Science.gov

Sample records for additional reaction channels

  1. Branching ratios between the abstraction and addition channels in the reactions of OH radicals with monoterpenes

    NASA Astrophysics Data System (ADS)

    Rio, C.; Loison, J. C.; Caralp, F.; Flaud, P. M.; Villenave, E.

    2009-04-01

    discharge-flow reactor coupled to mass spectrometry. Therefore, it has been possible to measure the branching ratios between the abstraction and addition channels at different pressures and to discuss on H-abstraction importance for all reactions of monoterpenes with hydroxyl radicals. This work has shown that, contrary to the results of the available literature, H-abstraction is a significant reaction pathway for the reaction of monoterpenes with hydroxyl radical. Therefore, oxidation products resulting from the H-abstraction should not be neglected in mechanisms describing the reaction of monoterpene + OH and SOA formation.

  2. Adverse reactions to food additives.

    PubMed

    Simon, R A

    1986-01-01

    There are thousands of agents that are intentionally added to the food that we consume. These include preservatives, stabilizers, conditioners, thickeners, colorings, flavorings, sweeteners, antioxidants, etc. etc. Yet only a surprisingly small number have been associated with hypersensitivity reactions. Amongst all the additives, FD&C dyes have been most frequently associated with adverse reactions. Tartrazine is the most notorious of them all; however, critical review of the medical literature and current Scripps Clinic studies would indicate that tartrazine has been confirmed to be at best only occasionally associated with flares of urticaria or asthma. There is no convincing evidence in the literature of reactivity to the other azo or nonazo dyes. This can also be said of BHA/BHT, nitrites/nitrates and sorbates. Parabens have been shown to elicit IgE mediated hypersensitivity reactions when used as pharmaceutical preservatives; however, as with the other additives noted above, ingested parabens have only occasionally been associated with adverse reactions. MSG, the cause of the 'Chinese restaurant syndrome' has only been linked to asthma in one report. Sulfiting agents used primarily as food fresheners and to control microbial growth in fermented beverages have been established as the cause of any where from mild to severe and even fatal reactions in at least 5% of the asthmatic population. Other reactions reported to follow sulfite ingestion include anaphylaxis, gastro intestinal complaints and dermatological eruptions. The prevalence of these non asthmatic reactions is unknown. The mechanism of sulfite sensitive asthma is also unknown but most likely involves hyperreactivity to inhale SO2 in the great majority of cases; however, there are reports of IgE mediated reactions and other sulfite sensitive asthmatics have been found with low levels of sulfite oxidase; necessary to oxidize endogenous sulfite to sulfate.

  3. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  4. Revisiting Additivity Violation of Quantum Channels

    NASA Astrophysics Data System (ADS)

    Fukuda, Motohisa

    2014-12-01

    We prove additivity violation of minimum output entropy of quantum channels by straightforward application of -net argument and Lévy's lemma. The additivity conjecture was disproved initially by Hastings. Later, a proof via asymptotic geometric analysis was presented by Aubrun, Szarek and Werner, which uses Dudley's bound on Gaussian process (or Dvoretzky's theorem with Schechtman's improvement). In this paper, we develop another proof along Dvoretzky's theorem in Milman's view, showing additivity violation in broader regimes than the existing proofs. Importantly,Dvoretzky's theorem works well with norms to give strong statements, but these techniques can be extended to functions which have norm-like structures-positive homogeneity and triangle inequality. Then, a connection between Hastings' method and ours is also discussed. In addition, we make some comments on relations between regularized minimum output entropy and classical capacity of quantum channels.

  5. Asthma and anaphylactoid reactions to food additives.

    PubMed Central

    Tarlo, S. M.; Sussman, G. L.

    1993-01-01

    Presumed allergic reactions to hidden food additives are both controversial and important. Clinical manifestations include asthma, urticaria, angioedema, and anaphylactic-anaphylactoid events. Most adverse reactions are caused by just a few additives, such as sulfites and monosodium glutamate. Diagnosis is suspected from the history and confirmed by specific challenge. The treatment is specific avoidance. PMID:8499792

  6. Allergic and immunologic reactions to food additives.

    PubMed

    Gultekin, Fatih; Doguc, Duygu Kumbul

    2013-08-01

    For centuries, food additives have been used for flavouring, colouring and extension of the useful shelf life of food, as well as the promotion of food safety. During the last 20 years, the studies implicating the additives contained in foods and medicine as a causative factor of allergic reactions have been proliferated considerably. In this review, we aimed to overview all of the food additives which were approved to consume in EU and find out how common and serious allergic reactions come into existence following the consuming of food additives.

  7. Conjugate addition-enantioselective protonation reactions.

    PubMed

    Phelan, James P; Ellman, Jonathan A

    2016-01-01

    The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals.

  8. Adverse reactions to the sulphite additives

    PubMed Central

    Misso, Neil LA

    2012-01-01

    Sulphites are widely used as preservative and antioxidant additives in the food and pharmaceutical industries. Exposure to sulphites has been reported to induce a range of adverse clinical effects in sensitive individuals, ranging from dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhoea to life-threatening anaphylactic and asthmatic reactions. Exposure to the sulphites arises mainly from the consumption of foods and drinks that contain these additives; however exposure may also occur through the use of pharmaceutical products, as well as in occupational settings. Most studies report a prevalence of sulphite sensitivity of 3 to 10% among asthmatic subjects who ingest these additives. However, the severity of these reactions varies, and steroid-dependent asthmatics, those with marked airway hyperresponsiveness, and children with chronic asthma, appear to be at greater risk. Although a number of potential mechanisms have been proposed, the precise mechanisms underlying sulphite sensitivity remain unclear. PMID:24834193

  9. Electrophilic addition and cyclization reactions of allenes.

    PubMed

    Ma, Shengming

    2009-10-20

    Modern organic synthesis depends on the development of highly selective methods for the efficient construction of potentially useful target molecules. A primary goal in our laboratory is the discovery of new reactions that convert readily available starting materials to complex products with complete control of regio- and stereoselectivity. Allenes are one underused moiety in organic synthesis, because these groups are often thought to be highly reactive. However, many compounds containing the allene group, including natural products and pharmaceuticals, are fairly stable. The chemistry of allenes has been shown to have significant potential in organic synthesis. Electrophilic additions to allenes have often been considered to be synthetically less attractive due to the lack of efficient control of the regio- and stereoselectivity. However, this Account describes electrophilic reactions of allenes with defined regio- and stereoselectivity developed in our laboratory. Many substituted allenes are readily available from propargylic alcohols. Our work has involved an exploration of the reactions of these allenes with many different electrophiles: the E- or Z-halo- or seleno-hydroxylations of allenyl sulfoxides, sulfones, phosphine oxides, carboxylates, sulfides or selenides, butenolides, and arenes, and the halo- or selenolactonization reactions of allenoic acids and allenoates. These reactions have produced a host of new compounds such as stereodefined allylic alcohols, ethers, amides, thiiranes, and lactones. In all these reactions, water acts as a reactant and plays an important role in determining the reaction pathway and the stereoselectivity. The differing electronic properties of the two C=C bonds in these allenes determine the regioselectivity of these reactions. Through mechanistic studies of chirality transfer, isolation and reactivity of cyclic intermediates, (18)O-labeling, and substituent effects, we discovered that the E-stereoselectivity of some

  10. Conjugate addition-enantioselective protonation reactions.

    PubMed

    Phelan, James P; Ellman, Jonathan A

    2016-01-01

    The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals. PMID:27559372

  11. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Additional channel policies. 22.817 Section 22.817 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.817 Additional channel policies. The rules in this...

  12. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Additional channel policies. 22.817 Section 22.817 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.817 Additional channel policies. The rules in this...

  13. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  14. Private Capacity of Quantum Channels is Not Additive

    NASA Astrophysics Data System (ADS)

    Li, Ke; Winter, Andreas; Zou, Xubo; Guo, Guangcan

    2009-09-01

    Recently there has been considerable activity on the subject of the additivity of various quantum channel capacities. Here, we construct a family of channels with a sharply bounded classical and, hence, private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero quantum) capacity erasure channel becomes larger than the previous classical capacity. As a consequence, we can conclude for the first time that the classical private capacity is nonadditive. In fact, in our construction even the quantum capacity of the tensor product of two channels can be greater than the sum of their individual classical private capacities. We show that this violation occurs quite generically: every channel can be embedded into our construction, and a violation occurs whenever the given channel has a larger entanglement-assisted quantum capacity than (unassisted) classical capacity.

  15. Private capacity of quantum channels is not additive.

    PubMed

    Li, Ke; Winter, Andreas; Zou, XuBo; Guo, GuangCan

    2009-09-18

    Recently there has been considerable activity on the subject of the additivity of various quantum channel capacities. Here, we construct a family of channels with a sharply bounded classical and, hence, private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero quantum) capacity erasure channel becomes larger than the previous classical capacity. As a consequence, we can conclude for the first time that the classical private capacity is nonadditive. In fact, in our construction even the quantum capacity of the tensor product of two channels can be greater than the sum of their individual classical private capacities. We show that this violation occurs quite generically: every channel can be embedded into our construction, and a violation occurs whenever the given channel has a larger entanglement-assisted quantum capacity than (unassisted) classical capacity.

  16. Method for promoting Michael addition reactions

    DOEpatents

    Shah, Pankaj V.; Vietti, David E.; Whitman, David William

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  17. Classification of the Electrophilic Addition Reactions of Olefins and Acetylenes

    ERIC Educational Resources Information Center

    Wilson, Michael A.

    1975-01-01

    Divides addition reactions into molecular, stepwise, or termolecular, depending on whether the reaction is synchronous or multistep; and further into nucleophilic, electrophilic, or concerted, depending on how the electrons are transferred in the initiation step. (MLH)

  18. Reactions in droplets in microfluidic channels.

    PubMed

    Song, Helen; Chen, Delai L; Ismagilov, Rustem F

    2006-11-13

    Fundamental and applied research in chemistry and biology benefits from opportunities provided by droplet-based microfluidic systems. These systems enable the miniaturization of reactions by compartmentalizing reactions in droplets of femoliter to microliter volumes. Compartmentalization in droplets provides rapid mixing of reagents, control of the timing of reactions on timescales from milliseconds to months, control of interfacial properties, and the ability to synthesize and transport solid reagents and products. Droplet-based microfluidics can help to enhance and accelerate chemical and biochemical screening, protein crystallization, enzymatic kinetics, and assays. Moreover, the control provided by droplets in microfluidic devices can lead to new scientific methods and insights.

  19. Radical addition-initiated domino reactions of conjugated oxime ethers.

    PubMed

    Ueda, Masafumi

    2014-01-01

    The application of conjugated oxime ethers to the synthesis of complex chemical scaffolds using domino radical reactions has been described in detail. The triethylborane-mediated hydroxysulfenylation reaction allows for the regioselective construction of a carbon-sulfur bond and a carbon-oxygen bond in a single operation for the formation of β-hydroxy sulfides. This reaction proceeds via a radical pathway involving regioselective thiyl addition and the subsequent trapping of the resulting α-imino radical with O₂, where the imino group enhances the stability of the intermediate radical. Hydroxyalkylation reactions that occur via a carbon radical addition reaction followed by the hydroxylation of the resulting N-borylenamine with O₂ have also been developed. We investigated sequential radical addition aldol-type reactions in detail to explore the novel domino reactions that occur via the generation of N-borylenamine. The radical reaction of a conjugated oxime ether with triethylborane in the presence of an aldehyde affords γ-butyrolactone via sequential processes including ethyl radical addition, the generation of N-borylenamine, an aldol-type reaction with an aldehyde, and a lactonization reaction. A novel domino reaction has also been developed involving the [3,3]-sigmatropic rearrangement of N-boryl-N-phenoxyenamine. The triethylborane-mediated domino reactions of O-phenyl-conjugated oxime ethers afforded the corresponding benzofuro[2,3-b]pyrrol-2-ones via a radical addition/[3,3]-sigmatropic rearrangement/cyclization/lactamization cascade.

  20. Substrate channelling as an approach to cascade reactions

    NASA Astrophysics Data System (ADS)

    Wheeldon, Ian; Minteer, Shelley D.; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented.

  1. A microfluidic abacus channel for controlling the addition of droplets.

    PubMed

    Um, Eujin; Park, Je-Kyun

    2009-01-21

    This paper reports the first use of the abacus-groove structure to handle droplets in a wide microchannel, with no external forces integrated to the system other than the pumps. Microfluidic abacus channels are demonstrated for the sequential addition of droplets at the desired location. A control channel which is analogous to biasing in electronics can also be used to precisely determine the number of added droplets, when all other experimental conditions are fixed including the size of the droplets and the frequency of droplet-generation. The device allows programmable and autonomous operations of complex two-phase microfluidics as well as new applications for the method of analysis and computations in lab-on-a-chip devices.

  2. Thiol-addition reactions and their applications in thiol recognition.

    PubMed

    Yin, Caixia; Huo, Fangjun; Zhang, Jingjing; Martínez-Máñez, Ramón; Yang, Yutao; Lv, Haigang; Li, Sidian

    2013-07-21

    Because of the biological importance of thiols, the development of probes for thiols has been an active research area in recent years. In this review, we summarize the results of recent exciting reports regarding thiol-addition reactions and their applications in thiol recognition. The examples reported can be classified into four reaction types including 1,1, 1,2, 1,3, 1,4 addition reactions, according to their addition mechanisms, based on different Michael acceptors. In all cases, the reactions are coupled to color and/or emission changes, although some examples dealing with electrochemical recognition have also been included. The use of thiol-addition reactions is a very simple and straightforward procedure for the preparation of thiol-sensing probes.

  3. Roaming dynamics in radical addition-elimination reactions.

    PubMed

    Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Suits, Arthur G; Mebel, Alexander M

    2014-06-06

    Radical addition-elimination reactions are a major pathway for transformation of unsaturated hydrocarbons. In the gas phase, these reactions involve formation of a transient strongly bound intermediate. However, the detailed mechanism and dynamics for these reactions remain unclear. Here we show, for reaction of chlorine atoms with butenes, that the Cl addition-HCl elimination pathway occurs from an abstraction-like Cl-H-C geometry rather than a conventional three-centre or four-centre transition state. Furthermore, access to this geometry is attained by roaming excursions of the Cl atom from the initially formed adduct. In effect, the alkene π cloud serves to capture the Cl atom and hold it, allowing many subsequent opportunities for the energized intermediate to find a suitable approach to the abstraction geometry. These bimolecular roaming reactions are closely related to the roaming radical dynamics recently discovered to play an important role in unimolecular reactions.

  4. Chromium-Catalyzed Asymmetric Dearomatization Addition Reactions of Halomethyl Heteroarenes.

    PubMed

    Tian, Qingshan; Bai, Jing; Chen, Bin; Zhang, Guozhu

    2016-04-15

    The first asymmetric dearomatization addition reaction of halomethyl arenes including benzofuran and benzothiophene was enabled by chromium catalysis. A variety of aldehydes served as suitable electrophiles under mild reaction conditions. Molecular complexities are quickly increased in a highly diastereo- and enantioselective manner.

  5. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  6. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  7. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions. PMID:26699516

  8. Substrate channelling as an approach to cascade reactions.

    PubMed

    Wheeldon, Ian; Minteer, Shelley D; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented. PMID:27001725

  9. Stereoselective synthesis of indolines via organocatalytic thioester enolate addition reactions.

    PubMed

    Kolarovic, Andrej; Käslin, Alexander; Wennemers, Helma

    2014-08-15

    A straightforward stereoselective synthesis route to indolin-3-yl acetates has been developed using organocatalytic addition reactions of monothiomalonates to ortho-bromo nitrostyrenes as the key step. The addition products of this highly stereoselective one-pot addition-deprotection-decarboxylation sequence were easily further converted to the target indolin-3-yl acetates, via an intramolecular Buchwald-Hartwig coupling reaction. The route provided indolin-3-yl acetates bearing tertiary and exocyclic quarternary stereogenic centers in excellent stereoselectivities and overall yields of 34-83%.

  10. Catalytic Asymmetric 1,4-Addition Reactions of Simple Alkylnitriles.

    PubMed

    Yamashita, Yasuhiro; Sato, Io; Suzuki, Hirotsugu; Kobayashi, Shū

    2015-10-01

    The development of catalytic asymmetric carbon-carbon bond-forming reactions of alkylnitriles that do not have an activating group at the α-position, under proton-transfer conditions, is a challenging research topic. Here, we report catalytic asymmetric direct-type 1,4-addition reactions of alkylnitriles with α,β-unsaturated amides by using a catalytic amount of potassium hexamethyldisilazide (KHMDS) with a chiral macro crown ether. The desired reactions proceeded in high yields with good diastereo- and enantioselectivities. To our knowledge, this is the first example of catalytic asymmetric direct-type 1,4-addition reaction of alkylnitriles without any activating group at the α-position.

  11. Hydrogen addition reactions of aliphatic hydrocarbons in comets

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.

    2013-10-01

    Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.

  12. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  13. Evaluation of reactions to food additives: the aspartame experience.

    PubMed

    Bradstock, M K; Serdula, M K; Marks, J S; Barnard, R J; Crane, N T; Remington, P L; Trowbridge, F L

    1986-03-01

    Despite the widespread use of chemical food additives, few criteria exist to evaluate consumer reports of adverse reactions. We analyzed 231 consumer complaints associated with the food additive aspartame. We developed a methodologic approach to evaluate all complaints by adapting general criteria used to investigate adverse reactions to medications. Complaints were ranked according to the effects of cessation and rechallenge. Using this method, we found no clear symptom complex that suggests a widespread public health hazard associated with aspartame use; however, we identified some case reports in which the symptoms may be attributable to aspartame in commonly-consumed amounts. The systematic application of pre-defined review criteria, such as those described here, to monitor consumer complaints related to food additives will help identify products that warrant more focused clinical studies.

  14. Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone

    SciTech Connect

    Zhao, Yan; Tishchenko, Oksana; Gour, Jeffrey R.; Li, Wei; Lutz, Jesse; Piecuch, Piotr; Truhlar, Donald G.

    2009-05-14

    The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals

  15. A model study of sequential enzyme reactions and electrostatic channeling

    NASA Astrophysics Data System (ADS)

    Eun, Changsun; Kekenes-Huskey, Peter M.; Metzger, Vincent T.; McCammon, J. Andrew

    2014-03-01

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  16. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.817... channels in the same area. The general policy of the FCC is to assign one ground station communication... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  17. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.817... channels in the same area. The general policy of the FCC is to assign one ground station communication... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  18. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.817... channels in the same area. The general policy of the FCC is to assign one ground station communication... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  19. Additivity of the classical capacity of entanglement-breaking quantum channels

    NASA Astrophysics Data System (ADS)

    Shor, Peter W.

    2002-09-01

    We show that for the tensor product of an entanglement-breaking quantum channel with an arbitrary quantum channel, both the minimum entropy of an output of the channel and the Holevo-Schumacher-Westmoreland capacity are additive. In addition, for the tensor product of two arbitrary quantum channels, we give a bound involving entanglement of formation for the amount of subadditivity (for minimum entropy output) or superadditivity (for classical capacity) that can occur.

  20. Experimental and Theoretical Study of Reactions of OH Radicals with Hexenols: An Evaluation of the Relative Importance of the H-Abstraction Reaction Channel.

    PubMed

    Gai, Yanbo; Lin, Xiaoxiao; Ma, Qiao; Hu, Changjin; Gu, Xuejun; Zhao, Weixiong; Fang, Bo; Zhang, Weijun; Long, Bo; Long, Zhengwen

    2015-09-01

    C6 hexenols are one of the most significant groups of volatile organic compounds with biogenic emissions. The lack of corresponding kinetic parameters and product information on their oxidation reactions will result in incomplete atmospheric chemical mechanisms and models. In this paper, experimental and theoretical studies are reported for the reactions of OH radicals with a series of C6 hexenols, (Z)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (Z)-4-hexen-1-ol, (E)-2-hexen-1-ol, (E)-3-hexen-1-ol, and (E)-4-hexen-1-ol, at 298 K and 1.01 × 10(5) Pa. The corresponding rate constants were 8.53 ± 1.36, 10.1 ± 1.6, 7.86 ± 1.30, 8.08 ± 1.33, 9.10 ± 1.50, and 7.14 ± 1.20 (in units of 10(-11) cm(3) molecule(-1) s(-1)), respectively, measured by gas chromatography with a flame ionization detector (GC-FID), using a relative technique. Theoretical calculations concerning the OH-addition and H-abstraction reaction channels were also performed for these reactions to further understand the reaction mechanism and the relative importance of the H-abstraction reaction. By contrast to previously reported results, the H-abstraction channel is a non-negligible reaction channel for reactions of OH radicals with these hexenols. The rate constants of the H-abstraction channel are comparable with those for the OH-addition channel and contribute >20% for most of the studied alcohols, even >50% for (E)-3-hexen-1-ol. Thus, H-abstraction channels may have an important role in the reactions of these alcohols with OH radicals and must be considered in certain atmospheric chemical mechanisms and models. PMID:26274814

  1. Biothiol Xenon MRI Sensor Based on Thiol-Addition Reaction.

    PubMed

    Yang, Shengjun; Jiang, Weiping; Ren, Lili; Yuan, Yaping; Zhang, Bin; Luo, Qing; Guo, Qianni; Bouchard, Louis-S; Liu, Maili; Zhou, Xin

    2016-06-01

    Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) play an important role in regulating the vital functions of living organisms. Knowledge of their biodistribution in real-time could help diagnose a variety of conditions. However, existing methods of biothiol detection are invasive and require assays. Herein we report a molecular biosensor for biothiol detection using the nuclear spin resonance of (129)Xe. The (129)Xe biosensor consists of a cryptophane cage encapsulating a xenon atom and an acrylate group. The latter serves as a reactive site to covalently bond biothiols through a thiol-addition reaction. The biosensor enables discrimination of Cys from Hcy and GSH through the chemical shift and average reaction rate. This biosensor can be detected at a concentration of 10 μM in a single scan and it has been applied to detect biothiols in bovine serum solution. Our results indicate that this biosensor is a promising tool for the real-time imaging of biothiol distributions. PMID:27128102

  2. Ultimate capacity of linear time-invariant bosonic channels with additive Gaussian noise

    NASA Astrophysics Data System (ADS)

    Roy Bardhan, Bhaskar; Shapiro, Jeffrey H.

    2016-03-01

    Fiber-optic communications are moving to coherent detection in order to increase their spectral efficiency, i.e., their channel capacity per unit bandwidth. At power levels below the threshold for significant nonlinear effects, the channel model for such operation a linear time-invariant filter followed by additive Gaussian noise is one whose channel capacity is well known from Shannon's noisy channel coding theorem. The fiber channel, however, is really a bosonic channel, meaning that its ultimate classical information capacity must be determined from quantum-mechanical analysis, viz. from the Holevo-Schumacher-Westmoreland (HSW) theorem. Based on recent results establishing the HSW capacity of a linear (lossy or amplifying) channel with additive Gaussian noise, we provide a general continuous-time result, namely the HSW capacity of a linear time-invariant (LTI) bosonic channel with additive Gaussian noise arising from a thermal environment. In particular, we treat quasi-monochromatic communication under an average power constraint through a channel comprised of a stable LTI filter that may be attenuating at all frequencies or amplifying at some frequencies and attenuating at others. Phase-insensitive additive Gaussian noise-associated with the continuous-time Langevin noise operator needed to preserve free-field commutator brackets is included at the filter output. We compare the resulting spectral efficiencies with corresponding results for heterodyne and homodyne detection over the same channel to assess the increased spectral efficiency that might be realized with optimum quantum reception.

  3. Diels-Alder reactions: The effects of catalyst on the addition reaction

    NASA Astrophysics Data System (ADS)

    Yilmaz, Özgür; Kus, Nermin Simsek; Tunç, Tuncay; Sahin, Ertan

    2015-10-01

    The reaction between 2,3-dimethyl-1,3-butadiene and dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate is efficiently achieved with small amounts of catalyst, i.e. phenol, AcOH, nafion, and β-cyclodextrin. Exo-diastereoselective cycloaddition reactions were observed both without catalyst and different catalysts for 48 days. As a result, different products (tricyclicmolecule 5, retro-Diels-Alder product 6, and oxidation product 7) were obtained with different catalysts. In addition, we synthesized Diels-Alders product 8 and tricyclocyclitol 10 via Diels-Alder reaction. The structures of these products were characterized by 1H NMR, 13C NMR, MS and IR spectroscopy.

  4. An additional channel for FM signal transmission in standard fiber-optic AM communication lines

    NASA Astrophysics Data System (ADS)

    Lebedev, V. V.; Anufriev, K. M.; Toguzov, N. V.; Il'ichev, I. V.; Shamray, A. V.

    2015-11-01

    A paradigm has been developed according to which an additional FM signal transfer channel is formed in a standard optical fiber transmission line without violating the main AM channel operation. Using the proposed approach, an RS-232 interface signal has been experimentally transferred via a standard intraobject 100-Mbit Ethernet line based on an SMF-28 single-mode optical fiber.

  5. Image Charge Method for Reaction Fields in a Hybrid Ion-Channel Model

    SciTech Connect

    Xu, Zhenli; Cai, Wei; Cheng, Xiaolin

    2011-01-01

    A multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge.

  6. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds

    EPA Science Inventory

    Abstract- Intra- and inter-nucleophilic addition reactions of different unsaturated compounds were found to be highly effective without any additives in PEG-400 as a recyclable reaction medium under neutral conditions.

  7. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  8. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Guo, Hua

    2013-12-01

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  9. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    PubMed

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  10. Dynamical coupled-channels study of meson production reactions from EBAC@Jlab

    SciTech Connect

    Hiroyuki Kamano

    2011-10-01

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  11. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    NASA Astrophysics Data System (ADS)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  12. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

    PubMed

    Byrd, Katherine M

    2015-01-01

    The conjugate addition reaction has been a useful tool in the formation of carbon-carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  13. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  14. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN-, the sensor displayed very large blue-shift in both fluorescence (80 nm) and absorption (120 nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN- ion was studied using 1H NMR and mass spectrometry.

  15. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution.

    PubMed

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-01

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN(-), the sensor displayed very large blue-shift in both fluorescence (80nm) and absorption (120nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN(-) ion was studied using (1)H NMR and mass spectrometry.

  16. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is

  17. Separable coupled-channels momentum space potentials for nuclear reactions

    NASA Astrophysics Data System (ADS)

    Hlophe, Linda; Eremenko, Vasily; Elster, Charlotte; Nunes, Filomena; Deltuva, Arbanas; Escher, Jutta; Thompson, Ian; Torus Collaboration

    2015-10-01

    Many nuclei are deformed and their properties may be described using a rotational model. This involves defining a deformed surface of the nucleus and constructing the nuclear interaction as a function of distance to the surface. The resulting potential has non-zero matrix elements between different rotational states which are characterized by the nuclear spin-parity Iπ, leading to channel couplings. Our goal is to utilize these coupled-channels potentials in momentum space Faddeev calculations which take into account core excitations. For this purpose their separable representation in momentum space is necessary. We accomplish this by employing the separable representation scheme developed by Ernst, Shakin, and Thaler (EST). Since the potentials are complex, the multichannel EST scheme is generalized to non-Hermitian potentials. In the case of proton-nucleus interactions the EST scheme is further extended to include charged particles. The multichannel EST scheme is applied to scattering off 10Be and 12C. For 10Be only couplings to the first excited state (Iπ =2+) were included while for 12C the first two excited states (Iπ =2+ ,4+) were taken into account. Research for this project was supported in part by the US Department of Energy, Office of Science of Nuclear Physics contact.

  18. [Risk hidden in the small print? : Some food additives may trigger pseudoallergic reactions].

    PubMed

    Zuberbier, Torsten; Hengstenberg, Claudine

    2016-06-01

    Some food additives may trigger pseudoallergenic reactions. However, the prevalence of such an overreaction is - despite the increasing number of food additives - rather low in the general population. The most common triggers of pseudoallergic reactions to food are naturally occurring ingredients. However, symptoms in patients with chronic urticaria should improve significantly on a pseudoallergen-free diet. In addition, some studies indicate that certain food additives may also have an impact on the symptoms of patients with neurodermatitis and asthma. PMID:27173908

  19. [Risk hidden in the small print? : Some food additives may trigger pseudoallergic reactions].

    PubMed

    Zuberbier, Torsten; Hengstenberg, Claudine

    2016-06-01

    Some food additives may trigger pseudoallergenic reactions. However, the prevalence of such an overreaction is - despite the increasing number of food additives - rather low in the general population. The most common triggers of pseudoallergic reactions to food are naturally occurring ingredients. However, symptoms in patients with chronic urticaria should improve significantly on a pseudoallergen-free diet. In addition, some studies indicate that certain food additives may also have an impact on the symptoms of patients with neurodermatitis and asthma.

  20. On the role of DNA in DNA-based catalytic enantioselective conjugate addition reactions.

    PubMed

    Dijk, Ewold W; Boersma, Arnold J; Feringa, Ben L; Roelfes, Gerard

    2010-09-01

    A kinetic study of DNA-based catalytic enantioselective Friedel-Crafts alkylation and Michael addition reactions showed that DNA affects the rate of these reactions significantly. Whereas in the presence of DNA, a large acceleration was found for the Friedel-Crafts alkylation and a modest acceleration in the Michael addition of dimethyl malonate, a deceleration was observed when using nitromethane as nucleophile. Also, the enantioselectivities proved to be dependent on the DNA sequence. In comparison with the previously reported Diels-Alder reaction, the results presented here suggest that DNA plays a similar role in both cycloaddition and conjugate addition reactions.

  1. Peptide-catalyzed 1,4-addition reactions of aldehydes to nitroolefins.

    PubMed

    Kastl, Robert; Arakawa, Yukihiro; Duschmalé, Jörg; Wiesner, Markus; Wennemers, Helma

    2013-01-01

    Conjugate addition reactions of aldehydes to nitroolefins provide synthetically useful gamma-nitroaldehydes. Here we summarize our research on peptide-catalyzed conjugate addition reactions of aldehydes to differently substituted nitroolefins. We show that peptides of the general type Pro-Pro-Xaa (Xaa = acidic amino acid) are not only highly active, robust and stereoselective catalysts but have also remarkable chemoselectivities.

  2. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds.

    PubMed

    Heuger, Gerold; Göttlich, Richard

    2015-01-01

    N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry.

  3. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  4. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds

    PubMed Central

    Heuger, Gerold

    2015-01-01

    Summary N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry. PMID:26425180

  5. Insight into the reaction mechanisms for oxidative addition of strong σ bonds to an Al(i) center.

    PubMed

    Zhang, Xiangfei; Cao, Zexing

    2016-06-21

    The oxidation addition of a series of σ H-X bonds (X = H, B, C, Si, N, P, and O) to a single Al(i) supported by a (NacNac)(-) bidentate ligand ((NacNac)(-) = [ArNC(Me)CHC(Me)NAr](-) and Ar = 2,6-(i)Pr2C6H3) has been explored through extensive DFT calculations. The presented results show that activation and addition of these σ bonds follow various reaction mechanisms, in which hydride transfer, proton transfer, and Al-X bond coupling steps are involved. The predicted free energy barriers for these oxidative additions range from 8 to 32 kcal mol(-1), and all the reactions are remarkably favorable thermodynamically. However, sterically hindered ligands, for most reactants, make the formation of the initial reactant complex difficult and may reduce the efficiency of the reaction. Calculations reveal a strong dependence of the reaction mechanism and low-energy channel on the bonding features of X-H and the local structural environments. PMID:27249667

  6. Copper-catalyzed alkyl-alkyl cross-coupling reactions using hydrocarbon additives: efficiency of catalyst and roles of additives.

    PubMed

    Iwasaki, Takanori; Imanishi, Reiko; Shimizu, Ryohei; Kuniyasu, Hitoshi; Terao, Jun; Kambe, Nobuaki

    2014-09-19

    Cross-coupling of alkyl halides with alkyl Grignard reagents proceeds with extremely high TONs of up to 1230000 using a Cu/unsaturated hydrocarbon catalytic system. Alkyl fluorides, chlorides, bromides, and tosylates are all suitable electrophiles, and a TOF as high as 31200 h(-1) was attained using an alkyl iodide. Side reactions of this catalytic system, i.e., reduction, dehydrohalogenation (elimination), and the homocoupling of alkyl halides, occur in the absence of additives. It appears that the reaction involves the β-hydrogen elimination of alkylcopper intermediates, giving rise to olefins and Cu-H species, and that this process triggers both side reactions and the degradation of the Cu catalyst. The formed Cu-H promotes the reduction of alkyl halides to give alkanes and Cu-X or the generation of Cu(0), probably by disproportionation, which can oxidatively add to alkyl halides to yield olefins and, in some cases, homocoupling products. Unsaturated hydrocarbon additives such as 1,3-butadiene and phenylpropyne play important roles in achieving highly efficient cross-coupling by suppressing β-hydrogen elimination, which inhibits both the degradation of the Cu catalyst and undesirable side reactions.

  7. Copper-catalyzed alkyl-alkyl cross-coupling reactions using hydrocarbon additives: efficiency of catalyst and roles of additives.

    PubMed

    Iwasaki, Takanori; Imanishi, Reiko; Shimizu, Ryohei; Kuniyasu, Hitoshi; Terao, Jun; Kambe, Nobuaki

    2014-09-19

    Cross-coupling of alkyl halides with alkyl Grignard reagents proceeds with extremely high TONs of up to 1230000 using a Cu/unsaturated hydrocarbon catalytic system. Alkyl fluorides, chlorides, bromides, and tosylates are all suitable electrophiles, and a TOF as high as 31200 h(-1) was attained using an alkyl iodide. Side reactions of this catalytic system, i.e., reduction, dehydrohalogenation (elimination), and the homocoupling of alkyl halides, occur in the absence of additives. It appears that the reaction involves the β-hydrogen elimination of alkylcopper intermediates, giving rise to olefins and Cu-H species, and that this process triggers both side reactions and the degradation of the Cu catalyst. The formed Cu-H promotes the reduction of alkyl halides to give alkanes and Cu-X or the generation of Cu(0), probably by disproportionation, which can oxidatively add to alkyl halides to yield olefins and, in some cases, homocoupling products. Unsaturated hydrocarbon additives such as 1,3-butadiene and phenylpropyne play important roles in achieving highly efficient cross-coupling by suppressing β-hydrogen elimination, which inhibits both the degradation of the Cu catalyst and undesirable side reactions. PMID:25010426

  8. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    NASA Astrophysics Data System (ADS)

    Bourgalais, Jérémy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sébastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  9. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    DOE PAGES

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L.; Hickson, Kevin M.; Loison, Jean -Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sebastien D. Le

    2015-10-13

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzlemore » technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.« less

  10. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  11. Addition of a channel for XCO observations to a portable FTIR spectrometer for greenhouse gas measurements

    NASA Astrophysics Data System (ADS)

    Hase, Frank; Frey, Matthias; Kiel, Matthäus; Blumenstock, Thomas; Harig, Roland; Keens, Axel; Orphal, Johannes

    2016-05-01

    The portable FTIR (Fourier transform infrared) spectrometer EM27/SUN, dedicated to the precise and accurate observation of column-averaged abundances of methane and carbon dioxide, has been equipped with a second detector channel, which allows the detection of additional species, especially carbon monoxide. This allows an improved characterisation of observed carbon dioxide enhancements and makes the extended spectrometer especially suitable as a validation tool of ESA's Sentinel 5 Precursor mission, as it now covers the same spectral region as used by the infrared channel of the TROPOMI (TROPOspheric Monitoring Instrument) sensor. The extension presented here does not rely on a dichroic, but instead a fraction of the solar beam is decoupled near the aperture stop of the spectrometer using a small plane mirror. This approach allows maintaining the camera-controlled solar tracker set-up, which is referenced to the field stop in front of the primary detector. Moreover, the upgrade of existing instruments can be performed without alterating the optical set-up of the primary channel and resulting changes of the instrumental characteristics of the original instrument.

  12. Product Channels in the Reaction of the Hydroxymethyl Radical with Nitric Oxide.

    PubMed

    Feng, Wenhui; Janssen, Erik; Hershberger, John F

    2016-03-01

    The products of the reaction of CH2OH with NO were studied by infrared diode laser spectroscopy. Products were detected to determine the branching ratios of the CH2OH + NO reaction. HNCO was detected in 10.3 ± 2% yields. No other products were detected in significant quantities, indicating that adduct formation is the primary reaction pathway. Ab initio calculations of the potential energy surface show a low energy pathway to HNCO + H2O, but no other bimolecular channels, in agreement with the experiments.

  13. Product Channels in the Reaction of the Hydroxymethyl Radical with Nitric Oxide.

    PubMed

    Feng, Wenhui; Janssen, Erik; Hershberger, John F

    2016-03-01

    The products of the reaction of CH2OH with NO were studied by infrared diode laser spectroscopy. Products were detected to determine the branching ratios of the CH2OH + NO reaction. HNCO was detected in 10.3 ± 2% yields. No other products were detected in significant quantities, indicating that adduct formation is the primary reaction pathway. Ab initio calculations of the potential energy surface show a low energy pathway to HNCO + H2O, but no other bimolecular channels, in agreement with the experiments. PMID:26845620

  14. A summary of seven- and eight-membered ring sultam syntheses via three Michael addition reactions.

    PubMed

    Niu, Ben; Xie, Ping; Wang, Min; Wang, Yanjie; Zhao, Wannian; Pittman, Charles U; Zhou, Aihua

    2015-08-01

    A series of seven- and eight-membered ring -N,O-, -N,N-, and -N,S-sultams were effectively synthesized via tandem reactions involving oxa-, aza-, and thia-Michael addition to vinyl sulfonamides. These reactions are summarized here since they enrich current synthetic methodologies for sultams and provide a good example of sultam diversity-oriented synthesis. All reactions proceeded under relatively mild and environmentally friendly conditions, and all these reactions are quite suitable for the rapid preparation of sultam compound libraries, which are valuable for biological activity explorations.

  15. Borohydride-mediated radical addition reactions of organic iodides to electron-deficient alkenes.

    PubMed

    Kawamoto, Takuji; Uehara, Shohei; Hirao, Hidefumi; Fukuyama, Takahide; Matsubara, Hiroshi; Ryu, Ilhyong

    2014-05-01

    Cyanoborohydrides are efficient reagents in the reductive addition reactions of alkyl iodides and electron-deficient olefins. In contrast to using tin reagents, the reaction took place chemoselectively at the carbon-iodine bond but not at the carbon-bromine or carbon-chlorine bond. The reaction system was successfully applied to three-component reactions, including radical carbonylation. The rate constant for the hydrogen abstraction of a primary alkyl radical from tetrabutylammonium cyanoborohydride was estimated to be <1 × 10(4) M(-1) s(-1) at 25 °C by a kinetic competition method. This value is 3 orders of magnitude smaller than that of tributyltin hydride.

  16. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  17. Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions.

    PubMed

    Hartlen, Kurtis D; Ismaili, Hossein; Zhu, Jun; Workentin, Mark S

    2012-01-10

    The chemical interfacial modification of organic solvent soluble 2.4 ± 0.5 nm maleimide-modified monolayer protected gold nanoparticles (2-C(12)AuNPs) with primary or secondary amines via Michael addition reactions is demonstrated. Michael addition reactions between 2-C(12)AuNPs and primary or secondary amines at ambient temperature and pressure and under the conditions where the AuNP is soluble and stable are possible albeit sluggish, often taking days to weeks to go to completion. The rates and efficacies of the these same reactions are drastically increased at hyperbaric pressure conditions (11 000 atm) with no observed adverse effect to the gold nanoparticle stability. The resulting Michael addition adducts (3-C(12)AuNPs) formed from 2-C(12)AuNPs and the corresponding amines were characterized by TEM and by comparison of the (1)H NMR spectra of the 3-C(12)AuNPs with those of model reactions of the same amines with N-dodecylmaleimide, 2. The Michael addition reactions occur more readily with 2 rather than 2-C(12)AuNPs, consistent with the local environment of the latter imposing additional steric or other barriers to the reaction. The use of hyperbaric conditions makes the reaction of the organic solvent soluble 2-C(12)AuNP via Michael addition a viable interfacial modification process that is otherwise impractical. The results also suggest that it is a useful protocol for facilitating Michael addition reactions generally in solution at low temperatures.

  18. Ring Substituent Effects on the Thiol Addition and Hydrolysis Reactions of N-Arylmaleimides.

    PubMed

    Chen, Yingche; Tsao, Kelvin; De Francesco, Élise; Keillor, Jeffrey W

    2015-12-18

    Maleimide groups are used extensively in bioconjugation reactions, but limited kinetic information is available regarding their thiol addition and hydrolysis reactions. We prepared a series of fluorogenic coumarin maleimide derivatives that differ by the substituent on their maleimide C═C bond. Fluorescence-based kinetic studies of the reaction with β-mercaptoethanol (BME) yielded the second-order rate constants (k2), while pH-rate studies from pH 7 to 9 gave base-catalyzed hydrolysis rate constants (kOH). Linear free-energy relationships were studied through the correlation of log k2 and log kOH to both electronic (σ(+)) and steric (Es(norm)) parameters of the C═C substituent. These correlations revealed the thiol addition reaction is primarily sensitive to the electronic effects, while steric effects dominate the hydrolysis reaction. These mechanistic studies provide the basis for the design of novel bioconjugation reactants or fluorogenic labeling agents.

