Science.gov

Sample records for additional proteins involved

  1. Identification of an additional protein involved in mannan biosynthesis

    PubMed Central

    Wang, Yan; Mortimer, Jennifer C; Davis, Jonathan; Dupree, Paul; Keegstra, Kenneth

    2013-01-01

    Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis-related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role. PMID:22966747

  2. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.

    PubMed

    Zadok, Uri; Asato, Alfred E; Sheves, Mordechai

    2005-06-14

    The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.

  3. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    PubMed Central

    Lakhssassi, Naoufal; Liu, Shiming; Bekal, Sadia; Zhou, Zhou; Colantonio, Vincent; Lambert, Kris; Barakat, Abdelali; Meksem, Khalid

    2017-01-01

    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN. PMID:28338077

  4. Proteome analysis reveals differential expression of proteins involved in triacylglycerol accumulation by Rhodococcus jostii RHA1 after addition of methyl viologen.

    PubMed

    Dávila Costa, José Sebastián; Silva, Roxana A; Leichert, Lars; Alvarez, Héctor M

    2017-03-01

    Rhodococcus jostii RHA1 is able to degrade toxic compounds and accumulate high amounts of triacylglycerols (TAG) upon nitrogen starvation. These NADPH-dependent processes are essential for the adaptation of rhodococci to fluctuating environmental conditions. In this study, we used an MS-based, label-free and quantitative proteomic approach to better understand the integral response of R. jostii RHA1 to the presence of methyl viologen (MV) in relation to the synthesis and accumulation of TAG. The addition of MV promoted a decrease of TAG accumulation in comparison to cells cultivated under nitrogen-limiting conditions in the absence of this pro-oxidant. Proteomic analyses revealed that the abundance of key proteins of fatty acid biosynthesis, the Kennedy pathway, glyceroneogenesis and methylmalonyl-CoA pathway, among others, decreased in the presence of MV. In contrast, some proteins involved in lipolysis and β-oxidation of fatty acids were upregulated. Some metabolic pathways linked to the synthesis of NADPH remained activated during oxidative stress as well as under nitrogen starvation conditions. Additionally, exposure to MV resulted in the activation of complete antioxidant machinery comprising superoxide dismutases, catalases, mycothiol biosynthesis, mycothione reductase and alkyl hydroperoxide reductases, among others. Our study suggests that oxidative stress response affects TAG accumulation under nitrogen-limiting conditions through programmed molecular mechanisms when both stresses occur simultaneously.

  5. Key proteins involved in insulin vesicle exocytosis and secretion

    PubMed Central

    Xiong, Qian-Yin; Yu, Cui; Zhang, Yao; Ling, Liefeng; Wang, Lizhuo; Gao, Jia-Lin

    2017-01-01

    In vivo insulin secretion is predominantly affected by blood glucose concentration, blood concentration of amino acids, gastrointestinal hormones and free nerve functional status, in addition to other factors. Insulin is one of the most important hormones in the body, and its secretion is precisely controlled by nutrients, neurotransmitters and hormones. The insulin exocytosis process is similar to the neurotransmitter release mechanism. There are various types of proteins and lipids that participate in the insulin secretory vesicle fusion process, such as soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, Ras-related proteins and vacuolar-type H+-ATPase (V-ATPase). Notably, the SNARE protein is the molecular basis of exocytotic activity. In the current review, the role of the vesicle membrane proteins (synaptobrevins, vesicle associated membrane proteins and target membrane proteins) and auxiliary proteins (Rab proteins and Munc-18 proteins) in vesicle fusion activity were summarized. A summary of these key proteins involved in insulin granule secretion will facilitate understanding of the pathogenesis of diabetes. PMID:28357064

  6. Proteomic detection of proteins involved in perchlorate and chlorate metabolism.

    PubMed

    Bansal, Reema; Deobald, Lee A; Crawford, Ronald L; Paszczynski, Andrzej J

    2009-09-01

    Mass spectrometry and a time-course cell lysis method were used to study proteins involved in perchlorate and chlorate metabolism in pure bacterial cultures and environmental samples. The bacterial cultures used included Dechlorosoma sp. KJ, Dechloromonas hortensis, Pseudomonas chloritidismutans ASK-1, and Pseudomonas stutzeri. The environmental samples included an anaerobic sludge enrichment culture from a sewage treatment plant, a sample of a biomass-covered activated carbon matrix from a bioreactor used for treating perchlorate-contaminated drinking water, and a waste water effluent sample from a paper mill. The approach focused on detection of perchlorate (and chlorate) reductase and chlorite dismutase proteins, which are the two central enzymes in the perchlorate (or chlorate) reduction pathways. In addition, acetate-metabolizing enzymes in pure bacterial samples and housekeeping proteins from perchlorate (or chlorate)-reducing microorganisms in environmental samples were also identified.

  7. Van der Waals Interactions Involving Proteins

    NASA Technical Reports Server (NTRS)

    Roth, Charles M.; Neal, Brian L.; Lenhoff, Abraham M.

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models. with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth.

  8. Van der Waals interactions involving proteins.

    PubMed Central

    Roth, C M; Neal, B L; Lenhoff, A M

    1996-01-01

    Van der Waals (dispersion) forces contribute to interactions of proteins with other molecules or with surfaces, but because of the structural complexity of protein molecules, the magnitude of these effects is usually estimated based on idealized models of the molecular geometry, e.g., spheres or spheroids. The calculations reported here seek to account for both the geometric irregularity of protein molecules and the material properties of the interacting media. Whereas the latter are found to fall in the generally accepted range, the molecular shape is shown to cause the magnitudes of the interactions to differ significantly from those calculated using idealized models, with important consequences. First, the roughness of the molecular surface leads to much lower average interaction energies for both protein-protein and protein-surface cases relative to calculations in which the protein molecule is approximated as a sphere. These results indicate that a form of steric stabilization may be an important effect in protein solutions. Underlying this behavior is appreciable orientational dependence, one reflection of which is that molecules of complementary shape are found to exhibit very strong attractive dispersion interactions. Although this has been widely discussed previously in the context of molecular recognition processes, the broader implications of these phenomena may also be important at larger molecular separations, e.g., in the dynamics of aggregation, precipitation, and crystal growth. Images FIGURE 3 PMID:8789115

  9. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-10-17

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.

  10. Use of Vitelline Protein B as a Microencapsulating Additive

    NASA Technical Reports Server (NTRS)

    Ficht, Allison R. (Inventor); Carson, Ken (Inventor); Sheffield, Cynthia (Inventor); Waite, John Herbert (Inventor)

    2017-01-01

    The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.

  11. Proteins involved in meiotic recombination: a role in male infertility?

    PubMed

    Sanderson, Matthew L; Hassold, Terry J; Carrell, Douglas T

    2008-01-01

    Meiotic recombination results in the formation of crossovers, by which genetic information is exchanged between homologous chromosomes during prophase I of meiosis. Recombination is a complex process involving many proteins. Alterations in the genes involved in recombination may result in infertility. Molecular studies have improved our understanding of the roles and mechanisms of the proteins and protein complexes involved in recombination, some of which have function in mitotic cells as well as meiotic cells. Human gene sequencing studies have been performed for some of these genes and have provided further information on the phenotypes observed in some infertile individuals. However, further studies are needed to help elucidate the particular role(s) of a given protein and to increase our understanding of these protein systems. This review will focus on our current understanding of proteins involved in meiotic recombination from a genomic perspective, summarizing our current understanding of known mutations and single nucleotide polymorphisms that may affect male fertility by altering meiotic recombination.

  12. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  13. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  14. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  15. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  16. 40 CFR 26.304 - Additional protections for pregnant women and fetuses involved in observational research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... women and fetuses involved in observational research. 26.304 Section 26.304 Protection of Environment... Protections for Pregnant Women and Fetuses Involved as Subjects in Observational Research Conducted or Supported by EPA § 26.304 Additional protections for pregnant women and fetuses involved in...

  17. Rational Design of Solution Additives for the Prevention of Protein Aggregation

    PubMed Central

    Baynes, Brian M.; Trout, Bernhardt L.

    2004-01-01

    We have developed a statistical-mechanical model of the effect of solution additives on protein association reactions. This model incorporates solvent radial distribution functions obtained from all-atom molecular dynamics simulations of particular proteins into simple models of protein interactions. In this way, the effects of additives can be computed along the entire association/dissociation reaction coordinate. We used the model to test our hypothesis that a class of large solution additives, which we term “neutral crowders,” can slow protein association and dissociation by being preferentially excluded from protein-protein encounter complexes, in a manner analogous to osmotic stress. The magnitude of this proposed “gap effect” was probed for two simple model systems: the association of two spheres and the association of two planes. Our results suggest that for a protein of 20 Å radius, an 8 Å additive can increase the free energy barrier for association and dissociation by as much as 3–6 kcal/mol. Because the proposed gap effect is present only for reactions involving multiple molecules, it can be exploited to develop novel additives that affect protein association reactions although having little or no effect on unimolecular reactions such as protein folding. This idea has many potential applications in areas such as the stabilization of proteins against aggregation during folding and in pharmaceutical formulations. PMID:15345542

  18. Rational design of solution additives for the prevention of protein aggregation.

    PubMed

    Baynes, Brian M; Trout, Bernhardt L

    2004-09-01

    We have developed a statistical-mechanical model of the effect of solution additives on protein association reactions. This model incorporates solvent radial distribution functions obtained from all-atom molecular dynamics simulations of particular proteins into simple models of protein interactions. In this way, the effects of additives can be computed along the entire association/dissociation reaction coordinate. We used the model to test our hypothesis that a class of large solution additives, which we term "neutral crowders," can slow protein association and dissociation by being preferentially excluded from protein-protein encounter complexes, in a manner analogous to osmotic stress. The magnitude of this proposed "gap effect" was probed for two simple model systems: the association of two spheres and the association of two planes. Our results suggest that for a protein of 20 A radius, an 8 A additive can increase the free energy barrier for association and dissociation by as much as 3-6 kcal/mol. Because the proposed gap effect is present only for reactions involving multiple molecules, it can be exploited to develop novel additives that affect protein association reactions although having little or no effect on unimolecular reactions such as protein folding. This idea has many potential applications in areas such as the stabilization of proteins against aggregation during folding and in pharmaceutical formulations.

  19. Novel protein-protein interaction family proteins involved in chloroplast movement response.

    PubMed

    Kodama, Yutaka; Suetsugu, Noriyuki; Wada, Masamitsu

    2011-04-01

    To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.

  20. Involvement of PCH family proteins in cytokinesis and actin distribution.

    PubMed

    Lippincott, J; Li, R

    2000-04-15

    Pombe Cdc15 homology (PCH) proteins constitute an extensive protein family whose members have been found in diverse eukaryotic organisms. These proteins are characterized by the presence of several conserved sequence and structural motifs. Recent studies in yeast and mammalian cultured cells have implicated these proteins in actin-based processes, in particular, cytokinesis. Here we review the recent findings on the in vivo localization, function, and binding partners of PCH family members. We also provide new microscopy data regarding the in vivo dynamics of a budding yeast PCH protein involved in cytokinesis.

  1. Methods for Mapping of Interaction Networks Involving Membrane Proteins

    SciTech Connect

    Hooker, Brian S.; Bigelow, Diana J.; Lin, Chiann Tso

    2007-11-23

    Numerous approaches have been taken to study protein interactions, such as tagged protein complex isolation followed by mass spectrometry, yeast two-hybrid methods, fluorescence resonance energy transfer, surface plasmon resonance, site-directed mutagenesis, and crystallography. Membrane protein interactions pose significant challenges due to the need to solubilize membranes without disrupting protein-protein interactions. Traditionally, analysis of isolated protein complexes by high-resolution 2D gel electrophoresis has been the main method used to obtain an overall picture of proteome constituents and interactions. However, this method is time consuming, labor intensive, detects only abundant proteins and is not suitable for the coverage required to elucidate large interaction networks. In this review, we discuss the application of various methods to elucidate interactions involving membrane proteins. These techniques include methods for the direct isolation of single complexes or interactors as well as methods for characterization of entire subcellular and cellular interactomes.

  2. Molecular Simulation Studies of Proteins Involved in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Carloni, Paolo

    2007-12-01

    This contribution describes two recent computational studies related to proteins involved in Parkinson's Disease (PD). The first focuses on the interplay between dopamine and α-synuclein (AS), which plays a central role in PD (unpublished results). The second deals with the protein DJ-1, whose mutations are present in patients suffering from familiar PD [1]. Computational methods are used to investigate the relationship between such mutations and the protein oligomeric state, which may be important for the progression of the disease.

  3. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  4. Influence of urea additives on micellar morphology/protein conformation.

    PubMed

    Gull, Nuzhat; Kumar, Sanjeev; Ahmad, Basir; Khan, Rizwan Hassan; Kabir-ud-Din

    2006-08-01

    The present study highlights the fact that the effect of additives (urea, monomethylurea, thiourea) on the supramolecular assemblies and proteins is strikingly similar. To investigate the effect, a viscometeric study on sphere-to-rod transition (s-->r) was undertaken in a system (3.5% tetradecyltrimethylammonium bromide+0.05 M NaBr + 1-pentanol [P.M. Lindemuth, G.L. Bertand, J. Phys. Chem. 97 (1993) 7769]) in the presence and absence of the said additives. [1-pentanol] needed for s-->r (i.e. [1-pentanol]s-->r) was determined from the relative viscosity versus [1-pentanol] profiles. It was observed that the additives preponed as well as postponed s-->r depending upon their nature and concentrations. These effects are explained in terms of increased polarity of the medium and the adsorption ability of urea/monomethylurea on the charged surfactant monomers of the micelle. In case of thiourea, postponement of s-->r was observed throughout which is attributed to its structure. To derive an analogy between micelles and proteins the additive-induced conformational changes of the protein, bovine serum albumin (BSA) was taken to monitor secondary structural changes and tryptophanyl fluorescence. A marked increase in secondary structure (far-UVCD) and increased tryptophanyl fluorescence with a marked blue shift in lambdamax was observed in presence of low concentrations of urea or alkylurea. This indicates that a more compact environment is created in presence of these additives, if added judiciously. Addition of thiourea to BSA caused a marked quenching without any significant change in lambdamax. The large decrease in tryptophanyl emission in presence of low thiourea concentrations seems to be specific and related to thiourea structure as no corresponding changes were observed in urea/alkylurea. All these effects pertaining to protein behavior fall in line with that of morphological observations on the present as well as surfactant systems studied earlier [S. Kumar, N

  5. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    NASA Astrophysics Data System (ADS)

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  6. Proteins involved in vesicular transport and membrane fusion.

    PubMed

    Waters, M G; Griff, I C; Rothman, J E

    1991-08-01

    In the past year, new information about proteins involved in vesicular transport has been plentiful. Particularly noteworthy are the complementary findings that Sec17p is required for vesicle consumption in endoplasmic reticulum-to-Golgi transport in yeast and that an analogous activity in mammalian cells, termed SNAP, is required for transport from the cis to the medial cisternae of the Golgi apparatus.

  7. 45 CFR 46.305 - Additional duties of the Institutional Review Boards where prisoners are involved.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Biomedical and Behavioral Research Involving Prisoners as Subjects § 46.305 Additional duties of the... prescribed for Institutional Review Boards under this part, the Board shall review research covered by this subpart and approve such research only if it finds that: (1) The research under review represents one...

  8. 45 CFR 46.305 - Additional duties of the Institutional Review Boards where prisoners are involved.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Biomedical and Behavioral Research Involving Prisoners as Subjects § 46.305 Additional duties of the... prescribed for Institutional Review Boards under this part, the Board shall review research covered by this subpart and approve such research only if it finds that: (1) The research under review represents one...

  9. Proteomic analysis of proteins involved in spermiogenesis in mouse.

    PubMed

    Guo, Xuejiang; Shen, Jian; Xia, Zhengrong; Zhang, Rui; Zhang, Ping; Zhao, Chun; Xing, Jun; Chen, Ling; Chen, Wen; Lin, Min; Huo, Ran; Su, Bing; Zhou, Zuomin; Sha, Jiahao

    2010-03-05

    Spermiogenesis is a unique process in mammals during which haploid round spermatids mature into spermatozoa in the testis. Its successful completion is necessary for fertilization and its malfunction is an important cause of male infertility. Here, we report the high-confidence identification of 2116 proteins in mouse haploid germ cells undergoing spermiogenesis: 299 of these were testis-specific and 155 were novel. Analysis of these proteins showed many proteins possibly functioning in unique processes of spermiogenesis. Of the 84 proteins annotated to be involved in vesicle-related events, VAMP4 was shown to be important for acrosome biogenesis by in vivo knockdown experiments. Knockdown of VAMP4 caused defects of acrosomal vesicle fusion and significantly increased head abnormalities in spermatids from testis and sperm from the cauda epididymis. Analysis of chromosomal distribution of the haploid genes showed underrepresentation on the X chromosome and overrepresentation on chromosome 11, which were due to meiotic sex chromosome inactivation and expansion of testis-expressed gene families, respectively. Comparison with transcriptional data showed translational regulation during spermiogenesis. This characterization of proteins involved in spermiogenesis provides an inventory of proteins useful for understanding the mechanisms of male infertility and may provide candidates for drug targets for male contraception and male infertility.

  10. NEDD8 protein is involved in ubiquitinated inclusion bodies.

    PubMed

    Dil Kuazi, Afroz; Kito, Katsumi; Abe, Yasuhito; Shin, Ryong-Woon; Kamitani, Tetsu; Ueda, Norifumi

    2003-02-01

    Proteolysis by the ubiquitin-proteasome system is considered to play a pathological role in several degenerative diseases that involve ubiquitinated inclusion bodies. In recent years, several ubiquitin-like proteins have been isolated, but it is uncertain whether their roles are associated with protein degradation through the ubiquitin-proteasome system. NEDD8 (neural precursor cell-expressed and developmentally down-regulated gene), which consists of 81 amino acid residues, possesses the highest sequence similarity to ubiquitin. Recent studies have indicated that NEDD8 is covalently ligated to cullin family proteins, which are components of certain ubiquitin E3 ligases, by a pathway analogous to that of ubiquitin. Thus, by focusing on the structural and functional association between NEDD8 and ubiquitin, it would be of interest to know whether the NEDD8 system is involved in pathological disorders of the ubiquitin-proteasome system. This study has examined the immunohistochemical distribution of NEDD8 protein by using a highly purified antibody in normal tissues and in tissues known to contain ubiquitinated inclusions. NEDD8 protein expression was widely observed in most types of tissues. Furthermore, accumulation of the NEDD8 protein was commonly observed in ubiquitinated inclusion bodies, including Lewy bodies in Parkinson's disease, Mallory bodies in alcoholic liver disease, and Rosenthal fibres in astrocytoma. Two of ten cases of neurofibrillary tangles and senile plaques from patients with Alzheimer's disease showed intense staining for NEDD8 as well as for ubiquitin. These findings suggest the possibility that the NEDD8 system is involved in the metabolism of these inclusion bodies via the ubiquitin-proteasome system.

  11. The VHL short variant involves in protein quality control.

    PubMed

    Liu, Yanbin; Yang, Haixia; Zuo, Feifei; Chen, Liang

    2016-09-01

    The von Hippel-Lindau (VHL) is the most important and frequently mutated gene in human clear cell renal cell carcinoma (ccRCC). In contrast to its long counterpart, the internal translational variant of VHL protein (VHLs) is evolutionarily conserved. Herein we present evidence that VHLs associates with ribosome complex via interaction with the large subunit 6 (RPL6). Manipulation of VHLs expression significantly alters protein synthesis, cell size and mitochondrial mass. VHLs deficiency leads to remarkable sensitivity to drug treatments eliciting nascent protein mis-folding and translational errors. The ubiquitination of nascent peptides are dramatically increased upon the ectopic over-expression of VHLs, which simultaneously co-localizes with proteasome and thus may facilitate the ubiquitin-proteasome mediated degradation. In summary, VHLs contributes to protein quality control in addition to its canonical function in maintaining homeostasis of hypoxia-induced factors alpha subunit (HIFα) in response to environmental oxygen supply.

  12. Identifying Unstable Regions of Proteins Involved in Misfolding Diseases

    NASA Astrophysics Data System (ADS)

    Guest, Will; Cashman, Neil; Plotkin, Steven

    2009-05-01

    Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

  13. Molecular signaling involving intrinsically disordered proteins in prostate cancer

    PubMed Central

    Russo, Anna; Manna, Sara La; Novellino, Ettore; Malfitano, Anna Maria; Marasco, Daniela

    2016-01-01

    Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role. PMID:27212129

  14. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

    PubMed Central

    Cucarella, Carme; Solano, Cristina; Valle, Jaione; Amorena, Beatriz; Lasa, Íñigo; Penadés, José R.

    2001-01-01

    Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Bap's core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection. PMID:11292810

  15. [Proteins of human milk involved in immunological processes].

    PubMed

    Lis, Jolanta; Orczyk-Pawiłowicz, Magdalena; Kątnik-Prastowska, Iwona

    2013-05-31

    Human milk contains a lot of components (i.e. proteins, carbohydrates, lipids, inorganic elements) which provide basic nutrients for infants during the first period of their lives. Qualitative composition of milk components of healthy mothers is similar, but their levels change during lactation stages. Colostrum is the fluid secreted during the first days postpartum by mammary epithelial cells. Colostrum is replaced by transitional milk during 5-15 days postpartum and from 15 days postpartum mature milk is produced. Human milk, apart from nutritional components, is a source of biologically active molecules, i.e. immunoglobulins, growth factors, cytokines, acute phase proteins, antiviral and antibacterial proteins. Such components of human milk are responsible for specific biological activities of human milk. This secretion plays an important role in growth and development of newborns. Bioactive molecules present in the milk support the immature immune system of the newborn and also protect against the development of infection. In this article we describe the pathways involved in the production and secretion of human milk, the state of knowledge on the proteome of human milk, and the contents of components of milk during lactation. Moreover, some growth factors and proteins involved in innate and specific immunity, intercellular communication, immunomodulation, and inflammatory processes have been characterized.

  16. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  17. Differentiation of HL60 cells: involvement of protein phosphorylation

    SciTech Connect

    Spearman, T.N.; Fontana, J.A.; Butcher, F.R.; Durham, J.P.

    1986-05-01

    The addition of retinoic acid (RA) to the human promyelocytic leukemic cell line HL60 in culture results in the cessation of growth and the acquisition of a more mature phenotype. Previous work in these laboratories has demonstrated a concomitant increase in the activity of calcium-dependent, phospholipid-sensitive protein kinase (PK-C). HL60 cells were incubated with /sup 32/P-P/sub i/ in the absence and presence of RA, homogenized, and aliquots subjected to two-dimensional electrophoresis. A comparison of autoradiograms made from these gels revealed several phosphoproteins whose radiolabeling was affected by RA. The radiolabeling of one particular phosphoprotein (49kd, pI 4.8) was found to be increased prior to phenotypic evidence of differentiation. It was demonstrated via incubating HL60 cytosol with /sup 32/P -ATP and Ca/sup 2 +/ in the absence and presence of phosphatidylserine and resolving the labeled proteins as above that this protein is phosphorylated by PK-C. The labeling of this protein was also increased by RA in other leukemic cell lines which showed phenotypic evidence of differentiation while no effect was seen in HL60 sublines resistant to RA or in mature neutrophils (the end product of myeloid differentiation). These results suggest that this protein may be an important intermediate in myeloid differentiation.

  18. Involvement of heat shock proteins in gluten-sensitive enteropathy.

    PubMed

    Sziksz, Erna; Pap, Domonkos; Veres, Gábor; Fekete, Andrea; Tulassay, Tivadar; Vannay, Ádám

    2014-06-07

    Gluten-sensitive enteropathy, also known as coeliac disease (CD), is an autoimmune disorder occurring in genetically susceptible individuals that damages the small intestine and interferes with the absorption of other nutrients. As it is triggered by dietary gluten and related prolamins present in wheat, rye and barley, the accepted treatment for CD is a strict gluten-free diet. However, a complete exclusion of gluten-containing cereals from the diet is often difficult, and new therapeutic strategies are urgently needed. A class of proteins that have already emerged as drug targets for other autoimmune diseases are the heat shock proteins (HSPs), which are highly conserved stress-induced chaperones that protect cells against harmful extracellular factors. HSPs are expressed in several tissues, including the gastrointestinal tract, and their levels are significantly increased under stress circumstances. HSPs exert immunomodulatory effects, and also play a crucial role in the maintenance of epithelial cell structure and function, as they are responsible for adequate protein folding, influence the degradation of proteins and cell repair processes after damage, and modulate cell signalling, cell proliferation and apoptosis. The present review discusses the involvement of HSPs in the pathophysiology of CD. Furthermore, HSPs may represent a useful therapeutic target for the treatment of CD due to the cytoprotective, immunomodulatory, and anti-apoptotic effects in the intestinal mucosal barrier.

  19. Genes and proteins involved in bacterial magnetic particle formation.

    PubMed

    Matsunaga, Tadashi; Okamura, Yoshiko

    2003-11-01

    Magnetic bacteria synthesize intracellular magnetosomes that impart a cellular swimming behaviour referred to as magnetotaxis. The magnetic structures aligned in chains are postulated to function as biological compass needles allowing the bacterium to migrate along redox gradients through the Earth's geomagnetic field lines. Despite the discovery of this unique group of microorganisms 28 years ago, the mechanisms of magnetic crystal biomineralization have yet to be fully elucidated. This review describes the current knowledge of the genes and proteins involved in magnetite formation in magnetic bacteria and the biotechnological applications of biomagnetites in the interdisciplinary fields of nanobiotechnology, medicine and environmental management.

  20. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  1. RNA-binding proteins involved in post-transcriptional regulation in bacteria

    PubMed Central

    Van Assche, Elke; Van Puyvelde, Sandra; Vanderleyden, Jos; Steenackers, Hans P.

    2015-01-01

    Post-transcriptional regulation is a very important mechanism to control gene expression in changing environments. In the past decade, a lot of interest has been directed toward the role of small RNAs (sRNAs) in bacterial post-transcriptional regulation. However, sRNAs are not the only molecules controlling gene expression at this level, RNA-binding proteins (RBPs) play an important role as well. CsrA and Hfq are the two best studied bacterial proteins of this type, but recently, additional proteins involved in post-transcriptional control have been identified. This review focuses on the general working mechanisms of post-transcriptionally active RBPs, which include (i) adaptation of the susceptibility of mRNAs and sRNAs to RNases, (ii) modulating the accessibility of the ribosome binding site of mRNAs, (iii) recruiting and assisting in the interaction of mRNAs with other molecules and (iv) regulating transcription terminator/antiterminator formation, and gives an overview of both the well-studied and the newly identified proteins that are involved in post-transcriptional regulatory processes. Additionally, the post-transcriptional mechanisms by which the expression or the activity of these proteins is regulated, are described. For many of the newly identified proteins, however, mechanistic questions remain. Most likely, more post-transcriptionally active proteins will be identified in the future. PMID:25784899

  2. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing.

    PubMed

    van Koningsbruggen, Silvana; Straasheijm, Kirsten R; Sterrenburg, Ellen; de Graaf, Natascha; Dauwerse, Hans G; Frants, Rune R; van der Maarel, Silvère M

    2007-02-01

    FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy. Moreover, upregulation of FRG1P was demonstrated to correlate with missplicing of specific pre-mRNAs. In this study, we have combined colocalization studies with yeast two-hybrid screens to identify proteins that associate with FRG1P. We demonstrate that artificially induced nucleolar aggregates of VSV-FRG1P specifically sequester proteins involved in pre-mRNA processing. In addition, we have identified SMN, PABPN1, and FAM71B, a novel speckle and Cajal body protein, as binding partners of FRG1P. All these proteins are, or seem to be, involved in RNA biogenesis. Our data confirm the presence of FRG1P in protein complexes containing human spliceosomes and support a potential role of FRG1P in either splicing or another step in nuclear RNA biogenesis. Intriguingly, among FRG1P-associated proteins are SMN and PABPN1, both being involved in neuromuscular disorders, possibly through RNA biogenesis-related processes.

  3. Life under tension: Computational studies of proteins involved in mechanotransduction

    NASA Astrophysics Data System (ADS)

    Sotomayor, Marcos Manuel

    cadherins. Simulations also revealed how calcium ions control cadherin's shape and the availability of key residues involved in cell-cell adhesion, suggesting a conceptual framework for interpreting mutations in cadherin calcium binding motifs causing hereditary deafness. Overall, simulations provided a unique nanoscopic view of the dynamics and function of some of the proteins involved in mechanotransduction.

  4. Possible involvement of poly(A) in protein synthesis.

    PubMed Central

    Jacobson, A; Favreau, M

    1983-01-01

    The experiments of this paper have re-evaluated the possibility that poly(A) is involved in protein synthesis by testing whether purified poly(A) might competitively inhibit in vitro protein synthesis in rabbit reticulocyte extracts. We have found that poly(A) inhibits the rate of translation of many different poly(A)+ mRNAs and that comparable inhibition is not observed with other ribopolymers. Inhibition by poly(A) preferentially affects the translation of adenylated mRNAs and can be overcome by increased mRNA concentrations or by translating mRNPs instead of mRNA. The extent of inhibition is dependent on the size of the competitor poly(A) as well as on the translation activity which a lysate has for poly(A)+ RNA. In light of our results and numerous experiments in the literature, we propose that poly(A) has a function in protein synthesis and that any role in the determination of mRNA stability is indirect. Images PMID:6137807

  5. Soybean protein as a cost-effective lignin-blocking additive for the saccharification of sugarcane bagasse.

    PubMed

    Florencio, Camila; Badino, Alberto C; Farinas, Cristiane S

    2016-12-01

    Addition of surfactants, polymers, and non-catalytic proteins can improve the enzymatic hydrolysis of lignocellulosic materials by blocking the exposed lignin surfaces, but involves extra expense. Here, soybean protein, one of the cheapest proteins available, was evaluated as an alternative additive for the enzymatic hydrolysis of pretreated sugarcane bagasse. The effect of the enzyme source was investigated using enzymatic cocktails from A. niger and T. reesei cultivated under solid-state, submerged, and sequential fermentation. The use of soybean protein led to approximately 2-fold increases in hydrolysis, relative to the control, for both A. niger and T. reesei enzymatic cocktails from solid-state fermentation. The effect was comparable to that of BSA. Moreover, the use of soybean protein and a 1:1 combination of A. niger and T. reesei enzymatic cocktails resulted in 54% higher glucose release, compared to the control. Soybean protein is a potential cost-effective additive for use in the biomass conversion process.

  6. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit.

    PubMed

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin "Shatangju" fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca(2+) signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca(2+) signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism.

  7. Proteomic Analysis of Differentially Expressed Proteins Involved in Peel Senescence in Harvested Mandarin Fruit

    PubMed Central

    Li, Taotao; Zhang, Jingying; Zhu, Hong; Qu, Hongxia; You, Shulin; Duan, Xuewu; Jiang, Yueming

    2016-01-01

    Mandarin (Citrus reticulata), a non-climacteric fruit, is an economically important fruit worldwide. The mechanism underlying senescence of non-climacteric fruit is poorly understood. In this study, a gel-based proteomic study followed by LC-ESI-MS/MS analysis was carried out to investigate the proteomic changes involved in peel senescence in harvested mandarin “Shatangju” fruit stored for 18 days. Over the course of the storage period, the fruit gradually senesced, accompanied by a decreased respiration rate and increased chlorophyll degradation and disruption of membrane integrity. Sixty-three proteins spots that showed significant differences in abundance were identified. The up-regulated proteins were mainly associated with cell wall degradation, lipid degradation, protein degradation, senescence-related transcription factors, and transcription-related proteins. In contrast, most proteins associated with ATP synthesis and scavenging of reactive oxygen species were significantly down-regulated during peel senescence. Three thioredoxin proteins and three Ca2+ signaling-related proteins were significantly up-regulated during peel senescence. It is suggested that mandarin peel senescence is associated with energy supply efficiency, decreased antioxidant capability, and increased protein and lipid degradation. In addition, activation of Ca2+ signaling and transcription factors might be involved in cell wall degradation and primary or secondary metabolism. PMID:27303420

  8. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  9. Modified lignosulfonates as additives in oil recovery processes involving chemical recovery agents

    SciTech Connect

    Kalfoglou, G.

    1982-08-17

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of modified lignosulfonate salt as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the modified lignosulfonates into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well. The lignosulfonates may be modified by any combination of any two or more of: reaction with chloroacetic acid, reaction with carbon dioxide, addition of the methylene sulfonate radical to the lignosulfonate molecule and oxidation with oxygen.

  10. Cell-surface Attachment of Bacterial Multienzyme Complexes Involves Highly Dynamic Protein-Protein Anchors*

    PubMed Central

    Cameron, Kate; Najmudin, Shabir; Alves, Victor D.; Bayer, Edward A.; Smith, Steven P.; Bule, Pedro; Waller, Helen; Ferreira, Luís M. A.; Gilbert, Harry J.; Fontes, Carlos M. G. A.

    2015-01-01

    Protein-protein interactions play a pivotal role in the assembly of the cellulosome, one of nature's most intricate nanomachines dedicated to the depolymerization of complex carbohydrates. The integration of cellulosomal components usually occurs through the binding of type I dockerin modules located at the C terminus of the enzymes to cohesin modules located in the primary scaffoldin subunit. Cellulosomes are typically recruited to the cell surface via type II cohesin-dockerin interactions established between primary and cell-surface anchoring scaffoldin subunits. In contrast with type II interactions, type I dockerins usually display a dual binding mode that may allow increased conformational flexibility during cellulosome assembly. Acetivibrio cellulolyticus produces a highly complex cellulosome comprising an unusual adaptor scaffoldin, ScaB, which mediates the interaction between the primary scaffoldin, ScaA, through type II cohesin-dockerin interactions and the anchoring scaffoldin, ScaC, via type I cohesin-dockerin interactions. Here, we report the crystal structure of the type I ScaB dockerin in complex with a type I ScaC cohesin in two distinct orientations. The data show that the ScaB dockerin displays structural symmetry, reflected by the presence of two essentially identical binding surfaces. The complex interface is more extensive than those observed in other type I complexes, which results in an ultra-high affinity interaction (Ka ∼1012 m). A subset of ScaB dockerin residues was also identified as modulating the specificity of type I cohesin-dockerin interactions in A. cellulolyticus. This report reveals that recruitment of cellulosomes onto the cell surface may involve dockerins presenting a dual binding mode to incorporate additional flexibility into the quaternary structure of highly populated multienzyme complexes. PMID:25855788

  11. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor.

    PubMed

    Nodwell, J R; Yang, M; Kuo, D; Losick, R

    1999-02-01

    Morphogenesis in the bacterium Streptomyces coelicolor involves the formation of a lawn of hair-like aerial hyphae on the colony surface that stands up in the air and differentiates into chains of spores. bld mutants are defective in the formation of this aerial mycelium and grow as smooth, hairless colonies. When certain pairs of bld mutants are grown close to one another on rich sporulation medium, they exhibit extracellular complementation such that one mutant restores aerial mycelium formation to the other. The extracellular complementation relationships of most of the previously isolated bld mutants placed them in a hierarchy of extracellular complementation groups. We have screened for further bld mutants with precautions intended to maximize the discovery of additional genes. Most of the 50 newly isolated mutant strains occupy one of three of the previously described positions in the hierarchy, behaving like bldK, bldC, or bldD mutants. We show that the mutations in some of the strains that behave like bldK are bldK alleles but that others fall in a cluster at a position on the chromosome distinct from that of any known bld gene. We name this locus bldL. By introducing cloned genes into the strains that exhibit bldC or bldD-like extracellular complementation phenotypes, we show that most of these strains are likely to contain mutations in genes other than bldC or bldD. These results indicate that the genetic control of aerial mycelium formation is more complex than previously recognized and support the idea that a high proportion of bld genes are directly or indirectly involved in the production of substances that are exchanged between cells during morphological differentiation.

  12. Extracellular complementation and the identification of additional genes involved in aerial mycelium formation in Streptomyces coelicolor.

    PubMed Central

    Nodwell, J R; Yang, M; Kuo, D; Losick, R

    1999-01-01

    Morphogenesis in the bacterium Streptomyces coelicolor involves the formation of a lawn of hair-like aerial hyphae on the colony surface that stands up in the air and differentiates into chains of spores. bld mutants are defective in the formation of this aerial mycelium and grow as smooth, hairless colonies. When certain pairs of bld mutants are grown close to one another on rich sporulation medium, they exhibit extracellular complementation such that one mutant restores aerial mycelium formation to the other. The extracellular complementation relationships of most of the previously isolated bld mutants placed them in a hierarchy of extracellular complementation groups. We have screened for further bld mutants with precautions intended to maximize the discovery of additional genes. Most of the 50 newly isolated mutant strains occupy one of three of the previously described positions in the hierarchy, behaving like bldK, bldC, or bldD mutants. We show that the mutations in some of the strains that behave like bldK are bldK alleles but that others fall in a cluster at a position on the chromosome distinct from that of any known bld gene. We name this locus bldL. By introducing cloned genes into the strains that exhibit bldC or bldD-like extracellular complementation phenotypes, we show that most of these strains are likely to contain mutations in genes other than bldC or bldD. These results indicate that the genetic control of aerial mycelium formation is more complex than previously recognized and support the idea that a high proportion of bld genes are directly or indirectly involved in the production of substances that are exchanged between cells during morphological differentiation. PMID:9927452

  13. 3DSwap: curated knowledgebase of proteins involved in 3D domain swapping.

    PubMed

    Shameer, Khader; Shingate, Prashant N; Manjunath, S C P; Karthika, M; Pugalenthi, Ganesan; Sowdhamini, Ramanathan

    2011-01-01

    Three-dimensional domain swapping is a unique protein structural phenomenon where two or more protein chains in a protein oligomer share a common structural segment between individual chains. This phenomenon is observed in an array of protein structures in oligomeric conformation. Protein structures in swapped conformations perform diverse functional roles and are also associated with deposition diseases in humans. We have performed in-depth literature curation and structural bioinformatics analyses to develop an integrated knowledgebase of proteins involved in 3D domain swapping. The hallmark of 3D domain swapping is the presence of distinct structural segments such as the hinge and swapped regions. We have curated the literature to delineate the boundaries of these regions. In addition, we have defined several new concepts like 'secondary major interface' to represent the interface properties arising as a result of 3D domain swapping, and a new quantitative measure for the 'extent of swapping' in structures. The catalog of proteins reported in 3DSwap knowledgebase has been generated using an integrated structural bioinformatics workflow of database searches, literature curation, by structure visualization and sequence-structure-function analyses. The current version of the 3DSwap knowledgebase reports 293 protein structures, the analysis of such a compendium of protein structures will further the understanding molecular factors driving 3D domain swapping.

  14. Evidence against the involvement of ionically bound cell wall proteins in pea epicotyl growth

    NASA Technical Reports Server (NTRS)

    Melan, M. A.; Cosgrove, D. J.

    1988-01-01

    Ionically bound cell wall proteins were extracted from 7 day old etiolated pea (Pisum sativum L. cv Alaska) epicotyls with 3 molar LiCl. Polyclonal antiserum was raised in rabbits against the cell wall proteins. Growth assays showed that treatment of growing region segments (5-7 millimeters) of peas with either dialyzed serum, serum globulin fraction, affinity purified immunoglobulin, or papain-cleaved antibody fragments had no effect on growth. Immunofluorescence microscopy confirmed antibody binding to cell walls and penetration of the antibodies into the tissues. Western blot analysis, immunoassay results, and affinity chromatography utilizing Sepharose-bound antibodies confirmed recognition of the protein preparation by the antibodies. Experiments employing in vitro extension as a screening measure indicated no effect upon extension by antibodies, by 50 millimolar LiCl perfusion of the apoplast or by 3 molar LiCl extraction. Addition of cell wall protein to protease pretreated segments did not restore extension nor did addition of cell wall protein to untreated segments increase extension. It is concluded that, although evidence suggests that protein is responsible for the process of extension, the class(es) of proteins which are extracted from pea cell walls with 3 molar LiCl are probably not involved in this process.

  15. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals.

    PubMed

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A

    2017-01-20

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5-2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis.

  16. LanCL proteins are not Involved in Lanthionine Synthesis in Mammals

    PubMed Central

    He, Chang; Zeng, Min; Dutta, Debapriya; Koh, Tong Hee; Chen, Jie; van der Donk, Wilfred A.

    2017-01-01

    LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria. Lanthionine has been detected in human brain as the downstream metabolite lanthionine ketimine (LK), which has been shown to have neuroprotective effects. In this study, we tested the proposal that LanCL1 is involved in lanthionine biosynthesis by constructing LanCL1 knock-out mice and measuring LK concentrations in their brains using a mass spectrometric detection method developed for this purpose. To investigate whether other LanCL proteins (LanCL2/3) may confer a compensatory effect, triple knock-out (TKO) mice were also generated and tested. Very similar concentrations of LK (0.5–2.5 nmol/g tissue) were found in LanCL1 knock-out, TKO and wild type (WT) mouse brains, suggesting that LanCL proteins are not involved in lanthionine biosynthesis. PMID:28106097

  17. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis

    PubMed Central

    Gao, Wei-Min; Kuick, Rork; Orchekowski, Randal P; Misek, David E; Qiu, Ji; Greenberg, Alissa K; Rom, William N; Brenner, Dean E; Omenn, Gilbert S; Haab, Brian B; Hanash, Samir M

    2005-01-01

    Background Cancer serum protein profiling by mass spectrometry has uncovered mass profiles that are potentially diagnostic for several common types of cancer. However, direct mass spectrometric profiling has a limited dynamic range and difficulties in providing the identification of the distinctive proteins. We hypothesized that distinctive profiles may result from the differential expression of relatively abundant serum proteins associated with the host response. Methods Eighty-four antibodies, targeting a wide range of serum proteins, were spotted onto nitrocellulose-coated microscope slides. The abundances of the corresponding proteins were measured in 80 serum samples, from 24 newly diagnosed subjects with lung cancer, 24 healthy controls, and 32 subjects with chronic obstructive pulmonary disease (COPD). Two-color rolling-circle amplification was used to measure protein abundance. Results Seven of the 84 antibodies gave a significant difference (p < 0.01) for the lung cancer patients as compared to healthy controls, as well as compared to COPD patients. Proteins that exhibited higher abundances in the lung cancer samples relative to the control samples included C-reactive protein (CRP; a 13.3 fold increase), serum amyloid A (SAA; a 2.0 fold increase), mucin 1 and α-1-antitrypsin (1.4 fold increases). The increased expression levels of CRP and SAA were validated by Western blot analysis. Leave-one-out cross-validation was used to construct Diagonal Linear Discriminant Analysis (DLDA) classifiers. At a cutoff where all 56 of the non-tumor samples were correctly classified, 15/24 lung tumor patient sera were correctly classified. Conclusion Our results suggest that a distinctive serum protein profile involving abundant proteins may be observed in lung cancer patients relative to healthy subjects or patients with chronic disease and may have utility as part of strategies for detecting lung cancer. PMID:16117833

  18. Host membrane proteins involved in the replication of tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Miyashita, Shuhei; Katoh, Etsuko; Ishikawa, Masayuki

    2012-12-01

    Eukaryotic positive-strand RNA viruses replicate their genomes in membrane-bound replication complexes composed of viral replication proteins and negative-strand RNA templates. These replication proteins are programmed to exhibit RNA polymerase and other replication-related activities only in replication complexes to avoid inducing double-stranded RNA-mediated host defenses. Host membrane components (e.g. proteins and lipids) should play important roles in the activation of replication proteins. Two host membrane proteins are components of the replication complex and activate the replication proteins of tobamoviruses. Interaction analyses using deletion mutants constructed based on structural information suggest a conformational change in replication proteins during the formation of a protein complex with RNA 5'-capping activity.

  19. Apolipoprotein A-IV: a protein intimately involved in metabolism

    PubMed Central

    Wang, Fei; Kohan, Alison B.; Lo, Chun-Min; Liu, Min; Howles, Philip; Tso, Patrick

    2015-01-01

    The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease. PMID:25640749

  20. Identification of glandular (preputial and clitoral) proteins in house rat (Rattus rattus) involved in pheromonal communication.

    PubMed

    Archunan, G; Kamalakkannan, S; Achiraman, S; Rajkumar, R

    2004-10-01

    Proteins (18-20 kDa) belonging to lipocalin family have been reported to act as carriers for ligands binding to pheromones in mouse urine, pig saliva, hamster vaginal fluid and human sweat, that are involved in pheromonal communication. As the preputial gland is a major pheromonal source, the present study was aimed to detect the specific protein bands (around 18-20 kDa) in the preputial and clitoral glands of the house rat, R. rattus. The amount of protein was higher in preputial gland of the male than that of female (clitoral) gland. A 20 kDa protein was noted in male and female glands; however, the intensity of the band was much higher in male than in female. In addition, 70, 60, 35 kDa bands, identified in male preputial gland, were absent in females. The presence of higher concentration of glandular proteins in the male preputial gland suggests that male rats may depend more on these glandular proteins for the maintenance of reproductive and dominance behaviours. The results further suggest that these glandular proteins (20 kDa) may act as a carrier for ligand binding.

  1. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes

    PubMed Central

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-01-01

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains—In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model. PMID:27763556

  2. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes.

    PubMed

    Dygut, Jacek; Kalinowska, Barbara; Banach, Mateusz; Piwowar, Monika; Konieczny, Leszek; Roterman, Irena

    2016-10-18

    The presented analysis concerns the inter-domain and inter-protein interface in protein complexes. We propose extending the traditional understanding of the protein domain as a function of local compactness with an additional criterion which refers to the presence of a well-defined hydrophobic core. Interface areas in selected homodimers vary with respect to their contribution to share as well as individual (domain-specific) hydrophobic cores. The basic definition of a protein domain, i.e., a structural unit characterized by tighter packing than its immediate environment, is extended in order to acknowledge the role of a structured hydrophobic core, which includes the interface area. The hydrophobic properties of interfaces vary depending on the status of interacting domains-In this context we can distinguish: (1) Shared hydrophobic cores (spanning the whole dimer); (2) Individual hydrophobic cores present in each monomer irrespective of whether the dimer contains a shared core. Analysis of interfaces in dystrophin and utrophin indicates the presence of an additional quasi-domain with a prominent hydrophobic core, consisting of fragments contributed by both monomers. In addition, we have also attempted to determine the relationship between the type of interface (as categorized above) and the biological function of each complex. This analysis is entirely based on the fuzzy oil drop model.

  3. Ten-Structure as Strategy of Addition 1-20 by Involving Spatial Structuring Ability for First Grade Students

    ERIC Educational Resources Information Center

    Salmah, Ummy; Putri, Ratu Ilma Indra; Somakim

    2015-01-01

    The aim of this study is to design learning activities that can support students to develop strategies for the addition of number 1 to 20 in the first grade by involving students' spatial structuring ability. This study was conducted in Indonesia by involving 27 students. In this paper, one of three activities is discussed namely ten-box activity.…

  4. DUF581 Is Plant Specific FCS-Like Zinc Finger Involved in Protein-Protein Interaction

    PubMed Central

    K, Muhammed Jamsheer; Laxmi, Ashverya

    2014-01-01

    Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ) domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction. PMID:24901469

  5. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    PubMed Central

    Liu, Jiajian; Stormo, Gary D

    2005-01-01

    Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data. PMID:16014175

  6. An atomic view of additive mutational effects in a protein structure

    SciTech Connect

    Skinner, M.M.; Terwilliger, T.C.

    1996-04-01

    Substitution of a single amino acid in a protein will often lead to substantial changes in properties. If these properties could be altered in a rational way then proteins could be readily generated with functions tailored to specific uses. When amino acid substitutions are made at well-separated locations in a single protein, their effects are generally additive. Additivity of effects of amino acid substitutions is very useful because the properties of proteins with any combination of substitutions can be inferred directly from those of the proteins with single changes. It would therefore be of considerable interest to have a means of knowing whether substitutions at a particular pair of sites in a protein are likely to lead to additive effects. The structural basis for additivity of effects of mutations on protein function was examined by determining crystal structures of single and double mutants in the hydrophobic core of gene V protein. Structural effects of mutations were found to be cumulative when two mutations were made in a single protein. Additivity occurs in this case because the regions structurally affected by mutations at the two sites do not overlap even though the sites are separated by only 9 {angstrom}. Structural distortions induced by mutations in gene V protein decrease rapidly, but not isotropically, with distance from the site of mutation. It is anticipated that cases where structural and functional effects of mutations will be additive could be identified simply by examining whether the regions structurally affected by each component mutation overlap.

  7. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    PubMed Central

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  8. Identification of Protein Interactions Involved in Cellular Signaling

    PubMed Central

    Westermarck, Jukka; Ivaska, Johanna; Corthals, Garry L.

    2013-01-01

    Protein-protein interactions drive biological processes. They are critical for all intra- and extracellular functions, and the technologies to analyze them are widely applied throughout the various fields of biological sciences. This study takes an in-depth view of some common principles of cellular regulation and provides a detailed account of approaches required to comprehensively map signaling protein-protein interactions in any particular cellular system or condition. We provide a critical review of the benefits and disadvantages of the yeast two-hybrid method and affinity purification coupled with mass spectrometric procedures for identification of signaling protein-protein interactions. In particular, we emphasize the quantitative and qualitative differences between tandem affinity and one-step purification (such as FLAG and Strep tag) methods. Although applicable to all types of interaction studies, a special section is devoted in this review to aspects that should be considered when attempting to identify signaling protein interactions that often are transient and weak by nature. Finally, we discuss shotgun and quantitative information that can be gleaned by MS-coupled methods for analysis of multiprotein complexes. PMID:23481661

  9. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  10. 18 CFR 33.3 - Additional information requirements for applications involving horizontal competitive impacts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... reserve existing transmission capacity needed for native load growth and network transmission...

  11. 18 CFR 33.3 - Additional information requirements for applications involving horizontal competitive impacts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... reserve existing transmission capacity needed for native load growth and network transmission...

  12. 18 CFR 33.3 - Additional information requirements for applications involving horizontal competitive impacts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... reserve existing transmission capacity needed for native load growth and network transmission...

  13. 18 CFR 33.4 - Additional information requirements for applications involving vertical competitive impacts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... entities that provides inputs to electricity products and one or more merging entities that...

  14. 18 CFR 33.4 - Additional information requirements for applications involving vertical competitive impacts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... entities that provides inputs to electricity products and one or more merging entities that...

  15. 18 CFR 33.4 - Additional information requirements for applications involving vertical competitive impacts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Additional information... and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE... entities that provides inputs to electricity products and one or more merging entities that...

  16. Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ferrer, Evelina G.; Gómez, Analía V.; Añón, María C.; Puppo, María C.

    2011-06-01

    Food protein product, gluten protein, was chemically modified by varying levels of sodium stearoyl lactylate (SSL); and the extent of modifications (secondary and tertiary structures) of this protein was analyzed by using Raman spectroscopy. Analysis of the Amide I band showed an increase in its intensity mainly after the addition of the 0.25% of SSL to wheat flour to produced modified gluten protein, pointing the formation of a more ordered structure. Side chain vibrations also confirmed the observed changes.

  17. Lignosulfonates carboxylated with chloroacetic acid as additives in oil recovery processes involving chemical recovery agents

    SciTech Connect

    Kalfoglou, G.

    1981-05-19

    A process for producing petroleum from subterranean formations is disclosed wherein production from the formation is obtained by driving a fluid from an injection well to a production well. The process involves injecting via the injection well into the formation an aqueous solution of lignosulfonates carboxylated with chloroacetic acid as a sacrificial agent to inhibit the deposition of surfactant and/or polymer on the reservoir matrix. The process may best be carried out by injecting the lignosulfonates carboxylated with chloroacetic acid into the formation through the injection well mixed with either a polymer, a surfactant solution and/or a micellar dispersion. This mixture would then be followed by a drive fluid such as water to push the chemicals to the production well.

  18. Some Lewis acid-base adducts involving boron trifluoride as electrolyte additives for lithium ion cells

    NASA Astrophysics Data System (ADS)

    Nie, Mengyun; Madec, L.; Xia, J.; Hall, D. S.; Dahn, J. R.

    2016-10-01

    Three complexes with boron trifluoride (BF3) as the Lewis acid and different Lewis bases were synthesized and used as electrolyte additives in Li[Ni1/3Mn1/3Co1/3]O2/graphite and Li[Ni0.42Mn0.42Co0.16]O2/graphite pouch cells. Lewis acid-base adducts with a boron-oxygen (Bsbnd O) bond were trimethyl phosphate boron trifluoride (TMP-BF) and triphenyl phosphine oxide boron trifluoride (TPPO-BF). These were compared to pyridine boron trifluoride (PBF) which has a boron-nitrogen (Bsbnd N) bond. The experimental results showed that cells with PBF had the least voltage drop during storage at 4.2 V, 4.4 V and 4.7 V at 40 °C and the best capacity retention during long-term cycling at 55 °C compared to cells with the other additives. Charge-hold-discharge cycling combined with simultaneous electrochemical impedance spectroscopy measurements showed that impedance growth in TMP-BF and TPPO-BF containing cells was faster than cells containing 2%PBF, suggesting that PBF is useful for impedance control at high voltages (>4.4 V). XPS analysis of the SEI films highlighted a specific reactivity of the PBF-derived SEI species that apparently hinders the degradation of both LiPF6 and solvent during formation and charge-hold-discharge cycling. The modified SEI films may explain the improved impedance, the smaller voltage drop during storage and the improved capacity retention during cycling of cells containing the PBF additive.

  19. TRPA1 activation leads to neurogenic vasodilatation: involvement of reactive oxygen nitrogen species in addition to CGRP and NO

    PubMed Central

    Aubdool, Aisah A; Kodji, Xenia; Abdul‐Kader, Nayaab; Heads, Richard; Fernandes, Elizabeth S; Bevan, Stuart

    2016-01-01

    Abstract Background and Purpose Transient receptor potential ankyrin‐1 (TRPA1) activation is known to mediate neurogenic vasodilatation. We investigated the mechanisms involved in TRPA1‐mediated peripheral vasodilatation in vivo using the TRPA1 agonist cinnamaldehyde. Experimental Approach Changes in vascular ear blood flow were measured in anaesthetized mice using laser Doppler flowmetry. Key Results Topical application of cinnamaldehyde to the mouse ear caused a significant increase in blood flow in the skin of anaesthetized wild‐type (WT) mice but not in TRPA1 knockout (KO) mice. Cinnamaldehyde‐induced vasodilatation was inhibited by the pharmacological blockade of the potent microvascular vasodilator neuropeptide CGRP and neuronal NOS‐derived NO pathways. Cinnamaldehyde‐mediated vasodilatation was significantly reduced by treatment with reactive oxygen nitrogen species (RONS) scavenger such as catalase and the SOD mimetic TEMPOL, supporting a role of RONS in the downstream vasodilator TRPA1‐mediated response. Co‐treatment with a non‐selective NOS inhibitor L‐NAME and antioxidant apocynin further inhibited the TRPA1‐mediated vasodilatation. Cinnamaldehyde treatment induced the generation of peroxynitrite that was blocked by the peroxynitrite scavenger FeTPPS and shown to be dependent on TRPA1, as reflected by an increase in protein tyrosine nitration in the skin of WT, but not in TRPA1 KO mice. Conclusion and Implications This study provides in vivo evidence that TRPA1‐induced vasodilatation mediated by cinnamaldehyde requires neuronal NOS‐derived NO, in addition to the traditional neuropeptide component. A novel role of peroxynitrite is revealed, which is generated downstream of TRPA1 activation by cinnamaldehyde. This mechanistic pathway underlying TRPA1‐mediated vasodilatation may be important in understanding the role of TRPA1 in pathophysiological situations. PMID:27189253

  20. Characterization and Modulation of Proteins Involved in Sulfur Mustard Vesication

    DTIC Science & Technology

    2000-06-01

    SM may induce apoptosis as well. Recent evidence has revealed that Bcl-2 can complex with both the Caenorhabditis elegans death proteins 3 and 4 (Ced-3...the product of a gene required for programmed Tris-HCl (pH 6.8), and 0.02% bromophenol blue. Samples were re- cell death in Caenorhabditis elegans [17...biochemical or mor- which is required for apoptosis in Caenorhabditis elegans (8). phological changes characteristic of apoptosis when In human

  1. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed

    Walker, S; Greaves, R; O'Hare, P

    1993-09-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another.

