulin like-growth factor II messenger RNA binding protein-3 expression in lymphomas of germinal center origin.

  20. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins.

    PubMed

    Nakano, Ayako; Koinuma, Daizo; Miyazawa, Keiji; Uchida, Takafumi; Saitoh, Masao; Kawabata, Masahiro; Hanai, Jun-ichi; Akiyama, Hirotada; Abe, Masahiro; Miyazono, Kohei; Matsumoto, Toshio; Imamura, Takeshi

    2009-03-06

    Transforming growth factor-beta (TGF-beta) is crucial in numerous cellular processes, such as proliferation, differentiation, migration, and apoptosis. TGF-beta signaling is transduced by intracellular Smad proteins that are regulated by the ubiquitin-proteasome system. Smad ubiquitin regulatory factor 2 (Smurf2) prevents TGF-beta and bone morphogenetic protein signaling by interacting with Smads and inducing their ubiquitin-mediated degradation. Here we identified Pin1, a peptidylprolyl cis-trans isomerase, as a novel protein binding Smads. Pin1 interacted with Smad2 and Smad3 but not Smad4; this interaction was enhanced by the phosphorylation of (S/T)P motifs in the Smad linker region. (S/T)P motif phosphorylation also enhanced the interaction of Smad2/3 with Smurf2. Pin1 reduced Smad2/3 protein levels in a manner dependent on its peptidyl-prolyl cis-trans isomerase activity. Knockdown of Pin1 increased the protein levels of endogenous Smad2/3. In addition, Pin1 both enhanced the interaction of Smurf2 with Smads and enhanced Smad ubiquitination. Pin1 inhibited TGF-beta-induced transcription and gene expression, suggesting that Pin1 negatively regulates TGF-beta signaling by down-regulating Smad2/3 protein levels via induction of Smurf2-mediated ubiquitin-proteasomal degradation.

  1. Protein disulfide isomerase inhibition blocks thrombin generation in humans by interfering with platelet factor V activation

    PubMed Central

    Stopa, Jack D.; Neuberg, Donna; Puligandla, Maneka; Furie, Bruce; Zwicker, Jeffrey I.

    2017-01-01

    BACKGROUND: Protein disulfide isomerase (PDI) is required for thrombus formation. We previously demonstrated that glycosylated quercetin flavonoids such as isoquercetin inhibit PDI activity and thrombus formation in animal models, but whether extracellular PDI represents a viable anticoagulant target in humans and how its inhibition affects blood coagulation remain unknown. METHODS: We evaluated effects of oral administration of isoquercetin on platelet-dependent thrombin generation in healthy subjects and patients with persistently elevated anti-phospholipid antibodies. RESULTS: Following oral administration of 1,000 mg isoquercetin to healthy adults, the measured peak plasma quercetin concentration (9.2 μM) exceeded its IC50 for inhibition of PDI by isoquercetin in vitro (2.5 ± 0.4 μM). Platelet-dependent thrombin generation decreased by 51% in the healthy volunteers compared with baseline (P = 0.0004) and by 64% in the anti-phospholipid antibody cohort (P = 0.015) following isoquercetin ingestion. To understand how PDI affects thrombin generation, we evaluated substrates of PDI identified using an unbiased mechanistic-based substrate trapping approach. These studies identified platelet factor V as a PDI substrate. Isoquercetin blocked both platelet factor Va and thrombin generation with an IC50 of ~5 μM. Inhibition of PDI by isoquercetin ingestion resulted in a 53% decrease in the generation of platelet factor Va (P = 0.001). Isoquercetin-mediated inhibition was reversed with addition of exogenous factor Va. CONCLUSION: These studies show that oral administration of isoquercetin inhibits PDI activity in plasma and diminishes platelet-dependent thrombin generation predominantly by blocking the generation of platelet factor Va. These pharmacodynamic and mechanistic observations represent an important step in the development of a novel class of antithrombotic agents targeting PDI. TRIAL REGISTRATION: Clinicaltrials.gov (NCT01722669) FUNDING: National Heart

  2. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    PubMed

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  3. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    PubMed Central

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  4. Why protein R-factors are so large: a self-consistent analysis.

    PubMed

    Vitkup, Dennis; Ringe, Dagmar; Karplus, Martin; Petsko, Gregory A

    2002-03-01

    The R-factor and R-free are commonly used to measure the quality of protein models obtained in X-ray crystallography. Well-refined protein structures usually have R-factors in the range of 20-25%, whereas intrinsic errors in the experimental data are usually around 5%. We use molecular dynamics simulations to perform a self-consistent analysis by which we determine the major factors contributing to large values of protein R-factors. The analysis shows that significant R-factor values can arise from the use of isotropic B-factors to model anisotropic protein motions and from coordinate errors. Even in the absence of coordinate errors, the use of isotropic B-factors can cause the R-factors to be around 10%; for coordinate errors smaller than 0.2 A, the two errors types make similar contributions. The inaccuracy of the energy function used and multistate protein dynamics are unlikely to make significant contributions to the large R-factors.

  5. The Addition of Vascular Calcification Scores to Traditional Risk Factors Improves Cardiovascular Risk Assessment in Patients with Chronic Kidney Disease

    PubMed Central

    Diouf, Momar; Temmar, Mohamed; Renard, Cédric; Choukroun, Gabriel; Massy, Ziad A.

    2015-01-01

    Background Although a variety of non-invasive methods for measuring cardiovascular (CV) risk (such as carotid intima media thickness, pulse wave velocity (PWV), coronary artery and aortic calcification scores (measured either by CT scan or X-ray) and the ankle brachial index (ABI)) have been evaluated separately in chronic kidney disease (CKD) cohorts, few studies have evaluated these methods simultaneously. Here, we looked at whether the addition of non-invasive methods to traditional risk factors (TRFs) improves prediction of the CV risk in patients at different CKD stages. Methods We performed a prospective, observational study of the relationship between the outputs of non-invasive measurement methods on one hand and mortality and CV outcomes in 143 patients at different CKD stages on the other. During the follow-up period, 44 patients died and 30 CV events were recorded. We used Cox models to calculate the relative risk for outcomes. To assess the putative clinical value of each method, we also determined the categorical net reclassification improvement (NRI) and the integrated discrimination improvement. Results Vascular calcification, PWV and ABI predicted all-cause mortality and CV events in univariate analyses. However, after adjustment for TRFs, only aortic and coronary artery calcification scores were found to be significant, independent variables. Moreover, the addition of coronary artery calcification scores to TRFs improved the specificity of prediction by 20%. Conclusion The addition of vascular calcification scores (especially the coronary artery calcification score) to TRFs appears to improve CV risk assessment in a CKD population. PMID:26181592

  6. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    PubMed

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  7. The cellular transcription factor SP1 and an unknown cellular protein are required to mediate Rep protein activation of the adeno-associated virus p19 promoter.

    PubMed Central

    Pereira, D J; Muzyczka, N

    1997-01-01

    Control of adeno-associated virus (AAV) transcription from the three AAV promoters (p5, p19, and p40) requires the adenovirus E1a protein and the AAV nonstructural (Rep) proteins. The Rep proteins have been shown to repress the AAV p5 promoter yet facilitate activation of the p19 and p40 promoters during a productive infection. To elucidate the mechanism of promoter regulation by the AAV Rep proteins, the cellular factors involved in mediating Rep activation of the p19 promoter were characterized. A series of protein-DNA binding experiments using extracts derived from uninfected HeLa cells was performed to identify cellular factors that bind to the p19 promoter. Electrophoretic mobility shift assays, DNase I protection analyses, and UV cross-linking experiments demonstrated specific interactions with the cellular factor SP1 (or an SP1-like protein) at positions -50 and -130 relative to the start of p19 transcription. Additionally, an unknown cellular protein (cellular AAV activating protein [cAAP]) with an approximate molecular mass of 34 kDa was found to interact with a CArG-like element at position -140. Mutational analysis of the p19 promoter suggested that the SP1 site at -50 and the cAAP site at -140 were necessary to mediate Rep activation of p19. Antibody precipitation experiments demonstrated that Rep-SP1 protein complexes can exist in vivo. Although Rep was demonstrated to interact with p19 DNA directly, the affinity of Rep binding was much lower than that seen for the Rep binding elements within the terminal repeat and the p5 promoter. Furthermore, the interaction of purified Rep68 with the p19 promoter in vitro was negligible unless purified SP1 was also added to the reaction. Thus, the ability of Rep to transactivate the p19 promoter is likely to involve SP1-Rep protein contacts that facilitate Rep interaction with p19 DNA. PMID:9032303

  8. Protein

    MedlinePlus

    ... Go lean with protein. • Choose lean meats and poultry. Lean beef cuts include round steaks (top loin, ... main dishes. • Use nuts to replace meat or poultry, not in addition to meat or poultry (i. ...

  9. 25 CFR 39.1101 - Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in fiscal year 1982. 39.1101 Section 39.1101 Indians BUREAU OF INDIAN... Programs § 39.1101 Addition of pre-kindergarten as a weight factor to the Indian School...

  10. 25 CFR 39.1101 - Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in fiscal year 1982. 39.1101 Section 39.1101 Indians BUREAU OF INDIAN... Programs § 39.1101 Addition of pre-kindergarten as a weight factor to the Indian School...

  11. 25 CFR 39.1101 - Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in fiscal year 1982. 39.1101 Section 39.1101 Indians BUREAU OF INDIAN... Programs § 39.1101 Addition of pre-kindergarten as a weight factor to the Indian School...

  12. 25 CFR 39.1101 - Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in fiscal year 1982. 39.1101 Section 39.1101 Indians BUREAU OF INDIAN... Programs § 39.1101 Addition of pre-kindergarten as a weight factor to the Indian School...

  13. 25 CFR 39.1101 - Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Addition of pre-kindergarten as a weight factor to the Indian School Equalization Formula in fiscal year 1982. 39.1101 Section 39.1101 Indians BUREAU OF INDIAN... Programs § 39.1101 Addition of pre-kindergarten as a weight factor to the Indian School...

  14. Bacterial chitinases and chitin-binding proteins as virulence factors.

    PubMed

    Frederiksen, Rikki F; Paspaliari, Dafni K; Larsen, Tanja; Storgaard, Birgit G; Larsen, Marianne H; Ingmer, Hanne; Palcic, Monica M; Leisner, Jørgen J

    2013-05-01

    Bacterial chitinases (EC 3.2.1.14) and chitin-binding proteins (CBPs) play a fundamental role in the degradation of the ubiquitous biopolymer chitin, and the degradation products serve as an important nutrient source for marine- and soil-dwelling bacteria. However, it has recently become clear that representatives of both Gram-positive and Gram-negative bacterial pathogens encode chitinases and CBPs that support infection of non-chitinous mammalian hosts. This review addresses this biological role of bacterial chitinases and CBPs in terms of substrate specificities, regulation, secretion and involvement in cellular and animal infection.

  15. Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism.

    PubMed

    Ozaki, Yori; Saito, Kenji; Nakazawa, Kyoko; Konishi, Morichika; Itoh, Nobuyuki; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Kato, Hisanori; Takenaka, Asako

    2015-11-14

    Protein malnutrition promotes hepatic steatosis, decreases insulin-like growth factor (IGF)-I production and retards growth. To identify new molecules involved in such changes, we conducted DNA microarray analysis on liver samples from rats fed an isoenergetic low-protein diet for 8 h. We identified the fibroblast growth factor 21 gene (Fgf21) as one of the most strongly up-regulated genes under conditions of acute protein malnutrition (P<0·05, false-discovery rate<0·001). In addition, amino acid deprivation increased Fgf21 mRNA levels in rat liver-derived RL-34 cells (P<0·01). These results suggested that amino acid limitation directly increases Fgf21 expression. FGF21 is a polypeptide hormone that regulates glucose and lipid metabolism. FGF21 also promotes a growth hormone-resistance state and suppresses IGF-I in transgenic mice. Therefore, to determine further whether Fgf21 up-regulation causes hepatic steatosis and growth retardation after IGF-I decrease in protein malnutrition, we fed an isoenergetic low-protein diet to Fgf21-knockout (KO) mice. Fgf21-KO did not rescue growth retardation and reduced plasma IGF-I concentration in these mice. Fgf21-KO mice showed greater epididymal white adipose tissue weight and increased hepatic TAG and cholesterol levels under protein malnutrition conditions (P<0·05). Overall, the results showed that protein deprivation directly increased Fgf21 expression. However, growth retardation and decreased IGF-I were not mediated by increased FGF21 expression in protein malnutrition. Furthermore, FGF21 up-regulation rather appears to have a protective effect against obesity and hepatic steatosis in protein-malnourished animals.

  16. Hydrophobic environment is a key factor for the stability of thermophilic proteins.

    PubMed

    Gromiha, M Michael; Pathak, Manish C; Saraboji, Kadhirvel; Ortlund, Eric A; Gaucher, Eric A

    2013-04-01

    The stability of thermophilic proteins has been viewed from different perspectives and there is yet no unified principle to understand this stability. It would be valuable to reveal the most important interactions for designing thermostable proteins for such applications as industrial protein engineering. In this work, we have systematically analyzed the importance of various interactions by computing different parameters such as surrounding hydrophobicity, inter-residue interactions, ion-pairs and hydrogen bonds. The importance of each interaction has been determined by its predicted relative contribution in thermophiles versus the same contribution in mesophilic homologues based on a dataset of 373 protein families. We predict that hydrophobic environment is the major factor for the stability of thermophilic proteins and found that 80% of thermophilic proteins analyzed showed higher hydrophobicity than their mesophilic counterparts. Ion pairs, hydrogen bonds, and interaction energy are also important and favored in 68%, 50%, and 62% of thermophilic proteins, respectively. Interestingly, thermophilic proteins with decreased hydrophobic environments display a greater number of hydrogen bonds and/or ion pairs. The systematic elimination of mesophilic proteins based on surrounding hydrophobicity, interaction energy, and ion pairs/hydrogen bonds, led to correctly identifying 95% of the thermophilic proteins in our analyses. Our analysis was also applied to another, more refined set of 102 thermophilic-mesophilic pairs, which again identified hydrophobicity as a dominant property in 71% of the thermophilic proteins. Further, the notion of surrounding hydrophobicity, which characterizes the hydrophobic behavior of residues in a protein environment, has been applied to the three-dimensional structures of elongation factor-Tu proteins and we found that the thermophilic proteins are enriched with a hydrophobic environment. The results obtained in this work highlight the

  17. New functional assays to selectively quantify the activated protein C- and tissue factor pathway inhibitor-cofactor activities of protein S in plasma.

    PubMed

    Alshaikh, N A; Rosing, J; Thomassen, M C L G D; Castoldi, E; Simioni, P; Hackeng, T M

    2017-02-17

    Essentials Protein S is a cofactor of activated protein C (APC) and tissue factor pathway inhibitor (TFPI). There are no assays to quantify separate APC and TFPI cofactor activities of protein S in plasma. We developed assays to measure the APC- and TFPI-cofactor activities of protein S in plasma. The assays were sensitive to protein S deficiency, and not affected by the Factor V Leiden mutation.

  18. Chloroplast protein import inhibition by a soluble factor from wheat germ lysate.

    PubMed

    Schleiff, Enrico; Motzkus, Michael; Soll, Jürgen

    2002-09-01

    Protein import into chloroplasts occurs post-translationally in vitro. The precursor proteins are generally synthesised in a reticulocyte lysate- or wheat germ lysate-derived system and imported out of this system into chloroplast. These complex soluble protein mixtures are likely to contain factors, which influence somehow the import competence and import efficiency. Here we describe a heat-stable soluble proteinaceaous factor, which inhibits protein import into chloroplasts in vitro. The inhibitor interacts directly with the precursor protein and renders it import incompetent. This mode of action is supported by two observations: firstly, binding of the precursor to the chloroplast surface is diminished in the presence of the inhibitor. Secondly, when chloroplasts were loaded with precursor proteins under conditions, which allow only binding but not import the inhibitor was unable to abolish the subsequent translocation step.

  19. Functional and Structural Properties of a Novel Protein and Virulence Factor (Protein sHIP) in Streptococcus pyogenes *

    PubMed Central

    Wisniewska, Magdalena; Happonen, Lotta; Kahn, Fredrik; Varjosalo, Markku; Malmström, Lars; Rosenberger, George; Karlsson, Christofer; Cazzamali, Giuseppe; Pozdnyakova, Irina; Frick, Inga-Maria; Björck, Lars; Streicher, Werner; Malmström, Johan; Wikström, Mats

    2014-01-01

    Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host. In the present study, we quantitatively analyzed and compared S. pyogenes proteins in the growth medium of a strain that is virulent to mice with a non-virulent strain. Particularly, one of these proteins was present at significantly higher levels in stationary growth medium from the virulent strain. We determined the three-dimensional structure of the protein that showed a unique tetrameric organization composed of four helix-loop-helix motifs. Affinity pull-down mass spectrometry analysis in human plasma demonstrated that the protein interacts with histidine-rich glycoprotein (HRG), and the name sHIP (streptococcal histidine-rich glycoprotein-interacting protein) is therefore proposed. HRG has antibacterial activity, and when challenged by HRG, sHIP was found to rescue S. pyogenes bacteria. This and the finding that patients with invasive S. pyogenes infection respond with antibody production against sHIP suggest a role for the protein in S. pyogenes pathogenesis. PMID:24825900

  20. Characterization of Factors Affecting Nanoparticle Tracking Analysis Results With Synthetic and Protein Nanoparticles.

    PubMed

    Krueger, Aaron B; Carnell, Pauline; Carpenter, John F

    2016-04-01

    In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples.

  1. Thiazolidinedione addition reduces the serum retinol-binding protein 4 in type 2 diabetic patients treated with metformin and sulfonylurea.

    PubMed

    Lin, Kun-Der; Chang, Yu-Hung; Wang, Chiao-Ling; Yang, Yi-Hsin; Hsiao, Pi-Jung; Li, Tzu-Hui; Shin, Shyi-Jang

    2008-06-01

    Retinol-binding protein 4 (RBP4) has been found to induce insulin resistance and to be increased in type 2 diabetes. Thiazolidinediones (TZDs) can improve insulin sensitivity through the activation of peroxisome proliferators-activated receptor-gamma (PPAR-gamma) and have been suggested as an adjunct to metformin (MF) and sulfonylurea (SU) in type 2 diabetes in a consensus statement from the ADA and EASD. Therefore, we investigated whether TZD could affect serum RBP4 level in type 2 diabetes already treated with MF and/or SU. Eighty-one type 2 diabetic patients were divided into 2 groups: (1) TZD group (n = 55): Pioglitazone 30 mg/day was given as an add-on medication; (2) SU group (n = 26): Gliclazide MR 30-120 mg or glimepiride 2-8 mg/day was prescribed. The average period of study was 97.1 days. Serum RBP4 and adiponectin were measured by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. The addition of pioglitazone (TZD group) markedly decreased homeostasis model assessment of insulin resistance (HOMA-IR) (P = 0.021) compared with the SU group (P = 0.688). The change of RBP4 in the TZD group (-3.87 +/- 11.27 microg/mL) significantly differed from that in the SU group (2.52 +/- 8.24 microg/mL, P < 0.012). The increase of adiponectin in the TZD group (11.49 +/- 7.85 microg/mL) was apparently higher than that in the SU group (1.54 +/- 5.62 microg/mL, P < 0.001). Despite the change of glycosylated hemoglobin (HbA1c) did not differ (-0.77 +/- 1.3 vs -0.50 +/- 1.7, P = 0.446), the addition of pioglitazone could significantly lower serum RBP4 and HOMA-IR values, whereas an increased dosage of sulfonylurea agents did not alter HOMA-IR, RBP4, or adiponectin in type 2 diabetic patients who had been treated with metformin and/or sulfonylurea.

  2. HSF transcription factor family, heat shock response, and protein intrinsic disorder.

    PubMed

    Westerheide, Sandy D; Raynes, Rachel; Powell, Chase; Xue, Bin; Uversky, Vladimir N

    2012-02-01

    Intrinsically disordered proteins are highly abundant in all kingdoms of life, and several protein functional classes, such as transcription factors, transcriptional regulators, hub and scaffold proteins, signaling proteins, and chaperones are especially enriched in intrinsic disorder. One of the unique cellular reactions to protein damaging stress is the so-called heat shock response that results in the upregulation of heat shock proteins including molecular chaperones. This molecular protective mechanism is conserved from prokaryotes to eukaryotes and allows an organism to respond to various proteotoxic stressors, such as heat shock, oxidative stress, exposure to heavy metals, and drugs. The heat shock response- related proteins can be expressed during normal conditions (e.g., during the cell growth and development) or can be induced by various pathological conditions, such as infection, inflammation, and protein conformation diseases. The initiation of the heat shock response is manifested by the activation of the heat shock transcription factors HSF 1, part of a family of related HSF transcription factors. This review analyzes the abundance and functional roles of intrinsic disorder in various heat shock transcription factors and clearly shows that the heat shock response requires HSF flexibility to be more efficient.

  3. A novel member of the SAF (scaffold attachment factor)-box protein family inhibits gene expression and induces apoptosis

    PubMed Central

    Chan, Ching Wan; Lee, Youn-Bok; Uney, James; Flynn, Andrea; Tobias, Jonathan H.; Norman, Michael

    2007-01-01

    The SLTM [SAF (scaffold attachment factor)-like transcription modulator] protein contains a SAF-box DNA-binding motif and an RNA-binding domain, and shares an overall identity of 34% with SAFB1 {scaffold attachment factor-B1; also known as SAF-B (scaffold attachment factor B), HET [heat-shock protein 27 ERE (oestrogen response element) and TATA-box-binding protein] or HAP (heterogeneous nuclear ribonucleoprotein A1-interacting protein)}. Here, we show that SLTM is localized to the cell nucleus, but excluded from nucleoli, and to a large extent it co-localizes with SAFB1. In the nucleus, SLTM has a punctate distribution and it does not co-localize with SR (serine/arginine) proteins. Overexpression of SAFB1 has been shown to exert a number of inhibitory effects, including suppression of oestrogen signalling. Although SLTM also suppressed the ability of oestrogen to activate a reporter gene in MCF-7 breast-cancer cells, inhibition of a constitutively active β-galactosidase gene suggested that this was primarily the consequence of a generalized inhibitory effect on transcription. Measurement of RNA synthesis, which showed a particularly marked inhibition of [3H]uridine incorporation into mRNA, supported this conclusion. In addition, analysis of cell-cycle parameters, chromatin condensation and cytochrome c release showed that SLTM induced apoptosis in a range of cultured cell lines. Thus the inhibitory effects of SLTM on gene expression appear to result from generalized down-regulation of mRNA synthesis and initiation of apoptosis consequent upon overexpressing the protein. While indicating a crucial role for SLTM in cellular function, these results also emphasize the need for caution when interpreting phenotypic changes associated with manipulation of protein expression levels. PMID:17630952

  4. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.

    PubMed

    Petushkov, V N; Ketelaars, M; Gibson, B G; Lee, J

    1996-09-17

    The kinetics of the bacterial bioluminescence reaction is altered in the presence of the fluorescent (antenna) proteins, lumazine protein (LumP) from Photobacterium or the yellow fluorescence proteins (YFP) having FMN or Rf bound, from Vibrio fischeri strain Y1. Depending on reaction conditions, the bioluminescence intensity and its decay rate may be either enhanced or strongly quenched in the presence of the fluorescent proteins. These effects can be simply explained on the basis of the same protein-protein complex model that accounts for the bioluminescence spectral shifts induced by these fluorescent proteins. In such a complex, where the fluorophore evidently is in proximity to the luciferase active site, it is expected that the on-off rate of certain aliphatic components of the reaction should be altered with a consequent shift in the equilibria among the luciferase intermediates, as recently elaborated in a kinetic scheme. These aliphatic components are the bioluminescence reaction substrate, tetradecanal or other long-chain aldehyde, its carboxylic acid product, or dodecanol used as a stabilizer of the luciferase peroxyflavin. No evidence can be found for the protein-protein interaction in the absence of the aliphatic component.

  5. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects?

    PubMed Central

    van der Put, N M; Gabreëls, F; Stevens, E M; Smeitink, J A; Trijbels, F J; Eskes, T K; van den Heuvel, L P; Blom, H J

    1998-01-01

    Recently, we showed that homozygosity for the common 677(C-->T) mutation in the methylenetetrahydrofolate reductase (MTHFR) gene, causing thermolability of the enzyme, is a risk factor for neural-tube defects (NTDs). We now report on another mutation in the same gene, the 1298(A-->C) mutation, which changes a glutamate into an alanine residue. This mutation destroys an MboII recognition site and has an allele frequency of .33. This 1298(A-->C) mutation results in decreased MTHFR activity (one-way analysis of variance [ANOVA] P < .0001), which is more pronounced in the homozygous than heterozygous state. Neither the homozygous nor the heterozygous state is associated with higher plasma homocysteine (Hcy) or a lower plasma folate concentration-phenomena that are evident with homozygosity for the 677(C-->T) mutation. However, there appears to be an interaction between these two common mutations. When compared with heterozygosity for either the 677(C-->T) or 1298(A-->C) mutations, the combined heterozygosity for the 1298(A-->C) and 677(C-->T) mutations was associated with reduced MTHFR specific activity (ANOVA P < .0001), higher Hcy, and decreased plasma folate levels (ANOVA P <.03). Thus, combined heterozygosity for both MTHFR mutations results in similar features as observed in homozygotes for the 677(C-->T) mutation. This combined heterozygosity was observed in 28% (n =86) of the NTD patients compared with 20% (n =403) among controls, resulting in an odds ratio of 2.04 (95% confidence interval: .9-4.7). These data suggest that the combined heterozygosity for the two MTHFR common mutations accounts for a proportion of folate-related NTDs, which is not explained by homozygosity for the 677(C-->T) mutation, and can be an additional genetic risk factor for NTDs. PMID:9545395

  6. Factor H specifically capture novel Factor H-binding proteins of Streptococcus suis and contribute to the virulence of the bacteria.

    PubMed

    Li, Quan; Ma, Caifeng; Fu, Yang; He, Yanan; Yu, Yanfei; Du, Dechao; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-03-01

    Factor H (FH), a regulatory protein of the complement system, can bind specifically to factor H-binding proteins (FHBPs) of Streptococcus suis serotype 2 (SS2), which contribute to evasion of host innate immune defenses. In the present study, we aimed to identify novel FHBPs and characterize the biological functions of FH in SS2 pathogenesis. Here, a method that combined proteomics and Far-western blotting was developed to identify the surface FHBPs of SS2. With this method, fourteen potential novel FHBPs were identified among SS2 surface proteins. We selected eight newly identified proteins and further confirmed their binding activity to FH. The binding of SS2 to immobilized FH decreased dramatically after pre-incubation with anti-FHBPs polyclonal antibodies. We showed for the first time that SS2 also interact specifically with mouse FH. Furthermore, we found that FH play an important role in adherence and invasion of SS2 to HEp-2 cells. Additionally, using a mouse model of intraperitoneal challenge, we confirmed that SS2 pre-incubated with FH enhanced bacteremia and brain invasion, compared with SS2 not pretreated with FH. Taken together, this study provides a useful method to characterize the host-bacteria interactions. These results first indicated that binding of FH to the cell surface improved the adherence and invasion of SS2 to HEp-2 cells, promoting SS2 to resist killing and leading to enhance virulence.

  7. [Determination and analysis of protein profile of different transfer factors].

    PubMed

    Guidos-Fogelbach, Guillermo Arturo; Paredes-Aguilar, Jorge Antonio; Colín-Martínez, Nayeli Montserrat; Rojo-Gutiérrez, María Isabel; López-Hidalgo, Marisol; Reyes-López, César Augusto Sandino

    2016-01-01

    Introducción: El factor de transferencia (FT) es el extracto dializable de leucocitos con propiedades de transferencia de inmunidad celular. Su uso se ha extendido en el tratamiento de una amplia gama de padecimientos inmunológicos, infecciosos y como coadyuvante de padecimientos oncológicos. A pesar de ello, no se conocen completamente aspectos importantes de su perfil proteico, concentraciones de componentes y mecanismos de acción. Objetivos: Analizar los perfiles proteicos de diferentes factores de transferencia comercializados en México. Métodos: Se obtuvieron y analizaron 6 FT comercializados en México. Se realizó la cuantificación de proteínas por el método de Bradford, cromatografía líquida de alta resolución (HPLC) y electroforesis en geles de poliacrilamida (SDS-PAGE). Todas las muestras fueron analizadas por duplicado. Resultados: Las concentraciones de proteínas totales de todos los FT analizados fueron menores de 0.2 mg/mL. Los perfiles cromatográficos mostraron diferencias en algunos FT. La concentración de proteínas resultó de 6 hasta casi mil veces más baja en comparación con lo informado por algunos fabricantes. Conclusión: Casi la totalidad de los factores de transferencia comercializados en México carecen de un etiquetado y registro sanitario que cumpla con las normas oficiales vigentes.

  8. Molecular basis of inherited antithrombin deficiency in Portuguese families: identification of genetic alterations and screening for additional thrombotic risk factors.

    PubMed

    David, Dezsö; Ribeiro, Sofia; Ferrão, Lénia; Gago, Teresa; Crespo, Francisco

    2004-06-01

    Antithrombin (AT), the most important coagulation serine proteases inhibitor, plays an important role in maintaining the hemostatic balance. Inherited AT deficiency, mainly characterized by predisposition to recurrent venous thromboembolism, is transmitted in an autosomal dominant manner. In this study, we analyzed the underlying genetic alterations in 12 unrelated Portuguese thrombophilic families with AT deficiency. At the same time, the modulating effect of the FV Leiden mutation, PT 20210A, PAI-1 4G, and MTHFR 677T allelic variants, on the thrombotic risk of AT deficient patients was also evaluated. Three novel frameshift alterations, a 4-bp deletion in exon 4 and two 1-bp insertions in exon 6, were identified in six unrelated type I AT deficient families. A novel missense mutation in exon 3a, which changes the highly conserved F147 residue, and a novel splice site mutation in the invariant acceptor AG dinucleotide of intron 2 were also identified in unrelated type I AT deficient families. In addition to these, two previously reported missense mutations changing the AT reactive site bond (R393-S394) and leading to type II-RS deficiency, and a previously reported cryptic splice site mutation (IVS4-14G-->A), were also identified. In these families, increased thrombotic risk associated with co-inheritance of the FV Leiden mutation and of the PAI-1 4G variant was also observed. In conclusion, we present the first data regarding the underlying genetic alterations in Portuguese thrombophilic families with AT deficiency, and confirm that the FV Leiden mutation and probably the PAI-1 4G variant represent additional thrombotic risk factors in these families.

  9. Misfolded proteins activate Factor XII in humans, leading to kallikrein formation without initiating coagulation

    PubMed Central

    Maas, Coen; Govers-Riemslag, José W.P.; Bouma, Barend; Schiks, Bettina; Hazenberg, Bouke P.C.; Lokhorst, Henk M.; Hammarström, Per; ten Cate, Hugo; de Groot, Philip G.; Bouma, Bonno N.; Gebbink, Martijn F.B.G.