  19. Monitoring adverse reactions to food additives in the U.S. Food and Drug Administration.

    PubMed

    Tollefson, L

    1988-12-01

    Technological advances in food science have resulted in the development of numerous food additives, most of which require premarket approval by the Food and Drug Administration (FDA). Concomitant with the benefits of these additives, such as extending the shelf life of certain food commodities, is the potential for various risks. These potential risks include the possibility of the consumer experiencing an adverse reaction to the additive. In order to ascertain the character and the gravity of alleged adverse reactions to food products which it regulates, the FDA's Center for Food Safety and Applied Nutrition has developed the Adverse Reaction Monitoring System (ARMS). This postmarketing surveillance system for food additives is designed to analyze consumer reports of adverse reactions in order to alert FDA officials about any potential public health hazard associated with an approved food additive, and to delineate specific syndromes which may lead to focused clinical investigations. To date, among the products routinely monitored in the ARMS, sulfiting agents and the artificial sweetener aspartame have generated the largest volume of consumer reports describing adverse reactions. An overview of the analyses of the sulfite and aspartame adverse reaction reports is presented, along with a description of the mechanics of the postmarketing surveillance system, and a detailed discussion of its limitations.

  20. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  1. Dynamical coupled-channels study of {pi}N{yields}{pi}{pi}N reactions

    SciTech Connect

    Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.

    2009-02-15

    As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N{yields}{pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N{yields}{pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi}{sup +}p{yields}{pi}{sup +}{pi}{sup +}n,{pi}{sup +}{pi}{sup 0}p and {pi}{sup -}p{yields}{pi}{sup +}{pi}{sup -}n,{pi}{sup -}{pi}{sup 0}p,{pi}{sup 0}{pi}{sup 0}n reactions from threshold to the invariant mass W=2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.

  2. Markovnikov free radical addition reactions, a sleeping beauty kissed to life.

    PubMed

    Hoffmann, Reinhard W

    2016-02-01

    This review covers free radical additions, which are initiated by the formal addition of a hydrogen atom to a C[double bond, length as m-dash]C double bond. These reactions originated in the realms of inorganic chemistry, polymer chemistry, and organic chemistry, whereby barriers between these disciplines impeded the rapid implementation of the findings.

  3. Markovnikov free radical addition reactions, a sleeping beauty kissed to life.

    PubMed

    Hoffmann, Reinhard W

    2016-02-01

    This review covers free radical additions, which are initiated by the formal addition of a hydrogen atom to a C[double bond, length as m-dash]C double bond. These reactions originated in the realms of inorganic chemistry, polymer chemistry, and organic chemistry, whereby barriers between these disciplines impeded the rapid implementation of the findings. PMID:26753913

  4. Pressure Effects on Product Channels of Hydrocarbon Radical-Radical Reactions; Implications for Modelling of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Fahr, A.; Halpern, J.; N'doumi, M.

    2011-10-01

    Previously we had studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modelling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2 and allyl, H2CCCH3) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. We have experimentally determined pressuredependent product yields for self- and cross-radical reactions performed at 298 K and at selected pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final products were determined by gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the observations and provided valuable information on complex reaction mechanisms. These studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report a compilation of our earlier results relevant to planetary atmospheres in addition to recent ones for allyl radical (H2CCCH3) reactions.

  5. Sequential Reaction Channels of Metastable C{sup 4+}{sub 60}

    SciTech Connect

    Duenser, B.; Echt, O.; Scheier, P.; Maerk, T.D.

    1997-11-01

    We employ a two-sector-field mass spectrometer to identify sequential, unimolecular dissociation channels of C{sup 4+}{sub 60} . In addition to sequential {open_quotes}monomer evaporations{close_quotes} (loss of two C{sub 2} units), we observe two novel sequential channels which involve fissionlike events: loss of C{sup +}{sub 2} followed by evaporation, and sequential loss of two C{sup +}{sub 2} units. {copyright} {ital 1997} {ital The American Physical Society}

  6. Quantum description of coupling to neutron-rearrangement channels in fusion reactions near the Coulomb barrier

    SciTech Connect

    Samarin, V. V.

    2015-10-15

    The fusion cross sections for the {sup 17,18}O+{sup 27}Al, {sup 18}O+{sup 58}Ni, and {sup 6}He+{sup 197}Au reactions were calculated by the coupled-channel method. The radial dependence of matrices that describe coupling to valence-neutron-rearrangement channels was determined with the aid of two-center wave functions. The coupling-strength parameters were evaluated on the basis of numerically solving the time-dependent Schrödinger equation. Satisfactory agreement with experimental data was obtained.

  7. Bu4N+ alkoxide-initiated/autocatalytic addition reactions with organotrimethylsilanes.

    PubMed

    Das, Manas; O'Shea, Donal F

    2014-06-20

    The use of Me3SiO(-)/Bu4N(+) as a general activator of organotrimethylsilanes for addition reactions has been established. The broad scope of the method offers trimethylsilanes (including acetate, allyl, propargyl, benzyl, dithiane, heteroaryl, and aryl derivatives) as bench-stable organometallics that can be readily utilized as carbanion equivalents for synthesis. Reactions are achieved at rt without the requirement of specialized precautions that are commonplace for other organometallics.

  8. Synthesis of trifluoromethyl-containing vicinal diamines by asymmetric decarboxylative mannich addition reactions.

    PubMed

    Wu, Lingmin; Xie, Chen; Mei, Haibo; Dai, Yanling; Han, Jianlin; Soloshonok, Vadim A; Pan, Yi

    2015-03-20

    Herein is reported a study of asymmetric decarboxylative Mannich addition reactions between (Ss)-N-t-butylsulfinyl-3,3,3-trifluoroacetaldimine and Schiff bases derived from various aldehydes and lithium 2,2-diphenylglycinate. These reactions proceed with excellent diastereoselectivities and good chemical yields, providing a practical method for preparation of trifluoromethyl-containing vicinal diamines. The procedures can be conducted under convenient conditions, rendering this approach of high synthetic value.

  9. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  10. [Use of the granulocytic myeloperoxidase release reaction to diagnose food additive allergies].

    PubMed

    Titova, N D

    2011-03-01

    Adverse reactions to food additives are difficult to diagnose due to the diversity of mechanisms involved in their realization and to the absence of reasonably reliable methods for their determination. Eighty-three patients with allergic diseases were examined using the granulocytic myeloperoxidase release reaction (MRR) to diagnose intolerance reactions to food additives (E102, E122, E124, E132, E110, E2111). MRR revealed leukocyte hypersensitivity to tartrazine in 10.8%, sunset yellow in 4.8%, ponceau in 13.2%, indigo carmine in 8.4%, carmoisine and benzoate in 9.6%. The findings were correlated with history data and the levels of IgE antibodies to these dyes. The practical use of the proposed MRR method makes it possible to enhance the accuracy of diagnosis of allergy to food additives. PMID:21584968

  11. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  12. Reaction enthalpies along the two channels of geminate electron recombination in liquid-to-supercritical water

    NASA Astrophysics Data System (ADS)

    Schiller, Robert; Horváth, Ákos

    2013-11-01

    Ionizing radiation or UV light produces electrons and H2O+ ions in water. These species transform into hydrated electron, e-aq, hydrated H3O+ ion, and ·OH radical in each other's neighborhood much faster than any forthcoming chemical transformation. Part of the electrons escapes their geminate partners. There exists two possible paths for the remaining fraction to react: H3O++e-aq=H3O· [channel (A)] and ·OH+e-aq=OH- [channel (B)]. We devised two thermodynamic cycles for the computation of the reaction enthalpies of both channels. Channel (A) was found to be endothermic with an enthalpy of 3.61 eV at room temperature. The enthalpy is seen to be almost constant up to 500 K, to increase at 600 K and to drop abruptly around 650 K, i.e. in the region where the dielectric constant is below 20. Channel (B) was found to be exothermic with an enthalpy of -2.33 eV at room temperature. It is becoming gradually less exothermic with increasing temperature the variation becoming fast around 650 K. The tendency of these thermochemical results parallel with recent kinetic calculations by Torres-Alacan et al. (J. Torres-Alacan, S. Kratz, P. Vöhringer, 2011. Phys. Chem. Chem. Phys. 13, 20806-20819)

  13. Formation Of Cometary Hydrocarbons By Hydrogen Addition Reactions On Cold Grains

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hitomi; Watanabe, N.; Kawakita, H.; Fukushima, T.

    2012-10-01

    Hydrogen addition reactions on cold grains are considered to play an important role to form many kinds of volatiles in low temperature conditions like molecular clouds or early solar nebula. We can investigate the physical conditions (e.g., temperature, gas density, and etc.) of the early solar nebula via chemical properties of the pristine bodies like comets. The hydrocarbons like C2H2 and C2H6 have been studied so far and C2H6 might be a product of successive hydrogen addition of C2H2 on the cold grain. To evaluate the efficiency of hydrogen addition reactions from C2H2 to C2H6 quantitatively, we conducted laboratory measurements of those reactions under multiple conditions of the samples (on H2O ice) at different temperatures (10, 20, 30 K) with the LASSIE apparatus at Hokkaido University. Our results provide more detailed information about those reactions than previous quantitative studies. We discuss about the reaction rates with different samples and conditions.

  14. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Hong; Li, Kuan-Ting

    2016-07-01

    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  15. Catalytic asymmetric direct-type 1,4-addition reactions of simple amides.

    PubMed

    Suzuki, Hirotsugu; Sato, Io; Yamashita, Yasuhiro; Kobayashi, Shū

    2015-04-01

    The development of catalytic asymmetric direct-type reactions of less acidic carbonyl compounds such as amides and esters has been a challenging theme in organic chemistry for decades. Here we describe the asymmetric direct 1,4-addition reactions of simple amides with α,β-unsaturated carbonyl compounds using a catalytic amount of a novel chiral catalyst consisting of a potassium base and a macrocyclic chiral crown ether. The desired 1,5-dicarbonyl compounds were obtained in high yields with excellent diastereo- and enantioselectivities. This is the first example of a highly enantioselective catalytic direct-type reaction of simple amides. In addition, the structure of the chiral potassium catalyst has been investigated by X-ray crystallographic, dynamic (1)H NMR, and MALDI-TOF MS analyses.

  16. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  17. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  18. Computational study on SiH4 dissociation channels and H abstraction reactions

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshio; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2016-07-01

    The primary dissociation channels of SiH4 were investigated using computational chemistry. The results showed properties very similar to those of CH4. The main dissociation product was SiH2 and the second dissociation product was SiH3. SiH was produced through SiH3 to SiH + H2 dissociation by electronic excitation. H abstraction reactions by H and SiH3 were also calculated for SiH4, Si2H6, Si3H8, and Si9H14(100) cluster models. The energy barriers of H abstraction reactions were lower than those of SiH3 abstraction reactions. This result is considerably important for deposition in SiH4/H2 process plasma.

  19. Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    NASA Astrophysics Data System (ADS)

    Maxut, Aurelia; Nozière, Barbara; Rossignol, Stéphanie; George, Christian; Waxman, Eleanor Marie; Laskin, Alexander; Slowik, Jay; Dommen, Josef; Prévôt, André; Baltensperger, Urs; Volkamer, Rainer

    2014-05-01

    Glyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2'-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozière et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed.

  20. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    PubMed

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters.

  1. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    PubMed

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters. PMID:26799641

  2. Reaction products of amido-amine and epoxide useful as fuel additives

    SciTech Connect

    Efner, H.F.

    1988-04-12

    A method for reducing engine deposits in an internal combustion engine is described comprising the addition of a detergent fuel additive package to a hydrocarbon fuel for the engine. The fuel detergent is added in an amount effective to reduce deposits and the hydrocarbon fuel is used with detergent additive as fuel in an internal combustion engine. The detergent fuel additive package comprises: (1) a fuel detergent additive that is the reaction product prepared by reacting (a) vegetable oil or (b) higher carboxylic acid chosen from (i) aliphatic fatty acids having 10-25 carbon atoms and (ii) aralkyl acids having 12-42 carbon atoms with (c) multiamine to obtain a fist product mixture with the first product mixture reacted with alklylene oxide to produce a second product mixture and (2) a fuel detergent additive solvent compatible with the fuels.

  3. An ignored but most favorable channel for NCO+C2H2 reaction.

    PubMed

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-28

    The NCO+C(2)H(2) reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP6-31G(d), B3LYP6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD6-31G(d), and Gaussian-3 levels are performed for the NCO+C(2)H(2) reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P(3) H+HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500 K) and pressures (10-560 Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P(2) HCN+HCCO and P

  4. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  5. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions. PMID:27573794

  6. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions.

  7. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide.

    PubMed

    Grünenfelder, Claudio E; Kisunzu, Jessica K; Wennemers, Helma

    2016-07-18

    The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.

  8. Measurements and coupled reaction channels analysis of one- and two-proton transfer reactions for the 28Si + 90,94Zr systems

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Mandal, S.; Jhingan, A.; Gehlot, J.; Sugathan, P.; Golda, K. S.; Madhavan, N.; Garg, Ritika; Goyal, Savi; Mohanto, Gayatri; Sandal, Rohit; Chakraborty, Santosh; Verma, Shashi; Behera, Bivash; Eleonora, G.; Wollersheim, H. J.; Singh, R.

    2012-03-01

    Measurements of angular distributions for one- and two-proton stripping reactions for 28Si + 90,94Zr systems were performed at 120 MeV. The experiment was carried out with the 28Si beam at Inter University Accelerator Center, New Delhi. The theoretical calculations were performed using the quantum mechanical coupled reaction channels code fresco. The distorted wave Born approximation calculations reproduced the experimental angular distributions for the one-proton transfer channel for both the systems reasonably well but failed for the two-proton transfer channel. Coupled channels calculations including various intermediate states (involving target and projectile inelastic excitations before and/or after transfer) along with the sequential transfer were able to reproduce the two-proton transfer angular distributions for both the systems reasonably well. It seems that at an energy above the Coulomb barrier, there is significant contribution of the indirect multistep and sequential transfer to the two-proton stripping reaction.

  9. Chronic Calcium Channel Inhibitor Verapamil Antagonizes TNF-α-Mediated Inflammatory Reaction and Protects Against Inflammatory Arthritis in Mice.

    PubMed

    Wang, Wenhan; Li, Zhong; Meng, Qingjuan; Zhang, Pei; Yan, Pengcheng; Zhang, Zhenbiao; Zhang, Hao; Pan, Jingrui; Zhai, Yujia; Liu, Yaoge; Wang, Xiaokai; Li, Weiwei; Zhao, Yunpeng

    2016-10-01

    It is well established that the tumor necrosis factor-α (TNF-α) plays a dominant role in rheumatoid arthritis (RA). Calcium channel is recently reported to be closely associated with various inflammatory diseases. However, whether chronic calcium channel blocker verapamil plays a role in RA still remains unknown. To investigate the role of verapamil in antagonizing TNF-α-mediated inflammation reaction and the underlying mechanisms, bone marrow-derived macrophages (BMDM) cells were cultured with stimulation of TNF-α, in the presence or absence of verapamil. Inflammation-associated cytokines, including IL-1, IL-6, inducible nitric oxide synthase 2 (NOS-2), and cyclooxygenase-2 (COX-2), were assessed, and verapamil suppressed TNF-α-induced expression of inflammatory cytokines. Furthermore, collagen-induced arthritis (CIA) mice models were established, and arthritis progression was evaluated by clinical and histological signs of arthritis. Treatment of verapamil attenuated inflammation as well as joint destruction in arthritis models. In addition, activity of NF-kB signaling pathway was determined both in vitro and in mice arthritis models, and verapamil inhibited TNF-α-induced activation of NF-kB signaling both in vitro and in mice models. Collectively, chronic calcium channel blocker verapamil may shed light on treatment of inflammatory arthritis and provide a potential therapeutic instrument for RA in the future. PMID:27438468

  10. PREFACE: International Symposium on Entrance Channel Effect on the Reaction Mechanism in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Giardina, Giorgio; Nasirov, Avazbek K.; Mandaglio, Giuseppe

    2014-05-01

    The aim of the Symposium has been to widen and detail the discussion of problems arising in front of experimental and theoretical groups, and to find overlap between different approaches and methods which are devoted to the studying dynamics of nuclear reactions. Therefore, the reaction product yields are determined by various processes in competition. The main topics of the Symposium have been devoted to the following well sounded problems of nuclear reactions: The synthesis of superheavy elements and the study of exotic nuclei far from the valley of the beta stability. The production mechanism of the observed new elements and isotopes. The study of transfer reactions as a way to understand mechanism of evolution of from the deep-inelastic collisions to fusion regime. The study of non-equilibrium stage of the reaction mechanism and distribution of the excitation energy between binary reaction products including spontaneous fission products are still important to have a correct presentation about the whole reaction mechanism. The similarities and difference between fusion-fission and quasifission products. Unambiguity in estimation of the realistic fusion cross sections by the experimental and theoretical methods. Angular anisotropy of the complete and incomplete fusion reaction products. The effect of the nuclear shell structure in formation of the mass symmetric and asymmetric fission products. The investigation of the role of angular momentum, mass asymmetry and orientation angles of the symmetry axes of colliding nuclei in the entrance channel in formation of the evaporation residues, mass and angular distribution of the fusion-fission and quasifission products. Multi-fragmentation and symmetry energy. The new experimental and theoretical investigations on these and related topics allow researchers to improve knowledge about nucleus-nucleus interaction dynamics and to make conclusions about perspectives in the study of the landscape of islands superheavy

  11. Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives

    NASA Technical Reports Server (NTRS)

    Dubief, Yves

    2003-01-01

    The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non

  12. Theoretical influence of third molecule on reaction channels of weakly bound complex CO2? HF systems

    NASA Astrophysics Data System (ADS)

    Chen, Shyh-Jong; Chen, Cheng; Hong, Yaw-Shun

    In this investigation, reaction channels of weakly bound complexes CO2?HF, CO2?HF?NH3, CO2?HF?H2O and CO2?HF?CH3OH systems were established at the B3LYP/6-311++G(3df,2pd) level, using the Gaussian 98 program. The conformers of syn-fluoroformic acid or syn-fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH) were found to be more stable than the conformers of the related anti-fluoroformic acid or anti-fluoroformic acid plus a third molecule (NH3, H2O, or CH3OH). However, the weakly bound complexes were found to be more stable than either the related syn- and anti-type fluoroformic acid or the acid plus third molecule (NH3, H2O, or CH3OH) conformers. They decomposed into CO2 + HF, CO2 + NH4F, CO2 + H3OF or CO2 + (CH3)OH2F combined molecular systems. The weakly bound complexes have four reaction channels, each of which includes weakly bound complexes and related systems. Moreover, each reaction channel includes two transition state structures. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly larger than that of internal rotation (T23) between the syn- and anti-FCO2H (or FCO2H?NH3, FCO2H?H2O, or FCO2H?CH3OH) structures. However, adding the third molecule NH3, H2O, or CH3OH can significantly reduce the activation energy of T13. The catalytic strengths of the third molecules are predicted to follow the order H2O < NH3 < CH3OH.

  13. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions

    PubMed Central

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-01-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation. PMID:27246540

  14. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions.

    PubMed

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-06-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation.

  15. Dynamic effect of sodium-water reaction in fast flux test facility power addition sodium pipes

    SciTech Connect

    Huang, S.N.; Anderson, M.J.

    1990-03-01

    The Fast Flux Facility (FFTF) is a demonstration and test facility of the sodium-cooled fast breeder reactor. A power addition'' to the facility is being considered to convert some of the dumped, unused heat into electricity generation. Components and piping systems to be added are sodium-water steam generators, sodium loop extensions from existing dump heat exchangers to sodium-water steam generators, and conventional water/steam loops. The sodium loops can be subjected to the dynamic loadings of pressure pulses that are caused by postulated sodium leaks and subsequent sodium-water reaction in the steam generator. The existing FFTF secondary pipes and the new power addition sodium loops were evaluated for exposure to the dynamic effect of the sodium-water reaction. Elastic and simplified inelastic dynamic analyses were used in this feasibility study. The results indicate that both the maximum strain and strain range are within the allowable limits. Several cycles of the sodium-water reaction can be sustained by the sodium pipes that are supported by ordinary pipe supports and seismic restraints. Expensive axial pipe restraints to withstand the sodium-water reaction loads are not needed, because the pressure-pulse-induced alternating bending stresses act as secondary stresses and the pressure pulse dynamic effect is a deformation-controlled quantity and is self-limiting. 14 refs., 7 figs., 3 tabs.

  16. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions

    NASA Astrophysics Data System (ADS)

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-06-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation.

  17. Effect of method of heterogenization of ephedrine and reaction conditions on the enantioselectivity of Michael additions

    SciTech Connect

    Krotov, V.V.; Staroverov, S.M.; Nesterenko, P.N.; Lisichkin. G.V.

    1987-11-10

    A series of heterogeneous catalysts for asymmetric Michael additions was synthesized based on ephedrine chemically bound to the surface of silica. The length of the hydrocarbon chain binding the active center to the support surface affects the sign of rotation of the reaction product from the asymmetric addition of thiophenol to benzylideneacetophenone. Grafting ephedrine to the silica surface via a short hydrocarbon chain results in a change in the configuration of the reaction product. Silanol groups on the silica surface are involved in the transition state, as evidenced by data obtained using silica which has been exhaustively treated with trimethylchlorosilane. The absolute specific rotation of 1,3-diphenyl-3-thiophenylpropan-1-one has been established.

  18. Present status of coupled-channels calculations for heavy-ion subbarrier fusion reactions

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Yao, J. M.

    2016-05-01

    The coupled-channels method has been a standard tool in analyzing heavy-ion fusion reactions at energies around the Coulomb barrier. We investigate three simplifications usually adopted in the coupledchannels calculations. These are i) the exclusion of non-collective excitations, ii) the assumption of coordinate independent coupling strengths, and iii) the harmonic oscillator approximation for multiphonon excitations. In connection to the last point, we propose a novel microscopic method based on the beyond-mean-field approach in order to take into account the anharmonic effects of collective vibrations.

  19. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  20. Deracemizing organocatalyzed Michael addition reactions of 2-(arylthio)cyclobutanones with β-nitrostyrenes.

    PubMed

    Luridiana, Alberto; Frongia, Angelo; Aitken, David J; Guillot, Regis; Sarais, Giorgia; Secci, Francesco

    2016-04-01

    Organocatalyzed Michael addition reactions of 2-(arylthio)cyclobutanones with trans-β-nitrostyrenes have been carried out using a bifunctional thiourea-primary amine catalyst, providing diastereoisomerically and enantiomerically enriched 2-alkyl-2-(arylthio)cyclobutanones having two contiguous stereocenters of which one is a chiral quaternary center. The absolute configuration of these novel adducts was assigned by X-ray diffraction analysis and a transition-state model is proposed to explain the observed stereoselectivities.

  1. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments. PMID:26471460

  2. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  3. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  4. Investigating reaction pathways in rare events simulations of antibiotics diffusion through protein channels.

    PubMed

    Hajjar, Eric; Kumar, Amit; Ruggerone, Paolo; Ceccarelli, Matteo

    2010-11-01

    In Gram-negative bacteria, outer-membrane protein channels, such as OmpF of Escherichia coli, constitute the entry point of various classes of antibiotics. While antibacterial research and development is declining, bacterial resistance to antibiotics is rising and there is an emergency call for a new way to develop potent antibacterial agents and to bring them to the market faster and at reduced cost. An emerging strategy is to follow a bottom-up approach based on microscopically founded computational based screening, however such strategy needs better-tuned methods. Here we propose to use molecular dynamics (MD) simulations combined with the metadynamics algorithm, to study antibiotic translocation through OmpF at a molecular scale. This recently designed algorithm overcomes the time scale problem of classical MD by accelerating some reaction coordinates. It is expected that the initial assumption of the reaction coordinates is a key determinant for the efficiency and accuracy of the simulations. Previous studies using different computational schemes for a similar process only used one reaction coordinate, which is the directionality. Here we go further and see how it is possible to include more informative reaction coordinates, accounting explicitly for: (i) the antibiotic flexibility and (ii) interactions with the channel. As model systems, we select two compounds covering the main classes of antibiotics, ampicillin and moxifloxacine. We decipher the molecular mechanism of translocation of each antibiotic and highlight the important parameters that should be taken into account for improving further simulations. This will benefit the screening and design for antibiotics with better permeation properties.

  5. State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-06-01

    The state-to-state quantum dynamics (Jtot = 0) of the HD + OH(υ2 = 0, 1) reaction is studied using a reactant coordinate based method, which allows the analysis of both the H + DOH and D + HOH channels with a single propagation. The stretching vibration of the newly formed bond, namely, the OD bond in DOH and one OH bond in HOH, is excited, thanks to its strong coupling with the reaction coordinate at the transition state. On the other hand, the vibrational energy deposited into the OH reactant (υ2 = 1) is sequestered during the reaction in the spectator OH mode. The combined effect leads to the excitation of both the OD and OH stretching modes in the DOH product, and the dominance of the (002) normal-mode state population in the HOH product, which in the local-mode picture corresponds to the excitation of both OH bonds with one quantum each. The energy flow in this prototypical tetratomic reaction can be understood in terms of the sudden vector projection model.

  6. State-to-state mode selectivity in the HD + OH reaction: Perspectives from two product channels

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-06-01

    The state-to-state quantum dynamics (Jtot = 0) of the HD + OH(υ2 = 0, 1) reaction is studied using a reactant coordinate based method, which allows the analysis of both the H + DOH and D + HOH channels with a single propagation. The stretching vibration of the newly formed bond, namely, the OD bond in DOH and one OH bond in HOH, is excited, thanks to its strong coupling with the reaction coordinate at the transition state. On the other hand, the vibrational energy deposited into the OH reactant (υ2 = 1) is sequestered during the reaction in the spectator OH mode. The combined effect leads to the excitation of both the OD and OH stretching modes in the DOH product, and the dominance of the (002) normal-mode state population in the HOH product, which in the local-mode picture corresponds to the excitation of both OH bonds with one quantum each. The energy flow in this prototypical tetratomic reaction can be understood in terms of the sudden vector projection model.

  7. Influence of the heterogeneous reaction HCL + HOCl on an ozone hole model with hydrocarbon additions

    SciTech Connect

    Elliott, S.; Cicerone, R.J.; Turco, R.P.

    1994-02-20

    Injection of ethane or propane has been suggested as a means for reducing ozone loss within the Antarctic vortex because alkanes can convert active chlorine radicals into hydrochloric acid. In kinetic models of vortex chemistry including as heterogeneous processes only the hydrolysis and HCl reactions of ClONO{sub 2} and N{sub 2}O{sub 5}, parts per billion by volume levels of the light alkanes counteract ozone depletion by sequestering chlorine atoms. Introduction of the surface reaction of HCl with HOCl causes ethane to deepen baseline ozone holes and generally works to impede any mitigation by hydrocarbons. The increased depletion occurs because HCl + HOCl can be driven by HO{sub x} radicals released during organic oxidation. Following initial hydrogen abstraction by chlorine, alkane breakdown leads to a net hydrochloric acid activation as the remaining hydrogen atoms enter the photochemical system. Lowering the rate constant for reactions of organic peroxy radicals with ClO to 10{sup {minus}13} cm{sup 3} molecule{sup {minus}1} s{sup {minus}1} does not alter results, and the major conclusions are insensitive to the timing of the ethane additions. Ignoring the organic peroxy radical plus ClO reactions entirely restores remediation capabilities by allowing HO{sub x} removal independent of HCl. Remediation also returns if early evaporation of polar stratospheric clouds leaves hydrogen atoms trapped in aldehyde intermediates, but real ozone losses are small in such cases. 95 refs., 4 figs., 7 tabs.

  8. A Simple and Inexpensive Device for Slow, Controlled Addition of a Solution to a Reaction Mixture

    NASA Astrophysics Data System (ADS)

    Osvath, Peter

    1995-07-01

    A number of reactions require the slow and controlled addition of a solution containing one reagent to another. Attempting to control the flow rate over a number of hours using a conventional constant pressure addition funnel is a frustrating exercise; commercially available constant volume addition funnels are expensive and must be adjusted by trial and error each time a reaction is carried out. The use of an (expensive) peristaltic pump or syringe pump overcomes these problems but can introduce other complications. We have recently had occasion to carry out the synthesis of thioether macrocycles and cages requiring the slow and controlled addition of DMF solutions of (offensively odoriferous) thiols or (air-sensitive) thiolates to a reactant solution under nitrogen(1), Although the use of a syringe pump was called for, there are obvious difficulties associated with purging the solution and assembling such an apparatus under nitrogen, and we report a simple and inexpensive solution. A Male Luer Lock tip (recovered from a broken syringe) was sweated onto the flattened tip of a pressure-equalizing addition funnel and a syringe needle was attached. Judicious selection of needle length, bore size, and reactant volume can be used to control the addition time simply and reproducibly. With a 250-mL funnel, the flow rate changes by <25% from the beginning to the end of the addition. (In fact, a reduction in the rate of addition may even be advantageous as the reaction proceeds, the reagent in the receiving flask is consumed, its concentration drops, and the rate of reaction will decrease). A piece of fine Teflon tubing of appropriate length attached to the needle can be used to reduce the flow rate even further, but this is only necessary for very slow rates of addition. For example, the time of addition of 200 mL, of an ethanolic solution could be varied from approximately 5 minutes (150mm/17 gauge) to approximately 5 h (200mm/22 gauge), and once the addition time for a

  9. S3S63 Terminal Ynamides: Synthesis, Coupling Reactions and Additions to Common Electrophiles

    PubMed Central

    Cook, Andrea M.

    2015-01-01

    Ynamides consist of a polarized triple bond that is directly attached to a nitrogen atom carrying a sulfonyl, an alkoxycarbonyl, an acyl or another electron withdrawing group. The triple bond polarization renders ynamides broadly useful building blocks with synthetic opportunities that go far beyond traditional alkyne chemistry. The versatile reactivity of ynamides in cycloadditions, cycloisomerizations, regioselective additions with various nucleophiles or electrophiles, ring-closing metathesis, and many other reactions has been investigated in detail during the past decades. A common feature of these methods is that the triple bond is consumed and either cleaved or transformed to a new functionality. The wealth of reports on these ynamide reactions is in stark contrast to the dearth of carbon-carbon bond formations that leave the triple bond of terminal ynamides intact. The recent introduction of effective synthetic methods for the preparation of terminal ynamides has set the stage to fully explore the synthetic potential of this intriguing class of compounds. This digest letter summarizes the most effective routes to terminal ynamides and the current state of selective nucleophilic addition, substitution and coupling reactions, including the first examples of asymmetric synthesis. PMID:26085692

  10. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  11. Enantioselective Visible-Light-Induced Radical-Addition Reactions to 3-Alkylidene Indolin-2-ones.

    PubMed

    Lenhart, Dominik; Bauer, Andreas; Pöthig, Alexander; Bach, Thorsten

    2016-05-01

    The title compounds underwent a facile and high-yielding addition reaction (19 examples, 66-99% yield) with various N-(trimethylsilyl)methyl-substituted amines upon irradiation with visible light and catalysis by a metal complex. If the alkylidene substituent is non-symmetric and if the reaction is performed in the presence of a chiral hydrogen-bonding template, products are obtained with significant enantioselectivity (58-72% ee) as a mixture of diastereoisomers. Mechanistic studies suggest a closed catalytic cycle for the photoactive metal complex. However, the silyl transfer from the amine occurs not only to the product, but also to the substrate, and interferes with the desired chirality transfer.

  12. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis. PMID:23865460

  13. Effects of a phytogenic feed additive on susceptibility of channel catfish to Edwardsiella ictaluri and levels of mannose binding lectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to investigate the effect of a phytogenic feed additive (Digestarom® P.E.P. MGE) on growth performance and disease susceptibility to Edwardsiella ictaluri. Two hundred and fifty juvenile channel catfish (7.2 ± 0.1 g) were allotted into the following treatments: Control (float...

  14. Entrance-channel effects in odd-Z tranactinide compound nucleus reactions

    SciTech Connect

    Nelson, S.L.; Gregorich, K.E.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Stavsetra, L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Swiatecki, Siwek-Wilczynska, and Wilczynski's 'Fusion By Diffusion' description [1] of transactinide (TAN) compound nucleus (CN) formation utilizes a three-step model. The first step is the 'sticking', or capture, which can be calculated relatively accurately. The second step is the probability for the formation of a CN by 'diffusion' analogous to that of Brownian motion. Lastly, there exists the probability of the CN 'surviving' deexcitation by neutron emission, which competes with fission and other de-excitation modes. This model predicts and reproduces cross sections typically within a factor of two. Producing the same CN with different projectile-target pairs is a very sensitive way to test entrance channel effects on heavy element production cross sections. If the same CN is produced at or near the same excitation energy the survival portion of the theory is nearly identical for the two reactions. This method can be used as a critical test of the novel 'diffusion' portion of the model. The reactions producing odd-Z TAN CN such as Db, Bh, Mt, and Rg (Z = 105, 107, 109, and 111, respectively) were first studied using even-Z projectiles on {sup 209}Bi targets (as opposed to odd-Z projectiles on {sup 208}Pb targets) because lower effective fissility [2] was expected to lead to larger cross sections. Many odd-Z projectile reactions producing odd-Z CN had not been studied in-depth until very recently. We have completed studies of these reaction pairs with the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator (BGS) at the Lawrence Berkeley National Laboratory (LBNL), see Figure 1. Cross section ratios for several pairs of reactions will be presented and compared with theory.

  15. Entrance channel dependence of quasifission in reactions forming {sup 220}Th

    SciTech Connect

    Thomas, R. G.; Hinde, D. J.; Duniec, D.; Zenke, F.; Dasgupta, M.; Brown, M. L.; Evers, M.; Gasques, L. R.; Rodriguez, M. D.; Diaz-Torres, A.

    2008-03-15

    Mass-angle correlations of binary fragments produced in {sup 16}O+{sup 204}Pb, {sup 34}S+{sup 186}W, and {sup 48,50}Ti+{sup 166,170}Er reactions have been measured for a range of bombarding energies around their Coulomb barriers. At above-barrier energies, the width of the mass distributions for the fission-like fragments in the {sup 50}Ti+{sup 170}Er reaction are found to be higher than those from the same compound system at similar excitation energies populated via the more mass asymmetric entrance channel reaction {sup 34}S+{sup 186}W, which in turn is higher than those for the {sup 16}O+{sup 204}Pb system. The width of the mass distributions of the Ti+Er systems is found to increase with decreasing bombarding energies, in contrast with those of the {sup 16}O+{sup 204}Pb and {sup 34}S+{sup 186}W systems, which show a monotonic reduction in mass widths. This may be associated with the elongated contact configuration at sub-barrier energies.

  16. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13 and 14, encode proteins containing a single variable (V...

  17. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radiotelephone stations. 22.719 Section 22.719 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... central office stations, an explanation must be provided as to why BETRS technology is not being...

  18. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radiotelephone stations. 22.719 Section 22.719 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... central office stations, an explanation must be provided as to why BETRS technology is not being...

  19. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radiotelephone stations. 22.719 Section 22.719 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... central office stations, an explanation must be provided as to why BETRS technology is not being...

  20. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... radiotelephone stations. 22.719 Section 22.719 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... central office stations, an explanation must be provided as to why BETRS technology is not being...

  1. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radiotelephone stations. 22.719 Section 22.719 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... central office stations, an explanation must be provided as to why BETRS technology is not being...

  2. Ligand- and base-free Pd(II)-catalyzed controlled switching between oxidative Heck and conjugate addition reactions.

    PubMed

    Walker, Sarah E; Boehnke, Julian; Glen, Pauline E; Levey, Steven; Patrick, Lisa; Jordan-Hore, James A; Lee, Ai-Lan

    2013-04-19

    A simple change of solvent allows controlled and efficient switching between oxidative Heck and conjugate addition reactions on cyclic Michael acceptor substrates, catalyzed by a cationic Pd(II) catalyst system. Both reactions are ligand- and base-free and tolerant of air and moisture, and the controlled switching sheds light on some of the factors which favor one reaction over the other.

  3. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  4. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Zhang, Ke; Ouyang, Qi

    2006-09-01

    We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the introduction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns of hexagons, stripes, and labyrinths which oscillate at half of the forcing frequency. Both the noise strength and the correlation time control the pattern formation. The system transits from homogeneous to hexagons, stripes, and to labyrinths successively as the noise strength is adjusted. Good frequency-locked patterns are only sustained by the colored noise and a finite time correlation is necessary. At the limit of white noise with zero temporal correlation, irregular patterns which are only nearly resonant come out as the noise strength is adjusted. The phenomenon induced by colored noise in the forced reaction-diffusion system is demonstrated to correspond to noise-induced Turing instability in the corresponding forced complex Ginzburg-Landau equation.

  5. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion systems.

    PubMed

    Wang, Hongli; Zhang, Ke; Ouyang, Qi

    2006-09-01

    We report frequency-locked resonant patterns induced by additive noise in periodically forced reaction-diffusion Brusselator model. In the regime of 2:1 frequency-locking and homogeneous oscillation, the introduction of additive noise, which is colored in time and white in space, generates and sustains resonant patterns of hexagons, stripes, and labyrinths which oscillate at half of the forcing frequency. Both the noise strength and the correlation time control the pattern formation. The system transits from homogeneous to hexagons, stripes, and to labyrinths successively as the noise strength is adjusted. Good frequency-locked patterns are only sustained by the colored noise and a finite time correlation is necessary. At the limit of white noise with zero temporal correlation, irregular patterns which are only nearly resonant come out as the noise strength is adjusted. The phenomenon induced by colored noise in the forced reaction-diffusion system is demonstrated to correspond to noise-induced Turing instability in the corresponding forced complex Ginzburg-Landau equation. PMID:17025732

  6. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  7. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  8. Ring Walking/Oxidative Addition Reactions for the Controlled Synthesis of Conjugated Polymers

    SciTech Connect

    Bazan, Guillermo C

    2012-04-03

    Power conversion efficiencies of plastic solar cells depend strongly on the molecular weight characteristics of the semiconducting polymers used for their fabrication. The synthesis of these materials typically relies on transition metal mediated catalytic reactions. In many instances, the ideal structures cannot be attained because of deficiencies in these reactions, particularly when it comes to being able to achieve high number average molecular weights and narrow molecular weight distributions. Another important conjugated polymer structure of interest is one in which a single functional group is attached at the end group of the chain. Such systems would be ideal for modifying surface properties at interfaces and for labeling biomolecular probes used in fluorescent biosensors. To respond to the challenges above, our efforts have centered on the design of homogenous transition metal complexes that are easy to prepare and effective in carrying out living, or quasi-living, condensative chain polymerization reactions. The key mechanistic challenge for the success of this reaction is to force the insertion of one monomer unit at a time via a process that involves migration of the transition metal-containing fragment to one terminus of the polymer chain. Chain growth characteristics are therefore favored when the metal does not dissociate from the newly formed reductive elimination product. We have proposed that dissociation is disfavored by the formation of a -complex, in which the metal can sample various locations of the electronically delocalized framework, a process that we term ring-walking , and find the functionality where oxidative addition takes place. Success has been achieved in the nickel-mediated cross coupling reaction of Grignard reagents with aromatic halides by using bromo[1,2-bis(diphenylphosphino)ethane]phenylnickel. This reagent can yield poly(thiophene)s (one of the most widely used type of polymer in plastic solar cells) with excellent

  9. The photodissociation mechanisms of acrylonitrile: Ab initio calculations on reaction channels and surface intersections

    SciTech Connect

    Du Weina; Luo Cheng; Li Zesheng

    2008-11-07

    The dissociations of CH{sub 2}CHCN into CH{sub 2}CH+CN and CH{sub 2}C+HCN in the S{sub 0}, T{sub 1}, and {sup 1}{pi}{sub 2}{pi}{sub C{identical_to}}{sub N}* (definitions of {pi} orbitals can refer to computational details) states, have been explored at the complete active space self-consistent field level of theory employing the Dunning correlation consistent triple-zeta basis set. The lowest energy points of the surface crossing seams have been searched. Two conical intersections, from {sup 1}{pi}{sub C{identical_to}}{sub N}{pi}{sub 1}* to {sup 1}{pi}{sub 2}{pi}{sub 1}* (CI{sub 1}) and from {sup 1}{pi}{sub 2}{pi}{sub 1}* to S{sub 0} (CI{sub 2}), and one intersystem crossing point (T{sub 1}/S{sub 0}) have been located. The energies of all critical points have been recomputed with the multiconfigurational second-order perturbation method. At each conical intersection, derivative coupling and unscaled gradient difference vectors have been analyzed to determine the relaxation channels that the molecule may evolve in after nonradiative decay. Once the molecule is photoexcited to the {sup 1}{pi}{sub 2}{pi}{sub 1}* or {sup 1}{pi}{sub C{identical_to}}{sub N}{pi}{sub 1}* state, it would relax along the similar pathway: funneling through CI{sub 1} and then CI{sub 2}, and finally populate the ground state. Our results show that upon 193 nm photoexcitation, the most probable reaction channel is the ground-state HCN elimination following radiationless decays from excited states through surface crossings, which consists with experimental results J. Chem. Phys. 108, 5784 (1998). The investigated dissociation channels on the {sup 1}{pi}{sub 2}{pi}{sub C{identical_to}}{sub N}* surface, which are inaccessible upon 193 nm photoexcitation, may provide information for reactions induced by higher energy excitations.