  2. The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division.

    PubMed

    Ambrose, J Christian; Shoji, Tsubasa; Kotzer, Amanda M; Pighin, Jamie A; Wasteneys, Geoffrey O

    2007-09-01

    Controlling microtubule dynamics and spatial organization is a fundamental requirement of eukaryotic cell function. Members of the ORBIT/MAST/CLASP family of microtubule-associated proteins associate with the plus ends of microtubules, where they promote the addition of tubulin subunits into attached kinetochore fibers during mitosis and stabilize microtubules in the vicinity of the plasma membrane during interphase. To date, nothing is known about their function in plants. Here, we show that the Arabidopsis thaliana CLASP protein is a microtubule-associated protein that is involved in both cell division and cell expansion. Green fluorescent protein-CLASP localizes along the full length of microtubules and shows enrichment at growing plus ends. Our analysis suggests that CLASP promotes microtubule stability. clasp-1 T-DNA insertion mutants are hypersensitive to microtubule-destabilizing drugs and exhibit more sparsely populated, yet well ordered, root cortical microtubule arrays. Overexpression of CLASP promotes microtubule bundles that are resistant to depolymerization with oryzalin. Furthermore, clasp-1 mutants have aberrant microtubule preprophase bands, mitotic spindles, and phragmoplasts, indicating a role for At CLASP in stabilizing mitotic arrays. clasp-1 plants are dwarf, have significantly reduced cell numbers in the root division zone, and have defects in directional cell expansion. We discuss possible mechanisms of CLASP function in higher plants.

  3. Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer's disease.

    PubMed Central

    Cras, P.; Kawai, M.; Siedlak, S.; Mulvihill, P.; Gambetti, P.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G.

    1990-01-01

    This study was undertaken to localize amyloid precursor protein (APP) and to determine how APP might be released and proteolyzed to yield the beta-amyloid protein deposits found in senile plaques in the brains of Alzheimer's disease patients. We found that antibodies to recombinantly expressed APP labeled many normal neurons and neurites. In addition, dystrophic neurites in different types of senile plaques and degenerating neurons in the temporal cortex and hippocampus of Alzheimer's disease patients were immunostained. We also detected small clusters of dystrophic APP immunoreactive neurites that were not associated with beta-amyloid protein deposits. Microglia was involved in different types of senile plaques and often were associated closely with APP immunoreactive neurites and neurons. The greatest concurrence of APP immunoreactivity and reactive microglia was seen in the subiculum and area CA1, regions with a high density of congophilic plaques and subject to intense Alzheimer's pathology. Our findings suggest that neuronally derived APP is the source for senile plaque beta-amyloid protein, while microglia may act as processing cells. Images Figure 1 Figure 2 PMID:2117395

  4. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation

    PubMed Central

    1991-01-01

    A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore- enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover. PMID:1991791

  5. Involvement of lipid peroxidation-derived aldehyde-protein adducts in autoimmunity mediated by trichloroethene.

    PubMed

    Wang, Gangduo; Ansari, G A S; Khan, M Firoze

    2007-12-01

    Lipid peroxidation, a major contributor to cellular damage, is also implicated in the pathogenesis of autoimmune diseases (AD). The focus of this study was to elucidate the role of lipid peroxidation-derived aldehydes in autoimmunity induced and/or exacerbated by chemical exposure. Previous studies showed that trichloroethene (TCE) is capable of inducing/accelerating autoimmunity. To test whether TCE-induced lipid peroxidation might be involved in the induction/exacerbation of autoimmune responses, groups of autoimmune-prone female MRL +/+ mice were treated with TCE (10 mmol/kg, i.p., every 4th day) for 6 or 12 wk. Significant increases of the formation of malondialdehyde (MDA)- and 4-hydroxynonenal (HNE)-protein adducts were found in the livers of TCE-treated mice at both 6 and 12 wk, but the response was greater at 12 wk. Further characterization of these adducts in liver microsomes showed increased formation of MDA-protein adducts with molecular masses of 86, 65, 56, 44, and 32 kD, and of HNE-protein adducts with molecular masses of 87, 79, 46, and 17 kD in TCE-treated mice. In addition, significant induction of anti-MDA- and anti-HNE-protein adduct-specific antibodies was observed in the sera of TCE-treated mice, and showed a pattern similar to MDA- or HNE-protein adducts. The increases in anti-MDA- and anti-HNE-protein adduct antibodies were associated with significant elevation in serum anti-nuclear-, anti-ssDNA- and anti-dsDNA-antibodies at 6 wk and, to a greater extent, at 12 wk. These studies suggest that TCE-induced lipid peroxidation is associated with induction/exacerbation of autoimmune response in MRL+/+ mice, and thus may play an important role in disease pathogenesis. Further interventional studies are needed to establish a causal relationship between lipid peroxidation and TCE-induced autoimmune response.

  6. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase.

    PubMed

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, Lan-Ying; Gelvin, Stanton B; Sýkorová, Eva

    2015-01-01

    Telomerase-reverse transcriptase (TERT) plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE) TERT domain and identified a nuclear-localized protein that contains an RNA recognition motif (RRM). This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  7. Ammonium Bicarbonate Addition Improves the Detection of Proteins by Desorption Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Honarvar, Elahe; Venter, Andre R.

    2017-03-01

    The analysis of protein by desorption electrospray ionization mass spectrometry (DESI-MS) is considered impractical due to a mass-dependent loss in sensitivity with increase in protein molecular weights. With the addition of ammonium bicarbonate to the DESI-MS analysis the sensitivity towards proteins by DESI was improved. The signal to noise ratio (S/N) improvement for a variety of proteins increased between 2- to 3-fold relative to solvent systems containing formic acid and more than seven times relative to aqueous methanol spray solvents. Three methods for ammonium bicarbonate addition during DESI-MS were investigated. The additive delivered improvements in S/N whether it was mixed with the analyte prior to sample deposition, applied over pre-prepared samples, or simply added to the desorption spray solvent. The improvement correlated well with protein pI but not with protein size. Other ammonium or bicarbonate salts did not produce similar improvements in S/N, nor was this improvement in S/N observed for ESI of the same samples. As was previously described for ESI, DESI also caused extensive protein unfolding upon the addition of ammonium bicarbonate.

  8. A VAMP-associated protein, PVA31 is involved in leaf senescence in Arabidopsis

    PubMed Central

    Ichikawa, Mie; Nakai, Yusuke; Arima, Keita; Nishiyama, Sayo; Hirano, Tomoko; Sato, Masa H

    2015-01-01

    VAMP-associated proteins (VAPs) are highly conserved among eukaryotes. Here, we report a functional analysis of one of the VAPs, PVA31, and demonstrate its novel function on leaf senescence in Arabidopsis. The expression of PVA31 is highly induced in senescence leaves, and localizes to the plasma membrane as well as the ARA7-positive endosomes. Yeast two-hybrid analysis demonstrates that PVA31 is interacted with the plasma membrane localized-VAMP proteins, VAMP721/722/724 but not with the endosome-localized VAMPs, VAMP711 and VAMP727, indicating that PVA31 is associated with VAMP721/722/724 on the plasma membrane. Strong constitutive expression of PVA31 under the control of the Cauliflower mosaic virus 35S promoter induces the typical symptom of leaf senescence earlier than WT in normal growth and an artificially induced senescence conditions. In addition, the marker genes for the SA-mediated signaling pathways, PR-1, is promptly expressed with elicitor application. These data indicate that PVA31-overexpressing plants exhibit the early senescence phenotype in their leaves, and suggest that PVA31 is involved in the SA-mediated programmed cell death process during leaf senescence and PR-protein secretion during pathogen infection in Arabidopsis. PMID:25897470

  9. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton

    PubMed Central

    1996-01-01

    Arp2p is an essential yeast actin-related protein. Disruption of the corresponding ARP2 gene leads to a terminal phenotype characterized by the presence of a single large bud. Thus, Arp2p may be important for a late stage of the cell cycle (Schwob, E., and R.P. Martin, 1992. Nature (Lond.). 355:179-182). We have localized Arp2p by indirect immunofluorescence. Specific peptide antibodies revealed punctate staining under the plasma membrane, which partially colocalizes with actin. Temperature-sensitive arp2 mutations were created by PCR mutagenesis and selected by an ade2/SUP11 sectoring screen. One temperature-sensitive mutant that was characterized, arp2-H330L, was osmosensitive and had an altered actin cytoskeleton at a nonpermissive temperature, suggesting a role of Arp2p in the actin cytoskeleton. Random budding patterns were observed in both haploid and diploid arp2- H330L mutant cells. Endocytosis, as judged by Lucifer yellow uptake, was severely reduced in the mutant, at all temperatures. In addition, genetic interaction was observed between temperature-sensitive alleles arp2-H330L and cdc10-1. CDC10 is a gene encoding a neck filament- associated protein that is necessary for polarized growth and cytokinesis. Overall, the immunolocalization, mutant phenotypes, and genetic interaction suggest that the Arp2 protein is an essential component of the actin cytoskeleton that is involved in membrane growth and polarity, as well as in endocytosis. PMID:8698808

  10. HNE-modified proteins in Down syndrome: Involvement in development of Alzheimer disease neuropathology.

    PubMed

    Barone, Eugenio; Head, Elizabeth; Butterfield, D Allan; Perluigi, Marzia

    2016-11-10

    Down syndrome (DS), trisomy of chromosome 21, is the most common genetic form of intellectual disability. The neuropathology of DS involves multiple molecular mechanisms, similar to AD, including the deposition of beta-amyloid (Aβ) into senile plaques and tau hyperphosphorylationg in neurofibrillary tangles. Interestingly, many genes encoded by chromosome 21, in addition to being primarily linked to amyloid-beta peptide (Aβ) pathology, are responsible for increased oxidative stress (OS) conditions that also result as a consequence of reduced antioxidant system efficiency. However, redox homeostasis is disturbed by overproduction of Aβ, which accumulates into plaques across the lifespan in DS as well as in AD, thus generating a vicious cycle that amplifies OS-induced intracellular changes. The present review describes the current literature that demonstrates the accumulation of oxidative damage in DS with a focus on the lipid peroxidation by-product, 4-hydroxy-2-nonenal (HNE). HNE reacts with proteins and can irreversibly impair their functions. We suggest that among different post-translational modifications, HNE-adducts on proteins accumulate in DS brain and play a crucial role in causing the impairment of glucose metabolism, neuronal trafficking, protein quality control and antioxidant response. We hypothesize that dysfunction of these specific pathways contribute to accelerated neurodegeneration associated with AD neuropathology.

  11. Characterization of a Novel Endoplasmic Reticulum Protein Involved in Tubercidin Resistance in Leishmania major

    PubMed Central

    Aoki, Juliana Ide; Coelho, Adriano Cappellazzo; Muxel, Sandra Marcia; Zampieri, Ricardo Andrade; Sanchez, Eduardo Milton Ramos; Nerland, Audun Helge; Floeter-Winter, Lucile Maria; Cotrim, Paulo Cesar

    2016-01-01

    Background Tubercidin (TUB) is a toxic adenosine analog with potential antiparasitic activity against Leishmania, with mechanism of action and resistance that are not completely understood. For understanding the mechanisms of action and identifying the potential metabolic pathways affected by this drug, we employed in this study an overexpression/selection approach using TUB for the identification of potential targets, as well as, drug resistance genes in L. major. Although, TUB is toxic to the mammalian host, these findings can provide evidences for a rational drug design based on purine pathway against leishmaniasis. Methodology/Principal findings After transfection of a cosmid genomic library into L. major Friedlin (LmjF) parasites and application of the overexpression/selection method, we identified two cosmids (cosTUB1 and cosTU2) containing two different loci capable of conferring significant levels of TUB resistance. In the cosTUB1 contained a gene encoding NUPM1-like protein, which has been previously described as associated with TUB resistance in L. amazonensis. In the cosTUB2 we identified and characterized a gene encoding a 63 kDa protein that we denoted as tubercidin-resistance protein (TRP). Functional analysis revealed that the transfectants were less susceptible to TUB than LmjF parasites or those transfected with the control vector. In addition, the trp mRNA and protein levels in cosTUB2 transfectants were higher than LmjF. TRP immunolocalization revealed that it was co-localized to the endoplasmic reticulum (ER), a cellular compartment with many functions. In silico predictions indicated that TRP contains only a hypothetical transmembrane domain. Thus, it is likely that TRP is a lumen protein involved in multidrug efflux transport that may be involved in the purine metabolic pathway. Conclusions/Significance This study demonstrated for the first time that TRP is associated with TUB resistance in Leishmania. The next challenge is to determine how

  12. Effects of protein and peptide addition on lipid oxidation in powder model system.

    PubMed

    Park, Eun Young; Murakami, Hiroshi; Mori, Tomohiko; Matsumura, Yasuki

    2005-01-12

    The effect of protein and peptide addition on the oxidation of eicosapentaenoic acid ethyl ester (EPE) encapsulated by maltodextrin (MD) was investigated. The encapsulated lipid (powder lipid) was prepared in two steps, i.e., mixing of EPE with MD solutions (+/- protein and peptides) to produce emulsions and freeze-drying of the resultant emulsions. EPE oxidation in MD powder progressed more rapidly in the humid state [relative humidity (RH) = 70%] than in the dry state (RH = 10%). The addition of soy protein, soy peptide, and gelatin peptides improved the oxidation stability of EPE encapsulated by MD, and the inhibition of lipid oxidation by the protein and the peptides was more dramatic in the humid state. Especially, the oxidation of EPE was almost perfectly suppressed when the lipid was encapsulated with MD + soy peptide during storage in the humid state for 7 days. Several physical properties such as the lipid particle size of the emulsions, the fraction of nonencapsulated lipids, scanning electron microscopy images of powder lipids, and the mobility of the MD matrix were investigated to find the modification of encapsulation behavior by the addition of the protein and peptides, but no significant change was observed. On the other hand, the protein and peptides exhibited a strong radical scavenging activity in the powder systems as well as in the solution systems. These results suggest that a chemical mechanism such as radical scavenging ability plays an important role in the suppression of EPE oxidation in MD powder by soy proteins, soy peptides, and gelatin peptides.

  13. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing.

    PubMed

    Jekat, Stephan B; Ernst, Antonia M; von Bohl, Andreas; Zielonka, Sascia; Twyman, Richard M; Noll, Gundula A; Prüfer, Dirk

    2013-01-01

    Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

  14. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    DOE PAGES

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Usingmore » microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  15. Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response

    SciTech Connect

    Li, Jiying; Hu, Jianping; Bassham, Diane

    2015-09-14

    Peroxisomes are essential organelles that house a wide array of metabolic reactions important for plant growth and development. However, our knowledge regarding the role of peroxisomal proteins in various biological processes, including plant stress response, is still incomplete. Recent proteomic studies of plant peroxisomes significantly increased the number of known peroxisomal proteins and greatly facilitated the study of peroxisomes at the systems level. The objectives of this study were to determine whether genes that encode peroxisomal proteins with related functions are co-expressed in Arabidopsis and identify peroxisomal proteins involved in stress response using in silico analysis and mutant screens. Using microarray data from online databases, we performed hierarchical clustering analysis to generate a comprehensive view of transcript level changes for Arabidopsis peroxisomal genes during development and under abiotic and biotic stress conditions. Many genes involved in the same metabolic pathways exhibited co-expression, some genes known to be involved in stress response are regulated by the corresponding stress conditions, and function of some peroxisomal proteins could be predicted based on their coexpression pattern. Since drought caused expression changes to the highest number of genes that encode peroxisomal proteins, we subjected a subset of Arabidopsis peroxisomal mutants to a drought stress assay. Mutants of the LON2 protease and the photorespiratory enzyme hydroxypyruvate reductase 1 (HPR1) showed enhanced susceptibility to drought, suggesting the involvement of peroxisomal quality control and photorespiration in drought resistance. Lastly, our study provided a global view of how genes that encode peroxisomal proteins respond to developmental and environmental cues and began to reveal additional peroxisomal proteins involved in stress response, thus opening up new avenues to investigate the role of peroxisomes in plant adaptation to

  16. A retroviral-derived peptide phosphorylates protein kinase D/protein kinase Cmu involving phospholipase C and protein kinase C.

    PubMed

    Luangwedchakarn, Voravich; Day, Noorbibi K; Hitchcock, Remi; Brown, Pam G; Lerner, Danica L; Rucker, Rajivi P; Cianciolo, George J; Good, Robert A; Haraguchi, Soichi

    2003-05-01

    CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.

  17. The cyanobacterial Fluorescence Recovery Protein has two distinct activities: Orange Carotenoid Protein amino acids involved in FRP interaction.

    PubMed

    Thurotte, Adrien; Bourcier de Carbon, Céline; Wilson, Adjélé; Talbot, Léa; Cot, Sandrine; López-Igual, Rocio; Kirilovsky, Diana

    2017-04-01

    To deal with fluctuating light condition, cyanobacteria have developed a photoprotective mechanism which, under high light conditions, decreases the energy arriving at the photochemical centers. It relies on a photoswitch, the Orange Carotenoid Protein (OCP). Once photoactivated, OCP binds to the light harvesting antenna, the phycobilisome (PBS), and triggers the thermal dissipation of the excess energy absorbed. Deactivation of the photoprotective mechanism requires the intervention of a third partner, the Fluorescence Recovery Protein (FRP). FRP by interacting with the photoactivated OCP accelerates its conversion to the non-active form and its detachment from the phycobilisome. We have studied the interaction of FRP with free and phycobilisome-bound OCP. Several OCP variants were constructed and characterized. In this article we show that OCP amino acid F299 is essential and D220 important for OCP deactivation mediated by FRP. Mutations of these amino acids did not affect FRP activity as helper to detach OCP from phycobilisomes. In addition, while mutated R60L FRP is inactive on OCP deactivation, its activity on the detachment of the OCP from the phycobilisomes is not affected. Thus, our results demonstrate that FRP has two distinct activities: it accelerates OCP detachment from phycobilisomes and then it helps deactivation of the OCP. They also suggest that different OCP and FRP amino acids could be involved in these two activities.

  18. Effect of the addition of CMC on the aggregation behaviour of proteins

    NASA Astrophysics Data System (ADS)

    Yu, H.; Sabato, S. F.; D'Aprano, G.; Lacroix, M.

    2004-09-01

    The effect of carboxymethylcellulose (CMC) on the aggregation of formulation based on calcium caseinate, commercial whey protein (WPC), and a 1:1 mixture of soy protein isolate (SPI) and whey protein isolate (WPI) was investigated. Protein aggregation could be observed upon addition of CMC, as demonstrated by size-exclusion chromatography. This aggregation behaviour was enhanced by means of physical treatments, such as heating at 90°C for 30 min or gamma-irradiation at 32 kGy. A synergy resulted from the combination of CMC to gamma-irradiation in Caseinate/CMC and SPI/WPI/CMC formulations. Furthermore, CMC prevented precipitation in irradiated protein solutions for a period of more than 3 months at 4°C.

  19. Interfacial interactions involved in the biological assembly of Chandipura virus nucleocapsid protein.

    PubMed

    Sreejith, R; Gulati, Sahil; Gupta, Sanjay

    2013-06-01

    The biological assembly of Chandipura virus nucleocapsid (N) protein has been modeled and the amino acid residues involved in specific intermolecular interactions among N monomers during oligomerisation have been predicted.

  20. Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting.

    PubMed

    Hall, M; van Heusden, M C; Söderhäll, K

    1995-11-22

    Lipid-containing hemolymph proteins from males of the crayfish Pacifastacus leniusculus were isolated by density gradient ultracentrifugation. Two major lipoproteins, one high density lipoprotein (HDL) and one very high density lipoprotein (VHDL), were characterized. The HDL and the VHDL were found to be identical to two proteins previously studied for their roles in immune recognition and hemolymph clotting, namely the beta-1,3-glucan binding protein and the clotting protein. These results imply that crayfish lipoproteins have dual functions, and that they are involved in immunity, hemolymph clotting, and lipid transport in these animals. Also, the oxygen-transporting protein hemocyanin was found to have a small lipid content.

  1. Involvement of Iron-Containing Proteins in Genome Integrity in Arabidopsis Thaliana

    PubMed Central

    Zhang, Caiguo

    2015-01-01

    The Arabidopsis genome encodes numerous iron-containing proteins such as iron-sulfur (Fe-S) cluster proteins and hemoproteins. These proteins generally utilize iron as a cofactor, and they perform critical roles in photosynthesis, genome stability, electron transfer, and oxidation-reduction reactions. Plants have evolved sophisticated mechanisms to maintain iron homeostasis for the assembly of functional iron-containing proteins, thereby ensuring genome stability, cell development, and plant growth. Over the past few years, our understanding of iron-containing proteins and their functions involved in genome stability has expanded enormously. In this review, I provide the current perspectives on iron homeostasis in Arabidopsis, followed by a summary of iron-containing protein functions involved in genome stability maintenance and a discussion of their possible molecular mechanisms. PMID:27330736

  2. Probing the Sites of Interactions of Rotaviral Proteins Involved in Replication

    PubMed Central

    Viskovska, Maria; Anish, Ramakrishnan; Hu, Liya; Chow, Dar-Chone; Hurwitz, Amy M.; Brown, Nicholas G.; Palzkill, Timothy; Estes, Mary K.

    2014-01-01

    ABSTRACT Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms, which form during virus infection. These processes are orchestrated by yet-to-be-understood complex networks of interactions involving nonstructural proteins (NSPs) 2, 5, and 6 and structural proteins (VPs) 1, 2, 3, and 6. The multifunctional enzyme NSP2, an octamer with RNA binding activity, is critical for viroplasm formation with its binding partner, NSP5, and for genome replication/packaging through its interactions with replicating RNA, the viral polymerase VP1, and the inner core protein VP2. Using isothermal calorimetry, biolayer interferometry, and peptide array screening, we examined the interactions between NSP2, VP1, VP2, NSP5, and NSP6. These studies provide the first evidence that NSP2 can directly bind to VP1, VP2, and NSP6, in addition to the previously known binding to NSP5. The interacting sites identified from reciprocal peptide arrays were found to be in close proximity to the RNA template entry and double-stranded RNA (dsRNA) exit tunnels of VP1 and near the catalytic cleft and RNA-binding grooves of NSP2; these sites are consistent with the proposed role of NSP2 in facilitating dsRNA synthesis by VP1. Peptide screening of VP2 identified NSP2-binding sites in the regions close to the intersubunit junctions, suggesting that NSP2 binding could be a regulatory mechanism for preventing the premature self-assembly of VP2. The binding sites on NSP2 for NSP6 were found to overlap that of VP1, and the NSP5-binding sites overlap those of VP2 and VP1, suggesting that interaction of these proteins with NSP2 is likely spatially and/or temporally regulated. IMPORTANCE Replication and packaging of the rotavirus genome occur in cytoplasmic compartments called viroplasms that form during virus infection and are orchestrated by complex networks of interactions involving nonstructural proteins (NSPs) and structural proteins (VPs). A multifunctional RNA

  3. Different glycosyltransferases are involved in lipid glycosylation and protein N-glycosylation in the halophilic archaeon Haloferax volcanii.

    PubMed

    Naparstek, Shai; Vinagradov, Evguenii; Eichler, Jerry

    2010-07-01

    Both the lipid and the protein components of biological membranes can be modified by the covalent addition of polysaccharides. Whereas eukaryal and bacterial pathways of lipid and protein glycosylation are relatively well defined, considerably less is known of the parallel processes in Archaea. Recent efforts have identified glycosyltransferases involved in N-glycosylation of the surface-layer glycoprotein of the halophilic archaeon Haloferax volcanii. In the present study, the involvement of these same glycosyltransferases in the biosynthesis of Hfx. volcanii glycolipids was considered by performing nuclear magnetic resonance analysis of the glycolipid fraction of Hfx. volcanii cells deleted of genes encoding those glycosyltransferases, as well as the oligosaccharyltransferase, AglB. The results reveal that different glycosyltransferases are involved in the biosynthesis of N-linked glycoproteins and glycolipids in Archaea.

  4. Effect of additives on the tensile performance and protein solubility of industrial oilseed residual based plastics.

    PubMed

    Newson, William R; Kuktaite, Ramune; Hedenqvist, Mikael S; Gällstedt, Mikael; Johansson, Eva

    2014-07-16

    Ten chemical additives were selected from the literature for their proposed modifying activity in protein-protein interactions. These consisted of acids, bases, reducing agents, and denaturants and were added to residual deoiled meals of Crambe abyssinica (crambe) and Brassica carinata (carinata) to modify the properties of plastics produced through hot compression molding at 130 °C. The films produced were examined for tensile properties, protein solubility, molecular weight distribution, and water absorption. Of the additives tested, NaOH had the greatest positive effect on tensile properties, with increases of 105% in maximum stress and 200% in strain at maximum stress for crambe and a 70% increase in strain at maximum stress for carinata. Stiffness was not increased by any of the applied additives. Changes in tensile strength and elongation for crambe and elongation for carinata were related to changes in protein solubility. Increased pH was the most successful in improving the protein aggregation and mechanical properties within the complex chemistry of residual oilseed meals.

  5. ZAS: C2H2 zinc finger proteins involved in growth and development.

    PubMed

    Wu, Lai-Chu

    2002-01-01

    A ZAS gene encodes a large protein with two separate C2H2 zinc finger pairs that independently bind to specific DNA sequences, including the kappaB motif. Three paralogous mammalian genes, ZAS1, ZAS2, and ZAS3, and a related Drosophila gene, Schnurri, have been cloned and characterized. The ZAS genes encode transcriptional proteins that activate or repress the transcription of a variety of genes involved in growth, development, and metastasis. In addition, ZAS3 associates with a TNF receptor-associated factor to inhibit NF-kappaB- and JNK/ SAPK-mediated signaling of TNF-alpha. Genetic experiments show that ZAS3 deficiency leads to proliferation of cells and tumor formation in mice. The data suggest that ZAS3 is important in controlling cell growth, apoptosis, and inflammation. The potent vasoactive hormone endothelin and transcription factor AP2 gene families also each consist of three members. The ZAS, endothelin, and transcription factor AP2 genes form several linkage groups. Knowledge of the chromosomal locations of these genes provides valuable clues to the evolution of the vertebrate genome.

  6. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells.

    PubMed

    Kato, Tatsuya; Sato, Nagato; Hayama, Satoshi; Yamabuki, Takumi; Ito, Tomoo; Miyamoto, Masaki; Kondo, Satoshi; Nakamura, Yusuke; Daigo, Yataro

    2007-09-15

    We identified a novel gene HJURP (Holliday junction-recognizing protein) whose activation seemed to play a pivotal role in the immortality of cancer cells. HJURP was considered a possible downstream target for ataxia telangiectasia mutated signaling, and its expression was increased by DNA double-strand breaks (DSB). HJURP was involved in the homologous recombination pathway in the DSB repair process through interaction with hMSH5 and NBS1, which is a part of the MRN protein complex. HJURP formed nuclear foci in cells at S phase and those subjected to DNA damage. In vitro assays implied that HJURP bound directly to the Holliday junction and rDNA arrays. Treatment of cancer cells with small interfering RNA (siRNA) against HJURP caused abnormal chromosomal fusions and led to genomic instability and senescence. In addition, HJURP overexpression was observed in a majority of lung cancers and was associated with poor prognosis as well. We suggest that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells and is a potential novel therapeutic target for the development of anticancer drugs.

  7. Involvement of eicosanoids and surfactant protein D in extrinsic allergic alveolitis.

    PubMed

    Higashi, A; Higashi, N; Tsuburai, T; Takeuchi, Y; Taniguchi, M; Mita, H; Saito, A; Takatori, K; Arimura, K; Akiyama, K

    2005-12-01

    The pathophysiology of extrinsic allergic alveolitis (EAA) involves oxidative lung damage as well as interstitial and alveolar inflammation. Macrophages and mast cells are inflammatory components of EAA that produce both leukotrienes (LTs) and prostaglandin D2 (PGD2). In addition, PGD2 is also produced by the free-radical-catalysed peroxidation of arachidonic acid during oxidative stress. Urinary 8-iso prostaglandin F2alpha (8-isoPGF2alpha) and serum surfactant protein D (SP-D) are considered appropriate biomarkers of oxidative stress and interstitial lung disease activity, respectively. The present study aimed to assess the association of these biomarkers with the pathophysiology of EAA. Two cases of acute EAA caused by the inhalation of fungi spores were reported. Eight asthmatic patients and six healthy control subjects were also enrolled in the current study. The serum SP-D and urinary eicosanoid (LTE4, PGD2 metabolite (9alpha,11betaPGF2), 8-isoPGF2alpha) concentrations markedly increased during the acute exacerbation phase. These concentrations decreased following corticosteroid therapy in the EAA patients. There was a significant correlation between serum SP-D and urinary 9alpha,11betaPGF2 concentrations in the EAA patients. In conclusion, although the present study proposes that serum surfactant protein-D and urinary eicosanoids are new biomarkers involved in the various immunological responses in extrinsic allergic alveolitis, further large-scale studies are needed to investigate the role of these compounds, not just as biomarkers, but also as biological potentiators of extrinsic allergic alveolitis.

  8. Phospha-Michael Addition as a New Click Reaction for Protein Functionalization.

    PubMed

    Lee, Yan-Jiun; Kurra, Yadagiri; Liu, Wenshe R

    2016-03-15

    A new type of click reaction between an alkyl phosphine and acrylamide was developed and applied for site-specific protein labeling in vitro and in live cells. Acrylamide is a small electrophilic olefin that readily undergoes phospha-Michael addition with an alkyl phosphine. Our kinetic study indicated a second-order rate constant of 0.07 m(-1)  s(-1) for the reaction between tris(2-carboxyethyl)phosphine and acrylamide at pH 7.4. To demonstrate its application in protein functionalization, we used a dansyl-phosphine conjugate to successfully label proteins that were site-specifically installed with N(ɛ) -acryloyl-l-lysine and employed a biotin-phosphine conjugate to selectively probe human proteins that were metabolically labeled with N-acryloyl-galactosamine.

  9. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis1

    PubMed Central

    Pesaresi, Paolo; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Rothbart, Maxi; Hedtke, Boris

    2016-01-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes. PMID:26823545

  10. GUN1 Controls Accumulation of the Plastid Ribosomal Protein S1 at the Protein Level and Interacts with Proteins Involved in Plastid Protein Homeostasis.

    PubMed

    Tadini, Luca; Pesaresi, Paolo; Kleine, Tatjana; Rossi, Fabio; Guljamow, Arthur; Sommer, Frederik; Mühlhaus, Timo; Schroda, Michael; Masiero, Simona; Pribil, Mathias; Rothbart, Maxi; Hedtke, Boris; Grimm, Bernhard; Leister, Dario

    2016-03-01

    Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes.

  11. The crystal structure of the thiocyanate-forming protein from Thlaspi arvense, a kelch protein involved in glucosinolate breakdown.

    PubMed

    Gumz, Frauke; Krausze, Joern; Eisenschmidt, Daniela; Backenköhler, Anita; Barleben, Leif; Brandt, Wolfgang; Wittstock, Ute

    2015-09-01

    Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade β-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.

  12. Involvement of Arabidopsis RACK1 in Protein Translation and Its Regulation by Abscisic Acid

    SciTech Connect

    Guo, Jianjun; Wang, Shucai; Valerius, Oliver; Hall, Hardy; Zeng, Qingning; Li, Jian-Feng; Weston, David; Ellis, Brian; Chen, Jay

    2011-01-01

    Earlier studies have shown that RACK1 functions as a negative regulator of ABA responses in Arabidopsis, but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, co-expression analysis revealed that >80% of the genes co-expressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1 s function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and yeast RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B and RACK1C, complemented the growth defects of the S. cerevisiae cpc2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor 6 (eIF6), whose mammalian homologue is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.

  13. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    PubMed

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  14. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    PubMed

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  15. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane

    PubMed Central

    Wenz, Lena-Sophie; Opaliński, Łukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-01-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. PMID:24781695

  16. The Werner Syndrome Protein Is Involved in RNA Polymerase II Transcription

    PubMed Central

    Balajee, Adayabalam S.; Machwe, Amrita; May, Alfred; Gray, Matthew D.; Oshima, Junko; Martin, George M.; Nehlin, Jan O.; Brosh, Robert; Orren, David K.; Bohr, Vilhelm A.

    1999-01-01

    Werner syndrome (WS) is a human progeroid syndrome characterized by the early onset of a large number of clinical features associated with the normal aging process. The complex molecular and cellular phenotypes of WS involve characteristic features of genomic instability and accelerated replicative senescence. The gene involved (WRN) was recently cloned, and its gene product (WRNp) was biochemically characterized as a helicase. Helicases play important roles in a variety of DNA transactions, including DNA replication, transcription, repair, and recombination. We have assessed the role of the WRN gene in transcription by analyzing the efficiency of basal transcription in WS lymphoblastoid cell lines that carry homozygous WRN mutations. Transcription was measured in permeabilized cells by [3H]UTP incorporation and in vitro by using a plasmid template containing the RNA polymerase II (RNA pol II)–dependent adenovirus major late promoter. With both of these approaches, we find that the transcription efficiency in different WS cell lines is reduced to 40–60% of the transcription in cells from normal individuals. This defect can be complemented by the addition of normal cell extracts to the chromatin of WS cells. Addition of purified wild-type WRNp but not mutated WRNp to the in vitro transcription assay markedly stimulates RNA pol II–dependent transcription carried out by nuclear extracts. A nonhelicase domain (a direct repeat of 27 amino acids) also appears to have a role in transcription enhancement, as revealed by a yeast hybrid–protein reporter assay. This is further supported by the lack of stimulation of transcription when mutant WRNp lacking this domain was added to the in vitro assay. We have thus used several approaches to show a role for WRNp in RNA pol II transcription, possibly as a transcriptional activator. A deficit in either global or regional transcription in WS cells may be a primary molecular defect responsible for the WS clinical phenotype

  17. Self protein-protein interactions are involved in TPPP/p25 mediated microtubule bundling

    PubMed Central

    DeBonis, Salvatore; Neumann, Emmanuelle; Skoufias, Dimitrios A.

    2015-01-01

    TPPP/p25 is a microtubule-associated protein, detected in protein inclusions associated with various neurodegenerative diseases. Deletion analysis data show that TPPP/p25 has two microtubule binding sites, both located in intrinsically disordered domains, one at the N-terminal and the other in the C-terminal domain. In copolymerization assays the full-length protein exhibits microtubule stimulation and bundling activity. In contrast, at the same ratio relative to tubulin, truncated forms of TPPP/p25 exhibit either lower or no microtubule stimulation and no bundling activity, suggesting a cooperative phenomenon which is enhanced by the presence of the two binding sites. The binding characteristics of the N- and C-terminally truncated proteins to taxol-stabilized microtubules are similar to the full-length protein. However, the C-terminally truncated TPPP/p25 shows a lower Bmax for microtubule binding, suggesting that it may bind to a site of tubulin that is masked in microtubules. Bimolecular fluorescent complementation assays in cells expressing combinations of various TPPP/p25 fragments, but not that of the central folded domain, resulted in the generation of a fluorescence signal colocalized with perinuclear microtubule bundles insensitive to microtubule inhibitors. The data suggest that the central folded domain of TPPP/p25 following binding to microtubules can drive s homotypic protein-protein interactions leading to bundled microtubules. PMID:26289831

  18. Defense-related proteins involved in sugarcane responses to biotic stress.

    PubMed

    Souza, Thais P; Dias, Renata O; Silva-Filho, Marcio C

    2017-02-20

    Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.

  19. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection

    NASA Astrophysics Data System (ADS)

    Elliott, David J.; Bourgeois, Cyril F.; Klink, Albrecht; Stévenin, James; Cooke, Howard J.

    2000-05-01

    RNA-binding motif (RBM) genes are found on all mammalian Y chromosomes and are implicated in spermatogenesis. Within human germ cells, RBM protein shows a similar nuclear distribution to components of the pre-mRNA splicing machinery. To address the function of RBM, we have used protein-protein interaction assays to test for possible physical interactions between these proteins. We find that RBM protein directly interacts with members of the SR family of splicing factors and, in addition, strongly interacts with itself. We have mapped the protein domains responsible for mediating these interactions and expressed the mouse RBM interaction region as a bacterial fusion protein. This fusion protein can pull-down several functionally active SR protein species from cell extracts. Depletion and add-back experiments indicate that these SR proteins are the only splicing factors bound by RBM which are required for the splicing of a panel of pre-mRNAs. Our results suggest that RBM protein is an evolutionarily conserved mammalian splicing regulator which operates as a germ cell-specific cofactor for more ubiquitously expressed pre-mRNA splicing activators.

  20. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS).

    PubMed

    Han, Huihui; Wei, Wanyi; Duan, Weisong; Guo, Yansu; Li, Yi; Wang, Jie; Bi, Yue; Li, Chunyan

    2015-03-01

    Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.

  1. Salicylic acid transport in Ricinus communis involves a pH-dependent carrier system in addition to diffusion.

    PubMed

    Rocher, Françoise; Chollet, Jean-François; Legros, Sandrine; Jousse, Cyril; Lemoine, Rémi; Faucher, Mireille; Bush, Daniel R; Bonnemain, Jean-Louis

    2009-08-01

    Despite its important functions in plant physiology and defense, the membrane transport mechanism of salicylic acid (SA) is poorly documented due to the general assumption that SA is taken up by plant cells via the ion trap mechanism. Using Ricinus communis seedlings and modeling tools (ACD LogD and Vega ZZ softwares), we show that phloem accumulation of SA and hydroxylated analogs is completely uncorrelated with the physicochemical parameters suitable for diffusion (number of hydrogen bond donors, polar surface area, and, especially, LogD values at apoplastic pHs and Delta LogD between apoplast and phloem sap pH values). These and other data (such as accumulation in phloem sap of the poorly permeant dissociated form of monohalogen derivatives from apoplast and inhibition of SA transport by the thiol reagent p-chloromercuribenzenesulfonic acid [pCMBS]) lead to the following conclusions. As in intestinal cells, SA transport in Ricinus involves a pH-dependent carrier system sensitive to pCMBS; this carrier can translocate monohalogen analogs in the anionic form; the efficiency of phloem transport of hydroxylated benzoic acid derivatives is tightly dependent on the position of the hydroxyl group on the aromatic ring (SA corresponds to the optimal position) but moderately affected by halogen addition in position 5, which is known to increase plant defense. Furthermore, combining time-course experiments and pCMBS used as a tool, we give information about the localization of the SA carrier. SA uptake by epidermal cells (i.e. the step preceding the symplastic transport to veins) insensitive to pCMBS occurs via the ion-trap mechanism, whereas apoplastic vein loading involves a carrier-mediated mechanism (which is targeted by pCMBS) in addition to diffusion.

  2. Pressure-temperature folding landscape in proteins involved in neurodegenerative diseases and cancer.

    PubMed

    Cordeiro, Yraima; Foguel, Debora; Silva, Jerson L

    2013-12-15

    High hydrostatic pressure (HHP) is a valuable tool to study processes such as protein folding, protein hydration and protein-protein interactions. HHP is a nondestructive technique because it reversibly affects internal cavities excluded from the solvent present in the hydrophobic core of proteins. HHP allows the solvation of buried amino acid side chains, thus shifting the equilibrium towards states of the studied molecule or molecular ensemble that occupy smaller volumes. HHP has long been used to dissociate multimeric proteins and protein aggregates and allows investigation of intermediate folding states, some of which are formed by proteins involved in human degenerative diseases, such as spongiform encephalopathies and Parkinson's disease, as well as cancer. When coupled with nuclear magnetic resonance and spectroscopic methods such as infrared and fluorescence spectroscopy, HHP treatment facilitates the understanding of protein folding and misfolding processes; the latter is related to protein aggregation into amyloid or amorphous species. In this review, we will address how HHP provides information about intermediate folding states and the aggregation processes of p53, which is related to cancer, and prion proteins, transthyretin and α-synuclein, which are related to human degenerative diseases.

  3. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  4. Involvement of a small GTP binding protein in HIV-1 release

    PubMed Central

    Audoly, Gilles; Popoff, Michel R; Gluschankof, Pablo

    2005-01-01

    Background There is evidence suggesting that actin binding to HIV-1 encoded proteins, or even actin dynamics themselves, might play a key role in virus budding and/or release from the infected cell. A crucial step in the reorganisation of the actin cytoskeleton is the engagement of various different GTP binding proteins. We have thus studied the involvement of GTP-binding proteins in the final steps of the HIV-1 viral replication cycle. Results Our results demonstrate that virus production is abolished when cellular GTP binding proteins involved in actin polymerisation are inhibited with specific toxins. Conclusion We propose a new HIV budding working model whereby Gag interactions with pre-existing endosomal cellular tracks as well as with a yet non identified element of the actin polymerisation pathway are required in order to allow HIV-1 to be released from the infected cell. PMID:16080789

  5. Proteins involved in motility and sperm-egg interaction evolve more rapidly in mouse spermatozoa.

    PubMed

    Vicens, Alberto; Lüke, Lena; Roldan, Eduardo R S

    2014-01-01

    Proteomic studies of spermatozoa have identified a large catalog of integral sperm proteins. Rapid evolution of these proteins may underlie adaptive changes of sperm traits involved in different events leading to fertilization, although the selective forces underlying such rapid evolution are not well understood. A variety of selective forces may differentially affect several steps ending in fertilization, thus resulting in a compartmentalized adaptation of sperm proteins. Here we analyzed the evolution of genes associated to various events in the sperm's life, from sperm formation to sperm-egg interaction. Evolutionary analyses were performed on gene sequences from 17 mouse strains whose genomes have been sequenced. Four of these are derived from wild Mus musculus, M. domesticus, M. castaneus and M. spretus. We found a higher proportion of genes exhibiting a signature of positive selection among those related to sperm motility and sperm-egg interaction. Furthermore, sperm proteins involved in sperm-egg interaction exhibited accelerated evolution in comparison to those involved in other events. Thus, we identified a large set of candidate proteins for future comparative analyses of genotype-phenotype associations in spermatozoa of species subjected to different sexual selection pressures. Adaptive evolution of proteins involved in motility could be driven by sperm competition, since this selective force is known to increase the proportion of motile sperm and their swimming velocity. On the other hand, sperm proteins involved in gamete interaction could be coevolving with their egg partners through episodes of sexual selection or sexual conflict resulting in species-specific sperm-egg interactions and barriers preventing interspecies fertilization.

  6. Hepatitis C Virus E1 and E2 Proteins Used as Separate Immunogens Induce Neutralizing Antibodies with Additive Properties

    PubMed Central

    Beaumont, Elodie; Roch, Emmanuelle; Chopin, Lucie; Roingeard, Philippe

    2016-01-01

    Various strategies involving the use of hepatitis C virus (HCV) E1 and E2 envelope glycoproteins as immunogens have been developed for prophylactic vaccination against HCV. However, the ideal mode of processing and presenting these immunogens for effective vaccination has yet to be determined. We used our recently described vaccine candidate based on full-length HCV E1 or E2 glycoproteins fused to the heterologous hepatitis B virus S envelope protein to compare the use of the E1 and E2 proteins as separate immunogens with their use as the E1E2 heterodimer, in terms of immunogenetic potential and the capacity to induce neutralizing antibodies. The specific anti-E1 and anti-E2 antibody responses induced in animals immunized with vaccine particles harboring the heterodimer were profoundly impaired with respect to those in animals immunized with particles harboring E1 and E2 separately. Moreover, the anti-E1 and anti-E2 antibodies had additive neutralizing properties that increase the cross-neutralization of heterologous strains of various HCV genotypes, highlighting the importance of including both E1 and E2 in the vaccine for an effective vaccination strategy. Our study has important implications for the optimization of HCV vaccination strategies based on HCV envelope proteins, regardless of the platform used to present these proteins to the immune system. PMID:26966906

  7. Binding of λ-carrageenan (a food additive) to almond cystatin: An insight involving spectroscopic and thermodynamic approach.

    PubMed

    Siddiqui, Azad Alam; Feroz, Anna; Khaki, Peerzada Shariq Shaheen; Bano, Bilqees

    2017-05-01

    Carrageenan is a high molecular weight linear sulphated polysaccharide, primarily used in food industry as gelling, thickening, and stabilizing agent. Almond milk prepared from almonds is low in fat, but high in antioxidants, energy, proteins, lipids and fibre. Purified almond cystatin was incubated with increasing concentrations of carrageenan at 25°C for different time interval and significant loss in inhibitory activity was observed. Interaction between carrageenan and cystatin resulted in complex formation as depicted by the decrease in fluorescence intensity with increase in the concentration of carrageenan. Stern-volmer analysis of fluorescence quenching data showed binding constant to be 1.84±0.20×10(4)M(-1) and number of binding sites close to unity. These results were further confirmed by supporting results obtained in UV-vis spectroscopy. FTIR analysis shows significant shift in the peak intensity and this change clearly depict change in the structure of cystatin from that of α helix to β-sheet. CD spectra further confirmed the structural transition of the cystatin from α helix to β-sheet structure on interaction with increased concentrations of carrageenan. The contributing thermodynamic parameters were determined by ITC. The negative ΔH° and positive TΔS° values suggest involvement of electrostatic forces and hydrophobic interaction in the formation of the λ-carrageenan-cystatin complex.

  8. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballottin, Daniela; Fulaz, Stephanie; Souza, Michele L.; Corio, Paola; Rodrigues, Alexandre G.; Souza, Ana O.; Gaspari, Priscyla M.; Gomes, Alexandre F.; Gozzo, Fábio; Tasic, Ljubica

    2016-06-01

    Silver nanoparticles (AgNPs) have been broadly used as antibacterial and antiviral agents. Further, interests for green AgNP synthesis have increased in recent years and several results for AgNP biological synthesis have been reported using bacteria, fungi and plant extracts. The understanding of the role and nature of fungal proteins, their interaction with AgNPs and the subsequent stabilization of nanosilver is yet to be deeply investigated. Therefore, in an attempt to better understand biogenic AgNP stabilization with the extracellular fungal proteins and to describe these supramolecular interactions between proteins and silver nanoparticles, AgNPs, produced extracellularly by Aspergillus tubingensis—isolated as an endophytic fungus from Rizophora mangle—were characterized in order to study their physical characteristics, identify the involved proteins, and shed light into the interactions among protein-NPs by several techniques. AgNPs of around 35 nm in diameter as measured by TEM and a positive zeta potential of +8.48 mV were obtained. These AgNPs exhibited a surface plasmon resonance (SPR) band at 440 nm, indicating the nanoparticles formation, and another band at 280 nm, attributed to the electronic excitations in tryptophan, tyrosine, and/or phenylalanine residues in fungal proteins. Fungal proteins were covalently bounded to the AgNPs, mainly through S-Ag bonds due to cysteine residues (HS-) and with few N-Ag bonds from H2N- groups, as verified by Raman spectroscopy. Observed supramolecular interactions also occur by electrostatic and other protein-protein interactions. Furthermore, proteins that remain free on AgNP surface may perform hydrogen bonds with other proteins or water increasing thus the capping layer around the AgNPs and consequently expanding the hydrodynamic diameter of the particles (~264 nm, measured by DLS). FTIR results enabled us to state that proteins adsorbed to the AgNPs did not suffer relevant secondary structure alteration upon

  9. A human skeletal muscle interactome centered on proteins involved in muscular dystrophies: LGMD interactome

    PubMed Central

    2013-01-01

    Background The complexity of the skeletal muscle and the identification of numerous human disease-causing mutations in its constitutive proteins make it an interesting tissue for proteomic studies aimed at understanding functional relationships of interacting proteins in both health and diseases. Method We undertook a large-scale study using two-hybrid screens and a human skeletal-muscle cDNA library to establish a proteome-scale map of protein-protein interactions centered on proteins involved in limb-girdle muscular dystrophies (LGMD). LGMD is a group of more than 20 different neuromuscular disorders that principally affect the proximal pelvic and shoulder girdle muscles. Results and conclusion The interaction network we unraveled incorporates 1018 proteins connected by 1492 direct binary interactions and includes 1420 novel protein-protein interactions. Computational, experimental and literature-based analyses were performed to assess the overall quality of this network. Interestingly, LGMD proteins were shown to be highly interconnected, in particular indirectly through sarcomeric proteins. In-depth mining of the LGMD-centered interactome identified new candidate genes for orphan LGMDs and other neuromuscular disorders. The data also suggest the existence of functional links between LGMD2B/dysferlin and gene regulation, between LGMD2C/γ-sarcoglycan and energy control and between LGMD2G/telethonin and maintenance of genome integrity. This dataset represents a valuable resource for future functional investigations. PMID:23414517

  10. Multiple proteins of White spot syndrome virus involved in recognition of beta-integrin.

    PubMed

    Zhang, Jing-Yan; Liu, Qing-Hui; Huang, Jie

    2014-06-01

    The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that beta-integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of beta-integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed that envelope proteins VP26, VP31, VP37, VP90 and nucleocapsid protein VP136 interacted with LvInt. RGD-, YGL- and LDV-related peptide functioned as motifs of WSSV proteins binding with beta-integrin. The beta-integrin ligand of RGDT had better blocking effect compared with that of YGL- and LDV-related peptides. In vivo assay indicated that RGD-, LDV- and YGL-related peptides could partially block WSSV infection. These data collectively indicate that multiple proteins were involved in recognition of beta-integrin. Identification of proteins in WSSV that are associated with beta-integrin will assist development of new agents for effective control of the white spot syndrome.

  11. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1.

    PubMed

    Letzring, Daniel P; Wolf, Andrew S; Brule, Christina E; Grayhack, Elizabeth J

    2013-09-01

    Translation of CGA codon repeats in the yeast Saccharomyces cerevisiae is inefficient, resulting in dose-dependent reduction in expression and in production of an mRNA cleavage product, indicative of a stalled ribosome. Here, we use genetics and translation inhibitors to understand how ribosomes respond to CGA repeats. We find that CGA codon repeats result in a truncated polypeptide that is targeted for degradation by Ltn1, an E3 ubiquitin ligase involved in nonstop decay, although deletion of LTN1 does not improve expression downstream from CGA repeats. Expression downstream from CGA codons at residue 318, but not at residue 4, is improved by deletion of either ASC1 or HEL2, previously implicated in inhibition of translation by polybasic sequences. Thus, translation of CGA repeats likely causes ribosomes to stall and exploits known quality control systems. Expression downstream from CGA repeats at amino acid 4 is improved by paromomycin, an aminoglycoside that relaxes decoding specificity. Paromomycin has no effect if native tRNA(Arg(ICG)) is highly expressed, consistent with the idea that failure to efficiently decode CGA codons might occur in part due to rejection of the cognate tRNA(Arg(ICG)). Furthermore, expression downstream from CGA repeats is improved by inactivation of RPL1B, one of two genes encoding the universally conserved ribosomal protein L1. The effects of rpl1b-Δ and of either paromomycin or tRNA(Arg(ICG)) on CGA decoding are additive, suggesting that the rpl1b-Δ mutant suppresses CGA inhibition by means other than increased acceptance of tRNA(Arg(ICG)). Thus, inefficient decoding of CGA likely involves at least two independent defects in translation.

  12. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly.

    PubMed

    Coon, Brian G; Hernandez, Victor; Madhivanan, Kayalvizhi; Mukherjee, Debarati; Hanna, Claudia B; Barinaga-Rementeria Ramirez, Irene; Lowe, Martin; Beales, Philip L; Aguilar, R Claudio

    2012-04-15

    Lowe syndrome (LS) is a devastating, X-linked genetic disease characterized by the presence of congenital cataracts, profound learning disabilities and renal dysfunction. Unfortunately, children affected with LS often die early of health complications including renal failure. Although this syndrome was first described in the early 1950s and the affected gene, OCRL1, was identified more than 17 years ago, the mechanism by which Ocrl1 defects lead to LS's symptoms remains unknown. Here we show that LS display characteristics of a ciliopathy. Specifically, we found that patients' cells have defects in the assembly of primary cilia and this phenotype was reproduced in cell lines by knock-down of Ocrl1. Importantly, this defect could be rescued by re-introduction of WT Ocrl1 in both patient and Ocrl1 knock-down cells. In addition, a zebrafish animal model of LS exhibited cilia defects and multiple morphological and anatomical abnormalities typically seen in ciliopathies. Mechanistically, we show that Ocrl1 is involved in protein trafficking to the primary cilia in an Rab8-and IPIP27/Ses-dependent manner. Taking into consideration the relevance of the signaling pathways hosted by the primary cilium, our results suggest hitherto unrecognized mechanisms by which Ocrl1 deficiency may contribute to the phenotypic characteristics of LS. This conceptual change in our understanding of the disease etiology may provide an alternative avenue for the development of therapies.

  13. Aminophospholipid translocation in erythrocytes: Evidence for the involvement of a specific transporter and an endofacial protein

    SciTech Connect

    Connor, J.; Schroit, A.J. )

    1990-01-09

    The transport of exogenously supplied fluorescent analogues of aminophospholipids from the outer to inner leaflet in red blood cells (RBC) is dependent upon the oxidative status of membrane sulfhydryls. Oxidation of a sulfhydryl on a 32-kDa membrane protein by pyridyldithioethylamine (PDA) has been previously shown to inhibit the transport of NBD-labeled phosphatidylserine (NBD-PS). In the present study, other sulfhydryl oxidants were examined to determine whether additional sites are involved in the transport process. The results show that diamide inhibits the transport of NBD-PS via a mechanism that is independent of the 32-kDa site. This is shown by the inability of diamide to block labeling of the 32-kDa sulfhydryl with {sup 125}I-labeled PDA and to protect against PDA-mediated inhibition of NBD-PS transport. Diamide-mediated inhibition, but not PDA-mediated inhibition, could be reversed by reduction with cysteamine or endogenous glutathione. Once established, the asymmetric distribution of NBD-PS could not be altered by oxidation of either site. These data indicate that a second site critical to the transport of aminophospholipids residues on the endofacial surface and suggest that the transport of aminophospholipids across the bilayer membrane of RBC depends on a coordinated and complementary process between a cytoskeletal component and the 32-kDa membrane polypeptide; both must be operative for transport to proceed.

  14. Not all mitochondrial carrier proteins support permeability transition pore formation: no involvement of uncoupling protein 1.

    PubMed

    Crichton, Paul G; Parker, Nadeene; Vidal-Puig, Antonio J; Brand, Martin D

    2009-12-15

    The mPTP (mitochondrial permeability transition pore) is a non-specific channel that is formed in the mitochondrial inner membrane in response to several stimuli, including elevated levels of matrix calcium. The pore is proposed to be composed of the ANT (adenine nucleotide translocase), voltage-dependent anion channel and cyclophilin D. Knockout studies, however, have demonstrated that ANT is not essential for permeability transition, which has led to the proposal that other members of the mitochondrial carrier protein family may be able to play a similar function to ANT in pore formation. To investigate this possibility, we have studied the permeability transition properties of BAT (brown adipose tissue) mitochondria in which levels of the mitochondrial carrier protein, UCP1 (uncoupling protein 1), can exceed those of ANT. Using an improved spectroscopic assay, we have quantified mPTP formation in de-energized mitochondria from wild-type and Ucp1KO (Ucp1-knockout) mice and assessed the dependence of pore formation on UCP1. When correctly normalized for differences in mitochondrial morphology, we find that calcium-induced mPTP activity is the same in both types of mitochondria, with similar sensitivity to GDP (approximately 50% inhibited), although the portion sensitive to cyclosporin A is higher in mitochondria lacking UCP1 (approximately 80% inhibited, compared with approximately 60% in mitochondria containing UCP1). We conclude that UCP1 is not a component of the cyclosporin A-sensitive mPTP in BAT and that playing a role in mPTP formation is not a general characteristic of the mitochondrial carrier protein family but is, more likely, restricted to specific members including ANT.

  15. Involvement of histone phosphorylation in thymocyte apoptosis by protein phosphatase inhibitors.

    PubMed

    Lee, E; Nakatsuma, A; Hiraoka, R; Ishikawa, E; Enomoto, R; Yamauchi, A

    1999-07-01

    Incubation of rat thymocytes with the inhibitors of protein phosphatase such as calyculin A and okadaic acid resulted in an increase in DNA fragmentation. These effects were dependent on the concentration of the inhibitors and the incubation time. Analyses of the fragmented DNA revealed the production of approximately 50 kbp of DNA and a 180 bp DNA ladder. In addition, a laser scanning-microscopic analysis showed that these compounds caused nuclear condensation. Thus, these results demonstrated that protein phosphatase inhibitors induced thymocyte apoptosis. The inhibitors of protein phosphatase increased the phosphorylation of proteins of approximately 15 kDa. The phosphorylation of proteins preceded the DNA fragmentation induced by these inhibitors. Judging from acetic acid-urea-Triton X-100 gel electrophoresis, the phosphorylated proteins were histone H1 and H2A/H3. Therefore, these results suggest that phosphorylation of histones triggers the DNA fragmentation of thymocytes undergoing apoptosis.