    2008-01-01

    When blood is exposed to negatively charged surface materials such as glass, an enzymatic cascade known as the contact system becomes activated. This cascade is initiated by autoactivation of Factor XII and leads to both coagulation (via Factor XI) and an inflammatory response (via the kallikrein-kinin system). However, while Factor XII is important for coagulation in vitro, it is not important for physiological hemostasis, so the physiological role of the contact system remains elusive. Using patient blood samples and isolated proteins, we identified a novel class of Factor XII activators. Factor XII was activated by misfolded protein aggregates that formed by denaturation or by surface adsorption, which specifically led to the activation of the kallikrein-kinin system without inducing coagulation. Consistent with this, we found that Factor XII, but not Factor XI, was activated and kallikrein was formed in blood from patients with systemic amyloidosis, a disease marked by the accumulation and deposition of misfolded plasma proteins. These results show that the kallikrein-kinin system can be activated by Factor XII, in a process separate from the coagulation cascade, and point to a protective role for Factor XII following activation by misfolded protein aggregates. PMID:18725990

  10. Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins - Shifting shapes and paradigms.

    PubMed

    NandyMazumdar, Monali; Artsimovitch, Irina

    2015-03-01

    Numerous accessory factors modulate RNA polymerase response to regulatory signals and cellular cues and establish communications with co-transcriptional RNA processing. Transcription regulators are astonishingly diverse, with similar mechanisms arising via convergent evolution. NusG/Spt5 elongation factors comprise the only universally conserved and ancient family of regulators. They bind to the conserved clamp helices domain of RNA polymerase, which also interacts with non-homologous initiation factors in all domains of life, and reach across the DNA channel to form processivity clamps that enable uninterrupted RNA chain synthesis. In addition to this ubiquitous function, NusG homologs exert diverse, and sometimes opposite, effects on gene expression by competing with each other and other regulators for binding to the clamp helices and by recruiting auxiliary factors that facilitate termination, antitermination, splicing, translation, etc. This surprisingly diverse range of activities and the underlying unprecedented structural changes make studies of these "transformer" proteins both challenging and rewarding.

  11. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    SciTech Connect

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  12. The regulation and activation of ciliary neurotrophic factor signaling proteins in adipocytes.

    PubMed

    Zvonic, Sanjin; Cornelius, Peter; Stewart, William C; Mynatt, Randall L; Stephens, Jacqueline M

    2003-01-24

    Ciliary neurotrophic factor (CNTF) is primarily known for its roles as a lesion factor released by the ruptured glial cells that prevent neuronal degeneration. However, CNTF has also been shown to cause weight loss in a variety of rodent models of obesity/type II diabetes, whereas a modified form also causes weight loss in humans. CNTF administration can correct or improve hyperinsulinemia, hyperphagia, and hyperlipidemia associated with these models of obesity. In order to investigate the effects of CNTF on fat cells, we examined the expression of CNTF receptor complex proteins (LIFR, gp130, and CNTFRalpha) during adipocyte differentiation and the effects of CNTF on STAT, Akt, and MAPK activation. We also examined the ability of CNTF to regulate the expression of adipocyte transcription factors and other adipogenic proteins. Our studies clearly demonstrate that the expression of two of the three CNTF receptor complex components, CNTFRalpha and LIFR, decreases during adipocyte differentiation. In contrast, gp130 expression is relatively unaffected by differentiation. In addition, preadipocytes are more sensitive to CNTF treatment than adipocytes, as judged by both STAT 3 and Akt activation. Despite decreased levels of CNTFRalpha expression in fully differentiated 3T3-L1 adipocytes, CNTF treatment of these cells resulted in a time-dependent activation of STAT 3. Chronic treatment of adipocytes resulted in a substantial decrease in fatty-acid synthase and a notable decline in SREBP-1 levels but had no effect on the expression of peroxisome proliferator-activated receptor gamma, acrp30, adipocyte-expressed STAT proteins, or C/EBPalpha. However, CNTF resulted in a significant increase in IRS-1 expression. CNTFRalpha receptor expression was substantially induced in the fat pads of four rodent models of obesity/type II diabetes as compared with lean littermates. Moreover, we demonstrated that CNTF can activate STAT 3 in adipose tissue and skeletal muscle in vivo. In

  13. Identification of two substrates of FTS_1067 protein - An essential virulence factor of Francisella tularensis.

    PubMed

    Spidlova, Petra; Senitkova, Iva; Link, Marek; Stulik, Jiri

    2016-11-15

    Francisella tularensis is a highly virulent intracellular pathogen with the capacity to infect a variety of hosts including humans. One of the most important proteins involved in F. tularensis virulence and pathogenesis is the protein DsbA. This protein is annotated as a lipoprotein with disulfide oxidoreductase/isomerase activity. Therefore, its interactions with different substrates, including probable virulence factors, to assist in their proper folding are anticipated. We aimed to use the immunopurification approach to find DsbA (gene locus FTS_1067) interacting partners in F. tularensis subsp. holarctica strain FSC200 and compare the identified substrates with proteins which were found in our previous comparative proteome analysis. As a result of our work two FTS_1067 substrates, D-alanyl-D-alanine carboxypeptidase family protein and HlyD family secretion protein, were identified. Bacterial two-hybrid systems were further used to test their relevance in confirming FTS_1067 protein interactions.

  14. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms.

  15. A Novel Protein Domain Induces High Affinity Selenocysteine Insertion Sequence Binding and Elongation Factor Recruitment*

    PubMed Central

    Donovan, Jesse; Caban, Kelvin; Ranaweera, Ruchira; Gonzalez-Flores, Jonathan N.; Copeland, Paul R.

    2008-01-01

    Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3′-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNASec, and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site. PMID:18948268

  16. Effect of annatto addition and bleaching treatments on ultrafiltration flux during production of 80% whey protein concentrate and 80% serum protein concentrate.

    PubMed

    Adams, Michael C; Zulewska, Justyna; Barbano, David M

    2013-04-01

    The goals of this study were to determine if adding annatto color to milk or applying a bleaching process to whey or microfiltration (MF) permeate influenced ultrafiltration (UF) flux, diafiltration (DF) flux, or membrane fouling during production of 80% whey protein concentrate (WPC80) or 80% serum protein concentrate (SPC80). Separated Cheddar cheese whey (18 vats using 900 kg of whole milk each) and MF permeate of skim milk (18 processing runs using 800 kg of skim milk each) were produced to make WPC80 and SPC80, respectively. The 6 treatments, replicated 3 times each, that constituted the 18 processing runs within either whey or MF permeate UF were as follows: (1) no annatto; (2) no annatto+benzoyl peroxide (BPO); (3) no annatto+hydrogen peroxide (H2O2); (4) annatto; (5) annatto+BPO; and (6) annatto+H2O2. Approximately 700 kg of whey or 530 kg of MF permeate from each treatment were heated to 50°C and processed in 2 stages (UF and DF) with the UF system in batch recirculation mode using a polyethersulfone spiral-wound UF membrane with a molecular weight cutoff of 10,000 Da. Addition of annatto color had no effect on UF or DF flux. The processes of bleaching whey or MF permeate with or without added color improved flux during processing. Bleaching with H2O2 usually produced higher flux than bleaching with BPO. Bleaching with BPO increased WPC80 flux to a greater extent than it did SPC80 flux. Though no differences in mean flux were observed for a common bleaching treatment between the WPC80 and SPC80 production processes during the UF stage, mean flux during WPC80 DF was higher than mean flux during SPC80 DF for each bleaching treatment. Water flux values before and after processing were used to calculate a fouling coefficient that demonstrated differences in fouling which were consistent with flux differences among treatments. In both processes, bleaching with H2O2 led to the largest reduction in fouling. No effect of annatto on fouling was observed. The

  17. Organization and nucleotide sequences of the Spiroplasma citri genes for ribosomal protein S2, elongation factor Ts, spiralin, phosphofructokinase, pyruvate kinase, and an unidentified protein.

    PubMed Central

    Chevalier, C; Saillard, C; Bové, J M

    1990-01-01

    The gene for spiralin, the major membrane protein of the helical mollicute Spiroplasma citri, was cloned in Escherichia coli as a 5-kilobase-pair (kbp) DNA fragment. The complete nucleotide sequence of the 5.0-kbp spiroplasmal DNA fragment was determined (GenBank accession no. M31161). The spiralin gene was identified by the size and amino acid composition of its translational product. Besides the spiralin gene, the spiroplasmal DNA fragment was found to contain five additional open reading frames (ORFs). The translational products of four of these ORFs were identified by their amino acid sequence homologies with known proteins: ribosomal protein S2, elongation factor Ts, phosphofructokinase, and pyruvate kinase, respectively encoded by the genes rpsB, tsf, pfk, and pyk. The product of the fifth ORF remains to be identified and was named protein X (X gene). The order of the above genes was tsf--X--spiralin gene--pfk--pyk. These genes were transcribed in one direction, while the gene for ribosomal protein S2 (rpsB) was transcribed in the opposite direction. Images PMID:2139649

  18. Are delta-aminolevulinate dehydratase inhibition and metal concentrations additional factors for the age-related cognitive decline?

    PubMed

    Baierle, Marília; Charão, Mariele F; Göethel, Gabriela; Barth, Anelise; Fracasso, Rafael; Bubols, Guilherme; Sauer, Elisa; Campanharo, Sarah C; Rocha, Rafael C C; Saint'Pierre, Tatiana D; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M; Avila, Daiana S; Gioda, Adriana; Garcia, Solange C

    2014-10-17

    Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer's Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation.

  19. Are Delta-Aminolevulinate Dehydratase Inhibition and Metal Concentrations Additional Factors for the Age-Related Cognitive Decline?

    PubMed Central

    Baierle, Marília; Charão, Mariele F.; Göethel, Gabriela; Barth, Anelise; Fracasso, Rafael; Bubols, Guilherme; Sauer, Elisa; Campanharo, Sarah C.; Rocha, Rafael C. C.; Saint’Pierre, Tatiana D.; Bordignon, Suelen; Zibetti, Murilo; Trentini, Clarissa M.; Ávila, Daiana S.; Gioda, Adriana; Garcia, Solange C.

    2014-01-01

    Aging is often accompanied by cognitive impairments and influenced by oxidative status and chemical imbalances. Thus, this study was conducted to examine whether age-related cognitive deficit is associated with oxidative damage, especially with inhibition of the enzyme delta-aminolevulinate dehydratase (ALA-D), as well as to verify the influence of some metals in the enzyme activity and cognitive performance. Blood ALA-D activity, essential (Fe, Zn, Cu, Se) and non-essential metals (Pb, Cd, Hg, As, Cr, Ni, V) were measured in 50 elderly and 20 healthy young subjects. Cognitive function was assessed by tests from Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) battery and other. The elderly group presented decreased ALA-D activity compared to the young group. The index of ALA-D reactivation was similar to both study groups, but negatively associated with metals. The mean levels of essential metals were within the reference values, while the most toxic metals were above them in both groups. Cognitive function impairments were observed in elderly group and were associated with decreased ALA-D activity, with lower levels of Se and higher levels of toxic metals (Hg and V). Results suggest that the reduced ALA-D activity in elderly can be an additional factor involved in cognitive decline, since its inhibition throughout life could lead to accumulation of the neurotoxic compound ALA. Toxic metals were found to contribute to cognitive decline and also to influence ALA-D reactivation. PMID:25329536

  20. Effect of the addition of flavan-3-ols on the HPLC-DAD salivary-protein profile.

    PubMed

    Quijada-Morín, Natalia; Crespo-Expósito, Carlos; Rivas-Gonzalo, Julián C; García-Estévez, Ignacio; Escribano-Bailón, María Teresa

    2016-09-15

    The interaction between monomeric flavan-3-ols and salivary proteins has been studied using HPLC-DAD. A chromatographic method has been described and seven protein fractions were collected. The peptides and proteins present in each fraction have been identified using nLC-MS-MS analysis. The interaction between saliva and catechin, epicatechin and gallocatechin has been studied. These compounds interact in a discriminated way with salivary proteins: catechin causes a decrease of some fractions, epicatechin causes the decrease or increase of fractions while gallocatechin seems to cause an increase of two fractions. This variable behavior is explained, for the decrease in the chromatographic area, by the precipitation of salivary proteins and, for the increase of the area, by the formation of soluble complexes and/or for the formation of new peaks.

  1. CHEMOSENSITIZATION BY A NON-APOPTOGENIC HEAT SHOCK PROTEIN 70-BINDING APOPTOSIS INDUCING FACTOR MUTANT

    EPA Science Inventory

    Chemosensitization by a non-apoptogenic heat shock protein 70-binding apoptosis inducing factor mutant

    Abstract
    HSP70 inhibits apoptosis by neutralizing the caspase activator Apaf-1 and by interacting with apoptosis inducing factor (AIF), a mitochondrial flavoprotein wh...

  2. Roles of prenyl protein proteases in maturation of Saccharomyces cerevisiae a-factor.

    PubMed Central

    Boyartchuk, V L; Rine, J

    1998-01-01

    In eukaryotes small secreted peptides are often proteolytically cleaved from larger precursors. In Saccharomyces cerevisiae multiple proteolytic processing steps are required for production of mature 12-amino-acid a-factor from its 36-amino-acid precursor. This study provides additional genetic data supporting a direct role for Afc1p in cleavage of the carboxyl-terminal tripeptide from the CAAX motif of the prenylated a-factor precursor. In addition, Afc1p had a second role in a-factor processing that was independent of, and in addition to, its role in the carboxyl-terminal processing in vivo. Using ubiquitin-a-factor fusions we confirmed that the pro-region of the a-factor precursor was not required for production of the mature pheromone. However, the pro-region of the a-factor precursor contributed quantitatively to a-factor production. PMID:9725832

  3. Amblyomma americanum tick saliva insulin-like growth factor binding protein-related protein 1 binds insulin but not insulin-like growth factors.

    PubMed

    Radulović, Ž M; Porter, L M; Kim, T K; Bakshi, M; Mulenga, A

    2015-10-01

    Silencing Amblyomma americanum insulin-like growth factor binding protein-related protein 1 (AamIGFBP-rP1) mRNA prevented ticks from feeding to repletion. In this study, we used recombinant (r)AamIGFBP-rP1 in a series of assays to obtain further insight into the role(s) of this protein in tick feeding regulation. Our results suggest that AamIGFBP-1 is an antigenic protein that is apparently exclusively expressed in salivary glands. We found that both males and females secrete AamIGFBP-rP1 into the host during feeding and confirmed that female ticks secrete this protein from within 24-48 h after attachment. Our data suggest that native AamIGFBP-rP1 is a functional insulin binding protein in that both yeast- and insect cell-expressed rAamIGFBP-rP1 bound insulin, but not insulin-like growth factors. When subjected to anti-blood clotting and platelet aggregation assays, rAamIGFBP-rP1 did not have any effect. Unlike human IGFBP-rP1, which is controlled by trypsinization, rAamIGFBP-rP1 is resistant to digestion, suggesting that the tick protein may not be under mammalian host control at the tick feeding site. The majority of tick-borne pathogens are transmitted 48 h after the tick has attached. Thus, the demonstrated antigenicity and secretion into the host within 24-48 h of the tick starting to feed makes AamIGFBP-rP1 an attractive target for antitick vaccine development.

  4. Detection of Intracellular Factor VIII Protein in Peripheral Blood Mononuclear Cells by Flow Cytometry

    PubMed Central

    Pandey, Gouri Shankar; Tseng, Sandra C.; Howard, Tom E.; Sauna, Zuben E.

    2013-01-01

    Flow cytometry is widely used in cancer research for diagnosis, detection of minimal residual disease, as well as immune monitoring and profiling following immunotherapy. Detection of specific host proteins for diagnosis predominantly uses quantitative PCR and western blotting assays. In this study, we optimized a flow cytometry-based detection assay for Factor VIII protein in peripheral blood mononuclear cells (PBMCs). An indirect intracellular staining (ICS) method was standardized using monoclonal antibodies to different domains of human Factor VIII protein. The FVIII protein expression level was estimated by calculating the mean and median fluorescence intensities (MFI) values for each monoclonal antibody. ICS staining of transiently transfected cell lines supported the method's specificity. Intracellular FVIII protein expression was also detected by the monoclonal antibodies used in the study in PBMCs of five blood donors. In summary, our data suggest that intracellular FVIII detection in PBMCs of hemophilia A patients can be a rapid and reliable method to detect intracellular FVIII levels. PMID:23555096

  5. Purification of eukaryotic translation factors from wheat germ for reconstitution of protein synthesis.

    PubMed

    Nagano, Hikaru; Sugihara, Shouhei; Takagi, Hisanori; Ogasawara, Tomio; Endo, Yaeta; Takai, Kazuyuki

    2008-01-01

    The wheat germ cell-free protein synthesis is a powerful and versatile method for preparation of proteins based on the accumulated DNA sequence information. As the cell extract used for it contains many factors that are unknown or do not directly involve in protein synthesis, details of the translation reaction is yet to be understood. Therefore, we have decided to try reconstitution of protein synthesis, which would be useful for better understanding of the mechanisms supporting eukaryotic protein synthesis and translational regulation and probably applicable to synthetic biology. In the present study, we fractionated an extract from crude wheat germ according to published protocols to obtain the fractions containing the eukaryotic elongation factors (eEFs) 1A, 1B, and 2. The eEF1A and eEF2 fractions supported polyphenylalanine synthesis.

  6. Sperm and spermatids contain different proteins and bind distinct egg factors.

    PubMed

    Teperek, Marta; Miyamoto, Kei; Simeone, Angela; Feret, Renata; Deery, Michael J; Gurdon, John B; Jullien, Jerome

    2014-09-19

    Spermatozoa are more efficient at supporting normal embryonic development than spermatids, their immature, immediate precursors. This suggests that the sperm acquires the ability to support embryonic development during spermiogenesis (spermatid to sperm maturation). Here, using Xenopus laevis as a model organism, we performed 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry analysis of differentially expressed proteins between sperm and spermatids in order to identify factors that could be responsible for the efficiency of the sperm to support embryonic development. Furthermore, benefiting from the availability of egg extracts in Xenopus, we also tested whether the chromatin of sperm could attract different egg factors compared to the chromatin of spermatids. Our analysis identified: (1) several proteins which were present exclusively in sperm; but not in spermatid nuclei and (2) numerous egg proteins binding to the sperm (but not to the spermatid chromatin) after incubation in egg extracts. Amongst these factors we identified many chromatin-associated proteins and transcriptional repressors. Presence of transcriptional repressors binding specifically to sperm chromatin could suggest its preparation for the early embryonic cell cycles, during which no transcription is observed and suggests that sperm chromatin has a unique protein composition, which facilitates the recruitment of egg chromatin remodelling factors. It is therefore likely that the acquisition of these sperm-specific factors during spermiogenesis makes the sperm chromatin suitable to interact with the maternal factors and, as a consequence, to support efficient embryonic development.

  7. Hydrogen radical additions to unsaturated hydrocarbons and the reverse beta-scission reactions: modeling of activation energies and pre-exponential factors.

    PubMed

    Sabbe, Maarten K; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2010-01-18

    The group additivity method for Arrhenius parameters is applied to hydrogen addition to alkenes and alkynes and the reverse beta-scission reactions, an important family of reactions in thermal processes based on radical chemistry. A consistent set of group additive values for 33 groups is derived to calculate the activation energy and pre-exponential factor for a broad range of hydrogen addition reactions. The group additive values are determined from CBS-QB3 ab-initio-calculated rate coefficients. A mean factor of deviation of only two between CBS-QB3 and experimental rate coefficients for seven reactions in the range 300-1000 K is found. Tunneling coefficients for these reactions were found to be significant below 400 K and a correlation accounting for tunneling is presented. Application of the obtained group additive values to predict the kinetics for a set of 11 additions and beta-scissions yields rate coefficients within a factor of 3.5 of the CBS-QB3 results except for two beta-scissions with severe steric effects. The mean factor of deviation with respect to experimental rate coefficients of 2.0 shows that the group additive method with tunneling corrections can accurately predict the kinetics and is at least as accurate as the most commonly used density functional methods. The constructed group additive model can hence be applied to predict the kinetics of hydrogen radical additions for a broad range of unsaturated compounds.

  8. Human pathogenic Borrelia spielmanii sp. nov. resists complement-mediated killing by direct binding of immune regulators factor H and factor H-like protein 1.

    PubMed

    Herzberger, Pia; Siegel, Corinna; Skerka, Christine; Fingerle, Volker; Schulte-Spechtel, Ulrike; van Dam, Alje; Wilske, Bettina; Brade, Volker; Zipfel, Peter F; Wallich, Reinhard; Kraiczy, Peter

    2007-10-01

    Borrelia spielmanii sp. nov. has recently been shown to be a novel human pathogenic genospecies that causes Lyme disease in Europe. In order to elucidate the immune evasion mechanisms of B. spielmanii, we compared the abilities of isolates obtained from Lyme disease patients and tick isolate PC-Eq17 to escape from complement-mediated bacteriolysis. Using a growth inhibition assay, we show that four B. spielmanii isolates, including PC-Eq17, are serum resistant, whereas a single isolate, PMew, was more sensitive to complement-mediated lysis. All isolates activated complement in vitro, as demonstrated by covalent attachment of C3 fragments; however, deposition of the later activation products C6 and C5b-9 was restricted to the moderately serum-resistant isolate PMew and the serum-sensitive B. garinii isolate G1. Furthermore, serum adsorption experiments revealed that all B. spielmanii isolates acquired the host alternative pathway regulators factor H and factor H-like protein (FHL-1) from human serum. Both complement regulators retained their factor I-mediated C3b inactivation activities when bound to spirochetes. In addition, two distinct factor H and FHL-1 binding proteins, BsCRASP-1 and BsCRASP-2, were identified, which we estimated to be approximately 23 to 25 kDa in mass. A further factor H binding protein, BsCRASP-3, was found exclusively in the tick isolate, PC-Eq17. This is the first report describing an immune evasion mechanism utilized by B. spielmanii sp. nov., and it demonstrates the capture of human immune regulators to resist complement-mediated killing.

  9. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    SciTech Connect

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-08-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs.

  10. Processing factors that influence casein and serum protein separation by microfiltration.

    PubMed

    Hurt, E; Barbano, D M

    2010-10-01

    Our objective was to demonstrate the effect of various processing factors on the performance of a microfiltration system designed to process skim milk and separate casein (CN) from serum proteins (SP). A mathematical model of a skim milk microfiltration process was developed with 3 stages plus an additional fourth finishing stage to standardize the retentate to 9% true protein (TP) and allow calculation of yield of a liquid 9% TP micellar CN concentrate (MCC) and milk SP isolate (MSPI; 90% SP on a dry basis). The model was used to predict the effect of 5 factors: 1) skim milk composition, 2) heat treatment of skim milk, 3) concentration factor (CF) and diafiltration factor (DF), 4) control of CF and DF, and 5) SP rejection by the membrane on retentate and permeate composition, SP removal, and MCC and MSPI yield. When skim milk TP concentration increased from 3.2 to 3.8%, the TP concentration in the third stage retentate increased from 7.92 to 9.40%, the yield of MCC from 1,000 kg of skim milk increased from 293 to 348 kg, and the yield of MSPI increased from 6.24 to 7.38 kg. Increased heat treatment (72.9 to 85.2°C) of skim milk caused the apparent CN as a percentage of TP content of skim milk as measured by Kjeldahl analysis to increase from 81.97 to 85.94% and the yield of MSPI decreased from 6.24 to 4.86 kg, whereas the third stage cumulative percentage SP removal decreased from 96.96 to 70.08%. A CF and DF of 2× gave a third stage retentate TP concentration of 5.38% compared with 13.13% for a CF and DF of 5×, with the third stage cumulative SP removal increasing from 88.66 to 99.47%. Variation in control of the balance between CF and DF (instead of an equal CF and DF) caused either a progressive increase or decrease in TP concentration in the retentate across stages depending on whether CF was greater than DF (increasing TP in retentate) or CF was less than DF (decreasing TP in retentate). An increased rejection of SP by the membrane from an SP removal

  11. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner.

    PubMed

    Nye, Monica D; Almada, Luciana L; Fernandez-Barrena, Maite G; Marks, David L; Elsawa, Sherine F; Vrabel, Anne; Tolosa, Ezequiel J; Ellenrieder, Volker; Fernandez-Zapico, Martin E

    2014-05-30

    The biological role of the transcription factor GLI1 in the regulation of tumor growth is well established; however, the molecular events modulating this phenomenon remain elusive. Here, we demonstrate a novel mechanism underlying the role of GLI1 as an effector of TGFβ signaling in the regulation of gene expression in cancer cells. TGFβ stimulates GLI1 activity in cancer cells and requires its transcriptional activity to induce BCL2 expression. Analysis of the mechanism regulating this interplay identified a new transcriptional complex including GLI1 and the TGFβ-regulated transcription factor, SMAD4. We demonstrate that SMAD4 physically interacts with GLI1 for concerted regulation of gene expression and cellular survival. Activation of the TGFβ pathway induces GLI1-SMAD4 complex binding to the BCL2 promoter whereas disruption of the complex through SMAD4 RNAi depletion impairs GLI1-mediated transcription of BCL2 and cellular survival. Further characterization demonstrated that SMAD2 and the histone acetyltransferase, PCAF, participate in this regulatory mechanism. Both proteins bind to the BCL2 promoter and are required for TGFβ- and GLI1-stimulated gene expression. Moreover, SMAD2/4 RNAi experiments showed that these factors are required for the recruitment of GLI1 to the BCL2 promoter. Finally, we determined whether this novel GLI1 transcriptional pathway could regulate other TGFβ targets. We found that two additional TGFβ-stimulated genes, INTERLEUKIN-7 and CYCLIN D1, are dependent upon the intact GLI1-SMAD-PCAF complex for transcriptional activation. Collectively, these results define a novel epigenetic mechanism that uses the transcription factor GLI1 and its associated complex as a central effector to regulate gene expression in cancer cells.

  12. The Transcription Factor GLI1 Interacts with SMAD Proteins to Modulate Transforming Growth Factor β-Induced Gene Expression in a p300/CREB-binding Protein-associated Factor (PCAF)-dependent Manner*

    PubMed Central

    Nye, Monica D.; Almada, Luciana L.; Fernandez-Barrena, Maite G.; Marks, David L.; Elsawa, Sherine F.; Vrabel, Anne; Tolosa, Ezequiel J.; Ellenrieder, Volker; Fernandez-Zapico, Martin E.

    2014-01-01

    The biological role of the transcription factor GLI1 in the regulation of tumor growth is well established; however, the molecular events modulating this phenomenon remain elusive. Here, we demonstrate a novel mechanism underlying the role of GLI1 as an effector of TGFβ signaling in the regulation of gene expression in cancer cells. TGFβ stimulates GLI1 activity in cancer cells and requires its transcriptional activity to induce BCL2 expression. Analysis of the mechanism regulating this interplay identified a new transcriptional complex including GLI1 and the TGFβ-regulated transcription factor, SMAD4. We demonstrate that SMAD4 physically interacts with GLI1 for concerted regulation of gene expression and cellular survival. Activation of the TGFβ pathway induces GLI1-SMAD4 complex binding to the BCL2 promoter whereas disruption of the complex through SMAD4 RNAi depletion impairs GLI1-mediated transcription of BCL2 and cellular survival. Further characterization demonstrated that SMAD2 and the histone acetyltransferase, PCAF, participate in this regulatory mechanism. Both proteins bind to the BCL2 promoter and are required for TGFβ- and GLI1-stimulated gene expression. Moreover, SMAD2/4 RNAi experiments showed that these factors are required for the recruitment of GLI1 to the BCL2 promoter. Finally, we determined whether this novel GLI1 transcriptional pathway could regulate other TGFβ targets. We found that two additional TGFβ-stimulated genes, INTERLEUKIN-7 and CYCLIN D1, are dependent upon the intact GLI1-SMAD-PCAF complex for transcriptional activation. Collectively, these results define a novel epigenetic mechanism that uses the transcription factor GLI1 and its associated complex as a central effector to regulate gene expression in cancer cells. PMID:24739390

  13. NSs Virulence Factor of Rift Valley Fever Virus Engages the F-Box Proteins FBXW11 and β-TRCP1 To Degrade the Antiviral Protein Kinase PKR

    PubMed Central

    Kainulainen, Markus; Lau, Simone; Samuel, Charles E.; Hornung, Veit

    2016-01-01

    ABSTRACT Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as β-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and β-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and β-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we

  14. The promotion of angiogenesis by growth factors integrated with ECM proteins through coiled-coil structures.

    PubMed

    Assal, Yasmine; Mie, Masayasu; Kobatake, Eiry

    2013-04-01

    An appropriate method to bind extracellular matrix (ECM) proteins and growth factors using advanced protein engineering techniques has the potential to enhance cell proliferation and differentiation for tissue regeneration and repair. In this study we developed a method to co-immobilize non-covalently an ECM protein to three different types of growth factors: basic fibroblast growth factor (bFGF), epidermal growth factor (EGF) and single-chain vascular endothelial growth factor (scVEGF121) through a coiled-coil structure formed by helixA/helixB in order to promote angiogenesis. The designed ECM was established by fusing two repeats of elastin-derived unit (APGVGV)(12), cell-adhesive sequence (RGD), laminin-derived IKVAV sequence and collagen-binding domain (CBD) to obtain CBDEREI2. HelixA was fused to each growth factor and helixB to the engineered ECM. Human umbilical vein endothelial cells (HUVECs) were cultured on engineered ECM and growth factors connected through the coiled-coil formation between helixA and helixB. Cell proliferation and capillary tube-like formation were monitored. Moreover, the differentiated cells with high expression of Ang-2 suggested the ECM remodeling. Our approach of non-covalent coupling method should provide a protein-release control system as a new contribution in biomaterial for tissue engineering field.

  15. Oxidative stress contributes to the enhanced expression of Gqα/PLCβ1 proteins and hypertrophy of VSMC from SHR: role of growth factor receptor transactivation.

    PubMed

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2016-03-01

    We showed previously that vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHRs) exhibit overexpression of Gqα/PLCβ1 proteins, which contribute to increased protein synthesis through the activation of MAP kinase signaling. Because oxidative stress has been shown to be increased in hypertension, the present study was undertaken to examine the role of oxidative stress and underlying mechanisms in enhanced expression of Gqα/PLCβ1 proteins and VSMC hypertrophy. Protein expression was determined by Western blotting, whereas protein synthesis and cell volume, markers for VSMC hypertrophy, were determined by [(3)H]-leucine incorporation and three-dimensional confocal imaging, respectively. The increased expression of Gqα/PLCβ1 proteins, increased protein synthesis, and augmented cell volume exhibited by VSMCs from SHRs were significantly attenuated by antioxidants N-acetyl-cysteine (NAC), a scavenger of superoxide anion, DPI, an inhibitor of NAD(P)H oxidase. In addition, PP2, AG1024, AG1478, and AG1295, inhibitors of c-Src, insulin-like growth factor receptor (IGFR), epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor (PDGFR), respectively, also attenuated the enhanced expression of Gqα/PLCβ1 proteins and enhanced protein synthesis in VSMCs from SHRs toward control levels. Furthermore, the levels of IGF-1R and EGFR proteins and not of PDGFR were also enhanced in VSMCs from SHRs, which were attenuated significantly by NAC, DPI, and PP2. In addition, NAC, DPI, and PP2 also attenuated the enhanced phosphorylation of IGF-1R, PDGFR, EGFR, c-Src, and EKR1/2 in VSMCs from SHRs. These data suggest that enhanced oxidative stress in VSMCs from SHRs activates c-Src, which through the transactivation of growth factor receptors and MAPK signaling contributes to enhanced expression of Gqα/PLCβ1 proteins and resultant VSMC hypertrophy.