  10. The K⁻N→KΞ reaction in coupled channel chiral models up to next-to-leading order

    SciTech Connect

    Magas, V. K.; Ramos, A.; Feijoo, A.

    2009-01-01

    We study the meson-baryon interaction in S-wave in the strangeness S=-1 sector using a chiral unitary approach based on a next-to-leading order chiral SU(3) Lagrangian. We fit our model to the large set of experimental data in different two-body channels. We pay particular attention to the K⁻N→KΞ reaction, where the effect of the next-to-leading order terms in the Lagrangian are sufficiently large to be observed, since at tree level the cross section of this reaction is zero. For these channels we improve our approach by phenomenologically taking into account effects of the high spin hyperonic resonances.

  11. Oxygen switch in visible-light photoredox catalysis: radical additions and cyclizations and unexpected C-C-bond cleavage reactions.

    PubMed

    Zhu, Shaoqun; Das, Arindam; Bui, Lan; Zhou, Hanjun; Curran, Dennis P; Rueping, Magnus

    2013-02-01

    Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.

  12. Innocuous oil as an additive for reductive reactions involving zero valence iron

    SciTech Connect

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen.

  13. Measurements and coupled reaction channels analysis of one and two proton transfer reactions for 28Si+90,94Zr systems

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Mandal, S.; Jhingan, A.; Gehlot, J.; Sugathan, P.; Golda, K. S.; Madhavan, N.; Garg, Ritika; Goyal, Savi; Mohanto, Gayatri; Verma, S.; Sandal, Rohit; Behera, Bivash; Eleonora, G.; Wollersheim, H. J.; Singh, R.

    2011-10-01

    Measurements of angular distributions for one and two proton stripping reactions for 28Si+90,94Zr systems were performed at lab energy 120 MeV with 28Si beam at Inter University Accelerator Center, New Delhi. Theoretical calculations performed using the quantum mechanical coupled reaction channels code FRESCO (including various intermediate states involving target and projectile excitations before and/or after transfer along with sequential transfer) were able to reproduce one and two proton transfer angular distributions for both the systems reasonably well. It was found that the DWBA calculations could describe the one proton transfer data well for both the systems but failed to reproduce the angular distributions for two proton transfer channels. The present measurements underline the importance of sequential transfer at energies much above the Coulomb barrier. We had also performed transfer reaction measurements for these systems in the sub- and near barrier region using recoil mass separator.

  14. Perspective on the reactions between F- and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels.

    PubMed

    Ensing, Bernd; Klein, Michael L

    2005-05-10

    Recently, we computed the 3D free energy surface of the base-induced elimination reaction between F(-) and CH(3)CH(2)F by using a powerful technique within Car-Parrinello molecular dynamics simulation. Here, the set of three order parameters is expanded to six, which allows the study of the competing elimination and substitution reactions simultaneously. The power of the method is exemplified by the exploration of the six-dimensional free energy landscape, sampling, and mapping out the eight stable states as well as the connecting bottlenecks. The free energy profile and barrier along the E2 and S(N)2 reaction channels are refined by using umbrella sampling. The two mechanisms do not share a common "E2C-like" transition state. Comparison with the zero temperature profiles shows a particularly significant entropy contribution to the S(N)2 channel. PMID:15863622

  15. Helical-Peptide-Catalyzed Enantioselective Michael Addition Reactions and Their Mechanistic Insights.

    PubMed

    Ueda, Atsushi; Umeno, Tomohiro; Doi, Mitsunobu; Akagawa, Kengo; Kudo, Kazuaki; Tanaka, Masakazu

    2016-08-01

    Helical peptide foldamer catalyzed Michael addition reactions of nitroalkane or dialkyl malonate to α,β-unsaturated ketones are reported along with the mechanistic considerations of the enantio-induction. A wide variety of α,β-unsaturated ketones, including β-aryl, β-alkyl enones, and cyclic enones, were found to be catalyzed by the helical peptide to give Michael adducts with high enantioselectivities (up to 99%). On the basis of X-ray crystallographic analysis and depsipeptide study, the amide protons, N(2)-H and N(3)-H, at the N terminus in the α-helical peptide catalyst were crucial for activating Michael donors, while the N-terminal primary amine activated Michael acceptors through the formation of iminium ion intermediates.

  16. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  17. Sequential aldol condensation-transition metal-catalyzed addition reactions of aldehydes, methyl ketones, and arylboronic acids.

    PubMed

    Liao, Yuan-Xi; Xing, Chun-Hui; Israel, Matthew; Hu, Qiao-Sheng

    2011-04-15

    Sequential aldol condensation of aldehydes with methyl ketones followed by transition metal-catalyzed addition reactions of arylboronic acids to form β-substituted ketones is described. By using the 1,1'-spirobiindane-7,7'-diol (SPINOL)-based phosphite, an asymmetric version of this type of sequential reaction, with up to 92% ee, was also realized. Our study provided an efficient method to access β-substituted ketones and might lead to the development of other sequential/tandem reactions with transition metal-catalyzed addition reactions as the key step.

  18. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    SciTech Connect

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L.; Hickson, Kevin M.; Loison, Jean -Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sebastien D. Le

    2015-10-13

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  19. THE C({sup 3}P) + NH{sub 3} REACTION IN INTERSTELLAR CHEMISTRY. I. INVESTIGATION OF THE PRODUCT FORMATION CHANNELS

    SciTech Connect

    Bourgalais, Jérémy; Capron, Michael; Picard, Sébastien D. Le; Kailasanathan, Ranjith Kumar Abhinavam; Goulay, Fabien; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine E-mail: fabien.goulay@mail.wvu.edu

    2015-10-20

    The product formation channels of ground state carbon atoms, C({sup 3}P), reacting with ammonia, NH{sub 3}, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH{sub 3} reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H{sub 2}CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  20. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH). Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives

  1. Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels.

    PubMed

    Sholokh, Marianna; Improta, Roberto; Mori, Mattia; Sharma, Rajhans; Kenfack, Cyril; Shin, Dongwon; Voltz, Karine; Stote, Roland H; Zaporozhets, Olga A; Botta, Maurizio; Tor, Yitzhak; Mély, Yves

    2016-07-01

    Thienoguanosine ((th) G) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of (th) G reveals the existence of two ground-state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)-DFT calculations, the tautomers were identified as the H1 and H3 keto-amino tautomers. When incorporated into the loop of (-)PBS, the (-)DNA copy of the HIV-1 primer binding site, both tautomers are observed and show differential sensitivity to protein binding. The red-shifted H1 tautomer is strongly favored in matched (-)/(+)PBS duplexes, while the relative emission of the H3 tautomer can be used to detect single nucleotide polymorphisms. These tautomers and their distinct environmental sensitivity provide unprecedented information channels for analyzing G residues in oligonucleotides and their complexes.

  2. [Adaptive reactions of dehydrogenation processes in root voles during additional impacts of the physical nature].

    PubMed

    Kudiasheva, A G; Taskaev, A I

    2011-01-01

    Variations of the dehydrogenation enzyme activity (succinate dehydrogenase, pyruvate dehydrogenase, lactate dehydrogenase) in the heart muscle, liver and brain of root voles (Microtus oeconomus Pall.) and their progeny associated with additional stress effects (chronic low-level gamma-irradiation, short-term exposure to cold) have been studied. Root voles (parents) were caught in the areas with a normal and high-level natural radioactivity in the Republic of Komi. It has been revealed that the direction of shifts of the dehydrogenation enzyme activity in response to the factors of the physical nature is determined by the initial level of the oxidation process in tissues of root voles and their progeny that haven't been subjected to these actions. The reaction of root voles and their progeny (1-3 generations) from the radium zone has lower reserve functional possibilities in relation to the additional exposure as compared with the animals from the control zone. In some cases, chronic low-level irradiation and short-term cooling lead to leveling of differences between groups of animals which initially varied from each other in biochemical indexes. PMID:22279768

  3. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-01

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation.

  4. UV light-mediated difunctionalization of alkenes through aroyl radical addition/1,4-/1,2-aryl shift cascade reactions.

    PubMed

    Zheng, Lewei; Huang, Hongli; Yang, Chao; Xia, Wujiong

    2015-02-20

    UV light-mediated difunctionalization of alkenes through an aroyl radical addition/1,4-/1,2-aryl shift has been described. The resulted aroyl radical from a photocleavage reaction added to acrylamide compounds followed by cyclization led to the formation of oxindoles, whereas the addition to cinnamic amides aroused a unique 1,4-aryl shift reaction. Furthermore, the difunctionalization of alkenes of prop-2-en-1-ols was also achieved through aroyl radical addition and a sequential 1,2-aryl shift cascade reaction.

  5. Extractive phase vanishing reactions with dichloromethane, perfluorohexanes, and dibromoethane: slow addition in a test tube.

    PubMed

    Curran, Dennis P; Werner, Stefan

    2004-03-18

    [reaction: see text] Partition coefficient measurements and experiments with a dye show that a new fluorous "phase vanishing reaction" described by Jana and Verkade occurs by an extractive mechanism. This mechanism is contrasted with the original diffusive phase-vanishing reactions introduced by Ryu and co-workers.

  6. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  7. Fusion and neutron transfer reactions with weakly bound nuclei within time-dependent and coupled channel approaches

    NASA Astrophysics Data System (ADS)

    Samarin, V. V.

    2016-05-01

    The time-dependent Schrödinger equation and the coupled channel approach based on the method of perturbed stationary two-center states are used to describe nucleon transfers and fusion in low-energy nuclear reactions. Results of the cross sections calculation for the formation of the 198Au and fusion in the 6He+197Au reaction and for the formation of the 65Zn in 6He+64Zn reaction agree satisfactorily with the experimental data near the barrier. The Feynman's continual integrals calculations for a few-body systems were used for the proposal of the new form of the shell model mean field for helium isotopes.

  8. Additive Manufacturing Thermal Performance Testing of Single Channel GRCop-84 SLM Components

    NASA Technical Reports Server (NTRS)

    Garcia, Chance P.; Cross, Matthew

    2014-01-01

    The surface finish found on components manufactured by sinter laser manufacturing (SLM) is rougher (0.013 - 0.0006 inches) than parts made using traditional fabrication methods. Internal features and passages built into SLM components do not readily allow for roughness reduction processes. Alternatively, engineering literature suggests that the roughness of a surface can enhance thermal performance within a pressure drop regime. To further investigate the thermal performance of SLM fabricated pieces, several GRCop-84 SLM single channel components were tested using a thermal conduction rig at MSFC. A 20 kW power source running at 25% duty cycle and 25% power level applied heat to each component while varying water flow rates between 2.1 - 6.2 gallons/min (GPM) at a supply pressure of 550 to 700 psi. Each test was allowed to reach quasi-steady state conditions where pressure, temperature, and thermal imaging data were recorded. Presented in this work are the heat transfer responses compared to a traditional machined OHFC Copper test section. An analytical thermal model was constructed to anchor theoretical models with the empirical data.

  9. HIGHLY DIASTEREOSELECTIVE MICHAEL REACTION UNDER SOLVENT-FREE CONDITIONS USING MICROWAVES: CONJUGATE ADDITION OF FLAVANONE TO ITS CHALCONE PRECURSOR

    EPA Science Inventory

    Microwave-assisted reaction of 2'-hydroxychalcones in the presence of DBU resulted in the formation of hitherto unknown dimers by conjugate addition of the intermediate cyclic ketone to the starting enone.

  10. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2.

    PubMed

    Ma, Dongge; Yan, Yan; Ji, Hongwei; Chen, Chuncheng; Zhao, Jincai

    2015-12-21

    TiO2 photocatalysis can be performed for the addition of pyridines to vinylarenes in an anti-Markovnikov manner. Seven examples with considerable yields (56-91%) and selectivity were demonstrated. A comparative survey of the involved process through ESR revealed a novel concerted two electron transfer pathway for these photocatalytic bimolecular addition reactions.

  11. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2001-01-01

    Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.

  12. Development of catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium complexes.

    PubMed

    Tsubogo, Tetsu; Saito, Susumu; Seki, Kazutaka; Yamashita, Yasuhiro; Kobayashi, Shu

    2008-10-01

    Catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium species prepared from calcium isopropoxide and chiral bisoxazoline ligands have been developed. Glycine Schiff bases reacted with acrylic esters to afford 1,4-addition products, glutamic acid derivatives, in high yields with high enantioselectivities. During the investigation of the 1,4-addition reactions, we unexpectedly found that a [3 + 2] cycloaddition occurred in the reactions with crotonate derivatives, affording substituted pyrrolidine derivatives in high yields with high enantioselectivities. On the basis of this finding, we investigated asymmetric [3 + 2] cycloadditions, and it was revealed that several kinds of optically active substituted pyrrolidine derivatives containing contiguous stereogenic tertiary and quaternary carbon centers were obtained with high diastereo- and enantioselectivities. In addition, optically active pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents have been synthesized using this [3 + 2] cycloaddition reaction. NMR spectroscopic analysis and observation of nonamplification of enantioselectivity in nonlinear effect experiments suggested that a monomeric calcium species with an anionic ligand was formed as an active catalyst. A stepwise mechanism of the [3 + 2] cycloaddition, consisting of 1,4-addition and successive intramolecular Mannich-type reaction was suggested. Furthermore, modification of the Schiff base structure resulted in a modification of the reaction course from a [3 + 2] cycloaddition to a 1,4-addition, affording 3-substituted glutamic acid derivatives with high diasterero- and enantioselectivities.

  13. Development of catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium complexes.

    PubMed

    Tsubogo, Tetsu; Saito, Susumu; Seki, Kazutaka; Yamashita, Yasuhiro; Kobayashi, Shu

    2008-10-01

    Catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium species prepared from calcium isopropoxide and chiral bisoxazoline ligands have been developed. Glycine Schiff bases reacted with acrylic esters to afford 1,4-addition products, glutamic acid derivatives, in high yields with high enantioselectivities. During the investigation of the 1,4-addition reactions, we unexpectedly found that a [3 + 2] cycloaddition occurred in the reactions with crotonate derivatives, affording substituted pyrrolidine derivatives in high yields with high enantioselectivities. On the basis of this finding, we investigated asymmetric [3 + 2] cycloadditions, and it was revealed that several kinds of optically active substituted pyrrolidine derivatives containing contiguous stereogenic tertiary and quaternary carbon centers were obtained with high diastereo- and enantioselectivities. In addition, optically active pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents have been synthesized using this [3 + 2] cycloaddition reaction. NMR spectroscopic analysis and observation of nonamplification of enantioselectivity in nonlinear effect experiments suggested that a monomeric calcium species with an anionic ligand was formed as an active catalyst. A stepwise mechanism of the [3 + 2] cycloaddition, consisting of 1,4-addition and successive intramolecular Mannich-type reaction was suggested. Furthermore, modification of the Schiff base structure resulted in a modification of the reaction course from a [3 + 2] cycloaddition to a 1,4-addition, affording 3-substituted glutamic acid derivatives with high diasterero- and enantioselectivities. PMID:18783222

  14. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  15. Investigation of the O+allyl addition/elimination reaction pathways from the OCH(2)CHCH(2) radical intermediate.

    PubMed

    Fitzpatrick, Benjamin L; Lau, Kai-Chung; Butler, Laurie J; Lee, Shih-Huang; Lin, Jim Jr-Min

    2008-08-28

    These experiments study the preparation of and product channels resulting from OCH(2)CHCH(2), a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH(2)CHCH(2) radicals; these undergo a facile ring opening to the OCH(2)CHCH(2) radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcalmol. To elucidate the product channels resulting from the OCH(2)CHCH(2) radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C(3)H(4)O (acrolein)+H, C(2)H(4)+HCO (formyl radical), and H(2)CO (formaldehyde)+C(2)H(3). A small signal from C(2)H(2)O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at me=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C(2)H(5)+CO, does not contribute significantly to the product branching. The higher internal energy onset of the acrolein+H product channel is consistent with the relative barriers en route to

  16. Addition reaction of alkyl radical to C60 fullerene: Density functional theory study

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-02-01

    Functionalized fullerenes are known as a high-performance molecules. In this study, the alkyl-functionalized fullerenes (denoted by R-C60) have been investigated by means of the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of fullerene. Also, the reaction mechanism of alkyl radicals with C60 was investigated. The methyl, ethyl, propyl, and butyl radicals (denoted by n = 1-4, where n means the number of carbon atoms in the alkyl radical) were examined as alkyl radicals. The DFT calculation showed that the alkyl radical binds to the carbon atom of C60 at the on-top site, and a strong C-C single bond is formed. The binding energies of alkyl radicals to C60 were distributed in the range of 31.8-35.1 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists before alkyl addition, the barrier heights were calculated to be 2.1-2.8 kcal mol-1. The electronic states of R-C60 complexes were discussed on the basis of the theoretical results.

  17. Synthesis of the Hemoglobin-Conjugated Polymer Micelles by Thiol Michael Addition Reactions.

    PubMed

    Qi, Yanxin; Li, Taihang; Wang, Yupeng; Wei, Xing; Li, Bin; Chen, Xuesi; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2016-06-01

    Amphiphilic triblock copolymers mPEG-b-PMAC-b-PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε-caprolactone. Copolymers are self-assembled into core-shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X-ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  18. Insights into the Halogen Oxidative Addition Reaction to Dinuclear Gold(I) Di(NHC) Complexes.

    PubMed

    Baron, Marco; Tubaro, Cristina; Basato, Marino; Isse, Abdirisak Ahmed; Gennaro, Armando; Cavallo, Luigi; Graiff, Claudia; Dolmella, Alessandro; Falivene, Laura; Caporaso, Lucia

    2016-07-11

    Gold(I) dicarbene complexes [Au2 (MeIm-Y-ImMe)2 ](PF6 )2 (Y=CH2 (1), (CH2 )2 (2), (CH2 )4 (4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2 -ImMe)2 AuI2 ](PF6 )2 (1 a(I) ) and the gold(III) complexes [Au2 I4 (MeIm-Y-ImMe)2 ](PF6 )2 (2 c(I) and 4 c(I) ). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2 Cl4 (MeIm-CH2 -ImMe)2 ](PF6 )2 (1 c(Cl) ) and [Au2 Cl4 (MeIm-(CH2 )2 -ImMe)2 ](Cl)2 (2 c(Cl) -Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl. The study of the reactivity towards the oxidative addition of halogens to a large series of dinuclear bis(dicarbene) gold(I) complexes has been extended and reviewed. The complexes react with Cl2 , Br2 and I2 to give the successive formation of the mixed-valence gold(I)/gold(III) n a(X) and gold(III) n c(X) (excluding compound 1 c(I) ) complexes. However, complex 3 affords with Cl2 and Br2 the gold(II) complex 3 b(X) [Au2 X2 (MeIm-(CH2 )3 -ImMe)2 ](PF6 )2 (X=Cl, Br), which is the predominant species over compound 3 c(X) even in the presence of free halogen. The observed different relative stabilities of the oxidised complexes of compounds 1 and 3 have also been confirmed by DFT calculations. PMID:27297191

  19. Kinetics and thermodynamics of binding reactions as exemplified by anthrax toxin channel blockage with a cationic cyclodextrin derivative.

    PubMed

    Nestorovich, Ekaterina M; Karginov, Vladimir A; Berezhkovskii, Alexander M; Parsegian, V Adrian; Bezrukov, Sergey M

    2012-11-01

    The thermodynamics of binding reactions is usually studied in the framework of the linear van't Hoff analysis of the temperature dependence of the equilibrium constant. The logarithm of the equilibrium constant is plotted versus inverse temperature to discriminate between two terms: an enthalpic contribution that is linear in the inverse temperature, and a temperature-independent entropic contribution. When we apply this approach to a particular case-blockage of the anthrax PA(63) channel by a multicharged cyclodextrin derivative-we obtain a nearly linear behavior with a slope that is characterized by enthalpy of about 1 kcal/mol. In contrast, from blocker partitioning between the channel and the bulk, we estimate the depth of the potential well for the blocker in the channel to be at least 8 kcal/mol. To understand this apparent discrepancy, we use a simple model of particle interaction with the channel and show that this significant difference between the two estimates is due to the temperature dependence of the physical forces between the blocker and the channel. In particular, we demonstrate that if the major component of blocker-channel interaction is van der Waals interactions and/or Coulomb forces in water, the van't Hoff enthalpy of the binding reaction may be close to zero or even negative, including cases of relatively strong binding. The results are quite general and, therefore, of importance for studies of enzymatic reactions, rational drug design, small-molecule binding to proteins, protein-protein interactions, and protein folding, among others.

  20. Theoretical study of reaction channels for the weakly bound complex systems created with HF, CO2, and various amines

    NASA Astrophysics Data System (ADS)

    Chen, Shyh-Jong; Chen, Cheng; Hong, Yaw-Shun

    This investigation conducted reaction channels of weakly bound complexes CO2...HF, CO2...HF...NH3, CO2...HF...NH2CH3, CO2...HF...NH(CH3)2, and CO2...HF...N(CH3)3 systems, using the Gaussian 98 package at the B3LYP/6-311++G(3df,2pd) level. The syn-fluoroformic acid or syn-fluoroformic acid plus NH3 or amine conformers are more stable than the related anti-fluoroformic acid or anti-fluoroformic acid plus NH3 or amine conformers. However, the above-mentioned weakly bound complexes are more stable than both the related syn- and anti-type fluoroformic acid or acid plus NH3 or amine conformers and their related decomposed into CO2 + HF or CO2 + NHR3F (RH, CH3) combined molecular systems. Five reaction channels of the weakly bound complexes exist. Each channel includes weakly bound complexes and their related above-mentioned systems. Moreover, each reaction channel contains two transition states. The transition state between the weakly bound complex and anti-fluoroformic acid type structure (T13) is significantly higher than that of internal rotation (T23) between syn- and anti-FCO2H (or FCO2H...NR3) structures. However, the above-mentioned T13 can significantly decrease its energy by adding the third molecule NH3 or NR3 (RH or CH3). The more CH3 that is substituted in NR3 of the reaction channel, the lower the activation energy of the transition state in the system is affected.

  1. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  2. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  3. Chlorhexidine gluconate mouthwashes as a surfactant for addition-reaction silicone impressions.

    PubMed

    Reshad, Mamaly; Nesbit, Michael; Petrie, Aviva; Setchell, Derrick

    2009-03-01

    Addition-reaction silicone impression (PVS) materials are hydrophobic. Hydrophobicity of the impression material may interfere with the wetting of the tooth, resulting in void formation. The study investigates whether conditioning teeth with Chlorhexidine-gluconate based mouthwashes can reduce the hydrophobicity and the number of voids on PVS impressions. Impression material contact angle specimens on bovine tooth surfaces were measured using a Reflex Microscope. PVS impressions (President) were made of untreated bovine teeth in three groups (1, 2 and 3) and fourth group used Impregum polyether impression material: Group I was used as a control group, and original and mint flavoured Corsodyl (Chlorhexidine) mouthwashes were used as clinical surfactants in Groups 2 and 3, respectively. Contact angle readings were recorded on each side of every impression in each of the four groups and compared by an analysis of variance. In the second part of the study, the numbers of air voids on impression surfaces were visually recorded. The proportions of air voids in the groups were compared using a Chi-squared test. The mean angle for Group 3 with mint flavoured Corsodyl mouthwash was significantly smaller than that of any of the other groups (P < 0.05). The only statistically significant (P < 0.01) comparisons of the proportions of air voids were between Group 4 and each of the other experimental groups, with the percentage of voids being significantly greater in Group 4. Although Corsodyl mint significantly reduced the mean contact angle it did not significantly reduce the percentage of voids on impression surfaces. PMID:19378615

  4. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  5. Additive effects of glyburide and antidepressants in the forced swimming test: evidence for the involvement of potassium channel blockade.

    PubMed

    Guo, W; Todd, K; Bourin, M; Hascoet, M; Kouadio, F

    1996-08-01

    Evidence in the literature suggests that the modulatory effects of antidepressant drugs (ADS) on neuronal excitability, via the inhibition of K+ channels, may be the final common pathway of pharmacological action. Therefore, we tested the hypothesis that combining the ATP-sensitive K+ channel blocker glyburide with a variety of ADS would produce an additive effect and decrease the immobility time of mice in the forced swimming test (FST). Glyburide (GLY, IP, 30 and 50 mg/kg) and subactive doses of ADS were administered 45 and 30 min, respectively, prior to behavioral testing. Results showed that when combined with GLY, ADS whose main pharmacological effect is one of 5-HT uptake blockade (imipramine, amitriptyline, citalopram, paroxetine, fluoxetine, and fluvoxamine) were more effective in decreasing the amount of time mice were immobile, than when these drugs were administered alone. Some noradrenaline uptake inhibiting ADS (desipramine and viloxazine, but not maprotiline) were also significantly more effective in decreasing immobility time when combined with GLY than when administered alone. Pretreatment with GLY was found to have no effect on the dopamine uptake inhibitor bupropion, and out of the atypical ADS tested (trazodone, mianserine and iprindole), only coadministration with iprindole decreased the immobility time. Only the specific MAO-A inhibitor moclobemide was observed to have an antiimmobility effect when combined with GLY. Neither MAO-B specific (RO 16 6491) nor mixed MAO inhibitors (nialamide and pargyline) interacted with GLY to produce antiimmobility effects. These results corroborate and extend our previous report of the ADS enhancing effects of quinine in the same behavioral model, and suggest that the additive effects of quinine and GLY on ADS in FST are a result of K+ channel blockade.

  6. Highly efficient "on water" catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects.

    PubMed

    Yu, Jin-Sheng; Liu, Yun-Lin; Tang, Jing; Wang, Xin; Zhou, Jian

    2014-09-01

    A remarkable fluorine effect on "on water" reactions is reported. The CF⋅⋅⋅HO interactions between suitably fluorinated nucleophiles and the hydrogen-bond network at the phase boundary of oil droplets enable the formation of a unique microstructure to facilitate on water catalyst-free reactions, which are difficult to realize using nonfluorinated substrates. Accordingly, a highly efficient on water, catalyst-free reaction of difluoroenoxysilanes with aldehydes, activated ketones, and isatylidene malononitriles was developed, thus leading to the highly efficient synthesis of a variety of α,α-difluoro-β-hydroxy ketones and quaternary oxindoles.

  7. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Carbocations as Lewis acid catalysts in Diels-Alder and Michael addition reactions.

    PubMed

    Bah, Juho; Franzén, Johan

    2014-01-20

    In general, Lewis acid catalysts are metal-based compounds that owe their reactivity to a low-lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels-Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.

  9. Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Capote, R.; Hilaire, S.; Chau Huu-Tai, P.

    2016-07-01

    A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach theory including direct reactions is given. The energy average of the scattering matrix from the coupled-channels optical model is diagonalized by the transformation proposed by Engelbrecht and Weidenmüller [C. A. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8, 859 (1973), 10.1103/PhysRevC.8.859]. The ensemble average of S -matrix elements in the diagonalized channel space is approximated by a model of Moldauer [P. A. Moldauer, Phys. Rev. C 12, 744 (1975), 10.1103/PhysRevC.12.744] using the newly parametrized channel degree-of-freedom νa to better describe the Gaussian orthogonal ensemble (GOE) reference calculations. The Moldauer approximation is confirmed by a Monte Carlo study using a randomly generated S matrix, as well as the GOE threefold integration formula. The method proposed is applied to the 238U(n ,n' ) cross-section calculation in the fast-energy range, showing an enhancement in the inelastic scattering cross sections.

  10. Ratiometric fluorescent probe for rapid detection of bisulfite through 1,4-addition reaction in aqueous solution.

    PubMed

    Sun, Yue; Zhao, Dong; Fan, Shanwei; Duan, Lian; Li, Ruifeng

    2014-04-16

    A ratiometric fluorescent probe based on a positively charged benzo[e]indolium moiety for bisulfite is reported. The bisulfite underwent a 1,4-addition reaction with the C-4 atom in the ethylene group. This reaction resulted in a large emission wavelength shift (Δλ = 106 nm) and an observable fluorescent color change from orange to cyan. The reaction could be completed in 90 s in a PBS buffer solution and displayed high selectivity and sensitivity for bisulfite. A simple paper test strip system was developed to detect bisulfite rapidly. Probe 1 was used to detect bisulfite in real samples with good recovery.

  11. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  12. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  13. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  14. Nucleophilic lewis base dependent addition reactions of allenoates with trifluoromethylated cyclic ketimines.

    PubMed

    Yang, Li-Jun; Li, Shen; Wang, Shuai; Nie, Jing; Ma, Jun-An

    2014-04-18

    A detailed investigation on the different reactivity patterns shown by phosphorus- and nitrogen-containing Lewis base catalysts in the reactions of allenoates with cyclic trifluoromethyl ketimines was accomplished. With PPh3, [3 + 2] annulations proceeded smoothly to afford dihydropyrrole derivatives in excellent yields. Under the catalysis of DABCO, [2 + 2] annulations occurred, producing azetidine derivatives in good to high yields. However, in the presence of pyridine, α,α'-disubstituted allenoates were obtained in very high yields via aza-Morita-Baylis-Hillman reactions. These studies provide an opportunity for diverse synthesis of a variety of N-heterocyclic compounds from the same starting materials.

  15. Enantio- and diastereoselective Michael addition reactions of unmodified aldehydes and ketones with nitroolefins catalyzed by a pyrrolidine sulfonamide.

    PubMed

    Wang, Jian; Li, Hao; Lou, Bihshow; Zu, Liansuo; Guo, Hua; Wang, Wei

    2006-05-24

    Chiral (S)-pyrrolidine trifluoromethanesulfonamide has been shown to serve as an effective catalyst for direct Michael addition reactions of aldehydes and ketones with nitroolefins. A wide range of aldehydes and ketones as Michael donors and nitroolefins as acceptors participate in the process, which proceeds with high levels of enantioselectivity (up to 99 % ee) and diastereoselectivity (up to 50:1 d.r.). The methodology has been employed successfully in an efficient synthesis of the potent H(3) agonist Sch 50917. In addition, a practical three-step procedure for the preparation of (S)-pyrrolidine trifluoromethanesulfonamide has been developed. The high levels of stereochemical control attending Michael addition reactions catalyzed by this pyrrolidine sulfonamide, have been investigated by using ab initio and density functional methods. Transition state structures for the rate-limiting C--C bond-forming step, corresponding to re- and si-face addition to the reactive conformation of the key enamine intermediates have been calculated. Analysis of these structures indicates that hydrogen bonding plays an important role in catalysis and that the energy barrier for si-face attack in reactions of aldehydes to form 2R,3S products is lower than that for the re-face attack leading to 2S,3R products. In contrast, the energy barrier for re-face addition is lower than that for si-face addition in reactions of ketones. The computational results, which are in good agreement with the experimental observations, are discussed in the context of the stereochemical course of these Michael addition reactions.

  16. Bromine radical-mediated sequential radical rearrangement and addition reaction of alkylidenecyclopropanes.

    PubMed

    Kippo, Takashi; Hamaoka, Kanako; Ryu, Ilhyong

    2013-01-16

    Bromine radical-mediated cyclopropylcarbinyl-homoallyl rearrangement of alkylidenecyclopropanes was effectively accomplished by C-C bond formation with allylic bromides, which led to the syntheses of 2-bromo-1,6-dienes. A three-component coupling reaction comprising alkylidenecyclopropanes, allylic bromides, and carbon monoxide also proceeded well to give 2-bromo-1,7-dien-5-ones in good yield.

  17. Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry

    NASA Astrophysics Data System (ADS)

    Im, Wonpil; Roux, Benoît

    2001-09-01

    A general method has been developed to include the electrostatic reaction field in Brownian dynamics (BD) simulations of ions diffusing through complex molecular channels of arbitrary geometry. Assuming that the solvent is represented as a featureless continuum dielectric medium, a multipolar basis-set expansion is developed to express the reaction field Green's function. A reaction field matrix, which provides the coupling between generalized multipoles, is calculated only once and stored before the BD simulations. The electrostatic energy and forces are calculated at each time step by updating the generalized multipole moments. The method is closely related to the generalized solvent boundary potential [Im et al., J. Chem. Phys. 114, 2924 (2001)] which was recently developed to include the influence of distant atoms on a small region part of a large macromolecular system in molecular dynamics simulations. It is shown that the basis-set expansion is accurate and computationally inexpensive for three simple models such as a spherical ionic system, an impermeable membrane system, and a cylindrical pore system as well as a realistic system such as OmpF porin with all atomic details. The influence of the static field and the reaction field on the ion distribution and conductance in the OmpF channel is studied and discussed.

  18. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  19. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene. PMID:25664674

  20. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine

    2016-08-01

    The atomic hydrogen formation channels of the C + C2H2 reaction have been investigated using a continuous supersonic flow reactor over the 52-296 K temperature range. H-atoms were detected directly at 121.567 nm by vacuum ultraviolet laser induced fluorescence. Absolute H-atom yields were determined by comparison with the H-atom signal generated by the C + C2H4 reaction. The product yields agree with earlier crossed beam experiments employing universal detection methods. Incorporating these branching ratios in a gas-grain model of dense interstellar clouds increases the c-C3H abundance. This reaction is a minor source of C3-containing molecules in the present simulations.

  1. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    PubMed

    Kos, Pavlo; Plenio, Herbert

    2015-11-01

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.

  2. Synthesis of Heterocycles Through Classical Ugi and Passerini Reactions Followed by Secondary Transformations Involving One or Two Additional Functional Groups

    NASA Astrophysics Data System (ADS)

    Banfi, Luca; Basso, Andrea; Riva, Renata

    The combination of classical isocyanide-based multicomponent reactions (Ugi and Passerini) with a variety of post-condensation transformations, which take advantage of suitably positioned additional functional groups, allows the straightforward synthesis, often in 1-2 synthetic steps, of many diverse nitrogen-containing heterocycles. This review will cover all the applications of this strategy reported to date (September 2009).

  3. Highly enantioselective Michael addition reactions of 2-substituted benzofuran-3(2H)-ones to nitroolefins.

    PubMed

    Zhang, Zhi-Pei; Dong, Nan; Li, Xin; Cheng, Jin-Pei

    2015-10-21

    A highly enantioselective Michael addition reaction of 2-substituted benzofuran-3(2H)-ones to nitroolefins was promoted by a bifunctional squaramide catalyst. As a result, a number of chiral 2,2'-substituted benzofuran-3-one derivatives, bearing adjacent quaternary-tertiary stereocenters, were efficiently synthesized with excellent enantioselectivities.

  4. Theoretical investigation of the addition reaction of the aluminum chlorosilylenoid H2SiAlCl3 with ethylene.

    PubMed

    Zhang, Mingxia; Li, Wenzuo; Liu, Zhenbo; Li, Qingzhong; Cheng, Jianbo

    2016-07-01

    The addition reaction of the aluminum chlorosilylenoid H2SiAlCl3 with ethylene was investigated using the M06-2X and QCISD methods for the first time. The calculated results demonstrate that the addition reaction proceeds via two pathways: path I involves just one transition state, while path II involves two transition states. Path I is more feasible dynamically, as it has a lower barrier height than path II. The effect of the solvent CH2Cl2 was taken into consideration using the PCM model. The results indicated that the addition reaction is less likely to occur in CH2Cl2 solvent than in vacuum. This work has therefore highlighted a new pathway for the synthesis of silicon heterocyclic compounds. Graphical Abstract Relative energies (in kJ·mol(-1)) of the stationary points along the potential energy surfaces of the addition reaction of H2SiAlCl3 with C2H4 (values in parentheses were calculated in CH2Cl2 solvent). PMID:27271163

  5. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    DOE PAGES

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  6. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    SciTech Connect

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  7. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction.

    PubMed

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley S

    2015-01-01

    Synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In this report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols. PMID:26295221

  8. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-01

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  9. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    PubMed Central

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  10. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction.

    PubMed

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  11. Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic Acid

    EPA Science Inventory

    An efficient and environmentally benign tandem bis-aza-Michael addition of amines catalyzed by polystyrene sulfonic acid (PSSA) is described. This operationally simple high yielding microwave assisted synthetic protocol proceeded in water in the absence of any organic solvent.

  12. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions.

    PubMed

    Jahanshahi-Anbuhi, Sana; Chavan, Puneet; Sicard, Clémence; Leung, Vincent; Hossain, S M Zakir; Pelton, Robert; Brennan, John D; Filipe, Carlos D M

    2012-12-01

    This paper reports the development of a method to control the flow rate of fluids within paper-based microfluidic analytical devices. We demonstrate that by simply sandwiching paper channels between two flexible films, it is possible to accelerate the flow of water through paper by over 10-fold. The dynamics of this process are such that the height of the liquid is dependent on time to the power of 1/3. This dependence was validated using three different flexible films (with markedly different contact angles) and three different fluids (water and two silicon oils with different viscosities). These covered channels provide a low-cost method for controlling the flow rate of fluid in paper channels, and can be added following printing of reagents to control fluid flow in selected fluidic channels. Using this method, we redesigned a previously published bidirectional lateral flow pesticide sensor to allow more rapid detection of pesticides while eliminating the need to run the assay in two stages. The sensor is fabricated with sol-gel entrapped reagents (indoxyl acetate in a substrate zone and acetylcholinesterase, AChE, in a sensing zone) present in an uncovered "slow" flow channel, with a second, covered "fast" channel used to transport pesticide samples to the sensing region through a simple paper-flap valve. In this manner, pesticides reach the sensing region first to allow preincubation, followed by delivery of the substrate to generate a colorimetric signal. This format results in a uni-directional device that detects the presence of pesticides two times faster than the original bidirectional sensors.

  13. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  14. Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds.

    PubMed

    Zhao, Kun; Zhi, Ying; Shu, Tao; Valkonen, Arto; Rissanen, Kari; Enders, Dieter

    2016-09-19

    An asymmetric organocatalytic domino oxa-Michael/1,6-addition reaction of ortho-hydroxyphenyl-substituted para-quinone methides and isatin-derived enoates has been developed. In the presence of 5 mol % of a bifunctional thiourea organocatalyst, this scalable domino reaction affords 4-phenyl-substituted chromans bearing spiro-connected oxindole scaffolds and three adjacent stereogenic centers in good to excellent yields (up to 98 %) and with very high stereoselectivities (up to >20:1 d.r., >99 % ee). PMID:27600477

  15. Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds.

    PubMed

    Zhao, Kun; Zhi, Ying; Shu, Tao; Valkonen, Arto; Rissanen, Kari; Enders, Dieter

    2016-09-19

    An asymmetric organocatalytic domino oxa-Michael/1,6-addition reaction of ortho-hydroxyphenyl-substituted para-quinone methides and isatin-derived enoates has been developed. In the presence of 5 mol % of a bifunctional thiourea organocatalyst, this scalable domino reaction affords 4-phenyl-substituted chromans bearing spiro-connected oxindole scaffolds and three adjacent stereogenic centers in good to excellent yields (up to 98 %) and with very high stereoselectivities (up to >20:1 d.r., >99 % ee).

  16. Evaluation of lead anode reactions in acid sulfate electrolytes. 1: Lead alloys with cobalt additives

    SciTech Connect

    Yu, P.; O`Keefe, T.J.

    1999-04-01

    Lead alloys, such as lead-calcium-tin and lead-silver, are the primary insoluble anodes used in the electrowinning of metals. While some difficulties are encountered in their use, there is no obvious replacement that is economically and technically competitive. Two of the specific problems with lead include decreased cathode purity due to incorporation from corrosion products and the relatively high overpotential which increases cell voltage. To gain an improved understanding of the fundamental behavior of lead anodes, the polarization behavior of six different alloys in sulfuric acid was evaluated. Some tests were also made with Co(II) in the acid sulfate electrolyte. Notable differences were found in the multiple activation-passivation cycles, stability, and relative activity for oxygen evolution for the alloys, and the relative trends in behavior were established. Electrochemical impedance spectroscopy studies were also conducted at selected potentials. Overall, the data show that the electrochemical response, particularly the degree of polarization for the oxygen evolution reaction, of the lead alloy anodes are dependent on the surface phases and structures present. The ability to depolarize the anode reaction using Co(II) was particularly sensitive to the lead composition.

  17. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  18. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    PubMed

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  19. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    PubMed

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  20. Synthesis of Diverse Heterocyclic Scaffolds via Tandem Additions to Imine Derivatives and Ring-Forming Reactions

    PubMed Central

    Sunderhaus, James D.; Dockendorff, Chris; Martin, Stephen F.

    2009-01-01

    A novel strategy has been developed for the efficient syntheses of diverse arrays of heterocyclic compounds. The key elements of the approach comprise a Mannich-type, multicomponent coupling reaction in which functionalized amines, aromatic aldehydes, acylating agents, and π- and organometallic nucleophiles are combined to generate intermediates that are then further transformed into diverse heterocyclic scaffolds via a variety of cyclization manifolds. Significantly, many of these scaffolds bear functionality that may be exploited by further manipulation to create diverse collections of compounds having substructures found in biologically active natural products and clinically useful drugs. The practical utility of this strategy was exemplified by its application to the first, and extraordinarily concise synthesis of the isopavine alkaloid roelactamine. PMID:20625454

  1. A combined QM/MM study of the nucleophilic addition reaction of methanethiolate and N-methylacetamide.

    PubMed

    Byun, K; Gao, J

    2000-02-01

    A combined quantum mechanical (QM) and molecular mechanical (MM) method was used to study the nucleophilic addition reaction of methanethiolate to N-methylacetamide (NMA) in the gas phase and aqueous solution. At the B3LYP/aug-cc-pVDZ//HF/6-31 + G(d) level, the ion-dipole complex was found to be the global minimum on the potential energy surface in the gas phase with a binding energy of 21.2 kcal/mol. The complex has a C-S distance of 4.33 A, and no stabilized tetrahedral intermediate was located. The computed potential of mean force in water shows that solvent effects stabilize the reactants over the tetrahedral adduct by 36.5 kcal/mol, and that the tetrahedral intermediate does not exist for the present reaction in water. The present study provides an initial step for modeling the cysteine protease hydrolysis reactions in enzymes.