  16. Protein-protein interactions involved in the recognition of p27 by E3 ubiquitin ligase.

    PubMed Central

    Xu, Kui; Belunis, Charles; Chu, Wei; Weber, David; Podlaski, Frank; Huang, Kuo-Sen; Reed, Steven I; Vassilev, Lyubomir T

    2003-01-01

    The p27(Kip1) protein is a potent cyclin-dependent kinase inhibitor, the level of which is decreased in many common human cancers as a result of enhanced ubiquitin-dependent degradation. The multiprotein complex SCF(Skp2) has been identified as the ubiquitin ligase that targets p27, but the functional interactions within this complex are not well understood. One component, the F-box protein Skp2, binds p27 when the latter is phosphorylated on Thr(187), thus providing substrate specificity for the ligase. Recently, we and others have shown that the small cell cycle regulatory protein Cks1 plays a critical role in p27 ubiquitination by increasing the binding affinity of Skp2 for p27. Here we report the development of a homogeneous time-resolved fluorescence assay that allows the quantification of the molecular interactions between human recombinant Skp2, Cks1 and a p27-derived peptide phosphorylated on Thr(187). Using this assay, we have determined the dissociation constant of the Skp2-Cks1 complex (K(d) 140 +/- 14 nM) and have shown that Skp2 binds phosphorylated p27 peptide with high affinity only in the presence of Cks1 (K(d) 37 +/- 2 nM). Cks1 does not bind directly to the p27 phosphopeptide or to Skp1, which confirms its suggested role as an allosteric effector of Skp2. PMID:12529174

  17. HOPS: a novel cAMP-dependent shuttling protein involved in protein synthesis regulation.

    PubMed

    Della Fazia, Maria Agnese; Castelli, Marilena; Bartoli, Daniela; Pieroni, Stefania; Pettirossi, Valentina; Piobbico, Danilo; Viola-Magni, Mariapia; Servillo, Giuseppe

    2005-07-15

    The liver has the ability to autonomously regulate growth and mass. Following partial hepatectomy, hormones, growth factors, cytokines and their coupled signal transduction pathways have been implicated in hepatocyte proliferation. To understand the mechanisms responsible for the proliferative response, we studied liver regeneration by characterization of novel genes that are activated in residual hepatocytes. A regenerating liver cDNA library screening was performed with cDNA-subtracted probes derived from regenerating and normal liver. Here, we describe the biology of Hops (for hepatocyte odd protein shuttling). HOPS is a novel shuttling protein that contains an ubiquitin-like domain, a putative NES and a proline-rich region. HOPS is rapidly exported from the nucleus and is overexpressed during liver regeneration. Evidence shows that cAMP governs HOPS export in hepatocytes of normal and regenerating liver and is mediated via CRM-1. We demonstrate that HOPS binds to elongation factor eEF-1A and interferes in protein synthesis. HOPS overexpression in H-35-hepatoma and 3T3-NIH cells strongly reduces proliferation.

  18. The TSG101 protein binds to connexins and is involved in connexin degradation

    SciTech Connect

    Auth, Tanja Schlueter, Sharazad; Urschel, Stephanie; Kussmann, Petra; Sonntag, Stephan; Hoeher, Thorsten; Kreuzberg, Maria M.; Dobrowolski, Radoslaw; Willecke, Klaus

    2009-04-01

    Gap junctions mediate electrical and metabolic communication between cells in almost all tissues and are proposed to play important roles in cellular growth control, differentiation and embryonic development. Gap junctional communication and channel assembly were suggested to be regulated by interaction of connexins with different proteins including kinases and phosphatases. Here, we identified the tumor susceptibility gene 101 (TSG101) protein to bind to the carboxyterminal tail of connexin45 in a yeast two-hybrid protein interaction screen. Glutathione S-transferase pull down experiments and immunoprecipitation revealed that not only connexin45 but also connexin30.2, -36, and -43 carboxyterminal regions were associated with TSG101 protein in pull down analyses and that connexin31, -43 and -45 co-precipitate with endogenous TSG101 protein in lysates from HM1 embryonic stem cells. TSG101 has been shown to be involved in cell cycle control, transcriptional regulation and turnover of endocytosed proteins. Thus, we decided to study the functional role of this interaction. SiRNA mediated knock down of TSG101 in HM1 embryonic stem cells led to increased levels of connexin43 and -45, prolonged half life of these connexins and increased transfer of microinjected Lucifer yellow. Our results suggest that TSG101 is involved in the degradation of connexins via interaction with connexin proteins.

  19. Characterization of a DNA binding protein of bacteriophage PRD1 involved in DNA replication.

    PubMed Central

    Pakula, T M; Caldentey, J; Serrano, M; Gutierrez, C; Hermoso, J M; Salas, M; Bamford, D H

    1990-01-01

    Escherichia coli phage PRD1 protein P12, involved in PRD1 DNA replication in vivo, has been highly purified from E. coli cells harbouring a gene XII-containing plasmid. Protein P12 binds to single-stranded DNA as shown by gel retardation assays and nuclease protection experiments. Binding of protein P12 to single-stranded DNA increases about 14% the contour length of the DNA as revealed by electron microscopy. Binding to single-stranded DNA seems to be cooperative, and it is not sequence specific. Protein P12 also binds to double-stranded DNA although with an affinity 10 times lower than to single-stranded DNA. Using the in vitro phage phi 29 DNA replication system, it is shown that protein P12 stimulates the overall phi 29 DNA replication. Images PMID:2251117

  20. Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation

    PubMed Central

    Karpowicz, Steven J.; Heinnickel, Mark; Dewez, David; Hamel, Blaise; Dent, Rachel; Niyogi, Krishna K.; Johnson, Xenie; Alric, Jean; Wollman, Francis-André; Li, Huiying; Merchant, Sabeeha S.

    2010-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus. PMID:20490922

  1. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.

    PubMed

    Gidda, Satinder K; Watt, Samantha; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-11-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.

  2. Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives

    PubMed Central

    Han, Linjie; Ruotolo, Brandon T.

    2013-01-01

    Ion mobility–mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method. PMID:23539363

  3. A Cellulose Synthase-Like Protein Involved in Hyphal Tip Growth and Morphological Differentiation in Streptomyces▿

    PubMed Central

    Xu, Hongbin; Chater, Keith F.; Deng, Zixin; Tao, Meifeng

    2008-01-01

    Cellulose synthase and cellulose synthase-like proteins, responsible for synthesizing β-glucan-containing polysaccharides, play a fundamental role in cellular architectures, such as plant cell and tissue morphogenesis, bacterial biofilm formation, and fruiting-body development. However, the roles of the proteins involved in the developmental process are not well understood. Here, we report that a cellulose synthase-like protein (CslASc) in Streptomyces has a function in hyphal tip growth and morphological differentiation. The cslASc replacement mutant showed pleiotropic defects, including the severe delay of aerial-hyphal formation and altered cell wall morphology. Calcofluor white fluorescence analysis demonstrated that polysaccharide synthesis at hyphal tips was dependent on CslASc. cslASc was constitutively transcribed, and an enhanced green fluorescent protein-CslASc fusion protein was mostly located at the hyphal tips. An extract enriched in morphogenetic chaplin proteins promoted formation of aerial hyphae by the mutant. Furthermore, a two-hybrid experiment indicated that the glycosyltransferase domain of CslASc interacted with the tropomyosin-like polarity-determining DivIVA protein, suggesting that the tip-located DivIVA governed tip recruitment of the CslASc membrane protein. These results imply that the cellulose synthase-like protein couples extracellular and cytoskeletal components functioning in tip growth and cell development. PMID:18487344

  4. Involvement of a tissue-specific RNA recognition motif protein in Drosophila spermatogenesis.

    PubMed Central

    Haynes, S R; Cooper, M T; Pype, S; Stolow, D T

    1997-01-01

    RNA binding proteins mediate posttranscriptional regulation of gene expression via their roles in nuclear and cytoplasmic mRNA metabolism. Many of the proteins involved in these processes have a common RNA binding domain, the RNA recognition motif (RRM). We have characterized the Testis-specific RRM protein gene (Tsr), which plays an important role in spermatogenesis in Drosophila melanogaster. Disruption of Tsr led to a dramatic reduction in male fertility due to the production of spermatids with abnormalities in mitochondrial morphogenesis. Tsr is located on the third chromosome at 87F, adjacent to the nuclear pre-mRNA binding protein gene Hrb87F. A 1.7-kb Tsr transcript was expressed exclusively in the male germ line. It encoded a protein containing two RRMs similar to those found in HRB87F as well as a unique C-terminal domain. TSR protein was located in the cytoplasm of spermatocytes and young spermatids but was absent from mature sperm. The cellular proteins expressed in premeiotic primary spermatocytes from Tsr mutant and wild-type males were assessed by two-dimensional gel electrophoresis. Lack of TSR resulted in the premature expression of a few proteins prior to meiosis; this was abolished by a transgenic copy of Tsr. These data demonstrate that TSR negatively regulated the expression of some testis proteins and, in combination with its expression pattern and subcellular localization, suggest that TSR regulates the stability or translatability of some mRNAs during spermatogenesis. PMID:9111341

  5. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

    PubMed

    Collins, Sean R; Miller, Kyle M; Maas, Nancy L; Roguev, Assen; Fillingham, Jeffrey; Chu, Clement S; Schuldiner, Maya; Gebbia, Marinella; Recht, Judith; Shales, Michael; Ding, Huiming; Xu, Hong; Han, Junhong; Ingvarsdottir, Kristin; Cheng, Benjamin; Andrews, Brenda; Boone, Charles; Berger, Shelley L; Hieter, Phil; Zhang, Zhiguo; Brown, Grant W; Ingles, C James; Emili, Andrew; Allis, C David; Toczyski, David P; Weissman, Jonathan S; Greenblatt, Jack F; Krogan, Nevan J

    2007-04-12

    Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.

  6. PIAS proteins are involved in the SUMO-1 modification, intracellular translocation and transcriptional repressive activity of RET finger protein

    SciTech Connect

    Matsuura, Tetsuo; Shimono, Yohei; Kawai, Kumi; Murakami, Hideki; Urano, Takeshi; Niwa, Yasumasa; Goto, Hidemi; Takahashi, Masahide . E-mail: mtakaha@med.nagoya-u.ac.jp

    2005-08-01

    Ret finger protein (RFP) is a nuclear protein that is highly expressed in testis and in various tumor cell lines. RFP functions as a transcriptional repressor and associates with Enhancer of Polycomb 1 (EPC1), a member of the Polycomb group proteins, and Mi-2{beta}, a main component of the nucleosome remodeling and deacetylase (NuRD) complex. We show that RFP binds with PIAS (protein inhibitor of activated STAT) proteins, PIAS1, PIAS3, PIASx{alpha} and PIASy at their carboxyl-terminal region and is covalently modified by SUMO-1 (sumoylation). PIAS proteins enhance the sumoylation of RFP in a dose-dependent manner and induce the translocation of RFP into nuclear bodies reminiscent of the PML bodies. In addition, co-expression of PIAS proteins or SUMO-1 strengthened the transcriptional repressive activity of RFP. Finally, our immunohistochemical results show that RFP, SUMO-1 and PIASy localize in a characteristic nuclear structure juxtaposed with the inner nuclear membrane (XY body) of primary spermatocytes in mouse testis. These results demonstrate that the intracellular location and the transcriptional activity of RFP are modified by PIAS proteins which possess SUMO E3 ligase activities and suggest that they may play a co-operative role in spermatogenesis.

  7. Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains.

    PubMed Central

    Stenberg, R M; Fortney, J; Barlow, S W; Magrane, B P; Nelson, J A; Ghazal, P

    1990-01-01

    trans activation of promoters by viral regulatory proteins provides a useful tool to study coordinate control of gene expression. Immediate-early (IE) regions 1 and 2 of human cytomegalovirus (CMV) code for a series of proteins that originate from differentially spliced mRNAs. These IE proteins are proposed to regulate the temporal expression of the viral genome. To examine the structure and function of the IE proteins, we used linker insertion mutagenesis of the IE gene region as well as cDNA expression vector cloning of the abundant IE mRNAs. We showed that IE1 and IE2 proteins of CMV exhibit promoter-specific differences in their modes of action by either trans activating early and IE promoters or repressing the major IE promoter (MIEP). Transient cotransfection experiments with permissive human cells revealed a synergistic interaction between the 72- and the 86-kilodalton (kDa) IE proteins in trans activating an early promoter. In addition, transfection studies revealed that the 72-kDa protein was capable of trans activating the MIEP. In contrast, the 86-kDa protein specifically repressed the MIEP and this repression was suppressed by the 72-kDa protein. Furthermore, observations based on the primary sequence structure revealed a modular arrangement of putative regulatory motifs that could either potentiate or repress gene expression. These modular domains are either shared or unique among the IE proteins. From these data, we propose a model for IE protein function in the coordinate control of CMV gene expression. Images PMID:2157043

  8. Fusions involving protein kinase C and membrane-associated proteins in benign fibrous histiocytoma.

    PubMed

    Płaszczyca, Anna; Nilsson, Jenny; Magnusson, Linda; Brosjö, Otte; Larsson, Olle; Vult von Steyern, Fredrik; Domanski, Henryk A; Lilljebjörn, Henrik; Fioretos, Thoas; Tayebwa, Johnbosco; Mandahl, Nils; Nord, Karolin H; Mertens, Fredrik

    2014-08-01

    Benign fibrous histiocytoma (BFH) is a mesenchymal tumor that most often occurs in the skin (so-called dermatofibroma), but may also appear in soft tissues (so-called deep BFH) and in the skeleton (so-called non-ossifying fibroma). The origin of BFH is unknown, and it has been questioned whether it is a true neoplasm. Chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, RNA sequencing, RT-PCR and quantitative real-time PCR were used to search for recurrent somatic mutations in a series of BFH. BFHs were found to harbor recurrent fusions of genes encoding membrane-associated proteins (podoplanin, CD63 and LAMTOR1) with genes encoding protein kinase C (PKC) isoforms PRKCB and PRKCD. PKCs are serine-threonine kinases that through their many phosphorylation targets are implicated in a variety of cellular processes, as well as tumor development. When inactive, the amino-terminal, regulatory domain of PKCs suppresses the activity of their catalytic domain. Upon activation, which requires several steps, they typically translocate to cell membranes, where they interact with different signaling pathways. The detected PDPN-PRKCB, CD63-PRKCD and LAMTOR1-PRKCD gene fusions are all predicted to result in chimeric proteins consisting of the membrane-binding part of PDPN, CD63 or LAMTOR1 and the entire catalytic domain of the PKC. This novel pathogenetic mechanism should result in constitutive kinase activity at an ectopic location. The results show that BFH indeed is a true neoplasm, and that distorted PKC activity is essential for tumorigenesis. The findings also provide means to differentiate BFH from other skin and soft tissue tumors. This article is part of a Directed Issue entitled: Rare cancers.

  9. Expression of proteins involved in host plant defense against greenbug infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greenbug, Schizaphis graminum (Rondani), has been recognized as a major pest of small grains, including sorghum and wheat. To understand the molecular mechanisms involved in host plant defense against greenbug aphids, a proteomic analysis of greenbug-induced proteins in the seedlings of sorghum...

  10. Spermidine-Induced Improvement of Reconsolidation of Memory Involves Calcium-Dependent Protein Kinase in Rats

    ERIC Educational Resources Information Center

    Girardi, Bruna Amanda; Ribeiro, Daniela Aymone; Signor, Cristiane; Muller, Michele; Gais, Mayara Ana; Mello, Carlos Fernando; Rubin, Maribel Antonello

    2016-01-01

    In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus.…

  11. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    PubMed

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae.

  12. Protein-protein interactions involving voltage-gated sodium channels: Post-translational regulation, intracellular trafficking and functional expression.

    PubMed

    Shao, Dongmin; Okuse, Kenji; Djamgoz, Mustafa B A

    2009-07-01

    Voltage-gated sodium channels (VGSCs), classically known to play a central role in excitability and signalling in nerves and muscles, have also been found to be expressed in a range of 'non-excitable' cells, including lymphocytes, fibroblasts and endothelia. VGSC abnormalities are associated with various diseases including epilepsy, long-QT syndrome 3, Brugada syndrome, sudden infant death syndrome and, more recently, various human cancers. Given their pivotal role in a wide range of physiological and pathophysiological processes, regulation of functional VGSC expression has been the subject of intense study. An emerging theme is post-translational regulation and macro-molecular complexing by protein-protein interactions and intracellular trafficking, leading to changes in functional VGSC expression in plasma membrane. This partially involves endoplasmic reticulum associated degradation and ubiquitin-proteasome system. Several proteins have been shown to associate with VGSCs. Here, we review the interactions involving VGSCs and the following proteins: p11, ankyrin, syntrophin, beta-subunit of VGSC, papin, ERM and Nedd4 proteins. Protein kinases A and C, as well as Ca(2+)-calmodulin dependent kinase II that have also been shown to regulate intracellular trafficking of VGSCs by changing the balance of externalization vs. internalization, and an effort is made to separate these effects from the short-term phosphorylation of mature proteins in plasma membrane. Two further modulatory mechanisms are reciprocal interactions with the cytoskeleton and, late-stage, activity-dependent regulation. Thus, the review gives an updated account of the range of post-translational molecular mechanisms regulating functional VGSC expression. However, many details of VGSC subtype-specific regulation and pathophysiological aspects remain unknown and these are highlighted throughout for completeness.

  13. The reserve pool of synaptic vesicles acts as a buffer for proteins involved in synaptic vesicle recycling

    PubMed Central

    Denker, Annette; Kröhnert, Katharina; Bückers, Johanna; Neher, Erwin; Rizzoli, Silvio O.

    2011-01-01

    Presynaptic nerve terminals contain between several hundred vesicles (for example in small CNS synapses) and several tens of thousands (as in neuromuscular junctions). Although it has long been assumed that such high numbers of vesicles are required to sustain neurotransmission during conditions of high demand, we found that activity in vivo requires the recycling of only a few percent of the vesicles. However, the maintenance of large amounts of reserve vesicles in many evolutionarily distinct species suggests that they are relevant for synaptic function. We suggest here that these vesicles constitute buffers for soluble accessory proteins involved in vesicle recycling, preventing their loss into the axon. Supporting this hypothesis, we found that vesicle clusters contain a large variety of proteins needed for vesicle recycling, but without an obvious function within the clusters. Disrupting the clusters by application of black widow spider venom resulted in the diffusion of numerous soluble proteins into the axons. Prolonged stimulation and ionomycin application had a similar effect, suggesting that calcium influx causes the unbinding of soluble proteins from vesicles. Confirming this hypothesis, we found that isolated synaptic vesicles in vitro sequestered soluble proteins from the cytosol in a process that was inhibited by calcium addition. We conclude that the reserve vesicles support neurotransmission indirectly, ensuring that soluble recycling proteins are delivered upon demand during synaptic activity. PMID:21903923

  14. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    PubMed

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  15. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice

    PubMed Central

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2017-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice. PMID:28105039

  16. Paraoxonase 1 and dietary hyperhomocysteinemia modulate the expression of mouse proteins involved in liver homeostasis.

    PubMed

    Suszyńska-Zajczyk, Joanna; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy), a product of methionine metabolism, is elevated by the consumption of a high-methionine diet that can cause fatty liver disease. Paraoxonase 1 (Pon1), a hydrolase expressed mainly in the liver and carried in the circulation on high-density lipoprotein, participates in Hcy metabolism. Low Pon1 activity is linked to fatty liver disease. We hypothesize that hyperhomocysteinemia and low Pon1 induce changes in gene expression that could impair liver homeostasis. To test this hypothesis, we analyzed the liver proteome of Pon1(-/-) and Pon1(+/+) mice fed a high methionine diet (1% methionine in the drinking water) for 8 weeks using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We identified seven liver proteins whose expression was significantly altered in Pon1(-/-) mice. In animals fed with a control diet, the expression of three liver proteins involved in lipoprotein metabolism (ApoE), iron metabolism (Ftl), and regulation of nitric oxide generation (Ddah1) was up-regulated by the Pon1(-/-) genotype. In mice fed with a high-methionine diet, expression of four liver proteins was up-regulated and of three proteins was down-regulated by the Pon1(-/-) genotype. The up-regulated proteins are involved in lipoprotein metabolism (ApoE), energy metabolism (Atp5h), oxidative stress response (Prdx2), and nitric oxide regulation (Ddah1). The down-regulated proteins are involved in energy metabolism (Gamt), iron metabolism (Ftl), and catechol metabolism (Comt). Expression of one protein (Ftl) was up-regulated both by the Pon1(-/-) genotype and a high-methionine diet. Our findings suggest that Pon1 interacts with diverse cellular processes - from lipoprotein metabolism, nitric oxide regulation, and energy metabolism to iron transport and antioxidant defenses - that are essential for normal liver homeostasis and modulation of these interactions by a high-methionine diet may contribute to fatty liver disease.

  17. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice.

    PubMed

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2016-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.

  18. Infection of Mice by Salmonella enterica Serovar Enteritidis Involves Additional Genes That Are Absent in the Genome of Serovar Typhimurium

    PubMed Central

    Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés

    2012-01-01

    Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712

  19. Silkmapin of Hyriopsis cumingii, a novel silk-like shell matrix protein involved in nacre formation.

    PubMed

    Liu, Xiaojun; Dong, Shaojian; Jin, Can; Bai, Zhiyi; Wang, Guiling; Li, Jiale

    2015-01-25

    Understanding the role of matrix proteins in nacre formation and biomineralization in mollusks is important for the pearl industry. In this study, the gene encoding the novel Hyriopsis cumingii shell matrix protein silkmapin was characterized. The gene encodes a protein of 30.89kDa in which Gly accounts for 34.41% of the amino acid content, and the C-terminal region binds Ca(2+). Secondary structure prediction indicated a predominantly β-fold and a structure typical of filamentous proteins. Real-time quantitative PCR and in situ hybridization showed that silkmapin was expressed in epithelial cells at the edge and pallial of mantle tissue, indicated that silkmapin play roles in the shell nacreous and prismatic layer formation. Further real-time PCR results indicated an involvement in pearl formation via nucleation of calcium carbonate prior to formation of the nacre.

  20. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  1. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    NASA Astrophysics Data System (ADS)

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-04-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut.

  2. Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition

    PubMed Central

    Urbanowicz, Anna; Lewandowski, Dominik; Szpotkowski, Kamil; Figlerowicz, Marek

    2016-01-01

    The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified intrinsically disordered protein (IDP) involved in the interaction between a vector and a pathogenic microbe. To verify this hypothesis, we performed structural studies of a TROSPA mutant from Ixodes ricinus using both computational and experimental approaches. Irrespective of the method used, we observed that the secondary structure content of the TROSPA polypeptide chain is low. In addition, the collected SAXS data indicated that this protein is highly extended and exists in solution as a set of numerous conformers. These features are all commonly considered hallmarks of IDPs. Taking advantage of our SAXS data, we created structural models of TROSPA and proposed a putative mechanism for the TROSPA-OspA interaction. The disordered nature of TROSPA may explain the ability of a wide spectrum of Borrelia species to colonize the tick gut. PMID:27112540

  3. Involvement of major facilitator superfamily proteins SfaA and SbnD in staphyloferrin secretion in Staphylococcus aureus.

    PubMed

    Hannauer, Mélissa; Sheldon, Jessica R; Heinrichs, David E

    2015-03-12

    A paucity of information exists concerning the mechanism(s) by which bacteria secrete siderophores into the extracellular compartment. We investigated the role of SfaA and SbnD, two major facilitator superfamily (MFS)-type efflux proteins, in the secretion of the Staphylococcus aureus siderophores staphyloferrin A (SA) and staphyloferrin B (SB), respectively. Deletion of sfaA resulted in a drastic reduction of SA secreted into the supernatant with a corresponding accumulation of SA in the cytoplasm and a significant growth defect in cells devoid of SB synthesis. In contrast, sbnD mutants showed transiently lowered levels of secreted SB, suggesting the involvement of additional efflux mechanisms.

  4. Identification and Characterization of Proteins Involved in Rice Urea and Arginine Catabolism1[W

    PubMed Central

    Cao, Feng-Qiu; Werner, Andrea K.; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-01-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (Km = 67 mm, kcat = 490 s−1). The activity depended on the presence of manganese (Kd = 1.3 μm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution. PMID:20631318

  5. Identification and characterization of proteins involved in rice urea and arginine catabolism.

    PubMed

    Cao, Feng-Qiu; Werner, Andrea K; Dahncke, Kathleen; Romeis, Tina; Liu, Lai-Hua; Witte, Claus-Peter

    2010-09-01

    Rice (Oryza sativa) production relies strongly on nitrogen (N) fertilization with urea, but the proteins involved in rice urea metabolism have not yet been characterized. Coding sequences for rice arginase, urease, and the urease accessory proteins D (UreD), F (UreF), and G (UreG) involved in urease activation were identified and cloned. The functionality of urease and the urease accessory proteins was demonstrated by complementing corresponding Arabidopsis (Arabidopsis thaliana) mutants and by multiple transient coexpression of the rice proteins in Nicotiana benthamiana. Secondary structure models of rice (plant) UreD and UreF proteins revealed a possible functional conservation to bacterial orthologs, especially for UreF. Using amino-terminally StrepII-tagged urease accessory proteins, an interaction between rice UreD and urease could be shown. Prokaryotic and eukaryotic urease activation complexes seem conserved despite limited protein sequence conservation for UreF and UreD. In plant metabolism, urea is generated by the arginase reaction. Rice arginase was transiently expressed as a carboxyl-terminally StrepII-tagged fusion protein in N. benthamiana, purified, and biochemically characterized (K(m) = 67 mm, k(cat) = 490 s(-1)). The activity depended on the presence of manganese (K(d) = 1.3 microm). In physiological experiments, urease and arginase activities were not influenced by the external N source, but sole urea nutrition imbalanced the plant amino acid profile, leading to the accumulation of asparagine and glutamine in the roots. Our data indicate that reduced plant performance with urea as N source is not a direct result of insufficient urea metabolism but may in part be caused by an imbalance of N distribution.

  6. Addition of carrageenan at different stages of winemaking for white wine protein stabilization.

    PubMed

    Marangon, Matteo; Stockdale, Vanessa J; Munro, Peter; Trethewey, Timra; Schulkin, Alex; Holt, Helen E; Smith, Paul A

    2013-07-03

    Carrageenan added at different stages of winemaking was assessed for its protein removal and impact on wine heat stability and on the chemical and sensorial profile of the wines. Carrageenan was added to a Semillon during fermentation and after fermentation and to finished wines, and the effect of each addition was compared to that of bentonite fining at the same time point. Data on protein concentration, heat stability, and bentonite requirement indicate that when added at the correct dosage carrageenan was very effective in stabilizing wines at dosages at least three times lower than those of bentonite. In addition, carrageenan treatment did not cause an increase in lees volume relative to bentonite and resulted in very similar chemical parameters to the unfined and bentonite-treated wine. Sensorially, although carrageenan-treated wine was significantly different from the unfined wine, the magnitude of difference did not vary significantly when compared to bentonite treatment. The feasibility of carrageenan use in a winery production setting will need to be determined by individual wineries, as technical issues including frothing, slower filterability, and risk of overfining will need to be considered relative to the benefits, particularly when carrageenan is used before or during fermentation.

  7. Are Cellulosome Scaffolding Protein CipC and CBM3-Containing Protein HycP, Involved in Adherence of Clostridium cellulolyticum to Cellulose?

    PubMed Central

    Ferdinand, Pierre-Henri; Borne, Romain; Trotter, Valentine; Pagès, Sandrine; Tardif, Chantal; Fierobe, Henri-Pierre; Perret, Stéphanie

    2013-01-01

    Clostridium cellulolyticum, a mesophilic anaerobic bacterium, produces highly active enzymatic complexes called cellulosomes. This strain was already shown to bind to cellulose, however the molecular mechanism(s) involved is not known. In this context we focused on the gene named hycP, encoding a 250-kDa protein of unknown function, containing a Family-3 Carbohydrate Binding Module (CBM3) along with 23 hyaline repeat modules (HYR modules). In the microbial kingdom the gene hycP is only found in C. cellulolyticum and the very close strain recently sequenced Clostridium sp BNL1100. Its presence in C. cellulolyticum guided us to analyze its function and its putative role in adhesion of the cells to cellulose. The CBM3 of HycP was shown to bind to crystalline cellulose and was assigned to the CBM3b subfamily. No hydrolytic activity on cellulose was found with a mini-protein displaying representative domains of HycP. A C. cellulolyticum inactivated hycP mutant strain was constructed, and we found that HycP is neither involved in binding of the cells to cellulose nor that the protein has an obvious role in cell growth on cellulose. We also characterized the role of the cellulosome scaffolding protein CipC in adhesion of C. cellulolyticum to cellulose, since cellulosome scaffolding protein has been proposed to mediate binding of other cellulolytic bacteria to cellulose. A second mutant was constructed, where cipC was inactivated. We unexpectedly found that CipC is only partly involved in binding of C. cellulolyticum to cellulose. Other mechanisms for cellulose adhesion may therefore exist in C. cellulolyticum. In addition, no cellulosomal protuberances were observed at the cellular surface of C. cellulolyticum, what is in contrast to reports from several other cellulosomes producing strains. These findings may suggest that C. cellulolyticum has no dedicated molecular mechanism to aggregate the cellulosomes at the cellular surface. PMID:23935995

  8. Staphylococcus aureus surface proteins involved in adaptation to oxacillin identified using a novel cell shaving approach.

    PubMed

    Solis, Nestor; Parker, Benjamin L; Kwong, Stephen M; Robinson, Gareth; Firth, Neville; Cordwell, Stuart J

    2014-06-06

    Staphylococcus aureus is a Gram-positive pathogen responsible for a variety of infections, and some strains are resistant to virtually all classes of antibiotics. Cell shaving proteomics using a novel probability scoring algorithm to compare the surfaceomes of the methicillin-resistant, laboratory-adapted S. aureus COL strain with a COL strain in vitro adapted to high levels of oxacillin (APT). APT displayed altered cell morphology compared with COL and increased aggregation in biofilm assays. Increased resistance to β-lactam antibiotics was observed, but adaptation to oxacillin did not confer multidrug resistance. Analysis of the S. aureus COL and APT surfaceomes identified 150 proteins at a threshold determined by the scoring algorithm. Proteins unique to APT included the LytR-CpsA-Psr (LCP) domain-containing MsrR and SACOL2302. Quantitative RT-PCR showed increased expression of sacol2302 in APT grown with oxacillin (>6-fold compared with COL). Overexpression of sacol2302 in COL to levels consistent with APT (+ oxacillin) did not influence biofilm formation or β-lactam resistance. Proteomics using iTRAQ and LC-MS/MS identified 1323 proteins (∼50% of the theoretical S. aureus proteome), and cluster analysis demonstrated elevated APT abundances of LCP proteins, capsule and peptidoglycan biosynthesis proteins, and proteins involved in wall remodelling. Adaptation to oxacillin also induced urease proteins, which maintained culture pH compared to COL. These results show that S. aureus modifies surface architecture in response to antibiotic adaptation.

  9. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

    PubMed Central

    Alcalay, Myriam; Meani, Natalia; Gelmetti, Vania; Fantozzi, Anna; Fagioli, Marta; Orleth, Annette; Riganelli, Daniela; Sebastiani, Carla; Cappelli, Enrico; Casciari, Cristina; Sciurpi, Maria Teresa; Mariano, Angela Rosa; Minardi, Simone Paolo; Luzi, Lucilla; Muller, Heiko; Di Fiore, Pier Paolo; Frosina, Guido; Pelicci, Pier Giuseppe

    2003-01-01

    Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins. PMID:14660751

  10. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.

    PubMed Central

    Patry, V; Bugler, B; Maret, A; Potier, M; Prats, H

    1997-01-01

    Four forms of basic fibroblast growth factor (bFGF or FGF-2) result from an alternative initiation of translation involving one AUG (155-amino acid form) and three CUGs (210-, 201- and 196-amino acid forms). These different forms of bFGF show different intracellular biological activities. To identify their intracellular targets, the 210- and 155-amino acid forms of bFGF were independently transfected into CHO cells and their correct subcellular localizations were verified, the 155-amino acid bFGF form being essentially cytoplasmic whereas the 210-amino acid protein was nuclear. The radiation fragmentation method was used to determine the target size of the different bFGF isoforms in the transfected CHO cells and to show that the 210- and 155-amino acids bFGF isoforms were included in protein complexes of 320 and 130 kDa respectively. Similar results were obtained using the SK-Hep1 cell line, which naturally expressed all forms of bFGF. Co-immunoprecipitation assays using different chimaeric bFGF-chloramphenicol acetyltransferase proteins showed that different cellular proteins are associated with different parts of the bFGF molecule. We conclude that bFGF isoforms are involved in different molecular complexes in the cytosol and nucleus, which would reflect different functions for these proteins. PMID:9337877

  11. Overexpression of G protein-coupled receptors in cancer cells: involvement in tumor progression.

    PubMed

    Li, Shuyu; Huang, Shuguang; Peng, Sheng-Bin

    2005-11-01

    G protein-coupled receptors (GPCRs) play important roles in a variety of biological and pathological processes. They are considered among the most desirable targets for drug development. Recent studies have demonstrated that many GPCRs, such as endothelin receptors, chemokine receptors and lysophosphatidic acid receptors have been implicated in the tumorigenesis and metastasis of multiple human cancers. In this study, we conducted an in silico analysis of GPCR gene expression in primary human tumors by analyzing some publicly available gene expression profiling data. Statistical analysis was performed on eight microarray data sets of non-small cell lung cancer, breast cancer, prostate cancer, melanoma, gastric cancer and diffused large B cell lymphoma to identify GPCRs that are up-regulated in primary or metastatic cancer cells. Our analysis has demonstrated overexpression of several GPCRs in primary tumor cells, including chemokine receptors and protease-activated receptors that were shown to be important for tumorigenesis by previous studies. In addition, we have uncovered several GPCRs, such as neuropeptide receptors, adenosine A2B receptor, P2Y purinoceptor, calcium-sensing receptor and metabotropic glutamate receptors, that are expressed at a significantly higher level in some cancer tissue and may play a role in cancer progression. Analysis of cancer samples in different disease stages also suggests that some GPCRs, such as endothelin receptor A, may be involved in early tumor progression and others, such as CXCR4, may play a critical role in tumor invasion and metastasis. The present study demonstrates the value of publicly available microarray data as a resource to gain more understanding of cancer biology, to validate previous findings from in vitro experiments, and to identify potential novel anticancer targets and biomarkers.

  12. Heat shock 70 kDa protein cognate 5 involved in WSSV toleration of Litopenaeus vannamei.

    PubMed

    Yuan, Kai; Yuan, Feng-Hua; He, Hong-Hui; Bi, Hai-Tao; Weng, Shao-Ping; He, Jian-Guo; Chen, Yi-Hong

    2017-02-11

    The expression levels of 97 unigenes encoding heat shock proteins of Litopenaeus vannamei was scanned, and ten of them were significantly induced by white spot syndrome virus (WSSV). Among these genes, heat shock 70 kDa protein cognate 5 (LvHSC70-5) was upregulated to the highest extent and subjected to further studies. Subcellular localization assay revealed that LvHSC70-5 was located in the mitochondria. Aside from WSSV infection, unfolded protein response activation and thermal stress could also upregulate LvHSC70-5. Results of reporter gene assay demonstrated that promoter of LvHSC70-5 was activated by L. vannamei heat shock factor protein 1, activating transcription factor 4 and thermal stress. A decrease in the expression of LvHSC70-5 could reduce the aggregation of proteins in hemocytes and the cumulative mortality of WSSV-infected L. vannamei. LvHSC70-5 in L. vannamei hemocytes was upregulated by mild thermal stress. In addition, mild thermal stress, decreased the copy number of WSSV in shrimp muscle and the cumulative mortality of WSSV-infected L. vannamei. Therefore, collecting results suggested that LvHSC70-5 should be involved in WSSV toleration of shrimp L. vannamei.

  13. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    SciTech Connect

    Gao, Feng-Hou; Wu, Ying-Li; Zhao, Meng; Chen, Guo-Qiang

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  14. Microaggregate-associated protein involved in invasion of epithelial cells by Mycobacterium avium subsp. hominissuis

    PubMed Central

    Babrak, Lmar; Danelishvili, Lia; Rose, Sasha J; Bermudez, Luiz E

    2015-01-01

    The environmental opportunistic pathogen Mycobacterium avium subsp hominissuis (MAH), a member of the nontuberculous mycobacteria (NTM) cluster, causes respiratory as well as disseminated disease in patients such as those with chronic respiratory illnesses or AIDS. Currently, there is no effective method to prevent NTM respiratory infections. The formation of mycobacterial microaggregates comprises of phenotypic changes that lead to efficient adherence and invasion of the respiratory mucosa in vitro and in vivo. Microaggregate adhesion to the respiratory epithelium is mediated in part through the mycobacterial protein, MAV_3013 (MBP-1). Through DNA microarray analysis, the small hypothetical gene MAV_0831 (Microaggregate Invasion Protein-1, MIP-1) was identified as being upregulated during microaggregate formation. When MIP-1 was overexpressed in poorly-invasive Mycobacterium smegmatis, it provided the bacterium the ability to bind and enter epithelial cells. In addition, incubating microaggregates with recombinant MIP-1 protein enhanced the ability of microaggregates to invade HEp-2 cells, and exposure to anti-MIP-1 immune serum reduced the invasion of the host epithelium. Through protein-protein interaction assays, MIP-1 was found to bind to the host protein filamin A, a cytoskeletal actin-binding protein integral to the modulation of host cell shape and migration. As visualized by immunofluorescence, filamin A was able to co-localize with microaggregates and to a lesser extent planktonic bacteria. Invasion of HEp-2 cells by microaggregates and planktonic bacteria was also inhibited by the addition of anti-filamin A antibody suggesting that filamin A plays an important role during infection. In addition, at earlier time points binding and invasion assay results suggest that MBP-1 participates significantly during the first interactions with the host cell while MIP-1 becomes important once the bacteria adhere to the host epithelium. In summary, we have unveiled

  15. Absence of aquaporin-4 in skeletal muscle alters proteins involved in bioenergetic pathways and calcium handling.

    PubMed

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-04-28

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4(-/-) compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4-/- muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca(2+) handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology.

  16. Absence of Aquaporin-4 in Skeletal Muscle Alters Proteins Involved in Bioenergetic Pathways and Calcium Handling

    PubMed Central

    Basco, Davide; Nicchia, Grazia Paola; D'Alessandro, Angelo; Zolla, Lello; Svelto, Maria; Frigeri, Antonio

    2011-01-01

    Aquaporin-4 (AQP4) is a water channel expressed at the sarcolemma of fast-twitch skeletal muscle fibers, whose expression is altered in several forms of muscular dystrophies. However, little is known concerning the physiological role of AQP4 in skeletal muscle and its functional and structural interaction with skeletal muscle proteome. Using AQP4-null mice, we analyzed the effect of the absence of AQP4 on the morphology and protein composition of sarcolemma as well as on the whole skeletal muscle proteome. Immunofluorescence analysis showed that the absence of AQP4 did not perturb the expression and cellular localization of the dystrophin-glycoprotein complex proteins, aside from those belonging to the extracellular matrix, and no alteration was found in sarcolemma integrity by dye extravasation assay. With the use of a 2DE-approach (BN/SDS-PAGE), protein maps revealed that in quadriceps, out of 300 Coomassie-blue detected and matched spots, 19 proteins exhibited changed expression in AQP4−/− compared to WT mice. In particular, comparison of the protein profiles revealed 12 up- and 7 down-regulated protein spots in AQP4−/− muscle. Protein identification by MS revealed that the perturbed expression pattern belongs to proteins involved in energy metabolism (i.e. GAPDH, creatine kinase), as well as in Ca2+ handling (i.e. parvalbumin, SERCA1). Western blot analysis, performed on some significantly changed proteins, validated the 2D results. Together these findings suggest AQP4 as a novel determinant in the regulation of skeletal muscle metabolism and better define the role of this water channel in skeletal muscle physiology. PMID:21552523

  17. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion.

    PubMed

    Knoblauch, Michael; Froelich, Daniel R; Pickard, William F; Peters, Winfried S

    2014-04-01

    The phloem provides a network of sieve tubes for long-distance translocation of photosynthates. For over a century, structural proteins in sieve tubes have presented a conundrum since they presumably increase the hydraulic resistance of the tubes while no potential function other than sieve tube or wound sealing in the case of injury has been suggested. Here we summarize and critically evaluate current speculations regarding the roles of these proteins. Our understanding suffers from the suggestive power of images; what looks like a sieve tube plug on micrographs may not actually impede translocation very much. Recent reports of an involvement of SEOR (sieve element occlusion-related) proteins, a class of P-proteins, in the sealing of injured sieve tubes are inconclusive; various lines of evidence suggest that, in neither intact nor injured plants, are SEORs determinative of translocation stoppage. Similarly, the popular notion that P-proteins serve in the defence against phloem sap-feeding insects is unsupported by empirical facts; it is conceivable that in functional sieve tubes, aphids actually could benefit from inducing a plug. The idea that rising cytosolic Ca(2+) generally triggers sieve tube blockage by P-proteins appears widely accepted, despite lacking experimental support. Even in forisomes, P-protein assemblages restricted to one single plant family and the only Ca(2+)-responsive P-proteins known, the available evidence does not unequivocally suggest that plug formation is the cause rather than a consequence of translocation stoppage. We conclude that the physiological roles of structural P-proteins remain elusive, and that in vivo studies of their dynamics in continuous sieve tube networks combined with flow velocity measurements will be required to (hopefully) resolve this scientific roadblock.

  18. Lacrimal gland PKC isoforms are differentially involved in agonist-induced protein secretion.

    PubMed

    Zoukhri, D; Hodges, R R; Sergheraert, C; Toker, A; Dartt, D A

    1997-01-01

    In the present study, we have synthesized and N-myristoylated peptides derived from the pseudosubstrate sequences of protein kinase C (PKC)-alpha, -delta, and -epsilon [Myr-PKC-alpha-(15-28), Myr-PKC-delta-(142-153), and Myr-PKC-epsilon-(149-164)], three isoforms present in rat lacrimal gland, and a peptide derived from the sequence of the endogenous inhibitor of protein kinase A [Myr-PKI-(17-25)]. Lacrimal gland acini were preincubated for 60 min with the myristoylated peptides (10(-10) to 3 x 10(-7) M), then protein secretion was stimulated with a phorbol ester, phorbol 12,13-dibutyrate (10(-6) M); vasoactive intestinal peptide (10(-8) M); a cholinergic agonist, carbachol (10(-5) M); or an alpha 1-adrenergic agonist, phenylephrine (10(-4) M), for 20 min. In intact lacrimal gland acini, Myr-PKC-alpha-(15-28) inhibited phorbol 12,13-dibutyrate-induced protein secretion. This effect was not reproduced by the acetylated peptide or by the myristoylated PKI, which inhibited vasoactive intestinal peptide-induced protein secretion, a response mediated by protein kinase A. Carbachol-induced protein secretion was inhibited by all three peptides. In contrast, phenylephrine-induced protein secretion was inhibited only by Myr-PKC-epsilon-(149-164), whereas Myr-PKC-alpha-(15-28) and Myr-PKC-delta-(142-153) had a stimulatory effect. None of these myristoylated peptides affected the calcium increase evoked by cholinergic or alpha 1-adrenergic agonists. We concluded that phorbol ester- and receptor-induced protein secretion involve different PKC isoforms in lacrimal gland.

  19. The ULTRACURVATA2 Gene of Arabidopsis Encodes an FK506-Binding Protein Involved in Auxin and Brassinosteroid Signaling1

    PubMed Central

    Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis

    2004-01-01

    The dwarf ucu (ultracurvata) mutants of Arabidopsis display vegetative leaves that are spirally rolled downwards and show reduced expansion along the longitudinal axis. We have previously determined that the UCU1 gene encodes a SHAGGY/GSK3-like kinase that participates in the signaling pathways of auxins and brassinosteroids. Here, we describe four recessive alleles of the UCU2 gene, whose homozygotes display helical rotation of several organs in addition to other phenotypic traits shared with ucu1 mutants. Following a map-based strategy, we identified the UCU2 gene, which was found to encode a peptidyl-prolyl cis/trans-isomerase of the FK506-binding protein family, whose homologs in metazoans are involved in cell signaling and protein trafficking. Physiological and double mutant analyses suggest that UCU2 is required for growth and development and participates in auxin and brassinosteroid signaling. PMID:14730066

  20. Protein receptor for activated C kinase 1 is involved in morphine reward in mice.

    PubMed

    Wan, L; Su, L; Xie, Y; Liu, Y; Wang, Y; Wang, Z

    2009-07-07

    Opiate addiction is associated with upregulation of cAMP signaling in the brain. cAMP-responsive element binding protein (CREB), a nuclear transcription factor, is a downstream component of the extracellular signal-regulated protein kinase (ERK) pathway, which has been shown to regulate different physiological and psychological responses of drug addiction. RACK1, the protein receptor for activated C kinase 1, is a multifunctional scaffolding protein known to be a key regulator of various signaling cascades in the CNS. RACK1 functions specifically in integrin mediated activation of ERK cascade and targets active ERK. We examined if RACK1 is involved in the mechanism of drug addiction by regulating CREB in mouse hippocampus and prefrontal cortex. Several expressions were observed. Chronic administration of morphine made the expression of RACK1 and CREB mRNA increase in hippocampus and prefrontal cortex. The expression of RACK1 and CREB protein was strongly positive in CA1, CA3 and dentate gyrus (DG) of the hippocampus of morphine-treated mice brain, especially the pyramidal neurons in the DG of the hippocampus. Using the small interfering RNA technology, we determined that the expression of CREB mRNA was decreased in hippocampus and prefrontal cortex of morphine-treated mice. The expression of RACK1 and CREB protein was negative in CA1, CA3 and DG of hippocampus. These findings suggest that morphine reward can influence the expression of RACK1 in mouse hippocampus and prefrontal cortex through regulating CREB transcription.

  1. Proteomic analysis of male 4C germ cell proteins involved in mouse meiosis.

    PubMed

    Guo, Xuejiang; Zhang, Ping; Qi, Yujuan; Chen, Wen; Chen, Xiangxiang; Zhou, Zuomin; Sha, Jiahao

    2011-01-01

    Male meiosis is a specialized type of cell division that gives rise to sperm. Errors in this process can result in the generation of aneuploid gametes, which are associated with birth defects and infertility in humans. Until now, there has been a lack of a large-scale identification of proteins involved in male meiosis in mammals. In this study, we report the high-confidence identification of 3625 proteins in mouse male germ cells with 4C DNA content undergoing meiosis I. Of these, 397 were found to be testis specific. Bioinformatics analysis of the proteome led to the identification of 28 proteins known to be essential for male meiosis in mice. We also found 172 proteins that had yeast orthologs known to be essential for meiosis. Chromosome distribution analysis of the proteome showed underrepresentation of the identified proteins on the X chromosome, which may be due to meiotic sex chromosome inactivation. Characterization of the proteome of 4C germ cells from mouse testis provides an inventory of proteins, which is useful for understanding meiosis and the mechanisms of male infertility.

  2. The abi proteins and their involvement in bacteriocin self-immunity.

    PubMed

    Kjos, Morten; Snipen, Lars; Salehian, Zhian; Nes, Ingolf F; Diep, Dzung B

    2010-04-01

    The Abi protein family consists of putative membrane-bound metalloproteases. While they are involved in membrane anchoring of proteins in eukaryotes, little is known about their function in prokaryotes. In some known bacteriocin loci, Abi genes have been found downstream of bacteriocin structural genes (e.g., pln locus from Lactobacillus plantarum and sag locus from Streptococcus pyogenes), where they probably are involved in self-immunity. By modifying the profile hidden Markov model used to select Abi proteins in the Pfam protein family database, we show that this family is larger than presently recognized. Using bacteriocin-associated Abi genes as a means to search for novel bacteriocins in sequenced genomes, seven new bacteriocin-like loci were identified in Gram-positive bacteria. One such locus, from Lactobacillus sakei 23K, was selected for further experimental study, and it was confirmed that the bacteriocin-like genes (skkAB) exhibited antimicrobial activity when expressed in a heterologous host and that the associated Abi gene (skkI) conferred immunity against the cognate bacteriocin. Similar investigation of the Abi gene plnI and the Abi-like gene plnL from L. plantarum also confirmed their involvement in immunity to their cognate bacteriocins (PlnEF and PlnJK, respectively). Interestingly, the immunity genes from these three systems conferred a high degree of cross-immunity against each other's bacteriocins, suggesting the recognition of a common receptor. Site-directed mutagenesis demonstrated that the conserved motifs constituting the putative proteolytic active site of the Abi proteins are essential for the immunity function of SkkI, and to our knowledge, this represents a new concept in self-immunity.

  3. Hyperhomocysteinemia and bleomycin hydrolase modulate the expression of mouse brain proteins involved in neurodegeneration.

    PubMed

    Suszyńska-Zajczyk, Joanna; Luczak, Magdalena; Marczak, Lukasz; Jakubowski, Hieronim

    2014-01-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Bleomycin hydrolase (BLMH) participates in Hcy metabolism and is also linked to AD. The inactivation of the Blmh gene in mice causes accumulation of Hcy-thiolactone in the brain and increases susceptibility to Hcy-thiolactone-induced seizures. To gain insight into brain-related Blmh function, we used two-dimensional IEF/SDS-PAGE gel electrophoresis and MALDI-TOF/TOF mass spectrometry to examine brain proteomes of Blmh-/- mice and their Blmh+/+ littermates fed with a hyperhomocysteinemic high-Met or a control diet. We found that: (1) proteins involved in brain-specific function (Ncald, Nrgn, Stmn1, Stmn2), antioxidant defenses (Aop1), cell cycle (RhoGDI1, Ran), and cytoskeleton assembly (Tbcb, CapZa2) were differentially expressed in brains of Blmh-null mice; (2) hyperhomocysteinemia amplified effects of the Blmh-/- genotype on brain protein expression; (3) proteins involved in brain-specific function (Pebp1), antioxidant defenses (Sod1, Prdx2, DJ-1), energy metabolism (Atp5d, Ak1, Pgam-B), and iron metabolism (Fth) showed differential expression in Blmh-null brains only in hyperhomocysteinemic animals; (4) most proteins regulated by the Blmh-/- genotype were also regulated by high-Met diet, albeit in the opposite direction; and (5) the differentially expressed proteins play important roles in neural development, learning, plasticity, and aging and are linked to neurodegenerative diseases, including AD. Taken together, our findings suggest that Blmh interacts with diverse cellular processes from energy metabolism and anti-oxidative defenses to cell cycle, cytoskeleton dynamics, and synaptic plasticity essential for normal brain homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in AD.

  4. Identification of proteins involved in Hg-Se antagonism in water hyacinth (Eichhornia crassipes).

    PubMed

    Pacheco, Pablo; Hanley, Traci; Figueroa, Julio A Landero

    2014-03-01

    Different studies have established the presence of a proteinaceus complex involved in Hg-Se agonism/antagonism in plants. In order to identify proteins involved in this mechanism, water hyacinth plants were divided into groups and supplemented with Hg, Se and a Hg-Se mixture. Proteins involved were identified through a screening separation by SEC-ICPMS followed by SAX-ICPMS and then peptide mapping of selected fractions by nanoLC-ESI-ITMS(2). Determination of total metal concentration showed that Se inhibits Hg translocation from roots to aerial compartments of the plant and that Se and Hg are antagonists to each other in terms of plant toxicity. In roots, stems and leaves Se was distributed mainly in two molecular mass fractions <670 kDa and ∼40 kDa, however, the proportion between these two fractions was inverted when Hg was co-administered. Hg throughout the plant was distributed in high and medium molecular mass compounds. Hg associated with molecules, ranging from <1.5 kDa to 15 kDa, was found in the root extract of Hg(ii) supplemented plants, but was absent in the root extract of Se(iv) and Hg(ii) supplemented plants. SAX showed that Hg and Se were mostly not associated with the same entity, since the complete overlapping of Hg and Se signals in all the peaks of SEC chromatograms was not observed. Changes in Se and Hg levels in water hyacinth were more evident in leaves in contrast to other compartments. Several proteins, possibly associated with either Se or Hg, were identified in roots, stems and leaves. Most of the identified proteins were associated with Hg and located in leaves, and these are associated specifically with chloroplast and mitochondria proteins, related to essential mechanisms in plants such as photosynthesis, carbon fixation and the electron transport chain.

  5. The SERRATE protein is involved in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Stepien, Agata; Kierzkowski, Daniel; Kalak, Malgorzata; Bajczyk, Mateusz; McNicol, Jim; Simpson, Craig G.; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2014-01-01

    How alternative splicing (AS) is regulated in plants has not yet been elucidated. Previously, we have shown that the nuclear cap-binding protein complex (AtCBC) is involved in AS in Arabidopsis thaliana. Here we show that both subunits of AtCBC (AtCBP20 and AtCBP80) interact with SERRATE (AtSE), a protein involved in the microRNA biogenesis pathway. Moreover, using a high-resolution reverse transcriptase-polymerase chain reaction AS system we have found that AtSE influences AS in a similar way to the cap-binding complex (CBC), preferentially affecting selection of 5′ splice site of first introns. The AtSE protein acts in cooperation with AtCBC: many changes observed in the mutant lacking the correct SERRATE activity were common to those observed in the cbp mutants. Interestingly, significant changes in AS of some genes were also observed in other mutants of plant microRNA biogenesis pathway, hyl1-2 and dcl1-7, but a majority of them did not correspond to the changes observed in the se-1 mutant. Thus, the role of SERRATE in AS regulation is distinct from that of HYL1 and DCL1, and is similar to the regulation of AS in which CBC is involved. PMID:24137006

  6. Two Neuronal G Proteins Are Involved in Chemosensation of the Caenorhabditis Elegans Dauer-Inducing Pheromone

    PubMed Central

    Zwaal, R. R.; Mendel, J. E.; Sternberg, P. W.; Plasterk, RHA.

    1997-01-01

    Caenorhabditis elegans uses chemosensation to determine its course of development. Young larvae can arrest as dauer larvae in response to increasing population density, which they measure by a nematode-excreted pheromone, and decreasing food supply. Dauer larvae can resume development in response to a decrease in pheromone and increase in food concentration. We show here that two novel G protein alpha subunits (GPA-2 and GPA-3) show promoter activity in subsets of chemosensory neurons and are involved in the decision to form dauer larvae primarily through the response to dauer pheromone. Dominant activating mutations in these G proteins result in constitutive, pheromone-independent dauer formation, whereas inactivation results in reduced sensitivity to pheromone, and, under certain conditions, an alteration in the response to food. Interactions between gpa-2, gpa-3 and other genes controlling dauer formation suggest that these G proteins may act in parallel to regulate the neuronal decision making that precedes dauer formation. PMID:9055081

  7. The ESCRT-II proteins are involved in shaping the sarcoplasmic reticulum in C. elegans.

    PubMed

    Lefebvre, Christophe; Largeau, Céline; Michelet, Xavier; Fourrage, Cécile; Maniere, Xavier; Matic, Ivan; Legouis, Renaud; Culetto, Emmanuel

    2016-04-01

    The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.

  8. Involvement of dietary bioactive proteins and peptides in autism spectrum disorders.

    PubMed

    Siniscalco, Dario; Antonucci, Nicola

    2013-12-01

    Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neurodevelopmental pathologies. These enigmatic conditions have their origins in the interaction of multiple genes and environmental factors. Dysfunctions in social interactions and communication skills, restricted interests, repetitive and stereotypic verbal and non-verbal behaviours are the main core symptoms. Several biochemical processes are associated with ASDs: oxidative stress; endoplasmic reticulum stress; decreased methylation capacity; limited production of glutathione; mitochondrial dysfunction; intestinal impaired permeability and dysbiosis; increased toxic metal burden; immune dysregulation. Current available treatments for ASDs can be divided into behavioural, nutritional and medical approaches, although no defined standard approach exists. Dietary bioactive proteins and peptides show potential for application as health-promoting agents. Nowadays, increasing studies highlight a key role of bioactive proteins and peptides in ASDs. This review will focus on the state-of-the-art regarding the involvement of dietary bioactive proteins and peptides in ASDs. Identification of novel therapeutic targets for ASD management will be also discussed.

  9. Involvement of F-BOX proteins in progression and development of human malignancies.

    PubMed

    Uddin, Shahab; Bhat, Ajaz A; Krishnankutty, Roopesh; Mir, Fayaz; Kulinski, Michal; Mohammad, Ramzi M

    2016-02-01

    The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.