  16. Effects of Factor XIII Deficiency on Thromboelastography. Thromboelastography with Calcium and Streptokinase Addition is more Sensitive than Solubility Tests

    PubMed Central

    Martinuzzo, M.; Barrera, L.; Altuna, D.; Baña, F. Tisi; Bieti, J.; Amigo, Q.; D’Adamo, M.; López, M.S.; Oyhamburu, J.; Otaso, J.C.

    2016-01-01

    Background Homozygous or double heterozygous factor XIII (FXIII) deficiency is characterized by soft tissue hematomas, intracranial and delayed spontaneous bleeding. Alterations of thromboelastography (TEG) parameters in these patients have been reported. The aim of the study was to show results of TEG, TEG Lysis (Lys 60) induced by subthreshold concentrations of streptokinase (SK), and to compare them to the clot solubility studies results in samples of a 1-year-old girl with homozygous or double heterozygous FXIII deficiency. Case A year one girl with a history of bleeding from the umbilical cord. During her first year of life, several hematomas appeared in soft upper limb tissue after punctures for vaccination and a gluteal hematoma. One additional sample of a heterozygous patient and three samples of acquired FXIII deficiency were also evaluated. Materials and Methods Clotting tests, von Willebrand factor (vWF) antigen and activity, plasma FXIII-A subunit (pFXIII-A) were measured by an immunoturbidimetric assay in a photo-optical coagulometer. Solubility tests were performed with Ca2+-5 M urea and thrombin-2% acetic acid. Basal and post-FXIII concentrate infusion samples were studied. TEG was performed with CaCl2 or CaCl2 + SK (3.2 U/mL) in a Thromboelastograph. Results Prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time, fibrinogen, factor VIIIc, vWF, and platelet aggregation were normal. Antigenic pFXIII-A subunit was < 2%. TEG, evaluated at diagnosis and post FXIII concentrate infusion (pFXIII-A= 37%), presented a normal reaction time (R), 8 min, prolonged k (14 and 11min respectively), a low Maximum-Amplitude (MA) ( 39 and 52 mm respectively), and Clot Lysis (Lys60) slightly increased (23 and 30% respectively). In the sample at diagnosis, clot solubility was abnormal, 50 and 45 min with Ca-Urea and thrombin-acetic acid, respectively, but normal (>16 hours) 1-day post-FXIII infusion. Analysis of FXIII deficient and normal

  17. The adenovirus E3 10.4K and 14.5K proteins, which function to prevent cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor, are localized in the plasma membrane.

    PubMed Central

    Stewart, A R; Tollefson, A E; Krajcsi, P; Yei, S P; Wold, W S

    1995-01-01

    The adenovirus type 2 and 5 E3 10,400- and 14,500-molecular-weight (10.4K and 14.5K) proteins are both required to protect some cell lines from lysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. We have shown previously that both 10.4K and 14.5K are integral membrane proteins and that 14.5K is phosphorylated and O glycosylated. The 10.4K protein coimmunoprecipitates with 14.5K, indicating that the two proteins function as a complex. Here we show, using immunofluorescence and two different cell surface-labeling techniques, that both proteins are localized in the plasma membrane. In addition, we show that trafficking of each protein to the plasma membrane depends on concomitant expression of the other protein. Finally, neither protein could be immunoprecipitated from conditioned media, indicating that neither is secreted. Taken together, these results suggest that the plasma membrane is the site at which 10.4K and 14.5K function to inhibit cytolysis by tumor necrosis factor and to down-regulate the epidermal growth factor receptor. PMID:7983708

  18. Mapping transcription factor interactome networks using HaloTag protein arrays.

    PubMed

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N; Carvunis, Anne-Ruxandra; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M; Huang, Shao-Shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A; Hill, David E; Schroeder, Julian I; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R

    2016-07-19

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein-protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor-protein interactions and led to the development of a proteome-wide plant hormone TF interactome network.

  19. Arabidopsis thaliana BTB/ POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family.

    PubMed

    Weber, Henriette; Hellmann, Hanjo

    2009-11-01

    In Arabidopsis thaliana, the BTB/POZ-MATH (BPM) proteins comprise a small family of six members. They have been described previously to use their broad complex, tram track, bric-a-brac/POX virus and zinc finger (BTB/POZ) domain to assemble with CUL3a and CUL3b and potentially to serve as substrate adaptors to cullin-based E3-ligases in plants. In this article, we show that BPMs can also assemble with members of the ethylene response factor/Apetala2 transcription factor family, and that this is mediated by their meprin and TRAF (tumor necrosis factor receptor-associated factor) homology (MATH) domain. In addition, we provide a detailed description of BPM gene expression patterns in different tissues and on abiotic stress treatments, as well as their subcellular localization. This work connects, for the first time, BPM proteins with ethylene response factor/Apetala2 family members, which is likely to represent a novel regulatory mechanism of transcriptional control.

  20. Protein Kinases and Transcription Factors Activation in Response to UV-Radiation of Skin: Implications for Carcinogenesis

    PubMed Central

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Álvarez-Sánchez, Elizbeth; Marchat, Laurence A.

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer. PMID:22312244

  1. Protein kinases and transcription factors activation in response to UV-radiation of skin: implications for carcinogenesis.

    PubMed

    López-Camarillo, César; Ocampo, Elena Aréchaga; Casamichana, Mavil López; Pérez-Plasencia, Carlos; Alvarez-Sánchez, Elizbeth; Marchat, Laurence A

    2012-01-01

    Solar ultraviolet (UV) radiation is an important environmental factor that leads to immune suppression, inflammation, photoaging, and skin carcinogenesis. Here, we reviewed the specific signal transduction pathways and transcription factors involved in the cellular response to UV-irradiation. Increasing experimental data supporting a role for p38, MAPK, JNK, ERK1/2, and ATM kinases in the response network to UV exposure is discussed. We also reviewed the participation of NF-κB, AP-1, and NRF2 transcription factors in the control of gene expression after UV-irradiation. In addition, we discussed the promising chemotherapeutic intervention of transcription factors signaling by natural compounds. Finally, we focused on the review of data emerging from the use of DNA microarray technology to determine changes in global gene expression in keratinocytes and melanocytes in response to UV treatment. Efforts to obtain a comprehensive portrait of the transcriptional events regulating photodamage of intact human epidermis after UV exposure reveals the existence of novel factors participating in UV-induced cell death. Progress in understanding the multitude of mechanisms induced by UV-irradiation could lead to the potential use of protein kinases and novel proteins as specific targets for the prevention and control of skin cancer.

  2. [Mechanisms underlying physiological functions of food factors via non-specific interactions with biological proteins].

    PubMed

    Murakami, Akira

    2015-01-01

      We previously reported that zerumbone, a sesquiterpene found in Zingiber zerumbet SMITH, showed notable cancer preventive effects in various organs of experimental rodents. This agent up-regulated nuclear factor-E2-related factor (Nrf2)-dependent expressions of anti-oxidative and xenobiotics-metabolizing enzymes, leading to an increased self-defense capacity. On the other hand, zerumbone markedly suppressed the expression of cyclooxygenase-2, an inducible pro-inflammatory enzyme, by disrupting mRNA stabilizing processes. Binding experiments using a biotin derivative of zerumbone demonstrated that Keap1, an Nrf2 repressive protein, is one of its major binding proteins that promotes their dissociation for inducing Nrf2 transactivation. We then generated a specific antibody against zerumbone-modified proteins and found that zerumbone modified numerous cellular proteins in a non-specific manner, with global distribution of the modified proteins seen not only in cytoplasm but also the nucleus. Based on those observations, zerumbone was speculated to cause proteo-stress, a notion supported by previous findings that it increased the C-terminus of Hsc70 interacting protein-dependent protein ubiquitination and also promoted aggresome formation. Interestingly, zerumbone counteracted proteo-stress and heat stress via up-regulation of the protein quality control systems (PQCs), e.g., heat shock proteins (HSPs), ubiquitin-proteasome, and autophagy. Meanwhile, several phytochemicals, including ursolic acid and curcumin, were identified as marked HSP70 inducers, whereas most nutrients tested were scarcely active. Recent studies have revealed that PQCs play important roles in the prevention of many lifestyle related diseases, such as cancer, thus non-specific binding of phytochemicals to cellular proteins may be a novel and unique mechanism underlying their physiological activities.

  3. "Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination".

    PubMed

    Oshokoya, Olayinka O; JiJi, Renee D

    2015-09-10

    Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C-O and N-H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the "second-order advantage." An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved "disordered" spectrum represents the better defined poly-proline II type structure.

  4. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis.

    PubMed

    Luan, Hexiang; Shine, M B; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-09-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other's nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection.

  5. The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents

    PubMed Central

    Leidy, HJ; Racki, EM

    2014-01-01

    Background Breakfast skipping (BS) is closely associated with overeating (in the evening), weight gain and obesity. It is unclear whether the addition of breakfast, with emphasis on dietary protein, leads to better appetite and energy intake regulation in adolescents. Objective The purpose of the study was to examine the impact of addition of a normal-protein (PN) breakfast vs protein-rich (PR) breakfast on appetite and food intake in ‘breakfast-skipping’ adolescents. Subjects and Design A total of 13 adolescents (age 14.3 ± 0.3 years; body mass index percentile 79 ± 4 percentile; skipped breakfast 5 ± 1× per week) randomly completed 3 testing days that included a PN (18 ± 1 g protein), PR (48 ± 2 g protein) or BS. Breakfast was 24% of estimated daily energy needs. Appetite, satiety and hormonal responses were collected over 5 h followed by an ad libitum lunch and 24-h food intake assessments. Results Perceived appetite was not different following PN vs BS; PR led to greater reductions vs BS (P<0.01) and PN (P< 0.001). Fullness was greater following both breakfast meals vs BS (P<0.01) but was not different between meals. Ghrelin was not different among treatments. Greater PYY concentrations were observed following both breakfast meals vs BS (P<0.01) but was not different between meals. Lunch energy intake was not different following PN vs BS; PR led to fewer kcal consumed vs BS (P<0.01) and PN (P<0.005). Daily food intake was not different among treatments. Conclusions Breakfast led to increased satiety through increased fullness and PYY concentrations in ‘breakfast skipping’ adolescents. A breakfast rich in dietary protein provides additional benefits through reductions in appetite and energy intake. These findings suggest that the addition of a protein-rich breakfast might be an effective strategy to improve appetite control in young people. PMID:20125103

  6. Expression of factor H binding protein of meningococcus responds to oxygen limitation through a dedicated FNR-regulated promoter.

    PubMed

    Oriente, Francesca; Scarlato, Vincenzo; Delany, Isabel

    2010-02-01

    Factor H binding protein (fHBP) is a surface-exposed lipoprotein in Neisseria meningitidis, which is a component of several investigational vaccines against serogroup B meningococcus (MenB) currently in development. fHBP enables the bacterium to evade complement-mediated killing by binding factor H, a key downregulator of the complement alternative pathway, and, in addition, fHBP is important for meningococcal survival in the presence of the antimicrobial peptide LL-37. In this study, we investigate the molecular mechanisms involved in transcription and regulation of the fHBP-encoding gene, fhbp. We show that the fHBP protein is expressed from two independent transcripts: one bicistronic transcript that includes the upstream gene and a second shorter monocistronic transcript from its own dedicated promoter, P(fhbp). Transcription from the promoter P(fhbp) responds to oxygen limitation in an FNR-dependent manner, and, accordingly, the FNR protein binds to a P(fhbp) probe in vitro. Furthermore, expression in meningococci of a constitutively active FNR mutant results in the overexpression of the fHBP protein. Finally, the analysis of fHBP regulation was extended to a panel of strains expressing different fHBP allelic variants at different levels, and we demonstrate that FNR is involved in the regulation of this antigen in all but one of the strains tested. Our data suggest that oxygen limitation may play an important role in inducing the expression of fHBP from a dedicated FNR-regulated promoter. This implies a role for this protein in microenvironments lacking oxygen, for instance in the submucosa or intracellularly, in addition to its demonstrated role in serum resistance in the blood.

  7. Arabidopsis Sigma Factor Binding Proteins Are Activators of the WRKY33 Transcription Factor in Plant Defense[W

    PubMed Central

    Lai, Zhibing; Li, Ying; Wang, Fei; Cheng, Yuan; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2011-01-01

    Necrotrophic pathogens are important plant pathogens that cause many devastating plant diseases. Despite their impact, our understanding of the plant defense response to necrotrophic pathogens is limited. The WRKY33 transcription factor is important for plant resistance to necrotrophic pathogens; therefore, elucidation of its functions will enhance our understanding of plant immunity to necrotrophic pathogens. Here, we report the identification of two WRKY33-interacting proteins, nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2, which also interact with plastid-encoded plastid RNA polymerase SIGMA FACTOR1. Both SIB1 and SIB2 contain an N-terminal chloroplast targeting signal and a putative nuclear localization signal, suggesting that they are dual targeted. Bimolecular fluorescence complementation indicates that WRKY33 interacts with SIBs in the nucleus of plant cells. Both SIB1 and SIB2 contain a short VQ motif that is important for interaction with WRKY33. The two VQ motif–containing proteins recognize the C-terminal WRKY domain and stimulate the DNA binding activity of WRKY33. Like WRKY33, both SIB1 and SIB2 are rapidly and strongly induced by the necrotrophic pathogen Botrytis cinerea. Resistance to B. cinerea is compromised in the sib1 and sib2 mutants but enhanced in SIB1-overexpressing transgenic plants. These results suggest that dual-targeted SIB1 and SIB2 function as activators of WRKY33 in plant defense against necrotrophic pathogens. PMID:21990940

  8. A common site within factor H SCR 7 responsible for binding heparin, C-reactive protein and streptococcal M protein.

    PubMed

    Giannakis, Eleni; Jokiranta, T Sakari; Male, Dean A; Ranganathan, Shoba; Ormsby, Rebecca J; Fischetti, Vince A; Mold, Carolyn; Gordon, David L

    2003-04-01

    The complement inhibitor factor H (fH) interacts via its seventh short consensus repeat (SCR) domain with multiple ligands including heparin, streptococcal M protein and C-reactive protein (CRP). The aim of this study was to localize the residues in SCR 7 required for these interactions. We initially built a homology model of fH SCR 6-7 using the averaged NMR structures of fH SCR 15-16 and vaccinia control protein SCR 3-4 as templates. Electrostatic potentials of the model's surface demonstrated a co-localization of three clusters of positively charged residues on SCR 7, labeled site A (R369 and K370), site B (R386 and K387) and site C (K392). These residues, localized to the linker region preceding SCR 7 and to the end of a "hypervariable loop" in SCR 7, were systematically replaced with uncharged alanine residues in an fH construct containing SCR 1-7. The resulting proteins were expressed in the methylotrophic yeast, Pichia pastoris. By ELISA analysis we demonstrated: first, that substituting site A inhibited heparin and CRP binding; secondly, that substituting site B inhibited binding to heparin, CRP and M protein; and thirdly, that substituting site C clearly inhibited only heparin binding.

  9. [Chlamydia trachomatis proteasome protein as one of the significant pathogenicity factors of exciter].

    PubMed

    Davydov, D Iu; Zigangirova, N A

    2014-01-01

    Sex-related infections are a global problem. Such infections may lead to acute or chronic diseases. Chlamydia trachomatis is a dangerous and widespread pathogenicity factor that is not sensitive to conventional drugs and has no obvious symptoms. Protein CPAF is leading factor of pathogenesis. This protein inhibits the signaling pathways of host cell and supports long survival of the pathogen in the host cell. The goal of this work was to review general properties of the proteasome Chlamydia protein CPAF, its functions, and role in pathology. The role of protein CPAF in the anti-chlamydia immune reaction is discussed. The prospects of the development of promising anti-chlamydia vaccine, as well as new effective anti-chlamydia drugs are also discussed.

  10. Delta–Notch—and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors

    PubMed Central

    Fischer, Andreas; Gessler, Manfred

    2007-01-01

    Hes and Hey genes are the mammalian counterparts of the Hairy and Enhancer-of-split type of genes in Drosophila and they represent the primary targets of the Delta–Notch signaling pathway. Hairy-related factors control multiple steps of embryonic development and misregulation is associated with various defects. Hes and Hey genes (also called Hesr, Chf, Hrt, Herp or gridlock) encode transcriptional regulators of the basic helix-loop-helix class that mainly act as repressors. The molecular details of how Hes and Hey proteins control transcription are still poorly understood, however. Proposed modes of action include direct binding to N- or E-box DNA sequences of target promoters as well as indirect binding through other sequence-specific transcription factors or sequestration of transcriptional activators. Repression may rely on recruitment of corepressors and induction of histone modifications, or even interference with the general transcriptional machinery. All of these models require extensive protein–protein interactions. Here we review data published on protein–protein and protein–DNA interactions of Hairy-related factors and discuss their implications for transcriptional regulation. In addition, we summarize recent progress on the identification of potential target genes and the analysis of mouse models. PMID:17586813

  11. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    NASA Astrophysics Data System (ADS)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants

  12. Dual roles of protein tyrosine phosphatase kappa in coordinating angiogenesis induced by pro-angiogenic factors

    PubMed Central

    Sun, Ping-Hui; Chen, Gang; Mason, Malcolm; Jiang, Wen G.; Ye, Lin

    2017-01-01

    A potential role may be played by receptor-type protein tyrosine phosphatase kappa (PTPRK) in angiogenesis due to its critical function in coordinating intracellular signal transduction from various receptors reliant on tyrosine phosphorylation. In the present study, we investigated the involvement of PTPRK in the cellular functions of vascular endothelial cells (HECV) and its role in angiogenesis using in vitro assays and a PTPRK knockdown vascular endothelial cell model. PTPRK knockdown in HECV cells (HECVPTPRKkd) resulted in a decrease of cell proliferation and cell-matrix adhesion; however, increased cell spreading and motility were seen. Reduced focal adhesion kinase (FAK) and paxillin protein levels were seen in the PTPRK knockdown cells which may contribute to the inhibitory effect on adhesion. HECVPTPRKkd cells were more responsive to the treatment of fibroblast growth factor (FGF) in their migration compared with the untreated control and cells treated with VEGF. Moreover, elevated c-Src and Akt1 were seen in the PTPRK knockdown cells. The FGF-promoted cell migration was remarkably suppressed by an addition of PLCγ inhibitor compared with other small inhibitors. Knockdown of PTPRK suppressed the ability of HECV cells to form tubules and also impaired the tubule formation that was induced by FGF and conditioned medium of cancer cells. Taken together, it suggests that PTPRK plays dual roles in coordinating angiogenesis. It plays a positive role in cell proliferation, adhesion and tubule formation, but suppresses cell migration, in particular, the FGF-promoted migration. PTPRK bears potential to be targeted for the prevention of tumour associated angiogenesis. PMID:28259897

  13. Some Effects of Calcium on the Activation of Human Factor VIII/Von Willebrand Factor Protein by Thrombin

    PubMed Central

    Switzer, Mary Ellen; McKee, Patrick A.

    1977-01-01

    When Factor VIII/von Willebrand factor (FVIII/vWF) protein is rechromatographed on 4% agarose in 0.25 M CaCl2, the protein and vWF activity appear in the void volume, but most of the FVIII procoagulant activity elutes later. Recent evidence suggests that the delayed FVIII procoagulant activity is a proteolytically modified form of FVIII/vWF protein that filters anomalously from agarose in 0.25 M CaCl2. To test whether or not thrombin is the protease involved, the effect of 0.25 M CaCl2 on FVIII/vWF and its reaction with thrombin was examined. About 30% of the FVIII procoagulant activity was lost immediately when solutions of FVIII/vWF protein were made 0.25 M in CaCl2. When FVIII in 0.15 M NaCl was activated with 0.04 U thrombin/ml and then made 0.25 M in CaCl2, the procoagulant activity of a broad range of FVIII/vWF protein concentrations remained activated for at least 6 h. But, in 0.25 M CaCl2, the increase in FVIII procoagulant activity in response to thrombin was much more gradual and once activated, the procoagulant activity was stabilized by 0.25 M CaCl2. When thrombin-activated FVIII/vWF protein was filtered on 4% agarose in 0.15 M NaCl, there was considerable inactivation of FVIII procoagulant activity; however, the procoagulant activity that did remain eluted in the void volume. In contrast, when thrombin-activated FVIII/vWF protein was filtered in 0.25 M CaCl2, the FVIII procoagulant activity eluted well after the void volume and remained activated for 6 h. The procoagulant peak isolated by filtering nonthrombin-activated FVIII/vWF protein on agarose in 0.25 M CaCl2 was compared to that isolated from thrombin-activated FVIII/vWF protein. Both procoagulant activity peak proteins had about the same specific vWF activity as the corresponding void volume protein. Before reduction, the sodium dodecyl sulfate gel patterns for the two procoagulant activity peak proteins were the same. After reduction, the gel pattern for the nonthrombin-activated procoagulant

  14. Effect of addition of thermally modified cowpea protein on sensory acceptability and textural properties of wheat bread and sponge cake.

    PubMed

    Campbell, Lydia; Euston, Stephen R; Ahmed, Mohamed A

    2016-03-01

    This paper investigates the sensory acceptability and textural properties of leavened wheat bread and sponge cake fortified with cow protein isolates that had been denatured and glycated by thermal treatment. Defatted cowpea flour was prepared from cow pea beans and the protein isolate was prepared (CPI) and thermally denatured (DCPI). To prepare glycated cowpea protein isolate (GCPI) the cowpea flour slurry was heat treated before isolation of the protein. CPI was more susceptible to thermal denaturation than GCPI as determined by turbidity and sulphydryl groups resulting in greater loss of solubility. This is attributed to the higher glycation degree and higher carbohydrate content of GCPI as demonstrated by glycoprotein staining of SDS PAGE gels. Water absorption of bread dough was significantly enhanced by DCPI and to a larger extent GCPI compared to the control, resulting in softer texture. CPI resulted in significantly increased crumb hardness in baked bread than the control whereas DCPI or GCPI resulted in significantly softer crumb. Bread fortified with 4% DCPI or GCPI was similar to control as regards sensory and textural properties whereas 4% CPI was significantly different, limiting its inclusion level to 2%. There was a trend for higher sensory acceptability scores for GCPI containing bread compared DCPI. Whole egg was replaced by 20% by GCPI (3.5%) in sponge cake without affecting the sensory acceptability, whereas CPI and DCPI supplemented cakes were significantly different than the control.

  15. Conversion of canola meal into a high-protein feed additive via solid-state fungal incubation process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study goal was to determine the optimal fungal culture to reduce glucosinolates (GLS), fiber, and residual sugars while increasing the protein content and nutritional value of canola meal. Solid-state incubation conditions were used to enhance filamentous growth of the fungi. Flask trials were p...

  16. Effect of milk protein addition to a carbohydrate-electrolyte rehydration solution ingested after exercise in the heat.

    PubMed

    James, Lewis J; Clayton, David; Evans, Gethin H

    2011-02-01

    The present study examined the effects of milk protein on rehydration after exercise in the heat, via the comparison of energy- and electrolyte content-matched carbohydrate and carbohydrate-milk protein solutions. Eight male subjects lost 1·9 (SD 0·2) % of their body mass by intermittent exercise in the heat and rehydrated with 150% of their body mass loss with either a 65 g/l carbohydrate solution (trial C) or a 40 g/l carbohydrate, 25 g/l milk protein solution (trial CP). Urine samples were collected before and after exercise and for 4 h after rehydration. Total cumulative urine output after rehydration was greater for trial C (1212 (SD 310) ml) than for trial CP (931 (SD 254) ml) (P < 0·05), and total fluid retention over the study was greater after ingestion of drink CP (55 (SD 12) %) than that after ingestion of drink C (43 (SD 15) %) (P < 0·05). At the end of the study period, whole body net fluid balance (P < 0·05) was less negative for trial CP (-0·26 (SD 0·27) litres) than for trial C (-0·52 (SD 0·30) litres), and although net negative for both the trials, it was only significantly negative after ingestion of drink C (P < 0·05). The results of the present study suggest that when matched for energy density and fat content, as well as for Na and K concentration, and when ingested after exercise-induced dehydration, a carbohydrate-milk protein solution is better retained than a carbohydrate solution. These results suggest that gram-for-gram, milk protein is more effective at augmenting fluid retention than carbohydrate.

  17. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    PubMed Central

    Schneider, Bohdan; Gelly, Jean-Christophe; de Brevern, Alexandre G.; Černý, Jiří

    2014-01-01

    The dynamics of protein and nucleic acid structures is as important as their average static picture. The local molecular dynamics concealed in diffraction images is expressed as so-called B factors. To find out how the crystal-derived B factors represent the dynamic behaviour of atoms and residues of proteins and DNA in their complexes, the distributions of scaled B factors from a carefully curated data set of over 700 protein–DNA crystal structures were analyzed [Schneider et al. (2014 ▶), Nucleic Acids Res. 42, 3381–3394]. Amino acids and nucleotides were categorized based on their molecular neighbourhood as solvent-accessible, solvent-inaccessible (i.e. forming the protein core) or lying at protein–protein or protein–DNA interfaces; the backbone and side-chain atoms were analyzed separately. The B factors of two types of crystal-ordered water molecules were also analyzed. The analysis confirmed several expected features of protein and DNA dynamics, but also revealed surprising facts. Solvent-accessible amino acids have B factors that are larger than those of residues at the biomolecular interfaces, and core-forming amino acids are the most restricted in their movement. A unique feature of the latter group is that their side-chain and backbone atoms are restricted in their movement to the same extent; in all other amino-acid groups the side chains are more floppy than the backbone. The low values of the B factors of water molecules bridging proteins with DNA and the very large fluctuations of DNA phosphates are surprising. The features discriminating different types of residues are less pronounced in structures with lower crystallographic resolution. Some of the observed trends are likely to be the consequence of improper refinement protocols that may need to be rectified. PMID:25195754

  18. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    SciTech Connect

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  19. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  20. Cementogenesis and the induction of periodontal tissue regeneration by the osteogenic proteins of the transforming growth factor-beta superfamily.

    PubMed

    Ripamonti, U; Petit, J-C; Teare, J

    2009-04-01

    The antiquity and severity of periodontal diseases are demonstrated by the hard evidence of alveolar bone loss in gnathic remains of the Pliocene/Pleistocene deposits of the Bloubank Valley at Sterkfontein, Swartkrans and Kromdrai in South Africa. Extant Homo has characterized and cloned a superfamily of proteins which include the bone morphogenetic proteins that regulate tooth morphogenesis at different stages of development as temporally and spatially connected events. The induction of cementogenesis, periodontal ligament and alveolar bone regeneration are regulated by the co-ordinated expression of bone morphogenetic proteins. Naturally derived and recombinant human bone morphogenetic proteins induce periodontal tissue regeneration in mammals. Morphological analyses on undecalcified sections cut at 3-6 mum on a series of mandibular molar Class II and III furcation defects induced in the non-human primate Papio ursinus show the induction of cementogenesis. Sharpey's fibers nucleate as a series of composite collagen bundles within the cementoid matrix in close relation to embedded cementocytes. Osteogenic protein-1 and bone morphogenetic protein-2 possess a structure-activity profile, as shown by the morphology of tissue regeneration, preferentially cementogenic and osteogenic, respectively. In Papio ursinus, transforming growth factor-beta(3) also induces cementogenesis, with Sharpey's fibers inserting into newly formed alveolar bone. Capillary sprouting and invasion determine the sequential insertion and alignment of individual collagenic bundles. The addition of responding stem cells prepared by finely mincing fragments of autogenous rectus abdominis muscle significantly enhances the induction of periodontal tissue regeneration when combined with transforming growth factor-beta(3) implanted in Class II and III furcation defects of Papio ursinus.

  1. Functional Analysis of LIM Domain Proteins and Co-Factors in Breast Cancer

    DTIC Science & Technology

    2002-10-01

    by tetracyclin . The LMO-4 protein is tagged with Myc and the Clim-2 protein is tagged with HA, thus allowing specific immunoprecipitation of these...western blot detecting expression of DN-Climn and LM0-4 in pools of MCF-7 cells in response to tetracyclin . The middle panel shows tet-inducible...binding proteins and transcriptional co-regulators. To search for such factors, we have screened a human breast cDNA library with LMO-4 as bait in the yeast

  2. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  3. The F-BAR Protein PACSIN2 Regulates Epidermal Growth Factor Receptor Internalization

    PubMed Central

    de Kreuk, Bart-Jan; Anthony, Eloise C.; Geerts, Dirk; Hordijk, Peter L.

    2012-01-01

    Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling. PMID:23129763

  4. Delayed remote ischemic preconditioning produces an additive cardioprotection to sevoflurane postconditioning through an enhanced heme oxygenase 1 level partly via nuclear factor erythroid 2-related factor 2 nuclear translocation.

    PubMed

    Zhou, Chenghui; Li, Huatong; Yao, Yuntai; Li, Lihuan

    2014-11-01

    Although both sevoflurane postconditioning (SPoC) and delayed remote ischemic preconditioning (DRIPC) have been proved effective in various animal and human studies, the combined effect of these 2 strategies remains unclear. Therefore, this study was designed to investigate this effect and elucidate the related signal mechanisms in a Langendorff perfused rat heart model. After 30-minute balanced perfusion, isolated hearts were subjected to 30-minute ischemia followed by 60-minute reperfusion except 90-minute perfusion for control. A synergic cardioprotective effect of SPoC (3% v/v) and DRIPC (4 cycles 5-minute occlusion/5-minute reflow at the unilateral hindlimb once per day for 3 days before heart isolation) was observed with facilitated cardiac functional recovery and decreased cardiac enzyme release. The infarct size-limiting effect was more pronounced in the combined group (6.76% ± 2.18%) than in the SPoC group (16.50% ± 4.55%, P < .001) or in the DRIPC group (10.22% ± 2.57%, P = .047). Subsequent analysis revealed that an enhanced heme oxygenase 1 (HO-1) expression, but not protein kinase B/AKt or extracellular signal-regulated kinase 1 and 2 activation, was involved in the synergic cardioprotective effect, which was further confirmed in the messenger RNA level of HO-1. Such trend was also observed in the nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, an upstream regulation of HO-1. In addition, correlation analysis showed a significantly positive relationship between HO-1 expression and Nrf2 translocation (r = 0.729, P < .001). Hence, we conclude that DRIPC may produce an additive cardioprotection to SPoC through an enhanced HO-1 expression partly via Nrf2 translocation.

  5. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  6. Protein recovery from rainbow trout (Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives.