  2. The GC-MS Observation of Intermediates in a Stepwise Grignard Addition Reaction

    ERIC Educational Resources Information Center

    Latimer, Devin

    2007-01-01

    Preparation of phenylmagnesium bromide described by Eckert, addition of three equivalents of Grignard reagent to diethyl carbonate to form triphenylmethanol and a series of GC-MS procedures that form intermediates. The analysis is consistent with a gas chromatogram and mass spectrum for each of the expected intermediates and final product of the…

  3. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    ERIC Educational Resources Information Center

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  4. HO + OClO Reaction System: Featuring a Barrierless Entrance Channel with Two Transition States.

    PubMed

    Yang, Lei; Sonk, Jason A; Barker, John R

    2015-06-01

    Chlorine-containing compounds play a significant role in the troposphere and are key players in the stratosphere. The free radical compound OClO reacts with HO free radicals, but the existing experimental kinetics data are limited and uncertain. In the present theoretical investigation, the reaction mechanism, rate constants, and product branching ratios for the HO + OClO reaction system were computed over wide temperature and pressure ranges and compared with the existing experimental data. Stationary points on the singlet potential energy surface (PES) were calculated at high levels of theory, and the kinetics parameters were computed using several methods, including variational transition state theory (VTST) and RRKM/master equation techniques. The computed PES is in reasonable agreement with previous calculations, and the computed rate constants and branching ratio are in good agreement with the recent experiments. The results are used as the basis for recommendations for atmospheric chemistry modeling. The PES along the reaction path forming the peroxy bond has a steplike structure and only a very weakly bound prereactive complex, and yet it still supports two transition states along the reaction path. This feature may also be present in other reactions in which electrostatic forces align the approaching reactants in an unfavorable orientation at long distances, thus requiring a dramatic geometry change before reaction can take place. PMID:25942406

  5. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along <110> and <100> axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  6. Stereoselective synthesis of densely functionalized pyrrolidin-2-ones by a conjugate addition/nitro-Mannich/lactamization reaction.

    PubMed

    Anderson, James C; Horsfall, Lisa R; Kalogirou, Andreas S; Mills, Matthew R; Stepney, Gregory J; Tizzard, Graham J

    2012-07-20

    Copper-catalyzed conjugate addition of diorgano zinc reagents to nitroacrylate 1 followed by a subsequent nitro-Mannich reaction and in situ lactamization leads to an efficient one-pot synthesis of 1,3,5-trisubstituted 4-nitropyrrolidin-2-ones (5). The versatility of the reaction is shown for a wide range of N-p-(methoxy)phenyl protected aldimines 3 derived from alkyl, aryl, and heteroaryl aldehydes. The densely functionalized pyrrolidin-2-ones 5 are isolated as single diastereoisomers (40 examples, 33-84% yield). An enantioselective copper-catalyzed conjugate addition of diethylzinc led to highly crystalline products that could be recrystallized to enantiopurity in high yield. A range of successful chemoselective transformations were investigated, which widens the applicability of the pyrrolidn-2-ones as stereochemically pure building blocks for further organic synthesis. PMID:22708711

  7. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  8. A mechanistic study of the addition of alcohol to a five-membered ring silene via a photochemical reaction.

    PubMed

    Su, Ming-Der

    2016-03-21

    The mechanism for the photochemical rearrangement of a cyclic divinyldisilane (1-Si) in its first excited state ((1)π → (1)π*) is determined using the CAS/6-311G(d) and MP2-CAS/6-311++G(3df,3pd) levels of theory. The photoproduct, a cyclic silene, reacts with various alcohols to yield a mixture of cis- and trans- adducts. The two reaction pathways are denoted as the cis- addition path (path A) and the trans-addition path (path B). These model studies demonstrate that conical intersections play a crucial role in the photo-rearrangements of cyclic divinyldisilanes. The theoretical evidence also demonstrates that the addition of alcohol to a cyclic divinyldisilane follows the reaction path: cyclic divinyldisilane → Franck-Condon region → conical intersection → photoproduct (cyclic silene) → local intermediate (with alcohol) → transition state → cis- or trans-adduct. The theoretical studies demonstrate that the steric effects as well as the concentrations of CH3OH must have a dominant role in determining the yields of the final adducts by stereochemistry. The same mechanism for the carbon derivative (1-C) is also considered in this work. However, the theoretical results indicate that 1-C does not undergo a methanol addition reaction via the photochemical reaction pathway, since its energy of conical intersection (S1/S0-CI-C) is more than that of its FC (FC-C). The reason for these phenomena could be that the atomic radius of carbon is much smaller than that of silicon (77 and 117 pm, respectively). As a result, the conformation for 1-C is more sterically congested than that for 1-Si, along the 1,3-silyl-migration pathway. PMID:26928893

  9. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method.

  10. Intramolecular 1,1-carboboration versus intermolecular FLP addition in reactions of boranes and bis(phenylethynyl)telluroether.

    PubMed

    Tsao, Fu An; Lough, Alan J; Stephan, Douglas W

    2015-03-11

    Reactions of boranes with Te(CCPh)2 proceed via initial intermolecular 1,1-carboboration followed by either an intramolecular carboboration or an FLP addition to a second molecule of the intermediate, yielding 1-bora-4-tellurocyclohexa-2,5-diene heterocycles or tricylic derivatives of 1,4-ditellurocyclohexa-2,5-diene, respectively. The latter species is also shown to convert to the former upon heating.

  11. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method. PMID:27337641

  12. C-C Bond Formation via Copper-Catalyzed Conjugate Addition Reactions to Enones in Water at Room Temperature

    PubMed Central

    Lipshutz, Bruce H.; Huang, Shenlin; Leong, Wendy Wen Yi; Isley, Nicholas A.

    2013-01-01

    Conjugate addition reactions to enones can now be done in water at room temperature with in situ-generated organocopper reagents. Mixing an enone, zinc powder, TMEDA, and an alkyl halide in a micellar environemnt containing catalytic amounts of Cu(I), Ag(I), and Au(III), leads to 1,4-adducts in good isolated yields: no organometallic precursor is involved. PMID:23190029

  13. Core-structure-inspired asymmetric addition reactions: enantioselective synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents.

    PubMed

    Li, Shen; Ma, Jun-An

    2015-11-01

    Dihydrobenzoxazinones and dihydroquinazolinones are the core units present in many anti-HIV agents, such as Efavirenz, DPC 961, DPC 963, and DPC 083. All these molecules contain a trifluoromethyl moiety at the quaternary stereogenic carbon center with S configuration. The enantioselective addition of carbon nucleophiles to ketones or cyclic ketimines could serve as a key step to access these molecules. This tutorial review provides an overview of significant advances in the synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents and relative analogues, with an emphasis on asymmetric addition reactions for the establishment of the CF3-containing quaternary carbon centers.

  14. Modifying structure-sensitive reactions by addition of Zn to Pd

    SciTech Connect

    Childers, David J.; Schweitzer, Neil M.; Kamali Shahari, Seyed Mehdi; Rioux, Robert M.; Miller, Jeffrey T.; Meyer, Randall J.

    2014-10-01

    Silica-supported Pd and PdZn nanoparticles of a similar size were evaluated for neopentane hydrogenolysis/isomerization and propane hydrogenolysis/dehydrogenation. Monometallic Pd showed high neopentane hydrogenolysis selectivity. Addition of small amounts of Zn to Pd lead Pd–Zn scatters in the EXAFS spectrum and an increase in the linear bonded CO by IR. In addition, the neopentane turnover rate decreased by nearly 10 times with little change in the selectivity. Increasing amounts of Zn lead to greater Pd–Zn interactions, higher linear-to-bridging CO ratios by IR and complete loss of neopentane conversion. Pd NPs also had high selectivity for propane hydrogenolysis and thus were poorly selective for propylene. The PdZn bimetallic catalysts, however, were able to preferentially catalyze dehydrogenation, were not active for propane hydrogenolysis, and thus were highly selective for propylene formation. The decrease in hydrogenolysis selectivity was attributed to the isolation of active Pd atoms by inactive metallic Zn,demonstrating that hydrogenolysis requires a particular reactive ensemble whereas propane dehydrogenation does not.

  15. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Ocampo-Martinez, Carlos; Serra, Maria

    2015-05-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the concentrations of the different gas species inside a Proton Exchange Membrane Fuel Cell (PEMFC) anode gas channel. The purpose of the regulation relies on the rejection of the unmeasurable perturbations that affect the system: the hydrogen reaction and water transport terms. The model of the anode channel is derived from the discretisation of the partial differential equations that define the nonlinear dynamics of the system, taking into account spatial variations along the channel. Forward and backward discretisations of the distributed model are employed to take advantage of the boundary conditions of the problem. A linear observer is designed and implemented to perform output-feedback control of the plant. This information is fed to the controller to regulate the states towards their desired values. Simulation results are presented to show the performance of the proposed control method over a given case study. Different cost functions are compared and the one with minimum state-regulation error is identified. Suitable dynamic responses are obtained facing the different considered disturbances.

  16. Entrance-channel mass-asymmetry dependence of compound nucleus formation time in light heavy-ion reactions

    SciTech Connect

    Szanto de Toledo, A.; Carlson, B.V.; Beck, C.

    1996-12-01

    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. The model calculations have been applied successfully to the formation of the {sup 38}Ar compound nucleus as populated via the {sup 9}Be+{sup 29}Si, {sup 11}B+{sup 27}Al, {sup 12}C+{sup 26}Mg, and {sup 19}F+{sup 19}F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called {open_quote}{open_quote}Fusion Inhibition Factor{close_quote}{close_quote} which has been observed experimentally. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved. {copyright} {ital 1996 The American Physical Society.}

  17. Dynamical coupled-channels analysis of {sup 1}H(e,e{sup '}{pi})N reactions

    SciTech Connect

    Julia-Diaz, B.; Kamano, H.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.; Suzuki, N.

    2009-08-15

    We have performed a dynamical coupled-channels analysis of available p(e,e{sup '}{pi})N data in the region of W{<=}1.6 GeV and Q{sup 2}{<=}1.45 (GeV/c){sup 2}. The channels included are {gamma}*N, {pi}N, {eta}N, and {pi}{pi}N that has {pi}{delta}, {rho}N, and {sigma}N components. With the hadronic parameters of the model determined in our previous investigations of {pi}N{yields}{pi}N, {pi}{pi}N reactions, we have found that the available data in the considered W{<=}1.6 GeV region can be fitted well by only adjusting the bare {gamma}*N{yields}N* helicity amplitudes for the lowest N* states in P{sub 33}, P{sub 11}, S{sub 11}, and D{sub 13} partial waves. The sensitivity of the resulting parameters to the amount of data included in the analysis is investigated. The importance of coupled-channels effect on the p(e,e{sup '}{pi})N cross sections is demonstrated. The meson cloud effect, as required by the unitarity conditions, on the {gamma}*N{yields}N* form factors are also examined. Necessary future developments, both experimentally and theoretically, are discussed.

  18. Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

    NASA Astrophysics Data System (ADS)

    Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon

    2015-08-01

    We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  19. Effect of substituents on different channels of rad OH radical reaction with substituted organic sulfides

    NASA Astrophysics Data System (ADS)

    Mohan, Hari; Mittal, Jai P.

    2005-10-01

    Pulse radiolysis technique has been employed to study the nature of rad OH radical reaction in aqueous solutions of substituted organic sulfides. The transient absorption band at 345 nm observed on reaction of rad OH radicals in neutral aqueous solution of 3,3'-thiodipropionitrile is assigned to OH-adduct at sulfur. OH-adduct is observed to have high reactivity with oxygen ( k=8.8×10 8 dm 3 mol -1 s -1). The reaction of rad OH radicals in neutral aqueous solution of methyl propyl sulfide has shown the formation of sulfur-centered dimer radical cation with a small fraction (˜10%) of α-(alkylthio)alkyl radicals. The reaction of rad OH radicals with thiodiglycolic acid showed an absorption band at 285 nm, which is assigned to α -(alkylthio)alkyl radicals. The reaction of rad OH radicals with dimethyl 2,2'-thiodiethanoic acid has been assigned to OH-adduct at sulfur, whereas the transient absorption band at 390 observed with 3,3'-thiodipropionic acid is assigned to intra-molecular radical cation formed on p-orbital overlap of oxidized sulfur with oxygen. In acidic solutions, sulfur-centered dimer radical cation is the only transient species observed with substituted alkyl sulfides. The concentration of acid required to observe the formation of dimer radical cation is found to depend on the electron-withdrawing power of the substituted group. The reaction of rad OH radicals in neutral aqueous solution of substituted aryl sulfides has shown the formation of monomer radical cation and OH-adduct at benzene ring. Sulfur-centered dimer radical cations are not observed even in acidic conditions.

  20. Kinetics and Mechanism of the CIO + CIO Reaction: Pressure and Temperature Dependences of the Bimolecular and Termolecular Channels andThermal Decomposition of Chlorine Peroxide, CIOOCI

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Friedl, Randall R.; Sander, Stanley P.

    1993-01-01

    The kinetics and mechanism of the CIO + CIO reaction and the thermal decomposition of CIOOCI were studied using the flash photolysis/long path ultraviolet absorption technique. Pressure and temperature dependences were determined for the rate coefficients for the bimolecular and termolecular reaction channels, and for the thermal decompositon of CIOOCI.

  1. FT-IR Spectroscopic Imaging of Reactions in Multiphase Flow in Microfluidic Channels

    PubMed Central

    2012-01-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing. PMID:22468788

  2. Nickel and cobalt-catalyzed coupling of alkyl halides with alkenes via heck reactions and radical conjugate addition.

    PubMed

    Qian, Qun; Zang, Zhenhua; Chen, Yang; Tong, Weiqi; Gong, Hegui

    2013-05-01

    Cross-coupling of alkyl halides with alkenes leading to Heck-type and addition products is summarized. The development of Heck reaction with aliphatic halides although has made significant progress in the past decade and particularly recently, it was much less explored in comparison with the aryl halides. The use of Ni- and Co-catalyzed protocols allowed efficient Heck coupling of activated and unactivated alkenes with 1°, 2° and 3° alkyl halides. In addition, radical conjugate addition to activated alkenes has become a well-established method that has led to efficient construction of many natural products. The utilization of Ni- and Co-catalyzed strategies would avoid toxic tin reagents, and therefore worth exploring. The recent development of Ni- and Co-catalyzed addition of alkyl halides to alkenes displays much improved reactivity and functional group tolerance. In this mini-review, we also attempt to overview the mechanisms that are proposed in the reactions, aiming at providing insight into the nickel and cobalt-catalyzed coupling of alkyl halides with alkenes.

  3. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions.

    PubMed

    Holan, Martin; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jones, Peter G; Jahn, Ullrich

    2015-06-26

    Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single-electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single-electron transfer oxidant. Ester enolates were coupled with α-benzylidene and α-alkylidene β-dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5-exo pattern for terminally substituted olefin units to a 6-endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6-tetramethyl-1-piperidinoxyl, and two C-C bonds and one C-O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.

  4. Semifluorinated polymers via cycloaddition and nucleophilic addition reactions of aromatic trifluorovinyl ethers

    NASA Astrophysics Data System (ADS)

    Iacono, Scott Thomas

    This dissertation encompasses the synthesis, characterization, and properties of semifluorinated polymers derived from thermal polymerization of aryl trifluorovinyl ether (TFVE) monomers. This work is divided into two parts based on the methodology of thermal polymerization using aryl TFVE monomers. The first part of this work involves the thermal [2 + 2] cyclodimerization of aryl TFVE monomers affording perfluorocyclobutyl (PFCB) aryl ether polymers. Chapter 1 provides an overview of PFCB aryl ether polymers as a next-generation class of high performance fluoropolymers that have been successfully employed for a myriad of technologies. PFCB aryl ether polymers are highly desired because of their high thermal stability, processability, and tailorability for specific material applications. Chapter 2 introduces a general perspective of polyhedral oligomeric silsesquioxanes (POSS) that were modified with PFCB aryl ether polymer for property enhancement, specifically for low surface energy materials. Chapter 3 and 4 show the synthesis, characterization, and properties of POSS modified PFCB aryl ether polymers as blends and a variety of copolymer architectures, respectively. The second portion of this dissertation focuses on the development of a new, facile step-growth polymerization of diols/bisphenols and aryl TFVEs to afford fluoroethylene/vinylene alkyl/aryl ether (FAE) polymers. Chapter 5 is a prelude to the development of FAE polymers which entails optimizing the methodology and mechanistic rationale of nucleophile addition to aryl TFVEs. Chapter 6 details the FAE polymerization kinetics, physical properties, and strategy for functionalization. Chapter 7 illustrates the modular modification of FAE polymers for the development of tunable light emissive materials for potential use as transport layer material for organic light emitting diodes (OLEDs) and also chemical sensors. Chapter 8 introduces postfunctionaliztion of FAE polymers resulting with sulfonated biaryl

  5. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  6. Probing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.

    PubMed

    Kim, Yunok; Muhammad, Shoaib; Kim, Hyunchul; Cho, Yong-Hun; Kim, Hansu; Kim, Ji Man; Yoon, Won-Sub

    2015-07-20

    The structural changes and electrochemical behavior of RuO2 are investigated by using in situ XRD, X-ray absorption spectroscopy, and electrochemical techniques to understand the electrochemical reaction mechanism of this metal oxide anode material. Intermediate phase-assisted transformation of RuO2 to LiRuO2 takes place at the start of discharge. Upon further lithiation, LiRuO2 formed by intercalation decomposes to nanosized Ru metal and Li2 O by a conversion reaction. A reversible capacity in addition to its theoretical capacity is observed on discharging below 0.5 V during which no redox activity involving Ru is observed. TEM, X-ray photoelectron spectroscopy, and the galvanostatic intermittent titration technique are used to probe this additional capacity. The results show that the additional capacity is a result of Li storage in the grain boundary between nanosized Ru metal and Li2 O. Findings of this study provide a better understanding of the quantitative share of capacity by a unique combination of intercalation, conversion, and interfacial Li storage in a RuO2 anode.

  7. Malignant hyperthermia-like reaction in a family with a sodium channel mutation at residue 1306

    SciTech Connect

    Vita, G.M.; Jedlicka, A.E.; Levitt, R.C.

    1994-09-01

    Malignant hyperthermia susceptibility (MHS) is an autosomal dominant, hypermetabolic disorder, triggered by potent inhalational anesthetics. We have previously suggeste the skeletal muscle sodium channel {alpha}-subunit (SCN4A) as a gene candidate to explain some forms of MHS. To evaluate this gene for mutations that might lead to a MHS-like episode, we amplified genomic DNA by PCR and used SSCP to screen each exon. We studied multiple MHS families which may be linked to this gene. The proband and a sibling from one of these families suspected of having MHS experienced trismus and body rigidity after induction of anesthesia. The caffiene and halothane contracture test proved diagnostic in these individuals and EMG studies suggested a form of myotomia. A mutation co-segregating with the myotonia/MHS phenotype was found in the region of exon 22.

  8. Collinear cluster tripartition channel in the reaction {sup 235}U(n{sub th}, f)

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Kopach, Yu. N.; Alexandrov, A. A.; Alexandrova, I. A.; Borzakov, S. B.; Voronov, Yu. N.; Zhuchko, V. E.; Kuznetsova, E. A. Panteleev, Ts.; Tyukavkin, A. N.

    2010-08-15

    Investigation of the {sup 235}U(n{sub th}, f) reaction using the miniFOBOS double-arm time-of-flight spectrometer of fission fragments confirmed manifestations of the earlier unknown many-body, at least ternary, decay involving almost collinear decay-product escape, which were first observed in the spontaneous fission of {sup 252}Cf(sf). The use of variables sensitive to the nuclear charge of fission fragments allowed the reliability of identification of decay events to be increased and new decay modes to be revealed.

  9. Adapting to substrate challenges: peptides as catalysts for conjugate addition reactions of aldehydes to α,β-disubstituted nitroolefins.

    PubMed

    Duschmalé, Jörg; Wennemers, Helma

    2012-01-23

    Conjugate addition reactions of aldehydes to α,β-disubstituted nitroolefins are important because they provide synthetically useful γ-nitroaldehydes bearing three consecutive stereogenic centers. Such reactions are challenging due to the drastically lower reactivity of α,β-disubstituted nitroolefins compared to, for example, β-monosubstituted nitroolefins. The testing of a small collection of peptides of the type Pro-Pro-Xaa (Xaa=acidic amino acid) led to the identification of H-Pro-Pro-D-Gln-OH and H-Pro-Pro-Asn-OH as excellent stereoselective catalysts for this transformation. In the presence of 5 mol% of these peptides different combinations of aldehydes and α,β-disubstituted nitroolefins react readily with each other providing γ-nitroaldehydes in good yields and diastereoselectivities as well as excellent enantioselectivities. Chiral pyrrolidines as well as fully substituted γ-butyrolactams and γ-amino acids are easily accessible from the γ-nitroaldehydes. Mechanistic studies demonstrate that the configuration at all three stereogenic centers is induced by the peptidic catalysts. Only a minimal amount of products from homo-aldol reactions is observed demonstrating the high chemoselectivity of the peptidic catalysts.

  10. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions.

    PubMed

    Cichowicz, Nathan R; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-11-18

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.

  11. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  12. Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction.

    PubMed

    Hwang, Ji-Soo; Kim, Yu-Seop; Song, Hye-Jeong; Kim, Jong-Dae; Park, Chan-Young

    2015-01-01

    This paper proposes the optimal structure of a PCB-based micro PCR chip constructed on a PCB substrate using commercial adhesive tapes and plastic covers. The solder mask of the PCB substrate was coated black, and the area where the reaction chamber is attached was legend printed with white silk to minimize the noise during fluorescence detection. The performance of the PCR and fluorescence detection was compared using 6 types of reaction chambers, each made with different double-sided tapes. Three of the chambers were unsuccessful in completing the PCR. The performance of the other three chambers that successfully amplified DNA was compared using Taqman probe for Chlamydia Trachomatis DNA. The amplified product was illuminated diagonally with a blue LED to excite the product just before imaging, and the LED was turned off when the image was captured to prevent quenching of the probe. The images were taken 10 seconds prior to the last extension step for each cycle using a DSLR camera. The experiments were run as a quartet for each three chambers made with different double-sided tape. The results showed that there were significant difference between the three tapes. PMID:26409548

  13. Conducting Polymers: Insights Into Reduced Polyparaphenylene Vinylene Materials via Nucleophilic Addition, Proton Abstraction, and Electron Transfer Reactions.

    NASA Astrophysics Data System (ADS)

    Hilker, Brian Lee

    Grignard routes were investigated as methods to produce poly paraphenylene vinylene polymers. Because of coupling problems with these reactions, high molecular weight unsubstituted and dimethyl and dimethoxy substituted poly paraphenylene vinylene polymers were prepared via a literature-proven synthetic route: the sodium hydride dehydrochlorination addition polymerization route. Both the Grignard reactions and the sodium hydride method required dichloromethyl compounds monomers. The syntheses of these dichloromethyl monomers were studied extensively. The three high molecular weight poly paraphenylene vinylene polymer systems prepared in this work were charged with the traditional electron transfer reducing agent potassium/naphthalide. They were also charged via the novel nucleophilic addition of n-butyllithium across the alkenes and subjected to proton abstraction charging in the presence of a strong, complexed base mixture of n-butyllithium and potassium-t-butoxide. Conductivities were obtained via standard four point probe techniques. Characterization of these polymers and their quenched anion derivatives was via FTIR and acid titration. Results of these topics are presented and discussed.

  14. Sequential Addition Reaction of Sulfanylmethyllithiums and Grignard Reagents to Thioformamides Leading to the Formation of 2-Phenyl-2-sulfanylethyl Tertiary Amines.

    PubMed

    Murai, Toshiaki; Mutoh, Natsumi

    2016-09-16

    The reaction of sulfanylmethyllithiums generated from benzylsulfanes and n-BuLi with N,N-dimethylthioformamide followed by the addition of Grignard reagents gave 2-phenyl-2-sulfanyl tertiary amines in moderate to good yields. A range of Grignard reagents involving primary alkyl, aryl, vinyl, and alkynyl Grignard reagents were used. Two carbon-carbon bond-forming reactions were achieved through a one-pot reaction. The reaction showed good to high diastereoselectivity, particularly with alkynyl Grignard reagents. PMID:27565031

  15. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  16. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    SciTech Connect

    Lee, Sea-Hoon; Cho, Chun-Rae; Park, Young-Jo; Ko, Jae-Woong; Kim, Hai-Doo; Lin, Hua-Tay; Becher, Paul F

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  17. Tracking performance of a combined Costas/AFC-loop under noisy Rayleigh/Rician channel conditions with additive Gaussian noise jamming

    NASA Astrophysics Data System (ADS)

    Kleine, Achim

    Models were developed to investigate the tracking behavior of combined Costas/AFC (Automatic Frequency Control) feedback loops under Rayleigh/Rician fading conditions with additive Gaussian noise jamming. A general linearized tracking model was developed for land-mobile channels. The model can be used for the nonlinearized case with sinusoidal phase detection characteristic using a standard solution of the Fokker-Planck equation. A tracking analysis for Costas/AFC loops with coherent automatic gain control, and an accuracy analysis for interferometers equipped with Costas/AFC loops are treated as examples. The tracking model is the most inaccurate in the case of quasistationary channels.

  18. Allowance for the tunnel effect in the entrance channel of fusion-fission reactions

    NASA Astrophysics Data System (ADS)

    Litnevsky, V. L.; Kosenko, G. I.; Ivanyuk, F. A.

    2016-05-01

    A two-stage model is developed in order to describe fusion-fission reactions. The process in the course of which colliding ions approach each other is simulated at the first stage, the deformations and relative orientations of the ions being taken into account. The first stage of the calculation is completed as soon as colliding nuclei touch each other. A continuous nuclear system (monosystem) is formed at this instant. The emerging distributions of the angular momenta of this system and of its potential and internal energies at the point of touching are used as input data that are necessary for triggering the second stage of the calculation. The evolution of collective coordinates that describe the shape of the monosystem is calculated at the second stage. The description of this evolution is terminated either at the instant of its fission or upon the release of a major part of its excess energy via particle and photon emission. In the latter case, the probability for the fission of the monosystem or a further decrease in its excitation energy becomes extremely small. The ion-collision process and the evolution of the monosystem formed after primary nuclei come into contact are simulated on the basis of stochastic Langevin equations. The quantities appearing in them (which include the potential energy and inertial and friction parameters) are determined with allowance for the shell structure of nuclei. The tunneling of colliding nuclei through the Coulomb barrier is taken into account, and the effect of this phenomenon on model predictions is studied.

  19. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    ERIC Educational Resources Information Center

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  20. Design of Selective Gas Sensors Using Additive-Loaded In2O3 Hollow Spheres Prepared by Combinatorial Hydrothermal Reactions

    PubMed Central

    Kim, Sun-Jung; Hwang, In-Sung; Kang, Yun Chan; Lee, Jong-Heun

    2011-01-01

    A combinatorial hydrothermal reaction has been used to prepare pure and additive (Sb, Cu, Nb, Pd, and Ni)-loaded In2O3 hollow spheres for gas sensor applications. The operation of Pd- and Cu-loaded In2O3 sensors at 371 °C leads to selective H2S detection. Selective detection of CO and NH3 was achieved by the Ni-In2O3 sensor at sensing temperatures of 371 and 440 °C, respectively. The gas responses of six different sensors to NH3, H2S, H2, CO and CH4 produced unique gas sensing patterns that can be used for the artificial recognition of these gases. PMID:22346661

  1. Hydrogenation of O and OH on Pt(111): A comparison between the reaction rates of the first and the second hydrogen addition steps

    SciTech Connect

    Näslund, L.-Å.

    2014-03-14

    The formation of water through hydrogenation of oxygen on platinum occurs at a surprisingly low reaction rate. The reaction rate limited process for this catalytic reaction is, however, yet to be settled. In the present work, the reaction rates of the first and the second hydrogen addition steps are compared when hydrogen is obtained through intense synchrotron radiation that induces proton production in a water overlayer on top of the adsorbed oxygen species. A substantial amount of the produced hydrogen diffuses to the platinum surface and promotes water formation at the two starting conditions O/Pt(111) and (H{sub 2}O+OH)/Pt(111). The comparison shows no significant difference in the reaction rate between the first and the second hydrogen addition steps, which indicates that the rate determining process of the water formation from oxygen on Pt(111) is neither the first nor the second H addition step or, alternatively, that both H addition steps exert rate control.

  2. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    PubMed

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  3. A DFT study of addition reaction between fragment ion (CH₂) units and fullerene (C₆₀) molecule.

    PubMed

    Zaragoza, Irineo Pedro; Vergara, Jaime; Pérez-Manríquez, Liliana; Salcedo, Roberto

    2011-05-01

    The theoretical study of the interaction between CH(2) and fullerene (C(60)) suggests the existence of an addition reaction mechanism; this feature is studied by applying an analysis of electronic properties. Several different effects are evident in this interaction as a consequence of the particular electronic transfer which occurs during the procedure. The addition or insertion of the methylene group results in a process, where the inclusion of CH(2) into a fullerene bond produces the formation of several geometric deformations. A simulation of these procedures was carried out, taking advantage of the dynamic semi-classical Born-Oppenheimer approximation. Dynamic aspects were analyzed at different speeds, for the interaction between the CH(2) group and the two bonds: CC (6, 6) and CC (6, 5) respectively on the fullerene (C(60)) rings. All calculations which involved electrons employed DFT as well as exchange and functional correlation. The results indicate a tendency for the CH(2) fragment to attack the CC (6, 5) bond. PMID:20658255

  4. Effects of the method of apatite seed crystals addition on setting reaction of α-tricalcium phosphate based apatite cement.

    PubMed

    Tsuru, Kanji; Ruslin; Maruta, Michito; Matsuya, Shigeki; Ishikawa, Kunio

    2015-10-01

    Appropriate setting time is an important parameter that determines the effectiveness of apatite cement (AC) for clinical application, given the issues of crystalline inflammatory response phenomena if AC fails to set. To this end, the present study analyzes the effects of the method of apatite seed crystals addition on the setting reaction of α-tricalcium phosphate (α-TCP) based AC. Two ACs, both consisting of α-TCP and calcium deficient hydroxyapatite (cdHAp), were analyzed in this study. In one AC, cdHAp was added externally to α-TCP and this AC was abbreviated as AC(EA). In the other AC, α-TCP was partially hydrolyzed to form cdHAp on the surface of α-TCP. This AC was referred to as AC(PH). Results indicate a decrease in the setting time of both ACs with the addition of cdHAp. Among them, for the given amount of added cdHAp, AC(PH) showed relatively shorter setting time than AC(EA). Besides, the mechanical strength of the set AC(PH) was also higher than that of set AC(EA). These properties of AC(PH) were attributed to the predominant crystal growth of cdHAp in the vicinity of the α-TCP particle surface. Accordingly, it can be concluded that the partial hydrolysis of α-TCP may be a better approach to add low crystalline cdHAp onto α-TCP based AC.

  5. Characterization and mechanism insight of accelerated catalytic promiscuity of Sulfolobus tokodaii (ST0779) peptidase for aldol addition reaction.

    PubMed

    Li, Rong; Perez, Bianca; Jian, Hui; Jensen, Mads Mørk; Gao, Renjun; Dong, Mingdong; Glasius, Marianne; Guo, Zheng

    2015-11-01

    A novel peptidase from thermophilic archaea Sulfolobus tokodaii (ST0779) is examined for its catalytic promiscuity of aldol addition, which shows comparable activity as porcine pancreatic lipase (PPL, one of the best enzymes identified for biocatalytic aldol addition) at 30 °C but much accelerated activity at elevated temperature. The molecular catalytic efficiency kcat/Km (M(-1) s(-1)) of this thermostable enzyme at 55 °C adds up to 140 times higher than that of PPL at its optimum temperature 37 °C. The fluorescence quenching analysis depicts that the binding constants of PPL are significantly higher than those of ST0779, and their numbers of binding sites show opposite temperature dependency. Thermodynamic parameters estimated by fluorescence quenching analysis unveil distinctly different substrate-binding modes between PPL and ST0779: the governing binding interaction between PPL and substrates is hydrophobic force, while the dominating substrate-binding forces for ST0779 are van der Waals and H-bonds interactions. A reasonable mechanism for ST0779-catalyzed aldol reaction is proposed based on kinetic study, spectroscopic analysis, and molecular stereostructure simulation. This work represents a successful example to identify a new enzyme for catalytic promiscuity, which demonstrates a huge potential to discover and exploit novel biocatalyst from thermophile microorganism sources. PMID:26169629

  6. Observation of the 3n evaporation channel in the complete hot-fusion reaction 26Mg + 248Cm leading to the new superheavy nuclide 271Hs.

    PubMed

    Dvorak, J; Brüchle, W; Chelnokov, M; Düllmann, Ch E; Dvorakova, Z; Eberhardt, K; Jäger, E; Krücken, R; Kuznetsov, A; Nagame, Y; Nebel, F; Nishio, K; Perego, R; Qin, Z; Schädel, M; Schausten, B; Schimpf, E; Schuber, R; Semchenkov, A; Thörle, P; Türler, A; Wegrzecki, M; Wierczinski, B; Yakushev, A; Yeremin, A

    2008-04-01

    The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6 < or = Z < or = 18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction (248)Cm ((26)Mg,xn)(274-x)Hs and the observation of the new nuclide (271)Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets. PMID:18517941

  7. A reactant-coordinate-based wave packet method for full-dimensional state-to-state quantum dynamics of tetra-atomic reactions: Application to both the abstraction and exchange channels in the H + H2O reaction

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2016-02-01

    An efficient and accurate wave packet method is proposed for the calculation of the state-to-state S-matrix elements in bimolecular reactions involving four atoms. This approach propagates an initial state specific wave packet in reactant Jacobi coordinates. The projection in product channels is carried out on projection planes, which have one less degree of freedom, by transforming both the time-dependent wave packet and final product states into a set of intermediate coordinates. This reactant-coordinate-based method is more efficient than product-coordinate-based methods because it typically requires a smaller number of basis functions or grid points and allows the determination of S-matrix elements for multiple product channels from a single propagation. This method is demonstrated in calculating the (Jtot = 0) state-to-state S-matrix elements for both the abstraction and exchange channels of the H + H2O reaction.

  8. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms

    SciTech Connect

    Dietrich, F S

    2006-09-25

    This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).

  9. A STUDY OF THE ADDITION OF CHOLESTERIN TO THE ALCOHOLIC EXTRACTS OF TISSUES USED FOR ANTIGENS IN THE WASSERMANN REACTION.

    PubMed

    Walker, I C; Swift, H F

    1913-07-01

    1. The addition of cholesterin to an alcoholic extract of heart or fetal liver increases the antigenic value of the extracts in the Wassermann reaction. 2. The optimum amount of cholesterin to be added to heart extract or fetal liver extract was found to be 0.4 per cent. 3. Cholesterin-heart extracts are superior to cholesterin-liver extracts and to alcoholic extracts of syphilitic livers, as well as to ether extracts of dried hearts. 4. Cholesterin-heart extracts prepared from different human hearts are practically equal in anticomplementary and antigenic value. Similar extracts prepared from guinea pig hearts have the same antigenic value as those prepared from human hearts. Both the human heart and the guinea pig heart extracts are superior to beef heart extract when the same amount of cholesterin is added to each of the extracts. 5. In testing blood serum for diagnostic purposes, it is not safe to use more than one fourth of the anticomplementary dose of the 0.4 per cent. cholesterin heart extract. In the work here presented, this consisted of a 1 in 10 emulsion. 6. In testing cerebrospinal fluids, 1 in 10 emulsions give slightly better reactions with smaller quantities of the fluid than do 1 in 6 emulsions. 7. Because of the simple preparation, the superior antigenic property, and the constant antigen value of cholesterin-heart extracts prepared from human hearts, we agree with McIntosh and Fildes that this form of extract fulfills the requirements of a standard antigen.

  10. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  11. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

    PubMed

    Motokura, Ken; Tanaka, Satoka; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-10-19

    We report the first tunable bifunctional surface of silica-alumina-supported tertiary amines (SA-NEt(2)) active for catalytic 1,4-addition reactions of nitroalkanes and thiols to electron-deficient alkenes. The 1,4-addition reaction of nitroalkanes to electron-deficient alkenes is one of the most useful carbon-carbon bond-forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA-supported amine (SA-NEt(2)) catalyst enabled selective formation of a double-alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA-NEt(2) catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA-NEt(2) catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron-deficient alkenes. The solid-state magic-angle spinning (MAS) NMR spectroscopic analyses, including variable-contact-time (13)C cross-polarization (CP)/MAS NMR spectroscopy, revealed that acid-base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid-base interactions.

  12. Performance analysis of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing wireless system in additive white Gaussian noise and indoor multipath channel

    NASA Astrophysics Data System (ADS)

    Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen

    2014-08-01

    We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.

  13. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    PubMed

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  14. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-01

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures.

  15. Investigation of the O+allyl addition/elimination reaction pathways from the OCH{sub 2}CHCH{sub 2} radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Lau, K.-C.; Butler, Laurie J.; Lee, S.-H.; Lin, Jim Jr-Min

    2008-08-28

    These experiments study the preparation of and product channels resulting from OCH{sub 2}CHCH{sub 2}, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH{sub 2}CHCH{sub 2} radicals; these undergo a facile ring opening to the OCH{sub 2}CHCH{sub 2} radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH{sub 2}CHCH{sub 2} radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C{sub 3}H{sub 4}O (acrolein)+H, C{sub 2}H{sub 4}+HCO (formyl radical), and H{sub 2}CO (formaldehyde)+C{sub 2}H{sub 3}. A small signal from C{sub 2}H{sub 2}O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C{sub 2}H{sub 5}+CO, does not contribute significantly to the product branching. The higher internal energy onset of the

  16. Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction.

    PubMed

    Lv, Qiulan; Wang, Ke; Xu, Dazhuang; Liu, Meiying; Wan, Qing; Huang, Hongye; Liang, Shangdong; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    Water dispersion aggregation-induced emission (AIE) dyes based nanomaterials have recently attracted increasing attention in the biomedical fields because of their unique optical properties, outstanding performance as imaging and therapeutic agents. The methods to conjugate hydrophilic polymers with AIE dyes to solve the hydrophobic nature of AIE dyes and makeS them widely used in biomedicine, which have been extensively explored and paid great effort previously. Although great advance has been made in the fabrication and biomedical applications of AIE-active polymeric nanoprobes, facile and efficient strategies for fabrication of biodegradable AIE-active nanoprobes are still high desirable. In this work, amphiphilic biodegradable fluorescent organic nanoparticles (PLL-TPE-O-E FONs) have been fabricated for the first time by conjugation of AIE dye tetraphenylethene acrylate (TPE-O-E) with Poly-l-Lysine (PLL) through a facile one-step Michael addition reaction, which was carried out under rather mild conditions, included air atmosphere, near room temperature and absent of metal catalysts or hazardous reagents. Due to the unique AIE properties, these amphiphilic copolymers tend to self-assemble into high luminescent water dispersible nanoparticles with size range from 400 to 600nm. Laser scanning microscope and cytotoxicity results revealed that PLL-TPE-O-E FONs can be internalized into cytoplasm with negative cytotoxicity, which implied that PLL-TPE-O-E FONs are promising for biological applications. PMID:27311129

  17. Impact of additional Pt and NiSi crystal orientation on channel stress induced by Ni silicide film in metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizuo, Mariko; Yamaguchi, Tadashi; Kudo, Shuichi; Hirose, Yukinori; Kimura, Hiroshi; Tsuchimoto, Jun-ichi; Hattori, Nobuyoshi

    2014-01-01

    The impact of additional Pt and Ni monosilicide (NiSi) crystal orientation on channel stress from Ni silicide in metal-oxide-semiconductor field-effect transistors (MOSFETs) has been demonstrated. The channel stress generation mechanism can be explained by the NiSi crystal orientation. In pure Ni silicide films, the channel stress in the p-type substrate is much larger than that in the n-type one, since the NiSi a-axis parallel to the channel direction is strongly aligned on the p-type substrate compared with on the n-type one. On the other hand, in NiPt silicide films, the difference in the channel stress between the p- and n-type substrates is small, because the NiSi crystal orientation on the p-type substrate is similar to that on the n-type one. These results can be explained by the Pt segregation at the interface between the NiSi film and the Si surface. Segregated Pt atoms cause the NiSi b-axis to align normal to the Si(001) surface in the nucleation step owing to the expansion of the NiSi lattice spacing at the NiSi/Si interface. Furthermore, the Pt segregation mechanism is considered to be caused by the grain boundary diffusion in the Ni2Si film during NiSi formation. We confirmed that the grains of Ni2Si on the p-type substrate are smaller than those on the n-type one. The Ni2Si film on the p-type substrate has more grain boundary diffusion paths than that on the n-type one. Therefore, the amount of Pt segregation at the NiSi/Si interface on the p-type substrate is larger than that on the n-type one. Consequently, the number of NiSi grains with the b-axis aligned normal to the Si(001) in the p-type substrate is larger than that in the n-type one. As a result, the channel stress induced by NiPt silicide in PMOS is larger than that in NMOS. According to this mechanism, controlling the Pt concentration at the NiSi/Si interface is one of the key factors for channel stress engineering.