  10. Involvement of regucalcin as a suppressor protein in human carcinogenesis: insight into the gene therapy.

    PubMed

    Yamaguchi, Masayoshi

    2015-08-01

    Regucalcin, which its gene is located on the X chromosome, plays a multifunctional role as a suppressor protein in cell signal transduction in various types of cells and tissues. The suppression of regucalcin gene expression has been shown to involve in carcinogenesis. Regucalcin gene expression was uniquely downregulated in carcinogenesis of rat liver in vivo, although the expression of other many genes was upregulated, indicating that endogenous regucalcin plays a suppressive role in the development of hepatocarcinogenesis. Overexpression of endogenous regucalcin was found to suppress proliferation of rat cloned hepatoma cells in vitro. Moreover, the regucalcin gene and its protein levels were demonstrated specifically to downregulate in human hepatocellular carcinoma by analysis with multiple gene expression profiles and proteomics. Regucalcin gene expression was also found to suppress in human tumor tissues including kidney, lung, brain, breast and prostate, suggesting that repressed regucalcin gene expression leads to the development of carcinogenesis in various tissues. Regucalcin may play a role as a suppressor protein in carcinogenesis. Overexpression of endogenous regucalcin is suggested to reveal preventive and therapeutic effects on carcinogenesis. Delivery of the regucalcin gene may be a novel useful tool in the gene therapy of carcinogenesis. This review will discuss regarding to an involvement of regucalcin as a suppressor protein in human carcinogenesis in insight into the gene therapy.

  11. NAP-1, Nucleosome assembly protein 1, a histone chaperone involved in Drosophila telomeres.

    PubMed

    López-Panadès, Elisenda; Casacuberta, Elena

    2016-03-01

    Telomere elongation is a function that all eukaryote cells must accomplish in order to guarantee, first, the stability of the end of the chromosomes and second, to protect the genetic information from the inevitable terminal erosion. The targeted transposition of the telomere transposons HeT-A, TART and TAHRE perform this function in Drosophila, while the telomerase mechanism elongates the telomeres in most eukaryotes. In order to integrate telomere maintenance together with cell cycle and metabolism, different components of the cell interact, regulate, and control the proteins involved in telomere elongation. Different partners of the telomerase mechanism have already been described, but in contrast, very few proteins have been related with assisting the telomere transposons of Drosophila. Here, we describe for the first time, the implication of NAP-1 (Nucleosome assembly protein 1), a histone chaperone that has been involved in nuclear transport, transcription regulation, and chromatin remodeling, in telomere biology. We find that Nap-1 and HeT-A Gag, one of the major components of the Drosophila telomeres, are part of the same protein complex. We also demonstrate that their close interaction is necessary to guarantee telomere stability in dividing cells. We further show that NAP-1 regulates the transcription of the HeT-A retrotransposon, pointing to a positive regulatory role of NAP-1 in telomere expression. All these results facilitate the understanding of the transposon telomere maintenance mechanism, as well as the integration of telomere biology with the rest of the cell metabolism.

  12. Enhanced detection of lipid transfer inhibitor protein activity by an assay involving only low density lipoprotein.

    PubMed

    Morton, R E; Greene, D J

    1994-11-01

    Lipid transfer inhibitor protein (LTIP) activity has been typically quantitated by its ability to suppress lipid transfer protein-mediated lipid movement between low density lipoprotein (LDL) and high density lipoprotein (HDL). In an attempt to establish an LTIP activity assay that is more sensitive, we have exploited the reported preference of the inhibitor protein to interact with LDL. A lipid transfer assay was established that involves LDL as both the donor and the acceptor; LDL in one of these two pools was biotinylated to facilitate its removal with immobilized avidin. Compared to the standard LDL to HDL assay, LTIP inhibited lipid transfer from radiolabeled LDL to biotin-LDL 7-fold more. In the absence of LTIP, lipid transfer activity was the same in both assays. An added benefit of this assay was the near linearity (up to 85%) of the inhibitory response, in contrast to the highly curvilinear response of LTIP in LDL to HDL transfer assays. The high sensitivity of the LDL to biotin-LDL transfer assay in measuring LTIP activity could not be duplicated by other transfer assays including assays containing only HDL (HDL to biotin-HDL), assays between liposomes and LDL, or assays between LDL and HDL where the concentration of lipoproteins was reduced 10-fold. Thus, LTIP activity is most effectively measured in homologous lipid transfer assays involving only LDL (and its biotin derivative). This increased sensitivity to LTIP suggests that the inhibitor binds more avidly to the LDL surface than does lipid transfer protein.

  13. Mild copper deficiency alters gene expression of proteins involved in iron metabolism.

    PubMed

    Auclair, Sylvain; Feillet-Coudray, Christine; Coudray, Charles; Schneider, Susanne; Muckenthaler, Martina U; Mazur, Andrzej

    2006-01-01

    Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.

  14. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  15. The involvement of an integrin-like protein and protein kinase C in amoebic adhesion to fibronectin and amoebic cytotoxicity.

    PubMed

    Han, Kyu-Lee; Lee, Hyun-Ju; Shin, Myeong Heon; Shin, Ho-Joon; Im, Kyung-Il; Park, Soon-Jung

    2004-09-01

    Adherence of a pathogen to the host cell is one of the critical steps in microbial infections. Naegleria fowleri, a causative agent of primary amoebic meningoencephalitis in humans, is expected to interact with extracellular components of the host, such as fibronectin, in a receptor-mediated mode. In this study, we investigated the interaction between N. fowleri and fibronectin to understand its cytopathology. In binding assays using immobilized fibronectin, the number of amoebae bound to fibronectin was increased compared to the controls, and was dependent on the amount of coated fibronectin present. A fibronectin binding protein of 60 kDa was found in extracts of N. fowleri. Western blot and immunolocalization assays using integrin alpha(5)/FnR antibodies showed that a 60 kDa protein reacted with the antibodies in extracts of N. fowleri, which was localized on the surface of N. fowleri. Preincubation of N. fowleri with the integrin antibodies significantly inhibited amoebic binding to fibronectin and cytotoxicity to the CHO cells. Additionally, protein kinase C activity was detected in the extract of N. fowleri. When N. fowleri was pretreated with protein kinase C activator or inhibitor, the abilities of amoebic adhesion to fibronectin and cytotoxicity to the host cells were markedly affected compared to untreated amoebae. These results suggest that an amoebic integrin-like receptor and protein kinase C play important roles in amoebic cellular processes in response to fibronectin.

  16. C11orf83, a Mitochondrial Cardiolipin-Binding Protein Involved in bc1 Complex Assembly and Supercomplex Stabilization

    PubMed Central

    Foti, Michelangelo; Raemy, Etienne; Vaz, Frédéric Maxime; Martinou, Jean-Claude; Bairoch, Amos

    2015-01-01

    Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1. PMID:25605331

  17. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    NASA Astrophysics Data System (ADS)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  18. Genetic evidence for an additional function of phage T4 gene 32 protein: interaction with ligase.

    PubMed

    Mosig, G; Breschkin, A M

    1975-04-01

    Gene 32 of bacteriophage T4 is essential for DNA replication, recombination, and repair. In an attempt to clarify the role of the corresponding gene product, we have looked for mutations that specifically inactivate one but not all of its functions and for compensating suppressor mutations in other genes. Here we describe a gene 32 ts mutant that does not produce progeny, but in contrast to an am mutant investigated by others, is capable of some primary and secondary DNA replication and of forming "joint" recombinational intermediates after infection of Escherichia coli B at the restrictive temperature. However, parental and progeny DNA strands are not ligated to covalently linked "recombinant" molecules, and single strands of vegetative DNA do not exceed unit length. Progeny production as well as capacity for covalent linkage in this gene 32 ts mutant are partially restored by additional rII mutations. Suppression by rII depends on functioning host ligase [EC 6.5.1.2; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming, NMN-forming)]. This gene 32 ts mutation (unlike some others) in turn suppresses the characteristic plaque morphology of rII mutants. We conclude that gene 32 protein, in addition to its role in DNA replication and in the formation of "joint" recombinational intermediates, interacts with T4 ligase [EC 6.5.1.1; poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase (AMP-forming)] when recombining DNA strands are covalently linked. The protein of the mutant that we describe here is mainly defective in this interaction, thus inactivating T4 ligase in recombination. Suppressing rII mutations facilitate substitution of host ligase. There is suggestive evidence that these interactions occur at the membrane.

  19. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis.

    PubMed

    Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke; Iino, Noriaki; Ryan, Jennifer J; Zhou, Huilin; Farquhar, Marilyn G

    2008-07-01

    Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.

  20. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-07-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA

  1. An Additional Regulatory Gene for Actinorhodin Production in Streptomyces lividans Involves a LysR-Type Transcriptional Regulator

    PubMed Central

    Martínez-Costa, Oscar H.; Martín-Triana, Angel J.; Martínez, Eduardo; Fernández-Moreno, Miguel A.; Malpartida, Francisco

    1999-01-01

    The sequence of a 4.8-kbp DNA fragment adjacent to the right-hand end of the actinorhodin biosynthetic (act) cluster downstream of actVB-orf6 from Streptomyces coelicolor A3(2) reveals six complete open reading frames, named orf7 to orf12. The deduced amino acid sequences from orf7, orf10, and orf11 show significant similarities with the following products in the databases: a putative protein from the S. coelicolor SCP3 plasmid, LysR-type transcriptional regulators, and proteins belonging to the family of short-chain dehydrogenases/reductases, respectively. The deduced product of orf8 reveals low similarities with several methyltransferases from different sources, while orf9 and orf12 products show no similarities with other known proteins. Disruptions of orf10 and orf11 genes in S. coelicolor appear to have no significant effect on the production of actinorhodin. Nevertheless, disruption or deletion of orf10 in Streptomyces lividans causes actinorhodin overproduction. The introduction of extra copies of orf10 and orf11 genes in an S. coelicolor actIII mutant restores the ability to produce actinorhodin. Transcriptional analysis and DNA footprinting indicate that Orf10 represses its own transcription and regulates orf11 transcription, expression of which might require the presence of an unknown inducer. No DNA target for Orf10 protein was found within the act cluster. PMID:10400594

  2. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2

    PubMed Central

    Xu, Jianwen; Chen, Yihan; Qian, Luofeng; Mu, Rong; Yuan, Xi; Fang, Huimin; Huang, Xi; Xu, Enshun; Zhang, Hongsheng; Huang, Ji

    2017-01-01

    The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3′UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3’UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis. PMID:28174577

  3. New proteins involved in sulfur trafficking in the cytoplasm of Allochromatium vinosum.

    PubMed

    Stockdreher, Yvonne; Sturm, Marga; Josten, Michaele; Sahl, Hans-Georg; Dobler, Nadine; Zigann, Renate; Dahl, Christiane

    2014-05-02

    The formation of periplasmic sulfur globules is an intermediate step during the oxidation of reduced sulfur compounds in various sulfur-oxidizing microorganisms. The mechanism of how this sulfur is activated and crosses the cytoplasmic membrane for further oxidation to sulfite by the dissimilatory reductase DsrAB is incompletely understood, but it has been well documented that the pathway involves sulfur trafficking mediated by sulfur-carrying proteins. So far sulfur transfer from DsrEFH to DsrC has been established. Persulfurated DsrC very probably serves as a direct substrate for DsrAB. Here, we introduce further important players in oxidative sulfur metabolism; the proteins Rhd_2599, TusA, and DsrE2 are strictly conserved in the Chromatiaceae, Chlorobiaceae, and Acidithiobacillaceae families of sulfur-oxidizing bacteria and are linked to genes encoding complexes involved in sulfur oxidation (Dsr or Hdr) in the latter two. Here we show via relative quantitative real-time PCR and microarray analysis an increase of mRNA levels under sulfur-oxidizing conditions for rhd_2599, tusA, and dsrE2 in Allochromatium vinosum. Transcriptomic patterns for the three genes match those of major genes for the sulfur-oxidizing machinery rather than those involved in biosynthesis of sulfur-containing biomolecules. TusA appears to be one of the major proteins in A. vinosum. A rhd_2599-tusA-dsrE2-deficient mutant strain, although not viable in liquid culture, was clearly sulfur oxidation negative upon growth on solid media containing sulfide. Rhd_2599, TusA, and DsrE2 bind sulfur atoms via conserved cysteine residues, and experimental evidence is provided for the transfer of sulfur between these proteins as well as to DsrEFH and DsrC.

  4. A solid-phase immunoassay of protease-resistant prion protein with filtration blotting involving sodium dodecyl sulfate.

    PubMed

    Kobayashi, Yoshiteru; Kohno, Naoyuki; Wanibe, Shoko; Hirayasu, Kazunari; Uemori, Hitoshi; Tagawa, Yuichi; Yokoyama, Takashi; Shinagawa, Morikazu

    2006-02-15

    The precise diagnosis for bovine spongiform encephalopathy (BSE) is crucial for preventing new transmission to humans. Several testing procedures are reported for determining protease-resistant prion protein in various tissues as a major hallmark of prion diseases such as BSE, scrapie, and Creutzfeldt-Jakob disease. However, contamination of materials from tissues or degradation of the specimens sometimes disturbs the accuracy of the assay. Here, we have developed a novel method for solid-phase immunoassay of the disease-specific conformational isoform, PrP(Sc), using filtration blotting of protein in the presence of sodium dodecyl sulfate (SDS) followed by a filtration-based immunoassay with a single anti-prion protein antibody, together with the improved fractionation procedure involving high concentrations of surfactant/detergent. The SDS/heat treatment renders unfolded PrP(Sc) quantitative retention on a polyvinylidene difluoride filter and allows enhancement of the analyte signal with immunodetection; thus, all of the tested specimens are determined with 100% accuracy. In addition, the immunoassay is completed in approximately 1h, indicating its usefulness not only for the screening of BSE specimens but probably also for the postmortem BSE diagnosis of fallen stock as the antibody recognizes the core part of PrP(Sc). The solid-phase immunoassay method, including the filtration blotting with SDS, would be applicable to determining even more sensitively proteins other than PrP(Sc), especially those having rigid conformations.

  5. A conserved motif in S-layer proteins is involved in peptidoglycan binding in Thermus thermophilus.

    PubMed Central

    Olabarría, G; Carrascosa, J L; de Pedro, M A; Berenguer, J

    1996-01-01

    There is experimental evidence to suggest that the 100-kDa S-layer protein from Thermus thermophilus HB8 binds to the peptidoglycan cell wall. This property could be related to the presence of a region (SLH) of homology with other S-layer proteins and extracellular enzymes (A. Lupas, H. Engelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister, J. Bacteriol. 176:1224-1233, 1994). By using specific monoclonal antibodies, we show that similar regions are present in different members of the Deinococcus-Thermus phylogenetic group. To analyze the role that the SLH domain plays in vivo and in vitro in T. thermophilus, we have obtained a mutant form (slpA.X) of the S-layer gene (slpA) in which the SLH domain was deleted. The slpA.X gene was inserted into the chromosome of the thermophile by gene replacement, resulting in a mutant which expressed a major membrane protein with the size expected from the construction (90 kDa). This protein was identified as the product of slpA.X by its differential reaction with monoclonal antibodies. Mutants expressing the SlpA.X protein grow as groups of cells, surrounded by a common external envelope of trigonal symmetry that contains the SlpA.X protein as a main component, thus showing the inability of the SLH-defective protein to attach to the underlying material in vivo. In addition, averaged images of SlpA.X-rich fractions showed a regular arrangement, identical to that built up by the wild-type (SlpA) protein in the absence of peptidoglycan. Finally, we demonstrate by Western blotting (immunoblotting) the direct role of the SLH domain in the binding of the S-layer of T. thermophilus HB8 to the peptidoglycan layer. PMID:8759836

  6. 5 CFR 7501.106 - Additional rules for certain Department employees involved in the regulation or oversight of...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Association (FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC). This section is in addition to... Offices of Investigation, Program Standards and Evaluation, and Regulatory Initiatives and Federal... programs are administered. (3) Mortgage institution means mortgage bankers, mortgage brokers,...

  7. 5 CFR 7501.106 - Additional rules for certain Department employees involved in the regulation or oversight of...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Association (FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC). This section is in addition to... Offices of Investigation, Program Standards and Evaluation, and Regulatory Initiatives and Federal... programs are administered. (3) Mortgage institution means mortgage bankers, mortgage brokers,...

  8. 5 CFR 7501.106 - Additional rules for certain Department employees involved in the regulation or oversight of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Association (FNMA) and the Federal Home Loan Mortgage Corporation (FHLMC). This section is in addition to... Offices of Investigation, Program Standards and Evaluation, and Regulatory Initiatives and Federal... programs are administered. (3) Mortgage institution means mortgage bankers, mortgage brokers,...

  9. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm.

    PubMed

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-11-02

    The silkworm Dominant trimolting (Moltinism, M³) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M³ mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M³ locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M³ and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm.

  10. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  11. Homeodomain Protein Scr Regulates the Transcription of Genes Involved in Juvenile Hormone Biosynthesis in the Silkworm

    PubMed Central

    Meng, Meng; Liu, Chun; Peng, Jian; Qian, Wenliang; Qian, Heying; Tian, Ling; Li, Jiarui; Dai, Dandan; Xu, Anying; Li, Sheng; Xia, Qingyou; Cheng, Daojun

    2015-01-01

    The silkworm Dominant trimolting (Moltinism, M3) mutant undergoes three larval molts and exhibits precocious metamorphosis. In this study, we found that compared with the wild-type (WT) that undergoes four larval molts, both the juvenile hormone (JH) concentration and the expression of the JH-responsive gene Krüppel homolog 1 (Kr-h1) began to be greater in the second instar of the M3 mutant. A positional cloning analysis revealed that only the homeodomain transcription factor gene Sex combs reduced (Scr) is located in the genomic region that is tightly linked to the M3 locus. The expression level of the Scr gene in the brain-corpora cardiaca-corpora allata (Br-CC-CA) complex, which controls the synthesis of JH, was very low in the final larval instar of both the M3 and WT larvae, and exhibited a positive correlation with JH titer changes. Importantly, luciferase reporter analysis and electrophoretic mobility shift assay (EMSA) demonstrated that the Scr protein could promote the transcription of genes involved in JH biosynthesis by directly binding to the cis-regulatory elements (CREs) of homeodomain protein on their promoters. These results conclude that the homeodomain protein Scr is transcriptionally involved in the regulation of JH biosynthesis in the silkworm. PMID:26540044

  12. Identification of ICIS-1, a new protein involved in cilia stability.

    PubMed

    Ponsard, Cecile; Skowron-Zwarg, Marie; Seltzer, Virginie; Perret, Eric; Gallinger, Julia; Fisch, Cathy; Dupuis-Williams, Pascale; Caruso, Nathalie; Middendorp, Sandrine; Tournier, Frederic

    2007-01-01

    Cilia are specialized organelles that exert critical functions in numerous organisms, including that of cell motility, fluid transport and protozoan locomotion. Ciliary architecture and function strictly depend on basal body formation, migration and axoneme elongation. Numerous ultrastructural studies have been undertaken in different species to elucidate the process of ciliogenesis. Recent analyses have led to identification of genes specifically expressed in ciliated organisms, but most proteins involved in ciliogenesis remain uncharacterized. Using human nasal epithelial cells capable of ciliary differentiation in vitro, differential display was carried out to identify new proteins associated with ciliogenesis. We isolated a new gene, ICIS-1 (Involved in CIlia Stability-1), upregulated during mucociliary differentiation. This gene is localized within the TGF-beta1 promoter and is ubiquitously expressed in human tissues. Functional analyses of gene expression inhibition by RNA interference in Paramecium tetraurelia indicated that the ICIS-1 homologue interfered with cilia stability or formation. These findings demonstrate that ICIS-1 is a new protein associated with ciliated cells and potentially related to cilia stability.

  13. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana

    PubMed Central

    Batzenschlager, Morgane; Masoud, Kinda; Janski, Natacha; Houlné, Guy; Herzog, Etienne; Evrard, Jean-Luc; Baumberger, Nicolas; Erhardt, Mathieu; Nominé, Yves; Kieffer, Bruno; Schmit, Anne-Catherine; Chabouté, Marie-Edith

    2013-01-01

    During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown. The γ-TuC Protein 3 (GCP3)-Interacting Protein 1 (GIP1) is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects. In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fiber robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the NE. These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and NE organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum. PMID:24348487

  14. LEA proteins are involved in cyst desiccation resistance and other abiotic stresses in Azotobacter vinelandii.

    PubMed

    Rodriguez-Salazar, Julieta; Moreno, Soledad; Espín, Guadalupe

    2017-03-03

    Late embryogenesis abundant (LEA) proteins constitute a large protein family that is closely associated with resistance to abiotic stresses in multiple organisms and protect cells against drought and other stresses. Azotobacter vinelandii is a soil bacterium that forms desiccation-resistant cysts. This bacterium possesses two genes, here named lea1 and lea2, coding for avLEA1 and avLEA2 proteins, both containing 20-mer motifs characteristic of eukaryotic plant LEA proteins. In this study, we found that disruption of the lea1 gene caused a loss of the cysts' viability after 3 months of desiccation, whereas at 6 months, wild-type or lea2 mutant strain cysts remained viable. Vegetative cells of the lea1 mutant were more sensitive to osmotic stress; cysts developed by this mutant were also more sensitive to high temperatures than cysts or vegetative cells of the wild type or of the lea2 mutant. Expression of lea1 was induced several fold during encystment. In addition, the protective effects of these proteins were assessed in Escherichia coli cells. We found that E. coli cells overexpressing avLEA1 were more tolerant to salt stress than control cells; finally, in vitro analysis showed that avLEA1 protein was able to prevent the freeze thaw-induced inactivation of lactate dehydrogenase. In conclusion, avLEA1 is essential for the survival of A. vinelandii in dry conditions and for protection against hyper-osmolarity, two major stress factors that bacteria must cope with for survival in the environment. This is the first report on the role of bacterial LEA proteins on the resistance of cysts to desiccation.

  15. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  16. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria

    PubMed Central

    2012-01-01

    Background Different systems contributing to copper homeostasis in bacteria have been described in recent years involving periplasmic and transport proteins that provide resistance via metal efflux to the extracellular media (CopA/Cue, Cus, Cut, and Pco). The participation of these proteins in the assembly of membrane, periplasmic and secreted cuproproteins has also been postulated. The integration and interrelation of these systems and their apparent redundancies are less clear since they have been studied in alternative systems. Based on the idea that cellular copper is not free but rather it is transferred via protein-protein interactions, we hypothesized that systems would coevolve and be constituted by set numbers of essential components. Results By the use of a phylogenomic approach we identified the distribution of 14 proteins previously characterized as members of homeostasis systems in the genomes of 268 gamma proteobacteria. Only 3% of the genomes presented the complete systems and 5% of them, all intracellular parasites, lacked the 14 genes. Surprisingly, copper homeostatic pathways did not behave as evolutionary units with particular species assembling different combinations of basic functions. The most frequent functions, and probably because of its distribution the most vital, were copper extrusion from the cytoplasm to the periplasm performed by CopA and copper export from the cytoplasm to the extracellular space performed by CusC, which along with the remaining 12 proteins, assemble in nine different functional repertoires. Conclusions These observations suggest complex evolutionary dynamics and still unexplored interactions to achieve copper homeostasis, challenging some of the molecular transport mechanism proposed for these systems. PMID:23122209

  17. A PerR-like protein involved in response to oxidative stress in the extreme bacterium Deinococcus radiodurans

    SciTech Connect

    Liu, Chengzhi; Wang, Liangyan; Li, Tao; Lin, Lin; Dai, Shang; Tian, Bing Hua, Yuejin

    2014-07-18

    Highlights: • We report a novel PerR-like protein of Fur family in D. radiodurans that is not annotated in the current database. • drperR responses to H{sub 2}O{sub 2} and functions as a negative regulator of katE and dps. • We provided implications on how to utilize sequenced genome data and the importance of genome data mining. • This study adds knowledge to complicated regulatory network that responds to ROS stress in D. radiodurans. - Abstract: Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H{sub 2}O{sub 2}) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H{sub 2}O{sub 2} stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.

  18. A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth

    PubMed Central

    Durante, Ignacio M.; Cámara, María de los Milagros; Buscaglia, Carlos A.

    2015-01-01

    The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites. PMID:26086767

  19. The Arabidopsis Tellurite resistance C protein together with ALB3 is involved in photosystem II protein synthesis.

    PubMed

    Schneider, Anja; Steinberger, Iris; Strissel, Henning; Kunz, Hans-Henning; Manavski, Nikolay; Meurer, Jörg; Burkhard, Gabi; Jarzombski, Sabine; Schünemann, Danja; Geimer, Stefan; Flügge, Ulf-Ingo; Leister, Dario

    2014-04-01

    Assembly of photosystem II (PSII) occurs sequentially and requires several auxiliary proteins, such as ALB3 (ALBINO3). Here, we describe the role of the Arabidopsis thaliana thylakoid membrane protein Tellurite resistance C (AtTerC) in this process. Knockout of AtTerC was previously shown to be seedling-lethal. This phenotype was rescued by expressing TerC fused C-terminally to GFP in the terc-1 background, and the resulting terc-1TerC- GFP line and an artificial miRNA-based knockdown allele (amiR-TerC) were used to analyze the TerC function. The alterations in chlorophyll fluorescence and thylakoid ultrastructure observed in amiR-TerC plants and terc-1TerC- GFP were attributed to defects in PSII. We show that this phenotype resulted from a reduction in the rate of de novo synthesis of PSII core proteins, but later steps in PSII biogenesis appeared to be less affected. Yeast two-hybrid assays showed that TerC interacts with PSII proteins. In particular, its interaction with the PSII assembly factor ALB3 has been demonstrated by co-immunoprecipitation. ALB3 is thought to assist in incorporation of CP43 into PSII via interaction with Low PSII Accumulation2 (LPA2) Low PSII Accumulation3 (LPA3). Homozygous lpa2 mutants expressing amiR-TerC displayed markedly exacerbated phenotypes, leading to seedling lethality, indicating an additive effect. We propose a model in which TerC, together with ALB3, facilitates de novo synthesis of thylakoid membrane proteins, for instance CP43, at the membrane insertion step.

  20. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Moreno, Juan; Mauricio, Juan Carlos

    2015-04-01

    A lack of sugars during the production of biologically aged wines after fermentation of grape must causes flor yeasts to metabolize other carbon molecules formed during fermentation (ethanol and glycerol, mainly). In this work, a proteome analysis involving OFFGEL fractionation prior to LC/MS detection was used to elucidate the carbon metabolism of a flor yeast strain under biofilm formation conditions (BFC). The results were compared with those obtained under non-biofilm formation conditions (NBFC). Proteins associated to processes such as non-fermentable carbon uptake, the glyoxylate and TCA cycles, cellular respiration and inositol metabolism were detected at higher concentrations under BFC than under the reference conditions (NBFC). This study constitutes the first attempt at identifying the flor yeast proteins responsible for the peculiar sensory profile of biologically aged wines. A better metabolic knowledge of flor yeasts might facilitate the development of effective strategies for improved production of these special wines.

  1. Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury.

    PubMed

    Ahn, Jong J; Jung, Jong P; Park, Soon E; Lee, Minhyun; Kwon, Byungsuk; Cho, Hong R

    2015-08-01

    Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-δ (PKC-δ) in ALI has been a controversial topic. Here we investigated PKC-δ function in ALI using PKC-δ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-δ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-δ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-δ-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-δ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-δ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

  2. The H-NS protein is involved in the biogenesis of flagella in Escherichia coli.

    PubMed Central

    Bertin, P; Terao, E; Lee, E H; Lejeune, P; Colson, C; Danchin, A; Collatz, E

    1994-01-01

    The function of the flagellum-chemotaxis regulon requires the expression of many genes and is positively regulated by the cyclic AMP-catabolite activator protein (cAMP-CAP) complex. In this paper, we show that motile behavior was affected in Escherichia coli hns mutants. The loss of motility resulted from a complete lack of flagella. A decrease in the level of transcription of the flhD and fliA genes, which are both required for the synthesis of flagella, was observed in the presence of an hns mutation. Furthermore, the Fla- phenotype was not reversed to the wild type in the presence of a cfs mutation which renders the flagellum synthesis independent of the cAMP-CAP complex. These results suggest that the H-NS protein acts as a positive regulator of genes involved in the biogenesis of flagella by a mechanism independent of the cAMP-CAP pathway. Images PMID:8071234

  3. Tyrosine phosphorylation and protein degradation control the transcriptional activity of WRKY involved in benzylisoquinoline alkaloid biosynthesis

    PubMed Central

    Yamada, Yasuyuki; Sato, Fumihiko

    2016-01-01

    Benzylisoquinoline alkaloids (BIQ) are among the most structurally diverse and pharmaceutically valuable secondary metabolites. A plant-specific WRKY-type transcription factor, CjWRKY1, was isolated from Coptis japonica and identified as a transcriptional activator of BIQ biosynthesis. However, the expression of CjWRKY1 gene alone was not sufficient for the activation of genes encoding biosynthetic enzymes. Here, we report the importance of post-translational regulation of CjWRKY1 in BIQ biosynthesis. First, we detected the differential accumulation of CjWRKY1 protein in two cell lines with similar CjWRKY1 gene expression but different levels of accumulated alkaloids. Further investigation of the WRKY protein identified the phosphorylation of the WRKYGQK core domain at Y115. The CjWRKYY115E phosphorylation-mimic mutant showed loss of nuclear localization, DNA-binding activity, and transactivation activity compared to wild-type CjWRKY1. Rapid degradation of the CjWRKY1 protein was also confirmed following treatment with inhibitors of the 26S proteasome and protease inhibitors. The existence of two independent degradation pathways as well as protein phosphorylation suggests the fine-tuning of CjWRKY1 activities is involved in the regulation of biosynthesis of BIQs. PMID:27552928

  4. Vps41, a protein involved in lysosomal trafficking, interacts with caspase-8.

    PubMed

    Wang, Lu; Pan, Xiao; He, Liangqiang; Zhang, Rong; Chen, Wei; Zhang, Jing; Lu, Min; Hua, Zi-Chun

    2013-01-01

    Caspase-8 is a member of the cysteine-aspartic acid protease (caspase) family which plays a central role in apoptosis and development. We screened caspase-8 interacting proteins from mouse T-cell lymphoma and 7.5-day embryo cDNA libraries by yeast two-hybrid system and obtained eleven positive clones, including Vacuolar protein sorting 41 (Vps41), a protein involved in trafficking of proteins from the late Golgi to the vacuole. The interaction of Vps41 with caspase-8 was confirmed by co-immunoprecipitation (co-IP) and co-localization studies in HEK293T cells. Co-IP experiments also showed that Vps41 binds to the p18 subunit of caspase-8 through its WD40 region and RING-finger motif. Furthermore, we found that overexpression of Vps41 promotes Fas-induced apoptosis in A549 human lung adenocarcinoma cells. The cleavage of caspase-3, a caspase-8 downstream effector, was increased when cells were transfected with Vps41-overexpressing plasmid. Together, these results suggest a novel interaction of caspase-8 with Vps41 and provide a potential role of Vps41 beyond lysosomal trafficking.

  5. Water-soluble chlorophyll protein is involved in herbivore resistance activation during greening of Arabidopsis thaliana

    PubMed Central

    Boex-Fontvieille, Edouard; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Steffen; Reinbothe, Christiane

    2015-01-01

    Water-soluble chlorophyll proteins (WSCPs) constitute a small family of unusual chlorophyll (Chl)-binding proteins that possess a Kunitz-type protease inhibitor domain. In Arabidopsis thaliana, a WSCP has been identified, named AtWSCP, that forms complexes with Chl and the Chl precursor chlorophyllide (Chlide) in vitro. AtWSCP exhibits a quite unexpected expression pattern for a Chl binding protein and accumulated to high levels in the apical hook of etiolated plants. AtWSCP expression was negatively light-regulated. Transgenic expression of AtWSCP fused to green fluorescent protein (GFP) revealed that AtWSCP is localized to cell walls/apoplastic spaces. Biochemical assays identified AtWSCP as interacting with RD21 (RESPONSIVE TO DESICCATION 21), a granulin domain-containing cysteine protease implicated in stress responses and defense. Reconstitution experiments showed tight interactions between RD21 and WSCP that were relieved upon Chlide binding. Laboratory feeding experiments with two herbivorous isopod crustaceans, Porcellio scaber (woodlouse) and Armadillidium vulgare (pillbug), identified the apical hook as Achilles’ heel of etiolated plants and that this was protected by RD21 during greening. Because Chlide is formed in the apical hook during seedling emergence from the soil, our data suggest an unprecedented mechanism of herbivore resistance activation that is triggered by light and involves AtWSCP. PMID:26016527

  6. Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction.

    PubMed

    Kang, Jeong Won; Lee, Na Young; Cho, Kyung-Cho; Lee, Min Young; Choi, Do-Young; Park, Sang-Hyun; Kim, Kwang Pyo

    2015-01-01

    Protein tyrosine nitration (PTN) is a PTM that regulates signal transduction and inflammatory responses, and is related to neurodegenerative and cardiovascular diseases. The cellular function of PTN remains unclear because the low stoichiometry of PTN limits the identification and quantification of nitrated peptides. Effective enrichment is an important aspect of PTN analysis. In this study, we analyzed the in vivo nitroproteome elicited by mating signal transduction in Saccharomyces cerevisiae using a novel chemical enrichment method followed by LC-MS/MS. Nitroproteome profiling successfully identified changes in the nitration states of 14 proteins during mating signal transduction in S. cerevisiae, making this the first reported in vivo nitroproteome in yeast. We investigated the biological functions of these nitroproteins and their relationships to mating signal transduction in S. cerevisiae using a protein-protein interaction network. Our results suggest that PTN and denitration may be involved in nonreactive nitrogen species-mediated signal transduction and can provide clues for understanding the functional roles of PTN in vivo.

  7. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).

    PubMed

    López-Cristoffanini, Camilo; Zapata, Javier; Gaillard, Fanny; Potin, Philippe; Correa, Juan A; Contreras-Porcia, Loretto

    2015-12-01

    Extreme reduction in cellular water content leads to desiccation, which, if persistent, affects the physiology of organisms, mainly through oxidative stress. Some organisms are highly tolerant to desiccation, including resurrection plants and certain intertidal seaweeds. One such species is Pyropia orbicularis, a rhodophycean that colonizes upper intertidal zones along the Chilean coast. Despite long, daily periods of air exposure due to tides, this alga is highly tolerant to desiccation. The present study examined the proteome of P. orbicularis by 2DE and LC-MS/MS analyses to determine the proteins associated with desiccation tolerance (DT). The results showed that, under natural conditions, there were significant changes in the protein profile during low tide as compared to naturally hydrated plants at high tide. These changes were mainly in newly appeared proteins spots such as chaperones, monodehydroascorbate reductase, and manganese superoxide dismutase, among others. Previously undescribed proteins under desiccation conditions included phycobiliproteins, glyoxalase I, and phosphomannomutase. These changes evidenced that several physiological responses involved in DT are activated during low tide, including decreased photosynthetic activity, increased antioxidant capacity, and the preservation of cell physiology by regulating water content, cell wall structure, and cell volume. Similar responses have been observed in resurrection plants and bryophytes exposed to desiccation. Therefore, the coordinated activation of different desiccation tolerance pathways in P. orbicularis could explain the successful biological performance of this seaweed in the upper intertidal rocky zones.

  8. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins.

    PubMed

    Li, Junlin; Zhao, Guifang; Gao, Xiaocai

    2013-02-20

    Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.

  9. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis.

    PubMed

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael

    2011-05-01

    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (<10 W/m(2)) and a negative one at higher irradiances (>10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  10. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids.

    PubMed

    Li, Mei-Chun; Wu, Qinglin; Song, Kunlin; Lee, Sunyoung; Jin, Chunde; Ren, Suxia; Lei, Tingzhou

    2015-11-11

    Wellbore instability and formation collapse caused by lost circulation are vital issues during well excavation in the oil industry. This study reports the novel utilization of soy protein isolate (SPI) as fluid loss additive in bentonite-water based drilling fluids (BT-WDFs) and describes how its particle size and concentration influence on the filtration property of SPI/BT-WDFs. It was found that high pressure homogenization (HPH)-treated SPI had superior filtration property over that of native SPI due to the improved ability for the plugging pore throat. HPH treatment also caused a significant change in the surface characteristic of SPI, leading to a considerable surface interaction with BT in aqueous solution. The concentration of SPI had a significant impact on the dispersion state of SPI/BT mixtures in aquesous solution. At low SPI concentrations, strong aggregations were created, resulting in the formation of thick, loose, high-porosity and high-permeability filter cakes and high fluid loss. At high SPI concentrations, intercatlated/exfoliated structures were generated, resulting in the formation of thin, compact, low-porosity and low-permeability filter cakes and low fluid loss. The SPI/BT-WDFs exhibited superior filtration property than pure BT-WDFs at the same solid concentraion, demonstrating the potential utilization of SPI as an effective, renewable, and biodegradable fluid loss reducer in well excavation applications.

  11. Use of additives to enhance the properties of cottonseed protein as wood adhesives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy protein is currently being used commercially as a “green” wood adhesive. Previous work in this laboratory has shown that cottonseed protein isolate, tested on maple wood veneer, produced higher adhesive strength and hot water resistance relative to soy protein. In the present study, cottonseed...

  12. Apparent anti-Woodward-Hoffmann addition to a nickel bis(dithiolene) complex: the reaction mechanism involves reduced, dimetallic intermediates.

    PubMed

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Harrison, Daniel J; Alak, Aiman; Lough, Alan J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2013-04-01

    Nickel dithiolene complexes have been proposed as electrocatalysts for alkene purification. Recent studies of the ligand-based reactions of Ni(tfd)2 (tfd = S2C2(CF3)2) and its anion [Ni(tfd)2](-) with alkenes (ethylene and 1-hexene) showed that in the absence of the anion, the reaction proceeds most rapidly to form the intraligand adduct, which decomposes by releasing a substituted dihydrodithiin. However, the presence of the anion increases the rate of formation of the stable cis-interligand adduct, and decreases the rate of dihydrodithiin formation and decomposition. In spite of both computational and experimental studies, the mechanism, especially the role of the anion, remained somewhat elusive. We are now providing a combined experimental and computational study that addresses the mechanism and explains the role of the anion. A kinetic study (global analysis) for the reaction of 1-hexene is reported, which supports the following mechanism: (1) reversible intraligand addition, (2) oxidation of the intraligand addition product prior to decomposition, and (3) interligand adduct formation catalyzed by Ni(tfd)2(-). Density functional theory (DFT) calculations were performed on the Ni(tfd)2/Ni(tfd)2(-)/ethylene system to shed light on the selectivity of adduct formation in the absence of anion and on the mechanism in which Ni(tfd)2(-) shifts the reaction from intraligand addition to interligand addition. Computational results show that in the neutral system the free energy of activation for intraligand addition is lower than that for interligand addition, in agreement with the experimental results. The computations predict that the anion enhances the rate of the cis-interligand adduct formation by forming a dimetallic complex with the neutral complex. The [(Ni(tfd)2)2](-) dimetallic complex then coordinates ethylene and isomerizes to form a Ni,S-bound ethylene complex, which then rapidly isomerizes to the stable interligand adduct but not to the intraligand adduct

  13. Additional Evidence of the Trypanocidal Action of (−)-Elatol on Amastigote Forms through the Involvement of Reactive Oxygen Species

    PubMed Central

    Desoti, Vânia Cristina; Lazarin-Bidóia, Danielle; Sudatti, Daniela Bueno; Pereira, Renato Crespo; Ueda-Nakamura, Tania; Nakamura, Celso Vataru; de Oliveira Silva, Sueli

    2014-01-01

    Chagas’ disease, a vector-transmitted infectious disease, is caused by the protozoa parasite Trypanosoma cruzi. Drugs that are currently available for the treatment of this disease are unsatisfactory, making the search for new chemotherapeutic agents a priority. We recently described the trypanocidal action of (−)-elatol, extracted from the macroalga Laurencia dendroidea. However, nothing has been described about the mechanism of action of this compound on amastigotes that are involved in the chronic phase of Chagas’ disease. The goal of the present study was to evaluate the effect of (−)-elatol on the formation of superoxide anions (O2•−), DNA fragmentation, and autophagy in amastigotes of T. cruzi to elucidate the possible mechanism of the trypanocidal action of (−)-elatol. Treatment of the amastigotes with (−)-elatol increased the formation of O2•− at all concentrations of (−)-elatol assayed compared with untreated parasites. Increased fluorescence was observed in parasites treated with (−)-elatol, indicating DNA fragmentation and the formation of autophagic compartments. The results suggest that the trypanocidal action of (−)-elatol might involve the induction of the autophagic and apoptotic death pathways triggered by an imbalance of the parasite’s redox metabolism. PMID:25257785

  14. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi.

    PubMed

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant'Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-12-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi.

  15. Replication Protein A Presents Canonical Functions and Is Also Involved in the Differentiation Capacity of Trypanosoma cruzi

    PubMed Central

    Pavani, Raphael Souza; da Silva, Marcelo Santos; Fernandes, Carlos Alexandre Henrique; Morini, Flavia Souza; Araujo, Christiane Bezerra; Fontes, Marcos Roberto de Mattos; Sant’Anna, Osvaldo Augusto; Machado, Carlos Renato; Cano, Maria Isabel; Fragoso, Stenio Perdigão; Elias, Maria Carolina

    2016-01-01

    Replication Protein A (RPA), the major single stranded DNA binding protein in eukaryotes, is composed of three subunits and is a fundamental player in DNA metabolism, participating in replication, transcription, repair, and the DNA damage response. In human pathogenic trypanosomatids, only limited studies have been performed on RPA-1 from Leishmania. Here, we performed in silico, in vitro and in vivo analysis of Trypanosoma cruzi RPA-1 and RPA-2 subunits. Although computational analysis suggests similarities in DNA binding and Ob-fold structures of RPA from T. cruzi compared with mammalian and fungi RPA, the predicted tridimensional structures of T. cruzi RPA-1 and RPA-2 indicated that these molecules present a more flexible tertiary structure, suggesting that T. cruzi RPA could be involved in additional responses. Here, we demonstrate experimentally that the T. cruzi RPA complex interacts with DNA via RPA-1 and is directly related to canonical functions, such as DNA replication and DNA damage response. Accordingly, a reduction of TcRPA-2 expression by generating heterozygous knockout cells impaired cell growth, slowing down S-phase progression. Moreover, heterozygous knockout cells presented a better efficiency in differentiation from epimastigote to metacyclic trypomastigote forms and metacyclic trypomastigote infection. Taken together, these findings indicate the involvement of TcRPA in the metacyclogenesis process and suggest that a delay in cell cycle progression could be linked with differentiation in T. cruzi. PMID:27984589

  16. PKD1 Protein Is Involved in Reactive Oxygen Species-mediated Mitochondrial Depolarization in Cooperation with Protein Kinase Cδ (PKCδ)*

    PubMed Central

    Zhang, Thianzhou; Sell, Philip; Braun, Ursula; Leitges, Michael

    2015-01-01

    In this study, we used gene targeting in mice to identify the in vivo functions of PKD1. In addition to phenotypically characterizing the resulting knock-out animals, we also used mouse embryonic fibroblasts to investigate the associated signaling pathways in detail. This study is the first to use genetic deletion to reveal that PKD1 is a key regulator involved in determining the threshold of mitochondrial depolarization that leads to the production of reactive oxygen species. In addition, we also provide clear evidence that PKCδ is upstream of PKD1 in this process and acts as the activating kinase of PKD1. Therefore, our in vivo data indicate that PKD1 functions not only in the context of aging but also during nutrient deprivation, which occurs during specific phases of tumor growth. PMID:25759386

  17. STAT5 proteins are involved in down-regulation of iron regulatory protein 1 gene expression by nitric oxide.

    PubMed

    Starzynski, Rafal Radoslaw; Gonçalves, Ana Sofia; Muzeau, Françoise; Tyrolczyk, Zofia; Smuda, Ewa; Drapier, Jean-Claude; Beaumont, Carole; Lipinski, Pawel

    2006-12-01

    RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression.

  18. Spa2p Interacts with Cell Polarity Proteins and Signaling Components Involved in Yeast Cell Morphogenesis

    PubMed Central

    Sheu, Yi-Jun; Santos, Beatriz; Fortin, Nathalie; Costigan, Christine; Snyder, Michael

    1998-01-01

    The yeast protein Spa2p localizes to growth sites and is important for polarized morphogenesis during budding, mating, and pseudohyphal growth. To better understand the role of Spa2p in polarized growth, we analyzed regions of the protein important for its function and proteins that interact with Spa2p. Spa2p interacts with Pea2p and Bud6p (Aip3p) as determined by the two-hybrid system; all of these proteins exhibit similar localization patterns, and spa2Δ, pea2Δ, and bud6Δ mutants display similar phenotypes, suggesting that these three proteins are involved in the same biological processes. Coimmunoprecipitation experiments demonstrate that Spa2p and Pea2p are tightly associated with each other in vivo. Velocity sedimentation experiments suggest that a significant portion of Spa2p, Pea2p, and Bud6p cosediment, raising the possibility that these proteins form a large, 12S multiprotein complex. Bud6p has been shown previously to interact with actin, suggesting that the 12S complex functions to regulate the actin cytoskeleton. Deletion analysis revealed that multiple regions of Spa2p are involved in its localization to growth sites. One of the regions involved in Spa2p stability and localization interacts with Pea2p; this region contains a conserved domain, SHD-II. Although a portion of Spa2p is sufficient for localization of itself and Pea2p to growth sites, only the full-length protein is capable of complementing spa2 mutant defects, suggesting that other regions are required for Spa2p function. By using the two-hybrid system, Spa2p and Bud6p were also found to interact with components of two mitogen-activated protein kinase (MAPK) pathways important for polarized cell growth. Spa2p interacts with Ste11p (MAPK kinase [MEK] kinase) and Ste7p (MEK) of the mating signaling pathway as well as with the MEKs Mkk1p and Mkk2p of the Slt2p (Mpk1p) MAPK pathway; for both Mkk1p and Ste7p, the Spa2p-interacting region was mapped to the N-terminal putative regulatory domain

  19. Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth.

    PubMed

    Sundararajan, A; Kurowski, J; Yan, T; Klingeman, D M; Joachimiak, M P; Zhou, J; Naranjo, B; Gralnick, J A; Fields, M W

    2011-07-01

    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S

  20. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion

    PubMed Central

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis. PMID:27909410

  1. Mechanosensitive Molecular Networks Involved in Transducing Resistance Exercise-Signals into Muscle Protein Accretion.

    PubMed

    Rindom, Emil; Vissing, Kristian

    2016-01-01

    Loss of skeletal muscle myofibrillar protein with disease and/or inactivity can severely deteriorate muscle strength and function. Strategies to counteract wasting of muscle myofibrillar protein are therefore desirable and invite for considerations on the potential superiority of specific modes of resistance exercise and/or the adequacy of low load resistance exercise regimens as well as underlying mechanisms. In this regard, delineation of the potentially mechanosensitive molecular mechanisms underlying muscle protein synthesis (MPS), may contribute to an understanding on how differentiated resistance exercise can transduce a mechanical signal into stimulation of muscle accretion. Recent findings suggest specific upstream exercise-induced mechano-sensitive myocellular signaling pathways to converge on mammalian target of rapamycin complex 1 (mTORC1), to influence MPS. This may e.g. implicate mechanical activation of signaling through a diacylglycerol kinase (DGKζ)-phosphatidic acid (PA) axis or implicate integrin deformation to signal through a Focal adhesion kinase (FAK)-Tuberous Sclerosis Complex 2 (TSC2)-Ras homolog enriched in brain (Rheb) axis. Moreover, since initiation of translation is reliant on mRNA, it is also relevant to consider potentially mechanosensitive signaling pathways involved in muscle myofibrillar gene transcription and whether some of these pathways converge with those affecting mTORC1 activation for MPS. In this regard, recent findings suggest how mechanical stress may implicate integrin deformation and/or actin dynamics to signal through a Ras homolog gene family member A protein (RhoA)-striated muscle activator of Rho signaling (STARS) axis or implicate deformation of Notch to affect Bone Morphogenetic Protein (BMP) signaling through a small mother of decapentaplegic (Smad) axis.

  2. Sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition.

    PubMed

    Arsa, Supeeraya; Theerakulkait, Chockchai

    2015-08-01

    The sensory aroma characteristics of alcalase hydrolyzed rice bran protein concentrate as affected by spray drying and sugar addition were investigated. Rice bran protein concentrate (RBPC) was hydrolyzed by alcalase. Sucrose, glucose or fructose was added to the liquid rice bran protein hydrolysate (LRBPH) and subsequently spray dried. The sensory aroma intensities of the hydrolysates were evaluated. Results showed that after spray drying, the rice bran protein concentrate powder (RBPC-P) had higher sweet and cocoa-like aroma intensities than RBPC (p ≤ 0.05) and hydrolyzed rice bran protein powder (HRBPP) had higher milk powder-like aroma intensities than LRBPH (p ≤ 0.05). The sweet, cocoa-like and milk powder-like aroma intensities in hydrolyzed rice bran protein powder with fructose addition (HRBPP-F) were significantly higher (p ≤ 0.05) than those of hydrolyzed rice bran protein powder with sucrose or glucose addition (HRBPP-S or HRBPP-G). HRBPP-F had the highest overall aroma liking score. These results also indicate that spray drying and sugar addition could improve the sensory aroma characteristics of alcalase hydrolyzed RBPC.

  3. Interactions involved in pH protection of the alphavirus fusion protein

    SciTech Connect

    Fields, Whitney; Kielian, Margaret

    2015-12-15

    The alphavirus membrane protein E1 mediates low pH-triggered fusion of the viral and endosome membranes during virus entry. During virus biogenesis E1 associates as a heterodimer with the transmembrane protein p62. Late in the secretory pathway, cellular furin cleaves p62 to the mature E2 protein and a peripheral protein E3. E3 remains bound to E2 at low pH, stabilizing the heterodimer and thus protecting E1 from the acidic pH of the secretory pathway. Release of E3 at neutral pH then primes the virus for fusion during entry. Here we used site-directed mutagenesis and revertant analysis to define residues important for the interactions at the E3–E2 interface. Our data identified a key residue, E2 W235, which was required for E1 pH protection and alphavirus production. Our data also suggest additional residues on E3 and E2 that affect their interacting surfaces and thus influence the pH protection of E1 during alphavirus exit.

  4. Quantitative LC-MS/MS Analysis of Proteins Involved in Metastasis of Breast Cancer

    PubMed Central

    Goto, Rieko; Nakamura, Yasushi; Takami, Tomonori; Sanke, Tokio; Tozuka, Zenzaburo

    2015-01-01

    The purpose of this study was to develop quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods for the analysis of proteins involved in metastasis of breast cancer for diagnosis and determining disease prognosis, as well as to further our understand of metastatic mechanisms. We have previously demonstrated that the protein type XIV collagen may be specifically expressed in metastatic tissues by two dimensional LC-MS/MS. In this study, we developed quantitative LC-MS/MS methods for type XIV collagen. Type XIV collagen was quantified by analyzing 2 peptides generated by digesting type XIV collagen using stable isotope-labeled peptides. The individual concentrations were equivalent between 2 different peptides of type XIV collagen by evaluation of imprecise transitions and using the best transition for the peptide concentration. The results indicated that type XIV collagen is highly expressed in metastatic tissues of patients with massive lymph node involvement compared to non-metastatic tissues. These findings were validated by quantitative real-time RT-PCR. Further studies on type XIV collagen are desired to verify its role as a prognostic factor and diagnosis marker for metastasis. PMID:26176947

  5. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria.

    PubMed

    Li, Weizhi; Gao, Hong; Yin, Chuntao; Xu, Xudong

    2012-09-01

    In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.

  6. A Feed Forward Loop Involving Protein Kinase C Alpha and MicroRNAs Regulates Tumor Cell Cycle

    PubMed Central

    Cohen, Ezra Eddy Wyssam; Zhu, Hongyan; Lingen, Mark W.; Martin, Leslie E.; Kuo, Wen-Liang; Choi, Eugene A.; Kocherginsky, Masha; Parker, Joel S.; Chung, Christine H.; Rosner, Marsha Rich

    2009-01-01

    Protein Kinase C alpha (PKCα) has been implicated in cancer but the mechanism is largely unknown. Here we show that PKCα promotes head and neck squamous cell carcinoma (SCCHN) by a feed forward network leading to cell cycle deregulation. PKCα inhibitors decrease proliferation in SCCHN cell lines and xenografted tumors. PKCα inhibition or depletion in tumor cells decreases DNA synthesis by suppressing ERK phosphorylation and cyclin E synthesis. Additionally, PKCα down-regulates miR-15a, a microRNA that directly inhibits protein synthesis of cyclin E as well as other cell cycle regulators. Furthermore, both PKCα and cyclin E protein expression are increased in primary tumors, and PKCα inversely correlates with miR15a expression in primary tumors. Finally, PKCα is associated with poor prognosis in SCCHN. These results identify PKCα as a key regulator of HNSCC tumor cell growth by a mechanism involving activation of MAP kinase, an initiator of the cell cycle, and suppression of miR-15a, an inhibitor of DNA synthesis. Although the specific components may be different, this type of feed forward loop network, consisting of a stimulus that activates a positive signal and removes a negative brake, is likely to be a general one that enables induction of DNA synthesis by a variety of growth or oncogenic stimuli. PMID:19117988

  7. Cannabidiol promotes amyloid precursor protein ubiquitination and reduction of beta amyloid expression in SHSY5YAPP+ cells through PPARγ involvement.

    PubMed

    Scuderi, Caterina; Steardo, Luca; Esposito, Giuseppe

    2014-07-01

    The amyloidogenic cascade is regarded as a key factor at the basis of Alzheimer's disease (AD) pathogenesis. The aberrant cleavage of amyloid precursor protein (APP) induces an increased production and a subsequent aggregation of beta amyloid (Aβ) peptide in limbic and association cortices. As a result, altered neuronal homeostasis and oxidative injury provoke tangle formation with consequent neuronal loss. Cannabidiol (CBD), a Cannabis derivative devoid of psychotropic effects, has attracted much attention because it may beneficially interfere with several Aβ-triggered neurodegenerative pathways, even though the mechanism responsible for such actions remains unknown. In the present research, the role of CBD was investigated as a possible modulating compound of APP processing in SHSY5Y(APP+) neurons. In addition, the putative involvement of peroxisome proliferator-activated receptor-γ (PPARγ) was explored as a candidate molecular site responsible for CBD actions. Results indicated the CBD capability to induce the ubiquitination of APP protein which led to a substantial decrease in APP full length protein levels in SHSY5Y(APP+) with the consequent decrease in Aβ production. Moreover, CBD promoted an increased survival of SHSY5Y(APP+) neurons, by reducing their long-term apoptotic rate. Obtained results also showed that all, here observed, CBD effects were dependent on the selective activation of PPARγ.

  8. Anaerobic alkane biodegradation by cultures enriched from oil sands tailings ponds involves multiple species capable of fumarate addition.

    PubMed

    Tan, BoonFei; Semple, Kathleen; Foght, Julia

    2015-05-01

    A methanogenic short-chain alkane-degrading culture (SCADC) was enriched from oil sands tailings and transferred several times with a mixture of C6, C7, C8 and C10 n-alkanes as the predominant organic carbon source, plus 2-methylpentane, 3-methylpentane and methylcyclopentane as minor components. Cultures produced ∼40% of the maximum theoretical methane during 18 months incubation while depleting the n-alkanes, 2-methylpentane and methylcyclopentane. Substrate depletion correlated with detection of metabolites characteristic of fumarate activation of 2-methylpentane and methylcyclopentane, but not n-alkane metabolites. During active methanogenesis with the mixed alkanes, reverse-transcription PCR confirmed the expression of functional genes (assA and bssA) associated with hydrocarbon addition to fumarate. Pyrosequencing of 16S rRNA genes amplified during active alkane degradation revealed enrichment of Clostridia (particularly Peptococcaceae) and methanogenic Archaea (Methanosaetaceae and Methanomicrobiaceae). Methanogenic cultures transferred into medium containing sulphate produced sulphide, depleted n-alkanes and produced the corresponding succinylated alkane metabolites, but were slow to degrade 2-methylpentane and methylcyclopentane; these cultures were enriched in Deltaproteobacteria rather than Clostridia. 3-Methylpentane was not degraded by any cultures. Thus, nominally methanogenic oil sands tailings harbour dynamic and versatile hydrocarbon-degrading fermentative syntrophs and sulphate reducers capable of degrading n-, iso- and cyclo-alkanes by addition to fumarate.