    PubMed

    Chen, Yi-Chen; Jaczynski, Jacek

    2007-10-31

    Solubility of rainbow trout proteins was determined between pH 1.5 and 13.0 and various ionic strengths (IS). Minimum solubility occurred at pH 5.5; however, when IS = 0.2, the minimum solubility shifted toward more acidic pH. Isoelectric solubilization/precipitation was applied to trout processing byproducts (fish meat left over on bones, head, skin, etc.), resulting in protein recovery yields (Kjeldahl, dry basis) between 77.7% and 89.0%, depending of the pH used for solubilization and precipitation. The recovered protein contained 1.4-2.1% ash (dry basis), while the trout processing byproducts (i.e., starting material) 13.9%. Typical boneless and skinless trout fillets contain 5.5% ash, and therefore, the isoelectric solubilization/precipitation effectively removed impurities such as bones, scales, skin, etc., from the trout processing byproducts. The recovered proteins retained gel-forming ability as assessed with dynamic rheology, torsion test, and texture profile analysis (TPA). However, the recovered proteins failed to gel unless beef plasma protein (BPP) was added. Even with BPP, the recovered protein showed some proteolysis between 40 and 55 degrees C. Addition of potato starch, transglutaminase, and phosphate to the recovered proteins resulted in good texture of trout gels as confirmed by torsion test and TPA. Higher ( P < 0.05) shear stress and strain were measured for gels developed from basic pH treatments than the acidic counterparts. However, proteins recovered from acidic treatments had higher ( P < 0.05) lipid content than the basic treatments. This is probably why the gels from acidic treatments were whiter ( L* - 3 b*) ( P < 0.05) than those from the basic ones. Our study demonstrates that functional proteins can be efficiently recovered from low-value fish processing byproducts using isoelectric solubilization/precipitation and subsequently be used in value-added human foods.

  7. Studies on a complex mechanism for the activation of plasminogen by kaolin and by chloroform: the participation of Hageman factor and additional cofactors

    PubMed Central

    Ogston, Derek; Ogston, C. Marie; Ratnoff, Oscar D.; Forbes, Charles D.

    1969-01-01

    As demonstrated by others, fibrinolytic activity was generated in diluted, acidified normal plasma exposed to kaolin, a process requiring Hageman factor (Factor XII). Generation was impaired by adsorbing plasma with glass or similar agents under conditions which did not deplete its content of Hageman factor or plasminogen. The defect could be repaired by addition of a noneuglobulin fraction of plasma or an agent or agents eluted from diatomaceous earth which had been exposed to normal plasma. The restorative agent, tentatively called Hageman factor-cofactor, was partially purified by chromatography and had an apparent molecular weight of approximately 165,000. It could be distinguished from plasma thromboplastin antecedent (Factor XI) and plasma kallikrein, other substrates of Hageman factor, and from the streptokinase-activated pro-activator of plasminogen. Evidence is presented that an additional component may be needed for the generation of fibrinolytic activity in mixtures containing Hageman factor, HF-cofactor, and plasminogen. The long-recognized generation of plasmin activity in chloroform-treated euglobulin fractions of plasma was found to be dependent upon the presence of Hageman factor. Whether chloroform activation of plasminogen requires Hageman factor-cofactor was not determined, but glass-adsorbed plasma, containing Hageman factor and plasminogen, did not generate appreciable fibrinolytic or caseinolytic activity. These studies emphasize the complex nature of the mechanisms which lead to the generation of plasmin in human plasma. PMID:4241814

  8. Association of atypical protein kinase C isotypes with the docker protein FRS2 in fibroblast growth factor signaling.

    PubMed

    Lim, Y P; Low, B C; Lim, J; Wong, E S; Guy, G R

    1999-07-02

    FRS2 is a docker protein that recruits signaling proteins to the plasma membrane in fibroblast growth factor signal transduction. We report here that FRS2 was associated with PKC lambda when Swiss 3T3 cells were stimulated with basic fibroblast growth factor. PKC zeta, the other member of the atypical PKC subfamily, could also bind FRS2. The association between FRS2 and PKC lambda is likely to be direct as shown by yeast two-hybrid analysis. The C-terminal fragments of FRS2 (amino acid residues 300-508) and SNT2 (amino acids 281-492), an isoform bearing 50% identity to FRS2, interacted with PKC lambda at a region (amino acids 240-562) that encompasses the catalytic domain. In vitro kinase assays revealed neither FRS2 nor SNT2 was a substrate of PKC lambda or zeta. Mutation of the alanine residue (Ala-120) to glutamate in the pseudo-substrate region of PKC lambda results in a constitutively active kinase that exhibited more than 2-fold greater binding to FRS2 in vitro than its "closed" wild-type counterpart. Tyrosine phosphorylation of FRS2 did not affect its binding to the constitutively active PKC lambda mutant, suggesting that the activation of PKC lambda is necessary and sufficient for its association with FRS2. It is likely that FRS2 serves as an anchoring protein for targeting activated atypical PKCs to the cell plasma membrane in signaling pathways.

  9. Spiroplasma eriocheiris Adhesin-Like Protein (ALP) Interacts with Epidermal Growth Factor (EGF) Domain Proteins to Facilitate Infection

    PubMed Central

    Hou, Libo; Liu, Yuhan; Gao, Qi; Xu, Xuechuan; Ning, Mingxiao; Bi, Jingxiu; Liu, Hui; Liu, Min; Gu, Wei; Wang, Wen; Meng, Qingguo

    2017-01-01

    Spiroplasma eriocheiris is a novel pathogen found in recent years, causing the tremor disease (TD) of Chinese mitten crab Eriocheir sinensis. Like Spiroplasma mirum, S. eriocheiris infects the newborn mouse (adult mice are not infected) and can cause cataract. Adhesion-related protein is an important protein involved in the interaction between pathogen and host. In this study, the Adhesin-like Protein (ALP) of S. eriocheiris was detected on its outer membrane by using immune electron microscopy, and was found to be involved in the bacterium's infection of mouse embryo fibroblasts (3T6-Swiss albino). Yeast two-hybrid analysis demonstrated that ALP interacts with a diverse group of mouse proteins. The interactions between recombinant partial fibulin7 (FBLN7; including two epidermal growth factor [EGF] domains) and ALP were confirmed by Far-western blotting and colocalization. We synthetized the domains of FBLN7 [EGF domain: amino acids 136–172 and complement control protein (CCP) domain: 81–134 amino acids], and demonstrated that only EGF domain of FBLN7 can interact with ALP. Because the EGF domain has high degree of similarity to EGF, it can activate the downstream EGFR signaling pathway, in key site amino acids. The EGFR pathway in 3T6 cells was restrained after rALP stimulation resulting from competitive binding of ALP to EGF. The unborn mouse, newborn mouse, and the adult mouse with cataract have a small amount of expressed FBLN7; however, none was detected in the brain and very little expression was seen in the eye of normal adult mice. In short, ALP as a S. eriocheiris surface protein, is critical for infection and further supports the role of ALP in S. eriocheiris infection by competitive effection of the EGF/EGFR axis of the target cells. PMID:28184355

  10. Effects of nutritional and hormonal factors on the metabolism of retinol-binding protein by primary cultures of rat hepatocytes

    SciTech Connect

    Dixon, J.L.; Goodman, D.S.

    1987-01-01

    Studies were conducted to explore hormonal and nutritional factors that might be involved in the regulation of retinol-binding protein (RBP) synthesis and secretion by the liver. The studies employed primary cultures of hepatocytes from normal rats. When cells were cultured in Dulbecco's modified Eagle's medium alone, a high rate of RBP secretion was observed initially, which declined and became quite low by 24 hr. Supplementing the medium with amino acids maintained RBP and albumin secretion at moderate (but less than initial) rates for at least 3 days. Further addition of dexamethasone maintained the production and secretion rates of RBP, transthyretin, and albumin close to the initial rates for up to 3-5 days in culture as measured by radioimmunoassay. Hormonally treated hepatocytes produced and secreted RBP, transthyretin, and albumin at both absolute and relative rates similar to physiological values, as estimated from rates reported by others from studies in vivo and with perfused livers. Glucagon addition partially maintained the secretion rates of these 3 proteins, but less effectively than did dexamethasone. A number of other hormones, added singly or in combination, did not affect RBP production or secretion. Addition of retinol to the cultured normal hepatocytes was without effect upon RBP secretion. These studies show that supplementing the culture medium of hepatocytes with amino acids and dexamethasone maintains RBP production and secretion for several days. In normal hepatocytes, with ample supply of retinol available within the cell, addition of exogenous retinol does not appear to influence RBP metabolism or secretion by the cells.

  11. Local dynamics of proteins and DNA evaluated from crystallographic B factors

    SciTech Connect

    Schneider, Bohdan; Gelly, Jean-Christophe; Brevern, Alexandre G. de; Černý, Jiří

    2014-09-01

    Distributions of scaled B factors from 704 protein–DNA complexes reflect primarily the neighbourhood of amino-acid and nucleotide residues: their flexibility grows from the protein core to protein–protein and protein–DNA interfaces, to solvent-exposed residues. Some of the findings clearly observed at higher resolution structures can no longer be observed for structures at low resolution indicating problems in refinement protocols. The dynamics of protein and nucleic acid structures is as important as their average static picture. The local molecular dynamics concealed in diffraction images is expressed as so-called B factors. To find out how the crystal-derived B factors represent the dynamic behaviour of atoms and residues of proteins and DNA in their complexes, the distributions of scaled B factors from a carefully curated data set of over 700 protein–DNA crystal structures were analyzed [Schneider et al. (2014 ▶), Nucleic Acids Res.42, 3381–3394]. Amino acids and nucleotides were categorized based on their molecular neighbourhood as solvent-accessible, solvent-inaccessible (i.e. forming the protein core) or lying at protein–protein or protein–DNA interfaces; the backbone and side-chain atoms were analyzed separately. The B factors of two types of crystal-ordered water molecules were also analyzed. The analysis confirmed several expected features of protein and DNA dynamics, but also revealed surprising facts. Solvent-accessible amino acids have B factors that are larger than those of residues at the biomolecular interfaces, and core-forming amino acids are the most restricted in their movement. A unique feature of the latter group is that their side-chain and backbone atoms are restricted in their movement to the same extent; in all other amino-acid groups the side chains are more floppy than the backbone. The low values of the B factors of water molecules bridging proteins with DNA and the very large fluctuations of DNA phosphates are

  12. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress1[OPEN

    PubMed Central

    Basha, Eman; Fowler, Mary E.; Kim, Minsoo; Bordowitz, Juliana; Katiyar-Agarwal, Surekha

    2016-01-01

    The ubiquitous small heat shock proteins (sHSPs) are well documented to act in vitro as molecular chaperones to prevent the irreversible aggregation of heat-sensitive proteins. However, the in vivo activities of sHSPs remain unclear. To investigate the two most abundant classes of plant cytosolic sHSPs (class I [CI] and class II [CII]), RNA interference (RNAi) and overexpression lines were created in Arabidopsis (Arabidopsis thaliana) and shown to have reduced and enhanced tolerance, respectively, to extreme heat stress. Affinity purification of CI and CII sHSPs from heat-stressed seedlings recovered eukaryotic translation elongation factor (eEF) 1B (α-, β-, and γ-subunits) and eukaryotic translation initiation factor 4A (three isoforms), although the association with CI sHSPs was stronger and additional proteins involved in translation were recovered with CI sHSPs. eEF1B subunits became partially insoluble during heat stress and, in the CI and CII RNAi lines, showed reduced recovery to the soluble cell fraction after heat stress, which was also dependent on HSP101. Furthermore, after heat stress, CI sHSPs showed increased retention in the insoluble fraction in the CII RNAi line and vice versa. Immunolocalization revealed that both CI and CII sHSPs were present in cytosolic foci, some of which colocalized with HSP101 and with eEF1Bγ and eEF1Bβ. Thus, CI and CII sHSPs have both unique and overlapping functions and act either directly or indirectly to protect specific translation factors in cytosolic stress granules. PMID:27474115

  13. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  14. Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein.

    PubMed

    Schroeter, Elena R; DeHart, Caroline J; Cleland, Timothy P; Zheng, Wenxia; Thomas, Paul M; Kelleher, Neil L; Bern, Marshall; Schweitzer, Mary H

    2017-02-03

    Sequence data from biomolecules such as DNA and proteins, which provide critical information for evolutionary studies, have been assumed to be forever outside the reach of dinosaur paleontology. Proteins, which are predicted to have greater longevity than DNA, have been recovered from two nonavian dinosaurs, but these results remain controversial. For proteomic data derived from extinct Mesozoic organisms to reach their greatest potential for investigating questions of phylogeny and paleobiology, it must be shown that peptide sequences can be reliably and reproducibly obtained from fossils and that fragmentary sequences for ancient proteins can be increasingly expanded. To test the hypothesis that peptides can be repeatedly detected and validated from fossil tissues many millions of years old, we applied updated extraction methodology, high-resolution mass spectrometry, and bioinformatics analyses on a Brachylophosaurus canadensis specimen (MOR 2598) from which collagen I peptides were recovered in 2009. We recovered eight peptide sequences of collagen I: two identical to peptides recovered in 2009 and six new peptides. Phylogenetic analyses place the recovered sequences within basal archosauria. When only the new sequences are considered, B. canadensis is grouped more closely to crocodylians, but when all sequences (current and those reported in 2009) are analyzed, B. canadensis is placed more closely to basal birds. The data robustly support the hypothesis of an endogenous origin for these peptides, confirm the idea that peptides can survive in specimens tens of millions of years old, and bolster the validity of the 2009 study. Furthermore, the new data expand the coverage of B. canadensis collagen I (a 33.6% increase in collagen I alpha 1 and 116.7% in alpha 2). Finally, this study demonstrates the importance of reexamining previously studied specimens with updated methods and instrumentation, as we obtained roughly the same amount of sequence data as the

  15. Identification of drug-binding sites on human serum albumin using affinity capillary electrophoresis and chemically modified proteins as buffer additives.

    PubMed

    Kim, Hee Seung; Austin, John; Hage, David S

    2002-03-01

    A technique based on affinity capillary electrophoresis (ACE) and chemically modified proteins was used to screen the binding sites of various drugs on human serum albumin (HSA). This involved using HSA as a buffer additive, following the site-selective modification of this protein at two residues (tryptophan 214 or tyrosine 411) located in its major binding regions. The migration times of four compounds (warfarin, ibuprofen, suprofen and flurbiprofen) were measured in the presence of normal or modified HSA. These times were then compared and the mobility shifts observed with the modified proteins were used to identify the binding regions of each injected solute on HSA. Items considered in optimizing this assay included the concentration of protein placed into the running buffer, the reagents used to modify HSA, and the use of dextran as a secondary additive to adjust protein mobility. The results of this method showed good agreement with those of previous reports. The advantages and disadvantages of this approach are examined, as well as its possible extension to other solutes.

  16. Modification of water absorption capacity of a plastic based on bean protein using gamma irradiated starches as additives

    NASA Astrophysics Data System (ADS)

    Köber, E.; Gonzalez, M. E.; Gavioli, N.; Salmoral, E. M.

    2007-01-01

    Some properties of a bean protein-starch plastic were modified by irradiation of the starch. Two kinds of starch from bean and cassava were irradiated with doses until 50 kGy before their inclusion in the composite. Water absorption of the resultant product was reduced by 36% and 60% in materials containing bean and cassava starch, respectively. A large decline in the elongation is observed till 10 kGy in both materials, while tensile strength diminished by 11% in the cassava composite.

  17. SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1.

    PubMed

    Llorian, Miriam; Beullens, Monique; Andrés, Isabel; Ortiz, Jose-Miguel; Bollen, Mathieu

    2004-02-15

    We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1.

  18. Rpf Proteins Are the Factors of Reactivation of the Dormant Forms of Actinobacteria.

    PubMed

    Nikitushkin, V D; Demina, G R; Kaprelyants, A S

    2016-12-01

    As the response to unfavorable growth conditions, nonsporulating mycobacteria transform into the dormant state with the concomitant formation of the specialized dormant forms characterized by low metabolic activity and resistance to antibiotics. Such dormant cells can be reactivated under the influence of several factors including proteins of Rpf (Resuscitation promoting factor) family, which possess peptidoglycan hydrolase activity and were considered to belong to the group of the autocrine growth factors of the bacteria. Remarkable interest toward Rpf family is determined by its participation in resuscitation of the dormant forms of Mycobacterium tuberculosis, what in turn is the key element in resuscitation of the latent tuberculosis - an infectious disease that affects one third of the World's population. Experiments with Rpf mutant forms and with strains deleted in these proteins revealed a relationship between the enzymatic activity of this protein and its ability to resuscitate mycobacteria both in vitro and in vivo. This review discusses possible mechanisms of Rpf action including those related to possible participation of the products of mycobacterial Rpf-mediated cell wall hydrolysis (muropeptides) as signaling molecules. The unique ability of Rpf proteins to resuscitate the dormant forms of mycobacteria and to stimulate their proliferation would allow these proteins to occupy their niche in medicine - in diagnostics and in creation of antituberculosis subunit vaccines.

  19. Extracellular Stiffness Modulates the Expression of Functional Proteins and Growth Factors in Endothelial Cells.

    PubMed

    Santos, Lívia; Fuhrmann, Gregor; Juenet, Maya; Amdursky, Nadav; Horejs, Christine-Maria; Campagnolo, Paola; Stevens, Molly M

    2015-08-13

    Angiogenesis, the formation of blood vessels from pre-existing ones, is of vital importance during the early stages of bone healing. Extracellular stiffness plays an important role in regulating endothelial cell behavior and angiogenesis, but how this mechanical cue affects proliferation kinetics, gene regulation, and the expression of proteins implicated in angiogenesis and bone regeneration remains unclear. Using collagen-coated polyacrylamide (PAAm) hydrogels, human umbilical vein endothelial cells (HUVECs) are exposed to an environment that mimics the elastic properties of collagenous bone, and cellular proliferation and gene and protein expressions are assessed. The proliferation and gene expression of HUVECs are not differentially affected by culture on 3 or 30 kPa PAAm hydrogels, henceforth referred to as low and high stiffness gels, respectively. Although the proliferation and gene transcript levels remain unchanged, significant differences are found in the expressions of functional proteins and growth factors implicated both in the angiogenic and osteogenic processes. The down-regulation of the vascular endothelial growth factor receptor-2 protein with concomitant over-expression of caveolin-1, wingless-type 2, bone morphogenic protein 2, and basic fibroblast growth factor on the high stiffness PAAm hydrogel suggests that rigidity has a pro-angiogenic effect with inherent benefits for bone regeneration.

  20. SIPP1, a novel pre-mRNA splicing factor and interactor of protein phosphatase-1.

    PubMed Central

    Llorian, Miriam; Beullens, Monique; Andrés, Isabel; Ortiz, Jose-Miguel; Bollen, Mathieu

    2004-01-01

    We have identified a polypeptide that was already known to interact with polyglutamine-tract-binding protein (PQBP)-1/Npw38 as a novel splicing factor and interactor of protein phosphatase-1, hence the name SIPP1 for splicing factor that interacts with PQBP-1 and PP1 (protein phosphotase 1). SIPP1 was inhibitory to PP1, and its inhibitory potency was increased by phosphorylation with protein kinase CK1. Two-hybrid and co-sedimentation analysis revealed that SIPP1 has two distinct PP1-binding domains and that the binding of SIPP1 with PP1 involves a RVXF (Arg-Val-Xaa-Phe) motif, which functions as a PP1-binding sequence in most interactors of PP1. Enhanced-green-fluorescent-protein-tagged SIPP1 was targeted exclusively to the nucleus and was enriched in the nuclear speckles, which represent storage/assembly sites of splicing factors. We have mapped a nuclear localization signal in the N-terminus of SIPP1, while the proline-rich C-terminal domain appeared to be required for its subnuclear targeting to the speckles. Finally, we found that SIPP1 is also a component of the spliceosomes and that a SIPP1-fragment inhibits splicing catalysis by nuclear extracts independent of its ability to interact with PP1. PMID:14640981

  1. An Additional Potential Factor for Kidney Stone Formation during Space Flights: Calcifying Nanoparticles (Nanobacteria): A Case Report

    NASA Technical Reports Server (NTRS)

    Jones, Jeffrey A.; Ciftcioglu, Neva; Schmid, Joseph; Griffith, Donald

    2007-01-01

    Spaceflight-induced microgravity appears to be a risk factor for the development of urinary calculi due to skeletal calcium liberation and other undefined factors, resulting in stone disease in crewmembers during and after spaceflight. Calcifying nanoparticles, or nanobacteria, reproduce at a more rapid rate in simulated microgravity conditions and create external shells of calcium phosphate in the form of apatite. The questions arises whether calcifying nanoparticles are niduses for calculi and contribute to the development of clinical stone disease in humans, who possess environmental factors predisposing to the development of urinary calculi and potentially impaired immunological defenses during spaceflight. A case of a urinary calculus passed from an astronaut post-flight with morphological characteristics of calcifying nanoparticles and staining positive for a calcifying nanoparticle unique antigen, is presented.

  2. Promoter Recognition by Extracytoplasmic Function σ Factors: Analyzing DNA and Protein Interaction Motifs

    PubMed Central

    Guzina, Jelena

    2016-01-01

    ABSTRACT Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both −35 and −10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended −10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the −10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the −10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable −35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended −10 element can compensate for the lack of −35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well

  3. Protein-DNA array-based identification of transcription factor activities differentially regulated in obliterative bronchiolitis

    PubMed Central

    Dong, Ming; Wang, Xin; Zhao, Hong-Lin; Zhao, Yu-Xia; Jing, Ya-Qing; Yuan, Jing-Hua; Guo, Yi-Jiu; Chen, Xing-Long; Li, Ke-Qiu; Li, Guang

    2015-01-01

    Lung transplantation has already become the preferred treatment option for a variety of end-stage pulmonary failure. However the long-term results of lung transplantation are still not compelling and the major death reason is commonly due to obliterative bronchiolitis (OB) which is considered as chronic rejection presenting manifests physiologically as a progressive decline in FEV1. Transcription factors (TFs) play a key role in regulating gene expression and in providing an interconnecting regulatory between related pathway elements. Although the transcription factors are required for expression of the proinflammatory cytokines and immune proteins which are involved in obliterative bronchiolitis following lung transplantation, the alterations of the transcription factors in OB have not yet been revealed. Therefore, to investigate the alteration pattern of the transcription factors in OB, we used protein/DNA arrays. Mice orthotopic tracheal transplantation model was used in this studying. In this study, we explored the activity profiles of TFs in Protein/DNA array data of tracheal tissue in 14 and 28 day after transplanted. From a total of 345 screened TFs, we identified 42 TFs that showed associated with OB progression. Our data indicate that TFs may be potentially involved in the pathogenesis of OB, and can prevent, diagnose and treat OB after lung transplantation. In development of OB, some of the TFs may have ability to modulate the transcription of inflammatory proteins such cytokines, inflammatory enzymes and so on. PMID:26261607

  4. Mapping transcription factor interactome networks using HaloTag protein arrays

    PubMed Central

    Yazaki, Junshi; Galli, Mary; Kim, Alice Y.; Nito, Kazumasa; Aleman, Fernando; Chang, Katherine N.; Quan, Rosa; Nguyen, Hien; Song, Liang; Alvarez, José M.; Huang, Shao-shan Carol; Chen, Huaming; Ramachandran, Niroshan; Altmann, Stefan; Gutiérrez, Rodrigo A.; Schroeder, Julian I.; Chory, Joanne; LaBaer, Joshua; Vidal, Marc; Braun, Pascal; Ecker, Joseph R.

    2016-01-01

    Protein microarrays enable investigation of diverse biochemical properties for thousands of proteins in a single experiment, an unparalleled capacity. Using a high-density system called HaloTag nucleic acid programmable protein array (HaloTag-NAPPA), we created high-density protein arrays comprising 12,000 Arabidopsis ORFs. We used these arrays to query protein–protein interactions for a set of 38 transcription factors and transcriptional regulators (TFs) that function in diverse plant hormone regulatory pathways. The resulting transcription factor interactome network, TF-NAPPA, contains thousands of novel interactions. Validation in a benchmarked in vitro pull-down assay revealed that a random subset of TF-NAPPA validated at the same rate of 64% as a positive reference set of literature-curated interactions. Moreover, using a bimolecular fluorescence complementation (BiFC) assay, we confirmed in planta several interactions of biological interest and determined the interaction localizations for seven pairs. The application of HaloTag-NAPPA technology to plant hormone signaling pathways allowed the identification of many novel transcription factor–protein interactions and led to the development of a proteome-wide plant hormone TF interactome network. PMID:27357687

  5. Affinity and Specificity of Protein U1A-RNA Complex Formation Based on an Additive Component Free Energy Model

    PubMed Central

    Kormos, Bethany L.; Benitex, Yulia; Baranger, Anne M.; Beveridge, David L.

    2007-01-01

    Summary A MM-GBSA computational protocol was used successfully to account for wild type U1A-RNA and F56 U1A mutant experimental binding free energies. The trend in mutant binding free energies compared to wild type is well-reproduced. Following application of a linear-response-like equation to scale the various energy components, the binding free energies agree quantitatively with observed experimental values. Conformational adaptation contributes to the binding free energy for both the protein and the RNA in these systems. Small differences in ΔGs are the result of different and sometimes quite large relative contributions from various energetic components. Residual free energy decomposition indicates differences not only at the site of mutation, but throughout the entire protein. MM-GBSA and ab initio calculations performed on model systems suggest that stacking interactions may nearly, but not completely, account for observed differences in mutant binding affinities. This study indicates that there may be different underlying causes of ostensibly similar experimentally observed binding affinities of different mutants, and thus recommends caution in the interpretation of binding affinities and specificities purely by inspection. PMID:17603075

  6. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice

    PubMed Central

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep. PMID:27537186

  7. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

    PubMed

    Jiang, Fei; He, Jinyan; Navarro-Alvarez, Nalu; Xu, Jian; Li, Xia; Li, Peng; Wu, Wenxue

    2016-01-01

    Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.

  8. Interactions between tobamovirus replication proteins and cellular factors: their impacts on virus multiplication.

    PubMed

    Ishibashi, Kazuhiro; Nishikiori, Masaki; Ishikawa, Masayuki

    2010-11-01

    Most viral gene products function inside cells in the presence of various host proteins, nucleic acids, and lipids. Thus, viral gene products come into direct contact with these molecules. The replication proteins of tobamovirus participate not only in viral genome replication but also in counterdefense mechanisms against RNA silencing and other plant defense systems. Accumulating evidence indicates that these functions are carried out through interactions with specific host components. Interactions with some cellular factors, however, are inhibitory to virus multiplication and contribute to host range restriction of tobamovirus. The interactions that have positive and negative impacts on virus multiplication should have been maintained and lost, respectively, during adaptation of the viruses to their respective natural hosts. This review lists the host factors that interact with the replication proteins of tobamovirus and discusses how they influence multiplication of the virus.

  9. Growth factors and steroid mediated regulation of cytoskeletal protein expression in serum-deprived primary astrocyte cultures.

    PubMed

    Bramanti, Vincenzo; Bronzi, Daniela; Tomassoni, Daniele; Costa, Antonino; Raciti, Giuseppina; Avitabile, Marcello; Amenta, Francesco; Avola, Roberto

    2008-12-01

    In this research we aimed to investigate the interactions between growth factors (GFs) and dexamethasone (DEX) on cytoskeletal proteins GFAP and vimentin (VIM) expression under different experimental conditions. Condition I: 24 h pretreatment with bFGF, subsequent 72 h switching in serum-free medium (SFM) and final addition of GFs, alone or by two in the last 24 h, after a prolonged (60 h) DEX treatment. Condition II: 36 h pretreatment with DEX (with bFGF in the last 24 h), followed by SFM for 60 h and final addition for 24 h with growth factors alone or two of them together. Western blot analysis data showed a marked GFAP expression in cultures submitted to Condition I comparing results to untreated or treated controls. VIM expression was instead significantly reduced after GFs addition in the last 24 h of 60 h DEX treatment, respect to control DEX-pretreated ones. Referring data to untreated controls, VIM expression was significantly enhanced after GFs addition. GFAP showed also a significant increase in astrocytes submitted to Condition II, respect to untreated or treated control cultures. VIM expression was up and down regulated under Condition II. Collectively, our findings evidence an interactive dialogue between GFs and DEX in astroglial cultures, co-pretreated with DEX and bFGF, regulating cytoskeletal network under stressful conditions.

  10. Recent Insights into Insulin-Like Growth Factor Binding Protein 2 Transcriptional Regulation

    PubMed Central

    Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu

    2017-01-01

    Insulin-like growth factor binding proteins (IGFBPs) are major regulators of insulin-like growth factor bioavailability and activity in metabolic signaling. Seven IGFBP family isoforms have been identified. Recent studies have shown that IGFBPs play a pivotal role in metabolic signaling and disease, including the pathogenesis of obesity, diabetes, and cancer. Although many studies have documented the various roles played by IGFBPs, transcriptional regulation of IGFBPs is not well understood. In this review, we focus on the regulatory mechanisms of IGFBP gene expression, and we summarize the findings of transcription factor activity in the IGFBP promoter region. PMID:28116872

  11. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    PubMed

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  12. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    PubMed

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  13. Interferon-induced guanylate-binding proteins lack an N(T)KXD consensus motif and bind GMP in addition to GDP and GTP.

    PubMed

    Cheng, Y S; Patterson, C E; Staeheli, P

    1991-09-01

    The primary structures of interferon (IFN)-induced guanylate-binding proteins (GBPs) were deduced from cloned human and murine cDNAs. These proteins contained only two of the three sequence motifs typically found in GTP/GDP-binding proteins. The N(T)KXD motif, which is believed to confer guanine specificity in other nucleotide-binding proteins, was absent. Nevertheless, the IFN-induced GBPs exhibited a high degree of selectivity for binding to agarose-immobilized guanine nucleotides. An interesting feature of IFN-induced GBPs is that they strongly bound to GMP agarose in addition to GDP and GTP agaroses but failed to bind to ATP agarose and all other nucleotide agaroses tested. Both GTP and GMP, but not ATP, competed for binding of murine GBP-1 to agarose-immobilized GMP. The IFN-induced GBPs thus define a distinct novel family of proteins with GTP-binding activity. We further demonstrate that human and murine cells contain at least two genes encoding IFN-induced GBPs. The cloned murine cDNA codes for GBP-1, an IFN-induced protein previously shown to be absent from mice of Gbp-1b genotype.

  14. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells

    SciTech Connect

    Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Zhao, Dewei; Xiao, Zewen; Schulz, Philip; Harvey, Steven P.; Liao, Weiqiang; Meng, Weiwei; Yu, Yue; Cimaroli, Alexander J.; Jiang, Chun-Sheng; Zhu, Kai; Al-Jassim, Mowafak; Fang, Guojia; Mitzi, David B.; Yan, Yanfa

    2016-05-04

    Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

  15. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes.