  18. Theoretical and Experimental Investigation of Thermodynamics and Kinetics of Thiol-Michael Addition Reactions: A Case Study of Reversible Fluorescent Probes for Glutathione Imaging in Single Cells.

    PubMed

    Chen, Jianwei; Jiang, Xiqian; Carroll, Shaina L; Huang, Jia; Wang, Jin

    2015-12-18

    Density functional theory (DFT) was applied to study the thermodynamics and kinetics of reversible thiol-Michael addition reactions. M06-2X/6-31G(d) with the SMD solvation model can reliably predict the Gibbs free energy changes (ΔG) of thiol-Michael addition reactions with an error of less than 1 kcal·mol(-1) compared with the experimental benchmarks. Taking advantage of this computational model, the first reversible reaction-based fluorescent probe was developed that can monitor the changes in glutathione levels in single living cells.

  19. Macrocyclic cyclooctene-supported AlCl-salen catalysts for conjugated addition reactions: effect of linker and support structure on catalysis.

    PubMed

    Madhavan, Nandita; Takatani, Tait; Sherrill, C David; Weck, Marcus

    2009-01-01

    AlCl-salen (salen=N,N'-bis(salicylidene)ethylenediamine dianion) catalysts supported onto macrocyclic oligomeric cyclooctene through linkers of varying length and flexibility have been developed to demonstrate the importance of support architecture on catalyst activity. The role played by the support and the linkers in dictating catalyst activity was found to vary for reactions with contrasting mechanisms, such as the bimetallic cyanide and the monometallic indole addition reactions. While the flexible support significantly enhanced the cyanide addition reaction, most likely by improving salen-salen interactions in the transition state, it lowered the reaction rate for the monometallic indole reaction. For both reactions, significant increase in catalytic activity was observed for catalysts with the longest linkers. The effect of the flexible macrocyclic support on catalysis was further exemplified by the enhanced activity of the supported catalyst in comparison with its unsupported analogue for the conjugate addition of tetrazoles, which is known to be catalyzed by dimeric mu-oxo-salen catalysts. Our studies with the cyclooctene supported AlCl-salen catalysts provides significant insights for rationally designing highly efficient AlCl-salen catalysts for a diverse set of reactions.

  20. Effect of Electric Field on Dispersion of a Solute in an MHD Flow through a Vertical Channel With and Without Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Umavathi, J. C.; Kumar, J. P.; Gorla, R. S. R.; Gireesha, B. J.

    2016-08-01

    The longitudinal dispersion of a solute between two parallel plates filled with two immiscible electrically conducting fluids is analyzed using Taylor's model. The fluids in both the regions are incompressible and the transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating. Separate solutions are matched at the interface using suitable matching conditions. The flow is accompanied by an irreversible first-order chemical reaction. The effects of the viscosity ratio, pressure gradient and Hartman number on the effective Taylor dispersion coefficient and volumetric flow rate for an open and short circuit are drawn in the absence and in the presence of chemical reactions. As the Hartman number increases the effective Taylor diffusion coefficient decreases for both open and short circuits. When the magnetic field remains constant, the numerical results show that for homogeneous and heterogeneous reactions, the effective Taylor diffusion coefficient decreases with an increase in the reaction rate constant for both open and short circuits.

  1. Application of a C-C Bond-Forming Conjugate Addition Reaction in Asymmetric Dearomatization of β-Naphthols.

    PubMed

    Yang, Dongxu; Wang, Linqing; Kai, Ming; Li, Dan; Yao, Xiaojun; Wang, Rui

    2015-08-10

    A C-C bond-forming conjugate reaction was successfully applied to the enantioselective dearomatization of β-naphthols. A C(sp2)-C(sp3) bond is formed by using propargylic ketones as reactive partners. Good to excellent Z/E ratios and ee values were obtained by employing an in situ generated magnesium catalyst. Further transformations of the Z-configured C-C double bond in the products were achieved under mild reaction conditions. Moreover, the stereocontrolling element of this magnesium-catalyzed dearomatization reaction was explored by computational chemistry. PMID:26173841

  2. Lewis acid-base 1,2-addition reactions: synthesis of pyrylium borates from en-ynoate precursors.

    PubMed

    Wilkins, Lewis C; Hamilton, Hugh B; Kariuki, Benson M; Hashmi, A Stephen K; Hansmann, Max M; Melen, Rebecca L

    2016-04-14

    Treatment of methyl (Z)-2-alken-4-ynoates with the strong Lewis acid tris(pentafluorophenyl) borane, B(C6F5)3, yield substituted zwitterionic pyrylium borate species via an intramolecular 6-endo-dig cyclisation reaction.

  3. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT. PMID:21728653

  4. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

  5. Methyl iodide oxidative addition to [Rh(acac)(CO)(PPh3)]: an experimental and theoretical study of the stereochemistry of the products and the reaction mechanism.

    PubMed

    Conradie, Marrigje M; Conradie, Jeanet

    2011-08-28

    Density functional theory was used to investigate the oxidative addition and subsequent carbonyl insertion and deinsertion steps of the reaction of methyl iodide to a rhodium(I) acetylacetonato complex of the formula [Rh(acac)(CO)(PPh(3))] (Hacac = acetylacetone). This process has been studied experimentally for many rhodium β-diketonato complexes, but, to the best of our knowledge, this is the first systematic computational study of the complete reaction sequence. Experimental (1)H techniques complement the theoretical results on the stereochemistry of the reaction intermediates and products. (1)H NMR also revealed the existence of a second rhodium(III)-acyl product, which has not been previously observed in this reaction. The calculated Gibbs free energy of activation of the oxidative addition reaction is 71 kJ mol(-1), which is in agreement with the experimental value of 82(1) kJ mol(-1). The DFT-calculated oxidative addition corresponds to an associative S(N)2 nucleophilic attack by the rhodium metal centre on the methyl iodide, which is in agreement with calculated and experimental (in brackets) activation parameters of the reaction, 27 (38.8) kJ mol(-1) for ΔH((≠)) and -147 (-146) J K(-1) mol(-1) for ΔS((≠)). PMID:21761056

  6. Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA)*

    PubMed Central

    Moxley, Michael A.; Sanyal, Nikhilesh; Krishnan, Navasona; Tanner, John J.; Becker, Donald F.

    2014-01-01

    PutA (proline utilization A) is a large bifunctional flavoenzyme with proline dehydrogenase (PRODH) and Δ1-pyrroline-5-carboxylate dehydrogenase (P5CDH) domains that catalyze the oxidation of l-proline to l-glutamate in two successive reactions. In the PRODH active site, proline undergoes a two-electron oxidation to Δ1-pyrroline-5-carboxlylate, and the FAD cofactor is reduced. In the P5CDH active site, l-glutamate-γ-semialdehyde (the hydrolyzed form of Δ1-pyrroline-5-carboxylate) undergoes a two-electron oxidation in which a hydride is transferred to NAD+-producing NADH and glutamate. Here we report the first kinetic model for the overall PRODH-P5CDH reaction of a PutA enzyme. Global analysis of steady-state and transient kinetic data for the PRODH, P5CDH, and coupled PRODH-P5CDH reactions was used to test various models describing the conversion of proline to glutamate by Escherichia coli PutA. The coupled PRODH-P5CDH activity of PutA is best described by a mechanism in which the intermediate is not released into the bulk medium, i.e., substrate channeling. Unexpectedly, single-turnover kinetic experiments of the coupled PRODH-P5CDH reaction revealed that the rate of NADH formation is 20-fold slower than the steady-state turnover number for the overall reaction, implying that catalytic cycling speeds up throughput. We show that the limiting rate constant observed for NADH formation in the first turnover increases by almost 40-fold after multiple turnovers, achieving half of the steady-state value after 15 turnovers. These results suggest that EcPutA achieves an activated channeling state during the approach to steady state and is thus a new example of a hysteretic enzyme. Potential underlying causes of activation of channeling are discussed. PMID:24352662

  7. Reaction between HN and SN: a possible channel for the interstellar formation of N2 and SH in the cold interstellar clouds.

    PubMed

    Bhasi, Priya; Nhlabatsi, Zanele P; Sitha, Sanyasi

    2015-12-28

    Using computational calculations the potential energy surface (PES) of the reaction between NH and NS has been analysed. The PES of the reaction shows the formation of two very stable species, HNSN and HNNS. Out of these two, HNNS which has the signature N-N linkage was found to be the most stable species in the PES. In view of the highly exothermic nature of the reaction surface, it has been proposed that these two species can possibly be detected in the interstellar space. For the first time it has also been shown that the reaction between the NH and NS can lead to the possible formation of N2via the isomer HNNS, and how the effect of tunnelling can make this reaction very much feasible, even under the extremely low temperature conditions prevailing in the interstellar medium. Based on the already reported results, a similar kind of behaviour for the NH + NO reaction surface has also been proposed. These dissociation reactions leading to the formation of N2 can be considered as potential secondary contributing channels while accounting for the total estimates of N2 in the interstellar medium, and thus HNNS as well as HNNO can be considered as stable reservoir molecules for interstellar N2. Besides the formation of N2, the formation of another astronomically important radical, SH in the cold interstellar clouds, has also been proposed.

  8. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  9. Transition-metal free reactions of boronic acids: cascade addition - ring-opening of furans towards functionalized γ-ketoaldehydes.

    PubMed

    Roscales, S; Csákÿ, A G

    2016-02-18

    We describe the first ring-opening of furfuryl alcohols with boronic acids to afford functionalized γ-ketoaldehydes. The transformation builds a new C-C bond at the original C-4 of the starting furan, and tolerates ring-substitution at C-3 and C-4 positions. The reaction takes place under metal-free conditions by promotion with tartaric acid.

  10. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-01

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures. PMID:23937057

  11. Quantum optimal control of isomerization dynamics of a one-dimensional reaction-path model dominated by a competing dissociation channel

    SciTech Connect

    Kurosaki, Yuzuru; Artamonov, Maxim; Ho, Tak-San; Rabitz, Herschel

    2009-07-28

    Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open{yields}cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O{sub 2}+O asymptote on the O{sub 3} ground-state {sup 1}A{sup '} potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O{sub 2}+O dissociation channel lie at {approx}0.05, {approx}0.086, and {approx}0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O{sub 2}+O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.

  12. Visible-Light-Promoted Dual C-C Bond Formations of Alkynoates via a Domino Radical Addition/Cyclization Reaction: A Synthesis of Coumarins.

    PubMed

    Feng, Shangbiao; Xie, Xingang; Zhang, Weiwei; Liu, Lin; Zhong, Zhuliang; Xu, Dengyu; She, Xuegong

    2016-08-01

    A visible-light-promoted, mild, and direct difunctionalization of alkynoates has been accomplished. This procedure provides a new strategy toward synthesis of the coumarin core structure by photoredox-mediated oxidation to generate the α-oxo radical, which supervenes a domino radical addition/cyclization reaction in moderate to good yields with high regioselectivity at ambient temperature.

  13. LDA-mediated selective addition reaction of vinylidenecyclopropanes with aldehydes, ketones, and enones: facile synthesis of vinylcyclopropenes, allenols, and 1,3-enynes.

    PubMed

    Lu, Jian-Mei; Shi, Min

    2008-05-15

    Highly selective addition reaction of vinylidenecyclopropanes 1 was realized by treatment with LDA in THF and quenching with aldehydes, ketones, and enones. A number of vinylcyclopropenes, allenols, and 1,3-enynes were obtained selectively in moderate to good yields depending on the nature of different electrophiles.

  14. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  15. Comments on the linear free-energy correlation between O/sub 3/ and OH addition reactions reported in Rate Constants for the Gas-Phase Reactions of O/sub 3/ with a Series of Carbonyls at 296 K

    SciTech Connect

    Gaffney, J.S.; Levine, S.Z.

    1982-01-01

    Recently, Atkinson et al. reported measurements on the reaction of ozone with a series of carbonyls. In that study a correlation between ozone addition and hydroxyl-radical addition reactions was employed to predict OH addition coefficients for acrolein and crotonaldehyde of approximately 2 x 10/sup -12/ and 5 x 10/sup -12/ cm/sup 3/ molecule/sup -1/ s/sup -1/, respectively. These estimates, as pointed out by the authors, are in disagreement (factor of 2 to 3 lower) with the rate coefficients previously predicted by ourselves for the same OH addition reactions using linear correlations with both ionization potentials and O(/sup 3/P) rate data. It was also suggested in that paper that this discrepancy was probably due to the likelihood that O(/sup 3/P) atoms react significantly with carbonyls via an abstraction mechanism, that is, O(/sup 3/P) rate data could not be appropriately correlated with OH addition reaction data. We believe that another, more probable, explanation exists for the above-mentioned discrepancy in rate constant estimates, and that this explanation involves the manner in which the correlation method is handled. Because this method of evaluating rate constants represents a potentially important predictive tool for chemical modelers, we feel it is necessary to reconcile the apparent disagreement in the OH-acrolein and OH-crotonaldehyde addition reaction coefficients estimated from O/sub 3/ correlations as compared to ionization potential and O(/sup 3/P) correlations. In doing so, we will also demonstrate the necessity of employing linear correlations in a consistent manner.

  16. Targeted gene walking by low stringency polymerase chain reaction: assignment of a putative human brain sodium channel gene (SCN3A) to chromosome 2q24-31.

    PubMed

    Malo, M S; Srivastava, K; Andresen, J M; Chen, X N; Korenberg, J R; Ingram, V M

    1994-04-12

    We have developed a low stringency polymerase chain reaction (LSPCR) to isolate the unknown neighboring region around a known DNA sequence, thus allowing efficient targeted gene walking. The method involves the polymerase chain reaction (PCR) with a single primer under conditions of low stringency for primer annealing (40 degrees C) for the first few cycles followed by more cycles at high stringency (55 degrees C). This enables the amplification of a targeted DNA fragment along with other nontargeted fragments. High stringency (55 degrees C) nested PCRs with end-labeled primers are then used to generate a ladder of radioactive bands, which accurately identifies the targeted fragment(s). We performed LSPCR on human placental DNA using a highly conserved sodium channel-specific primer for 5 cycles at 40 degrees C followed by 27 cycles at 55 degrees C for primer annealing. Subsequently, using higher stringency (55 degrees C) PCR with radiolabeled nested primers for 8 cycles, we have isolated a 0.66-kb fragment of a putative human sodium channel gene. Partial sequence (325 bp) of this fragment revealed a 270-bp region (exon) with homology to the rat brain sodium channel III alpha (RBIII) gene at the nucleotide (87%) and amino acid (92%) levels. Therefore, we putatively assign this sequence as a part of a gene coding the alpha-subunit of a human brain type III sodium channel (SCN3A). Using PCR on two human/rodent somatic cell hybrid panels with primers specific to this putative SCN3A gene, we have localized this gene to chromosome 2. Fluorescence in situ hybridization to human metaphase chromosomes was used to sublocalize the SCN3A gene to chromosome at 2q24-31. In conclusion, LSPCR is an efficient and sensitive method for targeted gene walking and is also useful for the isolation of homologous genes in related species. PMID:8159690

  17. Pressure Effects on Product Channels of the Allyl Radical Reactions; C3H5+C3H5 and C3H5+CH3

    NASA Astrophysics Data System (ADS)

    Halpern, J. B.; N'Doumi, M.; Fahr, A.

    2011-12-01

    Relatively large hydrocarbon molecules (C4, C6 and larger) have been detected in several planetary environments. The mechanism for the formation of such large molecular species and detailed mechanism for their potential destruction are not well understood and are of considerable current interest. Previously we have studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modeling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. Pressure-dependent product yields have been determined experimentally for the self- and cross-radical reactions performed at 298 K and at pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final reaction products were quantitatively determined using a gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the experiments and provided valuable information on the complex reaction mechanisms. Theses studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report recent results for the allyl radical reactions H2CCCH3+ H2CCCH3 and H2CCCH3+CH3. For the allyl radical self-reaction, at high pressures the "head -to-head", combination channel forming 1,5-hexadiene is dominant with a combination/disproportionation = 1,5-hexadiene/propyne ratio of about 24 at 500 Torr (67 kPa, T=298K). At low pressures the ratio is substantially reduced to about 1.2 (at 0.3 kPa) and other major products are observed including allene, propene, 1-butene and propyne.

  18. Coupled-channels density-matrix approach to low-energy nuclear collision dynamics: A technique for quantifying quantum decoherence effects on reaction observables

    SciTech Connect

    Diaz-Torres, Alexis

    2010-11-15

    The coupled-channels density-matrix technique for nuclear reaction dynamics, which is based on the Liouville-von Neumann equation with Lindblad dissipative terms, is developed with the inclusion of full angular momentum couplings. It allows a quantitative study of the role and importance of quantum decoherence in nuclear scattering. Formulas of asymptotic observables that can reveal effects of quantum decoherence are given. A method for extracting energy-resolved scattering information from the time-dependent density matrix is introduced. As an example, model calculations are carried out for the low-energy collision of the {sup 16}O projectile on the {sup 154}Sm target.

  19. Asymmetric Catalytic Enantio- and Diastereoselective Boron Conjugate Addition Reactions of α-Functionalized α,β-Unsaturated Carbonyl Substrates.

    PubMed

    Xie, Jian-Bo; Lin, Siqi; Qiao, Shuo; Li, Guigen

    2016-08-01

    An efficient catalytic system has been established for the asymmetric boron conjugate addition of B2pin2 onto α-functionalized (involving C, N, O, and Cl) α,β-unsaturated carbonyls under mild, neutral conditions involving Cu[(S)-(R)-ppfa]Cl, AgNTf2, and alcohols. The dual additives of AgNTf2 and alcohols were found to play crucial roles for achieving high catalytic activity and enantio- and diastereoselectivity (up to 98% ee and 70:1 dr).

  20. Formation of quaternary stereogenic centers by copper-catalyzed asymmetric conjugate addition reactions of alkenylaluminums to trisubstituted enones.

    PubMed

    Müller, Daniel; Alexakis, Alexandre

    2013-11-01

    Alkenylaluminums undergo asymmetric copper-catalyzed conjugate addition (ACA) to β-substituted enones allowing the formation of stereogenic all-carbon quaternary centers. Phosphinamine-copper complexes proved to be particularly active and selective compared with phosphoramidite ligands. After extensive optimization, high enantioselectivities (up to 96% ee) were obtained for the addition of alkenylalanes to β-substituted enones. Two strategies for the generation of the requisite alkenylaluminums were explored allowing for the introduction of aryl- and alkyl-substituted alkenyl nucleophiles. Moreover, alkyl-substituted phosphinamine (SimplePhos) ligands were identified for the first time as highly efficient ligands for the Cu-catalyzed ACA.

  1. Channeling the SmI₂ reactions to the radical path: radicals resisting reduction by SmI₂.

    PubMed

    Yella, Ramesh; Hoz, Shmaryahu

    2014-08-01

    Studies on the reaction of 4-(2,2-diphenylvinyl)pyridine with SmI2 revealed that the intermediate radical strongly resists further reduction to the corresponding anion. The resistance of the radical to accepting another electron is traced to its stabilization by the nitrogen lone pair. The literature suggests that oxygen may also play a role similar to that of nitrogen in directing the course of the reaction toward radical rather than to anionic chemistry.

  2. Experimental and theoretical studies of the products of addition-elimination reactions between benzil dihydrazone and three isomeric chlorobenzaldehydes.

    PubMed

    Liu, Yun-Na; Cheng, Shuang-Shuang; Wang, Chao; Xing, Dian-Xiang; Liu, Yun; Tan, Xue-Jie

    2015-07-01

    A series of mono- and di-Schiff bases formed between benzil dihydrazone {BDH; systematic name: (1Z)-[(2E)-2-hydrazinylidene-1,2-diphenylethylidene]hydrazine} and three isomeric chlorobenzaldehydes were designed and synthesized to be used as model compounds to help to explain the reaction mechanisms for the formation of Schiff bases. These compounds are 1-(2-chlorobenzylidene)-2-{2-[2-(2-chlorobenzylidene)hydrazin-1-ylidene]-1,2-diphenylethylidene}hydrazine (BDHOCB), and the 3-chloro (BDHMCB) and 4-chloro (BDHPCB) analogues, all having the formula C28H20Cl2N4. Surprisingly, only di-Schiff bases were obtained; our attempts to push the reaction in favour of the mono-Schiff bases all failed. Density functional theory (DFT) calculations were performed to explain the trend in the experimental results. In the case of the systems studied, the type of Schiff base produced exhibits a clear dependence on the HOMO-LUMO energy gaps (ΔE(HOMO-LUMO)), i.e. the product is mainly governed by its stability. The compounds were characterized by single-crystal X-ray diffractometry, elemental analysis, melting point, (1)H NMR and (13)C NMR spectroscopy. The structural features of the three new Schiff bases are similar. For instance, they have the same chemical formula, all the molecules have a symmetrical double helix structure, with each Ph-C=N-N=C-Ph arm exhibiting an anti conformation, and their supramolecular interactions include intermolecular π-π and weak C-H...π stacking interactions. The crystal systems are different, however, viz. triclinic (space group P1¯) for BDHPCB, monoclinic (space group P2(1)/n) for BDHOCB and orthorhombic (space group Pnna) for BDHMCB.

  3. Synthesis of Bridged Heterocycles via Sequential 1,4- and 1,2-Addition Reactions to α,β-Unsaturated N-Acyliminium Ions: Mechanistic and Computational Studies.

    PubMed

    Yazici, Arife; Wille, Uta; Pyne, Stephen G

    2016-02-19

    Novel tricyclic bridged heterocyclic systems can be readily prepared from sequential 1,4- and 1,2-addition reactions of allyl and 3-substituted allylsilanes to indolizidine and quinolizidine α,β-unsaturated N-acyliminium ions. These reactions involve a novel N-assisted, transannular 1,5-hydride shift. Such a mechanism was supported by examining the reaction of a dideuterated indolizidine, α,β-unsaturated N-acyliminium ion precursor, which provided specifically dideuterated tricyclic bridged heterocyclic products, and from computational studies. In contrast, the corresponding pyrrolo[1,2-a]azepine system did not provide the corresponding tricyclic bridged heterocyclic product and gave only a bis-allyl adduct, while more substituted versions gave novel furo[3,2-d]pyrrolo[1,2-a]azepine products. Such heterocyclic systems would be expected to be useful scaffolds for the preparation of libraries of novel compounds for new drug discovery programs. PMID:26816207

  4. Synthesis of Bridged Heterocycles via Sequential 1,4- and 1,2-Addition Reactions to α,β-Unsaturated N-Acyliminium Ions: Mechanistic and Computational Studies.

    PubMed

    Yazici, Arife; Wille, Uta; Pyne, Stephen G

    2016-02-19

    Novel tricyclic bridged heterocyclic systems can be readily prepared from sequential 1,4- and 1,2-addition reactions of allyl and 3-substituted allylsilanes to indolizidine and quinolizidine α,β-unsaturated N-acyliminium ions. These reactions involve a novel N-assisted, transannular 1,5-hydride shift. Such a mechanism was supported by examining the reaction of a dideuterated indolizidine, α,β-unsaturated N-acyliminium ion precursor, which provided specifically dideuterated tricyclic bridged heterocyclic products, and from computational studies. In contrast, the corresponding pyrrolo[1,2-a]azepine system did not provide the corresponding tricyclic bridged heterocyclic product and gave only a bis-allyl adduct, while more substituted versions gave novel furo[3,2-d]pyrrolo[1,2-a]azepine products. Such heterocyclic systems would be expected to be useful scaffolds for the preparation of libraries of novel compounds for new drug discovery programs.

  5. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE PAGES

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; et al

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  6. Overview of coupled-channels analyses of meson production reactions: The way to the N*s

    SciTech Connect

    Julia-Diaz, Bruno

    2011-10-24

    We provide a brief review of the main existing theoretical efforts to extract and interpret the properties of baryon resonances from the experimental data for hadro-, photo- and electro-production of mesons on the nucleon. The focus is set on the dynamical coupled-channels models. An effort is made to highlight the relevant aspects of the different approaches, within the space limitations of these proceedings.

  7. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    PubMed

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future. PMID

  8. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    PubMed

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future.

  9. Unconventional Bifunctional Lewis-Brønsted Acid Activation Mode in Bicyclic Guanidine-Catalyzed Conjugate Addition Reactions.

    PubMed

    Cho, Bokun; Wong, Ming Wah

    2015-08-18

    DFT calculations have demonstrated that the unconventional bifunctional Brønsted-Lewis acid activation mode is generally applicable to a range of nucleophilic conjugate additions catalyzed by bicyclic guanidine catalysts. It competes readily with the conventional bifunctional Brønsted acid mode of activation. The optimal pro-nucleophiles for this unconventional bifunctional activation are acidic substrates with low pKa, while the best electrophiles are flexible 1,4-diamide and 1,4-diester conjugated systems.

  10. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time. PMID:26219587

  11. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time.

  12. Tandem Michael addition-ring transformation reactions of 3-hydroxyoxindoles/3-aminooxindoles with olefinic azlactones: direct access to structurally diverse spirocyclic oxindoles.

    PubMed

    Cui, Bao-Dong; Zuo, Jian; Zhao, Jian-Qiang; Zhou, Ming-Qiang; Wu, Zhi-Jun; Zhang, Xiao-Mei; Yuan, Wei-Cheng

    2014-06-01

    An efficient method for the direct construction of two classes of spirocyclic oxindoles by the reactions of 3-hydroxyoxindoles/3-aminooxindoles and (Z)-olefinic azlactones through a tandem Michael addition-ring transformation process has been developed. With DBU as the catalyst, a range of spiro-butyrolactoneoxindoles and spiro-butyrolactamoxindoles, containing an oxygen or a nitrogen heteroatom, respectively, in the spiro stereocenter, were smoothly obtained with good to excellent diastereoselectivities in high yields.

  13. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  14. From enantiopure hydroxyaldehydes to complex heterocyclic scaffolds: development of domino Petasis/Diels-Alder and cross-metathesis/Michael addition reactions.

    PubMed

    Cannillo, Alexandre; Norsikian, Stéphanie; Tran Huu Dau, Marie-Elise; Retailleau, Pascal; Iorga, Bogdan I; Beau, Jean-Marie

    2014-09-15

    One-step assembly of hexahydroisoindole scaffolds by a sequence that combines the Petasis (borono-Mannich) and Diels-Alder reactions is described. The unique selectivity observed experimentally was confirmed by quantum calculations. The current method is applicable to a broad range of substrates, including free sugars, and holds significant potential to efficiently and stereoselectively build new heterocyclic structures. This easy and fast entry to functionalized polycyclic compounds can be pursued by further transformations, for example, additional ring closure by a cross-metathesis/Michael addition domino sequence.

  15. Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR Green I dye

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Mi, Lijuan; Cao, Xueyan; Zhang, Xiaodong; Fan, Chunhai; Hu, Jun

    2008-06-01

    Gold nanoparticles (AuNPs) have been proven to be able to improve the specificity or increase the efficiency of a polymerase chain reaction (PCR) when a suitable amount of AuNPs was used. However, there is still a lack of systematic evaluation of AuNPs in real-time PCR. In this study, DNA degradation and the fluorescence quenching effect of AuNPs were first tested in real-time PCR. Then two different kinds of Taq DNA polymerase, native and recombinant Taq polymerase, were employed to evaluate the AuNPs' effect on the threshold cycle (CT) values, standard curves and melting curves in real-time PCR. Different ratios of the amount of native Taq DNA polymerase to the amount of AuNPs were also tested. It was found that AuNPs could be applied in real-time PCR with correlation coefficient R2>0.989. The combination of 2.09 nM AuNPs with 3.75 U of native Taq DNA polymerase could make the amplification curves shift to the left and enhance the efficiency of the real-time PCR (0.628 39 without AuNPs compared with 0.717 89 with 2.09 nM AuNPs), thus enabling faster detection in comparison with those of control samples. However, no improvement ability of AuNPs was found in real-time PCR based on recombinant rTaq DNA polymerase. Besides, the results suggest that a complex interaction exists between AuNPs and native Taq DNA polymerase.

  16. Effects of N{sub 2}O gas addition on the properties of ZnO films grown by catalytic reaction-assisted chemical vapor deposition

    SciTech Connect

    Yasui, Kanji Morioka, Makoto; Kanauchi, Shingo; Ohashi, Yuki; Kato, Takahiro; Tamayama, Yasuhiro

    2015-11-15

    The influence of N{sub 2}O gas addition on the properties of zinc oxide (ZnO) films grown on a-plane (11–20) sapphire (a-Al{sub 2}O{sub 3}) substrates was investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-temperature H{sub 2}O produced by a catalytic H{sub 2}-O{sub 2} reaction on platinum (Pt) nanoparticles. The addition of N{sub 2}O was found to increase the size of the crystalline facets and to improve the crystal orientation along the c-axis. The electron mobility at 290 K was also increased to 234 cm{sup 2}/Vs following the addition of N{sub 2}O gas at a pressure of 3.2 × 10{sup −3 }Pa. In addition, the minimum full width at half maximum of the most intense photoluminescence peak derived from neutral donor bound excitons at 10 K decreased to 0.6 meV by the addition of N{sub 2}O gas at a pressure of 3.1 × 10{sup −2 }Pa.

  17. Addition-fragmentation reaction of thionoesters compounds in free-radical polymerisation (methyl, cyanomethyl and styryl): a theoretical interpretation

    NASA Astrophysics Data System (ADS)

    Hannachi, Douniazed; Ouddai, Nadia; Arotçaréna, Michel; Chermette, Henry

    2015-07-01

    A joint experimental and theoretical study has been carried out on reversible addition-fragmentation chain transfer polymerisation (RAFT). We have performed density functional theory calculations at the (Perdew-Burke-Ernzerhof) PBE/triple zeta plus polarisation level to analyse the RAFT mechanisms corresponding to these compounds. Global and local reactivity indices have been calculated to investigate the effect of the addition of methyl, cyanomethyl and styryl radicals on the double bond C=S of thionoester compounds producing an adduct radical. This mechanism is shown to be difficult when the cyanomethyl is used contrarily to the methyl and styryl radicals, in agreement with experimental results. The activation barrier of fragmentation of adduct radicals does not correlate well with the length of fragmented bond (O-Cα). The bond topological analysis of radical adduct predicts that the distance between the oxygen and a critical point (O-CP) in the fragment bond is a good parameter to estimate the activation energy of the fragmentation mechanism. It is shown that the nature of the free radicals is more selective than that of the thionoester compounds. With an overall large agreement with experiments, these theoretical results afford an explanation of the efficiency for the RAFT mechanism.

  18. Interfacial Reactions of Zn-Al Alloys with Na Addition on Cu Substrate During Spreading Test and After Aging Treatments

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstruś, Janusz; Berent, Katarzyna

    2016-08-01

    Spreading tests for Cu substrate with Zn-Al eutectic-based alloys with 0.2, 0.5, and 1.0 wt.% of Na were studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed for 1, 3, 8, 15, 30, and 60 min of contact, at the temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreading area of Zn-Al + Na on Cu was determined in accordance with ISO 9455-10:2013-03. Selected, solidified solder-substrate couples were cross-sectioned and subjected to scanning electron microscopy of the interfacial microstructure. The experiment was designed to demonstrate the effect of Na addition on the kinetics of formation and growth of CuZn, Cu5Zn8, and CuZn4 phases, which were identified using x-ray diffraction and energy-dispersive spectroscopy analysis. The addition of Na to eutectic Zn-Al caused the spreading area to decrease and the thickness of intermetallic compound layers at the interface to reduce. Samples after the spreading test at 500 °C for 1 min were subjected to aging for 1, 10, and 30 days at 120,170, and 250 °C. The greater thicknesses of IMC layers were obtained for a temperature of 250 °C. With increasing Na content in Zn-Al + Na alloys, the thickness reduced, which correlates to the highest value of activation energy for Zn-Al with 1% Na.

  19. Interfacial Reactions of Zn-Al Alloys with Na Addition on Cu Substrate During Spreading Test and After Aging Treatments

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstruś, Janusz; Berent, Katarzyna

    2016-04-01

    Spreading tests for Cu substrate with Zn-Al eutectic-based alloys with 0.2, 0.5, and 1.0 wt.% of Na were studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed for 1, 3, 8, 15, 30, and 60 min of contact, at the temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreading area of Zn-Al + Na on Cu was determined in accordance with ISO 9455-10:2013-03. Selected, solidified solder-substrate couples were cross-sectioned and subjected to scanning electron microscopy of the interfacial microstructure. The experiment was designed to demonstrate the effect of Na addition on the kinetics of formation and growth of CuZn, Cu5Zn8, and CuZn4 phases, which were identified using x-ray diffraction and energy-dispersive spectroscopy analysis. The addition of Na to eutectic Zn-Al caused the spreading area to decrease and the thickness of intermetallic compound layers at the interface to reduce. Samples after the spreading test at 500 °C for 1 min were subjected to aging for 1, 10, and 30 days at 120,170, and 250 °C. The greater thicknesses of IMC layers were obtained for a temperature of 250 °C. With increasing Na content in Zn-Al + Na alloys, the thickness reduced, which correlates to the highest value of activation energy for Zn-Al with 1% Na.

  20. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine.

    PubMed

    Lee, Young Hwa; Park, Hae In; Choi, Joon Sig

    2016-02-10

    A glycol chitosan-based polymer that spontaneously assembles with plasmid DNA into nanorods was evaluated as a non-viral vector for gene delivery. Glycol chitosan-methyl acrylate-polyethylenimine (GMP) was synthesized by grafting polyethylenimine onto glycol chitosan via amidation after Michael addition using methyl acrylate. Gel retardation and PicoGreen assay experiments showed complete complex formation with plasmid DNA. GMP/pDNA complexes were characterized using biophysical techniques and were found to be positively charged rod-shape structures with widths in the nanometer scale and lengths in the micrometer scale. Transfection efficiency and cytotoxicity of GMP polymer was evaluated in human epithelial ovary carcinoma (HeLa) cells, human embryonic kidney 293 (HEK293) cells, and human hepatocellular liver carcinoma (HepG2) cells, in comparison to high molecular weight polyethylenimine, a commonly used transfection reagent. Intracellular polymer uptake was compared and confirmed by confocal microscopy. The results demonstrate that GMP, a hybrid polymer of glycol chitosan grafted with branched polyethylenimine, may serve as a promising vehicle for efficient gene delivery.

  1. Reaction of homopiperazine with endogenous formaldehyde: a carbon hydrogen addition metabolite/product identified in rat urine and blood.

    PubMed

    Martin, Scott; Lenz, Eva M; Temesi, Dave; Wild, Martin; Clench, Malcolm R

    2012-08-01

    Drug reactivity and bioactivation are of major concern to the development of potential drug candidates in the pharmaceutical industry (Chem Res Toxicol 17:3-16, 2004; Chem Res Toxicol 19:889-893, 2006). Identifying potentially problematic compounds as soon as possible in the discovery process is of great importance, so often early in vitro screening is used to speed up attrition. Identification of reactive moieties is relatively straightforward with appropriate in vitro trapping experiments; however, on occasion unexpected reactive intermediates can be found later during more detailed in vivo studies. Here, we present one such example involving a series of compounds from an early drug discovery campaign. These compounds were found to react with endogenous formaldehyde from a rat in vivo study, resulting in the formation of novel +13-Da bridged homopiperazine products (equivalent to the addition of one carbon and one hydrogen atom), which were detected in urine and blood. The identification of these +13-Da products and their origin and mechanism of formation are described in detail through analyses of a representative homopiperazine compound [N-(3-(3-fluorophenyl)-1,2,4-thiadiazol-5-yl)-4-(4-isopropyl-1,4-diaze-pane-2-carbonyl)piperazine-1-carboxamide (AZX)] by liquid chromatography-UV-mass spectrometry, (1)H NMR, and chemical tests. PMID:22550270

  2. Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS.

    PubMed

    Guo, Wei; Hu, Shenghong; Li, Xiaofang; Zhao, Jian; Jin, Shesheng; Liu, Wenjuan; Zhang, Hongfei

    2011-05-15

    Direct determination of trace arsenic in high chlorine food samples by ICP-MS is complicated by the presence of ArCl(+) interferences, and the high first ionization energy of As (9.81 eV) also results in low analytical sensitivity in ICP-MS. In this work, two strategies based on ion-molecule reactions were successfully used to eliminate ArCl spectral interference in a dynamic reaction cell (DRC). The interference ion ((40)Ar(35)Cl(+)) was directly removed by the reaction with methane gas, and the background signal was reduced by up to 100-fold at m/z 75. Alternatively, by using molecule oxygen as the reaction gas, (75)As(+) was effectively converted to (75)As(16)O(+) that could be detected at m/z 91 where the background is low. The poor signal intensity of As or AsO was improved 3-4 times by addition of 4% methanol in the analyzed solutions. The limit of quantitation (LOQ) for (75)As (CH(4)-DRC method) and (75)As(16)O (O(2)-DRC method) was 0.8 and 0.3 ng g(-1) and the analytical results of seaweed and yellow croaker standard reference materials were in good agreement with the certified values. As the routine arsenic monitoring method in our laboratory, it was applied to the accuracy determination of 119 high chlorine food samples from eight different markets of Beijing.

  3. Expanding Mg-Zn hybrid chemistry: inorganic salt effects in addition reactions of organozinc reagents to trifluoroacetophenone and the implications for a synergistic lithium-magnesium-zinc activation.

    PubMed

    Armstrong, David R; Clegg, William; García-Álvarez, Pablo; Kennedy, Alan R; McCall, Matthew D; Russo, Luca; Hevia, Eva

    2011-07-18

    Numerous organic transformations rely on organozinc compounds made through salt-metathesis (exchange) reactions from organolithium or Grignard reagents with a suitable zinc precursor. By combining X-ray crystallography, NMR spectroscopy and DFT calculations, this study sheds new light on the constitution of the organometallic species involved in this important synthetic tool. Investigations into the metathesis reactions of equimolar amounts of Grignard reagents (RMgX) and ZnCl(2) in THF led to the isolation of novel magnesium-zinc hybrids, [{(thf)(2)Mg(μ-Cl)(3)ZnR}(2)] (R=Et, tBu, nBu or o-OMe-C(6)H(4)), which exhibit an unprecedented structural motif in mixed magnesium-zinc chemistry. Furthermore, theoretical modelling of the reaction of EtMgCl with ZnCl(2) reveals that formation of the mixed-metal compound is thermodynamically preferred to that of the expected homometallic products, RZnCl and MgCl(2). This study also assesses the alkylating ability of hybrid 3 towards the sensitive ketone trifluoroacetophenone, revealing a dramatic increase in the chemoselectivity of the reaction when LiCl is introduced as an additive. This observation, combined with recent related breakthroughs in synthesis, points towards the existence of a trilateral Li/Mg/Zn synergistic effect. PMID:21656589

  4. Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Chuang, Shih-Ching; Sung, Shih-Ping; Deng, Jie-Cheng; Chiou, Mong-Feng; Hsu, Day-Shin

    2016-02-21

    Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles provide highly substituted syn-selective cyclopentenes appending the phosphorus ylide moiety in good yield with a diastereoselectivity of up to 100% through resonance-derived 1,5-dipolar species as the key intermediates, via the nucleophilic α(δ')-attack of phosphines toward enynedioates followed by addition to benzylidene malononitriles and 5-exo-dig cyclization. Through computational analyses, the overall reactions for the formation of syn- and anti-diastereomers are both exothermic with 65.6 and 66.3 kcal mol(-1) at the B3LYP-D3/6-31G(d) level of theory and were found to be kinetically controlled, which favours the formation of syn-diastereomers.

  5. Bis(trifluoromethyl)methylene Addition to Vinyl-Terminated SAMs: A Gas-Phase C–C Bond-Forming Reaction on a Surface

    PubMed Central

    2014-01-01

    Vinyl-terminated self-assembled monolayers (SAMs) on silicon oxide substrates were chemically modified by the addition of a bis(trifluoromethyl)methylene group in a rare gas-phase C–C bond-forming reaction to directly generate films carrying terminal CF3 groups. The vinyl-terminated films were treated with hexafluoroacetone azine (HFAA) for modification. The films were characterized with ellipsometry, contact angle measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). In this study, we find that for optimized conditions clean reactions occur on a surface between SAMs with terminal olefins and HFAA, and the product is consistent with bis(trifluoromethyl)cyclopropanation formation after nitrogen extrusion. PMID:24806554

  6. Description of nucleon-transfer and fusion reactions within time-dependent approaches and coupled-channel method

    SciTech Connect

    Samarin, V. V.