  9. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

    PubMed

    Urrea, Laura; Segura-Feliu, Miriam; Masuda-Suzukake, Masami; Hervera, Arnau; Pedraz, Lucas; Aznar, José Manuel García; Vila, Miquel; Samitier, Josep; Torrents, Eduard; Ferrer, Isidro; Gavín, Rosalina; Hagesawa, Masato; Del Río, José Antonio

    2017-02-22

    The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP(C)-overexpressing mice. In addition, α-synuclein binds strongly on PrP(C)-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

  10. A novel pax-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia.

    PubMed

    Wang, Yi-Ting; Pan, Yu-Jiao; Cho, Chao-Cheng; Lin, Bo-Chi; Su, Li-Hsin; Huang, Yu-Chang; Sun, Chin-Hung

    2010-10-15

    Giardia lamblia differentiates into infectious cysts to survive outside of the host. It is of interest to identify factors involved in up-regulation of cyst wall proteins (CWPs) during this differentiation. Pax proteins are important regulators of development and cell differentiation in Drosophila and vertebrates. No member of this gene family has been reported to date in yeast, plants, or protozoan parasites. We have identified a pax-like gene (pax1) encoding a putative paired domain in the G. lamblia genome. Epitope-tagged Pax1 localized to nuclei during both vegetative growth and encystation. Recombinant Pax1 specifically bound to the AT-rich initiator elements of the encystation-induced cwp1 to -3 and myb2 genes. Interestingly, overexpression of Pax1 increased cwp1 to -3 and myb2 gene expression and cyst formation. Deletion of the C-terminal paired domain or mutation of the basic amino acids of the paired domain resulted in a decrease of the transactivation function of Pax1. Our results indicate that the Pax family has been conserved during evolution, and Pax1 could up-regulate the key encystation-induced genes to regulate differentiation of the protozoan eukaryote, G. lamblia.

  11. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Kocan, Katherine M; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10-15% and 65-71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  12. Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis

    PubMed Central

    Kocan, Katherine M.; Bonzón-Kulichenko, Elena; Alberdi, Pilar; Blouin, Edmour F.; Weisheit, Sabine; Mateos-Hernández, Lourdes; Cabezas-Cruz, Alejandro; Bell-Sakyi, Lesley; Vancová, Marie; Bílý, Tomáš; Meyer, Damien F.; Sterba, Jan; Contreras, Marinela; Rudenko, Nataliia; Grubhoffer, Libor; Vázquez, Jesús; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10–15% and 65–71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface

  13. Diverse C-terminal sequences involved in Flavobacterium johnsoniae protein secretion.

    PubMed

    Kulkarni, Surashree S; Zhu, Yongtao; Brendel, Colton J; McBride, Mark J

    2017-04-10

    Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to family TIGR04183 (type-A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign protein sfGFP that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case approximately 80 to 100 amino acids from the extreme carboxy-termini was needed for efficient secretion. Several type-A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type-A CTD. It has a conserved C-terminal domain belonging to family TIGR04131, which we refer to as a type-B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1182 amino acids to sfGFP failed to result in secretion. Additional features outside of the C-terminal region of SprB may be required for its secretion.Importance Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to either protein domain family TIGR04183 (type-A CTDs) or TIGR04131 (type-B CTDs). Here we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type-A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the foreign protein sfGFP. In contrast, type-B CTDs failed

  14. Unconventional N-H…N Hydrogen Bonds Involving Proline Backbone Nitrogen in Protein Structures.

    PubMed

    Deepak, R N V Krishna; Sankararamakrishnan, Ramasubbu

    2016-05-10

    Contrary to DNA double-helical structures, hydrogen bonds (H-bonds) involving nitrogen as the acceptor are not common in protein structures. We systematically searched N-H…N H-bonds in two different sets of protein structures. Data set I consists of neutron diffraction and ultrahigh-resolution x-ray structures (0.9 Å resolution or better) and the hydrogen atom positions in these structures were determined experimentally. Data set II contains structures determined using x-ray diffraction (resolution ≤ 1.8 Å) and the positions of hydrogen atoms were generated using a computational method. We identified 114 and 14,347 potential N-H…N H-bonds from these two data sets, respectively, and 56-66% of these were of the Ni+1-Hi+1…Ni type, with Ni being the proline backbone nitrogen. To further understand the nature of such unusual contacts, we performed quantum chemical calculations on the model compound N-acetyl-L-proline-N-methylamide (Ace-Pro-NMe) with coordinates taken from the experimentally determined structures. A potential energy profile generated by varying the ψ dihedral angle in Ace-Pro-NMe indicates that the conformation with the N-H…N H-bond is the most stable. An analysis of H-bond-forming proline residues reveals that more than 30% of the proline carbonyl groups are also involved in n → π(∗) interactions with the carbonyl carbon of the preceding residue. Natural bond orbital analyses demonstrate that the strength of N-H…N H-bonds is less than half of that observed for a conventional H-bond. This study clearly establishes the H-bonding capability of proline nitrogen and its prevalence in protein structures. We found many proteins with multiple instances of H-bond-forming prolines. With more than 15% of all proline residues participating in N-H…N H-bonds, we suggest a new, to our knowledge, structural role for proline in providing stability to loops and capping regions of secondary structures in proteins.

  15. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling.

    PubMed

    Inda, Carolina; Dos Santos Claro, Paula A; Bonfiglio, Juan J; Senin, Sergio A; Maccarrone, Giuseppina; Turck, Christoph W; Silberstein, Susana

    2016-07-18

    Corticotropin-releasing hormone receptor 1 (CRHR1) activates G protein-dependent and internalization-dependent signaling mechanisms. Here, we report that the cyclic AMP (cAMP) response of CRHR1 in physiologically relevant scenarios engages separate cAMP sources, involving the atypical soluble adenylyl cyclase (sAC) in addition to transmembrane adenylyl cyclases (tmACs). cAMP produced by tmACs and sAC is required for the acute phase of extracellular signal regulated kinase 1/2 activation triggered by CRH-stimulated CRHR1, but only sAC activity is essential for the sustained internalization-dependent phase. Thus, different cAMP sources are involved in different signaling mechanisms. Examination of the cAMP response revealed that CRH-activated CRHR1 generates cAMP after endocytosis. Characterizing CRHR1 signaling uncovered a specific link between CRH-activated CRHR1, sAC, and endosome-based signaling. We provide evidence of sAC being involved in an endocytosis-dependent cAMP response, strengthening the emerging model of GPCR signaling in which the cAMP response does not occur exclusively at the plasma membrane and introducing the notion of sAC as an alternative source of cAMP.

  16. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    PubMed Central

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs. PMID:28054562

  17. Interatomic Coulombic Decay Effects in Theoretical DNA Recombination Systems Involving Protein Interaction Sites

    NASA Astrophysics Data System (ADS)

    Vargas, E. L.; Rivas, D. A.; Duot, A. C.; Hovey, R. T.; Andrianarijaona, V. M.

    2015-03-01

    DNA replication is the basis for all biological reproduction. A strand of DNA will ``unzip'' and bind with a complimentary strand, creating two identical strands. In this study, we are considering how this process is affected by Interatomic Coulombic Decay (ICD), specifically how ICD affects the individual coding proteins' ability to hold together. ICD mainly deals with how the electron returns to its original state after excitation and how this affects its immediate atomic environment, sometimes affecting the connectivity between interaction sites on proteins involved in the DNA coding process. Biological heredity is fundamentally controlled by DNA and its replication therefore it affects every living thing. The small nature of the proteins (within the range of nanometers) makes it a good candidate for research of this scale. Understanding how ICD affects DNA molecules can give us invaluable insight into the human genetic code and the processes behind cell mutations that can lead to cancer. Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

  18. Plasmodium falciparum proteins involved in cytoadherence of infected erythrocytes to chemokine CX3CL1

    PubMed Central

    Hermand, Patricia; Cicéron, Liliane; Pionneau, Cédric; Vaquero, Catherine; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Malaria caused by Plasmodium falciparum is associated with cytoadherence of infected red blood cells (iRBC) to endothelial cells. Numerous host molecules have been involved in cytoadherence, including the adhesive chemokine CX3CL1. Most of the identified parasite ligands are from the multigenic and hypervariable Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family which makes them poor targets for the development of a broadly protective vaccine. Using proteomics, we have identified two 25-kDa parasite proteins with adhesive properties for CX3CL1, called CBP for CX3CL1 Binding Proteins. CBPs are coded by single-copy genes with little polymorphic variation and no homology with other P. falciparum gene products. Specific antibodies raised against epitopes from the predicted extracellular domains of each CBP efficiently stain the surface of RBC infected with trophozoites or schizonts, which is a strong indication of CBP expression at the surface of iRBC. These anti-CBP antibodies partially neutralize iRBC adherence to CX3CL1. This adherence is similarly inhibited in the presence of peptides from the CBP extracellular domains, while irrelevant peptides had no such effect. CBP1 and CBP2 are new P. falciparum ligands for the human chemokine CX3CL1. The identification of this non-polymorphic P. falciparum factors provides a new avenue for innovative vaccination approaches. PMID:27653778

  19. A novel protein involved in heart development in Ambystoma mexicanum is localized in endoplasmic reticulum.

    PubMed

    Jia, P; Zhang, C; Huang, X P; Poda, M; Akbas, F; Lemanski, S L; Erginel-Unaltuna, N; Lemanski, L F

    2008-11-01

    The discovery of the naturally occurring cardiac non-function (c) animal strain in Ambystoma mexicanum (axolotl) provides a valuable animal model to study cardiomyocyte differentiation. In homozygous mutant animals (c/c), rhythmic contractions of the embryonic heart are absent due to a lack of organized myofibrils. We have previously cloned a partial sequence of a peptide cDNA (N1) from an anterior-endoderm-conditioned-medium RNA library that had been shown to be able to rescue the mutant phenotype. In the current studies we have fully cloned the N1 full length cDNA sequence from the library. N1 protein has been detected in both adult heart and skeletal muscle but not in any other adult tissues. GFP-tagged expression of the N1 protein has revealed localization of the N1 protein in the endoplasmic reticulum (ER). Results from in situ hybridization experiments have confirmed the dramatic decrease of expression of N1 mRNA in mutant (c/c) embryos indicating that the N1 gene is involved in heart development.

  20. Arabidopsis Membrane Steroid Binding Protein 1 Is Involved in Inhibition of Cell ElongationW⃞

    PubMed Central

    Yang, Xiao-Hua; Xu, Zhi-Hong; Xue, Hong-Wei

    2005-01-01

    A putative Membrane Steroid Binding Protein (designated MSBP1) was identified and functionally characterized as a negative regulator of cell elongation in Arabidopsis thaliana. The MSBP1 gene encodes a 220–amino acid protein that can bind to progesterone, 5-dihydrotestosterone, 24-epi-brassinolide (24-eBL), and stigmasterol with different affinities in vitro. Transgenic plants overexpressing MSBP1 showed short hypocotyl phenotype and increased steroid binding capacity in membrane fractions, whereas antisense MSBP1 transgenic plants showed long hypocotyl phenotypes and reduced steroid binding capacity, indicating that MSBP1 negatively regulates hypocotyl elongation. The reduced cell elongation of MSBP1-overexpressing plants was correlated with altered expression of genes involved in cell elongation, such as expansins and extensins, indicating that enhanced MSBP1 affected a regulatory pathway for cell elongation. Suppression or overexpression of MSBP1 resulted in enhanced or reduced sensitivities, respectively, to exogenous progesterone and 24-eBL, suggesting a negative role of MSBP1 in steroid signaling. Expression of MSBP1 in hypocotyls is suppressed by darkness and activated by light, suggesting that MSBP1, as a negative regulator of cell elongation, plays a role in plant photomorphogenesis. This study demonstrates the functional roles of a steroid binding protein in growth regulation in higher plants. PMID:15608331

  1. Abrogation of TNF-mediated cytotoxicity by space flight involves protein kinase C

    NASA Technical Reports Server (NTRS)

    Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Experiments conducted on STS-50 indicated that space flight significantly inhibited tumor necrosis factor (TNF)-mediated killing of LM929 cells compared to ground controls. In ground-based studies, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate (PMA) also inhibited TNF-mediated killing of LM929 cells. Therefore, we used PKC inhibitors to determine if the inhibitory effects of spaceflight on TNF-mediated cytotoxicity involved the activation of PKC. In experiments conducted onboard space shuttle mission STS-54, we saw that in the presence of the protein kinase C inhibitors H7 and H8, TNF-mediated cytotoxicity was restored to levels of those observed in the ground controls. Subsequent experiments done during the STS-57 mission tested the dose response of two protein kinase inhibitors, H7 and HA1004. We again saw that killing was restored in a dose-dependent manner, with inhibitor concentrations known to inhibit PKC being most effective. These data suggest that space flight ameliorates the action of TNF by affecting PKC in target cells.

  2. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma.

    PubMed

    Neira, José L; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L; Abián, Olga

    2017-01-05

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the 'fuzzy' interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  3. Nuclear pore proteins are involved in the biogenesis of functional tRNA.

    PubMed Central

    Simos, G; Tekotte, H; Grosjean, H; Segref, A; Sharma, K; Tollervey, D; Hurt, E C

    1996-01-01

    Los1p and Pus1p, which are involved in tRNA biogenesis, were found in a genetic screen for components interacting with the nuclear pore protein Nsp1p. LOS1, PUS1 and NSP1 interact functionally, since the combination of mutations in the three genes causes synthetic lethality. Pus1p is an intranuclear protein which exhibits a nucleotide-specific and intron-dependent tRNA pseudouridine synthase activity. Los1p was shown previously to be required for efficient pre-tRNA splicing; we report here that Los1p localizes to the nuclear pores and is linked functionally to several components of the tRNA biogenesis machinery including Pus1p and Tfc4p. When the formation of functional tRNA was analyzed by an in vivo assay, the los1(-) pus1(-) double mutant, as well as several thermosensitive nucleoporin mutants including nsp1, nup116, nup133 and nup85, exhibited loss of suppressor tRNA activity even at permissive temperatures. These data suggest that nuclear pore proteins are required for the biogenesis of functional tRNA. Images PMID:8641292

  4. Adaptive expression pattern of different proteins involved in cellular calcium homeostasis in denervated rat vas deferens.

    PubMed

    Quintas, Luis Eduardo M; Cunha, Valéria M N; Scaramello, Christianne B V; da Silva, Cláudia L M; Caricati-Neto, Afonso; Lafayette, Simone S L; Jurkiewicz, Aron; Noël, François

    2005-11-21

    The activity and protein expression of plasma membrane and sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPases and ryanodine receptors were investigated in surgically denervated rat vas deferens. The function of thapsigargin-sensitive but not thapsigargin-resistant (Ca2+-Mg2+)ATPase (from sarco(endo)plasmic reticulum and plasma membrane, respectively), evidenced by enzyme activity and Ca2+ uptake experiments, was significantly depressed by 30-50% when compared to innervated vas. Western blots showed that such reduction in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase performance was accompanied by a decrement of similar magnitude in sarco(endo)plasmic reticulum (Ca2+-Mg2+)ATPase type 2 protein expression, without any significant change in plasma membrane (Ca2+-Mg2+)ATPase expression. Finally, [3H]ryanodine binding revealed that the density of ryanodine binding sites was reduced by 45% after denervation without modification in affinity. The present findings demonstrate that sarco(endo)plasmic reticulum proteins involved in intracellular calcium homeostasis are clearly down-regulated and brings further evidence of a modified calcium translocation in denervated rat vas deferens.

  5. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    PubMed

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability.

  6. Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins

    SciTech Connect

    Tee, Thiam-Tsui; Cheah, Yew-Hoong; Meenakshii, Nallappan; Mohd Sharom, Mohd Yusof; Azimahtol Hawariah, Lope Pihie

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We isolated xanthorrhizol, a sesquiterpenoid compound from Curcuma xanthorrhiza. Black-Right-Pointing-Pointer Xanthorrhizol induced apoptosis in HepG2 cells as observed using SEM. Black-Right-Pointing-Pointer Apoptosis in xanthorrhizol-treated HepG2 cells involved Bcl-2 family proteins. Black-Right-Pointing-Pointer DNA fragmentation was observed in xanthorrhizol-treated HepG2 cells. Black-Right-Pointing-Pointer DNA fragmentation maybe due to cleavage of PARP and DFF45/ICAD proteins. -- Abstract: Xanthorrhizol is a plant-derived pharmacologically active sesquiterpenoid compound isolated from Curcuma xanthorrhiza. Previously, we have reported that xanthorrhizol inhibited the proliferation of HepG2 human hepatoma cells by inducing apoptotic cell death via caspase activation. Here, we attempt to further elucidate the mode of action of xanthorrhizol. Apoptosis in xanthorrhizol-treated HepG2 cells as observed by scanning electron microscopy was accompanied by truncation of BID; reduction of both anti-apoptotic Bcl-2 and Bcl-X{sub L} expression; cleavage of PARP and DFF45/ICAD proteins and DNA fragmentation. Taken together, these results suggest xanthorrhizol as a potent antiproliferative agent on HepG2 cells by inducing apoptosis via Bcl-2 family members. Hence we proposed that xanthorrhizol could be used as an anti-liver cancer drug for future studies.

  7. Identification of a Drug Targeting an Intrinsically Disordered Protein Involved in Pancreatic Adenocarcinoma

    NASA Astrophysics Data System (ADS)

    Neira, José L.; Bintz, Jennifer; Arruebo, María; Rizzuti, Bruno; Bonacci, Thomas; Vega, Sonia; Lanas, Angel; Velázquez-Campoy, Adrián; Iovanna, Juan L.; Abián, Olga

    2017-01-01

    Intrinsically disordered proteins (IDPs) are prevalent in eukaryotes, performing signaling and regulatory functions. Often associated with human diseases, they constitute drug-development targets. NUPR1 is a multifunctional IDP, over-expressed and involved in pancreatic ductal adenocarcinoma (PDAC) development. By screening 1120 FDA-approved compounds, fifteen candidates were selected, and their interactions with NUPR1 were characterized by experimental and simulation techniques. The protein remained disordered upon binding to all fifteen candidates. These compounds were tested in PDAC-derived cell-based assays, and all induced cell-growth arrest and senescence, reduced cell migration, and decreased chemoresistance, mimicking NUPR1-deficiency. The most effective compound completely arrested tumor development in vivo on xenografted PDAC-derived cells in mice. Besides reporting the discovery of a compound targeting an intact IDP and specifically active against PDAC, our study proves the possibility to target the ‘fuzzy’ interface of a protein that remains disordered upon binding to its natural biological partners or to selected drugs.

  8. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  9. Penicillium antifungal protein (PAF) is involved in the apoptotic and autophagic processes of the producer Penicillium chrysogenum.

    PubMed

    Kovács, Barbara; Hegedűs, Nikoletta; Bálint, Mihály; Szabó, Zsuzsa; Emri, Tamás; Kiss, Gréta; Antal, Miklós; Pócsi, István; Leiter, Eva

    2014-09-01

    PAF, which is produced by the filamentous fungus Pencicillium chrysogenum, is a small antifungal protein, triggering ROS-mediated apoptotic cell death in Aspergillus nidulans. In this work, we provide information on the function of PAF in the host P. chrysogenum considering that carbon-starving cultures of the Δpaf mutant strain showed significantly reduced apoptosis rates in comparison to the wild-type (wt) strain. Moreover, the addition of PAF to the Δpaf strain resulted in a twofold increase in the apoptosis rate. PAF was also involved in the regulation of the autophagy machinery of this fungus, since several Saccharomyces cerevisiae autophagy-related ortholog genes, e.g. those of atg7, atg22 and tipA, were repressed in the deletion strain. This phenomenon was accompanied by the absence of autophagosomes in the Δpaf strain, even in old hyphae.

  10. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection.

    PubMed

    Quarantin, Alessandra; Glasenapp, Anika; Schäfer, Wilhelm; Favaron, Francesco; Sella, Luca

    2016-12-01

    The genome of Fusarium graminearum, a necrotrophic fungal pathogen causing Fusarium head blight (FHB) disease of wheat, barley and other cereal grains, contains five genes putatively encoding for proteins with a cerato-platanin domain. Cerato-platanins are small secreted cysteine-rich proteins possibly localized in the fungal cell walls and also contributing to the virulence. Two of these F. graminearum proteins (FgCPP1 and FgCPP2) belong to the class of SnodProt proteins which exhibit phytotoxic activity in the fungal pathogens Botrytis cinerea and Magnaporthe grisea. In order to verify their contribution during plant infection and fungal growth, single and double gene knock-out mutants were produced and no reduction in symptoms severity was observed compared to the wild type strain on both soybean and wheat spikes. Histological analysis performed by fluorescence microscopy on wheat spikelets infected with mutants constitutively expressing the dsRed confirmed that FgCPPs do not contribute to fungal virulence. In particular, the formation of compound appressoria on wheat paleas was unchanged. Looking for other functions of these proteins, the double mutant was characterized by in vitro experiments. The mutant was inhibited by salt and H2O2 stress similarly to wild type. Though no growth difference was observed on glucose, the mutant grew better than wild type on carboxymethyl cellulose. Additionally, the mutant's mycelium was more affected by treatments with chitinase and β-1,3-glucanase, thus indicating that FgCPPs could protect fungal cell wall polysaccharides from enzymatic degradation.

  11. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors

    PubMed Central

    Prazak, Lisa; Fujioka, Miki; Gergen, J. Peter

    2010-01-01

    The relatively simple combinatorial rules responsible for establishing the initial metameric expression of sloppy-paired-1 (slp1) in the Drosophila blastoderm embryo make this system an attractive model for investigating the mechanism of regulation by pair rule transcription factors. This investigation of slp1 cis-regulatory architecture identifies two distinct elements, a proximal early stripe element (PESE) and a distal early stripe element (DESE) located from −3.1 kb to −2.5 kb and from −8.1 kb to −7.1 kb upstream of the slp1 promoter, respectively, that mediate this early regulation. The proximal element expresses only even-numbered stripes and mediates repression by Even-skipped (Eve) as well as by the combination of Runt and Fushi-tarazu (Ftz). A 272 basepair sub-element of PESE retains Eve-dependent repression, but is expressed throughout the even-numbered parasegments due to the loss of repression by Runt and Ftz. In contrast, the distal element expresses both odd and even-numbered stripes and also drives inappropriate expression in the anterior half of the odd-numbered parasegments due to an inability to respond to repression by Eve. Importantly, a composite reporter gene containing both early stripe elements recapitulates pair-rule gene-dependent regulation in a manner beyond what is expected from combining their individual patterns. These results indicate interactions involving distinct cis-elements contribute to the proper integration of pair-rule regulatory information. A model fully accounting for these results proposes that metameric slp1 expression is achieved through the Runt-dependent regulation of interactions between these two pair-rule response elements and the slp1 promoter. PMID:20435028

  12. Effects of Radiation and Dietary Iron on Expression of Genes and Proteins Involved in Drug Metabolism

    NASA Technical Reports Server (NTRS)

    Faust, K. M.; Wotring, V. E.

    2014-01-01

    Liver function, especially the rate of metabolic enzyme activities, determines the concentration of circulating drugs and the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Dietary factors and exposure to radiation are aspects of spaceflight that are potential oxidative stressors and both can be modeled in ground experiments. In this experiment, we examined the effects of high dietary iron and low dose gamma radiation (individually and combined) on the gene expression of enzymes involved in drug metabolism, redox homeostasis, and DNA repair. METHODS All procedures were approved by the JSC Animal Care and Use Committee. Male Sprague-Dawley rats were divided into 4 groups (n=8); control, high Fe diet (650 mg iron/kg), radiation (fractionated 3 Gy exposure from a Cs- 137 source) and combined high Fe diet + radiation exposure. Animals were euthanized 24h after the last treatment of radiation; livers were removed immediately and flash -frozen in liquid nitrogen. Expression of genes thought to be involved in redox homeostasis, drug metabolism and DNA damage repair was measured by RT-qPCR. Where possible, protein expression of the same genes was measured by western blotting. All data are expressed as % change in expression normalized to reference gene expression; comparisons were then made of each treatment group to the sham exposed/ normal diet control group. Data was considered significant at p< 0

  13. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation

    PubMed Central

    Eckly-Michel, Anita; Martin, Viviane; Lugnier, Claire

    1997-01-01

    The involvement of cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG) in the effects of cyclic AMP-elevating agents on vascular smooth muscle relaxation, cyclic nucleotide dependent-protein kinase activities and ATP-induced calcium signalling ([Ca2+]i) was studied in rat aorta. Cyclic AMP-elevating agents used were a β-adrenoceptor agonist (isoprenaline), a phosphodiesterase 3 (PDE3) inhibitor (SK&F 94120) and a PDE4 inhibitor (rolipram). In rat intact aorta, the relaxant effect induced by isoprenaline (0.01–0.3 μM) was decreased by a specific inhibitor of PKA, H-89, whereas a specific inhibitor of PKG, Rp-8-Br-cyclic GMPS, was without effect. No significant difference in PKA and PKG activity ratios was detected in aortic rings when isoprenaline 10 μM was used. At the same concentration, isoprenaline did not modify ATP-induced changes in [Ca2+]i in smooth muscle cells. Neither H-89 nor Rp-8-Br-cyclic GMPS modified this response. These findings suggest that PKA is only involved in the relaxant effect induced by low concentrations of isoprenaline (0.01–0.3 μM), whereas for higher concentrations, other mechanisms independent of PKA and PKG are involved. The relaxant effects induced by SK&F 94120 and rolipram were inhibited by Rp-8-Br-cyclic GMPS with no significant effect of H-89. Neither SK&F 94120, nor rolipram at 30 μM significantly modified the activity ratios of PKA and PKG. Rolipram inhibited the ATP-induced transient increase in [Ca2+]i. This decrease was abolished by Rp-8-Br-cyclic GMPS whereas H-89 had no significant effect. These results suggest that PKG is involved in the vascular effects induced by the inhibitors of PDE3 and PDE4. Moreover, since it was previously shown that PDE3 and PDE4 inhibitors only increased cyclic AMP levels with no change in cyclic GMP level, these data also suggest a cross-activation of PKG by cyclic AMP in rat aorta. The combination of 5 μM SK&F 94120 with rolipram markedly

  14. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  15. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene

    PubMed Central

    Singh, Sudhanshu; Mackill, David J.; Ismail, Abdelbagi M.

    2014-01-01

    1 lines. This suggests the possibility of further improvements in submergence tolerance by incorporating additional traits present in FR13A or other similar landraces. PMID:25281725

  16. Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene.

    PubMed

    Singh, Sudhanshu; Mackill, David J; Ismail, Abdelbagi M

    2014-10-03

    1 lines. This suggests the possibility of further improvements in submergence tolerance by incorporating additional traits present in FR13A or other similar landraces.

  17. Effect of the addition of conventional additives and whey proteins concentrates on technological parameters, physicochemical properties, microstructure and sensory attributes of sous vide cooked beef muscles.

    PubMed

    Szerman, N; Gonzalez, C B; Sancho, A M; Grigioni, G; Carduza, F; Vaudagna, S R

    2012-03-01

    Beef muscles submitted to four enhancement treatments (1.88% whey protein concentrate (WPC)+1.25% sodium chloride (NaCl); 1.88% modified whey protein concentrate (MWPC)+1.25%NaCl; 0.25% sodium tripolyphosphate (STPP)+1.25%NaCl; 1.25%NaCl) and a control treatment (non-injected muscles) were sous vide cooked. Muscles with STPP+NaCl presented a significantly higher total yield (106.5%) in comparison to those with WPC/MWPC+NaCl (94.7% and 92.9%, respectively), NaCl alone (84.8%) or controls (72.1%). Muscles with STPP+NaCl presented significantly lower shear force values than control ones; also, WPC/MWPC+NaCl added muscles presented similar values than those from the other treatments. After cooking, muscles with STPP+NaCl or WPC/MWPC+NaCl depicted compacted and uniform microstructures. Muscles with STPP+NaCl showed a pink colour, meanwhile other treatment muscles presented colours between pinkish-grey and grey-brown. STPP+NaCl added samples presented the highest values of global tenderness and juiciness. The addition of STPP+NaCl had a better performance than WPC/MWPC+NaCl. However, the addition of WPC/MWPC+NaCl improved total yield in comparison to NaCl added or control ones.

  18. Possible involvement of Helios in controlling the immature B cell functions via transcriptional regulation of protein kinase Cs.

    PubMed

    Kikuchi, Hidehiko; Nakayama, Masami; Takami, Yasunari; Kuribayashi, Futoshi; Nakayama, Tatsuo

    2011-01-01

    The transcription factor Ikaros family consists of five zinc-finger proteins: Ikaros, Aiolos, Helios, Eos and Pegasus; these proteins except Pegasus are essential for development and differentiation of lymphocytes. However, in B lymphocytes, the physiological role of Helios remains to be elucidated yet, because its expression level is very low. Here, we generated the Helios-deficient DT40 cells, Helios (-/-), and showed that the Helios-deficiency caused significant increases in transcriptions of four protein kinase Cs (PKCs); PKC-δ, PKC-ε, PKC-η and PKC-ζ, whereas their expressions were drastically down-regulated in the Aiolos-deficient DT40 cells, Aiolos (-/-). In addition, Helios (-/-) was remarkably resistant against phorbol 12-myristate 13-acetate (PMA)/ionomycin treatment, which mimics the B cell receptor (BCR)-mediated stimulation. In the presence of PMA/ionomycin, their viability was remarkably higher than that of DT40, and their DNA fragmentation was less severe than that of DT40 in the opposite manner for the Aiolos-deficiency. The resistance against the PMA/ionomycin-induced apoptosis of Helios (-/-) was sensitive to Rottlerin but not to Go6976. In addition, the Helios-deficiency caused remarkable up-regulation of the Rottlerin-sensitive superoxide (O2 (-))-generating activity. These data suggest that Helios may contribute to the regulation of the BCR-mediated apoptosis and O2 (-)-generating activity, via transcriptional regulation of these four PKCs (especially PKC-δ) in immature B lymphocytes. Together with previous data, our findings may significantly help in the understanding of the B lymphocyte-specific expressions of PKC genes and molecular mechanisms of both the BCR-mediated apoptosis involved in negative selection and the O2 (-)-generating system in immature B lymphocytes.

  19. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues.

    PubMed

    Kim, Jung-Hoon; Ji, Chang-Jun; Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur.

  20. Bacillus licheniformis Contains Two More PerR-Like Proteins in Addition to PerR, Fur, and Zur Orthologues

    PubMed Central

    Ju, Shin-Yeong; Yang, Yoon-Mo; Ryu, Su-Hyun; Kwon, Yumi; Won, Young-Bin; Lee, Yeh-Eun; Youn, Hwan; Lee, Jin-Won

    2016-01-01

    The ferric uptake regulator (Fur) family proteins include sensors of Fe (Fur), Zn (Zur), and peroxide (PerR). Among Fur family proteins, Fur and Zur are ubiquitous in most prokaryotic organisms, whereas PerR exists mainly in Gram positive bacteria as a functional homologue of OxyR. Gram positive bacteria such as Bacillus subtilis, Listeria monocytogenes and Staphylococcus aureus encode three Fur family proteins: Fur, Zur, and PerR. In this study, we identified five Fur family proteins from B. licheniformis: two novel PerR-like proteins (BL00690 and BL00950) in addition to Fur (BL05249), Zur (BL03703), and PerR (BL00075) homologues. Our data indicate that all of the five B. licheniformis Fur homologues contain a structural Zn2+ site composed of four cysteine residues like many other Fur family proteins. Furthermore, we provide evidence that the PerR-like proteins (BL00690 and BL00950) as well as PerRBL (BL00075), but not FurBL (BL05249) and ZurBL (BL03703), can sense H2O2 by histidine oxidation with different sensitivity. We also show that PerR2 (BL00690) has a PerR-like repressor activity for PerR-regulated genes in vivo. Taken together, our results suggest that B. licheniformis contains three PerR subfamily proteins which can sense H2O2 by histidine oxidation not by cysteine oxidation, in addition to Fur and Zur. PMID:27176811

  1. Rapid detection of the addition of soybean proteins to cheese and other dairy products by reversed-phase perfusion chromatography.

    PubMed

    García, M C; Marina, M L

    2006-04-01

    The undeclared addition of soybean proteins to milk products is forbidden and a method is needed for food control and enforcement. This paper reports the development of a chromatographic method for routine analysis enabling the detection of the addition of soybean proteins to dairy products. A perfusion chromatography column and a linear binary gradient of acetonitrile-water-0.1% (v/v) trifluoroacetic acid at a temperature of 60 degrees C were used. A very simple sample treatment consisting of mixing the sample with a suitable solvent (Milli-Q water or bicarbonate buffer (pH=11)) and centrifuging was used. The method enabled the separation of soybean proteins from milk proteins in less than 4 min (at a flow-rate of 3 ml/min). The method has been successfully applied to the detection of soybean proteins in milk, cheese, yogurt, and enteral formula. The correct quantitation of these vegetable proteins has also been possible in milk adulterated at origin with known sources of soybean proteins. The application of the method to samples adulterated at origin also leads to interesting conclusions as to the effect of the processing conditions used for the preparation of each dairy product on the determination of soybean proteins.

  2. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses

    PubMed Central

    Ben Amor, Besma; Wirth, Sonia; Merchan, Francisco; Laporte, Philippe; d’Aubenton-Carafa, Yves; Hirsch, Judith; Maizel, Alexis; Mallory, Allison; Lucas, Antoine; Deragon, Jean Marc; Vaucheret, Herve; Thermes, Claude; Crespi, Martin

    2009-01-01

    Long non-protein coding RNAs (npcRNA) represent an emerging class of riboregulators, which either act directly in this long form or are processed to shorter miRNA and siRNA. Genome-wide bioinformatic analysis of full-length cDNA databases identified 76 Arabidopsis npcRNAs. Fourteen npcRNAs were antisense to protein-coding mRNAs, suggesting cis-regulatory roles. Numerous 24-nt siRNA matched to five different npcRNAs, suggesting that these npcRNAs are precursors of this type of siRNA. Expression analyses of the 76 npcRNAs identified a novel npcRNA that accumulates in a dcl1 mutant but does not appear to produce trans-acting siRNA or miRNA. Additionally, another npcRNA was the precursor of miR869 and shown to be up-regulated in dcl4 but not in dcl1 mutants, indicative of a young miRNA gene. Abiotic stress altered the accumulation of 22 npcRNAs among the 76, a fraction significantly higher than that observed for the RNA binding protein-coding fraction of the transcriptome. Overexpression analyses in Arabidopsis identified two npcRNAs as regulators of root growth during salt stress and leaf morphology, respectively. Hence, together with small RNAs, long npcRNAs encompass a sensitive component of the transcriptome that have diverse roles during growth and differentiation. PMID:18997003

  3. Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein.

    PubMed

    Ye, Bin; Yang, Jin-Liang; Chen, Li-Juan; Wu, Xian-Xue; Yang, Han-Shuo; Zhao, Ju-Mei; Yuan, Zhi-Ping; Li, Jiong; Wen, Yan-Jun; Mao, Yong-Qiu; Lei, Song; Kan, Bing; Fan, Lin-Yu; Yao, Wen-Xiu; Wang, Rui; Wang, Guo-Qing; Du, Xiao-Bo; Liu, Huan-Yi; Wu, Hong-Bing; Xu, Jian-Rong; Li, Hong-Xia; Zhang, Wei; Zhao, Xia; Wei, Yu-Quan; Cheng, Li

    2007-11-01

    Quercetin, a widely distributed bioflavonoid, inhibits the growth of various tumor cells. The present study was designed to investigate whether a novel quercetin derivative [phenylisocyanate of quercetin (PHICNQ)] exerts antitumor activity against K562 and CT26 tumor cell lines by inducing apoptosis, and to examine the possible mechanism in the phenomenon. The cell proliferation assay of K562 and CT26 tumor cells was determined by the trypan blue dye exclusion test. Apoptosis of PHICNQ-treated cells was determined by morphological analysis, agarose gel DNA electrophoresis and quantitated by flow cytometry after staining with propidium iodide. Cell cycle was evaluated by flow cytometry. The expression of heat shock protein 70 was checked by Western blot analysis. Our results showed that PHICNQ inhibited the proliferation of K562 and CT26 cells in a dose-dependent and time-dependent manner. PHICNQ was 308- and 73-fold more active on CT26 and K562 cells than quercetin, respectively. In addition to this cytostatic effect, treatment of K562 and CT26 tumor cells with PHICNQ induced apoptosis. PHICNQ treatment downregulated the expression of heat shock protein 70 more dramatically than quercetin treatment. These results suggest that PHICNQ is a more powerful antiproliferative derivative than quercetin, with cytostatic and apoptotic effects on K562 and CT26 tumor cells. PHICNQ may trigger apoptosis in tumor cells through inhibition of heat shock protein 70 synthesis and expression.

  4. Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation

    PubMed Central

    Kauwe, John S. K.; Bailey, Matthew H.; Ridge, Perry G.; Perry, Rachel; Wadsworth, Mark E.; Hoyt, Kaitlyn L.; Staley, Lyndsay A.; Karch, Celeste M.; Harari, Oscar; Cruchaga, Carlos; Ainscough, Benjamin J.; Bales, Kelly; Pickering, Eve H.; Bertelsen, Sarah; Fagan, Anne M.; Holtzman, David M.; Morris, John C.; Goate, Alison M.

    2014-01-01

    Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimer's disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimer's Disease Research Center (ADRC) and Alzheimer's Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal

  5. The Chlamydomonas reinhardtii Nar1 Gene Encodes a Chloroplast Membrane Protein Involved in Nitrite Transport

    PubMed Central

    Rexach, Jesus; Fernández, Emilio; Galván, Aurora

    2000-01-01

    A key step for nitrate assimilation in photosynthetic eukaryotes occurs within chloroplasts, where nitrite is reduced to ammonium, which is incorporated into carbon skeletons. The Nar1 gene from Chlamydomonas reinhardtii is clustered with five other genes for nitrate assimilation, all of them regulated by nitrate. Sequence analysis of genomic DNA and cDNA of Nar1 and comparative studies of strains having or lacking Nar1 have been performed. The deduced amino acid sequence indicates that Nar1 encodes a chloroplast membrane protein with substantial identity to putative formate and nitrite transporters in bacteria. Use of antibodies against NAR1 has corroborated its location in the plastidic membrane. Characterization of strains having or lacking this gene suggests that NAR1 is involved in nitrite transport in plastids, which is critical for cell survival under limiting nitrate conditions, and controls the amount of nitrate incorporated by the cells under limiting CO2 conditions. PMID:10948261

  6. AN ODORANT-BINDING PROTEIN INVOLVED IN PERCEPTION OF HOST PLANT ODORANTS IN LOCUST Locusta migratoria.

    PubMed

    Li, Jia; Zhang, Long; Wang, Xiaoqi

    2016-04-01

    Locusts, Locusta migratoria (Orthoptera: Acrididae), are extremely destructive agricultural pests, but very little is known of their molecular aspects of perception to host plant odorants including related odorant-binding proteins (OBPs), though several OBPs have been identified in locust. To elucidate the function of LmigOBP1, the first OBP identified from locust, RNA interference was employed in this study to silence LmigOBP1, which was achieved by injection of dsRNA targeting LmigOBP1 into the hemolymph of male nymphs. Compared with LmigOBP1 normal nymphs, LmigOBP1 knockdown nymphs significantly decreased food (maize leaf, Zea mays) consumption and electro-antennography responses to five maize leaf volatiles, ((Z)-3-hexenol, linalool, nonanal, decanal, and (Z)-3-hexenyl acetate). These suggest that LmigOBP1 is involved in perception of host plant odorants.

  7. Identification of drug-binding sites on human serum albumin using affinity capillary electrophoresis and chemically modified proteins as buffer additives.

    PubMed

    Kim, Hee Seung; Austin, John; Hage, David S

    2002-03-01

    A technique based on affinity capillary electrophoresis (ACE) and chemically modified proteins was used to screen the binding sites of various drugs on human serum albumin (HSA). This involved using HSA as a buffer additive, following the site-selective modification of this protein at two residues (tryptophan 214 or tyrosine 411) located in its major binding regions. The migration times of four compounds (warfarin, ibuprofen, suprofen and flurbiprofen) were measured in the presence of normal or modified HSA. These times were then compared and the mobility shifts observed with the modified proteins were used to identify the binding regions of each injected solute on HSA. Items considered in optimizing this assay included the concentration of protein placed into the running buffer, the reagents used to modify HSA, and the use of dextran as a secondary additive to adjust protein mobility. The results of this method showed good agreement with those of previous reports. The advantages and disadvantages of this approach are examined, as well as its possible extension to other solutes.

  8. Involvement of retinoblastoma-associated protein 48 during photodynamic therapy of cervical cancer cells.

    PubMed

    Wu, Shuxia; Wang, Lijun; Ren, Xingye; Pan, Yulu; Peng, Yan; Zou, Xiaoyan; Shi, Cuige; Zhang, Youzhong

    2017-03-01

    5-Aminolevulinic acid-mediated photodynamic therapy (ALA‑PDT) is an effective treatment option for cervical intraepithelial neoplasia, the precancerous lesion of cervical cancer, and early cervical cancer, particularly for young or nulliparous women who want to remain fertile. A previous report described the involvement of histone deacetylases (HDAC) during ALA‑PDT mediated apoptosis in the cerebral cortex of a mouse model. Retinoblastoma‑associated protein 48 (RbAp48), a highly abundant component of HDACs, is a critical mediator that controls the transforming activity of human papillomavirus 16 in cervical cancer cells. The aim of the present study was to investigate the involvement of RbAp48 in ALA‑PDT‑induced cell death in cervical cancer cells. RbAp48 was significantly upregulated in cervical cancer cell lines treated with ALA‑PDT, including SiHa and HeLa cells. To establish the relevance of RbAp48 and the efficacy of ALA‑PDT in cervical cancer cells, the effect of ALA‑PDT was investigated in SiHa or HeLa cells following the depletion of RbAp48 by small interfering RNA (siRNA). Reduction of RbAp48 led to the reduced suppression of proliferation and apoptosis induced by ALA‑PDT in cervical cancer cells, which was associated with a reduction in tumor suppressor protein 53 (p53), retinoblastoma (Rb), apoptosis‑related enzyme caspase‑3, and increased levels of the oncogenic genes, human papillomavirus E6 and E7. These results provide evidence that RbAp48 is an important contributor to the efficacy of ALA‑PDT in cervical cancer cells. RbAp48 may be a therapeutic target that may help to improve the treatment of cervical cancer.

  9. Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients.

    PubMed

    Gheduzzi, Dealba; Boraldi, Federica; Annovi, Giulia; DeVincenzi, Chiara Paolinelli; Schurgers, Leon J; Vermeer, Cees; Quaglino, Daniela; Ronchetti, Ivonne Pasquali

    2007-10-01

    Mature MGP (Matrix gamma-carboxyglutamic acid protein) is known to inhibit soft connective tissues calcification. We investigated its possible involvement in pseudoxanthoma elasticum (PXE), a genetic disorder whose clinical manifestations are due to mineralization of elastic fibers. PXE patients have lower serum concentration of total MGP compared to controls (P<0.001). Antibodies specific for the noncarboxylated (Glu-MGP) and for the gamma-carboxylated (Gla-MGP) forms of MGP were assayed on ultrathin sections of dermis from controls and PXE patients. Normal elastic fibers in controls and patients were slightly positive for both forms of MGP, whereas Gla-MGP was more abundant within control's than within patient's elastic fibers (P<0.001). In patients' calcified elastic fibers, Glu-MGP intensively colocalized with mineral precipitates, whereas Gla-MGP precisely localized at the mineralization front. Data suggest that MGP is present within elastic fibers and is associated with calcification of dermal elastic fibers in PXE. To investigate whether local cells produce MGP, dermal fibroblasts were cultured in vitro and MGP was assayed at mRNA and protein levels. In spite of very similar MGP mRNA expression, cells from PXE patients produced 30% less of Gla-MGP compared to controls. Data were confirmed by immunocytochemistry on ultrathin sections. Normal fibroblasts in vitro were positive for both forms of MGP. PXE fibroblasts were positive for Glu-MGP and only barely positive for Gla-MGP (P<0.001). In conclusion, MGP is involved in elastic fiber calcification in PXE. The lower ratio of Gla-MGP over Glu-MGP in pathological fibroblasts compared to controls suggests these cells may play an important role in the ectopic calcification in PXE.

  10. ProFold: Protein Fold Classification with Additional Structural Features and a Novel Ensemble Classifier

    PubMed Central

    2016-01-01

    Protein fold classification plays an important role in both protein functional analysis and drug design. The number of proteins in PDB is very large, but only a very small part is categorized and stored in the SCOPe database. Therefore, it is necessary to develop an efficient method for protein fold classification. In recent years, a variety of classification methods have been used in many protein fold classification studies. In this study, we propose a novel classification method called proFold. We import protein tertiary structure in the period of feature extraction and employ a novel ensemble strategy in the period of classifier training. Compared with existing similar ensemble classifiers using the same widely used dataset (DD-dataset), proFold achieves 76.2% overall accuracy. Another two commonly used datasets, EDD-dataset and TG-dataset, are also tested, of which the accuracies are 93.2% and 94.3%, higher than the existing methods. ProFold is available to the public as a web-server. PMID:27660761

  11. Rapid addition of unlabeled silent solubility tags to proteins using a new substrate-fused sortase reagent.

    PubMed

    Amer, Brendan R; Macdonald, Ramsay; Jacobitz, Alex W; Liauw, Brandon; Clubb, Robert T

    2016-03-01

    Many proteins can't be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate.

  12. Rapid Addition of Unlabeled Silent Solubility Tags to Proteins Using a New Substrate-Fused Sortase Reagent

    PubMed Central

    Amer, Brendan R.; Macdonald, Ramsay; Jacobitz, Alex W.; Liauw, Brandon; Clubb, Robert T.

    2016-01-01

    Many proteins can’t be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate. PMID:26852413

  13. Involvement of protein kinase C in the response of Neurospora crassa to blue light.

    PubMed

    Arpaia, G; Cerri, F; Baima, S; Macino, G

    1999-09-01

    As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa.

  14. A Wiskott-Aldrich syndrome protein is involved in endocytosis in Aspergillus nidulans.

    PubMed

    Hoshi, Hiro-Omi; Zheng, Lu; Ohta, Akinori; Horiuchi, Hiroyuki

    2016-09-01

    Endocytosis is vital for hyphal tip growth in filamentous fungi and is involved in the tip localization of various membrane proteins. To investigate the function of a Wiskott-Aldrich syndrome protein (WASP) in endocytosis of filamentous fungi, we identified a WASP ortholog-encoding gene, wspA, in Aspergillus nidulans and characterized it. The wspA product, WspA, localized to the tips of germ tubes during germination and actin rings in the subapical regions of mature hyphae. wspA is essential for the growth and functioned in the polarity establishment and maintenance during germination of conidia. We also investigated its function in endocytosis and revealed that endocytosis of SynA, a synaptobrevin ortholog that is known to be endocytosed at the subapical regions of hyphal tips in A. nidulans, did not occur when wspA expression was repressed. These results suggest that WspA plays roles in endocytosis at hyphal tips and polarity establishment during germination.

  15. HTLV-1 Tax-mediated TAK1 activation involves TAB2 adapter protein

    SciTech Connect

    Yu Qingsheng; Minoda, Yasumasa; Yoshida, Ryoko; Yoshida, Hideyuki; Iha, Hidekatsu; Kobayashi, Takashi; Yoshimura, Akihiko; Takaesu, Giichi

    2008-01-04

    Human T cell leukemia virus type 1 (HTLV-1) Tax is an oncoprotein that plays a crucial role in the proliferation and transformation of HTLV-1-infected T lymphocytes. It has recently been reported that Tax activates a MAPKKK family, TAK1. However, the molecular mechanism of Tax-mediated TAK1 activation is not well understood. In this report, we investigated the role of TAK1-binding protein 2 (TAB2) in Tax-mediated TAK1 activation. We found that TAB2 physically interacts with Tax and augments Tax-induced NF-{kappa}B activity. Tax and TAB2 cooperatively activate TAK1 when they are coexpressed. Furthermore, TAK1 activation by Tax requires TAB2 binding as well as ubiquitination of Tax. We also found that the overexpression of TRAF2, 5, or 6 strongly induces Tax ubiquitination. These results suggest that TAB2 may be critically involved in Tax-mediated activation of TAK1 and that NF-{kappa}B-activating TRAF family proteins are potential cellular E3 ubiquitin ligases toward Tax.

  16. Cellular COPII Proteins Are Involved in Production of the Vesicles That Form the Poliovirus Replication Complex

    PubMed Central

    Rust, René C.; Landmann, Lukas; Gosert, Rainer; Tang, Bor Luen; Hong, Wanjin; Hauri, Hans-Peter; Egger, Denise; Bienz, Kurt

    2001-01-01

    Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway. PMID:11559814

  17. Involvement of the cellular prion protein in the migration of brain microvascular endothelial cells.

    PubMed

    Watanabe, Takuya; Yasutaka, Yuki; Nishioku, Tsuyoshi; Kusakabe, Sae; Futagami, Koujiro; Yamauchi, Atsushi; Kataoka, Yasufumi

    2011-06-01

    The conversion of cellular prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion disease. Although PrP(C) is a ubiquitous glycoprotein that is present in various cell types, the physiological role of PrP(C) remains obscure. The present study aimed to determine whether PrP(C) mediates migration of brain microvascular endothelial cells. Small interfering RNAs (siRNAs) targeting PrP(C) were transfected into a mouse brain microvascular endothelial cell line (bEND.3 cells). siPrP1, selected among three siRNAs, reduced mRNA and protein levels of PrP(C) in bEND.3 cells. Cellular migration was evaluated with a scratch-wound assay. siPrP1 suppressed migration without significantly affecting cellular proliferation. This study provides the first evidence that PrP(C) may be necessary for brain microvascular endothelial cells to migrate into damaged regions in the brain. This function of PrP(C) in the brain endothelium may be a mechanism by which the neurovascular unit recovers from an injury such as an ischemic insult.

  18. Equatorial segment protein (ESP) is a human alloantigen involved in sperm-egg binding and fusion.

    PubMed

    Wolkowicz, M J; Digilio, L; Klotz, K; Shetty, J; Flickinger, C J; Herr, J C

    2008-01-01

    The equatorial segment of the sperm head is known to play a role in fertilization; however, the specific sperm molecules contributing to the integrity of the equatorial segment and in binding and fusion at the oolemma remain incomplete. Moreover, identification of molecular mediators of fertilization that are also immunogenic in humans is predicted to advance both the diagnosis and treatment of immune infertility. We previously reported the cloning of Equatorial Segment Protein (ESP), a protein localized to the equatorial segment of ejaculated human sperm. ESP is a biomarker for a subcompartment of the acrosomal matrix that can be traced through all stages of acrosome biogenesis (Wolkowicz et al, 2003). In the present study, ESP immunoreacted on Western blots with 4 (27%) of 15 antisperm antibody (ASA)-positive serum samples from infertile male patients and 2 (40%) of 5 ASA-positive female sera. Immunofluorescent studies revealed ESP in the equatorial segment of 89% of acrosome-reacted sperm. ESP persisted as a defined equatorial segment band on 100% of sperm tightly bound to the oolemma of hamster eggs. Antisera to recombinant human ESP inhibited both oolemmal binding and fusion of human sperm in the hamster egg penetration assay. The results indicate that ESP is a human alloantigen involved in sperm-egg binding and fusion. Defined recombinant sperm immunogens, such as ESP, may offer opportunities for differential diagnosis of immune infertility.

  19. Gene expression in primary cultured astrocytes affected by aluminum: alteration of chaperons involved in protein folding

    PubMed Central

    Aremu, David A.; Ezomo, Ojeiru F.

    2010-01-01

    Objectives Aluminum is notorious as a neurotoxic metal. The aim of our study was to determine whether endoplasmic reticulum (ER) stress is involved in aluminum-induced apoptosis in astrocytes. Methods Mitochondrial RNA (mRNA) was analyzed by reverse transcription (RT)-PCR following pulse exposure of aluminum glycinate to primary cultured astrocytes. Tunicamycin was used as a positive control. Results Gene expression analysis revealed that Ire1β was up-regulated in astrocytes exposed to aluminum while Ire1α was up-regulated by tunicamycin. Exposure to aluminum glycinate, in contrast to tunicamycin, seemed to down-regulate mRNA expression of many genes, including the ER resident molecular chaperone BiP/Grp78 and Ca2+-binding chaperones (calnexin and calreticulin), as well as stanniocalcin 2 and OASIS. The down-regulation or non-activation of the molecular chaperons, whose expressions are known to be protective by increasing protein folding, may spell doom for the adaptive response. Exposure to aluminum did not have any significant effects on the expression of Bax and Bcl2 in astrocytes. Conclusions The results of this study demonstrate that aluminum may induce apoptosis in astrocytes via ER stress by impairing the protein-folding machinery. PMID:21432213

  20. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis.

    PubMed

    Iseni, Frédéric; Garcin, Dominique; Nishio, Machiko; Kedersha, Nancy; Anderson, Paul; Kolakofsky, Daniel

    2002-10-01

    Sendai virus (SeV) leader (le) and trailer (tr) RNAs are short transcripts generated during abortive antigenome and genome synthesis, respectively. Recom binant SeV (rSeV) that express tr-like RNAs from the leader region are non-cytopathic and, moreover, prevent wild-type SeV from inducing apoptosis in mixed infections. These rSeV thus appear to have gained a function. Here we report that tr RNA binds to a cellular protein with many links to apoptosis (TIAR) via the AU-rich sequence 5' UUUUAAAUUUU. Duplication of this AU-rich sequence alone within the le RNA confers TIAR binding on this le* RNA and a non-cytopathic phenotype to these rSeV in cell culture. Transgenic overexpression of TIAR during SeV infection promotes apoptosis and reverses the anti-apoptotic effects of le* RNA expression. More over, TIAR overexpression and SeV infection act synergistically to induce apoptosis. These short viral RNAs may act by sequestering TIAR, a multivalent RNA recognition motif (RRM) family RNA-binding protein involved in SeV-induced apoptosis. In this view, tr RNA is not simply a by-product of abortive genome synthesis, but is also an antigenome transcript that modulates the cellular antiviral response.

  1. The RNA binding protein TIAR is involved in the regulation of human iNOS expression.

    PubMed

    Fechir, M; Linker, K; Pautz, A; Hubrich, T; Kleinert, H

    2005-09-05

    Human inducible NO synthase (iNOS) expression is regulated by post-transcriptional mechanisms. The 3'-untranslated region (3'-UTR) of the human iNOS mRNA contains AU-rich elements (ARE), which are known to be important for the regulation of mRNA stability. The 3'-UTR of the human iNOS mRNA has been shown to regulate human iNOS mRNA expression post-transcriptionally. One RNA-binding protein known to interact with AREs and to regulate mRNA stability is the T cell intracellular antigen-1-related protein (TIAR). In RNA binding studies TIAR displayed high affinity binding to the human iNOS 3'-UTR sequence. In RNase protection experiments, the cytokine incubation needed for iNOS expression did not change TIAR expression in DLD-1 cells. However, overexpression of TIAR in human DLD-1 colon carcinoma cells resulted in enhanced cytokine-induced iNOS expression. In conclusion, TIAR seems to be involved in the post-transcriptional regulation of human iNOS expression.

  2. Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility.

    PubMed

    Yamazaki, Ken; Takamura, Masaaki; Masugi, Yohei; Mori, Taisuke; Du, Wenlin; Hibi, Taizo; Hiraoka, Nobuyoshi; Ohta, Tsutomu; Ohki, Misao; Hirohashi, Setsuo; Sakamoto, Michiie

    2009-04-01

    Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. To characterize the aggressiveness of pancreatic cancers on gene expression, pancreatic cancer xenografts transplanted into severe combined immunodeficient mice served as a panel for gene-expression profiling. As a result of profiling, the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts. The expression of CAP1 protein in all 73 cases of pancreatic cancer was recognized by immunohistochemical analyses. The ratio of CAP1-positive tumor cells in clinical specimens was correlated with the presence of lymph node metastasis and neural invasion, and also with the poor prognosis of patients. Immunocytochemical analyses in pancreatic cancer cells demonstrated that CAP1 colocalized to the leading edge of lamellipodia with actin. Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells. This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.