    PubMed Central

    Donaldson, J G; Cassel, D; Kahn, R A; Klausner, R D

    1992-01-01

    The coatomer is a cytosolic protein complex that reversibly associates with Golgi membranes and is implicated in modulating Golgi membrane transport. The association of beta-COP, a component of coatomer, with Golgi membranes is enhanced by guanosine 5'-[gamma-thio]triphosphate (GTP[gamma S]), a nonhydrolyzable analogue of GTP, and by a mixture of aluminum and fluoride ions (Al/F). Here we show that the ADP-ribosylation factor (ARF) is required for the binding of beta-COP. Thus, beta-COP contained in a coatomer fraction that has been resolved from ARF does not bind to Golgi membranes, whereas binding can be reconstituted by the addition of recombinant ARF. Furthermore, an N-terminal peptide of ARF, which blocks ARF binding to Golgi membranes, inhibits GTP[gamma S]- as well as the Al/F-enhanced binding of beta-COP. We show that Golgi coat protein binding involves a sequential reaction where an initial interaction of ARF and GTP[gamma S] with the membrane allows subsequent binding of beta-COP to take place in the absence of free ARF and GTP[gamma S]. The fungal metabolite brefeldin A, which is known to prevent the association of coat proteins with Golgi membrane, is shown to exert this effect by interfering with the initial ARF-membrane interaction step. Images PMID:1631136

  16. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast.

    PubMed

    Abrams, Jennifer L; Verghese, Jacob; Gibney, Patrick A; Morano, Kevin A

    2014-05-09

    Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.

  17. Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates.

    PubMed

    Seras-Franzoso, Joaquin; Peebo, Karl; García-Fruitós, Elena; Vázquez, Esther; Rinas, Ursula; Villaverde, Antonio

    2014-03-01

    Bacterial inclusion bodies (IBs) have recently been used to generate biocompatible cell culture interfaces, with diverse effects on cultured cells such as cell adhesion enhancement, stimulation of cell growth or induction of mesenchymal stem cell differentiation. Additionally, novel applications of IBs as sustained protein delivery systems with potential applications in regenerative medicine have been successfully explored. In this scenario, with IBs gaining significance in the biomedical field, the fine tuning of this functional biomaterial is crucial. In this work, the effect of temperature on fibroblast growth factor-2 (FGF-2) IB production and performance has been evaluated. FGF-2 was overexpressed in Escherichia coli at 25 and 37 °C, producing IBs with differences in size, particle structure and biological activity. Cell culture topographies made with FGF-2 IBs biofabricated at 25 °C showed higher levels of biological activity as well as a looser supramolecular structure, enabling a higher protein release from the particles. In addition, the controlled use of FGF-2 protein particles enabled the generation of functional topographies with multiple biological activities being effective on diverse cell types.

  18. Reduction of Factor VIII Inhibitor Titers During Immune Tolerance Induction With Recombinant Factor VIII-Fc Fusion Protein.

    PubMed

    Groomes, Charles L; Gianferante, David M; Crouch, Gary D; Parekh, Dina S; Scott, David W; Lieuw, Kenneth

    2016-05-01

    The development of inhibitors toward factor VIII (FVIII) is a common and serious complication of hemophilia A (HA) therapy. Patients with hemophilia who develop inhibitors often undergo time- and resource-intensive immune tolerance induction (ITI) protocols. We report a 15-month-old male with severe HA and a high-titer inhibitor that occurred while receiving prophylactic treatment with recombinant FVIII (rFVIII), in whom significant inhibitor titer reduction was achieved with thrice weekly infusions of a new, prolonged half-life rFVIII-Fc fusion protein product (trade name Eloctate). Further studies are warranted to explore the potential of Eloctate in ITI protocols.

  19. Association Between Serum Concentrations of Hypoxia Inducible Factor Responsive Proteins and Excessive Erythrocytosis in High Altitude Peru

    PubMed Central

    Painschab, Matthew S.; Malpartida, Gary E.; Dávila-Roman, Victor G.; Gilman, Robert H.; Kolb, Todd M.; León-Velarde, Fabiola; Miranda, J. Jaime

    2015-01-01

    Abstract Painschab, Matthew S., Gary E. Malpartida, Victor G. Davila-Roman, Robert H. Gilman, Todd M. Kolb, Fabiola Leon-Velarde, J. Jaime Miranda, and William Checkley. Association between serum concentrations of hypoxia inducible factor responsive proteins and excessive erythrocytosis in high altitude Peru. High Alt Med Biol 16:26–33, 2015.—Long-term residence at high altitude is associated with the development of chronic mountain sickness (CMS), which is characterized by excessive erythrocytosis (EE). EE occurs under chronic hypoxia, and a strongly selected mutation in hypoxia-inducible factor 2α (HIF2A) has been found in native Tibetans that correlates with having a normal hemoglobin at high altitude. We sought to evaluate differences in plasma levels of four HIF-responsive proteins in 20 participants with EE (hemoglobin >21 g/dL in men and >19 in women) and in 20 healthy, age- and sex-matched participants without EE living at high altitude in Puno, Peru. We performed ELISA to measure plasma levels of the four HIF-responsive proteins: vascular endothelial growth factor (VEGF), soluble VEGF receptor 1 (sVEGF-R1), endothelin-1, and erythropoietin. As a secondary aim, we evaluated the association between HIF-responsive proteins and echocardiography-estimated pulmonary artery systolic pressure (PASP) in a subset of 26 participants. sVEGF-R1 was higher in participants with vs. without EE (mean 107 pg/mL vs. 90 pg/mL; p=0.007). Although plasma concentrations of endothelin-1, VEGF, and erythropoietin were higher in participants with vs. without EE, they did not achieve statistical significance (all p>0.25). Both sVEGF-R1 (p=0.04) and erythropoietin (p=0.04) were positively associated with PASP after adjustment for age, sex, and BMI. HIF-responsive proteins may play a pathophysiological role in altitude-related, chronic diseases but our results did not show consistent changes in all measured HIF-responsive proteins. Larger studies are needed to evaluate for

  20. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha.

    PubMed

    Wakisaka, Naohiro; Kondo, Satoru; Yoshizaki, Tomokazu; Murono, Shigeyuki; Furukawa, Mitsuru; Pagano, Joseph S

    2004-06-01

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1 alpha and HIF-1 beta that is the central regulator of responses to hypoxia. The specific binding of HIF-1 to the hypoxia-responsive element (HRE) induces the transcription of genes that respond to hypoxic conditions, including vascular endothelial growth factor (VEGF). Here we report that expression of HIF-1 alpha is increased in diverse Epstein-Barr virus (EBV)-infected type II and III cell lines, which express EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein, as well as other latency proteins, but not in the parental EBV-negative cell lines. We show first that transfection of an LMP1 expression plasmid into Ad-AH cells, an EBV-negative nasopharyngeal epithelial cell line, induces synthesis of HIF-1 alpha protein without increasing its stability or mRNA level. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 markedly reduces induction of HIF-1 alpha by LMP1. Catalase, an H(2)O(2) scavenger, strongly suppresses LMP1-induced production of H(2)O(2), which results in a decrease in the expression of HIF-1 alpha induced by LMP1. Inhibition of the NF-kappa B, c-jun N-terminal kinase, p38 MAPK, and phosphatidylinositol 3-kinase pathways did not affect HIF-1 alpha expression. Moreover, LMP1 induces HIF-1 DNA binding activity and upregulates HRE and VEGF promoter transcriptional activity. Finally, LMP1 increases the appearance of VEGF protein in extracellular fluids; induction of VEGF is suppressed by PD98059 or catalase. These results suggest that LMP1 increases HIF-1 activity through induction of HIF-1 alpha protein expression, which is controlled by p42/p44 MAPK activity and H(2)O(2). The ability of EBV, and specifically its major oncoprotein, LMP1, to induce HIF-1 alpha along with other invasiveness and angiogenic factors reported previously discloses additional oncogenic properties of this tumor virus.

  1. Structural Basis for Protein anti-Aggregation Activity of the Trigger Factor Chaperone*

    PubMed Central

    Saio, Tomohide; Guan, Xiao; Rossi, Paolo; Economou, Anastassios; Kalodimos, Charalampos G.

    2014-01-01

    Molecular chaperones prevent aggregation and misfolding of proteins but scarcity of structural data has impeded an understanding of the recognition and anti-aggregation mechanisms. Here we report the solution structure, dynamics and energetics of three Trigger Factor (TF) chaperone molecules in complex with alkaline phosphatase (PhoA) captured in the unfolded state. Our data show that TF uses multiple sites to bind to several regions of the PhoA substrate protein primarily through hydrophobic contacts. NMR relaxation experiments show that TF interacts with PhoA in a highly dynamic fashion but as the number and length of the PhoA regions engaged by TF increases, a more stable complex gradually emerges. Multivalent binding keeps the substrate protein in an extended, unfolded conformation. The results show how molecular chaperones recognize unfolded polypeptides and how by acting as unfoldases and holdases prevent the aggregation and premature (mis)folding of unfolded proteins. PMID:24812405

  2. Analysis of Protein Thermostability Enhancing Factors in Industrially Important Thermus Bacteria Species

    PubMed Central

    Kumwenda, Benjamin; Litthauer, Derek; Bishop, Özlem Tastan; Reva, Oleg

    2013-01-01

    Elucidation of evolutionary factors that enhance protein thermostability is a critical problem and was the focus of this work on Thermus species. Pairs of orthologous sequences of T. scotoductus SA-01 and T. thermophilus HB27, with the largest negative minimum folding energy (MFE) as predicted by the UNAFold algorithm, were statistically analyzed. Favored substitutions of amino acids residues and their properties were determined. Substitutions were analyzed in modeled protein structures to determine their locations and contribution to energy differences using PyMOL and FoldX programs respectively. Dominant trends in amino acid substitutions consistent with differences in thermostability between orthologous sequences were observed. T. thermophilus thermophilic proteins showed an increase in non-polar, tiny, and charged amino acids. An abundance of alanine substituted by serine and threonine, as well as arginine substituted by glutamine and lysine was observed in T. thermophilus HB27. Structural comparison showed that stabilizing mutations occurred on surfaces and loops in protein structures. PMID:24023508

  3. Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state

    NASA Astrophysics Data System (ADS)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2005-10-01

    Thermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (Δ G°), enthalpy (Δ H°), entropy (S°), isobaric heat capacity (C°P), volume (V°) and isothermal compressibility (κ°T) of multiple reference model compounds. Experimental values of C°P, V° and κ°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, Δ G°, Δ H°, S° C°P, V° and κ°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this kind represent a first step in the prediction of chemical affinities of many

  4. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding.

    PubMed

    Schmidt, Hugo G; Sewitz, Sven; Andrews, Steven S; Lipkow, Karen

    2014-01-01

    We present a computational model of transcription factor motion that explains both the observed rapid target finding of transcription factors, and how this motion influences protein and genome structure. Using the Smoldyn software, we modelled transcription factor motion arising from a combination of unrestricted 3D diffusion in the nucleoplasm, sliding along the DNA filament, and transferring directly between filament sections by intersegmental transfer. This presents a fine-grain picture of the way in which transcription factors find their targets two orders of magnitude faster than 3D diffusion alone allows. Eukaryotic genomes contain sections of nucleosome free regions (NFRs) around the promoters; our model shows that the presence and size of these NFRs can be explained as their acting as antennas on which transcription factors slide to reach their targets. Additionally, our model shows that intersegmental transfer may have shaped the quaternary structure of transcription factors: sequence specific DNA binding proteins are unusually enriched in dimers and tetramers, perhaps because these allow intersegmental transfer, which accelerates target site finding. Finally, our model shows that a 'hopping' motion can emerge from 3D diffusion on small scales. This explains the apparently long sliding lengths that have been observed for some DNA binding proteins observed in vitro. Together, these results suggest that transcription factor diffusion dynamics help drive the evolution of protein and genome structure.

  5. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-α, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-α, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  6. Cytostatic Factor Proteins Are Present in Male Meiotic Cells and β-Nerve Growth Factor Increases Mos Levels in Rat Late Spermatocytes

    PubMed Central

    Perrard, Marie-Hélène; Chassaing, Emeric; Montillet, Guillaume; Sabido, Odile; Durand, Philippe

    2009-01-01

    Background In co-cultures of pachytene spermatocytes with Sertoli cells, β-NGF regulates the second meiotic division by blocking secondary spermatocytes in metaphase (metaphase II), and thereby lowers round spermatid formation. In vertebrates, mature oocytes are arrested at metaphase II until fertilization, because of the presence of cytostatic factor (CSF) in their cytoplasm. By analogy, we hypothesized the presence of CSF in male germ cells. Methodology/Principal Findings We show here, that Mos, Emi2, cyclin E and Cdk2, the four proteins of CSF, and their respective mRNAs, are present in male rat meiotic cells; this was assessed by using Western blotting, immunocytochemistry and reverse transcriptase PCR. We measured the relative cellular levels of Mos, Emi2, Cyclin E and Cdk2 in the meiotic cells by flow cytometry and found that the four proteins increased throughout the first meiotic prophase, reaching their highest levels in middle to late pachytene spermatocytes, then decreased following the meiotic divisions. In co-cultures of pachytene spermatocytes with Sertoli cells, β-NGF increased the number of metaphases II, while enhancing Mos and Emi2 levels in middle to late pachytene spermatocytes, pachytene spermatocytes in division and secondary spermatocytes. Conclusion/Significance Our results suggest that CSF is not restricted to the oocyte. In addition, they reinforce the view that NGF, by enhancing Mos in late spermatocytes, is one of the intra-testicular factors which adjusts the number of round spermatids that can be supported by Sertoli cells. PMID:19802389

  7. Protein Expression Signatures for Inhibition of Epidermal Growth Factor Receptor-mediated Signaling*

    PubMed Central

    Myers, Matthew V.; Manning, H. Charles; Coffey, Robert J.; Liebler, Daniel C.

    2012-01-01

    Analysis of cellular signaling networks typically involves targeted measurements of phosphorylated protein intermediates. However, phosphoproteomic analyses usually require affinity enrichment of phosphopeptides and can be complicated by artifactual changes in phosphorylation caused by uncontrolled preanalytical variables, particularly in the analysis of tissue specimens. We asked whether changes in protein expression, which are more stable and easily analyzed, could reflect network stimulation and inhibition. We employed this approach to analyze stimulation and inhibition of the epidermal growth factor receptor (EGFR) by EGF and selective EGFR inhibitors. Shotgun analysis of proteomes from proliferating A431 cells, EGF-stimulated cells, and cells co-treated with the EGFR inhibitors cetuximab or gefitinib identified groups of differentially expressed proteins. Comparisons of these protein groups identified 13 proteins whose EGF-induced expression changes were reversed by both EGFR inhibitors. Targeted multiple reaction monitoring analysis verified differential expression of 12 of these proteins, which comprise a candidate EGFR inhibition signature. We then tested these 12 proteins by multiple reaction monitoring analysis in three other models: 1) a comparison of DiFi (EGFR inhibitor-sensitive) and HCT116 (EGFR-insensitive) cell lines, 2) in formalin-fixed, paraffin-embedded mouse xenograft DiFi and HCT116 tumors, and 3) in tissue biopsies from a patient with the gastric hyperproliferative disorder Ménétrier's disease who was treated with cetuximab. Of the proteins in the candidate signature, a core group, including c-Jun, Jagged-1, and Claudin 4, were decreased by EGFR inhibitors in all three models. Although the goal of these studies was not to validate a clinically useful EGFR inhibition signature, the results confirm the hypothesis that clinically used EGFR inhibitors generate characteristic protein expression changes. This work further outlines a prototypical

  8. Analysis of temperature factor distribution in high-resolution protein structures.

    PubMed Central

    Parthasarathy, S.; Murthy, M. R.

    1997-01-01

    The temperature factors obtained from X-ray refinement of proteins at high resolution show large variations from one structure to another. However, the B-values expressed in units of standard deviation about their mean value (B'-factor) at the C alpha atoms show remarkably characteristic frequency distribution. In all of the 110 proteins examined in this study, the frequency distribution exhibited a bimodal distribution. The peaks in the B'-factor frequency distribution occur at -1.1 and 0.4 for a bin size of 0.5. The peak at lower temperature factor corresponds largely to buried residues, whereas the peak at larger value corresponds to exposed residues. The distribution could be accurately described as a superposition of two Gaussian functions. The parameters describing the distribution are therefore characteristic of protein structures. The frequency distribution for a given amino acid over all the proteins also shows a similar bimodal distribution, although the areas under the two Gaussians differ from one amino acid to another. The area under the frequency distribution curve for any interval in B'-factor represents the propensity of the amino acid to occur in that interval. This propensity is related both to the hydrophilicity/hydrophobicity of the residue and the tendency of the residue to impose a different degree of rigidity on the polypeptide chain. The frequency distribution of stretches of high B'-factors departs appreciably from that expected for a random distribution. The correlation in the B-values of sequentially proximal residues is probably responsible for the bimodal distribution. PMID:9416605

  9. Overexpression of hepatocyte growth factor in SBMA model mice has an additive effect on combination therapy with castration.

    PubMed

    Ding, Ying; Adachi, Hiroaki; Katsuno, Masahisa; Huang, Zhe; Jiang, Yue-Mei; Kondo, Naohide; Iida, Madoka; Tohnai, Genki; Nakatsuji, Hideaki; Funakoshi, Hiroshi; Nakamura, Toshikazu; Sobue, Gen

    2015-12-25

    Spinal and bulbar muscular atrophy (SBMA) is an inherited motor neuron disease caused by the expansion of a polyglutamine (polyQ)-encoding tract within the androgen receptor (AR) gene. The pathologic features of SBMA are motor neuron loss in the spinal cord and brainstem and diffuse nuclear accumulation and nuclear inclusions of mutant AR in residual motor neurons and certain visceral organs. Hepatocyte growth factor (HGF) is a polypeptide growth factor which has neuroprotective properties. To investigate whether HGF overexpression can affect disease progression in a mouse model of SBMA, we crossed SBMA transgenic model mice expressing an AR gene with an expanded CAG repeat with mice overexpressing HGF. Here, we report that high expression of HGF induces Akt phosphorylation and modestly ameliorated motor symptoms in an SBMA transgenic mouse model treated with or without castration. These findings suggest that HGF overexpression can provide a potential therapeutic avenue as a combination therapy with disease-modifying therapies in SBMA.

  10. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia.

    PubMed

    Rouissi, Kamel; Ouerhani, Slah; Hamrita, Bechr; Bougatef, Karim; Marrakchi, Raja; Cherif, Mohamed; Ben Slama, Mohamed Riadh; Bouzouita, Mohamed; Chebil, Mohamed; Ben Ammar Elgaaied, Amel

    2011-12-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual's ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30-51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer.

  11. Simultaneous quantification of five proteins and seven additives in dairy products with a heart-cutting two-dimensional liquid chromatography method.

    PubMed

    Hou, Xiaofang; Sun, Meng; He, Xiaoshuang; Chen, Liang; Zhang, Ping; He, Langchong

    2015-09-01

    A heart-cutting two-dimensional high-performance liquid chromatography method was developed to simultaneously quantify five major proteins and seven food additives (maltol, ethyl maltol, vanillin, ethyl vanillin, benzoic acid, sorbic acid, and saccharin sodium) in milk and milk powders. In this two-dimensional system, a Venusil XBP-C4 column was selected in the first dimension for protein separation, and a Hypersil ODS-2 C18 column was employed in the second dimension for additive separation; a two-position, six-port switching valve was used to transfer the targets (additives) from the first dimension to the second dimension. Method validation consisted of selectivity, response function, linearity, precision, sensitivity, and recovery. In addition, a conventional one-dimensional high-performance liquid chromatography method was also tested for comparison. The two-dimensional method resulted in significantly improved recovery of the food additives compared to the conventional method (90.6-105.4% and 65.5-86.5%, respectively). Furthermore, this novel method has a simple one-step sample preparation procedure, which shortens the analysis time, resulting in more efficient analysis and less solvent usage.

  12. Fibroblast growth factor 3, a protein with a dual subcellular fate, is interacting with human ribosomal protein S2

    SciTech Connect

    Antoine, Marianne; Reimers, Kerstin; Wirz, Werner; Gressner, Axel M.; Mueller, Robert; Kiefer, Paul . E-mail: pkiefer@ukaachen.de

    2005-12-16

    The secreted isoform of fibroblast growth factor 3 (FGF3) induces a mitogenic cell response, while the nuclear form inhibits cell proliferation. Recently, we identified a nucleolar FGF3-binding protein which is implicated in processing of pre-rRNA as a possible target of nuclear FGF3 signalling. Here, we report a second candidate protein identified by a yeast two-hybrid screen for nuclear FGF3 action, ribosomal protein S2, rpS2. Recombinant rpS2 binds to in vitro translated FGF3 and to nuclear FGF3 extracted from transfected COS-1 cells. Characterization of the FGF3 binding domain of rpS2 showed that both the Arg-Gly-rich N-terminal region and a short carboxyl-terminal sequence of rpS2 are necessary for FGF3 binding. Mapping the S2 binding domains of FGF3 revealed that these domains are important for both NoBP and rpS2 interaction. Transient co-expression of rpS2 and nuclear FGF3 resulted in a reduced nucleolar localization of the FGF. These findings suggest that the nuclear form of FGF3 inhibits cell proliferation by interfering with ribosomal biogenesis.

  13. Quantitative mass spectrometric analysis of dipeptides in protein hydrolysate by a TNBS derivatization-aided standard addition method.

    PubMed

    Hanh, Vu Thi; Kobayashi, Yutaro; Maebuchi, Motohiro; Nakamori, Toshihiro; Tanaka, Mitsuru; Matsui, Toshiro

    2016-01-01

    The aim of this study was to establish, through a standard addition method, a convenient quantification assay for dipeptides (GY, YG, SY, YS, and IY) in soybean hydrolysate using 2,4,6-trinitrobenzene sulfonate (TNBS) derivatization-aided LC-TOF-MS. Soybean hydrolysate samples (25.0 mg mL(-1)) spiked with target standards were subjected to TNBS derivatization. Under the optimal LC-MS conditions, five target dipeptides derivatized with TNBS were successfully detected. Examination of the standard addition curves, with a correlation coefficient of r(2) > 0.979, provided a reliable quantification of the target dipeptides, GY, YG, SY, YS, and IY, in soybean hydrolysate to be 424 ± 20, 184 ± 9, 2188 ± 199, 327 ± 16, and 2211 ± 133 μg g(-1) of hydrolysate, respectively. The proposed LC-MS assay is a reliable and convenient assay method, with no interference from matrix effects in hydrolysate, and with no requirement for the use of an isotope labeled internal standard.

  14. Enhanced Production of Insulin-like Growth Factor I Protein in Escherichia coli by Optimization of Five Key Factors

    PubMed Central

    Ranjbari, Javad; Babaeipour, Valiollah; Vahidi, Hossein; Moghimi, Hamidreza; Mofid, Mohammad Reza; Namvaran, Mohammad Mehdi; Jafari, Sevda

    2015-01-01

    Human insulin-like growth factor I (hIGF-I) is a kind of growth factor with clinical significance in medicine. Up to now, E. coli expression system has been widely used as a host to produce rhIGF-1 with high yields. Batch cultures as non-continuous fermentations were carried out to overproduce rhIGF-I in E. coli. The major objective of this study is over- production of recombinant human insulin-like growth factor I (rhIGF-I) through a developed process by recruiting effective factors in order to achieve the most recombinant protein. In this study we investigated the effect of culture medium, induction temperature and amount of inducer on cell growth and IGF-1 production. Taguchi design of experiments (DOE) method was used as the statistical method. Analysis of experimental data showed that maximum production of rhIGF-I was occurred in 32y culture medium at 32 °C and 0.05 Mm IPTG. Under this condition, 0.694 g/L of rhIGF-I was produced as the inclusion bodies. Following optimization of these three factors, we have also optimized the amount of glucose and induction time in 5 liter top bench bioreactor. Full factorial design of experiment method was used for these two factors as the statistical method. 10 g/L and OD600=5 were selected as the optimum point of Glucose amount and induction time, respectively. Finally, we reached to a concentration of 1.26 g/L rhIGF-1 at optimum condition. PMID:26330880

  15. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens

    PubMed Central

    2017-01-01

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content. PMID:28252948

  16. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens.

    PubMed

    Janssen, Renske H; Vincken, Jean-Paul; van den Broek, Lambertus A M; Fogliano, Vincenzo; Lakemond, Catriona M M

    2017-03-22

    Insects are considered a nutritionally valuable source of alternative proteins, and their efficient protein extraction is a prerequisite for large-scale use. The protein content is usually calculated from total nitrogen using the nitrogen-to-protein conversion factor (Kp) of 6.25. This factor overestimates the protein content, due to the presence of nonprotein nitrogen in insects. In this paper, a specific Kp of 4.76 ± 0.09 was calculated for larvae from Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens, using amino acid analysis. After protein extraction and purification, a Kp factor of 5.60 ± 0.39 was found for the larvae of three insect species studied. We propose to adopt these Kp values for determining protein content of insects to avoid overestimation of the protein content.

  17. Factorization of the association rate coefficient in ligand rebinding to heme proteins

    NASA Astrophysics Data System (ADS)

    Young, Robert D.

    1984-01-01

    A stochastic theory of ligand migration in biomolecules is used to analyze the recombination of small ligands to heme proteins after flash photolysis. The stochastic theory is based on a generalized sequential barrier model in which a ligand binds by overcoming a series of barriers formed by the solvent protein interface, the protein matrix, and the heme distal histidine system. The stochastic theory shows that the association rate coefficient λon factorizes into three terms λon =γ12Nout, where γ12 is the rate coefficient from the heme pocket to the heme binding site, is the equilibrium pocket occupation factor, and Nout is the fraction of heme proteins which do not undergo geminate recombination of a flashed-off ligand. The factorization of λon holds for any number of barriers and with no assumptions regarding the various rate coefficients so long as the exponential solvent process occurs. Transitions of a single ligand are allowed between any two sites with two crucial exceptions: (i) the heme binding site acts as a trap so that thermal dissociation of a bound ligand does not occur within the time of the measurement; (ii) the final step in the rebinding process always has a ligand in the heme pocket from where the ligand binds to the heme iron.

  18. Structural basis for conserved complement factor-like function in the antimalarial protein TEP1

    PubMed Central

    Baxter, Richard H. G.; Chang, Chung-I; Chelliah, Yogarany; Blandin, Stéphanie; Levashina, Elena A.; Deisenhofer, Johann

    2007-01-01

    Thioester-containing proteins (TEPs) are a major component of the innate immune response of insects to invasion by bacteria and protozoa. TEPs form a distinct clade of a superfamily that includes the pan-protease inhibitors α2-macroglobulins and vertebrate complement factors. The essential feature of these proteins is a sequestered thioester bond that, after cleavage in a protease-sensitive region of the protein, is activated and covalently binds to its target. Recently, TEP1 from the malarial vector Anopheles gambiae was shown to mediate recognition and killing of ookinetes from the malarial parasite Plasmodium berghei, a model for the human malarial parasite Plasmodium falciparum. Here, we present the crystal structure of the TEP1 isoform TEP1r. Although the overall protein fold of TEP1r resembles that of complement factor C3, the TEP1r domains are repositioned to stabilize the inactive conformation of the molecule (containing an intact thioester) in the absence of the anaphylotoxin domain, a central component of complement factors. The structure of TEP1r provides a molecular basis for the differences between TEP1 alleles TEP1r and TEP1s, which correlate with resistance of A. gambiae to infection by P. berghei. PMID:17606907

  19. All-atom contact model for understanding protein dynamics from crystallographic B-factors.

    PubMed

    Li, Da-Wei; Brüschweiler, Rafael

    2009-04-22

    An all-atom local contact model is described that can be used to predict protein motions underlying isotropic crystallographic B-factors. It uses a mean-field approximation to represent the motion of an atom in a harmonic potential generated by the surrounding atoms resting at their equilibrium positions. Based on a 400-ns molecular dynamics simulation of ubiquitin in explicit water, it is found that each surrounding atom stiffens the spring constant by a term that on average scales exponentially with the interatomic distance. This model combines features of the local density model by Halle and the local contact model by Zhang and Brüschweiler. When applied to a nonredundant set of 98 ultra-high resolution protein structures, an average correlation coefficient of 0.75 is obtained for all atoms. The systematic inclusion of crystal contact contributions and fraying effects is found to enhance the performance substantially. Because the computational cost of the local contact model scales linearly with the number of protein atoms, it is applicable to proteins of any size for the prediction of B-factors of both backbone and side-chain atoms. The model performs as well as or better than several other models tested, such as rigid-body motional models, the local density model, and various forms of the elastic network model. It is concluded that at the currently achievable level of accuracy, collective intramolecular motions are not essential for the interpretation of B-factors.

  20. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen)

    PubMed Central

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients. PMID:28299349

  1. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    PubMed

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  2. Xeroderma Pigmentosum Group A Protein Loads as a Separate Factor onto DNA Lesions

    PubMed Central

    Rademakers, Suzanne; Volker, Marcel; Hoogstraten, Deborah; Nigg, Alex L.; Moné, Martijn J.; van Zeeland, Albert A.; Hoeijmakers, Jan H. J.; Houtsmuller, Adriaan B.; Vermeulen, Wim

    2003-01-01

    Nucleotide excision repair (NER) is the main DNA repair pathway in mammals for removal of UV-induced lesions. NER involves the concerted action of more than 25 polypeptides in a coordinated fashion. The xeroderma pigmentosum group A protein (XPA) has been suggested to function as a central organizer and damage verifier in NER. How XPA reaches DNA lesions and how the protein is distributed in time and space in living cells are unknown. Here we studied XPA in vivo by using a cell line stably expressing physiological levels of functional XPA fused to green fluorescent protein and by applying quantitative fluorescence microscopy. The majority of XPA moves rapidly through the nucleoplasm with a diffusion rate different from those of other NER factors tested, arguing against a preassembled XPA-containing NER complex. DNA damage induced a transient (∼5-min) immobilization of maximally 30% of XPA. Immobilization depends on XPC, indicating that XPA is not the initial lesion recognition protein in vivo. Moreover, loading of replication protein A on NER lesions was not dependent on XPA. Thus, XPA participates in NER by incorporation of free diffusing molecules in XPC-dependent NER-DNA complexes. This study supports a model for a rapid consecutive assembly of free NER factors, and a relatively slow simultaneous disassembly, after repair. PMID:12897146

  3. Systemic delivery of factor IX messenger RNA for protein replacement therapy.

    PubMed

    Ramaswamy, Suvasini; Tonnu, Nina; Tachikawa, Kiyoshi; Limphong, Pattraranee; Vega, Jerel B; Karmali, Priya P; Chivukula, Pad; Verma, Inder M

    2017-03-07

    Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4-6 h) that remains stable for up to 4-6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA-LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable.