    2015-01-15

    The time-dependent Schrödinger equation and the method of perturbed stationary states that is based on the expansion of the total wave function for the system of two nuclear cores and a nucleon in a set of nucleon two-center functions are used to describe nucleon transfers and fusion in low-energy nuclear reactions. A set of multichannel equations that couple the relative motion of nuclei to the motion of the nucleon is obtained. The kinetic-energy coupling matrix is similar to the coupling matrix for collective excitations of nuclei.

  7. Shedding new light on ZnCl2-mediated addition reactions of Grignard reagents to ketones: structural authentication of key intermediates and diffusion-ordered NMR studies.

    PubMed

    Armstrong, David R; Clegg, William; García-Alvarez, Pablo; McCall, Matthew D; Nuttall, Lorraine; Kennedy, Alan R; Russo, Luca; Hevia, Eva

    2011-04-11

    Building on recent advances in synthesis showing that the addition of inorganic salts to Grignard reagents can greatly enhance their performance in alkylation reactions to ketones, this study explores the reactions of EtMgCl with benzophenone in the presence of stoichiometric or catalytic amounts of ZnCl(2) with the aim of furthering the understanding of the role and constitution of the organometallic species involved in these transformations. Investigations into the metathesis reactions of three molar equivalents of EtMgCl with ZnCl(2) led to the isolation and characterisation (X-ray crystallography and (1)H and (13)C NMR spectroscopy) of novel magnesium "zinc-rich" zincate [{(THF)(6)Mg(2)Cl(3)}(+){Zn(2)Et(5)}(-)] (1), whose complicated constitution in THF solutions was assessed by variable-temperature (1)H DOSY NMR studies. Compound 1 reacted with one equivalent of benzophenone to yield magnesium magnesiate [{(THF)(6)Mg(2)Cl(3)}(+){Mg(2)(OC(Et)Ph(2))(2)Cl(3)(THF)}(-)] (3), whose structure was determined by X-ray crystallography. (1)H NMR monitoring of this reaction showed two equivalents of ZnEt(2) formed as a co-product, which together with the "magnesium only constitution" of 3 provides experimental insights into how zinc can be efficiently recycled in these reactions, and therefore used catalytically. The chemoselectivity of this reaction can be rationalised in terms of the synergic effect of magnesium and zinc and contrasts with the results obtained when benzophenone was allowed to react with EtMgCl in the absence of ZnCl(2), where the reduction of the ketone takes place preferentially. The reduction product [{(THF)(5)Mg(3)Cl(4){OC(H)Ph(CF(3))}(2)] (4) obtained from the reaction of EtMgCl with 2,2,2-trifluoroacetophenone was established by X-ray crystallography and multinuclear ((1)H, (13)C and (19)F) NMR spectroscopy. Compounds 3 and 4 exhibit new structural motifs in magnesium chemistry having MgCl(2) integrated within their constitution, which highlights

  8. Kinetic method for differentiating mechanisms for ligand exchange reactions: application to test for substrate channeling in glycolysis.

    PubMed

    Wu, X M; Gutfreund, H; Chock, P B

    1992-02-25

    We have derived analytical expressions for the kinetics of the two mechanisms involved in ligand substitution reactions. These mechanisms are (i) a dissociative mechanism in which the leaving ligand is first dissociated prior to the binding of the incoming ligand and (ii) an associative mechanism where a ternary complex is formed between the incoming ligand and the complex containing the leaving ligand. The equations obtained provide the theoretical basis for differentiating these two mechanisms on the basis of their kinetic patterns of the displacement reactions. Analysis of these equations shows that an associative mechanism can only generate an increasing kinetic pattern for the observed pseudo-first-ordered rate constants as a function of increasing concentration of the incoming ligand and plateaus, in most cases, at a value higher than the off-rate constant of the leaving ligand. However, a dissociative mechanism can generate either an increasing or a decreasing (kapp decreases with increasing concentrations of the incoming ligand) kinetic pattern, depending on the magnitudes of the individual rate constants involved, and, in either case, it will plateau at kapp equal to the koff of the leaving ligand. Therefore, the decreasing kinetic pattern is a hallmark for a dissociative mechanism. This general method was used to settle the dispute of whether NADH is transferred directly via the enzyme-enzyme complex between glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) and L-lactate dehydrogenase (LDH; EC 1.1.1.27).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1536852

  9. Ambiphilic properties of SF5CF2CF2Br derived perfluorinated radical in addition reactions across carbon-carbon double bonds.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2015-03-01

    The extraordinary properties of the pentafluorosulfanyl (SF5) group attract attention of organic chemists. While numerous SF5-substituted compounds have been synthesized, the direct introduction of SF5(CF2)n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF5CF2CF2 radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF5CF2CF2Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

  10. Interference Effect between ϕ and Λ(1520) Production Channels in the γp→K^{+}K^{-}p Reaction near Threshold.

    PubMed

    Ryu, S Y; Ahn, J K; Nakano, T; Ahn, D S; Ajimura, S; Akimune, H; Asano, Y; Chang, W C; Chen, J Y; Daté, S; Ejiri, H; Fujimura, H; Fujiwara, M; Fukui, S; Hasegawa, S; Hicks, K; Horie, K; Hotta, T; Hwang, S H; Imai, K; Ishikawa, T; Iwata, T; Kato, Y; Kawai, H; Kino, K; Kohri, H; Kon, Y; Kumagai, N; Lin, P J; Maeda, Y; Makino, S; Matsuda, T; Matsuoka, N; Mibe, T; Miyabe, M; Miyachi, M; Morino, Y; Muramatsu, N; Murayama, R; Nakatsugawa, Y; Nam, S I; Niiyama, M; Nomachi, M; Ohashi, Y; Ohkuma, H; Ohta, T; Ooba, T; Oshuev, D S; Parker, J D; Rangacharyulu, C; Sakaguchi, A; Sawada, T; Shagin, P M; Shiino, Y; Shimizu, H; Strokovsky, E A; Sugaya, Y; Sumihama, M; Tokiyasu, A O; Toi, Y; Toyokawa, H; Tsunemi, T; Uchida, M; Ungaro, M; Wakai, A; Wang, C W; Wang, S C; Yonehara, K; Yorita, T; Yoshimura, M; Yosoi, M; Zegers, R G T

    2016-06-10

    The ϕ-Λ(1520) interference effect in the γp→K^{+}K^{-}p reaction has been measured for the first time in the energy range from 1.673 to 2.173 GeV. The relative phases between ϕ and Λ(1520) production amplitudes were obtained in the kinematic region where the two resonances overlap. The measurement results support strong constructive interference when K^{+}K^{-} pairs are observed at forward angles but destructive interference for proton emission at forward angles. Furthermore, the observed interference effect does not account for the sqrt[s]=2.1  GeV bump structure in forward differential cross sections for ϕ photoproduction. This fact suggests possible exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange, or rescattering processes via other hyperon states. PMID:27341225

  11. Pulse radiolytic and product analysis studies of the reaction of hydroxyl radicals with cinnamic acid. The relative extent of addition to the ring and side chain

    SciTech Connect

    Bobrowski, K.; Raghavan, N.V.

    1982-10-28

    Using pulse radiolysis with optical detection and high-pressure liquid chromatography (HPCL), it has been shown that reaction of OH radicals with cinnamic acid (CA in aqueous solutions leads to addition to both the ring and the olefinic group. The relative extent of the above two pathways was estimated as 3:7, respectively. Benzyl- and hydroxycyclohexadienyl-type radicals were observed with absorption maxima at 320 (310) and 370 (365) nm depending on the pH of the solution. In the pH region 4.9 to 5.7 the absorption at 305 to 315 nm decays during the first 5 ..mu..s after the pulse. The dependence of the rate constants and absorption spectra on pH suggests that this decay is due to an equilibration process between acid-base forms of benzyl-type radicals formed through OH addition to te olefinic group.

  12. Brief communication: Additional cases of maxillary canine-first premolar transposition in several prehistoric skeletal assemblages from the Santa Barbara Channel Islands of California.

    PubMed

    Sholts, Sabrina B; Clement, Anna F; Wärmländer, Sebastian K T S

    2010-09-01

    This article identifies and discusses seven new cases of complete maxillary canine-premolar transposition in ancient populations from the Santa Barbara Channel region of California. A high frequency of this tooth transposition has been previously documented within a single prehistoric cemetery on one of the Channel Islands. A total of 966 crania representing 30 local sites and about 7,000 years of human occupation were examined, revealing an abnormally high prevalence of this transposition trait among islanders during the Early period of southern California prehistory ( approximately 5500-600 B.C.). One of the affected crania is from a cemetery more than 7,000-years-old and constitutes the earliest case of tooth transposition in humans so far reported. The results are consistent with findings by other studies that have indicated inbreeding among the early Channel Islands groups. Together with the normal transposition rates among mainland populations, the decreasing prevalence of maxillary canine-first premolar transposition among island populations across the Holocene suggests that inbreeding on the northern Channel Islands had all but ceased by the end of the first millennium B.C., most likely as a result of increased cross-channel migration and interaction.

  13. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  14. Mixtures of l-Amino Acids as Reaction Medium for Formation of Iron Nanoparticles: The Order of Addition into a Ferrous Salt Solution Matters

    PubMed Central

    Šišková, Karolína M.; Machala, Libor; Tuček, Jiři; Kašlík, Josef; Mojzeš, Peter; Zbořil, Radek

    2013-01-01

    Owing to Mössbauer spectroscopy, an advanced characterization technique for iron-containing materials, the present study reveals previously unknown possibilities using l-amino acids for the generation of magnetic particles. Based on our results, a simple choice of the order of l-amino acids addition into a reaction mixture containing ferrous ions leads to either superparamagnetic ferric oxide/oxyhydroxide particles, or magnetically strong Fe0-Fe2O3/FeOOH core-shell particles after chemical reduction. Conversely, when ferric salts are employed with the addition of selected l-amino acids, only Fe0-Fe2O3/FeOOH core-shell particles are observed, regardless of the addition order. We explain this phenomenon by a specific transient/intermediate complex formation between Fe2+ and l-glutamic acid. This type of complexation prevents ferrous ions from spontaneous oxidation in solutions with full air access. Moreover, due to surface-enhanced Raman scattering spectroscopy we show that the functional groups of l-amino acids are not destroyed during the borohydride-induced reduction. These functionalities can be further exploited for (i) attachment of l-amino acids to the as-prepared magnetic particles, and (ii) for targeted bio- and/or environmental applications where the surface chemistry needs to be tailored and directed toward biocompatible species. PMID:24071943

  15. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers.

    PubMed

    Studentova, Vendula; Papagiannitsis, Costas C; Izdebski, Radoslaw; Pfeifer, Yvonne; Chudackova, Eva; Bergerova, Tamara; Gniadkowski, Marek; Hrabak, Jaroslav

    2015-03-01

    Carbapenemase-mediated resistance to carbapenems in Enterobacteriaceae has become the main challenge in the treatment and prevention of infections recently. The partially unnoticed spread of OXA-48-type carbapenemase producers is usually assigned to low minimum inhibitory concentrations (MICs) of carbapenems that OXA-48-producing isolates often display. Therefore, there is an urgent need of specific and sensitive methods for isolation and detection of OXA-48 producers in clinical microbiology diagnostics. The influence of bicarbonates on carbapenem MICs against carbapenemase-producing Enterobacteriaceae was tested. We also checked whether the addition of bicarbonates to liquid media supplemented with meropenem may facilitate the selective enrichment of various carbapenemase producers in cultures. Furthermore, the sensitivity of carbapenemase confirmation by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and spectrophotometric hydrolysis assays upon the addition of NH4HCO3 was examined. The addition of NaHCO3 significantly increased MICs of ertapenem and meropenem for OXA-48 producers. Furthermore, liquid media supplemented with NaHCO3 and meropenem were reliable for the selective enrichment of carbapenemase producers. The presence of NH4HCO3 in buffers used in the spectrophotometric and MALDI-TOF MS carbapenemase detection increased the sensitivity of that assay. Our results demonstrate that bicarbonates in media or reaction buffers can enhance the sensitivity of screening methods and diagnostic tests for carbapenemase producers.

  16. Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

    DOE PAGES

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importancemore » in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less

  17. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran.

    PubMed

    Antonov, Ivan O; Zádor, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L; Taatjes, Craig A; Sheps, Leonid

    2016-08-25

    We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH. PMID:27441526

  18. Addition Reactions of Me3 SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands.

    PubMed

    Yang, Zhi; Yi, Yafei; Zhong, Mingdong; De, Sriman; Mondal, Totan; Koley, Debasis; Ma, Xiaoli; Zhang, Dongxiang; Roesky, Herbert W

    2016-05-10

    The reaction of one equivalent of LAlH2 (1; L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 , β-diketiminate ligand) with two equivalents of 2-mercapto-4,6-dimethylpyrimidine hydrate resulted in LAl[(μ-S)(m-C4 N2 H)(CH2 )2 ]2 (2) in good yield. Similarly, when N-2-pyridylsalicylideneamine, N-(2,6-diisopropylphenyl)salicylaldimine, and ethyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate were used as starting materials, the corresponding products LAl[(μ-O)(o-C6 H4 )CN(C5 NH4 )]2 (3), LAlH[(μ-O)(o-C4 H4 )CN(2,6-iPr2 C6 H3 )] (4), and LAl[(μ-NH)(o-C8 SH8 )(COOC2 H5 )]2 (5) were isolated. Compounds 2-5 were characterized by (1) H and (13) C NMR spectroscopy as well as by single-crystal X-ray structural analysis. Surprisingly, compounds 2-5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  20. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  1. Observation of the 3n Evaporation Channel in the Complete Hot-Fusion Reaction {sup 26}Mg+{sup 248}Cm Leading to the New Superheavy Nuclide {sup 271}Hs

    SciTech Connect

    Dvorak, J.; Dvorakova, Z.; Kruecken, R.; Nebel, F.; Perego, R.; Schuber, R.; Tuerler, A.; Wierczinski, B.; Yakushev, A.; Bruechle, W.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Chelnokov, M.; Kuznetsov, A.; Yeremin, A.; Duellmann, Ch. E.; Eberhardt, K.; Nagame, Y.

    2008-04-04

    The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6{<=}Z{<=}18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and the observation of the new nuclide {sup 271}Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets.

  2. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang

    2016-09-01

    Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.

  3. Born-Oppenheimer and Renner-Teller coupled-channel quantum reaction dynamics of O((3)P) + H2(+)(X(2)Σg(+)) collisions.

    PubMed

    Gamallo, Pablo; Defazio, Paolo; González, Miguel; Paniagua, Miguel; Petrongolo, Carlo

    2015-09-28

    We present Born-Oppenheimer (BO) and Renner-Teller (RT) time dependent quantum dynamics studies of the reactions O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) and OH(X(2)Π) + H(+). We consider the OH2(+) X[combining tilde](2)A'' and Ã(2)A' electronic states that correlate with a linear (2)Π species. The electronic angular momenta operators L[combining circumflex] and L[combining circumflex](2) are considered in nonadiabatic coupled-channel calculations, where the associated RT effects are due to diagonal V(RT) potentials that add up to the PESs and to off-diagonal C(RT) couplings between the potential energy surfaces (PESs). Initial-state-resolved reaction probabilities PI, integral cross sections σI, and rate constants kI are obtained using recent ab initio PESs and couplings and the real wavepacket formalism. Because the PESs are strongly attractive, PI have no threshold energy and are large, σI decrease with collision energy, and kI depend little on the temperature. The X[combining tilde](2)A'' PES is up to three times more reactive than the Ã(2)A' PES and H2(+) rotational effects (j0 = 0, 1) are negligible. The diagonal V(RT) potentials are strongly repulsive at the collinearity and nearly halve all low-energy observables with respect to the BO ones. The off-diagonal C(RT) couplings are important at low partial waves, where they mix the X[combining tilde](2)A'' and Ã(2)A' states up to ∼20%. However, V(RT) effects predominate over the C(RT) ones that change at most by ∼19% the BO values of σI and kI. The reaction O((3)P) + H2(+)(X(2)Σg(+)) → OH(+)(X(3)Σ(-)) + H((2)S) is probably one of the most reactive atom + diatom collisions because its RT rate constant at room temperature is equal to 2.26 × 10(-10) cm(3) s(-1). Within the BO approximation, the present results agree rather well with recent quasiclassical and centrifugal-sudden data using the same PESs.

  4. The electrochemical reactions of pure In with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance

    SciTech Connect

    Hawks, Samantha A; Baggetto, Loic; Bridges, Craig A; Veith, Gabriel M

    2014-01-01

    Indium thin films are evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g-1 for Li and 467 mAh g-1 for Na). The native surface oxides are responsible for the anomalous electrolyte decomposition during the first cycle while oxidized In species are found to be responsible for the electrolyte decomposition during the subsequent cycles. The presence of 5wt% FEC electrolyte additive suppresses the occurrence of the anomalous electrolyte decomposition during the first cycle but is not sufficient to prevent the decomposition upon further cycling from 0 to 2 V. Prevention of the anomalous decomposition can be achieved by restricting the charge cut-off, for instance at 1.1 V, or by using larger amounts of FEC. The In films show moderately good capacity retention with storage capacities when cycled with Li (950 mAh g-1) but significantly less when cycled with Na (125 mAh g-1). XRD data reveal that several known Li-In phases (i.e LiIn, Li3In2, LiIn2 and Li13In3) form during the electrochemical reaction. In contrast, the reaction with Na is severely limited. The largest amount of inserted Na is evidenced for cells short-circuited 40 hrs at 65C, for which the XRD data show the coexistence of NaIn, In, and an unknown phase. During cycling, mechanical degradation due to repeated expansion/shrinkage, evidenced by SEM, coupled with SEI formation is the primary source of the capacity fade. Finally, we show that the In thin films exhibit very high rate capability for both Li (100 C) and Na (30 C).

  5. C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles.

    PubMed

    Hatano, Manabu; Yamashita, Kenji; Ishihara, Kazuaki

    2015-05-15

    Highly practical synthetic methods were developed for the C- and N-selective Grignard addition reactions of N-4-MeOC6H4-protected α-aldimino esters in the presence or absence of zinc(II) chloride. Diastereoselective C-alkyl addition, tandem C-alkyl addition-N-alkylation, and some transformations to synthetically useful optically active azacycles were demonstrated.

  6. A Tin(IV) Chloride Promoted Tandem C-O Bond Cleavage/Nazarov Cyclization/Nucleophilic Addition Reaction of 1,1-Disubstituted Allylic Ethers toward the Synthesis of Multisubstituted Indenes.

    PubMed

    Yang, Chao; Xu, Zheng-Liang; Shao, Hui; Mou, Xue-Qing; Wang, Jie; Wang, Shao-Hua

    2015-11-01

    A novel SnCl4-promoted tandem reaction toward multisubstituted indenes via a sequential C-O bond cleavage/Nazarov cyclization/nucleophilic addition reaction has been developed to afford a series of multisubstituted indenes with an all-carbon quaternary center in moderate to good yields. PMID:26465205

  7. Parallel channels and rate-limiting steps in complex protein folding reactions: prolyl isomerization and the alpha subunit of Trp synthase, a TIM barrel protein.

    PubMed

    Wu, Ying; Matthews, C Robert

    2002-10-18

    A kinetic folding mechanism for the alpha subunit of tryptophan synthase (alphaTS) from Escherichia coli, involving four parallel channels with multiple native, intermediate and unfolded forms, has recently been proposed. The hypothesis that cis/trans isomerization of several Xaa-Pro peptide bonds is the source of the multiple folding channels was tested by measuring the sensitivity of the three rate-limiting phases (tau(1), tau(2), tau(3)) to catalysis by cyclophilin, a peptidyl-prolyl isomerase. Although the absence of catalysis for the tau(1) (fast) phase leaves its assignment ambiguous, our previous mutational analysis demonstrated its connection to the unique cis peptide bond preceding proline 28. The acceleration of the tau(2) (medium) and tau(3) (slow) refolding phases by cyclophilin demonstrated that cis/trans prolyl isomerization is also the source of these phases. A collection of proline mutants, which covered all of the remaining 18 trans proline residues of alphaTS, was constructed to obtain specific assignments for these phases. Almost all of the mutant proteins retained the complex equilibrium and kinetic folding properties of wild-type alphaTS; only the P217A, P217G and P261A mutations caused significant changes in the equilibrium free energy surface. Both the P78A and P96A mutations selectively eliminated the tau(1) folding phase, while the P217M and P261A mutations eliminated the tau(2) and tau(3) folding phases, respectively. The redundant assignment of the tau(1) phase to Pro28, Pro78 and Pro96 may reflect their mutual interactions in non-random structure in the unfolded state. The non-native cis isomers for Pro217 and Pro261 may destabilize an autonomous C-terminal folding unit, thereby giving rise to kinetically distinct unfolded forms. The nature of the preceding amino acid, the solvent exposure, or the participation in specific elements of secondary structure in the native state, in general, are not determinative of the proline residues whose

  8. Assessment of a phytogenic feed additive (Digestarom P.E.P. MGE) on growth performance, processing yield, fillet composition, and survival of channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of feed additives to improve production has been identified as an important area for development in aquaculture. A study was conducted to investigate the effects of a phytogenic feed additive (Digestarom® P.E.P. MGE) on growth performance, processing yield, fillet composition, and survival ...

  9. Effects of dietary addition of vitamins C and D3 on growth and calcium and phosphorus content of pond-cultured channel catfish

    USGS Publications Warehouse

    Launer, C.A.; Tiemeier, O.W.; Deyoe, C.W.

    1978-01-01

    Fingerling channel catfish, Ictalurus punctatus, were fed one of three diets: one deficient in vitamin C (ascorbic acid), one deficient in vitamin D3 (cholecalciferol), or one containing both vitamins. Semimonthly from May to September and monthly from September to February, calcium and phosphorus were determined in eviscerated bodies and fat-free skeletons by neutron activation analysis. Body weight gains, survival rate, and feed conversion rates were determined for the May to September period. Fish on the three diet regimens showed no significant difference in weight gain, feed conversion, or survival. Interactions between sampling date and diet indicated no correlation between vitamin C or D3 and the calcium and phosphorus in eviscerated bodies and fat-free skeletons of the fish.

  10. Market surveillance on non-halal additives incorporated in surimi based products using polymerase chain reaction (PCR)-southern hybridization analysis

    NASA Astrophysics Data System (ADS)

    Aravindran, S.; Sahilah, A. M.; Aminah, A.

    2014-09-01

    Halal surveillance on halal ingredients incorporated in surimi based products were studied using polymerase chain reaction (PCR)-southern hybridization on chip analysis. The primers used in this technique were targeted on mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence which able to differentiate 7 type (beef, chicken, duck, goat, buffalo, lamb and pork) of species on a single chip. 17 (n = 17*3) different brands of surimi-based product were purchased randomly from Selangor local market in January 2013. Of 17 brands, 3 (n = 3*3) brands were positive for chicken DNA, 1 (n = 1*3) brand was positive for goat DNA, and the remainder 13 brands (n = 13*3) have no DNA species detected. The sensitivity of PCR-southern hybridization primers to detect each meat species was 0.1 ng. In the present study, it is evidence that PCR-Southern Hybridization analysis offered a reliable result due to its highly specific and sensitive properties in detecting non-halal additive such as plasma protein incorporation in surimi-based product.

  11. Reaction Mechanism and Regioselectivity of the Bingel-Hirsch Addition of Dimethyl Bromomalonate to La@C2v -C82.

    PubMed

    Martínez, Juan Pablo; Garcia-Borràs, Marc; Osuna, Sílvia; Poater, Jordi; Bickelhaupt, F Matthias; Solà, Miquel

    2016-04-18

    We quantum chemically explore the thermodynamics and kinetics of all 65 possible mechanistic pathways of the Bingel-Hirsch addition of dimethyl bromomalonate to the endohedral metallofullerene La@C2v -C82 that result from the combination of 24 nonequivalent carbon atoms and 35 different bonds present in La@C2v -C82 by using dispersion-corrected DFT calculations. Experimentally, this reaction leads to four singly bonded derivatives and one fulleroid adduct. Of these five products, only the singly bonded derivative on C23 could be experimentally identified unambiguously. Our calculations show that La@C2v -C82 is not particularly regioselective under Bingel-Hirsch conditions. From the obtained results, however, it is possible to make a tentative assignment of the products observed experimentally. We propose that the observed fulleroid adduct results from the attack at bond 19 and that the singly bonded derivatives correspond to the C2, C19, C21, and C23 initial attacks. However, other possibilities cannot be ruled out completely.

  12. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  13. A Dual Colorimetric/Fluorescence System for Determining pH Based on the Nucleophilic Addition Reaction of an o-Hydroxymerocyanine Dye.

    PubMed

    Yue, Yongkang; Huo, Fangjun; Lee, Songyi; Yin, Caixia; Yoon, Juyoung; Chao, Jianbin; Zhang, Yongbin; Cheng, Fangqin

    2016-01-22

    Owing to their ability to monitor pH in a precise and rapid manner, optical probes have widely been developed for biological and nonbiological applications. The strategies thus far employed to determine pH rely on two types of processes including reversible protonation of amine nitrogen atoms and deprotonation of phenols. We have developed a novel dual, colorimetric/fluorescence system for determining the pH of a solution. This system utilizes an o-hydroxymerocyanine dye that undergoes a nucleophilic addition reaction that subsequently causes reversible structural changes interconverting a merocyanine to a spirocyanine and a spirocyanine to a spiropyran. It was demonstrated that the dye can be employed to measure the pH of solutions in the 2.5-5.75 and 9.6-11.8 ranges with color changes from yellow to dark blue and then to lavender. Moreover, the fluorescence response associated with the spirocyanine-spiropyran transformation of the dye occurring in alkaline solutions provides a precise method. PMID:26603952

  14. Measurement of cross sections for reactions with evaporation of light particles in the complete fusion channel in bombardment of Au and Pb by Ne ions

    SciTech Connect

    Andreev, A.N.; Bogdanov, D.D.; Eremin, A.V.; Kabachenko, A.P.; Orlova, O.A.; Ter-Akop'yan, G.M.; Chepigin, V.I. )

    1989-09-01

    The experiments were carried out with use of the recoil-nucleus kinematic separator Vasilisa. Data were obtained on the characteristics of the radioactive decay of two isotopes: {sup 225}U({ital E}{alpha}=7.87{plus minus}0.02 MeV, {ital T}{sub 1/2}=0.03{sup +0.02}{sub {minus}0.01} sec) and {sup 226}U({ital E}{alpha}=7.57{plus minus}0.02 MeV, {ital T}{sub 1/2}=0.25{sup +0.15}{sub {minus}0.10} sec). The decay characteristics for the previously known nuclides {sup 214} Ac, {sup 223}Th, and {sup 219,220} Ra have been refined. It is shown that in the region of fissile nuclei there is an additional factor which increases the relative yield of ({alpha},{ital xn}) reactions. Attention is called to the possible use of data on ({alpha},{ital xn}) reaction cross sections for investigation of the dependence of the height of the fission barrier on the excitation energy of the nucleus.

  15. 3,2-Hydroxypyridinone (3,2-HOPO) vinyl sulfonamide and acrylamide linkers: Aza-Michael addition reactions and the preparation of poly-HOPO chelators.

    PubMed

    Martinez, Gloria; Arumugam, Jayanthi; Jacobs, Hollie K; Gopalan, Aravamudan S

    2013-02-13

    The HOPO vinyl sulfonamide 3 and the corresponding HOPO acrylamide 10, were easily prepared by short synthetic sequences. Investigation of the aza-Michael reactions of these linkers showed that they proceed at a higher rate in solvent systems containing water. The scope and limits of the aza-Michael reactions of 3 and 10 were examined. Reagents 3 and 10 reacted cleanly with piperazine to give the corresponding adducts which were deprotected to give the di-HOPO ligands 7 and 16. Reaction of HOPO acrylamide 10 with 1,4,7-triazacyclononane gave the tris-adduct 17 which was deprotected to give the desired tris-HOPO ligand 18. Overall, the aza-Michael reactions of 3 and 10 appear to be governed not only by the solvent but also by the nature of the amine and the solubility of the reaction intermediates.

  16. KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.

    2007-10-01

    A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic

  17. KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2008-11-01

    A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the

  18. C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles.

    PubMed

    Hatano, Manabu; Yamashita, Kenji; Ishihara, Kazuaki

    2015-05-15

    Highly practical synthetic methods were developed for the C- and N-selective Grignard addition reactions of N-4-MeOC6H4-protected α-aldimino esters in the presence or absence of zinc(II) chloride. Diastereoselective C-alkyl addition, tandem C-alkyl addition-N-alkylation, and some transformations to synthetically useful optically active azacycles were demonstrated. PMID:25918830

  19. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  20. Phosphine-Catalyzed Addition/Cycloaddition Domino Reactions of β'-Acetoxy Allenoate: Highly Stereoselective Access to 2-Oxabicyclo[3.3.1]nonane and Cyclopenta[a]pyrrolizine.

    PubMed

    Gu, Yiting; Hu, Pengfei; Ni, Chunjie; Tong, Xiaofeng

    2015-05-20

    Two classes of phosphine-catalyzed addition/cycloaddition domino reactions of β'-acetoxy allenoate 1 have been developed. The reaction of 1 with 2-acyl-3-methyl-acrylonitrile 2 readily occurs to give 2-oxabicyclo[3.3.1]nonane 3, furnishing the β'-addition/[4 + 4] cycloaddition domino sequence. In this sequence, β'C of allenoate 1 is an electrophilic center, and its β'C and γC serve as a 1,4-dipole. When the other reaction partner is switched to 2-acyl-3-(2-pyrrole)-acrylonitrile 8, a γ-addition/[3 + 2] cycloaddition domino reaction is instead observed, in which allenoate 1 exhibits dual electrophilic reactivity of γC and 1,3-dipole chemical behavior of βC and β'C. Furthermore, both of these two asymmetric variants have also been achieved with up to 93% ee. The domino reactions presented in this report are valuable for highly stereoselective construction of complex structures under mild reaction conditions.

  1. Photoreversible oxidative-addition, reductive-elimination reactions Fe + H/sub 2/ in equilibrium FeH/sub 2/ in low-temperature matrices

    SciTech Connect

    Ozin, G.A.; McCaffrey, J.G.

    1984-02-16

    307-nm photoexcited Fe atoms in H/sub 2//rare gas 12 K matrices undergo an activated and concerted insertion reaction into the H-H bond of H/sub 2/ to form iron dihydride, FeH/sub 2/, having a nonlinear geometry, with no detectable involvement of H-atom abstraction products FeH + H, higher iron hydrides FeH/sub x/ (x greater than or equal to 3), or molecular dihydrogen complexes, Fe(H/sub 2/). The microscopic reverse of the photoinsertion reaction can be induced by 440-nm photoexcitation of FeH/sub 2/ at 12 K and proceeds by a nonactivated and concerted reductive-elimination pathway with no observable participation of FeH, H, FeH/sub x/ (x greater than or equal to 3), or Fe(H/sub 2/) reaction intermediates.

  2. Measurement of toverline{t} production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at √{s} = 8 {TeV}

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Yonamine, R.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Lomidze, D.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Miniello, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Primavera, F.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bellato, M.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; da Cruz E Silva, C. Beir Ao; di Francesco, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, L.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Klyukhin, V.; Kodolova, O.; Korneeva, N.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; de La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; di Giovanni, G. P.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Ackert, A.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, L. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Bierwagen, K.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Dildick, S.; Eusebi, R.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; Collaboration, [Authorinst]The Cms

    2016-07-01

    Jet multiplicity distributions in top quark pair ({t}{overline{t}}) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 {fb}^ {-1}. The measurement is performed in the dilepton decay channels (e^+e^-, μ^+ μ^-, and e^{±} μ^{∓}). The absolute and normalized differential cross sections for {t}overline{t} production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential {t overline{t} b} and {t overline{t} b overline{b}} cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

  3. Measurement of $$\\mathrm{ t \\bar{t} } $$ production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-07-07

    Jet multiplicity distributions in top quark pair (tt-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 fb-1. The measurement is performed in the dilepton decay channels (e+e-,μ+μ- and e±μ∓). Furthermore, the absolute and normalized differential cross sections for tt-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential tt-barb and tt-barbb-bar cross sections are presented formore » the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. Finally, the data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading ordercalculation.« less

  4. Lewis acid catalyzed cyclization of glycals/2-deoxy-D-ribose with arylamines: additional findings on product structure and reaction diastereoselectivity.

    PubMed

    Du, Chengtang; Li, Fulong; Zhang, Xuefeng; Hu, Wenxiang; Yao, Qizheng; Zhang, Ao

    2011-11-01

    The cyclization reactions of arylamines with 2-deoxy-D-ribose or glycals were reinvestigated in the current report. In the montmorillonite KSF- or InCl(3)-initiated reactions of 2-deoxy-D-ribose with arylamines, a pair of diastereomeric tetrahydro-2H-pyran-fused tetrahydroquinolines was obtained in a nearly 1:1 ratio where the structure of one diastereomer was incorrectly assigned in the literature. Meanwhile, the diastereoselectivity in InBr(3)-catalyzed cyclization of glycals with arylamines was also incorrectly reported previously. It was found that high diastereomeric selectivity was achieved only when a C5-substituted glycal was used; otherwise, a pair of diastereomers was obtained in moderate yield with 1:1 diastereomeric ratio. Furthermore, tetrahydrofuran-fused tetrahydroquinolines 5b and 5b' were also prepared successfully by using TBDPS-protected ribose as the glycal precursor and montmorillonite KSF as the activator.

  5. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    SciTech Connect

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding.

  6. Reactions of vinyl amido ligands in Tp`(CO){sub 2}W[N(R`)CH=CHR] complexes prepared from addition of primary amines to coordinated alkynes

    SciTech Connect

    Feng, S.G.; White, P.S.; Templeton, J.L.

    1995-11-01

    Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case of 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 20 refs., 2 figs., 7 tabs.

  7. Comparison of Schroedinger and Dirac coupled-channels analyses of the sup 28 Si( p , p prime ) sup 28 Si reaction at 500 MeV

    SciTech Connect

    de Swiniarski, R.; Beatty, D.; Donoghue, E.; Fergerson, R.W.; Franey, M.; Gazzaly, M.; Glashausser, C.; Hintz, N.; Jones, K.W.; McClelland, J.B.; Nanda, S.; Plum, M. Serin Physics Laboratory, Rutgers University, Piscataway, NJ School of Physics and Astronomy, University of Minnesota, Minneapolis, MN Los Alamos Meson Physics Facility, Los Alamos National Laboratory, Los Alamos, NM )

    1990-09-01

    Analyzing powers have been measured for elastic and inelastic scattering of 500-MeV protons from {sup 28}Si. These data for the first 0{sup +}, 2{sup +}, and 4{sup +} states and the corresponding cross-section data have been analyzed with both Schroedinger and Dirac equation phenomenological coupled-channels methods. Good, qualitatively similar, results are achieved with the two methods.

  8. Copper- and Silver-Catalyzed Diastereo- and Enantioselective Conjugate Addition Reaction of 1-Pyrroline Esters to Nitroalkenes: Diastereoselectivity Switch by Chiral Metal Complexes.

    PubMed

    Koizumi, Akihiro; Kimura, Midori; Arai, Yuri; Tokoro, Yuichiro; Fukuzawa, Shin-ichi

    2015-11-01

    syn-Diastereoselective conjugate addition of 1-pyrroline esters to nitroalkenes in good yields with an excellent enantioselectivity by using CuOAc/Me-FcPHOX catalyst in the presence of pyridine. In contrast, AgOAc/tBu-ThioClickFerrophos catalyzed the anti diastereoselective conjugate addition with a high enantioselectivity without additional base. Thus, the preparation of chiral 1-pyrroline derivatives bearing diverse stereochemistry could be achieved. The diastereoselective reduction of the imine group in the conjugate adduct could afford the 2,5-cis-proline ester derivative. PMID:26426827

  9. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  10. Calcium Channel Signaling Complexes with Receptors and Channels.

    PubMed

    Zamponi, Gerald W

    2015-01-01

    Voltage-gated calcium channels are not only mediators of cell signalling events, but also are recipients of signalling inputs from G protein coupled receptors (GPCRs) and their associated second messenger pathways. The coupling of GPCRs to calcium channels is optimized through the formation of receptor-channel complexes. In addition, this provides a mechanism for receptorchannel co-trafficking to and from the plasma membrane. On the other hand, voltage-gated calcium channel activity affects other types of ion channels such as voltage-and calcium-activated potassium channels. Coupling efficiency between these two families of channels is also enhanced through the formation of channel-channel complexes. This review provides a concise overview of the current state of knowledge on the physical interactions between voltage-gated calcium channels and members of the GPCR family, and with other types of ion channels.

  11. Tandem Esterification/1,4-Addition-Type Friedel-Crafts Alkylation Reactions of Phenols/Naphthols with Olefinic Thioazlactones: Access to Functionalized 1,2-Dihydrobenzo[f]chromen-3-ones and 3,4-Dihydrochromen-2-ones.

    PubMed

    Ziyaei Halimehjani, Azim; Khoshdoun, Maryam

    2016-07-01

    An efficient approach for the synthesis of novel alkyl 2,3-dihydro-3-oxo-1-aryl-1H-benzo[f]chromen-2-ylcarbamodithioates and alkyl 3,4-dihydro-2-oxo-4-aryl-2H-chromen-3-ylcarbamodithioates from 2-(alkylthio)thioazlactones (thioazlactones) and phenols or naphthols catalyzed by PTSA was developed. The reaction proceeds via a domino esterification/intramolecular 1,4-addition-type Friedel-Crafts alkylation reaction to afford interesting complex molecules by a simple procedure with high yields and diastereoselectivity. An X-ray analysis was carried out to firmly establish the stereochemistry of the products.

  12. Tandem Esterification/1,4-Addition-Type Friedel-Crafts Alkylation Reactions of Phenols/Naphthols with Olefinic Thioazlactones: Access to Functionalized 1,2-Dihydrobenzo[f]chromen-3-ones and 3,4-Dihydrochromen-2-ones.

    PubMed

    Ziyaei Halimehjani, Azim; Khoshdoun, Maryam

    2016-07-01

    An efficient approach for the synthesis of novel alkyl 2,3-dihydro-3-oxo-1-aryl-1H-benzo[f]chromen-2-ylcarbamodithioates and alkyl 3,4-dihydro-2-oxo-4-aryl-2H-chromen-3-ylcarbamodithioates from 2-(alkylthio)thioazlactones (thioazlactones) and phenols or naphthols catalyzed by PTSA was developed. The reaction proceeds via a domino esterification/intramolecular 1,4-addition-type Friedel-Crafts alkylation reaction to afford interesting complex molecules by a simple procedure with high yields and diastereoselectivity. An X-ray analysis was carried out to firmly establish the stereochemistry of the products. PMID:27310869

  13. Physicochemical Changes and Glycation Reaction in Intermediate-Moisture Protein-Sugar Foods with and without Addition of Resveratrol during Storage.

    PubMed

    Sheng, Zhanwu; Gu, Mantun; Hao, Wangjun; Shen, Yixiao; Zhang, Weimin; Zheng, Lili; Ai, Binling; Zheng, Xiaoyan; Xu, Zhimin

    2016-06-22

    An intermediate-moisture food (IMF) model consisting of whey protein isolate and glucose and an IMF model fortified with resveratrol were used to study the effect of resveratrol on physicochemical changes and glycation of protein-sugar-rich foods during storage. The water activity (aw) of the storage was controlled at 0.75 or 0.56. The browning rate or hardness of fortified IMFs was significantly lower than that of IMFs after 45-day storage. The rate of Maillard reaction in the samples stored at aw 0.56 was higher than that of samples stored at aw 0.75. The fortified IMFs had lower levels of AGEs (advanced glycation end products), CML (N(ε)-(carboxymethyl)-l-lysine), and insoluble protein during storage. The inhibition capability of resveratrol against glycation was also confirmed by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), liquid chromatography mass spectrometry (LC-MS), and Fourier transform infrared spectroscopy (FTIR) analysis to monitor glycated proteins and protein aggregation in the samples. The results of this study suggested that resveratrol could be used as an inhibitor to reduce the formation of undesirable AGEs and other Maillard reaction products in foods during storage. PMID:27218138

  14. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  15. Investigating the effect of potential additives and temperature on the dissolution kinetics of olivine (Mg2SiO4) in carbonation reactions

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Daval, D.; Martinez, I.; Brunet, F.; Findling, N.; Guyot, F. J.

    2010-12-01

    A recent issue in geologic CO2 sequestration in basic rocks has been the slow dissolution kinetics of Mg-rich silicates. Previous batch carbonation studies on olivine [1] (close to forsteritic composition) performed in CO2 saturated water at relevant P,T conditions have focused on the role of secondary phases - such as amorphous silica layers - on the transport of reactants from and to the reactive surfaces. The fluid composition remained roughly constant for the duration of the 45-days experiment, close to saturation with respect to amorphous silica and with a [Mg2+]/[SiO2 (aq)] ratio close to 2, suggesting stoechiometric release. It therefore appears that the silica layer passivates the dissolution step of the reaction, in agreement with its non-porous nature observed by TEM. In order to accelerate this process, various organic ligands were added to the fluids and tested at different concentrations in similar batch experiments. An intrinsic increase of the dissolution rate of olivine was expected [2], [3] prior to the formation of a passivating silica layer. Preliminary results confirm this idea, as Mg was released in non-stoechimoetric proportions with respect to SiO2 (aq) (found to be in equilibrium with amorphous silica observed at the end of the experiments). Similarly, a slight increase of temperature (from 90°C to 120°C) seems to accelerate the reaction kinetics as well, possibly impacting the textural properties of the silica. In additon, since carbonate minerals have a retrograde solubility, thermodynamical modelling suggests this temperature increase should allow the fluid to reach saturation with respect to carbonates before reaching saturation with respect to silica. Enough Mg can therefore be released to initiate the formation of carbonates before the silica precipitates and passivates the olivine surface. Undergoing TEM investigations will allow to characterize this silica layer, and in particular its porosity, in order to better constrain the

  16. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  17. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  18. New sterically-hindered o-quinones annelated with metal-dithiolates: regiospecificity in oxidative addition reactions of a bifacial ligand to the Pd and Pt complexes.