  3. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation

    PubMed Central

    Hurst, Jane L.; Beynon, Robert J.; Armstrong, Stuart D.; Davidson, Amanda J.; Roberts, Sarah A.; Gómez-Baena, Guadalupe; Smadja, Carole M.; Ganem, Guila

    2017-01-01

    When hybridisation carries a cost, natural selection is predicted to favour evolution of traits that allow assortative mating (reinforcement). Incipient speciation between the two European house mouse subspecies, Mus musculus domesticus and M.m.musculus, sharing a hybrid zone, provides an opportunity to understand evolution of assortative mating at a molecular level. Mouse urine odours allow subspecific mate discrimination, with assortative preferences evident in the hybrid zone but not in allopatry. Here we assess the potential of MUPs (major urinary proteins) as candidates for signal divergence by comparing MUP expression in urine samples from the Danish hybrid zone border (contact) and from allopatric populations. Mass spectrometric characterisation identified novel MUPs in both subspecies involving mostly new combinations of amino acid changes previously observed in M.m.domesticus. The subspecies expressed distinct MUP signatures, with most MUPs expressed by only one subspecies. Expression of at least eight MUPs showed significant subspecies divergence both in allopatry and contact zone. Another seven MUPs showed divergence in expression between the subspecies only in the contact zone, consistent with divergence by reinforcement. These proteins are candidates for the semiochemical barrier to hybridisation, providing an opportunity to characterise the nature and evolution of a putative species recognition signal. PMID:28337988

  4. Hepatitis C virus nonstructural protein 5B is involved in virus morphogenesis.

    PubMed

    Gouklani, Hamed; Bull, Rowena A; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J; Drummer, Heidi E; Netter, Hans J; White, Peter A; Haqshenas, Gholamreza

    2012-05-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.

  5. Hepatitis C Virus Nonstructural Protein 5B Is Involved in Virus Morphogenesis

    PubMed Central

    Gouklani, Hamed; Bull, Rowena A.; Beyer, Claudia; Coulibaly, Fasséli; Gowans, Eric J.; Drummer, Heidi E.; Netter, Hans J.; White, Peter A.

    2012-01-01

    The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis. PMID:22345449

  6. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity.

    PubMed

    Enoch, S J; Ellison, C M; Schultz, T W; Cronin, M T D

    2011-10-01

    Several pieces of legislation have led to an increased interest in the use of in silico methods, specifically the formation of chemical categories for the assessment of toxicological endpoints. For a number of endpoints, this requires a detailed knowledge of the electrophilic reaction chemistry that governs the ability of an exogenous chemical to form a covalent adduct. Historically, this chemistry has been defined as compilations of structural alerts without documenting the associated electrophilic chemistry mechanisms. To address this, this article has reviewed the literature defining the structural alerts associated with covalent protein binding and detailed the associated electrophilic reaction chemistry. This information is useful to both toxicologists and regulators when using the chemical category approach to fill data gaps for endpoints involving covalent protein binding. The structural alerts and associated electrophilic reaction chemistry outlined in this review have been incorporated into the OECD (Q)SAR Toolbox, a freely available software tool designed to fill data gaps in a regulatory environment without the need for further animal testing.

  7. An Ehrlichia chaffeensis tandem repeat protein interacts with multiple host targets involved in cell signaling, transcriptional regulation, and vesicle trafficking.

    PubMed

    Wakeel, Abdul; Kuriakose, Jeeba A; McBride, Jere W

    2009-05-01

    Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes forming cytoplasmic membrane-bound microcolonies called morulae. To survive and replicate within phagocytes, E. chaffeensis exploits the host cell by modulating a number of host cell processes, but the ehrlichial effector proteins involved are unknown. In this study, we determined that p47, a secreted, differentially expressed, tandem repeat (TR) protein, interacts with multiple host proteins associated with cell signaling, transcriptional regulation, and vesicle trafficking. Yeast two-hybrid analysis revealed that p47 interacts with polycomb group ring finger 5 (PCGF5) protein, Src protein tyrosine kinase FYN (FYN), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and adenylate cyclase-associated protein 1 (CAP1). p47 interaction with these proteins was further confirmed by coimmunoprecipitation assays and colocalization in HeLa cells transfected with p47-green fluorescent fusion protein (AcGFP1-p47). Moreover, confocal microscopy demonstrated p47-expressing dense-cored (DC) ehrlichiae colocalized with PCGF5, FYN, PTPN2, and CAP1. An amino-terminally truncated form of p47 containing TRs interacted only with PCGF5 and not with FYN, PTPN2, and CAP1, indicating differences in p47 domains that are involved in these interactions. These results demonstrate that p47 is involved in a complex network of interactions involving numerous host cell proteins. Furthermore, this study provides a new insight into the molecular and functional distinction of DC ehrlichiae, as well as the effector proteins involved in facilitating ehrlichial survival in mononuclear phagocytes.

  8. Quantitative characterization of protein–protein complexes involved in base excision DNA repair

    PubMed Central

    Moor, Nina A.; Vasil'eva, Inna A.; Anarbaev, Rashid O.; Antson, Alfred A.; Lavrik, Olga I.

    2015-01-01

    Base Excision Repair (BER) efficiently corrects the most common types of DNA damage in mammalian cells. Step-by-step coordination of BER is facilitated by multiple interactions between enzymes and accessory proteins involved. Here we characterize quantitatively a number of complexes formed by DNA polymerase β (Polβ), apurinic/apyrimidinic endonuclease 1 (APE1), poly(ADP-ribose) polymerase 1 (PARP1), X-ray repair cross-complementing protein 1 (XRCC1) and tyrosyl-DNA phosphodiesterase 1 (TDP1), using fluorescence- and light scattering-based techniques. Direct physical interactions between the APE1-Polβ, APE1-TDP1, APE1-PARP1 and Polβ-TDP1 pairs have been detected and characterized for the first time. The combined results provide strong evidence that the most stable complex is formed between XRCC1 and Polβ. Model DNA intermediates of BER are shown to induce significant rearrangement of the Polβ complexes with XRCC1 and PARP1, while having no detectable influence on the protein–protein binding affinities. The strength of APE1 interaction with Polβ, XRCC1 and PARP1 is revealed to be modulated by BER intermediates to different extents, depending on the type of DNA damage. The affinity of APE1 for Polβ is higher in the complex with abasic site-containing DNA than after the APE1-catalyzed incision. Our findings advance understanding of the molecular mechanisms underlying coordination and regulation of the BER process. PMID:26013813

  9. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation.

    PubMed

    Welsby, Iain; Hutin, David; Gueydan, Cyril; Kruys, Veronique; Rongvaux, Anthony; Leo, Oberdan

    2014-09-19

    Transcriptome analyses have recently identified PARP12, a member of a large family of ADP-ribosyl transferases, as an interferon-induced gene (ISG), whose function remains incompletely characterized. We demonstrate herein that PARP12 is a genuine ISG, whose expressed protein displays at least two distinct subcellular locations and related functions. Upon ectopic expression or exposure to oxidative stress, PARP12 is recruited to stress-granules (SGs), known sites of mRNA translational arrest. Accordingly, PARP12 was found to block mRNA translation, possibly upon association to the translational machinery. Both the N-terminal domain (containing an RNA-binding domain characterized by the presence of five CCCH-type Zn-fingers) and integrity of the catalytic domain are required for this suppressive function. In contrast, stimulation with LPS leads to the localization of PARP12 to p62/SQSTM1 (an adaptor protein involved in innate signaling and autophagy) containing structures, unrelated to SGs. Deletion of the N-terminal domain promotes the association of the protein to p62/SQSTM1, suggesting that the RNA-binding domain is responsible for the subcellular localization of PARP12. Association to p62/SQSTM1 was found to correlate with increased NF-κB signaling, suggesting a role for PARP12 in inflammation. Collectively, these observations suggest that PARP12 can alternate between two distinct subcellular compartments associated to two distinct cellular functions. The present work therefore identifies PARP12 as an ISG with a potential role in cellular defenses against viral infections.

  10. Human DCXR - another 'moonlighting protein' involved in sugar metabolism, carbonyl detoxification, cell adhesion and male fertility?

    PubMed

    Ebert, Bettina; Kisiela, Michael; Maser, Edmund

    2015-02-01

    Dicarbonyl/L-xylulose reductase (DCXR; SDR20C1), a member of the short-chain dehydrogenase/reductase (SDR) superfamily catalyzes the reduction of α-dicarbonyl compounds and monosaccharides. Its role in the metabolism of L-xylulose has been known since 1970, when essential pentosuria was found to be associated with DCXR deficiency. Despite its early discovery, our knowledge about the role of human DCXR in normal physiology and pathophysiology is still incomplete. Sporadic studies have demonstrated aberrant expression in several cancers, but their physiological significance is unknown. In reproductive medicine, where DCXR is commonly referred to as 'sperm surface protein P34H', it serves as marker for epididymal sperm maturation and is essential for gamete interaction and successful fertilization. DCXR exhibits a multifunctional nature, both acting as a carbonyl reductase and also performing non-catalytic functions, possibly resulting from interactions with other proteins. Recent observations associate DCXR with a role in cell adhesion, pointing to a novel function involving tumour progression and possibly metastasis. This review summarizes the current knowledge about human DCXR and its orthologs from mouse and Caenorhabditis elegans (DHS-21) with an emphasis on its multifunctional characteristics. Due to its close structural relationship with DCXR, carbonyl reductase 2 (Cbr2), a tetrameric enzyme found in several non-primate species is also discussed. Similar to human DCXR, Cbr2 from golden hamster (P26h) and cow (P25b) is essential for sperm-zona pellucida interaction and fertilization. Because of the apparent similarity of these two proteins and the inconsistent use of alternative names previously, we provide an overview of the systematic classification of DCXR and Cbr2 and a phylogenetic analysis to illustrate their ancestry.

  11. Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation.

    PubMed

    Wang, Xianling; Zhang, Jin; Yuan, Ming; Ehrhardt, David W; Wang, Zhiyong; Mao, Tonglin

    2012-10-01

    The brassinosteroid (BR) phytohormones play crucial roles in regulating plant cell growth and morphogenesis, particularly in hypocotyl cell elongation. The microtubule cytoskeleton is also known to participate in the regulation of hypocotyl elongation. However, it is unclear if BR regulation of hypocotyl elongation involves the microtubule cytoskeleton. In this study, we demonstrate that BRs mediate hypocotyl cell elongation by influencing the orientation and stability of cortical microtubules. Further analysis identified the previously undiscovered Arabidopsis thaliana microtubule destabilizing protein40 (MDP40) as a positive regulator of hypocotyl cell elongation. Brassinazole-resistant1, a key transcription factor in the BR signaling pathway, directly targets and upregulates MDP40. Overexpression of MDP40 partially rescued the shorter hypocotyl phenotype in BR-deficient mutant de-etiolated-2 seedlings. Reorientation of the cortical microtubules in the cells of MDP40 RNA interference transgenic lines was less sensitive to BR. These findings demonstrate that MDP40 is a key regulator in BR regulation of cortical microtubule reorientation and mediates hypocotyl growth. This study reveals a mechanism involving BR regulation of microtubules through MDP40 to mediate hypocotyl cell elongation.

  12. Involvement of calcitonin gene-related peptide and receptor component protein in experimental autoimmune encephalomyelitis

    PubMed Central

    Sardi, Claudia; Zambusi, Laura; Finardi, Annamaria; Ruffini, Francesca; Tolun, Adviye A.; Dickerson, Ian M.; Righi, Marco; Zacchetti, Daniele; Grohovaz, Fabio; Provini, Luciano; Furlan, Roberto; Morara, Stefano

    2015-01-01

    Calcitonin Gene-Related Peptide (CGRP) inhibits microglia inflammatory activation in vitro. We here analyzed the involvement of CGRP and Receptor Component Protein (RCP) in experimental autoimmune encephalomyelitis (EAE). Alpha-CGRP deficiency increased EAE scores which followed the scale alpha-CGRP null > heterozygote > wild type. In wild type mice, CGRP delivery into the cerebrospinal fluid (CSF) 1) reduced chronic EAE (C-EAE) signs, 2) inhibited microglia activation (revealed by quantitative shape analysis), and 3) did not alter GFAP expression, cell density, lymphocyte infiltration, and peripheral lymphocyte production of IFN-gamma, TNF-alpha, IL-17, IL-2, and IL-4. RCP (probe for receptor involvement) was expressed in white matter microglia, astrocytes, oligodendrocytes, and vascular-endothelial cells: in EAE, also in infiltrating lymphocytes. In relapsing–remitting EAE (R-EAE) RCP increased during relapse, without correlation with lymphocyte density. RCP nuclear localization (stimulated by CGRP in vitro) was I) increased in microglia and decreased in astrocytes (R-EAE), and II) increased in microglia by CGRP CSF delivery (C-EAE). Calcitonin like receptor was rarely localized in nuclei of control and relapse mice. CGRP increased in motoneurons. In conclusion, CGRP can inhibit microglia activation in vivo in EAE. CGRP and its receptor may represent novel protective factors in EAE, apparently acting through the differential cell-specific intracellular translocationof RCP. PMID:24746422

  13. The MagA Protein of Magnetospirilla Is Not Involved in Bacterial Magnetite Biomineralization

    PubMed Central

    Uebe, René; Henn, Verena

    2012-01-01

    Magnetotactic bacteria have the ability to orient along geomagnetic field lines based on the formation of magnetosomes, which are intracellular nanometer-sized, membrane-enclosed magnetic iron minerals. The formation of these unique bacterial organelles involves several processes, such as cytoplasmic membrane invagination and magnetosome vesicle formation, the accumulation of iron in the vesicles, and the crystallization of magnetite. Previous studies suggested that the magA gene encodes a magnetosome-directed ferrous iron transporter with a supposedly essential function for magnetosome formation in Magnetospirillum magneticum AMB-1 that may cause magnetite biomineralization if expressed in mammalian cells. However, more recent studies failed to detect the MagA protein among polypeptides associated with the magnetosome membrane and did not identify magA within the magnetosome island, a conserved genomic region that is essential for magnetosome formation in magnetotactic bacteria. This raised increasing doubts about the presumptive role of magA in bacterial magnetosome formation, which prompted us to reassess MagA function by targeted deletion in Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. Contrary to previous reports, magA mutants of both strains still were able to form wild-type-like magnetosomes and had no obvious growth defects. This unambiguously shows that magA is not involved in magnetosome formation in magnetotactic bacteria. PMID:22194451

  14. BcSUN1, a B. cinerea SUN-Family Protein, Is Involved in Virulence

    PubMed Central

    Pérez-Hernández, Alicia; González, Mario; González, Celedonio; van Kan, Jan A. L.; Brito, Nélida

    2017-01-01

    BcSUN1 is a glycoprotein secreted by Botrytis cinerea, an important plant pathogen that causes severe losses in agriculture worldwide. In this work, the role of BcSUN1 in different aspects of the B. cinerea biology was studied by phenotypic analysis of Bcsun1 knockout strains. We identified BcSUN1 as the only member of the Group-I SUN family of proteins encoded in the B. cinerea genome, which is expressed both in axenic culture and during infection. BcSUN1 is also weakly attached to the cellular surface and is involved in maintaining the structure of the cell wall and/or the extracellular matrix. Disruption of the Bcsun1 gene produces different cell surface alterations affecting the production of reproductive structures and adhesion to plant surface, therefore reducing B. cinerea virulence. BcSUN1 is the first member of the SUN family reported to be involved in the pathogenesis of a filamentous fungus. PMID:28163701

  15. Whereas Short-Term Facilitation Is Presynaptic, Intermediate-Term Facilitation Involves Both Presynaptic and Postsynaptic Protein Kinases and Protein Synthesis

    ERIC Educational Resources Information Center

    Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.

    2011-01-01

    Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…

  16. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation.

    PubMed

    Tanida, Mamoru; Yamamoto, Naoki; Shibamoto, Toshishige; Rahmouni, Kamal

    2013-01-01

    In mammals, leptin released from the white adipose tissue acts on the central nervous system to control feeding behavior, cardiovascular function, and energy metabolism. Central leptin activates sympathetic nerves that innervate the kidney, adipose tissue, and some abdominal organs in rats. AMP-activated protein kinase (AMPK) is essential in the intracellular signaling pathway involving the activation of leptin receptors (ObRb). We investigated the potential of AMPKα2 in the sympathetic effects of leptin using in vivo siRNA injection to knockdown AMPKα2 in rats, to produce reduced hypothalamic AMPKα2 expression. Leptin effects on body weight, food intake, and blood FFA levels were eliminated in AMPKα2 siRNA-treated rats. Leptin-evoked enhancements of the sympathetic nerve outflows to the kidney, brown and white adipose tissues were attenuated in AMPKα2 siRNA-treated rats. To check whether AMPKα2 was specific to sympathetic changes induced by leptin, we examined the effects of injecting MT-II, a melanocortin-3 and -4 receptor agonist, on the sympathetic nerve outflows to the kidney and adipose tissue. MT-II-induced sympatho-excitation in the kidney was unchanged in AMPKα2 siRNA-treated rats. However, responses of neural activities involving adipose tissue to MT-II were attenuated in AMPKα2 siRNA-treated rats. These results suggest that hypothalamic AMPKα2 is involved not only in appetite and body weight regulation but also in the regulation of sympathetic nerve discharges to the kidney and adipose tissue. Thus, AMPK might function not only as an energy sensor, but as a key molecule in the cardiovascular, thermogenic, and lipolytic effects of leptin through the sympathetic nervous system.

  17. Toxicant-induced acceleration of epididymal sperm transit: androgen-dependent proteins may be involved.

    PubMed

    Klinefelter, G R; Suarez, J D

    1997-01-01

    protein profile in homogenates of the caput/corpus epididymidis revealed treatment-related diminutions in two proteins CC9 (M(r) = 42 kDa, pI = 4.2) and CC34 (M(r) = 35 kDa, pI = 5.5), and the level of each of these proteins in the caput/corpus was significantly correlated with the decrease in caput/corpus sperm number. Thus, both CEMS and HFLUT accelerate sperm transit through the proximal segment of the epididymis; and, while this effect is not dependent on the testis, it may involve a lesion in androgen-dependent epididymal function.

  18. The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS).

    PubMed

    Thorstensen, Tage; Grini, Paul E; Mercy, Inderjit S; Alm, Vibeke; Erdal, Sigrid; Aasland, Rein; Aalen, Reidunn B

    2008-01-01

    The Arabidopsis thaliana genome contains more than 30 genes encoding SET-domain proteins that are thought to be epigenetic regulators of gene expression and chromatin structure. SET-domain proteins can be divided into subgroups, and members of the Polycomb group (PcG) and trithorax group (trxG) have been shown to be important regulators of development. Both in animals and plants some of these proteins are components of multimeric protein complexes. Here, we have analyzed the Arabidopsis trxG protein ASHR3 which has a SET domain and pre- and post-SET domains similar to that of Ash1 in Drosophila. In addition to the SET domain, a divergent PHD finger is found in the N-terminus of the ASHR3 protein. As expected from SET-domain proteins involved in transcriptional activation, ASHR3 (coupled to GFP) localizes to euchromatin. A yeast two-hybrid screening revealed that the ASHR3 protein interacts with the putative basic helix-loop-helix (bHLH) transcription factor ABORTED MICROSPORES (AMS), which is involved in anther and stamen development in Arabidopsis. Deletion mapping indicated that both the PHD finger and the SET domain mediate the interaction between the two proteins. Overexpression of ASHR3 led in general to growth arrest, and specifically to degenerated anthers and male sterility. Expression analyses demonstrated that ASHR3 like AMS is expressed in the anther and in stamen filaments. We therefore propose that AMS can target ASHR3 to chromatin and regulate genes involved in stamen development and function.

  19. Involvement of protein kinase ζ in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity

    PubMed Central

    Chen, Aiqin; Bao, Chengjia; Tang, Ying; Luo, Xiaoqing; Guo, Lixia; Liu, Bin

    2015-01-01

    The hippocampal long-term potentiation (LTP) was implicated in the formation of visceral hypersensitivity in rats with irritable bowel syndrome in our previous study. Recent studies have shown that protein kinase M ζ (PKMζ) may be responsible for the maintenance of LTP in memory formation. However, it remains unclear whether PKMζ is involved in the visceral hypersensitivity. In this study, a rat model of visceral hypersensitivity was generated by neonatal maternal separation (NMS). The visceral hypersensitivity was assessed by recording responses of the external oblique abdominal muscle to colorectal distension. Our results demonstrated that hippocampal LTP and visceral hypersensitivity were enhanced significantly in rats of NMS. ζ-Pseudosubstrate inhibitory peptide (ZIP) could dose dependently inhibit the maintenance of Cornu Ammonis area 1 LTP in rats of NMS. Furthermore, Western blot data showed that the expression of hippocampal phosphorylated PKMζ (p-PKMζ) significantly increased in rats of NMS. In addition, bilateral intrahippocampal injections of ZIP attenuated the visceral hypersensitivity dose dependently in rats of NMS. The maximal inhibition was observed at 30 min, and significant inhibition lasted for 1.5–2 h after ZIP application. Besides, data from the open-field test and Morris water maze showed that ZIP did not influence the movement and spatial procedural memory in rats of NMS. In conclusion, p-PKMζ might be a critical protein in the maintenance of hippocampal LTP, which could result in visceral hypersensitivity. PMID:25761958

  20. Involvement of protein kinase ζ in the maintenance of hippocampal long-term potentiation in rats with chronic visceral hypersensitivity.

    PubMed

    Chen, Aiqin; Bao, Chengjia; Tang, Ying; Luo, Xiaoqing; Guo, Lixia; Liu, Bin; Lin, Chun

    2015-05-01

    The hippocampal long-term potentiation (LTP) was implicated in the formation of visceral hypersensitivity in rats with irritable bowel syndrome in our previous study. Recent studies have shown that protein kinase M ζ (PKMζ) may be responsible for the maintenance of LTP in memory formation. However, it remains unclear whether PKMζ is involved in the visceral hypersensitivity. In this study, a rat model of visceral hypersensitivity was generated by neonatal maternal separation (NMS). The visceral hypersensitivity was assessed by recording responses of the external oblique abdominal muscle to colorectal distension. Our results demonstrated that hippocampal LTP and visceral hypersensitivity were enhanced significantly in rats of NMS. ζ-Pseudosubstrate inhibitory peptide (ZIP) could dose dependently inhibit the maintenance of Cornu Ammonis area 1 LTP in rats of NMS. Furthermore, Western blot data showed that the expression of hippocampal phosphorylated PKMζ (p-PKMζ) significantly increased in rats of NMS. In addition, bilateral intrahippocampal injections of ZIP attenuated the visceral hypersensitivity dose dependently in rats of NMS. The maximal inhibition was observed at 30 min, and significant inhibition lasted for 1.5-2 h after ZIP application. Besides, data from the open-field test and Morris water maze showed that ZIP did not influence the movement and spatial procedural memory in rats of NMS. In conclusion, p-PKMζ might be a critical protein in the maintenance of hippocampal LTP, which could result in visceral hypersensitivity.

  1. G-protein-coupled estrogen receptor 1 is involved in brain development during zebrafish (Danio rerio) embryogenesis

    SciTech Connect

    Shi, Yanan; Liu, Xiaochun; Zhu, Pei; Li, Jianzhen; Sham, Kathy W.Y.; Cheng, Shuk Han; Li, Shuisheng; Zhang, Yong; Cheng, Christopher H.K.; Lin, Haoran

    2013-05-24

    Highlights: •The Gper expression was detected in the developing brain of zebrafish. •Gper morpholino knockdown induced apoptosis of brain cells. •Gper morpholino knockdown reduced expression in neuron markers. •Zebrafish Gper may be involved in neuronal development. -- Abstract: G-protein-coupled estrogen receptor 1 (Gper, formerly known as GPR30) is found to be a trophic and protective factor in mediating action of estrogen in adult brain, while its role in developing brain remains to be elucidated. Here we present the expression pattern of Gper and its functions during embryogenesis in zebrafish. Both the mRNA and protein of Gper were detected throughout embryogenesis. Whole mount in situ hybridization (WISH) revealed a wide distribution of gper mRNAs in various regions of the developing brain. Gper knockdown by specific morpholinos resulted in growth retardation in embryos and morphological defects in the developing brain. In addition, induced apoptosis, decreased proliferation of the brain cells and maldevelopment of sensory and motor neurons were also found in the morphants. Our results provide novel insights into Gper functions in the developing brain, revealing that Gper can maintain the survival of the brain cells, and formation and/or differentiation of the sensory and motor neurons.

  2. Dose response of whey protein isolate in addition to a typical mixed meal on blood amino acids and hormonal concentrations.

    PubMed

    Forbes, Scott C; McCargar, Linda; Jelen, Paul; Bell, Gordon J

    2014-04-01

    The purpose was to investigate the effects of a controlled typical 1-day diet supplemented with two different doses of whey protein isolate on blood amino acid profiles and hormonal concentrations following the final meal. Nine males (age: 29.6 ± 6.3 yrs) completed four conditions in random order: a control (C) condition of a typical mixed diet containing ~10% protein (0.8 g·kg1), 65% carbohydrate, and 25% fat; a placebo (P) condition calorically matched with carbohydrate to the whey protein conditions; a low-dose condition of 0.8 grams of whey protein isolate per kilogram body mass per day (g·kg1·d1; W1) in addition to the typical mixed diet; or a high-dose condition of 1.6 g·kg1·d1 (W2) of supplemental whey protein in addition to the typical mixed diet. Following the final meal, significant (p < .05) increases in total amino acids, essential amino acids (EAA), branch-chained amino acids (BCAA), and leucine were observed in plasma with whey protein supplementation while no changes were observed in the control and placebo conditions. There was no significant group difference for glucose, insulin, testosterone, cortisol, or growth hormone. In conclusion, supplementing a typical daily food intake consisting of 0.8 g of protein·kg1·d1 with a whey protein isolate (an additional 0.8 or 1.6 g·kg1·d1) significantly elevated total amino acids, EAA, BCAA, and leucine but had no effect on glucose, insulin, testosterone, cortisol, or growth hormone following the final meal. Future acute and chronic supplementation research examining the physiological and health outcomes associated with elevated amino acid profiles is warranted.

  3. Amyloid precursor protein in Drosophila glia regulates sleep and genes involved in glutamate recycling.

    PubMed

    Farca Luna, Abud Jose; Perier, Magali; Seugnet, Laurent

    2017-03-17

    The Amyloid Precursor Protein (App) plays a crucial role in Alzheimer disease (AD) via the production and deposition of toxic β-amyloid peptides. App is heavily expressed in neurons where the vast majority of studies investigating its function have been carried out, while almost nothing is known about its function in glia, where it is also expressed, and can potentially participate in the regulation of neuronal physiology. In this report, we investigated whether Appl, the Drosophila homolog of App, could influence sleep-wake regulation when its function is manipulated in glial cells. Appl inhibition in astrocyte-like and cortex glia resulted in higher sleep amounts and longer sleep bout duration during the night, while overexpression had the opposite effect. These sleep phenotypes were not the result of developmental defects, and were correlated with changes in expression in Glutamine Synthetase (GS) in astrocyte-like glia, and in changes in the gap-junction component innexin2 in cortex glia. Downregulating both GS and innexin2, but not either one individually, resulted in higher sleep amounts, similarly to Appl inhibition. Consistent with these results the expression of GS and innexin2 are increased following sleep deprivation indicating that these two genes are dynamically linked to vigilance states. Interestingly, the reduction of GS expression and the sleep phenotype observed upon Appl inhibition could be rescued by increasing the expression of the glutamate transporter dEaat1. In contrast, reducing dEaat1 expression severely disrupted sleep. These results associate glutamate recycling, sleep and a glial function for the App family proteins.StatementThe Amyloid Precursor Protein (App) has been intensively studied for its implication in Alzheimer Disease (AD). The attributed functions of App are linked to the physiology and cellular biology of neurons where the protein is predominantly expressed. Consequences on glia in AD are generally thought to be secondary

  4. Phosphorylated retinoblastoma protein (p-Rb) is involved in neuronal apoptosis after traumatic brain injury in adult rats.

    PubMed

    Liu, Wei; Liu, Xiaojuan; Yang, Huilin; Zhu, Xinhui; Yi, Hong; Zhu, Xuesong; Zhang, Jie

    2013-04-01

    Phosphorylated retinoblastoma protein (p-Rb), a well identified cell cycle related protein, is involved in regulating the biological functions of various cell types including neurons. One attractive biological function of p-Rb is releasing E2F transcription factor to induce S-phase entry and cellular proliferation of mitotic cells. However, some studies point out that the role of p-Rb in post-mitotic cells such as mature neurons is unique; it may induce cellular apoptosis rather than proliferation via regulating cell cycle reactivation. Up to now, the knowledge of p-Rb function in CNS is still limited. To investigate whether p-Rb is involved in CNS injury and repair, we performed a traumatic brain injury model in adult rats. Up-regulation of p-Rb was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that p-Rb was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of p-Rb in neuronal apoptosis; the result implied p-Rb was associated with cell cycle activation in the apoptotic neurons. Based on our data, we suggested that p-Rb might play an important role in neuronal apoptosis after traumatic brain injury in rat; which might also provide a basis for the further study on its role in regulating cell cycle re-entry in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.

  5. Mechanical stretch upregulates proteins involved in Ca2+ sensitization in urinary bladder smooth muscle hypertrophy.

    PubMed

    Boopathi, Ettickan; Gomes, Cristiano; Zderic, Stephen A; Malkowicz, Bruce; Chakrabarti, Ranjita; Patel, Darshan P; Wein, Alan J; Chacko, Samuel

    2014-09-15

    Partial bladder outlet obstruction (pBOO)-induced remodeling of bladder detrusor smooth muscle (DSM) is associated with the modulation of cell signals regulating contraction. We analyzed the DSM from obstructed murine urinary bladders for the temporal regulation of RhoA GTPase and Rho-activated kinase (ROCK), which are linked to Ca(2+) sensitization. In addition, the effects of equibiaxial cell stretch, a condition thought to be associated with pBOO-induced bladder wall smooth muscle hypertrophy and voiding frequency, on the expression of RhoA, ROCK, and C-kinase-activated protein phosphatase I inhibitor (CPI-17) were investigated. DSM from 1-, 3-, 7-, and 14-day obstructed male mice bladders and benign prostatic hyperplasia (BPH)-induced obstructed human bladders revealed overexpression of RhoA and ROCK-β at the mRNA and protein levels compared with control. Primary human bladder myocytes seeded onto type I collagen-coated elastic silicone membranes were subjected to cyclic equibiaxial stretch, mimicking the cellular mechanical stretch in the bladder in vivo, and analyzed for the expression of RhoA, ROCK-β, and CPI-17. Stretch caused a significant increase of RhoA, ROCKβ, and CPI-17 expression. The stretch-induced increase in CPI-17 expression occurs at the transcriptional level and is associated with CPI-17 promoter binding by GATA-6 and NF-κB, the transcription factors responsible for CPI-17 gene transcription. Cell stretch caused by bladder overdistension in pBOO is the likely mechanism for initiating overexpression of the signaling proteins regulating DSM tone.

  6. Towards the synthesis of hydroxyapatite/protein scaffolds with controlled porosities: bulk and interfacial shear rheology of a hydroxyapatite suspension with protein additives.

    PubMed

    Maas, Michael; Bodnar, Pedro Marcus; Hess, Ulrike; Treccani, Laura; Rezwan, Kurosch

    2013-10-01

    The synthesis of porous hydroxyapatite scaffolds is essential for biomedical applications such as bone tissue engineering and replacement. One way to induce macroporosity, which is needed to support bone in-growth, is to use protein additives as foaming agents. Another reason to use protein additives is the potential to introduce a specific biofunctionality to the synthesized scaffolds. In this work, we study the rheological properties of a hydroxyapatite suspension system with additions of the proteins bovine serum albumin (BSA), lysozyme (LSZ) and fibrinogen (FIB). Both the rheology of the bulk phase as well as the interfacial shear rheology are studied. The bulk rheological data provides important information on the setting behavior of the thixotropic suspension, which we find to be faster with the addition of FIB and LSZ and much slower with BSA. Foam bubble stabilization mechanisms can be rationalized via interfacial shear rheology and we show that it depends on the growth of interfacial films at the suspension/air interface. These interfacial films support the stabilization of bubbles within the ceramic matrix and thereby introduce macropores. Due to the weak interaction of the protein molecules with the hydroxyapatite particles of the suspension, we find that BSA forms the most stable interfacial films, followed by FIB. LSZ strongly interacts with the hydroxyapatite particles and thus only forms thin films with very low elastic moduli. In summary, our study provides fundamental rheological insights which are essential for tailoring hydroxyapatite/protein suspensions in order to synthesize scaffolds with controlled porosities.

  7. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.

    PubMed

    Morifuji, Masashi; Sanbongi, Chiaki; Sugiura, Katsumi

    2006-09-01

    Exercise training and regular physical activity increase oxidation of fat. Enhanced oxidation of fat is important for preventing lifestyle diseases such as hypertension and obesity. The aim of the present study in rats was to determine whether intake of dietary soya protein and exercise training have an additive effect on the activity and mRNA expression of enzymes involved in skeletal muscle fatty acid oxidation. Male Sprague-Dawley rats (n 32) were assigned randomly into four groups (eight rats per group) and then divided further into sedentary or exercise-trained groups fed either casein or soya protein diets. Rats in the exercise groups were trained for 2 weeks by swimming for 120 min/d, 6 d/week. Exercise training decreased hepatic triacylglycerol levels and retroperitoneal adipose tissue weight and increased skeletal muscle carnitine palmitoyltransferase 1 (CPT1) activity and mRNA expression of CPT1, beta-hydroxyacyl-CoA dehydrogenase (HAD), acyl-CoA oxidase, PPARgamma coactivator 1alpha (PGC1alpha) and PPARalpha. Soya protein significantly decreased hepatic triacylglycerol levels and epididymal adipose tissue weight and increased skeletal muscle CPT1 activity and CPT1, HAD, acyl-CoA oxidase, medium-chain acyl-CoA dehydrogenase, PGC1alpha and PPARalpha mRNA levels. Furthermore, skeletal muscle HAD activity was the highest in exercise-trained rats fed soya protein. We conclude that exercise training and soya protein intake have an important additive role on induction of PPAR pathways, leading to increased activity and mRNA expression of enzymes involved in fatty acid oxidation in skeletal muscle and reduced accumulation of body fat.

  8. Differential expression of proteins involved in energy production along the crypt-villus axis in early-weaning pig small intestine.

    PubMed

    Xiong, Xia; Yang, Huansheng; Tan, Bie; Yang, Chengbo; Wu, Miaomiao; Liu, Gang; Kim, Sung Woo; Li, Tiejun; Li, Lili; Wang, Junjun; Wu, Guoyao; Yin, Yulong

    2015-08-15

    Weaning of piglets reflects intestinal dysfunction and atrophy and affected the physiological state of enterocytes. However, few studies have defined physiological state of enterocytes along the crypt-villus axis in early-weaning piglets. A total of 16 piglets from 8 litters were used in the experiment. One group of piglets was nursed by sows until age 21 days, and another group was weaned at age 14 days and then fed creep feed instead of breast milk for 7 days. Piglets were killed at 21 days, and the jejunum segments were dissected. After sequential isolation of jejunum epithelial cells along the crypt-villus axis, their proteins were analyzed through the isobaric tags for relative and absolute quantification, and proteins involved in the mammalian target of rapamycin signaling pathway and proliferating cell nuclear antigen abundances in jejunal epithelial cells of weaning or suckling group were determined by Western blotting. The differential proteins in three cell fractions were identified and analyzed. The results showed that proteins involved in the tricarboxylic acid cycle, β-oxidation, and the glycolysis pathway were significantly downregulated in the upper and middle villus of the early-weaned group. However, proteins involved in glycolysis were significantly upregulated in crypt cells. In addition, Western blot analysis showed that the expression of mammalian target of rapamycin pathway-related proteins was decreased (P < 0.05) in the early-weaned group. The present results showed that early-weaning differentially affect the expression of proteins involved in energy production of enterocytes along the jejunal crypt-villus axis.

  9. Involvement of Brain-Enriched Guanylate Kinase-Associated Protein (BEGAIN) in Chronic Pain after Peripheral Nerve Injury

    PubMed Central

    Fukuda, Masafumi; Furue, Hidemasa; Abe, Manabu; Nishida, Kazuhiko; Yao, Ikuko; Yamada, Akihiro; Okumura, Nobuaki; Nakazawa, Takanobu; Yamamoto, Tadashi; Sakimura, Kenji; Takao, Toshifumi; Ito, Seiji

    2016-01-01

    Maintenance of neuropathic pain caused by peripheral nerve injury crucially depends on the phosphorylation of GluN2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor, at Tyr1472 (Y1472) and subsequent formation of a postsynaptic density (PSD) complex of superficial spinal dorsal horn neurons. Here we took advantage of comparative proteomic analysis based on isobaric stable isotope tags (iTRAQ) between wild-type and knock-in mice with a mutation of Y1472 to Phe of GluN2B (Y1472F-KI) to search for PSD proteins in the spinal dorsal horn that mediate the signaling downstream of phosphorylated Y1472 GluN2B. Among several candidate proteins, we focused on brain-enriched guanylate kinase-associated protein (BEGAIN), which was specifically up-regulated in wild-type mice after spared nerve injury (SNI). Immunohistochemical analysis using the generated antibody demonstrated that BEGAIN was highly localized at the synapse of inner lamina II in the spinal dorsal horn and that its expression was up-regulated after SNI in wild-type, but not in Y1472F-KI, mice. In addition, alteration of the kinetics of evoked excitatory postsynaptic currents for NMDA but not those for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in spinal lamina II was demonstrated by BEGAIN deletion. We demonstrated that mechanical allodynia, a condition of abnormal pain induced by innocuous stimuli, in the SNI model was significantly attenuated in BEGAIN-deficient mice. However, there was no significant difference between naive wild-type and BEGAIN-knockout mice in terms of physiological threshold for mechanical stimuli. These results suggest that BEGAIN was involved in pathological pain transmission through NMDA receptor activation by the phosphorylation of GluN2B at Y1472 in spinal inner lamina II. PMID:27785460

  10. Involvement of Brain-Enriched Guanylate Kinase-Associated Protein (BEGAIN) in Chronic Pain after Peripheral Nerve Injury.

    PubMed

    Katano, Tayo; Fukuda, Masafumi; Furue, Hidemasa; Yamazaki, Maya; Abe, Manabu; Watanabe, Masahiko; Nishida, Kazuhiko; Yao, Ikuko; Yamada, Akihiro; Hata, Yutaka; Okumura, Nobuaki; Nakazawa, Takanobu; Yamamoto, Tadashi; Sakimura, Kenji; Takao, Toshifumi; Ito, Seiji

    2016-01-01

    Maintenance of neuropathic pain caused by peripheral nerve injury crucially depends on the phosphorylation of GluN2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor, at Tyr1472 (Y1472) and subsequent formation of a postsynaptic density (PSD) complex of superficial spinal dorsal horn neurons. Here we took advantage of comparative proteomic analysis based on isobaric stable isotope tags (iTRAQ) between wild-type and knock-in mice with a mutation of Y1472 to Phe of GluN2B (Y1472F-KI) to search for PSD proteins in the spinal dorsal horn that mediate the signaling downstream of phosphorylated Y1472 GluN2B. Among several candidate proteins, we focused on brain-enriched guanylate kinase-associated protein (BEGAIN), which was specifically up-regulated in wild-type mice after spared nerve injury (SNI). Immunohistochemical analysis using the generated antibody demonstrated that BEGAIN was highly localized at the synapse of inner lamina II in the spinal dorsal horn and that its expression was up-regulated after SNI in wild-type, but not in Y1472F-KI, mice. In addition, alteration of the kinetics of evoked excitatory postsynaptic currents for NMDA but not those for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in spinal lamina II was demonstrated by BEGAIN deletion. We demonstrated that mechanical allodynia, a condition of abnormal pain induced by innocuous stimuli, in the SNI model was significantly attenuated in BEGAIN-deficient mice. However, there was no significant difference between naive wild-type and BEGAIN-knockout mice in terms of physiological threshold for mechanical stimuli. These results suggest that BEGAIN was involved in pathological pain transmission through NMDA receptor activation by the phosphorylation of GluN2B at Y1472 in spinal inner lamina II.

  11. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    PubMed Central

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Hajiaghaalipour, Fatemeh; Zahedifard, Maryam; Tayeby, Faezeh; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Purpose Curcuma purpurascens BI. is a member of Zingiberaceae family. The purpose of this study is to investigate the wound healing properties of hexane extract of C. purpurascens rhizome (HECP) against excisional wound healing in rats. Materials and methods Twenty four rats were randomly divided into 4 groups: A) negative control (blank placebo, acacia gum), B) low dose of HECP, C) high dose of HECP, and D) positive control, with 6 rats in each group. Full-thickness incisions (approximately 2.00 cm) were made on the neck area of each rat. Groups 1–4 were treated two-times a day for 20 days with blank placebo, HECP (100 mg/kg), HECP (200 mg/kg), and intrasite gel as a positive control, respectively. After 20 days, hematoxylin and eosin and Masson’s trichrome stainings were employed to investigate the histopathological alterations. Protein expressions of Bax and Hsp70 were examined in the wound tissues using immunohistochemistry analysis. In addition, levels of enzymatic antioxidants and malondialdehyde representing lipid peroxidation were measured in wound tissue homogenates. Results Macroscopic evaluation of wounds showed conspicuous elevation in wound contraction after topical administration of HECP at both doses. Moreover, histopathological analysis revealed noteworthy reduction in the scar width correlated with the enhanced collagen content and fibroblast cells, accompanied by a reduction of inflammatory cells in the granulation tissues. At the molecular level, HECP facilitates wound-healing process by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg). In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation. Conclusion These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis

  12. The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER).

    PubMed

    Moreno-Ulloa, Aldo; Mendez-Luna, David; Beltran-Partida, Ernesto; Castillo, Carmen; Guevara, Gustavo; Ramirez-Sanchez, Israel; Correa-Basurto, José; Ceballos, Guillermo; Villarreal, Francisco

    2015-10-01

    We have provided evidence that the stimulatory effects of (-)-epicatechin ((-)-EPI) on endothelial cell nitric oxide (NO) production may involve the participation of a cell-surface receptor. Thus far, such entity(ies) has not been fully elucidated. The G protein-coupled estrogen receptor (GPER) is a cell-surface receptor that has been linked to protective effects on the cardiovascular system and activation of intracellular signaling pathways (including NO production) similar to those reported with (-)-EPI. In bovine coronary artery endothelial cells (BCAEC) by the use of confocal imaging, we evidence the presence of GPER at the cell-surface and on F-actin filaments. Using in silico studies we document the favorable binding mode between (-)-EPI and GPER. Such binding is comparable to that of the GPER agonist, G1. By the use of selective blockers, we demonstrate that the activation of ERK 1/2 and CaMKII by (-)-EPI is dependent on the GPER/c-SRC/EGFR axis mimicking those effects noted with G1. We also evidence by the use of siRNA the role that GPER has on mediating ERK1/2 activation by (-)-EPI. GPER appears to be coupled to a non Gαi/o or Gαs, protein subtype. To extrapolate our findings to an ex vivo model, we employed phenylephrine pre-contracted aortic rings evidencing that (-)-EPI can mediate vasodilation through GPER activation. In conclusion, we provide evidence that suggests the GPER as a potential mediator of (-)-EPI effects and highlights the important role that GPER may have on cardiovascular system protection.

  13. Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    PubMed Central

    Watterson, D. Martin; Grum-Tokars, Valerie L.; Roy, Saktimayee M.; Schavocky, James P.; Bradaric, Brinda Desai; Bachstetter, Adam D.; Xing, Bin; Dimayuga, Edgardo; Saeed, Faisal; Zhang, Hong; Staniszewski, Agnieszka; Pelletier, Jeffrey C.; Minasov, George; Anderson, Wayne F.; Arancio, Ottavio; Van Eldik, Linda J.

    2013-01-01

    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will

  14. Signatures of nitrogen limitation in the elemental composition of the proteins involved in the metabolic apparatus.

    PubMed

    Acquisti, Claudia; Kumar, Sudhir; Elser, James J

    2009-07-22

    Nitrogen (N) is a fundamental component of nucleotides and amino acids and is often a limiting nutrient in natural ecosystems. Thus, study of the N content of biomolecules may establish important connections between ecology and genomics. However, while significant differences in the elemental composition of whole organisms are well documented, how the flux of nutrients in the cell has shaped the evolution of different cellular processes remains poorly understood. By examining the elemental composition of major functional classes of proteins in four multicellular eukaryotic model organisms, we find that the catabolic machinery shows substantially lower N content than the anabolic machinery and the rest of the proteome. This pattern suggests that ecological selection for N conservation specifically targets cellular components that are highly expressed in response to nutrient limitation. We propose that the RNA component of the anabolic machineries is the mechanistic force driving the elemental imbalance we found, and that RNA functions as an intracellular nutrient reservoir that is degraded and recycled during starvation periods. A comparison of the elemental composition of the anabolic and catabolic machineries in species that have experienced different levels of N limitation in their evolutionary history (animals versus plants) suggests that selection for N conservation has preferentially targeted the catabolic machineries of plants, resulting in a lower N content of the proteins involved in their catabolic processes. These findings link the composition of major cellular components to the environmental factors that trigger the activation of those components, suggesting that resource availability has constrained the atomic composition and the molecular architecture of the biotic processes that enable cells to respond to reduced nutrient availability.

  15. Effect of low molecular weight additives on immobilization strength, activity, and conformation of protein immobilized on PVC and UHMWPE.

    PubMed

    Kondyurin, Alexey; Nosworthy, Neil J; Bilek, Marcela M M

    2011-05-17

    Horseradish peroxidase (HRP) was immobilized onto both plasticized and unplasticized polyvinylchloride (PVC) and ultrahigh molecular weight polyethylene (UHMWPE). Plasma immersion ion implantation (PIII) in a nitrogen plasma with 20 kV bias was used to facilitate covalent immobilization and to improve the wettability of the surfaces. The surfaces and immobilized protein were studied using attenuated total reflection infrared (ATR-IR) spectroscopy and water contact angle measurements. Protein elution on exposure to repeated sodium dodecyl sulfate (SDS) washing was used to assess the strength of HRP immobilization. The presence of low molecular weight components (plasticizer, additives in solvent, unreacted monomers, adsorbed molecules on surface) was found to have a major influence on the strength of immobilization and the conformation of the protein on the samples not exposed to the PIII treatment. A phenomenological model considering interactions between the low molecular weight components, the protein molecule, and the surface is developed to explain these observations.

  16. Calmodulin and Ca2+/calmodulin-binding proteins are involved in Tetrahymena thermophila phagocytosis.

    PubMed

    Gonda, K; Komatsu, M; Numata, O

    2000-08-01

    The ciliated protist, Tetrahymena thermophila, possesses one oral apparatus for phagocytosis, one of the most important cell functions, in the anterior cell cortex. The apparatus comprises four membrane structures which consist of ciliated and unciliated basal bodies, a cytostome where food is collected by oral ciliary motility, and a cytopharynx where food vacuoles are formed. The food vacuole is thought to be transported into the cytoplasm by a deep fiber which connects with the oral apparatus. Although a large number of studies have been done on the structure of the oral apparatus, the molecular mechanisms of phagocytosis in Tetrahymena thermophila are not well understood. In this study, using indirect immunofluorescence, we demonstrated that the deep fiber consisted of actin, CaM, and Ca2+/CaM-binding proteins, p85 and EF-1alpha, which are closely involved in cytokinesis. Moreover, we showed that CaM, p85, and EF-1alpha are colocalized in the cytostome and the cytopharynx of the oral apparatus. Next, we examined whether Ca2+/CaM signal regulates Tetrahymena thermophila phagocytosis, using Ca2+/CaM inhibitors chlorpromazine, trifluoperazine, N-(6-aminohexyl)-1-naphthalenesulfonamide, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCI. In Tetrahymena, it is known that Ca2+/CaM signal is closely involved in ciliary motility and cytokinesis. The results showed that one of the inhibitors, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCl, inhibited the food vacuole formation rather than the ciliary motility, while the other three inhibitors effectively prevented the ciliary motility. Considering the colocalization of CaM, p85, and EF-1alpha to the cytopharynx, these results suggest that the Ca2+/CaM signal plays a pivotal role in Tetrahymena thermophila food vacuole formation.

  17. Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin

    PubMed Central

    Wetzl, Veronika; Schinner, Elisabeth; Kees, Frieder; Hofmann, Franz; Faerber, Lothar; Schlossmann, Jens

    2016-01-01

    Introduction: Kidney fibrosis has shown to be ameliorated through the involvement of cyclic guanosine monophosphate (cGMP) and its dependent protein kinase I (cGKI). Serelaxin, the recombinant form of human relaxin-II, increases cGMP levels and has shown beneficial effects on kidney function in acute heart failure patients. Antifibrotic properties of serelaxin are supposed to be mediated via relaxin family peptide receptor 1 and subsequently enhanced nitric oxide/cGMP to inhibit transforming growth factor-β (TGF-β) signaling. This study examines the involvement of cGKI in the antifibrotic signaling of serelaxin. Methods and Results: Kidney fibrosis was induced by unilateral ureteral obstruction in wildtype (WT) and cGKI knock-out (KO) mice. After 7 days, renal antifibrotic effects of serelaxin were assessed. Serelaxin treatment for 7 days significantly increased cGMP in the kidney of WT and cGKI-KO. In WT, renal fibrosis was reduced through decreased accumulation of collagen1A1, total collagen, and fibronectin. The profibrotic connective tissue growth factor as well as myofibroblast differentiation were reduced and matrix metalloproteinases-2 and -9 were positively modulated after treatment. Moreover, Smad2 as well as extracellular signal-regulated kinase 1 (ERK1) phosphorylation were decreased, whereas phosphodiesterase (PDE) 5a phosphorylation was increased. However, these effects were not observed in cGKI-KO. Conclusion: Antifibrotic renal effects of serelaxin are mediated via cGMP/cGKI to inhibit Smad2- and ERK1-dependent TGF-β signaling and increased PDE5a phosphorylation. PMID:27462268

  18. Collagen-induced platelet activation mainly involves the protein kinase C pathway.

    PubMed Central

    Karniguian, A; Grelac, F; Levy-Toledano, S; Legrand, Y J; Rendu, F

    1990-01-01

    This study analyses early biochemical events in collagen-induced platelet activation. An early metabolic event occurring during the lag phase was the activation of PtdIns(4,5)P2-specific phospholipase C. Phosphatidic acid (PtdOH) formation, phosphorylation of P43 and P20, thromboxane B2 (TXB2) synthesis and platelet secretion began after the lag phase, and were similarly time-dependent, except for TXB2 synthesis, which was delayed. Collagen induced extensive P43 phosphorylation, whereas P20 phosphorylation was weak and always lower than with thrombin. The dose-response curves of P43 phosphorylation and granule secretion were similar, and both reached a peak at 7.5 micrograms of collagen/ml, a dose which induced half-maximal PtdOH and TXB2 formation. Sphingosine, assumed to inhibit protein kinase C, inhibited P43 phosphorylation and secretion in parallel. However, sphingosine was not specific for protein kinase C, since a 15 microM concentration, which did not inhibit P43 phosphorylation, blocked TXB2 synthesis by 50%. Sphingosine did not affect PtdOH formation at all, even at 100 microM, suggesting that collagen itself induced this PtdOH formation, independently of TXB2 generation. The absence of external Ca2+ allowed the cleavage of polyphosphoinositides and the accumulation of InsP3 to occur, but impaired P43 phosphorylation, PtdOH and TXB2 formation, and secretion; these were only restored by adding 0.11 microM-Ca2+. In conclusion, stimulation of platelet membrane receptors for collagen initiates a PtdInsP2-specific phospholipase C activation, which is independent of external Ca2+, and might be the immediate receptor-linked response. A Ca2+ influx is indispensable to the triggering of subsequent platelet responses. This stimulation predominantly involves the protein kinase C pathway associated with secretion, and appears not to be mediated by TXB2, at least during its initial stage. Images Fig. 6. PMID:2163606

  19. Addition of Amino Acids to Further Stabilize Lyophilized Sucrose-Based Protein Formulations: I. Screening of 15 Amino Acids in Two Model Proteins.

    PubMed

    Forney-Stevens, Kelly M; Bogner, Robin H; Pikal, Michael J

    2016-02-01

    In small amounts, the low molecular weight excipients-sorbitol and glycerol-have been shown to stabilize lyophilized sucrose-based protein formulations. The purpose of this study was to explore the use of amino acids as low molecular weight excipients to similarly enhance stability. Model proteins, recombinant human serum albumin and α-chymotrypsin, were formulated with sucrose in combination with one of 15 amino acid additives. Each formulation was lyophilized at 1:1:0.3 (w/w) protein-sucrose-amino acid. Percent total soluble aggregate was measured by size-exclusion chromatography before and after storage at 50 °C for 2 months. Classical thought might suggest that the addition of the amino acids to the sucrose-protein formulations would be destabilizing because of a decrease in the system's glass transition temperature. However, significant improvement in storage stability was observed for almost all formulations at the ratio of amino acid used. Weak correlations were found between the extent of stabilization and both amino acid molar volume and side-chain charge. The addition of amino acids at a modest level generally improves storage stability, often by more than a 50% increase, for lyophilized sucrose-based protein formulations.

  20. Nicotine-induced plasticity in the retinocollicular pathway: Evidence for involvement of amyloid precursor protein.

    PubMed

    Gonçalves, R G J; Vasques, J F; Trindade, P; Serfaty, C A; Campello-Costa, P; Faria-Melibeu, A C

    2016-01-28

    During early postnatal development retinocollicular projections undergo activity-dependent synaptic refinement that results in the formation of precise topographical maps in the visual layers of the superior colliculus (SC). Amyloid Precursor Protein (APP) is a widely expressed transmembrane glycoprotein involved in the regulation of several aspects of neural development, such as neurite outgrowth, synapse formation and plasticity. Stimulation of cholinergic system has been found to alter the expression and processing of APP in different cell lines. Herein, we investigated the effect of nicotine on the development of retinocollicular pathway and on APP metabolism in the SC of pigmented rats. Animals were submitted to intracranial Elvax implants loaded with nicotine or phosphate-buffered saline (vehicle) at postnatal day (PND) 7. The ipsilateral retinocollicular pathway of control and experimental groups was anterogradely labeled either 1 or 3 weeks after surgery (PND 14 or PND 28). Local nicotine exposure produces a transitory sprouting of uncrossed retinal axons outside their main terminal zones. Nicotine also increases APP content and its soluble neurotrophic fragment sAPPα. Furthermore, nicotine treatment upregulates nicotinic acetylcholine receptor α7 and β2 subunits. Taken together, these data indicate that nicotine disrupts the ordering and topographic mapping of axons in the retinocollicular pathway and facilitates APP processing through the nonamyloidogenic pathway, suggesting that sAPPα may act as a trophic agent that mediates nicotine-induced morphological plasticity.

  1. The involvement of heat-shock proteins in the pathogenesis of autoimmune arthritis: a critical appraisal

    PubMed Central

    Huang, Min-Nung; Yu, Hua; Moudgil, Kamal D.

    2012-01-01

    Objectives To review the literature on the role of heat-shock proteins (HSPs) in the pathogenesis of autoimmune arthritis in animal models ans patients with rheumatoid arthritis (RA). Methods The published literature in Medline (PubMed), including our published work on the cell-mediated as well as humoral immune response to various HSPs was reviewed. Studies in both the pre-clinical animal models of arthritis as well as RA were examined critically and the data presented. Results In experimental arthritis, disease induction by different arthritogenic stimuli, including an adjuvant, led to immune response to mycobacterial HSP65 (BHSP65). However, attempts to induce arthritis by a purified HSP have not met with success. There are several reports of a significant immune response to HSP65 in RA patients. But, the issue of cause and effect is difficult to address. Nevertheless, several studies in animal models and a couple of clinical trials in RA patients have shown the beneficial effect of HSPs against autoimmune arthritis. Conclusions There is a clear association between immune response to HSPs, particularly HSP65, and the initiation and propagation of autoimmune arthritis in experimental models. The correlation is relatively less convincing in RA patients. In both cases, the ability of HSPs to modulate arthritis offers support, albeit an indirect one, for the involvement of these antigens in the disease process. PMID:19969325

  2. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia.

    PubMed

    Di Genova, Bruno M; da Silva, Richard C; da Cunha, Júlia P C; Gargantini, Pablo R; Mortara, Renato A; Tonelli, Renata R

    2016-11-19

    The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.