  4. Factors influencing subcellular localization of the human papillomavirus L2 minor structural protein

    SciTech Connect

    Kieback, Elisa; Mueller, Martin . E-mail: Martin.Mueller@dkfz.de

    2006-02-05

    Two structural proteins form the capsids of papillomaviruses. The major structural protein L1 is the structural determinant of the capsids and is present in 360 copies arranged in 72 pentamers. The minor structural protein L2 is estimated to be present in twelve copies per capsid. Possible roles for L2 in interaction with cell surface receptors and in virion uptake have been suggested. As previously reported, L2 localizes in subnuclear domains identified as nuclear domain 10 (ND10). As it was demonstrated that L2 is able to recruit viral and cellular proteins to ND10, a possible role for L2 as a mediator in viral assembly has been proposed. In this study, we determined factors influencing the localization of L2 at ND10. Under conditions of moderate L2 expression level and in the absence of heterologous viral components, we observed that, in contrast to previous reports, L2 is mainly distributed homogeneously throughout the nucleus. L2, however, is recruited to ND10 at a higher expression level or in the presence of viral components derived from vaccinia virus or from Semliki Forest virus. We observed that translocation of L2 to ND10 is not a concentration-dependent accumulation but rather seems to be triggered by yet unidentified cellular factors. In contrast to HPV 11 and 16 L2, the HPV 18 L2 protein seems to require L1 for efficient nuclear accumulation.

  5. Systemic delivery of factor IX messenger RNA for protein replacement therapy

    PubMed Central

    Ramaswamy, Suvasini; Tonnu, Nina; Tachikawa, Kiyoshi; Limphong, Pattraranee; Vega, Jerel B.; Karmali, Priya P.; Chivukula, Pad; Verma, Inder M.

    2017-01-01

    Safe and efficient delivery of messenger RNAs for protein replacement therapies offers great promise but remains challenging. In this report, we demonstrate systemic, in vivo, nonviral mRNA delivery through lipid nanoparticles (LNPs) to treat a Factor IX (FIX)-deficient mouse model of hemophilia B. Delivery of human FIX (hFIX) mRNA encapsulated in our LUNAR LNPs results in a rapid pulse of FIX protein (within 4–6 h) that remains stable for up to 4–6 d and is therapeutically effective, like the recombinant human factor IX protein (rhFIX) that is the current standard of care. Extensive cytokine and liver enzyme profiling showed that repeated administration of the mRNA–LUNAR complex does not cause any adverse innate or adaptive immune responses in immune-competent, hemophilic mice. The levels of hFIX protein that were produced also remained consistent during repeated administrations. These results suggest that delivery of long mRNAs is a viable therapeutic alternative for many clotting disorders and for other hepatic diseases where recombinant proteins may be unaffordable or unsuitable. PMID:28202722

  6. Neural regeneration protein is a novel chemoattractive and neuronal survival-promoting factor

    SciTech Connect

    Gorba, Thorsten; Bradoo, Privahini; Antonic, Ana; Marvin, Keith; Liu, Dong-Xu; Lobie, Peter E.; Reymann, Klaus G.; Gluckman, Peter D.; Sieg, Frank . E-mail: fsieg@neurenpharma.com

    2006-10-01

    Neurogenesis and neuronal migration are the prerequisites for the development of the central nervous system. We have identified a novel rodent gene encoding for a neural regeneration protein (NRP) with an activity spectrum similar to the chemokine stromal-derived factor (SDF)-1, but with much greater potency. The Nrp gene is encoded as a forward frameshift to the hypothetical alkylated DNA repair protein AlkB. The predicted protein sequence of NRP contains domains with homology to survival-promoting peptide (SPP) and the trefoil protein TFF-1. The Nrp gene is first expressed in neural stem cells and expression continues in glial lineages. Recombinant NRP and NRP-derived peptides possess biological activities including induction of neural migration and proliferation, promotion of neuronal survival, enhancement of neurite outgrowth and promotion of neuronal differentiation from neural stem cells. NRP exerts its effect on neuronal survival by phosphorylation of the ERK1/2 and Akt kinases, whereas NRP stimulation of neural migration depends solely on p44/42 MAP kinase activity. Taken together, the expression profile of Nrp, the existence in its predicted protein structure of domains with similarities to known neuroprotective and migration-inducing factors and the high potency of NRP-derived synthetic peptides acting in femtomolar concentrations suggest it to be a novel gene of relevance in cellular and developmental neurobiology.

  7. In Arabidopsis thaliana distinct alleles encoding mitochondrial RNA PROCESSING FACTOR 4 support the generation of additional 5' termini of ccmB transcripts.

    PubMed

    Stoll, Katrin; Jonietz, Christian; Schleicher, Sarah; des Francs-Small, Catherine Colas; Small, Ian; Binder, Stefan

    2017-04-01

    In plant mitochondria, the 5' ends of many transcripts are generated post-transcriptionally. We show that the pentatricopeptide repeat (PPR) protein RNA PROCESSING FACTOR 4 (RPF4) supports the generation of extra 5' ends of ccmB transcripts in Landsberg erecta (Ler) and a number of other Arabidopsis thaliana ecotypes. RPF4 was identified in Ler applying a forward genetic approach supported by complementation studies of ecotype Columbia (Col), which generates the Ler-type extra ccmB 5' termini only after the introduction of the RPF4 allele from Ler. Studies with chimeric RPF4 proteins composed of various parts of the RPF4 proteins from Ler and Col identified differences in the N-terminal and central PPR motifs that explain ecotype-specific variations in ccmB processing. These results fit well with binding site predictions in ccmB transcripts based on the known determinants of nucleotide base recognition by PPR motifs.

  8. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  9. Kinetic characterization of the protein Z-dependent protease inhibitor reaction with blood coagulation factor Xa.

    PubMed

    Huang, Xin; Swanson, Richard; Broze, George J; Olson, Steven T

    2008-10-31

    Protein Z-dependent protease inhibitor (ZPI) is a recently identified member of the serpin superfamily that functions as a cofactor-dependent regulator of blood coagulation factors Xa (FXa) and XIa. Here we show that ZPI and its cofactor, protein Z (PZ), inhibit procoagulant membrane-bound factor Xa by the branched pathway acyl-intermediate trapping mechanism used by other serpins, but with significant variations of this mechanism that are unique to ZPI. Rapid kinetic analyses showed that the reaction proceeded by the initial assembly of a membrane-associated PZ-ZPI-FXa Michaelis complex (K(M) 53+/-5 nM) followed by conversion to a stable ZPI-FXa complex (k(lim) 1.2+/-0.1 s(-1)). Cofactor premixing experiments together with independent kinetic analyses of ZPI-PZ and factor Xa-PZ-membrane complex formation suggested that assembly of the Michaelis complex through either ZPI-PZ-lipid or factor Xa-PZ-lipid intermediates was rate-limiting. Reaction stoichiometry analyses and native PAGE showed that for every factor Xa molecule inhibited by ZPI, two serpin molecules were cleaved. Native PAGE and immunoblotting showed that PZ dissociated from ZPI once ZPI forms a stable complex with FXa, and kinetic analyses confirmed that PZ acted catalytically to accelerate the membrane-dependent ZPI-factor Xa reaction. The ZPI-FXa complex was only transiently stable and dissociated with a rate constant that showed a bell-shaped pH dependence indicative of participation of factor Xa active-site residues. The complex was detectable by SDS-PAGE when denatured at low pH, consistent with it being a kinetically trapped covalent acyl-intermediate. Together our findings show that ZPI functions like other serpins to regulate the activity of FXa but in a manner uniquely dependent on protein Z, procoagulant membranes, and pH.

  10. Additive clinical value of serum brain-derived neurotrophic factor for prediction of chronic heart failure outcome.

    PubMed

    Kadowaki, Shinpei; Shishido, Tetsuro; Honda, Yuki; Narumi, Taro; Otaki, Yoichiro; Kinoshita, Daisuke; Nishiyama, Satoshi; Takahashi, Hiroki; Arimoto, Takanori; Miyamoto, Takuya; Watanabe, Tetsu; Kubota, Isao

    2016-04-01

    The importance of the central nervous system in cardiovascular events has been recognized. Recently, brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is involved in depression mechanisms and also in stress and anxiety. Because BDNF is reported about cardioprotective role, we elucidated whether BDNF is associated with cardiovascular events in patients with chronic heart failure (CHF). We examined serum BDNF levels in 134 patients with CHF and 23 control subjects. The patients were followed to register cardiac events for a median of 426 days. BDNF was significantly lower in CHF patients than in control subjects (25.8 ± 8.4 vs 14.7 ± 8.4, P < 0.0001). Serum BDNF was also lower in patients with cardiac events than in event-free patients (16.1 ± 8.0 vs 12.5 ± 8.5, P < 0.0001). The cutoff value of BDNF was determined by performing receiver operating characteristic curve analysis. Kaplan-Meier analysis demonstrated that patients with low levels of BDNF experienced higher rates of cardiac events than those with high levels of BDNF. Multivariate Cox hazard analysis demonstrated that low BDNF levels (≤12.4 ng/mL) were an independent prognostic factor for cardiac events (hazard ratio 2.932, 95 % confidence interval 1.622-5.301; P = 0.0004). Adding levels of BDNF to the model with BNP levels, age, and eGFR for the prediction of cardiac events yielded significant net reclassification improvement of 0.429 (P < 0.001) and an integrated discrimination improvement of 0.101 (P < 0.001). Low serum BDNF levels were found in patients with CHF, and these levels were found to be independently associated with an increased risk of cardiac events.

  11. Overexpression of the transcription factor Yap1 modifies intracellular redox conditions and enhances recombinant protein secretion

    PubMed Central

    Delic, Marizela; Graf, Alexandra B.; Koellensperger, Gunda; Haberhauer-Troyer, Christina; Hann, Stephan; Mattanovich, Diethard; Gasser, Brigitte

    2014-01-01

    Oxidative folding of secretory proteins in the endoplasmic reticulum (ER) is a redox active process, which also impacts the redox conditions in the cytosol. As the transcription factor Yap1 is involved in the transcriptional response to oxidative stress, we investigate its role upon the production of secretory proteins, using the yeast Pichia pastoris as model, and report a novel important role of Yap1 during oxidative protein folding. Yap1 is needed for the detoxification of reactive oxygen species (ROS) caused by increased oxidative protein folding. Constitutive co-overexpression of PpYAP1 leads to increased levels of secreted recombinant protein, while a lowered Yap1 function leads to accumulation of ROS and strong flocculation. Transcriptional analysis revealed that more than 150 genes were affected by overexpression of YAP1, in particular genes coding for antioxidant enzymes or involved in oxidation-reduction processes. By monitoring intracellular redox conditions within the cytosol and the ER using redox-sensitive roGFP1 variants, we could show that overexpression of YAP1 restores cellular redox conditions of protein-secreting P. pastoris by reoxidizing the cytosolic redox state to the levels of the wild type. These alterations are also reflected by increased levels of oxidized intracellular glutathione (GSSG) in the YAP1 co-overexpressing strain. Taken together, these data indicate a strong impact of intracellular redox balance on the secretion of (recombinant) proteins without affecting protein folding per se. Re-establishing suitable redox conditions by tuning the antioxidant capacity of the cell reduces metabolic load and cell stress caused by high oxidative protein folding load, thereby increasing the secretion capacity. PMID:28357216

  12. Platelet factor 4 stimulates thrombomodulin protein C-activating cofactor activity. A structure-function analysis.

    PubMed

    Slungaard, A; Key, N S

    1994-10-14

    Thrombomodulin (TM) is an anionic (pI approximately 4) protein cofactor that promotes thrombin (THR) cleavage of protein C to generate activated protein C (APC), a potent anticoagulant. We find that the cationic platelet alpha-granule protein platelet factor 4 (PF4) stimulates 4-25-fold the cofactor activity of rabbit TM and two differentially glycanated versions of an extracellular domain human TM polypeptide in which the glycosaminoglycan (GAG) is either present (GAG+ TM) or absent (GAG- TM) with an ED50 of 3.3-10 micrograms/ml. No such stimulation occurs in response to beta-thromboglobulin or thrombospondin, or when protein C lacking its gamma-carboxyglutamic acid (Gla) domain is the substrate. Heparin and chondroitin sulfates A and E reverse PF4 stimulation. PF4 minimally affects the Kd for THR but decreases 30-fold (from 8.3 to 0.3 microM) the Km for protein C of APC generation by GAG+ TM. PF4 also strikingly transforms the [Ca2+] dependence profile of rabbit and GAG+ TM to resemble that of GAG- TM. A potential explanation for this is that PF4, like Ca2+, induces heparin-reversible alterations in native (but not Gla-domainless) protein C conformation as assessed by autofluorescence emission analysis. We conclude that PF4 stimulates TM APC generation by interacting electrostatically with both the TM GAG and the protein C Gla domain to enhance markedly the affinity of the THR.TM complex for protein C. By this mechanism, PF4 may play a previously unsuspected role in the physiologic regulation of clotting.

  13. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    SciTech Connect

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  14. Pairwise additivity of energy components in protein-ligand binding: The HIV II protease-Indinavir case

    NASA Astrophysics Data System (ADS)

    Ucisik, Melek N.; Dashti, Danial S.; Faver, John C.; Merz, Kenneth M.

    2011-08-01

    An energy expansion (binding energy decomposition into n-body interaction terms for n ≥ 2) to express the receptor-ligand binding energy for the fragmented HIV II protease-Indinavir system is described to address the role of cooperativity in ligand binding. The outcome of this energy expansion is compared to the total receptor-ligand binding energy at the Hartree-Fock, density functional theory, and semiempirical levels of theory. We find that the sum of the pairwise interaction energies approximates the total binding energy to ˜82% for HF and to >95% for both the M06-L density functional and PM6-DH2 semiempirical method. The contribution of the three-body interactions amounts to 18.7%, 3.8%, and 1.4% for HF, M06-L, and PM6-DH2, respectively. We find that the expansion can be safely truncated after n = 3. That is, the contribution of the interactions involving more than three parties to the total binding energy of Indinavir to the HIV II protease receptor is negligible. Overall, we find that the two-body terms represent a good approximation to the total binding energy of the system, which points to pairwise additivity in the present case. This basic principle of pairwise additivity is utilized in fragment-based drug design approaches and our results support its continued use. The present results can also aid in the validation of non-bonded terms contained within common force fields and in the correction of systematic errors in physics-based score functions.

  15. [Helicobacter pylori infection as additional risk factor of the development of NSAID-gastropatia effects at the patients with osteoarthritis].

    PubMed

    Maev, I V; Samsonov, A A; Lezhneva, Iu A; Andreev, N G; Salova, L M

    2009-01-01

    Prevalence of osteoartrosis disease is high among the population. The main places in treatment of this pathology occupy NSAID. Intake of NSAID is lead to the development of NSAID-gastropatia. During last years H. pylori infection was numbered with risk factors of the NSAID-gastropatia development. In this review considered researches which are devoted to studying ties between H. pylori and NSAID. Data of the using eradication therapy with purpose of prevention and treatment of NSAID-gastropatia associated with H. pylori are shown in this review.

  16. Addition of Epidermal Growth Factor Improves the Rate of Sulfur Mustard Wound Healing in an In Vitro Model

    DTIC Science & Technology

    2008-03-26

    diabetic foot ulcers .41 A phase IV, postmarketing surveillance study of REGEN-D 150 confirmed faster healing of diabetic foot ulcers and an increase in...untreated control corneas . However, lower doses of KGF had no effect, nor did the 100 ng/mL of KGF dose, after the day 2 time point. This study also...recombinant human epidermal growth factor (REGEN-DTM 150) in healing diabetic foot ulcers . Wounds. 2006;18(7):186–96. 42. Mohan VK. Recombinant human

  17. Adiponectin stimulates Wnt inhibitory factor-1 expression through epigenetic regulations involving the transcription factor specificity protein 1.

    PubMed

    Liu, Jing; Lam, Janice B B; Chow, Kim H M; Xu, Aimin; Lam, Karen S L; Moon, Randall T; Wang, Yu

    2008-11-01

    Adiponectin (ADN) is an adipokine possessing growth inhibitory activities against various types of cancer cells. Our previous results demonstrated that ADN could impede Wnt/beta-catenin-signaling pathways in MDA-MB-231 human breast carcinoma cells [Wang,Y. et al. (2006) Adiponectin modulates the glycogen synthase kinase-3 beta/beta-catenin signaling pathway and attenuates mammary tumorigenesis of MDA-MB-231 cells in nude mice. Cancer Res., 66, 11462-11470]. Here, we extended our studies to elucidate the effects of ADN on regulating the expressions of Wnt inhibitory factor-1 (WIF1), a Wnt antagonist frequently silenced in human breast tumors. Our results showed that ADN time dependently stimulated WIF1 gene and protein expressions in MDA-MB-231 cells. Overexpression of WIF1 exerted similar inhibitory effects to those of ADN on cell proliferations, nuclear beta-catenin activities, cyclin D1 expressions and serum-induced phosphorylations of Akt and glycogen synthase kinase-3 beta. Blockage of WIF1 activities significantly attenuated the suppressive effects of ADN on MDA-MB-231 cell growth. Furthermore, our in vivo studies showed that both supplementation of recombinant ADN and adenovirus-mediated overexpression of this adipokine substantially enhanced WIF1 expressions in MDA-MB-231 tumors implanted in nude mice. More interestingly, we found that ADN could alleviate methylation of CpG islands located within the proximal promoter region of WIF1, possibly involving the specificity protein 1 (Sp1) transcription factor and its downstream target DNA methyltransferase 1 (DNMT1). Upon ADN treatment, the protein levels of both Sp1 and DNMT1 were significantly decreased. Using silencing RNA approaches, we confirmed that downregulation of Sp1 resulted in an increased expression of WIF1 and decreased methylation of WIF1 promoter. Taken together, these data suggest that ADN might elicit its antitumor activities at least partially through promoting WIF1 expressions.

  18. Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii.

    PubMed

    Clemmer, Katy M; Sturgill, Gwen M; Veenstra, Alexander; Rather, Philip N

    2006-05-01

    The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and required for the production of an extracellular signaling molecule that regulates cellular functions including peptidoglycan acetylation, methionine transport, and cysteine biosynthesis. Additional aarA-dependent phenotypes include (i) loss of an extracellular yellow pigment, (ii) inability to grow on MacConkey agar, and (iii) abnormal cell division. Since these phenotypes are easily assayed, the P. stuartii aarA mutant serves as a useful host system to investigate rhomboid function. The Escherichia coli GlpG protein was shown to be functionally similar to AarA and rescued the above aarA-dependent phenotypes in P. stuartii. GlpG proteins containing single alanine substitutions at the highly conserved catalytic triad of asparagine (N154A), serine (S201A), or histidine (H254A) residues were nonfunctional. The P. stuartii aarA mutant was also used as a biosensor to demonstrate that proteins from a variety of diverse sources exhibited rhomboid activity. In an effort to further investigate the role of a rhomboid protein in cell physiology, a glpG mutant of E. coli was constructed. In phenotype microarray experiments, the glpG mutant exhibited a slight increase in resistance to the beta-lactam antibiotic cefotaxime.

  19. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    SciTech Connect

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-05-05

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. (Phe/sup -1/, Val/sup 1/, Asn/sup 2/, Gln/sup 3/, His/sup 4/, Ser/sup 8/, His/sup 9/, Glu/sup 12/, Tyr/sup 15/, Leu/sup 16/)IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. (Gln/sup 3/, Ala/sup 4/) IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. (Tyr/sup 15/, Leu/sup 16/) IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, (Gln/sup 3/, Ala/sup 4/, Tyr/sup 15/,Leu/sup 16/)IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.

  20. Breeding site selection by coho salmon (Oncorhynchus kisutch) in relation to large wood additions and factors that influence reproductive success

    USGS Publications Warehouse

    Clark, Steven M.; Dunham, Jason B.; McEnroe, Jeffery R.; Lightcap, Scott W.

    2014-01-01

    The fitness of female Pacific salmon (Oncorhynchus spp.) with respect to breeding behavior can be partitioned into at least four fitness components: survival to reproduction, competition for breeding sites, success of egg incubation, and suitability of the local environment near breeding sites for early rearing of juveniles. We evaluated the relative influences of habitat features linked to these fitness components with respect to selection of breeding sites by coho salmon (Oncorhynchus kisutch). We also evaluated associations between breeding site selection and additions of large wood, as the latter were introduced into the study system as a means of restoring habitat conditions to benefit coho salmon. We used a model selection approach to organize specific habitat features into groupings reflecting fitness components and influences of large wood. Results of this work suggest that female coho salmon likely select breeding sites based on a wide range of habitat features linked to all four hypothesized fitness components. More specifically, model parameter estimates indicated that breeding site selection was most strongly influenced by proximity to pool-tail crests and deeper water (mean and maximum depths). Linkages between large wood and breeding site selection were less clear. Overall, our findings suggest that breeding site selection by coho salmon is influenced by a suite of fitness components in addition to the egg incubation environment, which has been the emphasis of much work in the past.

  1. Conformational characterization of human eukaryotic initiation factor 2alpha: a single tryptophan protein.

    PubMed

    Sreejith, R K; Yadav, Viveka Nand; Varshney, Nishant K; Berwal, Sunil K; Suresh, C G; Gaikwad, Sushama M; Pal, Jayanta K

    2009-12-11

    The alpha-subunit of the human eukaryotic initiation factor 2 (heIF2alpha), a GTP binding protein, plays a major role in the initiation of protein synthesis. During various cytoplasmic stresses, eIF2alpha gets phosphorylated by eIF2alpha-specific kinases resulting in inhibition of protein synthesis. The cloned and over expressed heIF2alpha, a protein with a single tryptophan (trp) residue was examined for its conformational characteristics using steady-state and time-resolved tryptophan fluorescence, circular dichroism (CD) and hydrophobic dye binding. The steady-state fluorescence spectrum, fluorescence lifetimes (tau(1)=1.13ns and tau(2)=4.74ns) and solute quenching studies revealed the presence of trp conformers in hydrophobic and differential polar environment at any given time. Estimation of the alpha-helix and beta-sheet content showed: (i) more compact structure at pH 2.0, (ii) distorted alpha-helix and rearranged beta-sheet in presence of 4M guanidine hydrochloride and (iii) retention of more than 50% ordered structure at 95 degrees C. Hydrophobic dye binding to the protein with loosened tertiary structure was observed at pH 2.0 indicating the existence of a molten globule-like structure. These observations indicate the inherent structural stability of the protein under various denaturing conditions.

  2. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF.

    PubMed

    Yamamoto, Nobuto; Suyama, Hirofumi; Yamamoto, Nobuyuki

    2008-07-01

    Serum Gc protein (known as vitamin D(3)-binding protein) is the precursor for the principal macrophage-activating factor (MAF). The MAF precursor activity of serum Gc protein of prostate cancer patients was lost or reduced because Gc protein was deglycosylated by serum alpha-N-acetylgalactosaminidase (Nagalase) secreted from cancerous cells. Therefore, macrophages of prostate cancer patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent MAF (termed GcMAF) ever discovered, which produces no adverse effect in humans. Macrophages activated by GcMAF develop a considerable variation of receptors that recognize the abnormality in malignant cell surface and are highly tumoricidal. Sixteen nonanemic prostate cancer patients received weekly administration of 100 ng of GcMAF. As the MAF precursor activity increased, their serum Nagalase activity decreased. Because serum Nagalase activity is proportional to tumor burden, the entire time course analysis for GcMAF therapy was monitored by measuring the serum Nagalase activity. After 14 to 25 weekly administrations of GcMAF (100 ng/week), all 16 patients had very low serum Nagalase levels equivalent to those of healthy control values, indicating that these patients are tumor-free. No recurrence occurred for 7 years.

  3. Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins

    PubMed Central

    Uzarska, Marta A; Nasta, Veronica; Weiler, Benjamin D; Spantgar, Farah; Ciofi-Baffoni, Simone; Saviello, Maria Rosaria; Gonnelli, Leonardo; Mühlenhoff, Ulrich; Banci, Lucia; Lill, Roland

    2016-01-01

    Assembly of mitochondrial iron-sulfur (Fe/S) proteins is a key process of cells, and defects cause many rare diseases. In the first phase of this pathway, ten Fe/S cluster (ISC) assembly components synthesize and insert [2Fe-2S] clusters. The second phase is dedicated to the assembly of [4Fe-4S] proteins, yet this part is poorly understood. Here, we characterize the BOLA family proteins Bol1 and Bol3 as specific mitochondrial ISC assembly factors that facilitate [4Fe-4S] cluster insertion into a subset of mitochondrial proteins such as lipoate synthase and succinate dehydrogenase. Bol1-Bol3 perform largely overlapping functions, yet cannot replace the ISC protein Nfu1 that also participates in this phase of Fe/S protein biogenesis. Bol1 and Bol3 form dimeric complexes with both monothiol glutaredoxin Grx5 and Nfu1. Complex formation differentially influences the stability of the Grx5-Bol-shared Fe/S clusters. Our findings provide the biochemical basis for explaining the pathological phenotypes of patients with mutations in BOLA3. DOI: http://dx.doi.org/10.7554/eLife.16673.001 PMID:27532772

  4. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity

    PubMed Central

    Stanley, Rob J.; Thomas, Geraint M. H.

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an ‘activation/inactivation cycle’. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity—emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a ‘balance/imbalance’ mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  5. Variation of the factor H-binding protein of Neisseria meningitidis

    PubMed Central

    Brehony, Carina; Wilson, Daniel J.; Maiden, Martin C. J.

    2009-01-01

    There is currently no comprehensive meningococcal vaccine, due to difficulties in immunizing against organisms expressing serogroup B capsules. To address this problem, subcapsular antigens, particularly the outer-membrane proteins (OMPs), are being investigated as candidate vaccine components. If immunogenic, however, such antigens are often antigenically variable, and knowledge of the extent and structuring of this diversity is an essential part of vaccine formulation. Factor H-binding protein (fHbp) is one such protein and is included in two vaccines under development. A survey of the diversity of the fHbp gene and the encoded protein in a representative sample of meningococcal isolates confirmed that variability in this protein is structured into two or three major groups, each with a substantial number of alleles that have some association with meningococcal clonal complexes and serogroups. A unified nomenclature scheme was devised to catalogue this diversity. Analysis of recombination and selection on the allele sequences demonstrated that parts of the gene are subject to positive selection, consistent with immune selection on the protein generating antigenic variation, particularly in the C-terminal region of the peptide sequence. The highest levels of selection were observed in regions corresponding to epitopes recognized by previously described bactericidal monoclonal antibodies. PMID:19729409

  6. Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein.

    PubMed

    Ben Jeddou, Khawla; Bouaziz, Fatma; Zouari-Ellouzi, Soumaya; Chaari, Fatma; Ellouz-Chaabouni, Semia; Ellouz-Ghorbel, Raoudha; Nouri-Ellouz, Oumèma

    2017-02-15

    Demand for health oriented products such as low calories and high fiber product is increasing. The aim of the present work was to determine the effect of the addition of potato peel powders as protein and dietary fiber source on the quality of the dough and the cake. Powders obtained from the two types of peel flour showed interesting water binding capacity and fat absorption capacity. Potato peel flours were incorporated in wheat flours at different concentration. The results showed that peel powders additionally considerably improved the Alveograph profile of dough and the texture of the prepared cakes. In addition color measurements showed a significant difference between the control dough and the dough containing potato peels. The replacement of wheat flour with the potato powders reduced the cake hardness significantly and the L(*) and b(*) dough color values. The increased consumption of cake enriched with potato peel fiber is proposed for health reasons. The study demonstrated that protein/fiber-enriched cake with good sensory quality could be produced by the substitution of wheat flour by 5% of potato peel powder. In addition and technological point of view, the incorporation of potato peel powder at 5% increase the dough strength and elasticity-to-extensibility ratio (P/L).

  7. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.

    PubMed

    Ziemba, Brian P; Falke, Joseph J

    2013-01-01

    Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion

  8. Peptide Chain Termination: Effect of Protein S on Ribosomal Binding of Release Factors

    PubMed Central

    Goldstein, J. L.; Caskey, C. T.

    1970-01-01

    The protein factor S, previously shown to stimulate polypeptide chain termination in bacterial extracts, has two effects upon the complex formed between ribosomes, release factor, and terminator (trinucleotide) codon: (1) in the absence of GTP or GDP, S stimulates formation of an [R·UAA·ribosome] intermediate, and (2) in the presence of GTP or GDP, S participates in dissociation of this intermediate. Factor S can stimulate fMet release from [fMet-tRNAf·AUG·ribosome] intermediates in either the presence or absence of GTP or GDP. A model is proposed which relates the in vitro effects of S ± GTP (or GDP) on fMet release to the effects of S ± GTP (or GDP) on the binding and dissociation of R factor from ribosomes. PMID:5289007

  9. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.

    PubMed

    Morifuji, Masashi; Sanbongi, Chiaki; Sugiura, Katsumi

    2006-09-01

    Exercise training and regular physical activity increase oxidation of fat. Enhanced oxidation of fat is important for preventing lifestyle diseases such as hypertension and obesity. The aim of the present study in rats was to determine whether intake of dietary soya protein and exercise training have an additive effect on the activity and mRNA expression of enzymes involved in skeletal muscle fatty acid oxidation. Male Sprague-Dawley rats (n 32) were assigned randomly into four groups (eight rats per group) and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise groups were trained for 2 weeks by swimming for 120 min/d, 6 d/week. Exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight and increased skeletal muscle carnitine palmitoyltransferase 1 (CPT1) activity and mRNA expression of CPT1, beta-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, PPARgamma coactivator 1alpha (PGC1alpha) and PPARalpha. Soya protein significantly decreased hepatic triacylglycerol levels and epididymal adipose tissue weight and increased skeletal muscle CPT1 activity and CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1alpha and PPARalpha mRNA levels. Furthermore, skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein. We conclude that exercise training and soya protein intake have an important additive role on induction of PPAR pathways, leading to increased activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle and reduced accumulation of body fat.