    PubMed

    Martyanov, K A; Cherkasov, V K; Abakumov, G A; Samsonov, M A; Khrizanforova, V V; Budnikova, Y H; Kuropatov, V A

    2016-04-25

    An unusual reactivity of sterically hindered o-quinones with an annelated dithiete ring towards coordination at a dithiolene site has been discovered. New Pd and Pt dithiolate complexes have been synthesized. The reaction proceeds regioselectively, and the quinone site of the parent ligand is not affected even while using an excess of the metal complex. Both Pt and Pd complexes display a square planar surrounding for the metal ion and have very similar NMR, IR and UV/Vis spectra. Surprisingly, being coordinated at the dithiolene site to the metal, the ligand exhibits activity like an o-quinone, it could be reduced with different metals resulting in the corresponding o-semiquinonates which were confirmed by EPR spectroscopy. It was shown that an unpaired electron exhibits HFC with the phosphorus nuclei of phosphine ligands coordinated to the metal ions at the dithiolene site of the molecule.

  19. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  20. Amino group combined P/Ge and P/Sn Lewis pairs: synthesis and dipolar addition reactions to alkyne and aldehyde molecules.

    PubMed

    Yu, Ying; Li, Jiancheng; Liu, Weiping; Ye, Qingsong; Zhu, Hongping

    2016-04-14

    Amino group combined P/Ge-based frustrated Lewis pairs (FLPs) Ph2PN(R)GeCl3 (R = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2), and C6H11 (3)) and Ph2PN(2,6-iPr2C6H3)GeMe3 (4) as well as P/Sn-based FLP Ph2PN(2,6-iPr2C6H3)SnMe3 (5) were prepared and utilized for reactions with alkyne and aldehyde molecules. Compounds 1-3 each reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give zwitterionic cyclic vinyls [Ph2PN(R)GeCl3](MeO2CC[double bond, length as m-dash]CCO2Me) (6-8) and compound 1 reacted with HC[triple bond, length as m-dash]CCO2Me to give the similar compound [Ph2PN(2,4,6-Me3C6H2)GeCl3](HC[double bond, length as m-dash]CCO2Me) (9). Compound 4 reacted with RC[triple bond, length as m-dash]CCO2Me to afford acyclic vinyls 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(R)[double bond, length as m-dash]C(CO2Me)GeMe3 (R = CO2Me (10), H (11)) and 5 reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(CO2Me)[double bond, length as m-dash]C(CO2Me)SnMe3 (12). The reactions of 1 with CH3CH2CHO and 1,4-(CHO)2C6H4 were also investigated and yielded novel zwitterionic OCPNGe five-heteroatom cycles [Ph2PN(2,6-iPr2C6H3)GeCl3][CH(CH2CH3)O] (13) and [Ph2PN(2,6-iPr2C6H3)GeCl3][p-(OCH)C6H4CHO][Cl3GeN(2,6-iPr2C6H3)PPh2] (14). Compounds 1-14 were characterized by NMR ((1)H, (13)C, and (31)P) and CHN elemental analysis, of which 1, 7, and 10-14 were further studied by X-ray crystallography. The reactions of 4 (or 5) with RC[triple bond, length as m-dash]CCO2Me to produce 10-12 present a novel way of obtaining the germyl (or stannyl) and iminophosphoranyl co-substituted vinyls.

  1. Amino group combined P/Ge and P/Sn Lewis pairs: synthesis and dipolar addition reactions to alkyne and aldehyde molecules.

    PubMed

    Yu, Ying; Li, Jiancheng; Liu, Weiping; Ye, Qingsong; Zhu, Hongping

    2016-04-14

    Amino group combined P/Ge-based frustrated Lewis pairs (FLPs) Ph2PN(R)GeCl3 (R = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2), and C6H11 (3)) and Ph2PN(2,6-iPr2C6H3)GeMe3 (4) as well as P/Sn-based FLP Ph2PN(2,6-iPr2C6H3)SnMe3 (5) were prepared and utilized for reactions with alkyne and aldehyde molecules. Compounds 1-3 each reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give zwitterionic cyclic vinyls [Ph2PN(R)GeCl3](MeO2CC[double bond, length as m-dash]CCO2Me) (6-8) and compound 1 reacted with HC[triple bond, length as m-dash]CCO2Me to give the similar compound [Ph2PN(2,4,6-Me3C6H2)GeCl3](HC[double bond, length as m-dash]CCO2Me) (9). Compound 4 reacted with RC[triple bond, length as m-dash]CCO2Me to afford acyclic vinyls 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(R)[double bond, length as m-dash]C(CO2Me)GeMe3 (R = CO2Me (10), H (11)) and 5 reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(CO2Me)[double bond, length as m-dash]C(CO2Me)SnMe3 (12). The reactions of 1 with CH3CH2CHO and 1,4-(CHO)2C6H4 were also investigated and yielded novel zwitterionic OCPNGe five-heteroatom cycles [Ph2PN(2,6-iPr2C6H3)GeCl3][CH(CH2CH3)O] (13) and [Ph2PN(2,6-iPr2C6H3)GeCl3][p-(OCH)C6H4CHO][Cl3GeN(2,6-iPr2C6H3)PPh2] (14). Compounds 1-14 were characterized by NMR ((1)H, (13)C, and (31)P) and CHN elemental analysis, of which 1, 7, and 10-14 were further studied by X-ray crystallography. The reactions of 4 (or 5) with RC[triple bond, length as m-dash]CCO2Me to produce 10-12 present a novel way of obtaining the germyl (or stannyl) and iminophosphoranyl co-substituted vinyls. PMID:26658532

  2. Using heteroaryl-lithium reagents as hydroxycarbonyl anion equivalents in conjugate addition reactions with (S,S)-(+)-pseudoephedrine as chiral auxiliary; enantioselective synthesis of 3-substituted pyrrolidines.

    PubMed

    Alonso, Beatriz; Ocejo, Marta; Carrillo, Luisa; Vicario, Jose L; Reyes, Efraim; Uria, Uxue

    2013-01-18

    We have developed an efficient protocol for carrying out the stereocontrolled formal conjugate addition of hydroxycarbonyl anion equivalents to α,β-unsaturated carboxylic acid derivatives using (S,S)-(+)-pseudoephedrine as chiral auxiliary, making use of the synthetic equivalence between the heteroaryl moieties and the carboxylate group. This protocol has been applied as key step in the enantioselective synthesis of 3-substituted pyrrolidines in which, after removing the chiral auxiliary, the heteroaryl moiety is converted into a carboxylate group followed by reduction and double nucleophilic displacement. Alternatively, the access to the same type of heterocyclic scaffold but with opposite absolute configuration has also been accomplished by making use of the regio- and diastereoselective conjugate addition of organolithium reagents to α,β,γ,δ-unsaturated amides derived from the same chiral auxiliary followed by chiral auxiliary removal, ozonolysis, and reductive amination/intramolecular nucleophilic displacement sequence.

  3. Formal [3 + 2] Reaction of α,α-Diaryl Allylic Alcohols with sec-Alcohols: Proceeding with Sequential Radical Addition/Migration toward 2,3-Dihydrofurans Bearing Quaternary Carbon Centers.

    PubMed

    Hu, Weiming; Sun, Song; Cheng, Jiang

    2016-05-20

    An unprecedented TBHP-promoted formal [3 + 2] annulation of sec-alcohols with α,α-diaryl allylic alcohols has been developed, leading to 2,3-dihydrofurans in moderate to excellent yields with good functional group tolerance. This procedure involves sequential radical addition, 1,2-aryl migration, and a dehydration process, where the migration of aryl with lower electron density is favored. Notably, cyclic reactions with sec-alcohols also ran smoothly, providing a novel method to access oxaspiro compounds.

  4. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  5. Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes generated furans appending reactive phosphorus ylides through cumulated trienoates as key intermediates: a phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Deng, Jie-Cheng; Chuang, Shih-Ching

    2014-11-01

    Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes have been demonstrated, providing trisubstituted furans appending reactive phosphorus ylides, through cumulated trienoates as key intermediates. The proposed trienoate intermediates, 1,5-dipolar species formed via nucleophilic α-attack of phosphines toward diynedioates (α-addition-δ-evolvement of an anion, abbreviated αAδE), undergo addition to aryl aldehydes followed by 5-endo-dig cyclization, proton transfer, and resonance to give trisubstituted furans. Furthermore, the phosphorus ylides are oxidized to α-keto ester furans and utilized as Wittig reagents.

  6. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light.

    PubMed

    Tang, Xiao-Jun; Dolbier, William R

    2015-03-27

    Fluoroalkylsulfonyl chlorides, R(f)SO2Cl, in which R(f)=CF3, C4F9, CF2H, CH2F, and CH2CF3, are used as a source of fluorinated radicals to add fluoroalkyl groups to electron-deficient, unsaturated carbonyl compounds. Photochemical conditions, using Cu mediation, are used to produce the respective α-chloro-β-fluoroalkylcarbonyl products in excellent yields through an atom transfer radical addition (ATRA) process. Facile nucleophilic replacement of the α-chloro substituent is shown to lead to further diverse functionalization of the products.

  7. Structures of the reaction products of the AZADO radical with TCNQF4 or thiourea

    PubMed Central

    Suzuki, Hideto; Kawahara, Yuta; Akutsu, Hiroki; Yamada, Jun-ichi

    2013-01-01

    Summary While an addition product was formed by the reaction of AZADO (2-azaadamantane N-oxyl) with TCNQF4 (2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane), the reaction of AZADO with thiourea provided an inclusion compound, in which AZADO molecules are incorporated in cylindrical channels formed by thiourea molecules. PMID:23946847

  8. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  9. Photochemical reaction dynamics of 2,2'-dithiobis(benzothiazole): direct observation of the addition product of an aromatic thiyl radical to an alkene with time-resolved vibrational and electronic absorption spectroscopy.

    PubMed

    Koyama, Daisuke; Orr-Ewing, Andrew J

    2016-04-28

    The photochemical reaction dynamics of the benzothiazole-2-thiyl (BS) radical, produced by 330 nm ultraviolet photolysis of 2,2'-dithiobis(benzothiazole) (BSSB), are examined on the picosecond time scale. The initial addition product of a thiol-ene reaction between the BS radical and styrene is directly observed by transient vibrational absorption spectroscopy (TVAS). Transient electronic absorption spectroscopy (TEAS) in the ultraviolet and visible spectral regions reveals rapid formation of the ground state BS radical with a time constant of ∼200 fs. The photolytically generated BS radical decays through geminate recombination to the parent molecule BSSB and competitive formation of a BS radical dimer with a rate coefficient of (3.7 ± 0.2) × 10(10) M(-1) s(-1) in methanol, and thereafter (36 ± 1)% of the initially formed BS radicals survive at the longest time delay (1.3 ns). In styrene solution, in contrast to methanol and toluene solutions, kinetic traces of the BS radical show an additional decay with a time constant of 305 ± 13 ps, and a broad band at 345-500 nm grows with the same time constant, suggesting a bimolecular reaction of the BS radical with styrene. The TVAS measurements reveal an absorption band of the ground state BS radical at 1301 cm(-1) in toluene solution, and the band decays with a time constant of 294 ± 32 ps in styrene solution. Two product bands grow at 1239 cm(-1) and 1429 cm(-1) with respective time constants of 312 ± 68 ps and 325 ± 33 ps, and are attributed to the addition product BS-St radical formed from the BS radical and styrene. A bimolecular reaction rate coefficient of kreact = (3.8 ± 0.2) × 10(8) M(-1) s(-1) is deduced and 22 ± 1% of the initially formed BS radicals are converted to the BS-St radical in neat styrene solution.

  10. Communication: probing the entrance channels of the X+CH4→HX+CH3 (X = F, Cl, Br, I) reactions via photodetachment of X(-)-CH4.

    PubMed

    Cheng, Min; Feng, Yuan; Du, Yikui; Zhu, Qihe; Zheng, Weijun; Czakó, Gábor; Bowman, Joel M

    2011-05-21

    The entrance channel potentials of the prototypical polyatomic reaction family X + CH(4) → HX + CH(3) (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X(-)-CH(4) anion complex. For F-CH(4), a spin-orbit splitting (∼1310 cm(-1)) much larger than that of the F atom (404 cm(-1)) was observed, in good agreement with theory. This showed that in the case of the F-CH(4) system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH(4) reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.

  11. Infrared Stark and Zeeman spectroscopy of OH-CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway

    NASA Astrophysics Data System (ADS)

    Brice, Joseph T.; Liang, Tao; Raston, Paul L.; McCoy, Anne B.; Douberly, Gary E.

    2016-09-01

    Sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims to account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.

  12. Oxidative addition of allylic halides to ruthenium(II) compounds. Preparation, reactions, and X-ray crystallographic structure of ruthenium(IV)-allyl complexes

    SciTech Connect

    Nagashima, Hideo; Mukai, Katsunori; Shiota, Yusuke; Yamaguchi, Keitaro; Ara, Kenichi; Fukahori, Takahiko; Itoh, Kenji ); Suzuki, Hiroharu; Akita, Munetaka; Moro-oka, Yoshihiko )

    1990-03-01

    The oxidative addition of allylic halides to (C{sub 5}R{sub 5})RuL{sub 2}X (R = H, Me; L = CO, PPh{sub 3}) gave new Ru(IV)-{eta}{sup 3}-allyl complexes, (C{sub 5}R{sub 5})RuX{sub 2}({eta}{sup 3}-allyl). An X-ray structure determination was carried out on (C{sub 5}Me{sub 5})RuBr{sub 2}({eta}{sup 3}-C{sub 3}H{sub 5}), indicating a pseudo-piano-stool structure having two Br atoms and two terminal carbons of the endo-{eta}{sup 3}-allyl ligand located at the basal positions. There is a crystal mirror plane bisecting the pentamethylcyclopentadienyl and the {pi}-allyl ligands. Crystal data: orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, a = 22.738 (1) {angstrom}, b = 13.367 (7) {angstrom}, c = 9.383 (1) {angstrom}, Z = 4., data refined to R = 0.0695. Its {sup 1}H and {sup 13}C NMR spectra showed symmetric allyl signals, supporting that the above-described piano-stool structure is maintained even in solution.

  13. Proposal for the utilization of the total cross section covariances and its correlations with channel reactions for sensitivity and uncertainty analysis

    SciTech Connect

    Sabouri, P.; Bidaud, A.

    2012-07-01

    An alternate method for the estimation of the global uncertainty on criticality, using the total cross section and its covariances, is proposed. Application of the method with currently available covariance data leads to an unrealistically large prediction of the global uncertainty on criticality. New covariances for total cross section and individual reactions are proposed. Analysis with the proposed covariance matrices is found to result in a global uncertainty for criticality consistent with the traditional method. Recommendations are made to evaluators for providing total cross section covariances. (authors)

  14. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  15. Crossed molecular beam study of the reaction O([sup 3][ital P])+allene

    SciTech Connect

    Schmoltner, A.M.; Huang, S.Y.; Brudzynski, R.J.; Chu, P.M.; Lee, Y.T. )

    1993-08-01

    The reaction between ground state ([sup 3][ital P]) oxygen atoms and allene was studied under single collision conditions using the crossed molecular beams method. Product angular distributions and the translational energy distribution were determined for each channel. Two major reaction channels could be identified unambiguously: the formation of carbon monoxide and ethylene following oxygen atom attack on the central carbon atom, and the formation of allenyloxy (formyl--vinyl) radical and hydrogen atom following oxygen atom attack on the terminal carbon atom. In addition, at least one other reaction channel, which could be identified as the production of vinyl and formyl radicals, occurs. This channel involves the decomposition of acrolein which is formed by the addition of oxygen to the terminal carbon atom, followed by 1,2-hydrogen migration.

  16. First principles (DFT) characterization of Rh(I) /dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid.

    PubMed

    Kantchev, Eric Assen B; Pangestu, Surya R; Zhou, Feng; Sullivan, Michael B; Su, Hai-Bin

    2014-11-17

    The C-H activation in the tandem, "merry-go-round", [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)H oxidative addition to square-pyramidal Rh(III) -H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the Rh(I) /Rh(III) mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol(-1) , and that of reductive elimination was 5.0 kcal mol(-1) . The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol(-1) ) for norbornyl-Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol(-1) ), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol(-1) ) proceeds through a lower barrier than the protonation (16.7 kcal mol(-1) ) of the rearranged aryl-Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol(-1) , explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol(-1) , suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation.

  17. Formal [3 + 2] Reaction of α,α-Diaryl Allylic Alcohols with sec-Alcohols: Proceeding with Sequential Radical Addition/Migration toward 2,3-Dihydrofurans Bearing Quaternary Carbon Centers.

    PubMed

    Hu, Weiming; Sun, Song; Cheng, Jiang

    2016-05-20

    An unprecedented TBHP-promoted formal [3 + 2] annulation of sec-alcohols with α,α-diaryl allylic alcohols has been developed, leading to 2,3-dihydrofurans in moderate to excellent yields with good functional group tolerance. This procedure involves sequential radical addition, 1,2-aryl migration, and a dehydration process, where the migration of aryl with lower electron density is favored. Notably, cyclic reactions with sec-alcohols also ran smoothly, providing a novel method to access oxaspiro compounds. PMID:27135595

  18. Jamming in Vertical Channels

    NASA Astrophysics Data System (ADS)

    Baxter, G. William; McCausland, Jeffrey; Steel, Fiona

    2010-03-01

    We experimentally study jamming of cylindrical grains in a vertical channel. The grains have a low aspect-ratio (height/diameter < 1) so their shape is like antacid tablets or poker chips. They are allowed to fall through a vertical channel with a square cross section. The channel width is greater than the diameter of a grain and constant throughout the length of the channel with no obstructions or constrictions. It is observed that grains sometimes jam in this apparatus. In a jam, grains form a stable structure from one side of the channel to the other with nothing beneath them. Jams may be strong enough to support additional grains above. The probability of a jam occurring is a function of the grain height and diameter. We will present experimental measurements of the jamming probability in this system and discuss the relationship of these results to other experiments and theories.

  19. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  20. The elementary steps of the photodissociation and recombination reactions of iodine molecules enclosed in cages and channels of zeolite crystals: A femtosecond time-resolved study of the geometry effect

    NASA Astrophysics Data System (ADS)

    Flachenecker, G.; Materny, A.

    2004-03-01

    We present femtosecond time-resolved pump-probe experiments on iodine molecules enclosed into well-defined cages and channels of different crystalline SiO2 modifications of zeolites. The new experimental results obtained from iodine in TON (Silica-ZSM-22), FER (Silica-Ferrierit), and MFI (Silicalit-1) porosils are compared with data published earlier on the iodine/DDR (Decadodecasil 3R) porosil system [Flachenecker et al., Phys. Chem. Chem. Phys. 5, 865 (2003)]. A summary of all findings is given. The processes analyzed by means of the ultrafast spectroscopy are the vibrational relaxation as well as the dissociation and recombination reactions, which are caused by the interaction of the photo-excited iodine molecules with the cavity walls of the porosils. A clear dependence of the observed dynamics on the geometry of the surrounding lattice structure can be seen. These measurements are supported by temperature-dependent experiments. Making use of a theoretical model which is based on the classical Langevin equation, an analysis of the geometry-reaction relation is performed. The Brownian dynamics simulations show that in contrast to the vibrational relaxation the predissociation dynamics are independent of the frequency of collisions with the surroundings. From the results obtained in the different surroundings, we conclude that mainly local fields are responsible for the crossing from the bound B state to the repulsive a/a' states of the iodine molecules.

  1. Mechanistic investigations of CO-photoextrusion and oxidative addition reactions of early transition-metal carbonyls: (η(5)-C5H5)M(CO)4 (M = V, Nb, Ta).

    PubMed

    Su, Shih-Hao; Su, Ming-Der

    2016-06-28

    The mechanisms for the photochemical Si-H bond activation reaction are studied theoretically using a model system of the group 5 organometallic compounds, η(5)-CpM(CO)4 (M = V, Nb, and Ta), with the M06-2X method and the Def2-SVPD basis set. Three types of reaction pathways that lead to final insertion products are identified. The structures of the intersystem crossings, which play a central role in these photo-activation reactions, are determined. The intermediates and transitional structures in either the singlet or triplet states are also calculated to provide a mechanistic explanation of the reaction pathways. All of the potential energy surfaces for the group 5 η(5)-CpM(CO)4 complexes are quite similar. In particular, the theoretical evidence suggests that after irradiation using light, η(5)-CpM(CO)4 quickly loses one CO ligand to yield two tricarbonyls, in either the singlet or the triplet states. The triplet tricarbonyl 16-electron intermediates, ([η(5)-CpM(CO)3](3)), play a key role in the formation of the final oxidative addition product, η(5)-CpM(CO)3(H)(SiMe3). However, the singlet counterparts, ([η(5)-CpM(CO)3](1)), play no role in the formation of the final product molecule, but their singlet metal centers interact weakly with solvent molecules ((Me3)SiH) to produce alkyl-solvated organometallic complexes, which are observable experimentally. This theoretical evidence is in accordance with the available experimental observations.

  2. Structure-Reactivity Relationships for β-Galactosidase (Escherichia coli, lac Z): A Second Derivative Effect on β(nuc) for Addition of Alkyl Alcohols to an Oxocarbenium Ion Reaction Intermediate.

    PubMed

    Richard, John P; Heo, Christina K; Toteva, Maria M

    2008-07-01

    Velocities for the synthesis of trifluoroethyl 2-deoxy-β-D-galactopyranoside by transfer of the 2-deoxygalactosyl group from β-galactosidase to trifluoroethanol were determined from studies of the β-galactosidase-catalyzed cleavage of 4-nitrophenyl-2-deoxy-β-D-galactopyranoside as the difference in rates of appearance of 4-nitrophenoxide anion and 2-D-deoxygalactose. These data were used to calculate a rate constant ratio of k(ROH)/k(s) = 2.3 M(-1) for partitioning of the intermediate between addition of trifluoroethanol and solvent water. Velocities for the synthesis of other alkyl 2-deoxy-β-D-galactopyranosides by transfer of the 2-deoxygalactosyl group from β-galactosidase to alkyl alcohols were determined from the effect of alkyl alcohols on the velocity of β-galactosidase-catalyzed cleavage of 4-nitrophenyl-2-deoxy-β-D-galactopyranoside in a reaction where breakdown of the intermediate is rate determining. These data were used to calculate rate constant ratios k(ROH)/k(s) for the reactions of eight alkyl alcohols. Absolute rate constants k(ROH) (M(-1) s(-1)) were calculated from k(ROH)/k(s) and k(s) = 0.002 s(-1) for the addition of water. A Brønsted coefficient of β(nuc) = -0.07 ± 0.08 was determined as the slope of a logarithmic correlation of k(ROH) against alcohol pK(a). The change from a 2-OH to a 2-H substituent at the β-D-galactopyranosyl intermediate causes a 0.12 ± 0.04 increase in the value of β(nuc) for alcohol addition. This anti-Hammond effect provides evidence that general basecatalyzed addition of alcohols to an enzyme bound β-D-galactopyranosyl oxocarbenium ion intermediate proceeds along a reaction coordinate in which there is strong coupling between carbon-oxygen bond formation and proton transfer from the alcohol to a basic residue at the enzyme.

  3. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  4. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  5. Noradrenaline upregulates T-type calcium channels in rat pinealocytes

    PubMed Central

    Yu, Haijie; Seo, Jong Bae; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2015-01-01

    Our basic hypothesis is that mammalian pinealocytes have cycling electrical excitability and Ca2+ signalling that may contribute to the circadian rhythm of pineal melatonin secretion. This study asked whether the functional expression of voltage-gated Ca2+ channels (CaV channels) in rat pinealocytes is changed by culturing them in noradrenaline (NA) as a surrogate for the night signal. Channel activity was assayed as ionic currents under patch clamp and as optical signals from a Ca2+-sensitive dye. Channel mRNAs were assayed by quantitative polymerase chain reaction. Cultured without NA, pinealocytes showed only non-inactivating L-type dihydropyridine-sensitive Ca2+ current. After 24 h in NA, additional low-voltage activated transient Ca2+ current developed whose pharmacology and kinetics corresponded to a T-type CaV3.1 channel. This change was initiated by β-adrenergic receptors, cyclic AMP and protein kinase A as revealed by pharmacological experiments. mRNA for CaV3.1 T-type channels became significantly elevated, but mRNA for another T-type channel and for the major L-type channel did not change. After only 8 h of NA treatment, the CaV3.1 mRNA was already elevated, but the transient Ca2+ current was not. Even a 16 h wait without NA following the 8 h NA treatment induced little additional transient current. However, these cells were somehow primed to make transient current as a second NA exposure for only 60 min sufficed to induce large T-type currents. The NA-induced T-type channel mediated an increased Ca2+ entry during short depolarizations and supported modest transient electrical responses to depolarizing stimuli. Such experiments reveal the potential for circadian regulation of excitability. PMID:25504572

  6. Transmetalation from B to Rh in the course of the catalytic asymmetric 1,4-addition reaction of phenylboronic acid to enones: a computational comparison of diphosphane and diene ligands.

    PubMed

    Li, You-Gui; He, Gang; Qin, Hua-Li; Kantchev, Eric Assen B

    2015-02-14

    Transmetalation is a key elementary reaction of many important catalytic reactions. Among these, 1,4-addition of arylboronic acids to organic acceptors such as α,β-unsaturated ketones has emerged as one of the most important methods for asymmetric C-C bond formation. A key intermediate for the B-to-Rh transfer arising from quaternization on a boronic acid by a Rh-bound hydroxide (the active catalyst) has been proposed. Herein, DFT calculations (IEFPCM/PBE0/DGDZVP level of theory) establish the viability of this proposal, and characterize the associated pathways. The delivery of phenylboronic acid in the orientation suited for the B-to-Rh transfer from the very beginning is energetically preferable, and occurs with expulsion of Rh-coordinated water molecules. For the bulkier binap ligand, the barriers are higher (particularly for the phenylboronic acid activation step) due to a less favourable entropy term to the free energy, in accordance with the experimentally observed slower transmetalation rate. PMID:25422851

  7. Transmetalation from B to Rh in the course of the catalytic asymmetric 1,4-addition reaction of phenylboronic acid to enones: a computational comparison of diphosphane and diene ligands.

    PubMed

    Li, You-Gui; He, Gang; Qin, Hua-Li; Kantchev, Eric Assen B

    2015-02-14

    Transmetalation is a key elementary reaction of many important catalytic reactions. Among these, 1,4-addition of arylboronic acids to organic acceptors such as α,β-unsaturated ketones has emerged as one of the most important methods for asymmetric C-C bond formation. A key intermediate for the B-to-Rh transfer arising from quaternization on a boronic acid by a Rh-bound hydroxide (the active catalyst) has been proposed. Herein, DFT calculations (IEFPCM/PBE0/DGDZVP level of theory) establish the viability of this proposal, and characterize the associated pathways. The delivery of phenylboronic acid in the orientation suited for the B-to-Rh transfer from the very beginning is energetically preferable, and occurs with expulsion of Rh-coordinated water molecules. For the bulkier binap ligand, the barriers are higher (particularly for the phenylboronic acid activation step) due to a less favourable entropy term to the free energy, in accordance with the experimentally observed slower transmetalation rate.

  8. Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F(-) + CH3I.

    PubMed

    Carrascosa, Eduardo; Michaelsen, Tim; Stei, Martin; Bastian, Björn; Meyer, Jennifer; Mikosch, Jochen; Wester, Roland

    2016-07-14

    Ion-molecule reactions of the type X(-) + CH3Y are commonly assumed to produce Y(-) through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F(-) + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I(-) is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF(-) via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI](-) product ion. This [FHI](-) product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I(-). A similar trend is observed for the isoelectronic OH(-) + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy. PMID:26799548

  9. Imaging Proton Transfer and Dihalide Formation Pathways in Reactions of F– + CH3I

    PubMed Central

    2016-01-01

    Ion–molecule reactions of the type X– + CH3Y are commonly assumed to produce Y– through bimolecular nucleophilic substitution (SN2). Beyond this reaction, additional reaction products have been observed throughout the last decades and have been ascribed to different entrance channel geometries differing from the commonly assumed collinear approach. We have performed a crossed beam velocity map imaging experiment on the F– + CH3I reaction at different relative collision energies between 0.4 and 2.9 eV. We find three additional channels competing with nucleophilic substitution at high energies. Experimental branching ratios and angle- and energy differential cross sections are presented for each product channel. The proton transfer product CH2I– is the main reaction channel, which competes with nucleophilic substitution up to 2.9 eV relative collision energy. At this level, the second additional channel, the formation of IF– via halogen abstraction, becomes more efficient. In addition, we present the first evidence for an [FHI]− product ion. This [FHI]− product ion is present only for a narrow range of collision energies, indicating possible dissociation at high energies. All three products show a similar trend with respect to their velocity- and scattering angle distributions, with isotropic scattering and forward scattering of the product ions occurring at low and high energies, respectively. Reactions leading to all three reaction channels present a considerable amount of energy partitioning in product internal excitation. The internally excited fraction shows a collision energy dependence only for CH2I–. A similar trend is observed for the isoelectronic OH– + CH3I system. The comparison of our experimental data at 1.55 eV collision energy with a recent theoretical calculation for the same system shows a slightly higher fraction of internal excitation than predicted, which is, however, compatible within the experimental accuracy. PMID:26799548

  10. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  11. Tougher Addition Polyimides Containing Siloxane

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Maudgal, S.

    1986-01-01

    Laminates show increased impact resistances and other desirable mechanical properties. Bismaleamic acid extended by reaction of diaminosiloxane with maleic anhydride in 1:1 molar ratio, followed by reaction with half this molar ratio of aromatic dianhydride. Bismaleamic acid also extended by reaction of diaminosiloxane with maleic anhydride in 1:2 molar ratio, followed by reaction with half this molar ratio of aromatic diamine (Michael-addition reaction). Impact resistances improved over those of unmodified bismaleimide, showing significant increase in toughness. Aromatic addition polyimides developed as both matrix and adhesive resins for applications on future aircraft and spacecraft.

  12. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    SciTech Connect

    Svensson, C.E.; Cameron, J.A.; Flibotte, S.

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  13. Comprehensive theoretical studies on the reaction of 1-bromo-3,3,3-trifluoropropene with OH free radicals.

    PubMed

    Zhang, Meiling; Song, Ce; Tian, Yan

    2013-01-01

    The potential energy surfaces (PES) for the reaction of 1-bromo-3,3,3-trifluoropropene (CF3CHCBrH) with hydroxyl (OH) free radicals is probed theoretically at the CCSD/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory. All the possible stationary and first-order saddle points along the reaction paths were verified by the vibrational analysis. The calculations account for all the product channels. Based on the calculated CCSD/aug-cc-pVDZ potential energy surface, the possible reaction mechanism is discussed. Six distinct reaction pathways of 1-bromo-3,3,3-trifluoropropene (BTP) with OH are investigated. The geometries, reaction enthalpies and energy barriers are determined. Canonical transition-state theory with Wigner tunneling correction was used to predict the rate constants for the temperature range of 290-3,000 K without any artificial adjustment, and the computed rate constants for elementary channels can be accurately fitted with three-parameter Arrhenius expressions. OH addition reaction channel and the H atom abstraction channels related to the carbon-carbon double bond are found to be the main reaction channels for the reaction of 1-bromo-3,3,3-trifluoropropene (CF3CHCBrH) with hydroxyl (OH) free radicals while the products leading to CF3CHCH + BrOH and COHF2CHCBrH + F play a negligible role. PMID:23884124

  14. Reactions of allylic radicals that impact molecular weight growth kinetics.

    PubMed

    Wang, Kun; Villano, Stephanie M; Dean, Anthony M

    2015-03-01

    The reactions of allylic radicals have the potential to play a critical role in molecular weight growth (MWG) kinetics during hydrocarbon oxidation and/or pyrolysis. Due to their stability (when compared to alkyl radicals), they can accumulate to relatively high concentrations. Thus, even though the rate coefficients for their various reactions are small, the rates of these reactions may be significant. In this work, we use electronic structure calculations to examine the recombination, addition, and abstraction reactions of allylic radicals. For the recombination reaction of allyl radicals, we assign a high pressure rate rule that is based on experimental data. Once formed, the recombination product can potentially undergo an H-atom abstraction reaction followed by unimolecular cyclization and β-scission reactions. Depending upon the conditions (e.g., higher pressures) these pathways can lead to the formation of stable MWG species. The addition of allylic radicals to olefins can also lead to MWG species formation. Once again, cyclization of the adduct followed by β-scission is an important energy accessible route. Since the recombination and addition reactions produce chemically-activated adducts, we have explored the pressure- and temperature-dependence of the overall rate constants as well as that for the multiple product channels. We describe a strategy for estimating these pressure-dependencies for systems where detailed electronic structure information is not available. We also derive generic rate rules for hydrogen abstraction reactions from olefins and diolefins by methyl and allyl radicals.

  15. Multifunctional fuel additives

    SciTech Connect

    Baillargeon, D.J.; Cardis, A.B.; Heck, D.B.

    1991-03-26

    This paper discusses a composition comprising a major amount of a liquid hydrocarbyl fuel and a minor low-temperature flow properties improving amount of an additive product of the reaction of a suitable diol and product of a benzophenone tetracarboxylic dianhydride and a long-chain hydrocarbyl aminoalcohol.

  16. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  17. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  18. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  19. Effect of core-shell structure and chitosan addition on catalytic activities of copper-containing silica-aluminosilicate composites in deNO(x) reaction by H2.

    PubMed

    Chamnankid, Busaya; Samanpratan, Rattanaporn; Kongkachuichay, Paisan

    2012-12-01

    Mesoporous silica-aluminosilicate composites were used as supports for selective catalytic reduction of NO by H2 using copper catalyst. Effect of loading techniques and structures of the supports on the catalytic performance were investigated. The nature, the oxidation state of copper, the structural properties and the morphology of the catalysts were characterized by means of UV-vis spectra, Fourier Transform Infrared Spectroscopy (FTIR), nitrogen sorption, and transmission electron microscopy, respectively. By using substitution technique, the copper(II) species were introduced into the silica-aluminosilicate framework by replacing aluminum atoms that located in the tetrahedral coordination. On the other hand, by using incipient wetness impregnation method, the copper species were deposited on the surface of composite materials. Upon testing their performances in deNO(x) reaction, the catalysts prepared by incipient wetness impregnation method showed higher catalytic activity than those prepared by substitution technique in any copper content. The core-shell structure was able to enhance the catalytic performance. It was found that, among the tested catalysts, the 1.5% Cu loaded core-shell mesoporous silica aluminosilicate composites prepared by an incipient wetness impregnation yielded the highest NO conversion of approximately 59%. However, the addition of chitosan creating macroporosity and controlling the uniform small clusters did not improve the catalytic performance. PMID:23447996

  20. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E.

    2016-04-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2.

  1. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction.

    PubMed

    Moradi, Christopher P; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E

    2016-04-28

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2. PMID:27131544

  2. Two-Center Three-Electron Bonding in ClNH3 Revealed via Helium Droplet Infrared Spectroscopy: Entrance Channel Complex Along the cl + NH3 → ClNH2 + H Reaction

    NASA Astrophysics Data System (ADS)

    Franke, Peter R.; Moradi, Christopher P.; Kaufmann, Matin; Xie, Changjian; Guo, Hua; Douberly, Gary E.

    2016-06-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction, Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction, Cl + NH3 → HCl + NH2

  3. Peptide models for membrane channels.

    PubMed Central

    Marsh, D

    1996-01-01

    Peptides may be synthesized with sequences corresponding to putative transmembrane domains and/or pore-lining regions that are deduced from the primary structures of ion channel proteins. These can then be incorporated into lipid bilayer membranes for structural and functional studies. In addition to the ability to invoke ion channel activity, critical issues are the secondary structures adopted and the mode of assembly of these short transmembrane peptides in the reconstituted systems. The present review concentrates on results obtained with peptides from ligand-gated and voltage-gated ion channels, as well as proton-conducting channels. These are considered within the context of current molecular models and the limited data available on the structure of native ion channels and natural channel-forming peptides. PMID:8615800

  4. Experiments concerning the laser-enhanced reaction between vibrationally excited O3 and NO

    NASA Technical Reports Server (NTRS)

    Hui, K.-K.; Cool, T. A.

    1978-01-01

    The enhancement in reaction rate between O3 and NO is studied for the case of O3 vibrationally excited by a CO2 laser. Chemiluminescence observations of a vibrationally excited and an electronically excited nitrogen dioxide reaction product provide information on the separate contributions to the overall reaction rate of these two reactive channels. The contribution of the stretching and bending modes of O3 to the reaction rate enhancement is also discussed. In addition, consideration is given to the nonreactive vibrational deactivation of vibrationally excited O3.

  5. Imaging the O(1D) + CD4 → OD + CD3 reaction dynamics: Probing vibrationally and rotationally excited CD3 products

    NASA Astrophysics Data System (ADS)

    Shuai, Quan; Pan, Huilin; Yang, Jiayue; Zhang, Dong; Jiang, Bo; Dai, Dongxu; Yang, Xueming

    2012-12-01

    The dynamics of the O(1D) + CD4 → OD + CD3 reaction has been studied using the crossed molecular beam technique with sliced velocity map imaging. Internally excited CD3 products were detected using a (2+1) resonance-enhanced multiphoton ionization with state resolution. Dual reaction mechanisms, insertion and abstraction, were only observed for CD3 products with its umbrella mode (v2) excited or in its ground state, while CD3 products with other vibrational mode excited do not show any evidence of contributions from the abstraction pathway. Experimental results indicate that even though the insertion channel dominates the reaction, the abstraction channel contributes relatively more to vibrationally excited CD3 products. The state-to-state correlation between the two reaction products, OD and CD3, was determined for the abstraction channel at different collision energies. In addition, we measured rotationally hot CD3 products and found that these products are only produced via the insertion channel.

  6. Chaos in quantum channels

    NASA Astrophysics Data System (ADS)

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  7. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  8. Addition of positive charges at the C-terminal peptide region of CssII, a mammalian scorpion peptide toxin, improves its affinity for sodium channels Nav1.6.

    PubMed

    Estrada, Georgina; Restano-Cassulini, Rita; Ortiz, Ernesto; Possani, Lourival D; Corzo, Gerardo

    2011-01-01

    CssII is a β-scorpion peptide that modifies preferentially sodium currents of the voltage-dependent Na(+) channel (Nav) sub-type 1.6. Previously, we have found that the C-terminal amidation of CssII increases its affinity for Nav, which opens at more negative potentials in the presence of CssII. Although C-terminal amidation in vitro conditions is possible, five CssII peptide toxin variants with C-terminal residues modified were heterologously expressed (rN66S, rN66H, rN66R, r[T64R/N66S] and r[T64R/N66R], in which r stands for recombinant, the capital letters to the amino acid residues and the numbers indicate the position of the given residue into the primary sequence of the toxin) and correctly folded. A secondary structure prediction of CssII agrees with the experimental secondary structure obtained by circular dichroism; so all bacterial expressed neurotoxin variants maintained the typical α/β secondary structure motif of most Na(+) channel scorpion toxins. The electrophysiological properties of all recombinant variants were examined, and it was found that substitutions of threonine (T) and asparagine (N) at the C-terminal region for arginine (R) (r[T64R/N66R]) increase their affinity for Nav1.6. Although, the molecular interactions involved in this mechanism are still not clearly determined, there is experimental evidence supporting the suspicion that incorporation of basic charged amino acid residues at the C-terminal tail of a group of α-scorpion toxin was favored by natural selection.

  9. Organellar Channels and Transporters

    PubMed Central

    Xu, Haoxing; Martinoia, Enrico; Szabo, Ildiko

    2015-01-01

    Decades of intensive research has led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This Special Issue (SI) on Organellar Channels and Transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly-developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer. PMID:25795199

  10. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction.

    PubMed

    Demian, Wael L L; Kottari, Naresh; Shiao, Tze Chieh; Randell, Edward; Roy, René; Banoub, Joseph H

    2014-12-01

    We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier.

  11. Direct targeted glycation of the free sulfhydryl group of cysteine residue (Cys-34) of BSA. Mapping of the glycation sites of the anti-tumor Thomsen-Friedenreich neoglycoconjugate vaccine prepared by Michael addition reaction.