  3. The involvement of multidrug and toxin extrusion protein 1 in the distribution and excretion of berberine.

    PubMed

    Xiao, Ling; Xue, Yaru; Zhang, Cuifeng; Wang, Le; Lin, Yunfei; Pan, Guoyu

    2017-03-16

    1. Berberine (BBR), an isoquinoline alkaloid, has demonstrated multiple clinical pharmacological actions. As a substrate of multiple transporters in the liver, BBR is rarely excreted into the bile but can be found in the urine. The purpose of the present study was to investigate the role of multidrug and toxin extrusion protein 1 (MATE1) in the transport of BBR in the liver and kidney. 2. Using human MATE1 (hMATE1)-transfected HEK293 cells, BBR was shown to be a substrate of hMATE1 (Km = 4.28 ± 2.18 μM). In primary rat hepatocytes, pH-dependent uptake and efflux studies suggested that the transport of BBR was driven by the exchange of H(+) and involved Mate1. In rats, we found that pyrimethamine (PYR), an inhibitor of Mate1, increased hepatic and renal distribution of BBR and decreased systematic excretion of BBR. 3. These findings indicated that BBR is a substrate of MATE1 and that hepatic and renal Mate1 promote excretion of BBR into bile and urine, respectively. In conclusion, Mate1 plays a key role in the distribution and excretion of BBR, and we speculate that drug-drug interactions (DDIs) caused by MATE1 may occur between BBR and other co-administered drugs.

  4. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly.

    PubMed

    Georgiadou, Michaella; Castagnini, Marta; Karimova, Gouzel; Ladant, Daniel; Pelicic, Vladimir

    2012-06-01

    The functionally versatile type IV pili (Tfp) are one of the most widespread virulence factors in bacteria. However, despite generating much research interest for decades, the molecular mechanisms underpinning the various aspects of Tfp biology remain poorly understood, mainly because of the complexity of the system. In the human pathogen Neisseria meningitidis for example, 23 proteins are dedicated to Tfp biology, 15 of which are essential for pilus biogenesis. One of the important gaps in our knowledge concerns the topology of this multiprotein machinery. Here we have used a bacterial two-hybrid system to identify and quantify the interactions between 11 Pil proteins from N. meningitidis. We identified 20 different binary interactions, many of which are novel. This represents the most complex interaction network between Pil proteins reported to date and indicates, among other things, that PilE, PilM, PilN and PilO, which are involved in pilus assembly, indeed interact. We focused our efforts on this subset of proteins and used a battery of assays to determine the membrane topology of PilN and PilO, map the interaction domains between PilE, PilM, PilN and PilO, and show that a widely conserved N-terminal motif in PilN is essential for both PilM-PilN interactions and pilus assembly. Finally, we show that PilP (another protein involved in pilus assembly) forms a complex with PilM, PilN and PilO. Taken together, these findings have numerous implications for understanding Tfp biology and provide a useful blueprint for future studies.

  5. Postnatal growth velocity modulates alterations of proteins involved in metabolism and neuronal plasticity in neonatal hypothalamus in rats born with intrauterine growth restriction.

    PubMed

    Alexandre-Gouabau, Marie-Cécile F; Bailly, Emilie; Moyon, Thomas L; Grit, Isabelle C; Coupé, Bérengère; Le Drean, Gwenola; Rogniaux, Hélène J; Parnet, Patricia

    2012-02-01

    Intrauterine growth restriction (IUGR) due to maternal protein restriction is associated in rats with an alteration in hypothalamic centers involved in feeding behaviour. In order to gain insight into the mechanism of perinatal maternal undernutrition in the brain, we used proteomics approach to identify hypothalamic proteins that are altered in their expression following protein restriction in utero. We used an animal model in which restriction of the protein intake of pregnant rats (8% vs. 20%) produces IUGR pups which were randomized to a nursing regimen leading to either rapid or slow catch-up growth. We identified several proteins which allowed, by multivariate analysis, a very good discrimination of the three groups according to their perinatal nutrition. These proteins were related to energy-sensing pathways (Eno 1, E(2)PDH, Acot 1 and Fabp5), redox status (Bcs 1L, PrdX3 and 14-3-3 protein) or amino acid pathway (Acy1) as well as neurodevelopment (DRPs, MAP2, Snca). In addition, the differential expressions of several key proteins suggested possible shunts towards ketone-body metabolism and lipid oxidation, providing the energy and carbon skeletons necessary to lipogenesis. Our results show that maternal protein deprivation during pregnancy only (IUGR with rapid catch-up growth) or pregnancy and lactation (IUGR with slow postnatal growth) modulates numerous metabolic pathways resulting in alterations of hypothalamic energy supply. As several of these pathways are involved in signalling, it remains to be determined whether hypothalamic proteome adaptation of IUGR rats in response to different postnatal growth rates could also interfere with cerebral plasticity or neuronal maturation.

  6. Minor Coat and Heat Shock Proteins Are Involved in the Binding of Citrus Tristeza Virus to the Foregut of Its Aphid Vector, Toxoptera citricida

    PubMed Central

    Harper, S. J.; Alfaress, S.; El Mohtar, C.; Dawson, W. O.

    2016-01-01

    ABSTRACT Vector transmission is a critical stage in the viral life cycle, yet for most plant viruses how they interact with their vector is unknown or is explained by analogy with previously described relatives. Here we examined the mechanism underlying the transmission of citrus tristeza virus (CTV) by its aphid vector, Toxoptera citricida, with the objective of identifying what virus-encoded proteins it uses to interact with the vector. Using fluorescently labeled virions, we demonstrated that CTV binds specifically to the lining of the cibarium of the aphid. Through in vitro competitive binding assays between fluorescent virions and free viral proteins, we determined that the minor coat protein is involved in vector interaction. We also found that the presence of two heat shock-like proteins, p61 and p65, reduces virion binding in vitro. Additionally, treating the dissected mouthparts with proteases did not affect the binding of CTV virions. In contrast, chitinase treatment reduced CTV binding to the foregut. Finally, competition with glucose, N-acetyl-β-d-glucosamine, chitobiose, and chitotriose reduced the binding. These findings together suggest that CTV binds to the sugar moieties of the cuticular surface of the aphid cibarium, and the binding involves the concerted activity of three virus-encoded proteins. IMPORTANCE Limited information is known about the specific interactions between citrus tristeza virus and its aphid vectors. These interactions are important for the process of successful transmission. In this study, we localized the CTV retention site as the cibarium of the aphid foregut. Moreover, we demonstrated that the nature of these interactions is protein-carbohydrate binding. The viral proteins, including the minor coat protein and two heat shock proteins, bind to sugar moieties on the surface of the foregut. These findings will help in understanding the transmission mechanism of CTV by the aphid vector and may help in developing control

  7. Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition for sensitive and selective protein biosensing.

    PubMed

    Su, Zhaohong; Xu, Haitao; Xu, Xiaolin; Zhang, Yi; Ma, Yan; Li, Chaorong; Xie, Qingji

    2017-03-01

    Effective covalent immobilization of quinone and aptamer onto a gold electrode via thiol addition (a Michael addition) for sensitive and selective protein (with thrombin as the model) biosensing is reported, with a detection limit down to 20 fM for thrombin. Briefly, the thiol addition reaction of a gold electrode-supported 1,6-hexanedithiol (HDT) with p-benzoquinone (BQ) yielded BQ-HDT/Au, and the similar reaction of thiolated thrombin aptamer (TTA) with activated BQ-HDT/Au under 0.3V led to formation of a gold electrode-supported novel electrochemical probe TTA-BQ-HDT/Au. The thus-prepared TTA-BQ-HDT/Au exhibits a pair of well-defined redox peaks of quinone moiety, and the TTA-thrombin interaction can sensitively decrease the electrochemical signal. Herein the thiol addition acts as an effective and convenient binding protocols for aptasensing, and a new method (electrochemical conversion of Michael addition complex for signal generation) for the fabrication of biosensor is presented. The cyclic voltammetry (CV) was used to characterize the film properties. In addition, the proposed amperometric aptasensor exhibits good sensitivity, selectivity, and reproducibility. The aptasensor also has acceptable recovery for detection in complex protein sample.

  8. Arsenic induces VL30 retrotransposition: the involvement of oxidative stress and heat-shock protein 70.

    PubMed

    Markopoulos, Georgios; Noutsopoulos, Dimitrios; Mantziou, Stefania; Vartholomatos, Georgios; Monokrousos, Nikolaos; Angelidis, Charalampos; Tzavaras, Theodore

    2013-08-01

    Arsenic is an environmental contaminant with known cytotoxic and carcinogenic properties, but the cellular mechanisms of its action are not fully known. As retrotransposition consists a potent mutagenic factor affecting genome stability, we investigated the effect of arsenic on retrotransposition of an enhanced green fluorescent protein (EGFP)-tagged nonautonomous long terminal repeat (LTR)-retrotransposon viral-like 30 (VL30) in a mouse NIH3T3 cell culture-retrotransposition assay. Flow cytometry analysis of assay cells treated with 2.5-20μM sodium arsenite revealed induction of retrotransposition events in a dose- and time-dependent manner, which was further confirmed as genomic integrations by PCR analysis and appearance of EGFP-positive cells by UV microscopy. Specifically, 20μM sodium arsenite strongly induced the VL30 retrotransposition frequency, which was ~90,000-fold higher than the natural one and also VL30 RNA expression was ~6.6-fold. Inhibition of the activity of endogenous reverse transcriptases by efavirenz at 15μM or nevirapine at 375μM suppressed the arsenite-induced VL30 retrotransposition by 71.16 or 79.88%, respectively. In addition, the antioxidant N-acetyl-cysteine reduced the level of arsenite-induced retrotransposition, which correlated with the rescue of arsenite-induced G2/M cell cycle arrest and cell toxicity. Treatment of assay cells ectopically overexpressing the human heat-shock protein 70 (Hsp70) with 15μM sodium arsenite resulted in an additional ~4.5-fold induction of retrotransposition compared with normal assay cells, whereas treatment with 20μM produced a massive cell death. Our results show for the first time that arsenic both as an oxidative and heat-shock mimicking agent is a potent inducer of VL30 retrotransposition in mouse cells. The impact of arsenic-induced retrotransposition, as a cellular response, on contribution to or explanation of the arsenic-associated toxicity and carcinogenicity is discussed.

  9. [Effect of the addition of soy flour and whey protein concentrate on bread quality and mineral dialyzability].

    PubMed

    Visentín, Alexis N; Drago, Silvina R; Osella, Carlos A; de la Torre, María A; Sánchez, Hugo D; González, Rolando J

    2009-09-01

    The effects of the addition of soy flour and whey protein concentrate (WPC) on dough properties and mold bread quality were studied. Farinograph and alveograph were used to evaluate dough properties. Mold bread quality was evaluated by assessing sensory attributes using a trained panel and analyzing some nutritional characteristics, such as: protein chemical score, available lysine, and potential availability of fortified iron and also of the intrinsic calcium and zinc. Addition of soy flour and WPC caused significant changes on dough properties. Chemical score of bread was increased from 40.2 to 41.4 when 6% WPC was used, from 40.2 to 52.2 when 6% soy flour was added and up to 60.0 when substitution was made with 6% WPC plus 6% soy flour. This last improvement was obtained without impairing sensory attributes. The highest value of available lysine loss during baking, corresponded to the blend containing WPC, but it was reduced when WPC was used together with soy flour. WPC addition increased calcium content but reduced potential availability of iron and zinc. This negative effect on iron availability was overcome by adding mineral absorption promoters, being EDTA the most effective. On the other hand addition of 6% soy flour improved protein value without affecting mineral availability.

  10. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins

    NASA Astrophysics Data System (ADS)

    Dick, J. M.; Larowe, D. E.; Helgeson, H. C.

    2006-07-01

    Thermodynamic calculations can be used to quantify environmental constraints on the speciation of proteins, such as the pH and temperature dependence of ionization state, and the relative chemical stabilities of proteins in different biogeochemical settings. These calculations depend in part on values of the standard molal Gibbs energies of proteins and their ionization reactions as a function of temperature and pressure. Because these values are not generally available, we calculated values of the standard molal thermodynamic properties at 25°C and 1 bar as well as the revised Helgeson-Kirkham-Flowers equations of state parameters of neutral and charged zwitterionic reference model compounds including aqueous amino acids, polypeptides, and unfolded proteins. The experimental calorimetric and volumetric data for these species taken from the literature were combined with group additivity algorithms to calculate the properties and parameters of neutral and ionized sidechain and backbone groups in unfolded proteins. The resulting set of group contributions enables the calculation of the standard molal Gibbs energy, enthalpy, entropy, isobaric heat capacity, volume, and isothermal compressibility of unfolded proteins in a range of proton ionization states to temperatures and pressures exceeding 100°C and 1000 bar. This approach provides a useful frame of reference for thermodynamic studies of protein folding and complexation reactions. It can also be used to assign provisional values of the net charge and Gibbs energy of ionized proteins as a function of temperature and pH. Using these values, an Eh-pH diagram for a reaction representing the speciation of extracellular proteins from Pyrococcus furiosus and Bacillus subtilis was generated. The predicted predominance limits of these proteins correspond with the different electrochemical conditions of hydrothermal vents and soils. More comprehensive calculations of this kind may reveal pervasive chemical potential

  11. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells.

    PubMed Central

    Talay, S R; Valentin-Weigand, P; Jerlström, P G; Timmis, K N; Chhatwal, G S

    1992-01-01

    The sequence of the fibronectin-binding domain of the fibronectin-binding protein of Streptococcus pyogenes (Sfb protein) was determined, and its role in streptococcal adherence was investigated by use of an Sfb fusion protein in adherence studies. A 1-kb DNA fragment coding for the binding domain of Sfb protein was cloned into the expression vector pEX31 to produce an Sfb fusion protein consisting of the N-terminal part of MS2 polymerase and a C-terminal fragment of the streptococcal protein. Induction of the vector promoter resulted in hyperexpression of fibronectin-binding fusion protein in the cytoplasm of the recombinant Escherichia coli cells. Sequence determination of the cloned 1-kb fragment revealed an in-frame reading frame for a 268-amino-acid peptide composed of a 37-amino-acid sequence which is completely repeated three times and incompletely repeated a fourth time. Cloning of one repeat into pEX31 resulted in expression of small fusion peptides that show fibronectin-binding activity, indicating that one repeat contains at least one binding domain. Each repeat exhibits two charged domains and shows high homology with the 38-amino-acid D3 repeat of the fibronectin-binding protein of Staphylococcus aureus. Sequence comparison with other streptococcal ligand-binding surface proteins, including M protein, failed to reveal significant homology, which suggests that Sfb protein represents a novel type of functional protein in S. pyogenes. The Sfb fusion protein isolated from the cytoplasm of recombinant cells was purified by fast protein liquid chromatography. It showed a strong competitive inhibition of fibronectin binding to S. pyogenes and of the adherence of bacteria to cultured epithelial cells. In contrast, purified streptococcal lipoteichoic acid showed only a weak inhibition of fibronectin binding and streptococcal adherence. These results demonstrate that Sfb protein is directly involved in the fibronectin-mediated adherence of S. pyogenes to

  12. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production

    PubMed Central

    Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications. PMID:27093053

  13. Activity of the Human Rhinovirus 3C Protease Studied in Various Buffers, Additives and Detergents Solutions for Recombinant Protein Production.

    PubMed

    Ullah, Raheem; Shah, Majid Ali; Tufail, Soban; Ismat, Fouzia; Imran, Muhammad; Iqbal, Mazhar; Mirza, Osman; Rhaman, Moazur

    2016-01-01

    Proteases are widely used to remove affinity and solubility tags from recombinant proteins to avoid potential interference of these tags with the structure and function of the fusion partner. In recent years, great interest has been seen in use of the human rhinovirus 3C protease owing to its stringent sequence specificity and enhanced activity. Like other proteases, activity of the human rhinovirus 3C protease can be affected in part by the buffer components and additives that are generally employed for purification and stabilization of proteins, hence, necessitate their removal by tedious and time-consuming procedures before proteolysis can occur. To address this issue, we examined the effect of elution buffers used for common affinity based purifications, salt ions, stability/solubility and reducing agents, and detergents on the activity of the human rhinovirus 3C protease using three different fusion proteins at 4°C, a temperature of choice for purification of many proteins. The results show that the human rhinovirus 3C protease performs better at 4°C than the frequently used tobacco etch virus protease and its activity was insensitive to most of the experimental conditions tested. Though number of fusion proteins tested is limited, we expect that these finding will facilitate the use of the human rhinovirus 3C protease in recombinant protein production for pharmaceutical and biotechnological applications.

  14. Lateral diffusion of peripheral membrane proteins on supported lipid bilayers is controlled by the additive frictional drags of (1) bound lipids and (2) protein domains penetrating into the bilayer hydrocarbon core.

    PubMed

    Ziemba, Brian P; Falke, Joseph J

    2013-01-01

    Peripheral membrane proteins bound to lipids on bilayer surfaces play central roles in a wide array of cellular processes, including many signaling pathways. These proteins diffuse in the plane of the bilayer and often undergo complex reactions involving the binding of regulatory and substrate lipids and proteins they encounter during their 2D diffusion. Some peripheral proteins, for example pleckstrin homology (PH) domains, dock to the bilayer in a relatively shallow position with little penetration into the bilayer. Other peripheral proteins exhibit more complex bilayer contacts, for example classical protein kinase C isoforms (PKCs) bind as many as six lipids in stepwise fashion, resulting in the penetration of three PKC domains (C1A, C1B, C2) into the bilayer headgroup and hydrocarbon regions. A molecular understanding of the molecular features that control the diffusion speeds of proteins bound to supported bilayers would enable key molecular information to be extracted from experimental diffusion constants, revealing protein-lipid and protein-bilayer interactions difficult to study by other methods. The present study investigates a range of 11 different peripheral protein constructs comprised by 1-3 distinct domains (PH, C1A, C1B, C2, anti-lipid antibody). By combining these constructs with various combinations of target lipids, the study measures 2D diffusion constants on supported bilayers for 17 different protein-lipid complexes. The resulting experimental diffusion constants, together with the known membrane interaction parameters of each complex, are used to analyze the molecular features correlated with diffusional slowing and bilayer friction. The findings show that both (1) individual bound lipids and (2) individual protein domains that penetrate into the hydrocarbon core make additive contributions to the friction against the bilayer, thereby defining the 2D diffusion constant. An empirical formula is developed that accurately estimates the diffusion

  15. Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism.

    PubMed

    Nguyen, Hoa M; Baudet, Mathieu; Cuiné, Stéphan; Adriano, Jean-Marc; Barthe, Damien; Billon, Emmanuelle; Bruley, Christophe; Beisson, Fred; Peltier, Gilles; Ferro, Myriam; Li-Beisson, Yonghua

    2011-11-01

    Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.

  16. The nuclear protein Sam68 is redistributed to the cytoplasm and is involved in PI3K/Akt activation during EV71 infection.

    PubMed

    Zhang, Hua; Cong, Haolong; Song, Lei; Tien, Po

    2014-02-13

    Nuclear proteins can be triggered to be redistributed to the cytoplasm to assist with EV71 virus replication. This process is frequently involved in cellular signal transduction upon virus infection. In this study, we have demonstrated that a new nuclear protein, 68-kDa Src-associated in mitosis protein (Sam68), was translocated to the cytoplasm and was co-localized with EV71 during virus infection. Confocal microscopy and subcellular fractionation assay confirmed that virus 3C protease triggered the redistribution of Sam68 to the cytoplasm. Knockdown of Sam68 expression using ShRNA significantly inhibited virus replication, suggesting that Sam68 may be a host factor involved in EV71 life cycle. In addition, EV71-induced Akt phosphorylation involved a PI3K-dependent mechanism. Sam68 is known to be an upstream regulator of PI3K and our immunoprecipitation studies confirmed that Sam68 interacted directly with the p85 regulatory subunit of PI3K and mediated PI3K/Akt activation during EV71 infection. On the contrary, silencing of Sam68 dramatically abrogated Akt phosphorylation. These data, plus the fact that Sam68 is known to be a signaling adaptor protein, indicated that Sam68 is a signal molecule with a functional role in the PI3K/Akt signal pathway during EV71 infection.

  17. The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding.

    PubMed

    Jendeberg, L; Tashiro, M; Tejero, R; Lyons, B A; Uhlén, M; Montelione, G T; Nilsson, B

    1996-01-09

    Structural changes in staphylococcal protein A (SpA) upon its binding to the constant region (Fc) of immunoglobulin G (IgG) have been studied by nuclear magnetic resonance and circular dichroism (CD) spectroscopy. The NMR solution structure of the engineered IgG-binding domain of SpA, the Z domain (an analogue of the B domain of SpA), has been determined by simulated annealing with molecular dynamics, using 599 distance and dihedral angle constraints. Domain Z contains three alpha-helices in the polypeptide segments Lys7 to His18 (helix 1), Glu25 to Asp36 (helix 2), and Ser41 to Ala54 (helix 3). The overall chain fold is an antiparallel three-helical bundle. This is in contrast to the previously determined X-ray structure of the similar SpA domain B in complex with Fc, where helix 3 is not observed in the electron density map [Deisenhofer, J. (1981) Biochemistry 20, 2361-2370], but similar to the solution NMR structure of domain B, which is also a three-helical bundle structure [Gouda, H., et al. (1992) Biochemistry 31, 9665-9672]. In order to characterize possible secondary structural changes associated with IgG binding, far-UV CD spectra were collected for the Z domain, an engineered repeat of this molecule (ZZ), recombinant Fc from IgG subclass 1 (Fc1), recombinant Fc from IgG subclass 3 (Fc3), and mixtures of Z/Fc1, Z/Fc3, ZZ/Fc1, and ZZ/Fc3. Fc3 was included as a control for possible changes of the CD spectrum in the mixture of noncomplexed molecules, since SpA is known not to bind Fc3. From these CD spectra, it was concluded that the third alpha-helix in Z is not disrupted in its complexes with Fc1. Similar results were obtained for the ZZ molecule. However, in both Z and ZZ there are some perturbations in CD spectra at high energy wavelengths (i.e., lambda < 215 nm) accompanying complex formation. On the basis of the combined CD and NMR results, as well as previously described binding studies of Z mutant proteins to Fc1, we conclude that the Z domain

  18. The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z.

    PubMed

    Fehling, Sarah Katharina; Noda, Takeshi; Maisner, Andrea; Lamp, Boris; Conzelmann, Karl-Klaus; Kawaoka, Yoshihiro; Klenk, Hans-Dieter; Garten, Wolfgang; Strecker, Thomas

    2013-02-01

    The small matrix protein Z of arenaviruses has been identified as the main driving force to promote viral particle production at the plasma membrane. Although multiple functions of Z in the arenaviral life cycle have been uncovered, the mechanism of intracellular transport of Z to the site of virus budding is poorly understood and cellular motor proteins that mediate Z trafficking remain to be identified. In the present study, we report that the Z protein of the Old World arenavirus Lassa virus (LASV) interacts with the kinesin family member 13A (KIF13A), a plus-end-directed microtubule-dependent motor protein. Plasmid-driven overexpression of KIF13A results in relocalization of Z to the cell periphery, while functional blockage of endogenous KIF13A by overexpression of a dominant-negative mutant or KIF13A-specific siRNA causes a perinuclearaccumulation and decreased production of both Z-induced virus-like particles and infectious LASV. The interaction of KIF13A with Z proteins from both Old and New World arenaviruses suggests a conserved intracellular transport mechanism. In contrast, the intracellular distribution of the matrix proteins of prototypic members of the paramyxo- and rhabdovirus family is independent of KIF13A. In summary, our studies identify for the first time a molecular motor protein as a critical mediator for intracellular microtubule-dependent transport of arenavirus matrix proteins.

  19. Implication of antigenic conversion of Helicobacter pylori lipopolysaccharides that involve interaction with surfactant protein D.

    PubMed

    Yokota, Shin-ichi; Amano, Ken-ichi; Nishitani, Chiaki; Ariki, Shigeru; Kuroki, Yoshio; Fujii, Nobuhiro

    2012-08-01

    We propose two antigenic types of Helicobacter pylori lipopolysaccharides (LPS): highly antigenic epitope-carrying LPS (HA-LPS) and weakly antigenic epitope-carrying LPS (WA-LPS) based on human serum reactivity. Strains carrying WA-LPS are highly prevalent in isolates from gastric cancer patients. WA-LPS exhibits more potent biological activities compared to HA-LPS, namely, upregulation of Toll-like receptor 4 (TLR4) expression and induction of enhanced epithelial cell proliferation. The results of competitive binding assays using monosaccharides and methylglycosides, as well as binding assays using glycosidase-treated LPS, suggested that β-linked N-acetyl-D-glucosamine and β-linked D-galactose residues largely contributed to the highly antigenic epitope and the weakly antigenic epitope, respectively. WA-LPS exhibited greater binding activity to surfactant protein D (SP-D) in a Ca(2+)-dependent manner, and this interaction was inhibited by methyl-β-D-galactoside. The biological activities of WA-LPS were markedly enhanced by the addition of SP-D. Lines of evidence suggested that removal of β-N-acetyl-D-glucosamine residue, which comprises the highly antigenic epitope, results in exposure of the weakly antigenic epitope. The weakly antigenic epitope interacted preferentially with SP-D, and SP-D enhanced the biological activity of WA-LPS.

  20. Impact of bentonite additions during vinification on protein stability and volatile compounds of Albariño wines.

    PubMed

    Lira, Eugenio; Rodríguez-Bencomo, Juan José; Salazar, Fernando N; Orriols, Ignacio; Fornos, Daniel; López, Francisco

    2015-03-25

    Today, bentonite continues to be one of the most used products to remove proteins in white wines in order to avoid their precipitation in bottles. However, excessive use of bentonite has negative effects on the aroma of final wine, so the optimization of the dose and the time of its application are important for winemakers. This paper analyzes how applying an equal dose of bentonite at different stages (must clarification; beginning, middle, and end of fermentation) affects the macromolecular profile, protein stability, physical-chemical characteristics and aromatic profile of the wine obtained. The results showed the addition during fermentation (especially in the middle and at the end) reduced the total dose required for protein stabilization of Albariño wines and maintained the sensory characteristics of this variety.

  1. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants.

    PubMed

    Zheng, Xuan; Dong, Shuangshuang; Zheng, Jie; Li, Duanhua; Li, Feng; Luo, Zhongli

    2014-01-01

    G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.

  2. Proteomic profile of carbonylated proteins in rat liver: exercise attenuated oxidative stress may be involved in fatty liver improvement.

    PubMed

    Hu, Xiaofei; Duan, Zhigui; Hu, Hui; Li, Guolin; Yan, Siyu; Wu, Jinfeng; Wang, Jun; Yin, Dazhong; Xie, Qingji

    2013-05-01

    To screen target proteins of oxidative stress which mediate the effects of exercise on preventing nonalcoholic fatty liver disease (NAFLD), the methods for selecting carbonylated proteins were modified, and carbonylated proteins were profiled. The results showed that treadmill training reduced oxidative stress and the levels of intrahepatic triglyceride (IHTG). The changes in IHTG showed a significant positive correlation with oxidative stress as indicated by malondialdehyde level. Further results from proteomics illustrated that 17 functional proteins were susceptible to oxidative modification, and exercise protected three proteins from carbonylation. The latter three proteins may serve as both direct target proteins of oxidative stress and mediators contributing to the beneficial effects of exercise. In particular, a long-chain specific acyl-CoA dehydrogenase (ACADL) which was a key enzyme in lipid metabolism was not carbonylated and with higher activities in exercise group. These findings indicate that this modified technique is practical and powerful in selecting carbonylated proteins. Long-term treadmill training is effective in ameliorating oxidative stress and preventing the accumulation of IHTG. Among the 17 target proteins of oxidative modification, three proteins contribute to the beneficial effects of exercise. Preventing ACADL from carbonylation may be involved in the physiological mechanism of exercise-induced NAFLD improvement.

  3. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization.

    PubMed

    Tena-Campos, Mercè; Ramon, Eva; Lupala, Cecylia S; Pérez, Juan J; Koch, Karl-W; Garriga, Pere

    2016-04-01

    5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.

  4. Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem.

    PubMed

    Ernst, Antonia M; Jekat, Stephan B; Zielonka, Sascia; Müller, Boje; Neumann, Ulla; Rüping, Boris; Twyman, Richard M; Krzyzanek, Vladislav; Prüfer, Dirk; Noll, Gundula A

    2012-07-10

    The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.

  5. Latexin is involved in bone morphogenetic protein-2-induced chondrocyte differentiation

    SciTech Connect

    Kadouchi, Ichiro; Sakamoto, Kei; Tangjiao, Liu; Murakami, Takashi; Kobayashi, Eiji; Hoshino, Yuichi; Yamaguchi, Akira

    2009-01-16

    Latexin is the only known carboxypeptidase A inhibitor in mammals. We previously demonstrated that BMP-2 significantly induced latexin expression in Runx2-deficient mesenchymal cells (RD-C6 cells), during chondrocyte and osteoblast differentiation. In this study, we investigated latexin expression in the skeleton and its role in chondrocyte differentiation. Immunohistochemical studies revealed that proliferating and prehypertrophic chondrocytes expressed latexin during skeletogenesis and bone fracture repair. In the early phase of bone fracture, latexin mRNA expression was dramatically upregulated. BMP-2 upregulated the expression of the mRNAs of latexin, Col2a1, and the gene encoding aggrecan (Agc1) in a micromass culture of C3H10T1/2 cells. Overexpression of latexin additively stimulated the BMP-2-induced expression of the mRNAs of Col2a, Agc1, and Col10a1. BMP-2 treatment upregulated Sox9 expression, and Sox9 stimulated the promoter activity of latexin. These results indicate that latexin is involved in BMP-2-induced chondrocyte differentiation and plays an important role in skeletogenesis and skeletal regeneration.

  6. Association of Human DEAD Box Protein DDX1 with a Cleavage Stimulation Factor Involved in 3′-End Processing of Pre-mRNAV⃞

    PubMed Central

    Bléoo, Stacey; Sun, Xuejun; Hendzel, Michael J.; Rowe, John M.; Packer, Mary; Godbout, Roseline

    2001-01-01

    DEAD box proteins are putative RNA helicases that function in all aspects of RNA metabolism, including translation, ribosome biogenesis, and pre-mRNA splicing. Because many processes involving RNA metabolism are spatially organized within the cell, we examined the subcellular distribution of a human DEAD box protein, DDX1, to identify possible biological functions. Immunofluorescence labeling of DDX1 demonstrated that in addition to widespread punctate nucleoplasmic labeling, DDX1 is found in discrete nuclear foci ∼0.5 μm in diameter. Costaining with anti-Sm and anti-promyelocytic leukemia (PML) antibodies indicates that DDX1 foci are frequently located next to Cajal (coiled) bodies and less frequently, to PML bodies. Most importantly, costaining with anti-CstF-64 antibody indicates that DDX1 foci colocalize with cleavage bodies. By microscopic fluorescence resonance energy transfer, we show that labeled DDX1 resides within a Förster distance of 10 nm of labeled CstF-64 protein in both the nucleoplasm and within cleavage bodies. Coimmunoprecipitation analysis indicates that a proportion of CstF-64 protein resides in the same complex as DDX1. These studies are the first to identify a DEAD box protein associating with factors involved in 3′-end cleavage and polyadenylation of pre-mRNAs. PMID:11598190

  7. Effect of antibiotic, Lacto-lase and probiotic addition in chicken feed on protein and fat content of chicken meat

    NASA Astrophysics Data System (ADS)

    Azhar, Noor Amiza; Abdullah, Aminah

    2015-09-01

    This research was conducted to investigate the effect of chicken feed additives (antibiotic, Lacto-lase® and probiotic) on protein and fat content of chicken meat. Chicken fed with control diet (corn-soy based diet) served as a control. The treated diets were added with zinc bacitracin (antibiotic), different amount of Lacto-lase® (a mixture of probiotic and enzyme) and probiotic. Chicken were slaughtered at the age of 43-48 days. Each chicken was divided into thigh, breast, drumstick, drumette and wing. Protein content in chicken meat was determined by using macro-Kjeldahl method meanwhile Soxhlet method was used to analyse fat content. The result of the study showed that the protein content of chicken breast was significantly higher (p≤0.05) while thigh had the lowest protein content (p≤0.05). Antibiotic fed chicken was found to have the highest protein content among the treated chickens but there was no significant different with 2g/kg Lacto-lase® fed chicken (p>0.05). All thighs were significantly higher (p≤0.05) in fat content except for drumette of control chicken while breast contained the lowest fat content compared to other chicken parts studied. The control chicken meat contained significantly higher (p≤0.05) amount of fat compared to the other treated chickens. Chicken fed with 2g/kg Lacto-lase® had the lowest (p≤0.05) fat content. The result of this study indicated that the addition of Lacto-lase® as a replacement of antibiotic in chicken feed will not affect the content of protein and fat of chicken meat.

  8. Fibroblast growth factors 7 and 10 are involved in ameloblastoma proliferation via the mitogen-activated protein kinase pathway.

    PubMed

    Nakao, Yu; Mitsuyasu, Takeshi; Kawano, Shintaro; Nakamura, Norifumi; Kanda, Shiori; Nakamura, Seiji

    2013-11-01

    Ameloblastoma is an epithelial benign tumor of the odontogenic apparatus and its growth mechanisms are not well understood. Fibroblast growth factor (FGF) 3, FGF7 and FGF10, which are expressed by the neural crest-derived ectomesenchymal cells, induce the proliferation of odontogenic epithelial cells during tooth development. Therefore, we examined the expression and function of these FGFs in ameloblastoma. We examined 32 cases of ameloblastoma as well as AM-1 cells (an ameloblastoma cell line) and studied the expression of FGF3, FGF7, FGF10 and their specific receptors, namely, FGF receptor (FGFR) 1 and FGFR2. Proliferation, mitogen-activated protein kinase (MAPK) signaling and PI3K signaling were examined in AM-1 cells after the addition of FGF7, FGF10 and these neutralizing antibodies. The expression of FGF7, FGF10, FGFR1 and FGFR2 was detected in ameloblastoma cells and AM-1 cells, while that of FGF3 was not. FGF7 and FGF10 stimulated AM-1 cell proliferation and phosphorylation of p44/42 MAPK. However, Akt was not phosphorylated. Blocking the p44/42 MAPK pathway by using a specific mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor (U0126) completely neutralized the effects of FGF7 and FGF10 on AM-1 cell proliferation. However, Anti FGF7 and FGF10 neutralizing antibodies did not decrease cell proliferation and MAPK phosphorylation of AM-1 cells. These results suggested that FGF7 and FGF10 are involved in the proliferation of ameloblastoma cells through the MAPK pathway.

  9. Lysine pyrrolation is a naturally-occurring covalent modification involved in the production of DNA mimic proteins.

    PubMed

    Miyashita, Hiroaki; Chikazawa, Miho; Otaki, Natsuki; Hioki, Yusuke; Shimozu, Yuki; Nakashima, Fumie; Shibata, Takahiro; Hagihara, Yoshihisa; Maruyama, Shoichi; Matsumi, Noriyoshi; Uchida, Koji

    2014-06-18

    Covalent modification of proteins exerts significant effects on their chemical properties and has important functional and regulatory consequences. We now report the identification and verification of an electrically-active form of modified proteins recognized by a group of small molecules commonly used to interact with DNA. This previously unreported property of proteins was initially discovered when the γ-ketoaldehydes were identified as a source of the proteins stained by the DNA intercalators. Using 1,4-butanedial, the simplest γ-ketoaldehyde, we characterized the structural and chemical criteria governing the recognition of the modified proteins by the DNA intercalators and identified N(ε)-pyrrolelysine as a key adduct. Unexpectedly, the pyrrolation conferred an electronegativity and electronic properties on the proteins that potentially constitute an electrical mimic to the DNA. In addition, we found that the pyrrolated proteins indeed triggered an autoimmune response and that the production of specific antibodies against the pyrrolated proteins was accelerated in human systemic lupus erythematosus. These findings and the apparent high abundance of N(ε)-pyrrolelysine in vivo suggest that protein pyrrolation could be an endogenous source of DNA mimic proteins, providing a possible link connecting protein turnover and immune disorders.

  10. A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis.

    PubMed

    Stocco, Douglas M; Zhao, Amy H; Tu, Lan N; Morohaku, Kanako; Selvaraj, Vimal

    2017-02-05

    The synthesis of steroid hormones occurs in specific cells and tissues in the body in response to trophic hormones and other signals. In order to synthesize steroids de novo, cholesterol, the precursor of all steroid hormones, must be mobilized from cellular stores to the inner mitochondrial membrane (IMM) to be converted into the first steroid formed, pregnenolone. This delivery of cholesterol to the IMM is the rate-limiting step in this process, and has long been known to require the rapid synthesis of a new protein(s) in response to stimulation. Although several possibilities for this protein have arisen over the past few decades, most of the recent attention to fill this role has centered on the candidacies of the proteins the Translocator Protein (TSPO) and the Steroidogenic Acute Regulatory Protein (StAR). In this review, the process of regulating steroidogenesis is briefly described, the characteristics of the candidate proteins and the data supporting their candidacies summarized, and some recent findings that propose a serious challenge for the role of TSPO in this process are discussed.

  11. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton.

    PubMed

    Rug, Melanie; Cyrklaff, Marek; Mikkonen, Antti; Lemgruber, Leandro; Kuelzer, Simone; Sanchez, Cecilia P; Thompson, Jennifer; Hanssen, Eric; O'Neill, Matthew; Langer, Christine; Lanzer, Michael; Frischknecht, Friedrich; Maier, Alexander G; Cowman, Alan F

    2014-11-27

    Following invasion of human red blood cells (RBCs) by the malaria parasite, Plasmodium falciparum, a remarkable process of remodeling occurs in the host cell mediated by trafficking of several hundred effector proteins to the RBC compartment. The exported virulence protein, P falciparum erythrocyte membrane protein 1 (PfEMP1), is responsible for cytoadherence of infected cells to host endothelial receptors. Maurer clefts are organelles essential for protein trafficking, sorting, and assembly of protein complexes. Here we demonstrate that disruption of PfEMP1 trafficking protein 1 (PfPTP1) function leads to severe alterations in the architecture of Maurer's clefts. Furthermore, 2 major surface antigen families, PfEMP1 and STEVOR, are no longer displayed on the host cell surface leading to ablation of cytoadherence to host receptors. PfPTP1 functions in a large complex of proteins and is required for linking of Maurer's clefts to the host actin cytoskeleton.

  12. NMR Identification of the Binding Surfaces Involved in the Salmonella and Shigella Type III Secretion Tip-Translocon Protein-Protein Interactions

    PubMed Central

    McShan, Andrew C.; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M.; De Guzman, Roberto N.

    2017-01-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. PMID:27093649

  13. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl–like molecules binding

    PubMed Central

    2013-01-01

    Background Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. Method We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Results Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. Conclusions The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins. PMID:23768251

  14. Proteins Exported via the PrsD-PrsE Type I Secretion System and the Acidic Exopolysaccharide Are Involved in Biofilm Formation by Rhizobium leguminosarum

    PubMed Central

    Russo, Daniela M.; Williams, Alan; Edwards, Anne; Posadas, Diana M.; Finnie, Christine; Dankert, Marcelo; Downie, J. Allan; Zorreguieta, Angeles

    2006-01-01

    The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria. PMID:16740954

  15. The Orosomucoid 1 protein is involved in the vitamin D – mediated macrophage de-activation process

    SciTech Connect

    Gemelli, Claudia; Martello, Andrea; Montanari, Monica; Zanocco Marani, Tommaso; Salsi, Valentina; Zappavigna, Vincenzo; Parenti, Sandra; Vignudelli, Tatiana; Selmi, Tommaso; Ferrari, Sergio; Grande, Alexis

    2013-12-10

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivation experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.

  16. DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia.

    PubMed

    Lin, Bo-Chi; Su, Li-Hsin; Weng, Shih-Che; Pan, Yu-Jiao; Chan, Nei-Li; Li, Tsai-Kun; Wang, Hsin-Chih; Sun, Chin-Hung

    2013-01-01

    The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts.

  17. Mitogen-activated protein kinase phosphatase 1 is involved in tamoxifen resistance in MCF7 cells.

    PubMed

    Ma, Gang; Pan, Yixia; Zhou, Can; Sun, Ruifang; Bai, Jingjing; Liu, Peijun; Ren, Yu; He, Jianjun

    2015-11-01

    Tamoxifen resistance is a major clinical problem for ER-positive breast cancer, but the underlying mechanism is not completely elucidated. In the present study, we reported that mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1), a member of the family of MKPs, is involved in tamoxifen resistance. We found that MKP1 expression increased in tamoxifen resistant MCF7 cells. To explore the possible role of MKP1 in tamoxifen resistance, siRNA targeting MKP1 was transfected into tamoxifen resistant MCF7 cells. To our surprise, knockdown of MKP-1 promoted cell death induced by tamoxifen. On the other hand, the MKP1 overexpressed MCF7 cell clone was established and MKP1 overexpression effectively attenuated MCF7 cell death induced by tamoxifen. In addition, we revealed that MKP1 inhibited tamoxifen‑mediated JNK activation in tamoxifen resistant MCF7 and MCF7 cells, and by this mechanism MKP1 was able to inhibit tamoxifen-induced cell death. We also showed that combined appliaction of MKP1 inhibitor triptolide and tamoxifen can effectively increase tamoxifen sensitivity in tamoxifen resistant MCF7 cells. Collectively, our results indicated that MKP-1 can attenuate tamoxifen-induced cell death through inhibiting the JNK signal pathway, which represents a novel mechanism of tamoxifen resistance in MCF7 cells.

  18. How do Elevated CO2 and Nitrogen Addition Affect Functional Microbial Community Involved in Greenhouse Gas Flux in Salt Marsh System.

    PubMed

    Lee, Seung-Hoon; Megonigal, Patrick J; Kang, Hojeong

    2017-03-22

    Salt marshes are unique ecosystem of which a microbial community is expected to be affected by global climate change. In this study, by using T-RFLP analysis, quantitative PCR, and pyrosequencing, we comprehensively analyzed the microbial community structure responding to elevated CO2 (eCO2) and N addition in a salt marsh ecosystem subjected to CO2 manipulation and N addition for about 3 years. We focused on the genes of microbes relevant to N-cycling (denitrification and nitrification), CH4-flux (methanogens and methanotrophs), and S-cycling (sulfate reduction) considering that they are key functional groups involved in the nutrient cycle of salt marsh system. Overall, this study suggests that (1) eCO2 and N addition affect functional microbial community involved in greenhouse gas flux in salt marsh system. Specifically, the denitrification process may be facilitated, while the methanogenesis may be impeded due to the outcompeting of sulfate reduction by eCO2 and N. This implies that future global change may cause a probable change in GHGs flux and positive feedback to global climate change in salt marsh; (2) the effect of eCO2 and N on functional group seems specific and to contrast with each other, but the effect of single factor would not be compromised but complemented by combination of two factors. (3) The response of functional groups to eCO2 and/or N may be directly or indirectly related to the plant community and its response to eCO2 and/or N. This study provides new insights into our understanding of functional microbial community responses to eCO2 and/or N addition in a C3/C4 plant mixed salt marsh system.

  19. Yeast prion-protein, sup35, fibril formation proceeds by addition and substraction of oligomers.

    PubMed

    Narayanan, Saravanakumar; Walter, Stefan; Reif, Bernd

    2006-05-01

    In analogy to human prions, a domain of the translation-termination protein in Saccharomyces cerevisiae, Sup35, can switch its conformation from a soluble functional state, [psi-], to a conformation, [PSI+], that facilitates aggregation and impairs its native function. Overexpression of the molecular chaperone Hsp104 abolishes the [PSI+] phenotype and restores the normal function of Sup35. We have recently shown that Hsp104 interacts preferably with low oligomeric species of a Sup35 derived peptide, Sup35[5-26]; however, due to possible exchange between different oligomeric states, it was not possible to obtain information on the distribution and stability of the oligomeric state. We show here, that low-molecular-weight oligomers (Sup35[5-26])n (n approximately = 4-6) are indeed important for the fibril formation and disassembly process. We find that Hsp104 is able to disaggregate Sup35[5-26] fibrils by substraction of hexameric to decameric Sup35[5-26] oligomers. This disaggregation effect does not require assistance from other chaperones and is independent of ATP at high Hsp104 concentrations. Furthermore, we demonstrate that critical oligomers have a preference for alpha-helical conformations. The conformational reorganization into beta-sheet structures seems to occur only upon incorporation of these oligomers into fibrillar structures. The results are demonstrated by using an equilibrium dialysis experiment that employed different molecular-weight cut-off membranes. A combination of thioflavin-T (ThT) fluorescence and UV measurements allowed the quantification of fibril formation and the amount of peptide diffusing out of the dialysis bag. CD and NMR spectroscopy data were combined to obtain structural information.

  20. Ligand-induced association of surface immunoglobulin with the detergent insoluble cytoskeleton may involve an 89K protein

    SciTech Connect

    Gupta, S.K.; Woda, B.

    1986-03-01

    Membrane immunoglobulin of B-lymphocytes is thought to play an important role in antigen recognition and cellular activation. Binding of cross-linking ligands to surface immunoglobulin (SIg) on intact cells converts it to a detergent insoluble state, and this conversion is associated with the transmission of a mitogenic signal. Insolubilized membrane proteins may be solubilized by incubating the detergent insoluble cytoskeletons in buffers which convert F-actin to G-actin ((Buffer 1), 0.34M sucrose, 0.5mM ATP, 0.5mM Dithiothrietol and lmM EDTA). Immunoprecipitation of SIg from the detergent soluble fraction of /sup 35/S-methionine labeled non ligand treated rat B-cells results in the co-isolation of an 89K protein and a 44K protein, presumably actin. The 89K protein is not associated with the fraction of endogenous detergent insoluble SIg. On treatment of rat B cells with cross-linking ligand (anti-Ig) the 89K protein becomes detergent insoluble along with most of the SIg and co-isolates with SIg on immunoprecipitation of the detergent insoluble, buffer l solubilized fraction. The migration of the SIg-associated 89K protein from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that this protein might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of a mitogenic signal.

  1. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit

    PubMed Central

    Li, Taotao; Yun, Ze; Zhang, Dandan; Yang, Chengwei; Zhu, Hong; Jiang, Yueming; Duan, Xuewu

    2015-01-01

    To better understand the mechanism involved in ethylene-induced chilling tolerance in harvested banana fruit, a gel-based proteomic study followed by MALDI-TOF-TOF MS was carried out. Banana fruit were treated with 500 ppm ethylene for 12 h and then stored at 6°C. During cold storage, the chilling tolerance was assessed and the proteins from the peel were extracted for proteomic analysis. It was observed that ethylene pretreatment significantly induced the chilling tolerance in harvested banana fruit, manifesting as increases in maximal chlorophyll fluorescence (Fv/Fm) and decreased electrolyte leakage. Sixty-four proteins spots with significant differences in abundance were identified, most of which were induced by ethylene pretreatment during cold storage. The up-regulated proteins induced by ethylene pretreatment were mainly related to energy metabolism, stress response and defense, methionine salvage cycle and protein metabolism. These proteins were involved in ATP synthesis, ROS scavenging, protective compounds synthesis, protein refolding and degradation, and polyamine biosynthesis. It is suggested that these up-regulated proteins might play a role in the ethylene-induced chilling tolerance in harvested banana fruit. PMID:26528309

  2. Involvement of multidrug resistance-associated protein 2 in intestinal secretion of grepafloxacin in rats.

    PubMed

    Naruhashi, Kazumasa; Tamai, Ikumi; Inoue, Natsuko; Muraoka, Hiromi; Sai, Yoshimichi; Suzuki, Nagao; Tsuji, Akira

    2002-02-01

    We investigated the contribution of multidrug resistance-associated protein 2 (MRP2) to the secretory transport of grepafloxacin and compared its functional role with that of P-glycoprotein (P-gp) by using Sprague-Dawley rats (SDRs) and Eisai hyperbilirubinemic rats (EHBRs), in which MRP2 is hereditarily defective. In intestinal tissue from SDRs mounted in Ussing chambers, the level of transport in the direction from the serosal layer to the mucosal layer was twofold greater than that in the direction from the mucosal layer to the serosal layer. This secretory transport of grepafloxacin was diminished by both probenecid, an MRP2 inhibitor, and cyclosporine, a P-gp inhibitor. In intestinal tissue from EHBRs, the secretory transport of grepafloxacin was lower than that in intestinal tissue from SDRs and was inhibited by cyclosporine but not by probenecid. The absorption of grepafloxacin from intestinal loops in SDRs was in the order of duodenum > jejunum > ileum and was increased by cyclosporine but not by probenecid. The absorption in EHBRs was not higher than that in SDRs. The intestinal secretory clearance in SDRs after intravenous administration of grepafloxacin was shown to be greater for the ileum than for the duodenum, which is in good agreement with the previously reported regional expression profile of MRP2 mRNA. The intestinal secretory clearance was lower in EHBRs than in SDRs. Accordingly, in addition to P-gp, MRP2 might play a role in the secretory transport of grepafloxacin. The function of MRP2 in facilitating grepafloxacin transport in the secretory direction is more pronounced both in vitro and in vivo, while the restriction of entry from the lumen into the cell by MRP2 seems to be negligible, compared with that by P-gp, in the case of grepafloxacin.

  3. Conservation of proteins involved in oocyst wall formation in Eimeria maxima, Eimeria tenella and Eimeria acervulina.

    PubMed

    Belli, Sabina I; Ferguson, David J P; Katrib, Marilyn; Slapetova, Iveta; Mai, Kelly; Slapeta, Jan; Flowers, Sarah A; Miska, Kate B; Tomley, Fiona M; Shirley, Martin W; Wallach, Michael G; Smith, Nicholas C

    2009-08-01

    Vaccination with proteins from gametocytes of Eimeria maxima protects chickens, via transfer of maternal antibodies, against infection with several species of Eimeria. Antibodies to E. maxima gametocyte proteins recognise proteins in the wall forming bodies of macrogametocytes and oocyst walls of E. maxima, Eimeria tenella and Eimeria acervulina. Homologous genes for two major gametocyte proteins - GAM56 and GAM82 - were found in E. maxima, E. tenella and E. acervulina. Alignment of the predicted protein sequences of these genes reveals that, as well as sharing regions of tyrosine richness, strong homology exists in their amino-terminal regions, where protective antibodies bind. This study confirms the conservation of the roles of GAM56 and GAM82 in oocyst wall formation and shows that antibodies to gametocyte antigens of E. maxima cross-react with homologous proteins in other species, helping to explain cross-species maternal immunity.

  4. Biochemical localization of a protein involved in Gluconacetobacter hansenii cellulose synthesis

    SciTech Connect

    Iyer, Prashanti R; Catchmark, Jeffrey M; Brown, Nicole Robitaille; Tien, Ming

    2011-02-08

    Using subcellular fractionation and Western blot methods, we have shown that AcsD, one of the proteins encoded by the Acetobacter cellulose synthase (acs) operon, is localized in the periplasmic region of the cell. AcsD protein was heterologously expressed in Escherichia coli and purified using histidine tag affinity methods. The purified protein was used to obtain rabbit polyclonal antibodies. The purity of the subcellular fractions was assessed by marker enzyme assays.

  5. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping.

    PubMed

    Oda, Yoshihisa; Fukuda, Hiroo

    2011-05-01

    The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.

  6. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology, using a heterologous expression system derived from Tobacco mosaic virus. Two regions of NSm were required for both tub...

  7. Proteins involved in wine aroma compounds metabolism by a Saccharomyces cerevisiae flor-velum yeast strain grown in two conditions.

    PubMed

    Moreno-García, Jaime; García-Martínez, Teresa; Millán, M Carmen; Mauricio, Juan Carlos; Moreno, Juan

    2015-10-01

    A proteomic and exometabolomic study was conducted on Saccharomyces cerevisiae flor yeast strain growing under biofilm formation condition (BFC) with ethanol and glycerol as carbon sources and results were compared with those obtained under no biofilm formation condition (NBFC) containing glucose as carbon source. By using modern techniques, OFFGEL fractionator and LTQ-Orbitrap for proteome and SBSE-TD-GC-MS for metabolite analysis, we quantified 84 proteins including 33 directly involved in the metabolism of glycerol, ethanol and 17 aroma compounds. Contents in acetaldehyde, acetic acid, decanoic acid, 1,1-diethoxyethane, benzaldehyde and 2-phenethyl acetate, changed above their odor thresholds under BFC, and those of decanoic acid, ethyl octanoate, ethyl decanoate and isoamyl acetate under NBFC. Of the twenty proteins involved in the metabolism of ethanol, acetaldehyde, acetoin, 2,3-butanediol, 1,1-diethoxyethane, benzaldehyde, organic acids and ethyl esters, only Adh2p, Ald4p, Cys4p, Fas3p, Met2p and Plb1p were detected under BFC and as many Acs2p, Ald3p, Cem1p, Ilv2p, Ilv6p and Pox1p, only under NBFC. Of the eight proteins involved in glycerol metabolism, Gut2p was detected only under BFC while Pgs1p and Rhr2p were under NBFC. Finally, of the five proteins involved in the metabolism of higher alcohols, Thi3p was present under BFC, and Aro8p and Bat2p were under NBFC.

  8. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    hearts STAT3 inhibitor Stattic completely abolished morphine-induced preconditioning. Administration of Stattic and mPTP inhibitor cyclosporine A reduced infarct size to 31±6% (Stat+CsA, P<0.05 vs. Con). Cyclosporine A alone reduced infarct size to 26±7% (CsA P<0.05 vs. Con). In cardiomyocytes, PKA activity was increased by morphine. Conclusion Our data suggest that morphine-induced cardioprotection is mediated by STAT3-activation and inhibition of mPTP, with STA3 located upstream of mPTP. There is some evidence that protein kinase A is involved within the signalling pathway. PMID:26968004

  9. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins Involved in a Posttranscriptional Iron Regulatory Mechanism

    PubMed Central

    Figueroa-Angulo, Elisa E.; Calla-Choque, Jaeson S.; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-01-01

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis. PMID:26703754

  10. Involvement of the mitogen activated protein kinase Hog1p in the response of Candida albicans to iron availability

    PubMed Central

    2013-01-01

    Background Iron is an essential nutrient for almost all organisms, and generating iron limiting conditions for pathogens is one of the host defense strategies against microbial infections. Excess of iron can be toxic; therefore, iron uptake is tightly controlled. The high affinity iron uptake system of the opportunistic pathogenic yeast Candida albicans has been shown to be essential for virulence. Several transcription factors and regulators of iron uptake genes were identified, but the knowledge of signaling pathways is still limited. Gene expression profiling of the Δhog1 deletion mutant indicated an involvement of the mitogen activated protein (MAP) kinase Hog1p. However, the function of Hog1p in the response of C. albicans to iron availability was not studied in detail. Thus, we analyzed phenotypic and molecular responses of C. albicans to different iron concentrations particularly with respect to the activity of the Hog1p MAP kinase module. Results We observed flocculation of yeast cells, when the iron ion concentration was equal to or higher than 5 μM. This phenotype was dependent on the MAP kinase Hog1p and the corresponding MAP kinase kinase Pbs2p. Moreover, high extracellular iron ion concentrations led to hyper-phosphorylation of Hog1p. We determined lower amounts of multicopper ferroxidase (MCFO) proteins and lower ferric reductase activity, when the iron ion concentration in the medium was increased. This effect was also observed for the Δhog1 mutant. However, the amounts of MCFO proteins and the cell surface ferric reductase activity were increased in the Δhog1 in comparison to wild type cells. This effect was independent of iron availability in growth media. Conclusions In C. albicans, the MAP kinase Hog1p is part of the network regulating the response of the organism to iron availability. Hog1p was transiently phosphorylated under high iron concentrations and was essential for a flocculent phenotype. Furthermore, deletion of HOG1 led to

  11. INSIGHTS INTO THE MECHANISMS INVOLVED IN THE EXPRESSION AND REGULATION OF EXTRACELLULAR MATRIX PROTEINS IN DIABETIC NEPHROPATHY

    PubMed Central

    Hu, Chun; Sun, Lin; Xiao, Li; Han, Yachun; Fu, Xiao; Xiong, Xiaofen; Xu, Xiaoxuan; Liu, Yinghong; Yang, Shikun; Liu, Fuyou; Kanwar, Yashpal S

    2016-01-01

    Diabetic Nephropathy (DN) is believed to be a major microvascular complication of diabetes. The hallmark of DN includes deposition of Extracellular Matrix (ECM) proteins, such as, collagen, laminin and fibronectin in the mesangium and renal tubulo-interstitium of the glomerulus and basement membranes. Such an increased expression of ECM leads to glomerular and tubular basement membranes thickening and increase of mesangial matrix, ultimately resulting in glomerulosclerosis and tubulointerstitial fibrosis. The characteristic morphologic glomerular mesangial lesion has been described as Kimmelstiel–Wilson nodule, and the process at times is referred to as diabetic nodular glomerulosclerosis. Thus, the accumulation of ECM proteins plays a critical role in the development of DN. The relevant mechanism(s) involved in the increased ECM expression and their regulation in the kidney in diabetic state has been extensively investigated and documented in the literature. Nevertheless, there are certain other mechanisms that may yet be conclusively defined. Recent studies demonstrated that some of the new signaling pathways or molecules including, Notch, Wnt, mTOR, TLRs and small GTPase may play a pivotal role in the modulation of ECM regulation and expression in DN. Such modulation could be operational for instance Notch though Notch1/Jagged1 signaling, Wnt by Wnt/β-catenin pathway and mTOR via PI3-K/Akt/mTOR signaling pathways. All these pathways may be critical in the modulation of ECM expression and tubulo-interstitial fibrosis. In addition, TLRs, mainly the TLR2 and TLR4, by TLR2-dependent and TGF-β-dependent conduits, may modulate ECM expression and generate a fibrogenic response. Small GTPase like Rho, Ras and Rab family by targeting relevant genes may also influence the accumulation of ECM proteins and renal fibrosis in hyperglycemic states. This review summarizes the recent information about the role and mechanisms by which these molecules and signaling pathways

  12. The human cruciform-binding protein, CBP, is involved in DNA replication and associates in vivo with mammalian replication origins.