  10. Physical activity in individuals with haemophilia and experience with recombinant factor VIII Fc fusion protein and recombinant factor IX Fc fusion protein for the treatment of active patients: a literature review and case reports

    PubMed Central

    Wang, Michael; Álvarez-Román, María Teresa; Chowdary, Pratima; Quon, Doris V.; Schafer, Kim

    2016-01-01

    The World Federation of Hemophilia and the National Hemophilia Foundation encourage people with haemophilia (PWH) to participate in routine physical activity. The benefits of physical activity for PWH include improvements in joint, bone, and muscle health. Accordingly, a number of studies suggest that levels of physical activity among PWH are similar to those of their healthy peers, especially among individuals who began prophylaxis at an early age (≤3 years). Importantly, several studies found either no increased risk or only a transient increase in risk of bleeding with more intensive physical activity compared with less intensive physical activity. Data on optimal prophylaxis regimens for PWH who participate in physical/sporting activities; however, remain sparse. Long-acting recombinant factor VIII Fc fusion protein (rFVIIIFc) and recombinant factor IX Fc fusion protein (rFIXFc) demonstrated efficacy for the prevention and treatment of bleeding episodes in Phase 3 clinical trials of participants with haemophilia A and B, respectively, with most individuals able to maintain or increase their physical activities. This manuscript reviews the current literature that describes physical activity in PWH. Additionally, case studies are presented to provide supplemental information to clinicians illustrating the use of rFVIIIFc and rFIXFc in physically active patients with haemophilia A and B, respectively. These case reports demonstrate that it is possible for patients to be physically active and maintain good control of their haemophilia with extended interval prophylactic dosing using rFVIIIFc or rFIXFc. PMID:27116081

  11. The Nuclear Factor-kB Pathway Regulates Cytochrome P450 3A4 Protein Stability

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Verma, Seema; Karin, Norm J.; Lu, Yi

    2008-06-01

    We have previously observed that CYP3A4 protein levels are suppressed by inhibition of the proteasome in primary cultured hepatocytes. Because this result is opposite of what would be expected if CYP3A4 is degraded by the proteasome, it seems likely that there is another protein that is susceptible to proteasomal degradation that regulates CYP3A4 expression. In this study, we evaluate whether the nuclear factor kappa B (NF-kB) pathway is involved in that process. Our model system uses an adenovirus system to express CYP3A4 protein in HepG2 cells, which are derived from human cancer cells. Similar to results in primary hepatocytes, we found that inhibition of the proteasome with MG132 suppresses CYP3A4. Consistent with reports that proteasome inhibition suppresses the NF-kB pathway, we also observe a suppression of inhibitory kB kinase protein levels after treatment with MG132. Treatment of the HepG2 cells with NK-kB Activation Inhibitor also suppresses CYP3A4 proteins levels. In contrast, inhibition of either the proteasome or NF-kB pathways increases CYP3A4 mRNA levels. When the HepG2 cells are treated with cycloheximide, a general inhibitor of translation, the loss of CYP3A4 protein is accelerated by co-treatment with an NF-kB Activation Inhibitor. These results indicate that NF-kB activity regulates CYP3A4 protein stability and suggest that the NF-kB pathway is responsible for the decrease in CYP3A4 protein levels that results from the inhibition of proteasomal activity.

  12. Competition between antagonistic complement factors for a single protein on N. meningitidis rules disease susceptibility

    PubMed Central

    Caesar, Joseph JE; Lavender, Hayley; Ward, Philip N; Exley, Rachel M; Eaton, Jack; Chittock, Emily; Malik, Talat H; Goiecoechea De Jorge, Elena; Pickering, Matthew C; Tang, Christoph M; Lea, Susan M

    2014-01-01

    Genome-wide association studies have found variation within the complement factor H gene family links to host susceptibility to meningococcal disease caused by infection with Neisseria meningitidis (Davila et al., 2010). Mechanistic insights have been challenging since variation within this locus is complex and biological roles of the factor H-related proteins, unlike factor H, are incompletely understood. N. meningitidis subverts immune responses by hijacking a host-immune regulator, complement factor H (CFH), to the bacterial surface (Schneider et al., 2006; Madico et al., 2007; Schneider et al., 2009). We demonstrate that complement factor-H related 3 (CFHR3) promotes immune activation by acting as an antagonist of CFH. Conserved sequences between CFH and CFHR3 mean that the bacterium cannot sufficiently distinguish between these two serum proteins to allow it to hijack the regulator alone. The level of protection from complement attack achieved by circulating N. meningitidis therefore depends on the relative levels of CFH and CFHR3 in serum. These data may explain the association between genetic variation in both CFH and CFHR3 and susceptibility to meningococcal disease. DOI: http://dx.doi.org/10.7554/eLife.04008.001 PMID:25534642

  13. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  14. Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives.

    PubMed

    Sharma, Nishchal K; Choct, Mingan; Dunlop, Mark W; Wu, Shu-Biao; Castada, Hardy Z; Swick, Robert A

    2016-09-23

    The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja saponin were effective in reducing the emissions

  15. Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor.

    PubMed

    Pereira, Sandro F F; Gonzalez, Ruben L; Dworkin, Jonathan

    2015-06-23

    In nature, most organisms experience conditions that are suboptimal for growth. To survive, cells must fine-tune energy-demanding metabolic processes in response to nutrient availability. Here, we describe a novel mechanism by which protein synthesis in starved cells is down-regulated by phosphorylation of the universally conserved elongation factor Tu (EF-Tu). Phosphorylation impairs the essential GTPase activity of EF-Tu, thereby preventing its release from the ribosome. As a consequence, phosphorylated EF-Tu has a dominant-negative effect in elongation, resulting in the overall inhibition of protein synthesis. Importantly, this mechanism allows a quick and robust regulation of one of the most abundant cellular proteins. Given that the threonine that serves as the primary site of phosphorylation is conserved in all translational GTPases from bacteria to humans, this mechanism may have important implications for growth-rate control in phylogenetically diverse organisms.

  16. Baculovirus superinfection: a probable restriction factor on the surface display of proteins for library screening.

    PubMed

    Xu, Xiaodong; Chen, Yuanrong; Zhao, Yu; Liu, Xiaofen; Dong, Beitao; Jones, Ian M; Chen, Hongying

    2013-01-01

    In addition to the expression of recombinant proteins, baculoviruses have been developed as a platform for the display of complex eukaryotic proteins on the surface of virus particles or infected insect cells. Surface display has been used extensively for antigen presentation and targeted gene delivery but is also a candidate for the display of protein libraries for molecular screening. However, although baculovirus gene libraries can be efficiently expressed and displayed on the surface of insect cells, target gene selection is inefficient probably due to super-infection which gives rise to cells expressing more than one protein. In this report baculovirus superinfection of Sf9 cells has been investigated by the use of two recombinant multiple nucleopolyhedrovirus carrying green or red fluorescent proteins under the control of both early and late promoters (vAcBacGFP and vAcBacDsRed). The reporter gene expression was detected 8 hours after the infection of vAcBacGFP and cells in early and late phases of infection could be distinguished by the fluorescence intensity of the expressed protein. Simultaneous infection with vAcBacGFP and vAcBacDsRed viruses each at 0.5 MOI resulted in 80% of infected cells co-expressing the two fluorescent proteins at 48 hours post infection (hpi), and subsequent infection with the two viruses resulted in similar co-infection rate. Most Sf9 cells were re-infectable within the first several hours post infection, but the re-infection rate then decreased to a very low level by 16 hpi. Our data demonstrate that Sf9 cells were easily super-infectable during baculovirus infection, and super-infection could occur simultaneously at the time of the primary infection or subsequently during secondary infection by progeny viruses. The efficiency of super-infection may explain the difficulties of baculovirus display library screening but would benefit the production of complex proteins requiring co-expression of multiple polypeptides.

  17. Additively Manufactured 3D Porous Ti-6Al-4V Constructs Mimic Trabecular Bone Structure and Regulate Osteoblast Proliferation, Differentiation and Local Factor Production in a Porosity and Surface Roughness Dependent Manner

    PubMed Central

    Cheng, Alice; Humayun, Aiza; Cohen, David J.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Additive manufacturing by laser sintering is able to produce high resolution metal constructs for orthopaedic and dental implants. In this study, we used a human trabecular bone template to design and manufacture Ti-6Al-4V constructs with varying porosity via laser sintering. Characterization of constructs revealed interconnected porosities ranging from 15–70% with compressive moduli of 2063–2954 MPa. These constructs with macro porosity were further surface-treated to create a desirable multi-scale micro-/nano-roughness, which has been shown to enhance the osseointegration process. Osteoblasts (MG63 cells) exhibited high viability when grown on the constructs. Proliferation (DNA) and alkaline phosphatase specific activity (ALP), an early differentiation marker, decreased as porosity increased, while osteocalcin (OCN), a late differentiation marker, as well as osteoprotegerin (OPG), vascular endothelial growth factor (VEGF) and bone morphogenetic proteins 2 and 4 (BMP2, BMP4) increased with increasing porosity. 3D constructs with the highest porosity and surface modification supported the greatest osteoblast differentiation and local factor production. These results indicate that additively manufactured 3D porous constructs mimicking human trabecular bone and produced with additional surface treatment can be customized for increased osteoblast response. Increased factors for osteoblast maturation and differentiation on high porosity constructs suggest the enhanced performance of these surfaces for increasing osseointegration in vivo. PMID:25287305

  18. Interaction between complement regulators and Streptococcus pyogenes: binding of C4b-binding protein and factor H/factor H-like protein 1 to M18 strains involves two different cell surface molecules.

    PubMed

    Pérez-Caballero, David; García-Laorden, Isabel; Cortés, Guadalupe; Wessels, Michael R; de Córdoba, Santiago Rodríguez; Albertí, Sebastián

    2004-12-01

    Streptococcus pyogenes, or group A Streptococcus, is one of the most frequent causes of pharyngitis and skin infections in humans. Many virulence mechanisms have been suggested to be involved in the infectious process. Among them is the binding to the bacterial cell surface of the complement regulatory proteins factor H, factor H-like protein 1 (FHL-1), and C4b-binding protein. Previous studies indicate that binding of these three regulators to the streptococcal cell involves the M protein encoded by the emm gene. M-type 18 strains are prevalent among clinical isolates and have been shown to interact with all three complement regulators simultaneously. Using isogenic strains lacking expression of the Emm18 or the Enn18 proteins, we demonstrate in this study that, in contradistinction to previously described S. pyogenes strains, M18 strains bind the complement regulators factor H, FHL-1, and C4b-binding protein through two distinct cell surface proteins. Factor H and FHL-1 bind to the Emm18 protein, while C4BP binds to the Enn18 protein. We propose that expression of two distinct surface structures that bind complement regulatory proteins represents a unique adaptation of M18 strains that enhances their resistance to opsonization by human plasma and increases survival of this particular S. pyogenes strain in the human host. These new findings illustrate that S. pyogenes has evolved diverse mechanisms for recruitment of complement regulatory proteins to the bacterial surface to evade immune clearance in the human host.

  19. Unwinding protein specific for mRNA translation fractionated together with rabbit reticulocyte initiation factor 3 complex

    PubMed Central

    Ilan, Joseph; Ilan, Judith

    1977-01-01

    Experiments with a rabbit reticulocyte cell-free system dependent on the addition of initiation factor 3 (eIF-3) and mRNA were carried out. In this system, using ribosomal subunits, AUG(U)n can direct polyphenylalanine synthesis in the absence of eIF-3 at 3 mM MgCl2. Globin mRNA was not translated under similar conditions; its translation requires the addition of eIF-3. Moreover, the maximal rate of globin synthesis was achieved when the molar ratio of eIF-3 to ribosomes was approximately 1. This was taken to indicate that some ribosomal proteins were fractionated with eIF-3 and functioned in reconstitution of salt-washed ribosomes. In our system, almost all ribosomes were active, as evident from the fact that all were found in polysomes when analyzed at the time of linear incorporation, and the molar ratio of ribosomes to mRNA was maintained at 4:1. When AUG(U)n was hybridized with poly(A), it could not direct polyphenylalanine synthesis with or without eIF-3 and was a potent inhibitor of the translation of globin mRNA in the presence of eIF-3. When poly(A) containing 10% U was hybridized with AUG(U)n and added to the cell-free system, addition of eIF-3 promoted polyphenylalanine synthesis to about 80% of control. Moreover, eIF-3 was seen to shift significantly the melting temperature of globin and synthetic double-stranded RNA. These observations suggest that extraction of ribosomes with 0.5 M KCl may release a ribosomal protein that fractionates with eIF-3. This protein may function in unwinding or melting the secondary structure of mRNA and thus facilitate translation. PMID:267926

  20. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization.

    PubMed Central

    Steingrímsson, E; Nii, A; Fisher, D E; Ferré-D'Amaré, A R; McCormick, R J; Russell, L B; Burley, S K; Ward, J M; Jenkins, N A; Copeland, N G

    1996-01-01

    The mouse microphthalmia (mi) locus encodes a basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor called MITF (microphthalmia transcription factor). Mutations at mi affect the development of several different cell types, including melanocytes, mast cells, osteoclasts and pigmented epithelial cells of the eye. Here we describe the phenotypic and molecular characterization of the semidominant Microphthalmia(brwnish) (Mi(b)) mutation. We show that this mutation primarily affects melanocytes and produces retinal degeneration. The mutation is a G to A transition leading to a Gly244Glu substitution in helix 2 of the HLH dimerization domain. This location is surprising since other semidominant mi mutations characterized to date have been shown to affect DNA binding or transcriptional activation domains of MITF and act as dominant negatives, while mutations that affect MITF dimerization are inherited recessively. Gel retardation assays showed that while the mutant MITF(Mi-b) protein retains its dimerization potential, it is defective in its ability to bind DNA. Computer modeling suggested that the Gly244Glu mutation might disrupt DNA binding by interfering with productive docking of the protein dimer onto DNA. The Mi(b) mutation therefore appears to dissociate a DNA recognition function of the HLH domain from its role in protein dimerization. Images PMID:8947051

  1. Evolutionarily Conserved Binding of Translationally Controlled Tumor Protein to Eukaryotic Elongation Factor 1B*

    PubMed Central

    Wu, Huiwen; Gong, Weibin; Yao, Xingzhe; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2015-01-01

    Translationally controlled tumor protein (TCTP) is an abundant protein that is highly conserved in eukaryotes. However, its primary function is still not clear. Human TCTP interacts with the metazoan-specific eukaryotic elongation factor 1Bδ (eEF1Bδ) and inhibits its guanine nucleotide exchange factor (GEF) activity, but the structural mechanism remains unknown. The interaction between TCTP and eEF1Bδ was investigated by NMR titration, structure determination, paramagnetic relaxation enhancement, site-directed mutagenesis, isothermal titration calorimetry, and HADDOCK docking. We first demonstrated that the catalytic GEF domain of eEF1Bδ is not responsible for binding to TCTP but rather a previously unnoticed central acidic region (CAR) domain in eEF1Bδ. The mutagenesis data and the structural model of the TCTP-eEF1Bδ CAR domain complex revealed the key binding residues. These residues are highly conserved in eukaryotic TCTPs and in eEF1B GEFs, including the eukaryotically conserved eEF1Bα, implying the interaction may be conserved in all eukaryotes. Interactions were confirmed between TCTP and the eEF1Bα CAR domain for human, fission yeast, and unicellular photosynthetic microalgal proteins, suggesting that involvement in protein translation through the conserved interaction with eEF1B represents a primary function of TCTP. PMID:25635048

  2. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    SciTech Connect

    Reimers, Kerstin . E-mail: reimers.kerstin@mh-hannover.de; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cells revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.

  3. INHIBITION OF RHABDOMYOSARCOMA CELL AND TUMOR GROWTH BY TARGETING SPECIFICITY PROTEIN (Sp) TRANSCRIPTION FACTORS

    PubMed Central

    Chadalapaka, Gayathri; Jutooru, Indira; Sreevalsan, Sandeep; Pathi, Satya; Kim, Kyounghyun; Chen, Candy; Crose, Lisa; Linardic, Corinne; Safe, Stephen

    2012-01-01

    Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are highly expressed in rhabdomyosarcoma (RMS) cells. In tissue arrays of RMS tumor cores from 71 patients, 80% of RMS patients expressed high levels of Sp1 protein, whereas low expression of Sp1 was detected in normal muscle tissue. The non-steroidal anti-inflammatory drug (NSAID) tolfenamic acid (TA) inhibited growth and migration of RD and RH30 RMS cell lines and also inhibited tumor growth in vivo using a mouse xenograft (RH30 cells) model. The effects of TA were accompanied by downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes in RMS cells and tumors, and the role of Sp protein downregulation in mediating inhibition of RD and RH30 cell growth and migration was confirmed by individual and combined knockdown of Sp1, Sp3 and Sp4 proteins by RNA interference. TA treatment and Sp knockdown in RD and RH30 cells also showed that four genes that are emerging as individual drug targets for treating RMS, namely c-MET, insulin-like growth factor receptor (IGFR), PDGFRα and CXCR4, are also Sp-regulated genes. These results suggest that NSAIDs such as TA may have potential clinical efficacy in drug combinations for treating RMS patients. PMID:22815231

  4. The Sbi protein is a multifunctional immune evasion factor of Staphylococcus aureus.

    PubMed

    Smith, Emma Jane; Visai, Livia; Kerrigan, Steven W; Speziale, Pietro; Foster, Timothy J

    2011-09-01

    The second immunoglobulin-binding protein (Sbi) of Staphylococcus aureus has two N-terminal domains that bind the Fc region of IgG in a fashion similar to that of protein A and two domains that can bind to the complement protein C3 and promote its futile consumption in the fluid phase. It has been proposed that Sbi helps bacteria to avoid innate immune defenses. By comparing a mutant defective in Sbi with mutants defective in protein A, clumping factor A, iron-regulated surface determinant H, and capsular polysaccharide, it was shown that Sbi is indeed an immune evasion factor that promotes bacterial survival in whole human blood and the avoidance of neutrophil-mediated opsonophagocytosis. Sbi is present in the culture supernatant and is also associated with the cell envelope. S. aureus strains that expressed truncates of Sbi lacking N-terminal domains D1 and D2 (D1D2) or D3 and D4 (D3D4) or a C-terminal truncate that was no longer retained in the cell envelope were analyzed. Both the secreted and envelope-associated forms of Sbi contributed to immune evasion. The IgG-binding domains contributed only when Sbi was attached to the cell, while only the secreted C3-binding domains were biologically active.

  5. Improvement of low bioavailability of a novel factor Xa inhibitor through formulation of cationic additives in its oral dosage form.

    PubMed

    Fujii, Yoshimine; Kanamaru, Taro; Kikuchi, Hiroshi; Nakagami, Hiroaki; Yamashita, Shinji; Akashi, Mitsuru; Sakuma, Shinji

    2011-12-15

    A clinical trial of (2S)-2-[4-[[(3S)-1-acetimidoyl-3-pyrrolidinyl]oxy]phenyl]-3-(7-amidino-2-naphtyl) propanoic acid (DX-9065) revealed that its oral bioavailability was only 3% when it was administered as a conventional capsule formulation. The low bioavailability of DX-9065 was likely caused by both its poor membrane permeability and its electrostatic interaction with anionic bile acids. We hypothesized that DX-9065 absorption would be enhanced when the cationic drug was free from the complex through its replacement with other cationic substances. Polystyrene nanospheres coated with cationic poly(vinylamine) and cholestyramine, which is clinically used as a cholesterol-lowering agent, dramatically prevented DX-9065 from interacting with chenodeoxycholic acid in vitro. Successive animal experiments showed that bioavailability of DX-9065 administered with these cationic substances was 2-3 times that of DX-9065 administered solely. A dry syrup formulation with one-half of a minimal cholesterol-lowering equivalent dose of cholestyramine was designed, and the clinical trial was resumed. A 1.3-fold increase in bioavailability of DX-9065 was observed when the dry syrup was administered. We successfully demonstrated that DX-9065 absorption was enhanced when the drug was administered with cationic additives; however, it appeared that the absorption-enhancing function of cholestyramine largely depended on its dose. The dose escalation is probably prerequisite for the significant improvement of DX-9065 absorption in humans.

  6. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer’s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau

    PubMed Central

    Hensley, Kenneth; Kursula, Petri

    2016-01-01

    Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit. PMID:27079722

  7. A Mutant Library Approach to Identify Improved Meningococcal Factor H Binding Protein Vaccine Antigens

    PubMed Central

    Konar, Monica; Rossi, Raffaella; Walter, Helen; Pajon, Rolando; Beernink, Peter T.

    2015-01-01

    Factor H binding protein (FHbp) is a virulence factor used by meningococci to evade the host complement system. FHbp elicits bactericidal antibodies in humans and is part of two recently licensed vaccines. Using human complement Factor H (FH) transgenic mice, we previously showed that binding of FH decreased the protective antibody responses to FHbp vaccination. Therefore, in the present study we devised a library-based method to identify mutant FHbp antigens with very low binding of FH. Using an FHbp sequence variant in one of the two licensed vaccines, we displayed an error-prone PCR mutant FHbp library on the surface of Escherichia coli. We used fluorescence-activated cell sorting to isolate FHbp mutants with very low binding of human FH and preserved binding of control anti-FHbp monoclonal antibodies. We sequenced the gene encoding FHbp from selected clones and introduced the mutations into a soluble FHbp construct. Using this approach, we identified several new mutant FHbp vaccine antigens that had very low binding of FH as measured by ELISA and surface plasmon resonance. The new mutant FHbp antigens elicited protective antibody responses in human FH transgenic mice that were up to 20-fold higher than those elicited by the wild-type FHbp antigen. This approach offers the potential to discover mutant antigens that might not be predictable even with protein structural information and potentially can be applied to other microbial vaccine antigens that bind host proteins. PMID:26057742

  8. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  9. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein.

    PubMed

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M

    2013-03-22

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290-300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281-285 and 320-329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.

  10. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene

    PubMed Central

    Singh, Sudhanshu; Mackill, David J.; Ismail, Abdelbagi M.

    2014-01-01

    1 lines. This suggests the possibility of further improvements in submergence tolerance by incorporating additional traits present in FR13A or other similar landraces. PMID:25281725

  11. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene.

    PubMed

    Singh, Sudhanshu; Mackill, David J; Ismail, Abdelbagi M

    2014-10-03

    1 lines. This suggests the possibility of further improvements in submergence tolerance by incorporating additional traits present in FR13A or other similar landraces.

  12. Functional homology between the sequence-specific DNA-binding proteins nuclear factor I from HeLa cells and the TGGCA protein from chicken liver.

    PubMed Central

    Leegwater, P A; van der Vliet, P C; Rupp, R A; Nowock, J; Sippel, A E

    1986-01-01

    Nuclear factor I from HeLa cells, a protein with enhancing function in adenovirus DNA replication, and the chicken TGGCA protein are specific DNA-binding proteins that were first detected by independent methods and that appeared to have similar DNA sequence specificity. To test whether they are homologous proteins from different species we have compared (i) their DNA binding properties and (ii) their function in reconstituted adenovirus DNA replication systems. Using deletion and substitution mutants derived from the DNA binding site on the adenovirus 2 inverted terminal repeat, it was found that the two proteins protect the same 24-nucleotide region of both strands against DNase I digestion and that they have identical minimal recognition sequences of 15 bp containing dyad symmetry. Like nuclear factor I, the TGGCA protein enhances the initiation reaction of adenovirus 2 DNA replication in vitro in a DNA recognition site-dependent manner. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3709517

  13. FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells.

    PubMed

    Samarin, Jana; Wessel, Julia; Cicha, Iwona; Kroening, Sven; Warnecke, Christina; Goppelt-Struebe, Margarete

    2010-02-12

    Hypoxia, a driving force in neovascularization, promotes alterations in gene expression mediated by hypoxia-inducible factor (HIF)-1alpha. Connective tissue growth factor (CTGF, CCN2) is a modulator of endothelial cell growth and migration, but its regulation by hypoxia is poorly understood. Therefore, we analyzed signaling pathways involved in the regulation of CTGF by hypoxia in endothelial cells. Exposure to low oxygen tension or treatment with the hypoxia-mimetic dimethyloxalyl glycine (DMOG) stabilized HIF-1alpha and up-regulated CTGF in human umbilical vein endothelial cells and in a murine microvascular endothelial cell line. Induction of CTGF correlated with a HIF-dependent increase in protein and mRNA levels, and nuclear accumulation of the transcription factor FoxO3a. By contrast, gene expression and cellular localization of FoxO1 were not significantly altered by hypoxia. Expression of CTGF was strongly reduced by siRNA silencing of FoxO1 or FoxO3a. Furthermore, nuclear exclusion of FoxO1/3a transcription factors by inhibition of serine/threonine protein phosphatases by okadaic acid inhibited CTGF expression, providing evidence for both FoxO proteins as regulators of CTGF expression. The DMOG-stimulated induction of CTGF was further increased when endothelial cells were co-incubated with transforming growth factor-beta, an activator of Smad signaling. Activation of RhoA-Rho kinase signaling by the microtubule-disrupting drug combretastatin A4 also enhanced the DMOG-induced CTGF expression, thus placing CTGF induction by hypoxia in a network of interacting signaling pathways. Our findings provide evidence that FoxO1, hypoxia-stimulated expression of FoxO3a and its nuclear accumulation are required for the induction of CTGF by hypoxia in endothelial cells.

  14. Effects of fibroblast growth factor 2 on osteoblastic proliferation and differentiation by regulating bone morphogenetic protein receptor expression.

    PubMed

    Park, Jun-Beom

    2011-09-01

    Fibroblast growth factors (FGFs) are known to play a critical role in bone growth and development, affecting both osteogenesis and chondrogenesis. Fibroblast growth factor 2 (FGF-2) is produced intracellularly by osteoblasts and secreted into the surrounding matrix in bone.The dose-dependent effects of FGF-2 were tested to examine the relationship between FGF-2 and osteoblast proliferation and differentiation. Tests used included a cell viability test, an alkaline phosphatase activity test, and a Western blot analysis.Cultures growing in the presence of FGF-2 showed an increased value for 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and a decreased value for alkaline phosphatase activity. Results of the Western blot analysis showed that the addition of FGF-2 seems to decrease osteocalcin and bone morphogenetic protein receptor IA.These data show that FGF-2 in the tested dosage within MC3T3-E1 cells seems to affect proliferation and differentiation. Results of the Western blot analysis may add some possible mechanisms, and it may be suggested that treatment of FGF-2 may have an influence on the expression of bone morphogenetic protein receptors in osteoprecursor cells. Further elucidation of the mechanisms related to this mechanism within the in vivo model may be necessary to ascertain greater detail.

  15. Progesterone inhibits insulin-like growth factor binding protein-1 (IGFBP-1) production by explants of the Fallopian tube.

    PubMed

    Davies, S; Richardson, M C; Anthony, F W; Mukhtar, D; Cameron, I T

    2004-12-01

    The Fallopian tube provides the environment for early embryo growth, a process which is influenced by insulin-like growth factors (IGFs) in the tubal fluid. Whether the bioavailability of tubal IGFs is modulated by locally produced IGF-binding protein (IGFBP-1) is not clear. An explant culture system from human Fallopian tube mucosa was, therefore, developed enabling the potential for IGFBP-1 production by this tissue to be examined directly. Initial characterization of the system established that the explants maintained responsiveness to steroids. Thus, oviduct-specific glycoprotein production, a major product of the oviduct in vivo, continued to be made via an estrogen-sensitive pathway in the culture. The presence of mRNA for IGFBP-1 was established within the explants by the use of quantitative RT-PCR and IGFBP-1 protein was measured by enzyme-linked immunosorbent assay. Although insulin and estradiol had no consistent effect on IGFBP-1, addition of progesterone had a significant inhibitory effect on IGFBP-1 production, both at the mRNA and protein levels. A dose-range of progesterone revealed an incremental inhibitory effect of progesterone on IGFBP-1 output (maximal effect, 25-50 nmol/l), consistent with physiological inhibition of this process during the luteal phase. We suggest that progesterone might, therefore, play a role in controlling the bioavailability of IGFs to the embryo during early development within the Fallopian tube.

  16. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  17. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.

    PubMed Central

    Patry, V; Bugler, B; Maret, A; Potier, M; Prats, H

    1997-01-01

    Four forms of basic fibroblast growth factor (bFGF or FGF-2) result from an alternative initiation of translation involving one AUG (155-amino acid form) and three CUGs (210-, 201- and 196-amino acid forms). These different forms of bFGF show different intracellular biological activities. To identify their intracellular targets, the 210- and 155-amino acid forms of bFGF were independently transfected into CHO cells and their correct subcellular localizations were verified, the 155-amino acid bFGF form being essentially cytoplasmic whereas the 210-amino acid protein was nuclear. The radiation fragmentation method was used to determine the target size of the different bFGF isoforms in the transfected CHO cells and to show that the 210- and 155-amino acids bFGF isoforms were included in protein complexes of 320 and 130 kDa respectively. Similar results were obtained using the SK-Hep1 cell line, which naturally expressed all forms of bFGF. Co-immunoprecipitation assays using different chimaeric bFGF-chloramphenicol acetyltransferase proteins showed that different cellular proteins are associated with different parts of the bFGF molecule. We conclude that bFGF isoforms are involved in different molecular complexes in the cytosol and nucleus, which would reflect different functions for these proteins. PMID:9337877

  18. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  19. Insulin-like growth factor binding protein 5 (IGFBP5) mediates methamphetamine-induced dopaminergic neuron apoptosis.

    PubMed

    Qiao, Dongfang; Xu, Jingtao; Le, Cuiyun; Huang, Enping; Liu, Chao; Qiu, Pingming; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2014-11-04

    Overexposure to methamphetamine (METH), a psychoactive drug, induces a variety of adverse effects to the nervous system, including apoptosis of dopaminergic neurons. Insulin-like growth factor binding protein 5 (IGFBP5), a member of insulin-like growth factor (IGF) system, is a pro-apoptotic factor that plays important roles in neuronal apoptosis. To test the hypothesis that IGFBP5 can mediate METH-induced neuronal apoptosis, we examined IGFBP5 mRNA and protein expression changes in PC12 cells exposed to METH (3.0mM) for 24h and in the striatum of rats following 15 mg/kg × 8 intraperitoneal injections of METH at 12h interval. We also checked the effect on neuronal apoptosis after silencing IGFBP5 expression with TUNEL staining and flow cytometry; Western blot was used for detecting the expression of apoptotic markers active-caspase3 and PARP. To elucidate the mechanisms underlying IGFBP5-mediated neuronal apoptosis, we determined the release of cytochrome c (cyto c), an apoptogenic factor, from the mitochondria after METH treatment with or without IGFBP5 knockdown. Our results showed that IGFBP5 expression was increased significantly after METH exposure in PC12 cells and in the METH-treated rats' striatum. Further, METH-exposed PC12 cells exhibited higher apoptosis-positive cell number and activity of caspase3 and PARP compared with control cells, while these changes can be blocked by silencing IGFBP5 expression. In addition, a significant increase of cyto c release from mitochondria after METH exposure was observed and it was inhibited after silencing IGFBP5 expression in PC12 cells. These results indicate that IGFBP5 plays key roles in METH-induced neuronal apoptosis and may be a potential gene target for therapeutics in METH-caused neurotoxicity.

  20. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc

    PubMed Central

    Kumar, Ajay; Hoffman, Timothy A.; DeRicco, Jeremy; Naqvi, Asma; Jain, Mukesh K.; Irani, Kaikobad

    2009-01-01

    The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.—Kumar, A., Hoffman, T. A., DeRicco, J., Naqvi, A., Jain, M. K., Irani, K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. PMID:19696221

  1. Protein Composition of Infectious Spores Reveals Novel Sexual Development and Germination Factors in Cryptococcus

    PubMed Central

    Huang, Mingwei; Hebert, Alexander S.; Coon, Joshua J.; Hull, Christina M.

    2015-01-01

    Spores are an essential cell type required for long-term survival across diverse organisms in the tree of life and are a hallmark of fungal reproduction, persistence, and dispersal. Among human fungal pathogens, spores are presumed infectious particles, but relatively little is known about this robust cell type. Here we used the meningitis-causing fungus Cryptococcus neoformans to determine the roles of spore-resident proteins in spore biology. Using highly sensitive nanoscale liquid chromatography/mass spectrometry, we compared the proteomes of spores and vegetative cells (yeast) and identified eighteen proteins specifically enriched in spores. The genes encoding these proteins were deleted, and the resulting strains were evaluated for discernable phenotypes. We hypothesized that spore-enriched proteins would be preferentially involved in spore-specific processes such as dormancy, stress resistance, and germination. Surprisingly, however, the majority of the mutants harbored defects in sexual development, the process by which spores are formed. One mutant in the cohort was defective in the spore-specific process of germination, showing a delay specifically in the initiation of vegetative growth. Thus, by using this in-depth proteomics approach as a screening tool for cell type-specific proteins and combining it with molecular genetics, we successfully identified the first germination factor in C. neoformans. We also identified numerous proteins with previously unknown functions in both sexual development and spore composition. Our findings provide the first insights into the basic protein components of infectious spores and reveal unexpected molecular connections between infectious particle production and spore composition in a pathogenic eukaryote. PMID:26313153

  2. Insulin-like growth factors and their binding proteins in human colonocytes: preferential degradation of insulin-like growth factor binding protein 2 in colonic cancers.

    PubMed Central

    Michell, N. P.; Langman, M. J.; Eggo, M. C.

    1997-01-01

    We have compared the expression of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ten paired samples of normal and tumour colonic tissue with regard to both mRNA and protein. We have compared sensitivity of these tissues to IGF-I using primary cultures of epithelial cells of colonic mucosa, and we have examined the production of IGFs and IGFBPs by these cells. In the tissues, IGFBP-2 mRNA was expressed in all normal and cancer samples but other IGFBPs showed variable expression. mRNAs for IGF-I were expressed in all normal and cancer tissues but IGF-II mRNA was only detected in cancer tissue (3 out of 10). Immunostaining of sections of normal and cancer tissue was negative for IGF-I and IGF-II; IGFBP-2 was positive in 2 out of 10 cancer tissues and 7 out of 10 normal tissues; IGFBP-3 was positive in 7 out of 10 cancer tissues and 7 out of 10 normal tissues; and IGFBP-4 was positive in 5 out of 10 cancer tissues and 6 out of 10 normal tissues. In the cells in culture, cancer cells showed increased incorporation of [35S]methionine into protein and [3H]thymidine into DNA (P < 0.02) when treated with IGF-I. Western blotting of serum-free conditioned media from cells in culture showed that 8 out of 10 normal and 3 out of 10 cancer cultures produced a 32-kDa immunoreactive IGFBP-2. No IGFBP-3 was secreted by any culture but 24-kDa IGFBP-4 was found in 3 out of 10 normal and 5 out of 10 cancer tissues. Because of the discrepancy between mRNA and protein expression for IGFBP-2, degradation of native IGFBPs was assessed using tissue extracts. Colon cancer extracts were able to degrade exogenous IGFBP-2, IGFBP-3 and IGFBP-4, whereas normal tissue extracts were without effect on IGFBP-2. We conclude that IGFBPs are synthesized and secreted by cells of the colonic mucosa but that proteolysis of secreted IGFBP-2 occurs in colon cancer tissue. This selective degradation may confer a growth advantage. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

  3. Effects of a Dissostichus mawsoni-CaM recombinant proteins feed additive on the juvenile orange-spotted grouper (Epinephelus coioides) under the acute low temperature challenge.

    PubMed

    Luo, Sheng-Wei; Wang, Wei-Na; Cai, Luo; Qi, Zeng-Hua; Wang, Cong; Liu, Yuan; Peng, Chang-Lian; Chen, Liang-Biao

    2015-10-01

    The effects of Dissostichus mawsoni-Calmodulin (Dm-CaM) on growth performance, enzyme activities, respiratory burst, MDA level and immune-related gene expressions of the orange-spotted grouper (Epinephelus coioides) exposed to the acute low temperature stress were evaluated. The commercial diet supplemented with Dm-CaM protein was fed to the groupers for 6 weeks. No significant difference was observed in the specific growth rates, weight gains and survivals. After the feeding trial, the groupers were exposed to acute low temperature challenge. The groupers fed with Dm-CaM additive diet showed a significant decrease in the respiratory burst activity, while the blood cell number increased significantly at 25 °C by comparing with the control and additive control group. The enzymatic activity of SOD, ACP and ALP increased significantly in Dm-CaM additive group, while MDA level maintained stable with the lowest value. qRT-PCR analysis indicated that the up-regulated transcript expressions of CaM, C3, SOD2, LysC and HSPA4 were observed in Dm-CaM additive group. These results indicated that Dm-CaM additive diet may regulate the grouper immune response to the acute low temperature challenge.

  4. The use of additive and subtractive approaches to examine the nuclear localization sequence of the polyomavirus major capsid protein VP1

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. 2nd; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    A nuclear localization signal (NLS) has been identified in the N-terminal (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) amino acid sequence of the polyomavirus major capsid protein VP1. The importance of this amino acid sequence for nuclear transport of VP1 protein was demonstrated by a genetic "subtractive" study using the constructs pSG5VP1 (full-length VP1) and pSG5 delta 5'VP1 (truncated VP1, lacking amino acids Ala1-Cys11). These constructs were used to transfect COS-7 cells, and expression and intracellular localization of the VP1 protein was visualized by indirect immunofluorescence. These studies revealed that the full-length VP1 was expressed and localized in the nucleus, while the truncated VP1 protein was localized in the cytoplasm and not transported to the nucleus. These findings were substantiated by an "additive" approach using FITC-labeled conjugates of synthetic peptides homologous to the NLS of VP1 cross-linked to bovine serum albumin or immunoglobulin G. Both conjugates localized in the nucleus after microinjection into the cytoplasm of 3T6 cells. The importance of individual amino acids found in the basic sequence (Lys3-Arg-Lys5) of the NLS was also investigated. This was accomplished by synthesizing three additional peptides in which lysine-3 was substituted with threonine, arginine-4 was substituted with threonine, or lysine-5 was substituted with threonine. It was found that lysine-3 was crucial for nuclear transport, since substitution of this amino acid with threonine prevented nuclear localization of the microinjected, FITC-labeled conjugate.

  5. The effects of workplace psychosocial factors on whether Japanese dual-earner couples with preschool children have additional children: a prospective study

    PubMed Central

    EGUCHI, Hisashi; SHIMAZU, Akihito; FUJIWARA, Takeo; IWATA, Noboru; SHIMADA, Kyoko; TAKAHASHI, Masaya; TOKITA, Masahito; WATAI, Izumi; KAWAKAMI, Norito

    2016-01-01

    This study explored the effect of workplace psychosocial factors (job demand, job control, and workplace social support) on dual-earner couples in Japan having additional children, using a prospective study design. We conducted a 2-year prospective cohort study with 103 dual-earner couples with preschool children in Japan, as part of the Tokyo Work–Family Interface Study II. We used multivariable logistic regression analyses to evaluate the prospective association of job strain (categorized into low-strain job, active job, passive job, and strain job groups) and workplace social support (high and low) with couples having additional children during the follow-up period, adjusting for age, for men and women separately. Men in the active job group (i.e., with high job demands and high job control) had a significantly higher odds ratio (OR) of having additional children during the follow-up period, after controlling for age (OR 9.07, 95% confidence interval: 1.27–64.85). No significant association between any workplace psychosocial factor and having additional children was confirmed among women. Having an active job may have a positive influence on having additional children among men in dual-earner couples. PMID:27760893

  6. Pluripotency Factors and Polycomb Group Proteins Repress Aryl Hydrocarbon Receptor Expression in Murine Embryonic Stem Cells

    PubMed Central

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development. PMID:24316986

  7. Prediction of Protein-Peptide Interactions: Application of the XPairIT to Anthrax Lethal Factor and Substrates

    DTIC Science & Technology

    2013-09-01

    Prediction of Protein-Peptide Interactions: Application of the XPairIt API to Anthrax Lethal Factor and Substrates by Margaret M. Hurley and...Peptide Interactions: Application of the XPairIt API to Anthrax Lethal Factor and Substrates Margaret M. Hurley and Michael S. Sellers Weapons and...Prediction of Protein-Peptide Interactions: Application of the XPairIt API to Anthrax Lethal Factor and Substrates 5a. CONTRACT NUMBER ORAUW911QX-04-C

  8. Beyond the Cholesterol-Lowering Effect of Soy Protein: A Review of the Effects of Dietary Soy and Its Constituents on Risk Factors for Cardiovascular Disease.

    PubMed

    Ramdath, D Dan; Padhi, Emily M T; Sarfaraz, Sidra; Renwick, Simone; Duncan, Alison M

    2017-03-24

    The hypocholesterolemic effect of soy is well-documented and this has led to the regulatory approval of a health claim relating soy protein to a reduced risk of cardiovascular disease (CVD). However, soybeans contain additional components, such as isoflavones, lecithins, saponins and fiber that may improve cardiovascular health through independent mechanisms. This review summarizes the evidence on the cardiovascular benefits of non-protein soy components in relation to known CVD risk factors such as hypertension, hyperglycemia, inflammation, and obesity beyond cholesterol lowering. Overall, the available evidence suggests non-protein soy constituents improve markers of cardiovascular health; however, additional carefully designed studies are required to independently elucidate these effects. Further, work is also needed to clarify the role of isoflavone-metabolizing phenotype and gut microbiota composition on biological effect.

  9. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    SciTech Connect

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-15

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.

  10. Insulin-like growth factor-I, soy protein intake, and breast cancer risk.

    PubMed

    Sanderson, Maureen; Shu, Xiao Ou; Yu, Herbert; Dai, Qi; Malin, Alecia S; Gao, Yu-Tang; Zheng, Wei

    2004-01-01

    Previous studies have found that estrogen enhances the effect of insulin-like growth factor-I (IGF-I) levels on breast cancer cell growth. Participants in the Shanghai Breast Cancer Study (SBCS) consumed large amounts of soy that was high in isoflavones, which act as weak estrogens and as anti-estrogens. We assessed whether soy protein intake modified the effect of IGF-I levels on breast cancer risk. The SBCS is a population-based case-control study of breast cancer among women aged 25-64 conducted between 1996 and 1998 in urban Shanghai. In-person interviews were completed with 1,459 incident breast cancer cases ascertained through a population-based cancer registry and 1,556 controls randomly selected from the general population (with respective response rates of 91% and 90%). This analysis is restricted to the 397 cases and 397 matched controls for whom information on IGF-I levels was available. For premenopausal breast cancer, we found nearly significant interactions between soy protein intake and IGF-I levels (P = 0.080) and insulin-like growth factor-binding protein-3 (IGFBP-3) levels (P = 0.057). The direction of the interaction appeared to be negative for IGF-I levels but was positive for IGFBP-3 levels. No interaction was evident between soy protein intake and IGF-I or IGFBP-3 levels among postmenopausal women. Our results suggest that soy protein intake may negatively modulate the effect of IGF-I and may positively modulate the effect of IGFBP-3 levels on premenopausal breast cancer risk. Further studies are needed to confirm our finding and to understand the biological mechanisms of these potential interactions.

  11. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement.

    PubMed Central

    Gherardi, E; Gray, J; Stoker, M; Perryman, M; Furlong, R

    1989-01-01

    Scatter factor is a fibroblast-derived protein that causes separation of contiguous epithelial cells and increased local mobility of unanchored cells. Highly purified scatter factor has been obtained by a combination of ion-exchange and reverse-phase chromatography from serum-free medium conditioned by a ras-transformed clone (D4) of mouse NIH 3T3 fibroblasts. Under nonreducing conditions scatter factor has a pI of approximately 9.5 and migrates in SDS/polyacrylamide gels as a single band at approximately 62 kDa from which epithelial scatter activity can be recovered. Treatment with reducing agents destroys biological activity and is associated with the appearance of two major bands at approximately 57 and approximately 30 kDa. Whether both the 57-kDa and 30-kDa polypeptides are required for biological activity remains to be established. All the activities observed in crude medium conditioned by cells producing scatter factor are retained by highly purified preparations of scatter factor. These include (i) increased local movement, modulation of morphology, and inhibition of junction formation by single epithelial cells and (ii) disruption of epithelial interactions and cell scattering from preformed epithelial sheets. These changes occur with picomolar concentrations of purified scatter factor and without an effect on cell growth. Images PMID:2527367

  12. Chemical synthesis and X-ray structure of a heterochiral {D-protein antagonist plus vascular endothelial growth factor} protein complex by racemic crystallography

    SciTech Connect

    Mandal, Kalyaneswar; Uppalapati, Maruti; Ault-Riché, Dana; Kenney, John; Lowitz, Joshua; Sidhu, Sachdev S.; Kent, Stephen B.H.

    2012-10-23

    Total chemical synthesis was used to prepare the mirror image (D-protein) form of the angiogenic protein vascular endothelial growth factor (VEGF-A). Phage display against D-VEGF-A was used to screen designed libraries based on a unique small protein scaffold in order to identify a high affinity ligand. Chemically synthesized D- and L- forms of the protein ligand showed reciprocal chiral specificity in surface plasmon resonance binding experiments: The L-protein ligand bound only to D-VEGF-A, whereas the D-protein ligand bound only to L-VEGF-A. The D-protein ligand, but not the L-protein ligand, inhibited the binding of natural VEGF{sub 165} to the VEGFR1 receptor. Racemic protein crystallography was used to determine the high resolution X-ray structure of the heterochiral complex consisting of {l_brace}D-protein antagonist + L-protein form of VEGF-A{r_brace}. Crystallization of a racemic mixture of these synthetic proteins in appropriate stoichiometry gave a racemic protein complex of more than 73 kDa containing six synthetic protein molecules. The structure of the complex was determined to a resolution of 1.6 {angstrom}. Detailed analysis of the interaction between the D-protein antagonist and the VEGF-A protein molecule showed that the binding interface comprised a contact surface area of approximately 800 {angstrom}{sup 2} in accord with our design objectives, and that the D-protein antagonist binds to the same region of VEGF-A that interacts with VEGFR1-domain 2.

  13. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate.

    PubMed

    Vieira Salla, Ana Cláudia; Margarites, Ana Cláudia; Seibel, Fábio Ivan; Holz, Luiz Carlos; Brião, Vandré Barbosa; Bertolin, Telma Elita; Colla, Luciane Maria; Costa, Jorge Alberto Vieira

    2016-06-01

    Non-renewable sources that will end with time are the largest part of world energy consumption, which emphasizes the necessity to develop renewable sources of energy. This necessity has created opportunities for the use of microalgae as a biofuel. The use of microalgae as a feedstock source for bioethanol production requires high yields of both biomass and carbohydrates. With mixotrophic cultures, wastewater can be used to culture algae. The aim of the study was to increase the carbohydrate content in the microalgae Spirulina with the additions of residues from the ultra and nanofiltration of whey protein. The nutrient deficit in the Zarrouk medium diluted to 20% and the addition of 2.5% of both residue types led to high carbohydrate productivity (60 mg L(-1) d(-1)). With these culture conditions, the increase in carbohydrate production in Spirulina indicated that the conditions were appropriate for use with microalgae as a feedstock in the production of bioethanol.

  14. Forkhead transcription factor 1 inhibits endometrial cancer cell proliferation via sterol regulatory element-binding protein 1

    PubMed Central

    Zhang, Yifang; Zhang, Lili; Sun, Hengzi; Lv, Qingtao; Qiu, Chunping; Che, Xiaoxia; Liu, Zhiming; Jiang, Jie

    2017-01-01

    The morbidity and mortality associated with endometrial cancer (EC) has increased in recent years. Regarded as a tumor suppressor, forkhead transcription factor 1 (FOXO1) has various biological activities and participates in cell cycle progression, apoptosis and differentiation. Notably, FOXO1 also functions in the regulation of lipogenesis and energy metabolism. Lipogenesis is a feature of cancer and is upregulated in EC. Sterol regulatory element-binding protein 1 (SREBP1) is a transcription factor that is also able to regulate lipogenesis. Increased expression of SREBP1 is directly correlated with malignant transformation of tumors. A previous study demonstrated that SREBP1 was highly expressed in EC and directly resulted in tumorigenesis. However, the association between FOXO1 and SREBP1 in EC is not clear. In the present study, lentiviruses overexpressing FOXO1 were used in cell transfection and transduction. Cell viability assays demonstrated that the overexpression of FOXO1 was able to suppress cell proliferation significantly in Ishikawa and AN3 CA cell lines. In addition, FOXO1 overexpression significantly inhibited cell migration and invasion ability in vitro. In xenograft models, overexpression of FOXO1 suppressed cell tumorigenesis, and western blot analysis demonstrated that SREBP1 expression was markedly reduced in the FOXO1-overexpressing cells. It may therefore be concluded that FOXO1 is able to inhibit the proliferative capacity of cells in vitro and in vivo, in addition to the migratory and invasive capacities in vitro by directly targeting SREBP1. PMID:28356952

  15. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver.

    PubMed

    Battle, Michele A; Konopka, Genevieve; Parviz, Fereshteh; Gaggl, Alexandra Lerch; Yang, Chuhu; Sladek, Frances M; Duncan, Stephen A

    2006-05-30

    Epithelial formation is a central facet of organogenesis that relies on intercellular junction assembly to create functionally distinct apical and basal cell surfaces. How this process is regulated during embryonic development remains obscure. Previous studies using conditional knockout mice have shown that loss of hepatocyte nuclear factor 4alpha (HNF4alpha) blocks the epithelial transformation of the fetal liver, suggesting that HNF4alpha is a central regulator of epithelial morphogenesis. Although HNF4alpha-null hepatocytes do not express E-cadherin (also called CDH1), we show here that E-cadherin is dispensable for liver development, implying that HNF4alpha regulates additional aspects of epithelial formation. Microarray and molecular analyses reveal that HNF4alpha regulates the developmental expression of a myriad of proteins required for cell junction assembly and adhesion. Our findings define a fundamental mechanism through which generation of tissue epithelia during development is coordinated with the onset of organ function.

  16. Two distinct forms of Factor VIII coagulant protein in human plasma. Cleavage by thrombin, and differences in coagulant activity and association with von Willebrand factor.

    PubMed Central

    Weinstein, M J; Chute, L E

    1984-01-01

    We have characterized Factor VIII coagulant protein, present in normal human plasma, that reacts with a specific human 125I-labeled anti-human VIII:C antigen Fab antibody fragment. Two major Factor VIII coagulant antigen populations were present. The first, approximately 85% of the total antigen, was bound to von Willebrand factor and when tested in a standard one-stage assay had Factor VIII coagulant activity. The second antigenic population, eluting near fibrinogen when plasma was gel filtered, was not bound to von Willebrand protein, did not have Factor VIII coagulant activity unless activated, but did block anti-VIII:C Fab neutralization of clotting activity. The two antigenic populations were separable by cryoprecipitation and agarose gel electrophoresis. Although the two antigenic populations differed in their Factor VIII coagulant activity and in their binding to von Willebrand factor, the principal member of both populations is of mol wt 2.4 X 10(5). Both antigens, when proteolyzed by thrombin, were quickly converted to a 1 X 10(5)-mol wt form in association with the appearance of VIII:C activity. The 1 X 10(5)-mol wt antigen was further slowly degraded to an 8 X 10(4)-mol wt form while Factor VIII coagulant activity declined. These results demonstrate the presence of an inactive Factor VIII coagulant protein in plasma, not associated with von Willebrand factor, that can react with thrombin to yield Factor VIII coagulant activity. Images PMID:6421875

  17. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH).

    PubMed Central

    Bardwell, A J; Bardwell, L; Iyer, N; Svejstrup, J Q; Feaver, W J; Kornberg, R D; Friedberg, E C

    1994-01-01

    The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes. Images PMID:8196602

  18. Characterization of Neisseria meningitidis Isolates That Do Not Express the Virulence Factor and Vaccine Antigen Factor H Binding Protein ▿ †

    PubMed Central

    Lucidarme, Jay; Tan, Lionel; Exley, Rachel M.; Findlow, Jamie; Borrow, Ray; Tang, Christoph M.

    2011-01-01

    Neisseria meningitidis remains a leading cause of bacterial sepsis and meningitis. Complement is a key component of natural immunity against this important human pathogen, which has evolved multiple mechanisms to evade complement-mediated lysis. One approach adopted by the meningococcus is to recruit a human negative regulator of the complement system, factor H (fH), to its surface via a lipoprotein, factor H binding protein (fHbp). Additionally, fHbp is a key antigen in vaccines currently being evaluated in clinical trials. Here we characterize strains of N. meningitidis from several distinct clonal complexes which do not express fHbp; all strains were recovered from patients with disseminated meningococcal disease. We demonstrate that these strains have either a frameshift mutation in the fHbp open reading frame or have entirely lost fHbp and some flanking sequences. No fH binding was detected to other ligands among the fHbp-negative strains. The implications of these findings for meningococcal pathogenesis and prevention are discussed. PMID:21508163

  19. Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression.

    PubMed

    Adlard, P A; Cotman, C W

    2004-01-01

    Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise

  20. A comparison of blood factor XII autoactivation in buffer, protein cocktail, serum, and plasma solutions.

    PubMed

    Golas, Avantika; Yeh, Chyi-Huey Josh; Pitakjakpipop, Harit; Siedlecki, Christopher A; Vogler, Erwin A

    2013-01-01

    Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.

  1. Roles for Transforming Growth Factor Beta Superfamily Proteins in Early Folliculogenesis

    PubMed Central

    Trombly, Daniel J.; Woodruff, Teresa K.; Mayo, Kelly E.

    2010-01-01

    Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor β (TGF-β) superfamily of proteins in the ovary. This article reviews these roles for TGF-β family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis. PMID:19197801

  2. Designed ankyrin repeat proteins: a novel tool for testing epidermal growth factor receptor 2 expression in breast cancer.

    PubMed

    Theurillat, Jean-Philippe; Dreier, Birgit; Nagy-Davidescu, Gabriela; Seifert, Burkhardt; Behnke, Silvia; Zürrer-Härdi, Ursina; Ingold, Fabienne; Plückthun, Andreas; Moch, Holger

    2010-09-01

    Designed ankyrin repeat proteins are a novel class of specific binding molecules, which display increased thermodynamic stability, smaller size and at least equal target affinity compared to immunoglobulins, making them potentially powerful tools in diagnostic pathology and therapeutic oncology. Here, we investigated whether designed ankyrin repeat proteins can reliably identify the amplification status of the epidermal growth factor receptor 2 in breast cancer. Designed ankyrin repeat proteins specific for epidermal growth factor receptor 2 were tested in paraffin-embedded tissue sections. Detection using enzymatic biotinylation proved to be most specific and sensitive. The affinity of the designed ankyrin repeat proteins was found crucial, but for a picomolar binder no further gain was found by making it multivalent. The best designed ankyrin repeat protein, G3 (K(D) 90 pM) was compared on breast cancer tissue microarrays (n=792) to an FDA-approved rabbit monoclonal antibody against epidermal growth factor receptor 2 (clone 4B5; Ventana Medical Systems) and correlated with corresponding epidermal growth factor receptor 2 amplification status measured by fluorescent in situ hybridization. Amplification status and epidermal growth factor receptor 2 expression measured by designed ankyrin repeat protein and antibody correlated strongly with each other (P<0.0001 each), the correlation between designed ankyrin repeat protein and amplification status being the strongest (0.87 compared to 0.77 for the antibody, Kendall's tau-beta). Using a modified scoring system for the designed ankyrin repeat protein, we show that the designed ankyrin repeat protein detects a positive epidermal growth factor receptor 2 amplification status with similar sensitivity and significantly higher specificity than the antibody (P=0.0005). This study suggests that designed ankyrin repeat proteins provide a valuable alternative to antibodies for the detection of epidermal growth factor receptor

  3. Identification of Arabidopsis cyclase-associated protein 1 as the first nucleotide exchange factor for plant actin.

    PubMed

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias; Blanchoin, Laurent; Staiger, Christopher J

    2007-08-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP-actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP- and ATP-monomeric actin (Kd approximately 1.3 microM). Binding of AtCAP1 to ATP-actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux

  4. Rhoptry protein 5 (ROP5) Is a Key Virulence Factor in Neospora caninum

    PubMed Central

    Ma, Lei; Liu, Jing; Li, Muzi; Fu, Yong; Zhang, Xiao; Liu, Qun

    2017-01-01

    Neospora caninum, of the Apicomplexa phylum, is a common cause of abortions in cattle and nervous system dysfunction in dogs. Rhoptry proteins of Apicomplexa play an important role in virulence. The objectives of this study were to study functions of NcROP5 in N. caninum by deleting the NcROP5 gene from the wild Nc-1 strain. We selected NcROP5 in ToxoDB and successfully constructed an NcROP5 gene-deleted vector, pTCR-NcROP5-CD KO. Then we screened the NcROP5 knockout strains (ΔNcROP5) at the gene, protein and transcription levels. Plaque assay, host cell invasion assay and intracellular proliferation test showed that the ΔNcROP5 strain had less plaque space, weakened invasion capacity and slower intracellular growth. Animal testing showed significantly lower cerebral load of ΔNcROP5 than the load of the Nc-1 strain, as well as a loss of virulence for the ΔNcROP5 strains. Phenotypic analyses using the label-free LC-MS/MS assay-based proteomic method and KEGG pathway enrichment analysis showed a reduction of NcGRA7 transcription and altered expression of multiple proteins including the apicomplexan family of binding proteins. The present study indicated that ROP5 is a key virulence factor in N. caninum in mice. The proteomic profiling of Nc-1 and ΔNcROP5 provided some data on differential proteins. These data provide a foundation for future research of protein functions in N. caninum. PMID:28326073

  5. Transfection of influenza A virus nuclear export protein induces the expression of tumor necrosis factor alpha.

    PubMed

    Lara-Sampablo, Alejandra; Flores-Alonso, Juan Carlos; De Jesús-Ortega, Nereyda; Santos-López, Gerardo; Vallejo-Ruiz, Verónica; Rosas-Murrieta, Nora; Reyes-Carmona, Sandra; Herrera-Camacho, Irma; Reyes-Leyva, Julio

    2014-06-24

    Influenza A virus genomic segments eight codes for non-structural 1 (NS1) protein that is involved in evasion of innate antiviral response, and nuclear export protein (NEP) that participates in the export of viral ribonucleoprotein (RNP) complexes, transcription and replication. Tumor necrosis factor alpha (TNF-α) is highly expressed during influenza virus infections and is considered an anti-infective cytokine. NS1 and NEP proteins were overexpressed and their role on TNF-α expression was evaluated. Both TNF-α mRNA and protein increased in cells transfected with NEP but not with NS1. We further investigate if NS1 or NEP regulates the activity of TNF-α promoter. In the presence of NEP the activity of TNF-α promoter increased significantly compared with the control (83.5±2.9 vs. 30.9±2.8, respectively; p=0.001). This effect decreased 15-fold when the TNF-α promoter distal region was deleted, suggesting the involvement of mitogen-activated protein kinases (MAPK) and NF-kB response elements. This was corroborated by testing the effect produced on TNF-α promoter by the treatment with Raf/MEK/ERK (U0126), NF-kB (Bay-11-7082) and PI3K (Ly294-002) cell signaling inhibitors. Treatment with U0126 and Bay-117082 reduced the activity of TNF-α promoter mediated by NEP (41.5±3.2, 70% inhibition; and 80.6±7.4, 35% inhibition, respectively) compared to mock-treated control. The results suggest a new role for NEP protein that participates in the transcriptional regulation of human TNF-α expression.

  6. Protein acetylation mechanisms in the regulation of insulin and insulin-like growth factor 1 signalling.

    PubMed

    Pirola, Luciano; Zerzaihi, Ouafa; Vidal, Hubert; Solari, Florence

    2012-10-15

    Lysine acetylation is a protein post-translational modification (PTM) initially discovered in abundant proteins such as tubulin, whose acetylated form confers microtubule stability, and histones, where it promotes the transcriptionally active chromatin state. Other individual reports identified lysine acetylation as a PTM regulating transcription factors and co-activators including p53, c-Myc, PGC1α and Ku70. The subsequent employment of proteomics-based approaches revealed that lysine acetylation is a widespread PTM, contributing to cellular regulation as much as protein-phosphorylation based mechanisms. In particular, most of the enzymes of central metabolic processes - glycolysis, tricarboxylic acid and urea cycles, fatty acid and glycogen metabolism - have been shown to be regulated by lysine acetylation, through the opposite actions of protein acetyltransferases and deacetylases, making protein acetylation a PTM that connects the cell's energetic state and its consequent metabolic response. In multicellular organisms, insulin/insulin-like signalling (IIS) is a major hormonal regulator of metabolism and cell growth, and very recent research indicates that most of the enzymes participating in IIS are likewise subjected to acetylation-based regulatory mechanisms, that integrate the classical phosphorylation mechanisms. Here, we review the current knowledge on acetylation/deacetylation regulatory phenomena within the IIS cascade, with emphasis on the enzymatic machinery linking the acetylation/deacetylation switch to the metabolic state. We cover this recent area of investigation because pharmacological modulation of protein acetylation/deacetylation has been shown to be a promising target for the amelioration of the metabolic abnormalities occurring in the metabolic syndrome.

  7. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements

    PubMed Central

    Viktorovskaya, Olga V.; Greco, Todd M.; Cristea, Ileana M.; Thompson, Sunnie R.

    2016-01-01

    Background There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. Methodology/Principal Findings Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. Conclusions/Significance The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with

  8. Effect of Ti/Al ratio and Cr, Nb, and Hf additions on material factors and mechanical properties in TiAl

    NASA Astrophysics Data System (ADS)

    Kawabata, T.; Tamura, T.; Izumi, O.

    1993-01-01

    The effect of the Ti/Al ratio and Cr, Nb, and Hf additions on material factors, such as the grain size, second phase, la tice parameters and the axial ratio, and on mechanical properties in TiAl-base alloys has been studied. The grain size was decreased by the deviation from the stoichiometric composition o the Ti-rich side and the addition of the third elements. The Cr element was contained a little more in Ti3Al phase than in TiAl phase in two-phase Ti-rich alloys. The lattice parameters, a and c, and the axial ratio, c/a, of the binary alloys varied linearly with decreasing Al content even in the dual-phase region. The Cr addition decreased the a and c and also c/a. The Nb addition increased weakly the a and c and c/a. On the contrary, the Hf addition increased the a and c but decreased the c/a ratio. In the Cr added alloys, the decrease of volume of a unit cell, due to the substitution of Cr atoms for Ti and Al atoms, was larger than that expected from the difference of atom sizes. The Nb addition should decrease the volume of a unit cell, but it increased the volume. The Hf addition caused a larger increase of volume of a unit cell than that expected from the difference of atom sizes. We suggested that the Cr addition increases and the Nb and Hf additions decrease the bond strength in TiAl. The deviation from stoichiometry and the addition of third elements caused an increase of work-hardening rate. The alloys with Ti-rich composition have superior mechanical properties compared to those of alloys vith Al-rich composition. The Cr addition resulted in high solution hardening, and the Ti-47A1 3Cr (in atomic percent) alloys had the highest fracture strain of 2.7 pct in all alloys tested. The Nb addition resulted in poor ductility in both Ti- and Al-rich alloys. The Hf additions to the Ti-rich composition caused better mechanical properties than those of Al-rich alloys. Thi; trend was also similar to the Nb-added alloys. In the Hf-added alloys, the Ti-49Al-2Hf