    PubMed

    Demian, Wael L L; Kottari, Naresh; Shiao, Tze Chieh; Randell, Edward; Roy, René; Banoub, Joseph H

    2014-12-01

    We present in this manuscript the characterization of the exact glycation sites of the Thomsen-Friedenreich antigen-BSA vaccine (TF antigen:BSA) prepared using a Michael addition reaction between the saccharide antigen as an electrophilic acceptor and the nucleophilic thiol and L-Lysine ε-amino groups of BSA using different ligation conditions. Matrix laser desorption ionization time-of-flight mass spectrometry of the neoglycoconjugates prepared with TF antigen:protein ratios of 2:1 and 8:1, allowed to observe, respectively, the protonated molecules for each neoglycoconjugates: [M + H](+) at m/z 67,599 and 70,905. The measurements of these molecular weights allowed us to confirm exactly the carbohydrate:protein ratios of these two synthetic vaccines. These were found to be closely formed by a TF antigen:BSA ratios of 2:1 and 8:1, respectively. Trypsin digestion and liquid chromatography coupled with electrospray ionization mass spectrometry allowed us to identify the series of released glycopeptide and peptide fragments. De novo sequencing affected by low-energy collision dissociation tandem mass spectrometry was then employed to unravel the precise glycation sites of these neoglycoconjugate vaccines. Finally, we identified, respectively, three diagnostic and characteristic glycated peptides for the synthetic glycoconjugate possessing a TF antigen:BSA ratio 2:1, whereas we have identified for the synthetic glycoconjugate having a TF:BSA ratio 8:1 a series of 14 glycated peptides. The net increase in the occupancy sites of these neoglycoconjugates was caused by the large number of glycoforms produced during the chemical ligation of the synthetic carbohydrate antigen onto the protein carrier. PMID:25476939

  12. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  13. Computational studies of gas phase reactions of carbon chain anions with N and O atoms.

    PubMed

    Yang, Zhibo; Snow, Theodore P; Bierbaum, Veronica M

    2010-10-28

    Experimental studies of gas phase reactions of carbanions with N and O atoms have been reported previously to understand ion chemistry relevant to the interstellar medium. In all cases reactions of anions with O atoms exhibit larger reaction rate constants compared to the corresponding N atom reactions. In addition, the open-shell carbon chain anions exhibit higher reactivities than the corresponding closed-shell species in N atom reactions, whereas similar reactivities were observed for both open and closed-shell anions in O atom reactions. These trends are investigated by the current theoretical study of the reactions of HC(n)(-)(n = 2, 4, and 6) and C(n)(-) (n = 2, 4-7) with N and O atoms. Our results indicate that spin-forbidden processes are the probable pathways in reactions of closed-shell anions HC(n)(-) with N atoms, and spin conversion limits the reaction efficiency. In reactions of open-shell anions C(n)(-) with N atoms, about 50% of the collisions may proceed through spin-allowed barrierless pathways, which results in relatively higher reaction efficiencies than for the closed-shell reactions. For reactions of all anions with O atoms, the spin-allowed barrierless pathways are the only channels, such that all reactions occur with very high efficiencies. This work provides a greater understanding of the influence of spin effects on the reactivities of anion reactions involving N and O atoms that may be important in the interstellar medium.

  14. Multi-channel gas-delivery system

    DOEpatents

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  15. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  16. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  17. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  18. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets. PMID:27535998

  19. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.

  20. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  1. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  2. Single-channel kinetics of BK (Slo1) channels

    PubMed Central

    Geng, Yanyan; Magleby, Karl L.

    2014-01-01

    Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1) channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM) models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD) attached to four surrounding transmembrane voltage sensing domains (VSD) and a large intracellular cytosolic domain (CTD), also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with five closed states on the upper tier and five open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states) to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states. PMID:25653620

  3. Hexagonal, square, and stripe patterns of the ion channel density in biomembranes

    NASA Astrophysics Data System (ADS)

    Hilt, Markus; Zimmermann, Walter

    2007-01-01

    Transmembrane ion flow through channel proteins undergoing density fluctuations may cause lateral gradients of the electrical potential across the membrane giving rise to electrophoresis of charged channels. A model for the dynamics of the channel density and the voltage drop across the membrane (cable equation) coupled to a binding-release reaction with the cell skeleton [P. Fromherz and W. Zimmerman, Phys. Rev. E 51, R1659 (1995)] is analyzed in one and two spatial dimensions. Due to the binding release reaction spatially periodic modulations of the channel density with a finite wave number are favored at the onset of pattern formation, whereby the wave number decreases with the kinetic rate of the binding-release reaction. In a two-dimensional extended membrane hexagonal modulations of the ion channel density are preferred in a large range of parameters. The stability diagrams of the periodic patterns near threshold are calculated and in addition the equations of motion in the limit of a slow binding-release kinetics are derived.

  4. Joint source-channel coding with allpass filtering source shaping for image transmission over noisy channels

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Chen, Chang W.

    2000-04-01

    In this paper, we proposed a fixed-length robust joint source- channel coding (JSCC) scheme for image transmission over noisy channels. Three channel models are studied: binary symmetric channels (BSC) and additive white Gaussian noise (AWGN) channels for memoryless channels, and Gilbert-Elliott channels (GEC) for bursty channels. We derive, in this research, an explicit operational rate-distortion (R-D) function, which represents an end-to-end error measurement that includes errors due to both quantization and channel noise. In particular, we are able to incorporate the channel transition probability and channel bit error rate into the R-D function in the case of bursty channels. With the operational R-D function, bits are allocated not only among different subsources, but also between source coding and channel coding so that, under a fixed transmission rate, an optimum tradeoff between source coding accuracy and channel error protection can be achieved. This JSCC scheme is also integrated with allpass filtering source shaping to further improve the robustness against channel errors. Experimental results show that the proposed scheme can achieve not only high PSNR performance, but also excellent perceptual quality. Compared with the state-of-the-art JSCC schemes, this proposed scheme outperforms most of them especially when the channel mismatch occurs.

  5. Hydrogen evolution from water through metal sulfide reactions

    NASA Astrophysics Data System (ADS)

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-01

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX- (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4- isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4- and M2S5- isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4- and M2S5- clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6- is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  6. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  7. Dehydrofluorination of Hydrofluorocarbons by Titanium Alkylidynes via Sequential C-H/C-F Bond Activation Reactions. A Synthetic, Structural, and Mechanistic Study of 1,2-CH Bond Addition and [beta]-Fluoride Elimination

    SciTech Connect

    Fout, A.R.; Scott, J.; Miller, D.L.; Bailey, B.C.; Pink, M.; Mindiola, D.J.

    2009-01-07

    The neopentylidene-neopentyl complex (PNP)Ti=CH{sup t}Bu(CH{sub 2}{sup t}Bu) (1); (PNP{sup -} = N[2-P(CHMe{sub 2}){sub 2}-4-methylphenyl]{sub 2}) extrudes neopentane in neat fluorobenzene under mild conditions (25 C) to generate the transient titanium alkylidyne (PNP)Ti-C{sup t}Bu (A), which subsequently undergoes regioselective 1,2-CH bond addition of a fluorobenzene across the Ti-C linkage to generate (PNP)Ti=CH{sup t}Bu(o-FC{sub 6}H{sub 4}) (2). Kinetic and mechanistic studies suggest that the C-H activation process is pseudo-first-order in titanium, with the {alpha}-hydrogen abstraction being the rate-determining step and the post-rate-determining step being the C-H bond activation of fluorobenzene. At 100 C complex 2 does not equilibrate back to A and the preference for C-H activation in benzene versus fluorobenzene is 2:3, respectively. Compound 1 also reacts readily, and in most cases cleanly, with a series of hydrofluoroarenes (HAr{sub F}), to form a family of alkylidene-arylfluoride derivatives of the type (PNP)Ti=CH{sup t}Bu(Ar{sub F}). Thermolysis of the latter compounds generates the titanium alkylidene-fluoride (PNP)Ti=CH{sup t}Bu(F) (14) by a {beta}-fluoride elimination, concurrent with formation of o-benzyne. {beta}-Fluoride elimination to yield 14 occurs from 2 under elevated temperatures with k{sub average} = 4.96(16) x 10{sup -5} s{sup -1} and with activation parameters {Delta}H{sub {-+}} = 29(1) kcal/mol and {Delta}S{sub {-+}} = -3(4) cal/mol {center_dot}K. It was found that {beta}-fluoride elimination is accelerated when electron-rich groups are adjacent to the fluoride group, thus implying that a positive charge buildup at the arylfluoride ring occurs in the activated complex of 2. The alkylidene derivative (PNP)Ti=CHSiMe{sub 3}(CH{sub 2}SiMe{sub 3}) (15) also undergoes {alpha}-hydrogen abstraction to form the putative (PNP)Ti'-CSiMe{sub 3} (B) at higher temperatures (>70 C) and dehydrofluorinates the same series of HArF when the reaction

  8. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  10. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  11. Clofilium inhibits Slick and Slack potassium channels

    PubMed Central

    de los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na+ and Cl−, and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels. PMID:23271893

  12. Ru3(CO)12-catalyzed reactions of catechols with alkynes: an atom-economic process for the synthesis of 2,2-disubstituted 1,3-benzodioxoles from the double addition of the O-H bond across a triple bond.

    PubMed

    Li, Ming; Hua, Ruimao

    2008-11-01

    Ru3(CO)12 has been found to be the efficient catalyst for the addition reactions of catechols with both terminal and internal alkynes to selectively afford 2,2-disubstituted 1,3-benzodioxoles in good to high yields. The formation of 2,2-substituted 1,3-benzodioxoles results from the tandem addition of two O-H bonds of catechols to alkyne's triple bond.

  13. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  14. Theoretical characterization of aflatoxins and their phototoxic reactions

    NASA Astrophysics Data System (ADS)

    Guedes, Rita C.; Eriksson, Leif A.

    2006-05-01

    Key molecular properties are calculated for the 8 most common aflatoxins at the B3LYP/6-31 + G(d,p) level. Special attention is given the possibility of aflatoxins to generate reactive oxygen species (ROS). It is concluded that the excited triplet states of the aflatoxins have properties that make them very potent ROS generators, in addition to direct photoinduced addition reactions. The elevated toxicity of aflatoxin B1 is discussed in terms of its lower ionization potential, and the coincidence of higher lying triplet states with dominant low-lying singlet excitations, which enables rapid intersystem crossing and decay along the triplet channel to the T 1 state.

  15. Products of the Benzene + O(3P) Reaction

    SciTech Connect

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  16. Octacoordinated Dioxo-Molybdenum Complex via Formal Oxidative Addition of Molecular Oxygen. Studies of Chemical Reactions Between M(CO)6 (M = Cr, Mo) and 2,4-Di-tert-butyl-6-(pyridin-2-ylazo)-phenol.

    PubMed

    Chatterjee, Ipsita; Saha Chowdhury, Nabanita; Ghosh, Pradip; Goswami, Sreebrata

    2015-06-01

    Reactions of M(CO)6 (M = Mo, Cr) and 2 mol of 2,4-di-tert-butyl-6-(pyridin-2-ylazo)-phenol ligand (HL) in air yielded [Mo(VI)O2(L(1)¯)2], 1, and [Cr(III)(L(1)¯)(L(•2)¯)], 2, respectively, in high yields. Formation of the Cr-complex is a substitution reaction, which is associated with electron transfer, while that of Mo is an example of molecular oxygen activation. Isolated monoradical chromium complex 2 is susceptible to oxidation. Accordingly the reaction of 2 with the oxidant, I2 produces a cationic nonradical complex of chemical composition [Cr(III)(L(1)¯)2]I3, [2]I3 in almost quantitative yield. All the isolated complexes are primarily characterized by various spectroscopic techniques and magnetic measurements. While the molybdenum complex is diamagnetic, the two chromium complexes behave as simple paramagnets: μeff (295 K), 2.81 μB and 3.79 μB for 2 and [2]I3, respectively. Single-crystal three-dimensional X-ray structures of 1, 2, [2]I3 are reported. The geometry of the Mo-complex is square antiprism (octacoordination), and that of the Cr-complexes is distorted octahedral. Redox properties of the complexes are studied by cyclic voltammetry and constant potential coulometry. The data are analyzed based on density functional theoretical calculations of molecular orbitals of redox isomers of the Cr complexes. The results indicated that the redox events in the complexes occur at the ligand center. The oxidation state of Cr in 2 is further assessed by XPS measurements and compared with the reported systems.

  17. ORAL ADVERSE DRUG REACTIONS TO CARDIOVASCULAR DRUGS.

    PubMed

    Torpet, Lis Andersen; Kragelund, Camilla; Reibel, Jesper; Nauntofte, Birgitte

    2004-01-01

    A great many cardiovascular drugs (CVDs) have the potential to induce adverse reactions in the mouth. The prevalence of such reactions is not known, however, since many are asymptomatic and therefore are believed to go unreported. As more drugs are marketed and the population includes an increasing number of elderly, the number of drug prescriptions is also expected to increase. Accordingly, it can be predicted that the occurrence of adverse drug reactions (ADRs), including the oral ones (ODRs), will continue to increase. ODRs affect the oral mucous membrane, saliva production, and taste. The pathogenesis of these reactions, especially the mucosal ones, is largely unknown and appears to involve complex interactions among the drug in question, other medications, the patient's underlying disease, genetics, and life-style factors. Along this line, there is a growing interest in the association between pharmacogenetic polymorphism and ADRs. Research focusing on polymorphism of the cytochrome P450 system (CYPs) has become increasingly important and has highlighted the intra- and inter-individual responses to drug exposure. This system has recently been suggested to be an underlying candidate regarding the pathogenesis of ADRs in the oral mucous membrane. This review focuses on those CVDs reported to induce ODRs. In addition, it will provide data on specific drugs or drug classes, and outline and discuss recent research on possible mechanisms linking ADRs to drug metabolism patterns. Abbreviations used will be as follows: ACEI, ACE inhibitor; ADR, adverse drug reaction; ANA, antinuclear antigen; ARB, angiotensin II receptor blocker; BAB, beta-adrenergic blocker; CCB, calcium-channel blocker; CDR, cutaneous drug reaction; CVD, cardiovascular drug; CYP, cytochrome P450 enzyme; EM, erythema multiforme; FDE, fixed drug eruption; I, inhibitor of CYP isoform activity; HMG-CoA, hydroxymethyl-glutaryl coenzyme A; NAT, N-acetyltransferase; ODR, oral drug reaction; RDM, reactive

  18. Boundary Layer Protuberance Simulations in Channel Nozzle Arc Jet

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2009-01-01

    Various protuberance heights and shapes were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Strictures Facility with the Data- Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to baseline (no protuberance) heating at a single fixed arc jet condition in order to obtain heating augmentation factors that will be used for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 (completed) and STS-128 (future flight). The arc jet simulations were performed in conjunction with the actual ground tests performed on the flight version (selected height and shape) of the protuberance. Thearc jet simulations for the final (flight version) protuberance included non-uniform inflow conditions beginning at the channel nozzle throat. The 2D inflow condition was modeled based on the current best practices methodology and used variable enthalpy and mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results. In addition, the obtained heating augmentation factors were compared to the factors derived from the STS-119 flight data. The effects of the protuberance shock on the opposite channel wall were also investigated.

  19. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  20. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N–H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  1. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  2. How do strain and steric interactions affect the reactions of aromatic compounds with free radicals? Characterization of the radicals formed by muonium addition to p-xylene and [2.2]paracyclophane by DFT calculations and muon spin spectroscopy.

    PubMed

    McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil

    2012-07-26

    Muoniated radicals were produced by the addition of muonium (Mu) to the aromatic compound p-xylene (1) in the solid and liquid states and to the strained aromatic compound [2.2]paracyclophane (2) in the solid state. The radicals were characterized by avoided level crossing muon spin resonance spectroscopy and identified by comparing the experimentally determined muon hyperfine coupling constants with values obtained from DFT calculations. Mu was observed to add to both the secondary and tertiary carbons of 1, with the relative yield of the Mu adduct of the tertiary carbons estimated to be ∼10% in the liquid phase. The relative yield of the tertiary adduct is much higher in the solid state although this cannot be calculated exactly due to the overlap of resonances and the apparent nonuniform distribution of the radical orientations. There are three possible addition sites in 2 due to the lower symmetry of the six-membered ring compared with 1. Mu can add to the secondary carbons either from the outside of 2, generating the "exo" adduct, or from the inside, generating the "endo" adduct. The relative yields of the exo, endo, and tertiary carbon adducts are 67.1(1), 21.8(1), and 11.1(1)%, respectively. The barriers to Mu addition at the different sites of isolated molecules were determined from DFT calculations. The barriers for Mu addition to 2 are lower than the barriers for Mu addition to 1, except for addition to the "endo" position, where the unfavorable steric interactions with the second ring of 2 raise the addition barrier considerably. The measured relative yields do not reflect the distribution of products calculated using the activation energies obtained from the DFT calculations due to strong steric interactions with neighboring molecules.

  3. Nanoparticle Reactions on Chip

    NASA Astrophysics Data System (ADS)

    Köhler, J. M.; Kirner, Th.; Wagner, J.; Csáki, A.; Möller, R.; Fritzsche, W.

    The handling of heterogenous systems in micro reactors is difficult due to their adhesion and transport behaviour. Therefore, the formation of precipitates and gas bubbles has to be avoided in micro reaction technology, in most cases. But, micro channels and other micro reactors offer interesting possibilities for the control of reaction conditions and transport by diffusion and convection due to the laminar flow caused by small Reynolds numbers. This can be used for the preparation and modification of objects, which are much smaller than the cross section of microchannels. The formation of colloidal solutions and the change of surface states of nano particles are two important tasks for the application of chip reactors in nanoparticle technology. Some concepts for the preparation and reaction of nanoparticles in modular chip reactor arrangements will be discussed.

  4. Gramicidin channels are internally gated.

    PubMed

    Jones, Tyson L; Fu, Riqiang; Nielson, Frederick; Cross, Timothy A; Busath, David D

    2010-04-21

    Gramicidin channels are archetypal molecular subjects for solid-state NMR studies and investigations of single-channel or cation conductance. Until now, the transitions between on and off conductance states have been thought, based on multichannel studies, to represent monomer <--> dimer reactions. Here we use a single-molecule deposition method (vesicle fusion to a planar bilayer) to show that gramicidin dimer channels do not normally dissociate when conductance terminates. Furthermore, the observation of two 13C peaks in solid-state NMR indicates very stable dichotomous conformations for both the first and second peptide bonds in the monomers, and a two-dimensional chemical exchange spectrum with a 12-s mixing time demonstrates that the Val1 carbonyl conformations exchange slowly, with lifetimes of several seconds. It is proposed that gramicidin channels are gated by small conformational changes in the channel near the permeation pathway. These studies demonstrate how regulation of conformations governing closed <--> open transitions may be achieved and studied at the molecular level.

  5. Reaction of Phenyl Radical with O2: Thermodynamic Properties, Important Reaction Paths and Kinetics

    SciTech Connect

    Bozzelli, J; Sebbar, N; Pitz, W; Bockhorn, H

    2001-04-12

    The Phenyl + O{sub 2} association results in a chemically activated phenyl-peroxy radical which can dissociate to phenoxy radical + O, undergo intramolecular addition of the peroxy radical to several unsaturated carbon sites or react back to phenyl + O{sub 2}. The intramolecular addition channels further react through several paths to ring opening (unsaturated + carbonyl moieties) as well as cyclopentadieny radical + CO{sub 2}. Enthalpy ({Delta}H{sub f(298)}{sup o}), Entropy (S{sub 298}), and heat capacities Cp(T) for species in the decomposition of the ring are evaluated using density functional and ab initio calculations and by comparisons to vinyl + O{sub 2} data of Mebel et al, and phenyl + O{sub 2} data of Hadad et al. Isodesmic reaction analysis is used to estimate enthalpy values of the intermediates and well depths of the adducts. High Pressure limit kinetic parameters are obtained from the calculation results using canonical Transition State Theory. Quantum RRK analysis is utilized to obtain k(E) and modified strong collision or master equation analysis is used for evaluation of pressure fall-off in this complex bimolecular, chemical activation, reaction system. Uncertainty in key barriers is discussed, resulting variations in important reaction product ratios are illustrated, and changes in these branching ratios are evaluated with a detailed reaction mechanism.

  6. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-01

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  7. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-01-01

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  8. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels

    PubMed Central

    1991-01-01

    In this study, single-channel recordings of high-conductance Ca(2+)- activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)- blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed- blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. PMID:2056305

  9. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics.

    PubMed

    Chaudhury, Srabanti; Cao, Jianshu; Sinitsyn, Nikolai A

    2013-01-17

    We consider a generic stochastic model of ion transport through a single channel with arbitrary internal structure and kinetic rates of transitions between internal states. This model is also applicable to describe kinetics of a class of enzymes in which turnover events correspond to conversion of substrate into product by a single enzyme molecule. We show that measurement of statistics of single molecule transition time through the channel contains only restricted information about internal structure of the channel. In particular, the most accessible flux fluctuation characteristics, such as the Poisson indicator (P) and the Fano factor (F) as function of solute concentration, depend only on three parameters in addition to the parameters of the Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple intermediate steps as well as provide valuable information about the internal kinetic rates.

  10. Theory of rotational transition in atom-diatom chemical reaction

    NASA Astrophysics Data System (ADS)

    Nakamura, Masato; Nakamura, Hiroki

    1989-05-01

    Rotational transition in atom-diatom chemical reaction is theoretically studied. A new approximate theory (which we call IOS-DW approximation) is proposed on the basis of the physical idea that rotational transition in reaction is induced by the following two different mechanisms: rotationally inelastic half collision in both initial and final arrangement channels, and coordinate transformation in the reaction zone. This theory gives a fairy compact expression for the state-to-state transition probability. Introducing the additional physically reasonable assumption that reaction (particle rearrangement) takes place in a spatially localized region, we have reduced this expression into a simpler analytical form which can explicitly give overall rotational state distribution in reaction. Numerical application was made to the H+H2 reaction and demonstrated its effectiveness for the simplicity. A further simplified most naive approximation, i.e., independent events approximation was also proposed and demonstrated to work well in the test calculation of H+H2. The overall rotational state distribution is expressed simply by a product sum of the transition probabilities for the three consecutive processes in reaction: inelastic transition in the initial half collision, transition due to particle rearrangement, and inelastic transition in the final half collision.

  11. Equalization in redundant channels

    NASA Technical Reports Server (NTRS)

    Tulpule, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor); Cominelli, Donald F. (Inventor); O'Neill, Richard D. (Inventor)

    1988-01-01

    A miscomparison between a channel's configuration data base and a voted system configuration data base in a redundant channel system having identically operating, frame synchronous channels triggers autoequalization of the channel's historical signal data bases in a hierarchical, chronological manner with that of a correctly operating channel. After equalization, symmetrization of the channel's configuration data base with that of the system permits upgrading of the previously degraded channel to full redundancy. An externally provided equalization command, e.g., manually actuated, can also trigger equalization.

  12. Bursty channel errors and the Viterbi decoder. [for high rate digit data channels

    NASA Technical Reports Server (NTRS)

    Ingels, F.

    1978-01-01

    Recent applications have developed for spread spectrum communications, hardware data transfer, high rate digital systems, etc. that use channels for which errors tend to occur in short bursts in addition to those at random, i.e., compound channels. Viterbi decoding algorithms are generally very good for random error channels but are not as efficient for burst errors or for compound channels. This paper presents the results of a computer simulation study of the performance of various Viterbi decoders when receiving data corrupted with burst and random errors on the same channel. Simulations were performed using hard-decision CPSK.

  13. Channel nut tool

    DOEpatents

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  14. Age of Martian channels

    NASA Technical Reports Server (NTRS)

    Malin, M. C.

    1976-01-01

    The ages of large Martian channels have been studied by determining the relative abundances of craters superimposed on channels and adjacent terrains and by examining superposition relationships between channels and plains and mantle materials. The channels are extremely old, are spatially confined and temporally related to the ancient cratered terrain, and in many cases are related to the as yet poorly understood genetic processes of fretting and chaos formation. No evidence is found for recent channel activity.

  15. In-beam gamma-ray spectrometric measurements of multi-body breakup reactions for E{sub n} between threshold and 40 MeV

    SciTech Connect

    Dickens, J.K.; Larson, D.C.

    1995-04-01

    A system for in-beam gamma-ray spectrometric measurements to study inelastic neutron scattering has been extended to increasing incident neutron energies to study multi-body breakup reactions on light and medium-weight elements. The (n,2n{gamma}) cross sections are generally the largest; however, reactions of the types (n,{alpha}{gamma}), (n,np{gamma}) and (n,3n{gamma}) have been observed. In addition to improved understanding of reaction channels studied by other techniques, this method provides data for some reactions, e.g. {sup 56}Fe(n,3n){sup 54}Fe, which have not been observed previously.

  16. Opening the shaker K+ channel with hanatoxin.

    PubMed

    Milescu, Mirela; Lee, Hwa C; Bae, Chan Hyung; Kim, Jae Il; Swartz, Kenton J

    2013-02-01

    Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1-S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1-S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance-voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin-channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance-voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b-S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin-channel interface determine whether a toxin is an inhibitor or opener. PMID:23359283

  17. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.

  18. ICF gamma-ray reaction history diagnostics

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Young, C. S.; Mack, J. M.; Kim, Y. H.; McEvoy, A.; Evans, S.; Sedillo, T.; Batha, S.; Schmitt, M.; Wilson, D. C.; Langenbrunner, J. R.; Malone, R.; Kaufman, M. I.; Cox, B. C.; Frogget, B.; Miller, E. K.; Ali, Z. A.; Tunnell, T. W.; Stoeffl, W.; Horsfield, C. J.; Rubery, M.

    2010-08-01

    Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at ~6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 1013-1017 neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (> 80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 1016-1020 yield range expected during the DT ignition campaign, providing higher temporal resolution for the

  19. Site selectivity and reversibility in the reactions of titanium hydrazides with Si-H, Si-X, C-X and H+ reagents: Ti=N(α) 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis.

    PubMed

    Tiong, Pei Jen; Nova, Ainara; Schwarz, Andrew D; Selby, Jonathan D; Clot, Eric; Mountford, Philip

    2012-02-28

    We report a combined experimental and computational comparative study of the reactions of the homologous titanium dialkyl- and diphenylhydrazido and imido compounds Cp*Ti{MeC(N(i)Pr)(2)}(NNR(2)) (R = Me (1) or Ph (2)) and Cp*Ti{MeC(N(i)Pr)(2)}(NTol) (3) with silanes, halosilanes, alkyl halides and [Et(3)NH][BPh(4)]. Compound 1 underwent reversible Si-H 1,2-addition to Ti=N(α) with RSiH(3) (experimental ΔH ca. -17 kcal mol(-1)), and irreversible addition with PhSiH(2)X (X = Cl, Br). DFT found that the reaction products and certain intermediates were stabilised by β-NMe(2) coordination to titanium. The Ti-D bond in Cp*Ti{MeC(N(i)Pr)(2)}(D){N(NMe(2))SiD(2)Ph} underwent σ-bond metathesis with BuSiH(3) and H(2). Compound 1 reacted with RR'SiCl(2) at N(α) to transfer both Cl atoms to Ti; 2 underwent a similar reaction. Compound 3 did not react with RSiH(3) or alkyl halides but formed unstable Ti=N(α) 1,2-addition or N(α) protonation products with PhSiH(2)X or [Et(3)NH][BPh(4)]. Compound 1 underwent exclusive alkylation at N(β) with RCH(2)X (R = H, Me or Ph; X = Br or I) whereas protonation using [Et(3)NH][BPh(4)] occurred at N(α). DFT studies found that in all cases electrophile addition to N(α) (with or without NMe(2) chelation) was thermodynamically favoured compared to addition to N(β).

  20. Automated Parallel Recordings of Topologically Identified Single Ion Channels

    PubMed Central

    Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji; Osaki, Toshihisa; Kamiya, Koki; Hirano, Minako; Ide, Toru; Miki, Norihisa; Takeuchi, Shoji

    2013-01-01

    Although ion channels are attractive targets for drug discovery, the systematic screening of ion channel-targeted drugs remains challenging. To facilitate automated single ion-channel recordings for the analysis of drug interactions with the intra- and extracellular domain, we have developed a parallel recording methodology using artificial cell membranes. The use of stable lipid bilayer formation in droplet chamber arrays facilitated automated, parallel, single-channel recording from reconstituted native and mutated ion channels. Using this system, several types of ion channels, including mutated forms, were characterised by determining the protein orientation. In addition, we provide evidence that both intra- and extracellular amyloid-beta fragments directly inhibit the channel open probability of the hBK channel. This automated methodology provides a high-throughput drug screening system for the targeting of ion channels and a data-intensive analysis technique for studying ion channel gating mechanisms. PMID:23771282

  1. Microfluidic channel fabrication method

    DOEpatents

    Arnold, Don W.; Schoeniger, Joseph S.; Cardinale, Gregory F.

    2001-01-01

    A new channel structure for microfluidic systems and process for fabricating this structure. In contrast to the conventional practice of fabricating fluid channels as trenches or grooves in a substrate, fluid channels are fabricated as thin walled raised structures on a substrate. Microfluidic devices produced in accordance with the invention are a hybrid assembly generally consisting of three layers: 1) a substrate that can or cannot be an electrical insulator; 2) a middle layer, that is an electrically conducting material and preferably silicon, forms the channel walls whose height defines the channel height, joined to and extending from the substrate; and 3) a top layer, joined to the top of the channels, that forms a cover for the channels. The channels can be defined by photolithographic techniques and are produced by etching away the material around the channel walls.

  2. Gramicidin Channels: Versatile Tools

    NASA Astrophysics Data System (ADS)

    Andersen, Olaf S.; Koeppe, Roger E., II; Roux, Benoît

    Gramicidin channels are miniproteins in which two tryptophan-rich subunits associate by means of transbilayer dimerization to form the conducting channels. That is, in contrast to other ion channels, gramicidin channels do not open and close; they appear and disappear. Each subunit in the bilayer-spanning channel is tied to the bilayer/solution interface through hydrogen bonds that involve the indole NH groups as donors andwater or the phospholipid backbone as acceptors. The channel's permeability characteristics are well-defined: gramicidin channels are selective for monovalent cations, with no measurable permeability to anions or polyvalent cations; ions and water move through a pore whose wall is formed by the peptide backbone; and the single-channel conductance and cation selectivity vary when the amino acid sequence is varied, even though the permeating ions make no contact with the amino acid side chains. Given the plethora of available experimental information—for not only the wild-type channels but also for channels formed by amino acid-substituted gramicidin analogues—gramicidin channels continue to provide important insights into the microphysics of ion permeation through bilayer-spanning channels. For similar reasons, gramicidin channels constitute a system of choice for evaluating computational strategies for obtaining mechanistic insights into ion permeation through the more complex channels formed by integral membrane proteins.

  3. Clinical effects of sulphite additives.

    PubMed

    Vally, H; Misso, N L A; Madan, V

    2009-11-01

    Sulphites are widely used as preservative and antioxidant additives in the food and pharmaceutical industries. Topical, oral or parenteral exposure to sulphites has been reported to induce a range of adverse clinical effects in sensitive individuals, ranging from dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhoea to life-threatening anaphylactic and asthmatic reactions. Exposure to the sulphites arises mainly from the consumption of foods and drinks that contain these additives; however, exposure may also occur through the use of pharmaceutical products, as well as in occupational settings. While contact sensitivity to sulphite additives in topical medications is increasingly being recognized, skin reactions also occur after ingestion of or parenteral exposure to sulphites. Most studies report a 3-10% prevalence of sulphite sensitivity among asthmatic subjects following ingestion of these additives. However, the severity of these reactions varies, and steroid-dependent asthmatics, those with marked airway hyperresponsiveness, and children with chronic asthma, appear to be at greater risk. In addition to episodic and acute symptoms, sulphites may also contribute to chronic skin and respiratory symptoms. To date, the mechanisms underlying sulphite sensitivity remain unclear, although a number of potential mechanisms have been proposed. Physicians should be aware of the range of clinical manifestations of sulphite sensitivity, as well as the potential sources of exposure. Minor modifications to diet or behaviour lead to excellent clinical outcomes for sulphite-sensitive individuals.

  4. Transient Receptor Potential Channels in the Vasculature

    PubMed Central

    Earley, Scott; Brayden, Joseph E.

    2015-01-01

    The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca2+ levels or subcellular Ca2+ signaling events. In addition to directly mediating Ca2+ entry, TRP channels influence intracellular Ca2+ dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions. PMID:25834234

  5. Water permeation through a charged channel.

    PubMed

    Hao, Liang; Su, Jiaye; Guo, Hongxia

    2013-06-27

    Transport properties of water molecules through hydrophobic channels have been explored extensively in recent years; however, our knowledge about the transport properties of hydrophilic channels is still rather poor. Herein, we use molecular dynamics simulations to study the permeation of water molecules through a charged channel. For comparison, we first consider the pristine hydrophobic channel without charge, and we find an analytic expression that can predict the water flow through it. For uniformly charged channels, with the increase of charge density, the water flow decreases, due to the increase of roughness in the free energy profile experienced by a water molecule along the channel; while the ion flow exhibits a maximum, because of the competition between the increasing ion number and ion-channel attraction. Surprisingly, the water occupancy for positive and negative channels varies in the opposite direction, which is strongly related to the excluded volume effect of ions. Additionally, we also discuss the effect of surface charge patterns and channel sizes. These results not only enrich our understanding of the transport properties of hydrophilic channels, but also have deep implications for the design of nanometer water gates.

  6. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  7. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  8. Fading channel simulator

    SciTech Connect

    Argo, P.E.; Fitzgerald, T.J.

    1991-12-31

    This invention relates to high frequency (HF) radio signal propagation through fading channels and, more particularly, to simulation of fading channels in order to characterize HF radio system performance in transmitting and receiving signals through such fading channels. Fading channel effects on a transmitted communication signal are simulated with both frequency and time variations using a channel scattering function to affect the transmitted signal. A conventional channel scattering function is converted to a series of channel realizations by multiplying the square root of the channel scattering function by a complex number of which the real and imaginary parts are each independent variables. The two-dimensional inverse-FFT of this complex-valued channel realization yields a matrix of channel coefficients that provide a complete frequency-time description of the channel. The transmitted radio signal is segmented to provide a series of transmitted signal and each segment is subject to FFT to generate a series of signal coefficient matrices. The channel coefficient matrices and signal coefficient matrices are then multiplied and subjected to inverse-FFT to output a signal representing the received affected radio signal. A variety of channel scattering functions can be used to characterize the response of a transmitter-receiver system to such atmospheric effects.

  9. Reaction mechanism in the {sup 20}Ne+{sup 59}Co system at 3-7 MeV/nucleon, and observation of entrance-channel mass-asymmetry of the incomplete fusion fraction

    SciTech Connect

    Singh, D.; Ali, R.; Afzal Ansari, M.; Tomar, B. S.; Rashid, M. H.; Guin, R.; Das, S. K.

    2011-05-15

    Incomplete fusion of {sup 20}Ne with {sup 59}Co has been investigated at 3-7 MeV/nucleon using the measurement and analysis of excitation functions. The recoil-catcher technique followed by offline gamma-ray spectroscopy has been employed. Evaporation residues are found to have contributions from precursor decays, which have been separated out from the measured cumulative cross sections of evaporation residues. Measured independent cross sections are compared with PACE-2 predictions. The PACE-2 calculations are carried out for evaporation residues formed in complete fusion (CF), and the parameters are optimized so as to reproduce the cross section of evaporation residues produced exclusively in CF, e.g., xn and pxn products. With these parameters, the predicted CF cross sections for alpha emission products are calculated. Any substantial enhancement in the experimental cross section over the PACE-2 prediction is taken as a signature of incomplete fusion (ICF). The analysis indicates the occurrence of incomplete fusion involving the breakup of {sup 20}Ne into {sup 16}O + {sup 4}He and/or {sup 12}C + {sup 8}Be(2{alpha}) followed by fusion of one of the fragments with the target nucleus {sup 59}Co. These data also suggest that the probability of incomplete fusion increases with the projectile energy. Moreover, the ICF probability is found to increase with entrance-channel mass-asymmetry of the projectile-target systems.

  10. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  11. Role of the continuum in reactions with weakly bound systems: A comparative study between the time evolution of a break-up wave function and its coupled-channel approximation

    SciTech Connect

    Dasso, C. H.; Vitturi, A.

    2009-06-15

    We exploit a model describing the breakup of weakly bound nuclei that can be used as a laboratory for testing different prescriptions that have been advanced in the literature to take into account the nearby presence of continuum states. In the model, we follow the evolution of a single-particle wave function in one dimension, initially bound by a Woods-Saxon type potential and then perturbed by a time- and position-dependent external field. Proper choices of this potential can simulate the effect of the interaction between reaction partners in a nuclear collision. These processes generate inelastic excitation probabilities that--distributed over the bound and continuum states of the system--lead to either a partial or a total fragmentation of the final wave function.

  12. Optimal channels for channelized quadratic estimators.

    PubMed

    Kupinski, Meredith K; Clarkson, Eric

    2016-06-01

    We present a new method for computing optimized channels for estimation tasks that is feasible for high-dimensional image data. Maximum-likelihood (ML) parameter estimates are challenging to compute from high-dimensional likelihoods. The dimensionality reduction from M measurements to L channels is a critical advantage of channelized quadratic estimators (CQEs), since estimating likelihood moments from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. The channelized likelihood is then used to form ML estimates of the parameter(s). In this work we choose an imaging example in which the second-order statistics of the image data depend upon the parameter of interest: the correlation length. Correlation lengths are used to approximate background textures in many imaging applications, and in these cases an estimate of the correlation length is useful for pre-whitening. In a simulation study we compare the estimation performance, as measured by the root-mean-squared error (RMSE), of correlation length estimates from CQE and power spectral density (PSD) distribution fitting. To abide by the assumptions of the PSD method we simulate an ergodic, isotropic, stationary, and zero-mean random process. These assumptions are not part of the CQE formalism. The CQE method assumes a Gaussian channelized likelihood that can be a valid for non-Gaussian image data, since the channel outputs are formed from weighted sums of the image elements. We have shown that, for three or more channels, the RMSE of CQE estimates of correlation length is lower than conventional PSD estimates. We also show that computing CQE by using a standard nonlinear optimization method produces channels that yield RMSE within 2% of the analytic optimum. CQE estimates of anisotropic correlation length estimation are reported to demonstrate this technique on a two-parameter estimation problem. PMID:27409452

  13. Autodirected insertion: preinserted VDAC channels greatly shorten the delay to the insertion of new channels.

    PubMed Central

    Xu, X; Colombini, M

    1997-01-01

    VDAC, a mitochondrial outer membrane channel, has the ability to catalyze and direct the insertion of other VDAC channels into planar phospholipid membranes. The spontaneous rate of insertion of detergent-solubilized VDAC channels into phospholipid membranes is estimated to be 1.5 x 10(-5) channels min-1 micron-2. VDAC channels already in the membrane can increase this rate by a factor of 10(9). The presence of 5 M urea on the opposite side of the membrane increases this 10-fold to 4.5 x 10(5) channels min-1 microns-2. Similar but weaker effects are observed with Triton X100 addition (10(-3)% (v/v)). These agents are not acting on uninserted channels because they do not affect the delay from sample addition to first insertion. Under the chosen conditions, this delay is long (240 s) without preinserted channels. However, the presence of a few VDAC channels in the membrane reduces this delay to 14 s, close to the diffusion limit. Therefore, urea and Triton, added to the side of the membrane opposite that to which the VDAC sample was added, likely increase the flexibility of the VDAC channels in the membrane, allowing them to be more efficient catalysts for VDAC insertion. There are obvious implications for membrane protein insertion and targeting. PMID:9129814

  14. Ion channels and cancer.

    PubMed

    Kunzelmann, Karl

    2005-06-01

    Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl- channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.

  15. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans

    PubMed Central

    Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He

    2016-01-01

    TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724

  16. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans.

    PubMed

    Thies, Jennifer; Neutzler, Vanessa; O'Leary, Fidelma; Liu, He

    2016-01-01

    TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724

  17. Quasi-superactivation for the classical capacity of quantum channels

    SciTech Connect

    Gyongyosi, Laszlo; Imre, Sandor

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  18. Mass conservation: 1-D open channel flow equations

    USGS Publications Warehouse

    DeLong, Lewis L.

    1989-01-01

    Unsteady flow simulation in natural rivers is often complicated by meandering channels of compound section. Hydraulic properties and the length of the wetted channel may vary significantly as a meandering river inundates its adjacent floodplain. The one-dimensional, unsteady, open-channel flow equations can be extended to simulate floods in channels of compound section. It will be shown that equations derived from the addition of differential equations individually describing flow in main and overbank channels do not in general conserve mass when overbank and main channels are of different lengths.

  19. Fuel cell collector plates with improved mass transfer channels

    SciTech Connect

    Gurau, Vladimir; Barbir, Frano; Neutzler, Jay K.

    2003-04-22

    A fuel cell collector plate can be provided with one or more various channel constructions for the transport of reactants to the gas diffusion layer and the removal of water therefrom. The outlet channel can be arranged to have a reduced volume compared to the inlet channel, in both interdigitated and discontinuous spiral applications. The land width between an inlet channel and outlet channel can be reduced to improved mass flow rate in regions of deleted reactant concentrations. Additionally or alternatively, the depth of the inlet channel can be reduced in the direction of flow to reduce the diffusion path as the concentration of reactant is reduced.

  20. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742