    PubMed

    Novac, Olivia; Alvarez, David; Pearson, Christopher E; Price, Gerald B; Zannis-Hadjopoulos, Maria

    2002-03-29

    We previously identified and purified from human (HeLa) cells a 66-kDa cruciform-binding protein, CBP, with binding specificity for cruciform DNA regardless of its sequence. DNA cruciforms have been implicated in the regulation of initiation of DNA replication. CBP is a member of the 14-3-3 family of proteins, which are conserved regulatory molecules expressed in all eukaryotes. Here, the in vivo association of CBP/14-3-3 with mammalian origins of DNA replication was analyzed by studying its association with the monkey replication origins ors8 and ors12, as assayed by a chromatin immunoprecipitation assay and quantitative PCR analysis. The association of the 14-3-3beta, -epsilon, -gamma, and -zeta isoforms with these origins was found to be approximately 9-fold higher, compared with other portions of the genome, in logarithmically growing cells. In addition, the association of these isoforms with ors8 and ors12 was also analyzed as a function of the cell cycle. Higher binding of 14-3-3beta, -epsilon, -gamma, and -zeta isoforms with ors8 and ors12 was found at the G(1)/S border, by comparison with other stages of the cell cycle. The CBP/14-3-3 cruciform binding activity was also found to be maximal at the G(1)/S boundary. The involvement of 14-3-3 in mammalian DNA replication was analyzed by studying the effect of anti-14-3-3beta, -epsilon, -gamma, and -zeta antibodies in the in vitro replication of p186, a plasmid containing the minimal replication origin of ors8. Anti-14-3-3epsilon, -gamma, and -zeta antibodies alone or in combination inhibited p186 replication by approximately 50-80%, while anti-14-3-3beta antibodies had a lesser effect ( approximately 25-50%). All of the antibodies tested were also able to interfere with CBP binding to cruciform DNA. The results indicate that CBP/14-3-3 is an origin-binding protein, acting at the initiation step of DNA replication by binding to cruciform-containing molecules, and dissociates after origin firing.

  13. Dynamic localization of two tobamovirus ORF6 proteins involves distinct organellar compartments.

    PubMed

    Gushchin, Vladimir A; Lukhovitskaya, Nina I; Andreev, Dmitri E; Wright, Kathryn M; Taliansky, Michael E; Solovyev, Andrey G; Morozov, Sergey Y; MacFarlane, Stuart A

    2013-01-01

    ORF6 is a small gene that overlaps the movement and coat protein genes of subgroup 1a tobamoviruses. The ORF6 protein of tomato mosaic virus (ToMV) strain L (L-ORF6), interacts in vitro with eukaryotic elongation factor 1α, and mutation of the ORF6 gene of tobacco mosaic virus (TMV) strain U1 (U1-ORF6) reduces the pathogenicity in vivo of TMV, whereas expression of this gene from two other viruses, tobacco rattle virus (TRV) and potato virus X (PVX), increases their pathogenicity. In this work, the in vivo properties of the L-ORF6 and U1-ORF6 proteins were compared to identify sequences that direct the proteins to different subcellular locations and also influence virus pathogenicity. Site-specific mutations in the ORF6 protein were made, hybrid ORF6 proteins were created in which the N-terminal and C-terminal parts were derived from the two proteins, and different subregions of the protein were examined, using expression either from a recombinant TRV vector or as a yellow fluorescent protein fusion from a binary plasmid in Agrobacterium tumefaciens. L-ORF6 caused mild necrotic symptoms in Nicotiana benthamiana when expressed from TRV, whereas U1-ORF6 caused severe symptoms including death of the plant apex. The difference in symptoms was associated with the C-terminal region of L-ORF6, which directed the protein to the endoplasmic reticulum (ER), whereas U1-ORF6 was directed initially to the nucleolus and later to the mitochondria. Positively charged residues at the N terminus allowed nucleolar entry of both U1-ORF6 and L-ORF6, but hydrophobic residues at the C terminus of L-ORF6 directed this protein to the ER.

  14. Increased Abundance of Proteins Involved in Resistance to Oxidative and Nitrosative Stress at the Last Stages of Growth and Development of Leishmania amazonensis Promastigotes Revealed by Proteome Analysis

    PubMed Central

    Alonso, Ana; García-Tabares, Francisco; Mena, María C.; Ciordia, Sergio; Larraga, Vicente

    2016-01-01

    Leishmania amazonensis is one of the major etiological agents of the neglected, stigmatizing disease termed american cutaneous leishmaniasis (ACL). ACL is a zoonosis and rodents are the main reservoirs. Most cases of ACL are reported in Brazil, Bolivia, Colombia and Peru. The biological cycle of the parasite is digenetic because sand fly vectors transmit the motile promastigote stage to the mammalian host dermis during blood meal intakes. The amastigote stage survives within phagocytes of the mammalian host. The purpose of this study is detection and identification of changes in protein abundance by 2DE/MALDI-TOF/TOF at the main growth phases of L. amazonensis promastigotes in axenic culture and the differentiation process that takes place simultaneously. The average number of proteins detected per gel is 202 and the non-redundant cumulative number is 339. Of those, 63 are differentially abundant throughout growth and simultaneous differentiation of L. amazonensis promastigotes. The main finding is that certain proteins involved in resistance to nitrosative and oxidative stress are more abundant at the last stages of growth and differentiation of cultured L. amazonensis promastigotes. These proteins are the arginase, a light variant of the tryparedoxin peroxidase, the iron superoxide dismutase, the regulatory subunit of the protein kinase A and a light HSP70 variant. These data taken together with the decrease of the stress-inducible protein 1 levels are additional evidence supporting the previously described pre-adaptative hypothesis, which consists of preparation in advance towards the amastigote stage. PMID:27776144

  15. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  16. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins.

    PubMed

    Cambra, Ines; Martinez, Manuel; Dáder, Beatriz; González-Melendi, Pablo; Gandullo, Jacinto; Santamaría, M Estrella; Diaz, Isabel

    2012-07-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described.

  17. Classical Swine Fever Virus p7 protein is a viroporin involved in virulence in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The non-structural protein p7 of Classical Swine Fever Virus (CSFV) is a hydrophobic polypeptide with an apparent molecular mass of 7 kDa. The protein contains two hydrophobic stretches of amino acids interrupted by a short charged segment that are predicted to form transmembrane helices and a cytos...

  18. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    PubMed

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-04-06

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets.

  19. Quantitative Proteomic Analysis of Differentially Expressed Protein Profiles Involved in Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Kuo, Kung-Kai; Kuo, Chao-Jen; Chiu, Chiang-Yen; Liang, Shih-Shin; Huang, Chun-Hao; Chi, Shu-Wen; Tsai, Kun-Bow; Chen, Chiao-Yun; Hsi, Edward; Cheng, Kuang-Hung; Chiou, Shyh-Horng

    2016-01-01

    Objectives The aim of this study was to identify differentially expressed proteins among various stages of pancreatic ductal adenocarcinoma (PDAC) by shotgun proteomics using nano-liquid chromatography coupled tandem mass spectrometry and stable isotope dimethyl labeling. Methods Differentially expressed proteins were identified and compared based on the mass spectral differences of their isotope-labeled peptide fragments generated from protease digestion. Results Our quantitative proteomic analysis of the differentially expressed proteins with stable isotope (deuterium/hydrogen ratio, ≥2) identified a total of 353 proteins, with at least 5 protein biomarker proteins that were significantly differentially expressed between cancer and normal mice by at least a 2-fold alteration. These 5 protein biomarker candidates include α-enolase, α-catenin, 14-3-3 β, VDAC1, and calmodulin with high confidence levels. The expression levels were also found to be in agreement with those examined by Western blot and histochemical staining. Conclusions The systematic decrease or increase of these identified marker proteins may potentially reflect the morphological aberrations and diseased stages of pancreas carcinoma throughout progressive developments leading to PDAC. The results would form a firm foundation for future work concerning validation and clinical translation of some identified biomarkers into targeted diagnosis and therapy for various stages of PDAC. PMID:26262590

  20. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  1. The impact of antioxidant addition on flavor of cheddar and mozzarella whey and cheddar whey protein concentrate.

    PubMed

    Liaw, I W; Eshpari, H; Tong, P S; Drake, M A

    2010-08-01

    Lipid oxidation products are primary contributors to whey ingredient off-flavors. The objectives of this study were to evaluate the impact of antioxidant addition in prevention of flavor deterioration of fluid whey and spray-dried whey protein. Cheddar and Mozzarella cheeses were manufactured in triplicate. Fresh whey was collected, pasteurized, and defatted by centrifugal separation. Subsequently, 0.05% (w/w) ascorbic acid or 0.5% (w/w) whey protein hydrolysate (WPH) were added to the pasteurized whey. A control with no antioxidant addition was also evaluated. Wheys were stored at 3 degrees C and evaluated after 0, 2, 4, 6, and 8 d. In a subsequent experiment, selected treatments were then incorporated into liquid Cheddar whey and processed into whey protein concentrate (WPC). Whey and WPC flavors were documented by descriptive sensory analysis, and volatile components were evaluated by solid phase micro-extraction with gas chromatography mass spectrometry. Cardboard flavors increased in fluid wheys with storage. Liquid wheys with ascorbic acid or WPH had lower cardboard flavor across storage compared to control whey. Lipid oxidation products, hexanal, heptanal, octanal, and nonanal increased in liquid whey during storage, but liquid whey with added ascorbic acid or WPH had lower concentrations of these products compared to untreated controls. Mozzarella liquid whey had lower flavor intensities than Cheddar whey initially and after refrigerated storage. WPC with added ascorbic acid or WPH had lower cardboard flavor and lower concentrations of pentanal, heptanal, and nonanal compared to control WPC. These results suggest that addition of an antioxidant to liquid whey prior to further processing may be beneficial to flavor of spray-dried whey protein. Practical Application: Lipid oxidation products are primary contributors to whey ingredient off-flavors. Flavor plays a critical and limiting role in widespread use of dried whey ingredients, and enhanced understanding

  2. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    PubMed

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  3. Sensitization of human umbilical vein endothelial cells to Shiga toxin: involvement of protein kinase C and NF-kappaB.

    PubMed Central

    Louise, C B; Tran, M C; Obrig, T G

    1997-01-01

    Infection of humans with Shiga toxin-producing Escherichia coli O157:H7 and Shigella dysenteriae 1 is strongly associated with vascular endothelial cell damage and the development of hemolytic-uremic syndrome. The cytotoxic effect of Shiga toxins on vascular endothelial cells in vitro is enhanced by prior exposure to bacterial lipopolysaccharide (LPS) or either of the host cytokines tumor necrosis factor alpha (TNF) and interleukin-1beta (IL-1). The purpose of this study was to examine individual signal transduction components involved in the sensitization of human umbilical vein endothelial cells (HUVEC) to Shiga toxin 1. The results demonstrate that class I and II protein kinase C (PKC) isozymes are required for sensitization of HUVEC to Shiga toxin by phorbol myristate acetate (PMA) or LPS but not by TNF or IL-1. Thus, the specific competitive inhibitor of class I/II PKC, 1-O-hexadecyl-2-O-methyl-rac-glycerol (AMG), prevented only the action of PMA and LPS on HUVEC. Additional data obtained with ATP binding site inhibitors which affect all PKCs (i.e., classes I, II, and III) suggest that TNF may utilize class III PKC isozymes in the Shiga toxin sensitization of HUVEC. Transcriptional activator NF-kappaB did not appear to be involved in the sensitization of HUVEC to Shiga toxin by LPS, TNF, IL-1, or PMA. Thus, the specific serine protease inhibitor L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK) did not inhibit the sensitization of HUVEC to Shiga toxin by LPS, TNF, IL-1, or PMA despite its ability to inhibit NF-kappaB activation and the induction of the NF-kappaB-dependent tissue factor gene by these agents. Finally, all-trans retinoic acid partially inhibited the sensitization of HUVEC to Shiga toxin, by unknown mechanisms which also appeared to be independent of NF-kappaB activation. These results indicate that PKC plays a role in the sensitization of HUVEC to Shiga toxin in response to some, but not all, sensitizing agents. In contrast, NF

  4. Addition of Surfactants and Non-Hydrolytic Proteins and Their Influence on Enzymatic Hydrolysis of Pretreated Sugarcane Bagasse.

    PubMed

    Méndez Arias, Johanna; de Oliveira Moraes, Anelize; Modesto, Luiz Felipe Amarante; de Castro, Aline Machado; Pereira, Nei

    2017-02-01

    Poly(ethylene glycol) (PEG 4000) and bovine serum albumin (BSA) were investigated with the purpose of evaluating their influence on enzymatic hydrolysis of sugarcane bagasse. Effects of these supplements were assayed for different enzymatic cocktails (Trichoderma harzianum and Penicillium funiculosum) that acted on lignocellulosic material submitted to different pretreatment methods with varying solid (25 and 100 g/L) and protein (7.5 and 20 mg/g cellulose) loadings. The highest levels of glucose release were achieved using partially delignified cellulignin as substrate, along with the T. harzianum cocktail: increases of 14 and 18 % for 25 g/L solid loadings and of 33 and 43 % for 100 g/L solid loadings were reached for BSA and PEG supplementation, respectively. Addition of these supplements could maintain hydrolysis yield even for higher solid loadings, but for higher enzymatic cocktail protein loadings, increases in glucose release were not observed. Results indicate that synergism might occur among these additives and cellulase and xylanases. The use of these supplements, besides depending on factors such as pretreatment method of sugarcane bagasse, enzymatic cocktails composition, and solid and protein loadings, may not always lead to positive effects on the hydrolysis of lignocellulosic material, making it necessary further statistical studies, according to process conditions.

  5. Proteomic analysis of eucalyptus leaves unveils putative mechanisms involved in the plant response to a real condition of soil contamination by multiple heavy metals in the presence or absence of mycorrhizal/rhizobacterial additives.

    PubMed

    Guarino, Carmine; Conte, Barbara; Spada, Valentina; Arena, Simona; Sciarrillo, Rosaria; Scaloni, Andrea

    2014-10-07

    Here we report on the growth, accumulation performances of, and leaf proteomic changes in Eucalyptus camaldulensis plants harvested for different periods of time in an industrial, heavy metals (HMs)-contaminated site in the presence or absence of soil microorganism (AMs/PGPRs) additives. Data were compared to those of control counterparts grown in a neighboring nonpolluted district. Plants harvested in the contaminated areas grew well and accumulated HMs in their leaves. The addition of AMs/PGPRs to the polluted soil determined plant growth and metal accumulation performances that surpassed those observed in the control. Comparative proteomics suggested molecular mechanisms underlying plant adaptation to the HMs challenge. Similarly to what was observed in laboratory-scale investigations on other metal hyperaccumulators but not on HMs-sensitive plants, eucalyptus grown in the contaminated areas showed an over-representation of enzymes involved in photosynthesis and the Calvin cycle. AMs/PGPRs addition to the soil increased the activation of these energetic pathways, suggesting the existence of signaling mechanisms that address the energy/reductive power requirement associated with augmented growth performances. HMs-exposed plants presented an over-representation of antioxidant enzymes, chaperones, and proteins involved in glutathione metabolism. While some antioxidant enzymes/chaperones returned to almost normal expression values in the presence of AMs/PGPRs or in plants exposed to HMs for prolonged periods, proteins guaranteeing elevated glutathione levels were constantly over-represented. These data suggest that glutathione (and related phytochelatins) could act as key molecules for ensuring the effective formation of HMs-chelating complexes that are possibly responsible for the observed plant tolerance to metal stresses. Overall, these results suggest potential genetic traits for further selection of phytoremediating plants based on dedicated cloning or breeding

  6. Leucine alleviates dexamethasone-induced suppression of muscle protein synthesis via synergy involvement of mTOR and AMPK pathways

    PubMed Central

    Wang, Xiao J.; Yang, Xin; Wang, Ru X.; Jiao, Hong C.; Zhao, Jing P.; Song, Zhi G.; Lin, Hai

    2016-01-01

    Glucocorticoids (GCs) are negative muscle protein regulators that contribute to the whole-body catabolic state during stress. Mammalian target of rapamycin (mTOR)-signalling pathway, which acts as a central regulator of protein metabolism, can be activated by branched-chain amino acids (BCAA). In the present study, the effect of leucine on the suppression of protein synthesis induced by GCs and the pathway involved were investigated. In vitro experiments were conducted using cultured C2C12 myoblasts to study the effect of GCs on protein synthesis, and the involvement of mTOR pathway was investigated as well. After exposure to dexamethasone (DEX, 100 μmol/l) for 24 h, protein synthesis in muscle cells was significantly suppressed (P<0.05), the phosphorylations of mTOR, ribosomal protein S6 protein kinase 1 (p70s6k1) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) were significantly reduced (P<0.05). Leucine supplementation (5 mmol/l, 10 mmol/l and 15 mmol/l) for 1 h alleviated the suppression of protein synthesis induced by DEX (P<0.05) and was accompanied with the increased phosphorylation of mTOR and decreased phosphorylation of AMPK (P<0.05). Branched-chain amino transferase 2 (BCAT2) mRNA level was not influenced by DEX (P>0.05) but was increased by leucine supplementation at a dose of 5 mmol/l (P<0.05). PMID:27129299

  7. The involvement of FANCM, FANCI, and checkpoint proteins in the interstrand DNA crosslink repair pathway is conserved in C. elegans.

    PubMed

    Lee, Kyong Yun; Chung, Kee Yang; Koo, Hyeon-Sook

    2010-04-04

    Fanconi anemia (FA) patients are specifically defective in the repair of interstrand DNA crosslinks (ICLs), a complex process involving at least 13 FA proteins and other repair/checkpoint proteins. Of the 13 FA proteins, FANCD1/BRCA2, FANCD2, and FANCJ were previously found to be functionally conserved in C. elegans. We have also identified C. elegans homologs of FANCM and FANCI, and determined their epistatic relationships with homologs of FANCD2, checkpoint proteins, and RAD51 upon DNA crosslinking. The counterparts of FANCM, FANCI, and three checkpoint proteins (RPA, ATR and CHK1) are required for focus formation and ubiquitination associated with FANCD2 in C. elegans. However, C. elegans FANCM affects neither RPA focus formation nor CHK1 phosphorylation induced by ICLs, unlike the reported role of human FANCM, which influences ATR-CHK1 signaling at stalled replication forks. Although focus formation by both FANCD2 and RAD51 requires ATR-CHK1 signaling, FANCD2 and RAD51 acted independently in the formation of their respective foci. Thus, the FANCD2 activation pathway involving FANCM, FANCI, and the checkpoint proteins is conserved in C. elegans but with distinct differences.

  8. Mapping the H+ (V)-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation

    PubMed Central

    Merkulova, Maria; Păunescu, Teodor G.; Azroyan, Anie; Marshansky, Vladimir; Breton, Sylvie; Brown, Dennis

    2015-01-01

    V-ATPases (H+ ATPases) are multisubunit, ATP-dependent proton pumps that regulate pH homeostasis in virtually all eukaryotes. They are involved in key cell biological processes including vesicle trafficking, endosomal pH sensing, membrane fusion and intracellular signaling. They also have critical systemic roles in renal acid excretion and blood pH balance, male fertility, bone remodeling, synaptic transmission, olfaction and hearing. Furthermore, V-ATPase dysfunction either results in or aggravates various other diseases, but little is known about the complex protein interactions that regulate these varied V-ATPase functions. Therefore, we performed a proteomic analysis to identify V-ATPase associated proteins and construct a V-ATPase interactome. Our analysis using kidney tissue revealed V-ATPase-associated protein clusters involved in protein quality control, complex assembly and intracellular trafficking. ARHGEF7, DMXL1, EZR, NCOA7, OXR1, RPS6KA3, SNX27 and 9 subunits of the chaperonin containing TCP1 complex (CCT) were found to interact with V-ATPase for the first time in this study. Knockdown of two interacting proteins, DMXL1 and WDR7, inhibited V-ATPase-mediated intracellular vesicle acidification in a kidney cell line, providing validation for the utility of our interactome as a screen for functionally important novel V-ATPase-regulating proteins. Our data, therefore, provide new insights and directions for the analysis of V-ATPase cell biology and (patho)physiology. PMID:26442671

  9. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties.

  10. Alfalfa Mob1-like proteins are involved in cell proliferation and are localized in the cell division plane during cytokinesis

    SciTech Connect

    Citterio, Sandra; Piatti, Simonetta; Albertini, Emidio; Aina, Roberta; Varotto, Serena; Barcaccia, Gianni . E-mail: gianni.barcaccia@unipd.it

    2006-04-15

    Mps-one-binder (Mob) proteins play a crucial role in yeast cytokinesis. After cloning two Mob1-like genes, MsMob1-A and MsMob1-B from alfalfa (Medicago sativa L.) we show that, although they are constitutively expressed in roots, stems, leaves, flowers and pods, their transcripts and proteins are mostly produced in actively proliferating tissues. A polyclonal antibody specifically raised against MsMob1 proteins was used for immunolocalization studies in synchronized root tip cells. The subcellular localization of MsMob1-like proteins is demonstrated to be cell cycle-regulated. Cytoplasmic localization is faint and diffused during G{sub 1} and S. It becomes concentrated in punctuate and fibrillar structures in G{sub 2} as well as M phase. At the stage of cytokinesis, the protein is found at the emerging cell plate marking the progressive formation of the septum. Mob1 proteins partially co-localize with microtubules structures functionally related to the spindles and important for cytokinesis in eukaryotic cells. The MsMob1 expression cannot rescue the lethality of the yeast mob1 mutant, suggesting that interaction of Mob1 proteins with their effectors may be species-specific. Localization of Mob1 proteins in the inner layer of the root cap indicates an additional function for this class of proteins in plants, which is likely related to the onset of programmed cell death.

  11. STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs.

    PubMed Central

    Wang, S S; Stanford, D R; Silvers, C D; Hopper, A K

    1992-01-01

    STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing. Images PMID:1588961

  12. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans.

    PubMed

    Urban, Constantin F; Ermert, David; Schmid, Monika; Abu-Abed, Ulrike; Goosmann, Christian; Nacken, Wolfgang; Brinkmann, Volker; Jungblut, Peter R; Zychlinsky, Arturo

    2009-10-01

    Neutrophils are the first line of defense at the site of an infection. They encounter and kill microbes intracellularly upon phagocytosis or extracellularly by degranulation of antimicrobial proteins and the release of Neutrophil Extracellular Traps (NETs). NETs were shown to ensnare and kill microbes. However, their complete protein composition and the antimicrobial mechanism are not well understood. Using a proteomic approach, we identified 24 NET-associated proteins. Quantitative analysis of these proteins and high resolution electron microscopy showed that NETs consist of modified nucleosomes and a stringent selection of other proteins. In contrast to previous results, we found several NET proteins that are cytoplasmic in unstimulated neutrophils. We demonstrated that of those proteins, the antimicrobial heterodimer calprotectin is released in NETs as the major antifungal component. Absence of calprotectin in NETs resulted in complete loss of antifungal activity in vitro. Analysis of three different Candida albicans in vivo infection models indicated that NET formation is a hitherto unrecognized route of calprotectin release. By comparing wild-type and calprotectin-deficient animals we found that calprotectin is crucial for the clearance of infection. Taken together, the present investigations confirmed the antifungal activity of calprotectin in vitro and, moreover, demonstrated that it contributes to effective host defense against C. albicans in vivo. We showed for the first time that a proportion of calprotectin is bound to NETs in vitro and in vivo.

  13. A Universal Stress Protein Involved in Oxidative Stress Is a Phosphorylation Target for Protein Kinase CIPK6.

    PubMed

    Gutiérrez-Beltrán, Emilio; Personat, José María; de la Torre, Fernando; Del Pozo, Olga

    2017-01-01

    Calcineurin B-like interacting protein kinases (CIPKs) decode calcium signals upon interaction with the calcium sensors calcineurin B like proteins into phosphorylation events that result into adaptation to environmental stresses. Few phosphorylation targets of CIPKs are known and therefore the molecular mechanisms underlying their downstream output responses are not fully understood. Tomato (Solanum lycopersicum) Cipk6 regulates immune and susceptible Programmed cell death in immunity transforming Ca(2+) signals into reactive oxygen species (ROS) signaling. To investigate SlCipk6-induced molecular mechanisms and identify putative substrates, a yeast two-hybrid approach was carried on and a protein was identified that contained a Universal stress protein (Usp) domain present in bacteria, protozoa and plants, which we named "SlRd2". SlRd2 was an ATP-binding protein that formed homodimers in planta. SlCipk6 and SlRd2 interacted using coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) assays in Nicotiana benthamiana leaves and the complex localized in the cytosol. SlCipk6 phosphorylated SlRd2 in vitro, thus defining, to our knowledge, a novel target for CIPKs. Heterologous SlRd2 overexpression in yeast conferred resistance to highly toxic LiCl, whereas SlRd2 expression in Escherichia coli UspA mutant restored bacterial viability in response to H2O2 treatment. Finally, transient expression of SlCipk6 in transgenic N benthamiana SlRd2 overexpressors resulted in reduced ROS accumulation as compared to wild-type plants. Taken together, our results establish that SlRd2, a tomato UspA, is, to our knowledge, a novel interactor and phosphorylation target of a member of the CIPK family, SlCipk6, and functionally regulates SlCipk6-mediated ROS generation.

  14. The characterization of Mycoplasma synoviae EF-Tu protein and proteins involved in hemadherence and their N-terminal amino acid sequences.

    PubMed

    Bencina, D; Narat, M; Dovc, P; Drobnic-Valic, M; Habe, F; Kleven, S H

    1999-04-01

    An abundant cytoplasmic 43-kDa protein from Mycoplasma synoviae, a major pathogen from poultry, was identified as elongation factor Tu. The N-terminal amino acid sequence (AKLDFDRSKEHVNVGTIGHV) has 90% identity with the sequence of the Mycoplasma hominis elongation factor Tu protein. Monoclonal antibodies reacting with the M. synoviae elongation factor Tu protein also reacted with 43-kDa proteins from the avian Mycoplasma species Mycoplasma gallinarum, Mycoplasma gallinaceum, Mycoplasma pullorum, Mycoplasma cloacale, Mycoplasma iners and Mycoplasma meleagridis, but not with the proteins from Mycoplasma gallisepticum, Mycoplasma imitans or Mycoplasma iowae. In addition, two groups of phase variable integral membrane proteins, pMSA and pMSB, associated with hemadherence and pathogenicity of M. synoviae strains AAY-4 and ULB925 were identified. The cleavage of a larger hemagglutinating protein encoded by a gene homologous to the vlhA gene of M. synoviae generates pMSB1 and pMSA1 proteins defined by mAb 125 and by hemagglutination inhibiting mAb 3E10, respectively. The N-terminal amino acid sequences of pMSA proteins (SENKLI ... and SENETQ ...) probably indicate the cleavage site of the M. synoviae strain ULB 925 hemagglutinin.

  15. The addition of whey protein to a carbohydrate-electrolyte drink does not influence post-exercise rehydration.

    PubMed

    Hobson, Ruth; James, Lewis

    2015-01-01

    The addition of whey protein to a carbohydrate-electrolyte drink has been shown to enhance post-exercise rehydration when a volume below that recommended for full fluid balance restoration is provided. We investigated if this held true when volumes sufficient to restore fluid balance were consumed and if differences might be explained by changes in plasma albumin content. Sixteen participants lost ~1.9% of their pre-exercise body mass by cycling in the heat and rehydrated with 150% of body mass lost with either a 60 g · L(-1) carbohydrate drink (CHO) or a 60 g · L(-1) carbohydrate, 20 g · L(-1) whey protein isolate drink (CHO-P). Urine and blood samples were collected pre-exercise, post-exercise, post-rehydration and every hour for 4 h post-rehydration. There was no difference between trials for total urine production (CHO 1057 ± 319 mL; CHO-P 970 ± 334 mL; P = 0.209), drink retention (CHO 51 ± 12%; CHO-P 55 ± 15%; P = 0.195) or net fluid balance (CHO -393 ± 272 mL; CHO-P -307 ± 331 mL; P = 0.284). Plasma albumin content relative to pre-exercise was increased from 2 to 4 h during CHO-P only. These results demonstrate that the addition of whey protein isolate to a carbohydrate-electrolyte drink neither enhances nor inhibits rehydration. Therefore, where post-exercise protein ingestion might benefit recovery, this can be consumed without effecting rehydration.

  16. Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3-L1 fibroblasts differentiation.

    PubMed

    Gabrielli, Matías; Martini, Claudia N; Brandani, Javier N; Iustman, Laura J R; Romero, Damián G; del C Vila, María

    2014-02-01

    Adipogenesis is stimulated in 3T3-L1 fibroblasts by a combination of insulin, dexamethasone and isobutylmethylxanthine, IBMX, (I+D+M). Two transcription factors are important for the acquisition of the adipocyte phenotype, C/EBP beta (CCAT enhancer-binding protein beta) and PPAR gamma (peroxisome proliferator-activated receptor gamma). IBMX increases cAMP content, which can activate protein kinase A (PKA) and/or EPAC (exchange protein activated by cAMP). To investigate the importance of IBMX in the differentiation mixture, we first evaluated the effect of the addition of IBMX on the increase of C/EBP beta and PPAR gamma and found an enhancement of the amount of both proteins. IBMX addition (I+D+M) or its replacement with a cAMP analogue, dibutyryl-cAMP or 8-(4-chlorophenylthio)-2-O'-methyl-cAMP (8CPT-2-Me-cAMP), the latter activates EPAC and not PKA, remarkably increased PPAR gamma mRNA. However, neither I+D nor any of the inducers alone, increased PPAR gamma mRNA to a similar extent, suggesting the importance of the presence of both IBMX and I+D. It was also found that the addition of IBMX or 8CPT-2-Me-cAMP was able to increase the content of C/EBP beta with respect to I+D. In agreement with these findings, a microarray analysis showed that the presence of either 8CPT-2-Me-cAMP or IBMX in the differentiation mixture was able to upregulate PPAR gamma and PPAR gamma-activated genes as well as other genes involved in lipid metabolism. Our results prove the involvement of IBMX-cAMP-EPAC in the regulation of adipogenic genes during differentiation of 3T3-L1 fibroblasts and therfore contributes to elucidate the role of cyclic AMP in this process.

  17. Identification of surface proteins involved in the adhesion of a probiotic Bacillus cereus strain to mucin and fibronectin.

    PubMed

    Sánchez, B; Arias, S; Chaignepain, S; Denayrolles, M; Schmitter, J M; Bressollier, P; Urdaci, M C

    2009-05-01

    Several Bacillus strains isolated from commercial probiotic preparations were identified at the species level, and their adhesion capabilities to three different model intestinal surfaces (mucin, Matrigel and Caco-2 cells) were assessed. In general, adhesion of spores was higher than that of vegetative cells to the three matrices, and overall strain Bacillus cereus(CH) displayed the best adhesion. Different biochemical treatments revealed that surface proteins of B. cereus(CH) were involved in the adhesion properties of the strain. Surface-associated proteins from vegetative cells and spores of B. cereus(CH) were extracted and identified, and some proteins such as S-layer components, flagellin and cell-bound proteases were found to bind to mucin or fibronectin. These facts suggest that those proteins might play important roles in the interaction of this probiotic Bacillus strain within the human gastrointestinal tract.

  18. The LspB protein is involved in the secretion of the LspA1 and LspA2 proteins by Haemophilus ducreyi.

    PubMed

    Ward, Christine K; Mock, Jason R; Hansen, Eric J

    2004-04-01

    The LspA1 and LspA2 proteins of Haemophilus ducreyi 35000 are two very large macromolecules that can be detected in concentrated culture supernatant fluid. Both of these proteins exhibit homology with the N-terminal region of the Bordetella pertussis filamentous hemagglutinin (FHA), which is involved in secretion of the latter macromolecule. The lspA2 open reading frame is flanked upstream by a gene, lspB, that encodes a predicted protein with homology to the B. pertussis FhaC outer membrane protein that is involved in secretion of FHA across the outer membrane. The H. ducreyi lspB gene encodes a protein with a predicted molecular mass of 66,573 Da. Reverse transcription-PCR analysis suggested that the lspB gene was transcribed together with the lspA2 gene on a single mRNA transcript. Polyclonal H. ducreyi LspB antiserum reacted with a 64-kDa antigen present in the Sarkosyl-insoluble cell envelope fraction of H. ducreyi 35000, which indicated that the LspB protein is likely an outer membrane protein. Concentrated culture supernatant fluids from H. ducreyi lspB and lspA1 lspB mutants did not contain detectable LspA1 and detectable LspA2, respectively. However, complementation of the lspB mutant with the wild-type lspB gene on a plasmid restored LspB protein expression and resulted in release of detectable amounts of the LspA1 protein into culture supernatant fluid. When evaluated in the temperature-dependent rabbit model of infection, the lspB mutant was attenuated in the ability to cause lesions and was never recovered in a viable form from lesions. These results indicated that the H. ducreyi LspB protein is involved in secretion of the LspA1 and LspA2 proteins across the outer membrane.

  19. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model.

    PubMed

    Shukla, Anjali; Bettzieche, Anja; Hirche, Frank; Brandsch, Corinna; Stangl, Gabriele I; Eder, Klaus

    2006-10-01

    It is known that various dietary plant proteins are capable of influencing the lipid metabolism of human subjects and animals when compared with casein. Less, however, is known about the effects of fish protein on the cholesterol and triacylglycerol metabolism. Therefore, two experiments were conducted in which rats were fed diets containing 200 g of either fish protein, prepared from Alaska pollack fillets, or casein, which served as control, per kilogram, over 20 and 22 d, respectively. As parameters of lipid metabolism, the concentrations of cholesterol and triacylglycerols in the plasma and liver, the faecal excretion of bile acids and the hepatic expression of genes encoding proteins involved in lipid homeostasis were determined. In both experiments, rats fed fish protein had higher concentrations of cholesteryl esters in the liver, a lower concentration of cholesterol in the HDL fraction (rho > 1.063 kg/l) and lower plasma triacylglycerol concentrations than rats fed casein (P < 0.05). The gene expression analysis performed in experiment 2 showed that rats fed fish protein had higher relative mRNA concentrations of sterol regulatory element-binding protein (SREBP)-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase, LDL receptor, apo AI, scavenger receptor B1 and lecithin-cholesterol-acyltransferase in their liver than did rats fed casein (P < 0.05). The faecal excretion of bile acids and the mRNA concentrations of cholesterol 7alpha-hydroxylase, SREBP-1c and corresponding target genes were not altered. These findings show that fish protein had multiple effects on plasma and liver lipids that were at least in part caused by an altered expression of the hepatic genes involved in lipid homeostasis.

  20. The Shwachman-Bodian-Diamond Syndrome Protein Family Is Involved in RNA Metabolism

    SciTech Connect

    Savchenko, A; Krogan, Nevan; Cort, John R.; Evdokimova, Elena; Lew, Jocelyne M.; Yee, Adelinda; Sanchez-Pulido, Luis; Andrade, Miguel; Bochkarev, Alexey; Watson, James D.; Kennedy, Michael A.; Greenblatt, Jack; Hughes, Timothy; Arrowsmith, Cheryl H.; Rommens, Johanna M.; Edwards, Aled M.

    2005-05-13

    A combination of structural, biochemical, and genetic studies in model organisms was used to infer a cellular role for the human protein (SBDS) responsible for Shwachman-Bodian-Diamond syndrome. The crystal structure of the SBDS homologue in Archaeoglobus fulgidus, AF0491, revealed a three domain protein. The N-terminal domain, which harbors the majority of disease-linked mutations, has a novel three-dimensional fold.

  1. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles.

    PubMed

    Neuman, Benjamin W

    2016-11-01

    Replication of eukaryotic positive-stranded RNA viruses is usually linked to the presence of membrane-associated replicative organelles. The purpose of this review is to discuss the function of proteins responsible for formation of the coronavirus replicative organelle. This will be done by identifying domains that are conserved across the order Nidovirales, and by summarizing what is known about function and structure at the level of protein domains.

  2. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness

    PubMed Central

    Wu, Guiqin; Shi, Fengying; Liu, Aiqiao; Yang, Ning

    2016-01-01

    Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57) would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5 (SLC25A5) and down-regulated translocator protein (TSPO) would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF). In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation. PMID:28006025

  3. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    PubMed

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  4. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    PubMed

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  5. Prion Protein and Shadoo Are Involved in Overlapping Embryonic Pathways and Trophoblastic Development

    PubMed Central

    Makhzami, Samira; Vilotte, Marthe; Jaffrezic, Florence; Halliez, Sophie; Bouet, Stéphan; Marthey, Sylvain; Khalifé, Manal; Kanellopoulos-Langevin, Colette; Béringue, Vincent; Le Provost, Fabienne; Laude, Hubert; Vilotte, Jean-Luc

    2012-01-01

    The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology. PMID:22860039

  6. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin

    PubMed Central

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-01-01

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation. PMID:27078093

  7. Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of thylakoid membranes at 4 degrees C: Characterizations of two additional chlorophyll a-protein complexes.

    PubMed

    Delepelaire, P; Chua, N H

    1979-01-01

    Lithium dodecyl sulfate/polyacrylamide gel electrophoresis of Chlamydomonas reinhardtii thylakoid membranes at room temperature gave two chlorophyll-protein complexes, CP I and CP II, as had been reported previously. However, when the electrophoresis was performed at 4 degrees C, there was an increase in the amount of chlorophyll associated with CP I and CP II, and in addition, three other chlorophyll-protein complexes appeared. Two of these complexes, designated CP III and CP IV, were characterized and found to be similar in their compositions. Each complex contains four to five molecules of chlorophyll a, one molecule of beta-carotene, and one polypeptide chain. The apoprotein of CP III is polypeptide 5 (M(r) 50,000) and that of CP IV is polypeptide 6 (M(r) 47,000); the two polypeptides are structurally unrelated. Chlorophyll-protein complexes similar to C. reinhardtii CP III and CP IV were also detected in higher plants (e.g., Pisum sativum). The apoproteins of the higher plant complexes are immunochemically related to those of the C. reinhardtii complexes, as shown by crossed immunoelectrophoresis. Absorption spectra of CP III and CP IV at -196 degrees C revealed a component at 682 nm. This observation, together with the previous results on photosystem II mutants [Chua, N.-H. & Bennoun, P. (1975) Proc. Natl. Acad. Sci. USA 72, 2175-2179], provides indirect evidence that CP III and CP IV may be involved in the primary photochemistry of photosystem II.

  8. Identification and characterization of a Streptococcus equi ssp. zooepidemicus immunogenic GroEL protein involved in biofilm formation.

    PubMed

    Yi, Li; Wang, Yang; Ma, Zhe; Lin, Hui-Xing; Xu, Bin; Grenier, Daniel; Fan, Hong-Jie; Lu, Cheng-Ping

    2016-04-18

    Streptococcus equi ssp. zooepidemicus (S. equi spp. zooepidemicus) is an opportunistic pathogen that causes major economic losses in the swine industry in China and is also a threat for human health. Biofilm formation by this bacterium has been previously reported. In this study, we used an immunoproteomic approach to search for immunogenic proteins expressed by biofilm-grown S. equi spp. zooepidemicus. Seventeen immunoreactive proteins were found, of which nine common immunoreactive proteins were identified in planktonic and biofilm-grown bacteria. The immunogenicity and protective efficacy of the S. equi spp. zooepidemicus immunoreactive GroEL chaperone protein was further investigated in mice. The protein was expressed in vivo and elicited high antibody titers following S. equi spp. zooepidemicus infections of mice. An animal challenge experiment with S. equi spp. zooepidemicus showed that 75% of mice immunized with the GroEL protein were protected. Using in vitro biofilm inhibition assays, evidence was obtained that the chaperonin GroEL may represent a promising target for the prevention and treatment of persistent S. equi spp. zooepidemicus biofilm infections. In summary, our results suggest that the recombinant GroEL protein, which is involved in biofilm formation, may efficiently stimulate an immune response, which protects against S. equi spp. zooepidemicus infections. It may therefore be a candidate of interest to be included in vaccines against S. equi spp. zooepidemicus infections.

  9. Global Analysis of Lysine Acetylation Suggests the Involvement of Protein Acetylation in Diverse Biological Processes in Rice (Oryza sativa)

    PubMed Central

    Zhong, Xiaoxian; Tan, Feng; Mujahid, Hana; Zhang, Jian; Nanduri, Bindu; Peng, Zhaohua

    2014-01-01

    Lysine acetylation is a reversible, dynamic protein modification regulated by lysine acetyltransferases and deacetylases. Recent advances in high-throughput proteomics have greatly contributed to the success of global analysis of lysine acetylation. A large number of proteins of diverse biological functions have been shown to be acetylated in several reports in human cells, E.coli, and dicot plants. However, the extent of lysine acetylation in non-histone proteins remains largely unknown in monocots, particularly in the cereal crops. Here we report the mass spectrometric examination of lysine acetylation in rice (Oryza sativa). We identified 60 lysine acetylated sites on 44 proteins of diverse biological functions. Immunoblot studies further validated the presence of a large number of acetylated non-histone proteins. Examination of the amino acid composition revealed substantial amino acid bias around the acetylation sites and the amino acid preference is conserved among different organisms. Gene ontology analysis demonstrates that lysine acetylation occurs in diverse cytoplasmic, chloroplast and mitochondrial proteins in addition to the histone modifications. Our results suggest that lysine acetylation might constitute a regulatory mechanism for many proteins, including both histones and non-histone proteins of diverse biological functions. PMID:24586658

  10. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer

    PubMed Central

    Horan, Lucas; Yasuhara, Jiro C.; Kohlstaedt, Lori A.; Rio, Donald C.

    2015-01-01

    Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5′ exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5′ exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites. PMID:26545814

  11. Two RND proteins involved in heavy metal efflux in Caulobacter crescentus belong to separate clusters within proteobacteria

    PubMed Central

    2013-01-01

    Background Heavy metal Resistance-Nodulation-Division (HME-RND) efflux systems help Gram-negative bacteria to keep the intracellular homeostasis under high metal concentrations. These proteins constitute the cytoplasmic membrane channel of the tripartite RND transport systems. Caulobacter crescentus NA1000 possess two HME-RND proteins, and the aim of this work was to determine their involvement in the response to cadmium, zinc, cobalt and nickel, and to analyze the phylogenetic distribution and characteristic signatures of orthologs of these two proteins. Results Expression assays of the czrCBA operon showed significant induction in the presence of cadmium and zinc, and moderate induction by cobalt and nickel. The nczCBA operon is highly induced in the presence of nickel and cobalt, moderately induced by zinc and not induced by cadmium. Analysis of the resistance phenotype of mutant strains showed that the ΔczrA strain is highly sensitive to cadmium, zinc and cobalt, but resistant to nickel. The ΔnczA strain and the double mutant strain showed reduced growth in the presence of all metals tested. Phylogenetic analysis of the C. crescentus HME-RND proteins showed that CzrA-like proteins, in contrast to those similar to NczA, are almost exclusively found in the Alphaproteobacteria group, and the characteristic protein signatures of each group were highlighted. Conclusions The czrCBA efflux system is involved mainly in response to cadmium and zinc with a secondary role in response to cobalt. The nczCBA efflux system is involved mainly in response to nickel and cobalt, with a secondary role in response to cadmium and zinc. CzrA belongs to the HME2 subfamily, which is almost exclusively found in the Alphaproteobacteria group, as shown by phylogenetic analysis. NczA belongs to the HME1 subfamily which is more widespread among diverse Proteobacteria groups. Each of these subfamilies present distinctive amino acid signatures. PMID:23578014

  12. Location of the serine residue involved in the linkage between the terminal protein and the DNA of phage phi 29.

    PubMed Central

    Hermoso, J M; Méndez, E; Soriano, F; Salas, M

    1985-01-01

    B. subtilis phage phi 29 has a terminal protein, p3, covalently linked to the 5' ends of the DNA through a phosphodiester bond between a serine residue and 5'-dAMP. This protein acts as a primer in DNA replication by forming an initiation complex with the 5'-terminal nucleotide dAMP. The amino acid sequence of the terminal protein, deduced from the nucleotide sequence of gene 3, showed the presence of 18 serine residues in a total of 266 amino acids. In this paper we have identified the serine involved in the linkage with the DNA as the residue 232, located close to the C-terminus of the molecule. This result was obtained by amino acid analysis of the peptide that remains linked to the DNA after proteinase K digestion of the terminal protein-phi 29 DNA complex and automated Edman degradation of the corresponding [125I]-labeled tryptic peptide. Prediction of the secondary structure of the terminal protein suggested that the serine residue involved in the linkage with the DNA is placed in a beta-turn, probably located on the external part of the molecule, as indicated by hydropathic values. Images PMID:3934646

  13. Hepatic acute phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling.

    PubMed

    Bode, Johannes G; Albrecht, Ute; Häussinger, Dieter; Heinrich, Peter C; Schaper, Fred

    2012-01-01

    The function of the liver as an important constituent of the immune system involved in innate as well as adaptive immunity is warranted by different highly specialized cell populations. As the major source of acute phase proteins, including secreted pathogen recognition receptors (PRRs), short pentraxins, components of the complement system or regulators of iron metabolism, hepatocytes are essential constituents of innate immunity and largely contribute to the control of a systemic inflammatory response. The production of acute phase proteins in hepatocytes is controlled by a variety of different cytokines released during the inflammatory process with IL-1- and IL-6-type cytokines as the leading regulators operating both as a cascade and as a network having additive, inhibitory, or synergistic regulatory effects on acute phase protein expression. Hence, IL-1β substantially modifies IL-6-induced acute phase protein production as it almost completely abrogates production of acute phase proteins such as γ-fibrinogen, α(2)-macroglobulin or α(1)-antichymotrypsin, whereas production of for example hepcidin, C-reactive protein and serum amyloid A is strongly up-regulated. This switch-like regulation of IL-6-induced acute phase protein production by IL-1β is due to a complex processing of the intracellular signaling events activated in response to IL-6 and/or IL-1β, with the crosstalk between STAT3- and NF-κB-mediated signal transduction being of particular importance. Recent data suggest that in this context complex formation between STAT3 and the p65 subunit of NF-κB might be of key importance. The present review summarizes the regulation of acute phase protein production focusing on the role of the crosstalk of STAT3- and NF-κB-driven pathways for transcriptional control of acute phase gene expression.

  14. G-protein Stimulatory α Subunit Is Involved in Osteogenic Activity in Osteoblastic Cell Line SaOS-2 Cells.

    PubMed

    Yamazaki, Miwa; Suzuki, Akira; Ozono, Keiichi; Michigami, Toshimi

    2006-01-01

    In an attempt to study the roles of G-protein stimulatory subunit α (Gsα) in osteoblasts, we introduced an expression vector encoding Gsα into human osteoblastic cell line SaOS-2, and established the clones stably overexpressing Gsα (SaOS-2-Gsα). In SaOS-2-Gsα, the intracellular content of cyclic AMP (cAMP) was increased compared with the parental SaOS-2 cells. In addition, when treated with PTH[1-34], SaOS-2-Gsα exhibited more accumulation of intracellular cAMP compared with the parental cells, suggesting an increased responsiveness to PTH. We evaluated the proliferation rates of SaOS-2-Gsα and the parental SaOS-2 cells, and found that the proliferation was accelerated in SaOS-2-Gsα cells. Reverse transcription-polymerase chain reaction (RT-PCR) analyses exhibited the increased expression of Runx2, a transcription factor involved in osteoblast differentiation, in SaOS-2-Gsα cells. Finally, to examine the osteoblastic function in vivo, we inoculated SaOS-2-Gsα or parental SaOS-2 cells subcutaneously to immunocompromised nude mice. Although tumors in nude mice were not formed after inoculation of parental SaOS-2 cells, SaOS-2-Gsα cells proliferated in host animals leading to the formation of tumors with mineralized bone-like tissues. Taken together, these results suggest that the signals via Gsα play critical roles in the proliferation and osteogenic functions of osteoblasts.

  15. Identification and characterization of a novel nuclear protein complex involved in nuclear hormone receptor-mediated gene regulation.

    PubMed

    Garapaty, Shivani; Xu, Chong-Feng; Trojer, Patrick; Mahajan, Muktar A; Neubert, Thomas A; Samuels, Herbert H

    2009-03-20

    NRC/NCoA6 plays an important role in mediating the effects of ligand-bound nuclear hormone receptors as well as other transcription factors. NRC interacting factor 1 (NIF-1) was cloned as a novel factor that interacts in vivo with NRC. Although NIF-1 does not directly interact with nuclear hormone receptors, it enhances activation by nuclear hormone receptors presumably through its interaction with NRC. To further understand the cellular and biological function of NIF-1, we identified NIF-1-associated proteins by in-solution proteolysis followed by mass spectrometry. The identified components revealed factors involved in histone methylation and cell cycle control and include Ash2L, RbBP5, WDR5, HCF-1, DBC-1, and EMSY. Although the NIF-1 complex contains Ash2L, RbBP5, and WDR5, suggesting that the complex might methylate histone H3-Lys-4, we found that the complex contains a H3 methyltransferase activity that modifies a residue other than H3-Lys-4. The identified components form at least two distinctly sized NIF-1 complexes. DBC-1 and EMSY were identified as integral components of an NIF-1 complex of approximately 1.5 MDa and were found to play an important role in the regulation of nuclear receptor-mediated transcription. Stimulation of the Sox9 and HoxA1 genes by retinoic acid receptor-alpha was found to require both DBC-1 and EMSY in addition to NIF-1 for maximal transcriptional activation. Interestingly, NRC was not identified as a component of the NIF-1 complex, suggesting that NIF-1 and NRC do not exist as stable in vitro purified complexes, although the separate NIF-1 and NRC complexes appear to functionally interact in the cell.

  16. Involvement of a Botulinum Toxin-Sensitive 22-kDa G Protein in Stimulated Exocytosis of Human Neutrophils

    DTIC Science & Technology

    1994-01-01

    FUNDING NUMBERS ]involvement -of -a Botulinun toxin -sesftUv&2_2At6-d -- Protein in stinulated exocytosis of humnan neutrophi1s. WICD I. AUTHOR(S) Nath...Botulinum Toxin -Sensitive 22-kDa G Protein in Stimulated Exocytosis of Human Neutrophils jaymaree Nath,’ Annette Powledge, and Daniel G. Wright2...observed. Although both peslussis toxin and ST-O Inhibited excocytosis In FlMvLP-stimvulated PMNs, the inhibitory effects o( the two toxins were found to be

  17. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri.

    PubMed

    Alegria, Marcos C; Souza, Diorge P; Andrade, Maxuel O; Docena, Cassia; Khater, Leticia; Ramos, Carlos H I; da Silva, Ana C R; Farah, Chuck S

    2005-04-01

    The recently sequenced genome of the bacterial plant pathogen Xanthomonas axonopodis pv. citri contains two virB gene clusters, one on the chromosome and one on a 64-kb plasmid, each of which codes for a previously uncharacterized type IV secretion system (T4SS). Here we used a yeast two-hybrid assay to identify protein-protein interactions in these two systems. Our results revealed interactions between known T4SS components as well as previously uncharacterized interactions involving hypothetical proteins coded by open reading frames in the two X. axonopodis pv. citri virB loci. Our results indicate that both loci may code for previously unidentified VirB7 proteins, which we show interact with either VirB6 or VirB9 or with a hypothetical protein coded by the same locus. Furthermore, a set of previously uncharacterized Xanthomonas proteins have been found to interact with VirD4, whose gene is adjacent to the chromosomal virB locus. The gene for one member of this family is found within the chromosomal virB locus. All these uncharacterized proteins possess a conserved 120-amino-acid domain in their C termini and may represent a family of cofactors or substrates of the Xanthomonas T4SS.

  18. The Involvement of Heat Shock Proteins in the Establishment of Tomato Yellow Leaf Curl Virus Infection

    PubMed Central

    Gorovits, Rena; Czosnek, Henryk

    2017-01-01

    Tomato yellow leaf curl virus (TYLCV), a begomovirus, induces protein aggregation in infected tomatoes and in its whitefly vector Bemisia tabaci. The interactions between TYLCV and HSP70 and HSP90 in plants and vectors are necessity for virus infection to proceed. In infected host cells, HSP70 and HSP90 are redistributed from a soluble to an aggregated state. These aggregates contain, together with viral DNA/proteins and virions, HSPs and components of the protein quality control system such as ubiquitin, 26S proteasome subunits, and the autophagy protein ATG8. TYLCV CP can form complexes with HSPs in tomato and whitefly. Nonetheless, HSP70 and HSP90 play different roles in the viral cell cycle in the plant host. In the infected host cell, HSP70, but not HSP90, participates in the translocation of CP from the cytoplasm into the nucleus. Viral amounts decrease when HSP70 is inhibited, but increase when HSP90 is downregulated. In the whitefly vector, HSP70 impairs the circulative transmission of TYLCV; its inhibition increases transmission. Hence, the efficiency of virus acquisition by whiteflies depends on the functionality of both plant chaperones and their cross-talk with other protein mechanisms controlling virus-induced aggregation. PMID:28360921

  19. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  20. Ethanol Effects Involve Non-canonical Unfolded Protein Response Activation in Yeast Cells

    PubMed Central

    Navarro-Tapia, Elisabet; Pérez-Torrado, Roberto; Querol, Amparo

    2017-01-01

    The unfolded protein response (UPR) is a conserved intracellular signaling pathway that controls transcription of endoplasmic reticulum (ER) homeostasis related genes. Ethanol stress has been recently described as an activator of the UPR response in yeast Saccharomyces cerevisiae, but very little is known about the causes of this activation. Although some authors ensure that the UPR is triggered by the unfolded proteins generated by ethanol in the cell, there are studies which demonstrate that protein denaturation occurs at higher ethanol concentrations than those used to trigger the UPR. Here, we studied UPR after ethanol stress by three different approaches and we concluded that unfolded proteins do not accumulate in the ER under. We also ruled out inositol depletion as an alternative mechanism to activate the UPR under ethanol stress discarding that ethanol effects on the cell decreased inositol levels by different methods. All these data suggest that ethanol, at relatively low concentrations, does not cause unfolded proteins in the yeasts and UPR activation is likely due to other unknown mechanism related with a restructuring of ER membrane due to the effect of ethanol. PMID:28326077

  1. Identification of proteins involved in inhibition of spheroid formation under microgravity.

    PubMed

    Riwaldt, Stefan; Pietsch, Jessica; Sickmann, Albert; Bauer, Johann; Braun, Markus; Segerer, Juergen; Schwarzwälder, Achim; Aleshcheva, Ganna; Corydon, Thomas J; Infanger, Manfred; Grimm, Daniela

    2015-09-01

    Many types of cells transit in vitro from a two- to a three-dimensional growth, when they are exposed to microgravity. The underlying mechanisms are not yet understood. Hence, we investigated the impact of microgravity on protein content and growth behavior. For this purpose, the human thyroid cancer cells FTC-133 were seeded either in recently developed cell containers that can endure enhanced physical forces and perform media changes and cell harvesting automatically or in T-25 culture flasks. All cells were cultured for five days at 1g. Afterwards, a part of the cell containers were flown to the International Space Station, while another part was kept on the ground. T-25 flasks were mounted on and next to a Random Positioning Machine. The cells were cultured for 12 days under the various conditions, before they were fixed with RNAlater. All fixed cultures showed monolayers, but three-dimensional aggregates were not detected. In a subsequent protein analysis, 180 proteins were identified by mass spectrometry. These proteins did not indicate significant differences between cells exposed to microgravity and their 1g controls. However, they suggest that an enhanced production of proteins related to the extracellular matrix could detain the cells from spheroid formation, while profilin-1 is phosphorylated.

  2. Evolution of an ancient protein function involved in organized multicellularity in animals

    PubMed Central

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-01

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker