Science.gov

Sample records for additional reaction channels

  1. Branching ratios between the abstraction and addition channels in the reactions of OH radicals with monoterpenes

    NASA Astrophysics Data System (ADS)

    Rio, C.; Loison, J. C.; Caralp, F.; Flaud, P. M.; Villenave, E.

    2009-04-01

    discharge-flow reactor coupled to mass spectrometry. Therefore, it has been possible to measure the branching ratios between the abstraction and addition channels at different pressures and to discuss on H-abstraction importance for all reactions of monoterpenes with hydroxyl radicals. This work has shown that, contrary to the results of the available literature, H-abstraction is a significant reaction pathway for the reaction of monoterpenes with hydroxyl radical. Therefore, oxidation products resulting from the H-abstraction should not be neglected in mechanisms describing the reaction of monoterpene + OH and SOA formation.

  2. Adverse reactions to drug additives.

    PubMed

    Simon, R A

    1984-10-01

    There is a long list of additives used by the pharmaceutical industry. Most of the agents used have not been implicated in hypersensitivity reactions. Among those that have, only reactions to parabens and sulfites have been well established. Parabens have been shown to be responsible for rare immunoglobulin E-mediated reactions that occur after the use of local anesthetics. Sulfites, which are present in many drugs, including agents commonly used to treat asthma, have been shown to provoke severe asthmatic attacks in sensitive individuals. Recent studies indicate that additives do not play a significant role in "hyperactivity." The role of additives in urticaria is not well established and therefore the incidence of adverse reactions in this patient population is simply not known. In double-blind, placebo-controlled studies, reactions to tartrazine or additives other than sulfites, if they occur at all, are indeed quite rare for the asthmatic population, even for the aspirin-sensitive subpopulation.

  3. Catalytic reaction in confined flow channel

    DOEpatents

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  4. Does metabolite channeling accelerate enzyme-catalyzed cascade reactions?

    PubMed Central

    Poshyvailo, Liubov; von Lieres, Eric

    2017-01-01

    Metabolite or substrate channeling is a direct transfer of metabolites from one enzyme to the next enzyme in a cascade. Among many potential advantages of substrate channeling, acceleration of the total reaction rate is considered as one of the most important and self-evident. However, using a simple model, supported by stochastic simulations, we show that it is not always the case; particularly at long times (i.e. in steady state) and high substrate concentrations, a channeled reaction cannot be faster, and can even be slower, than the original non-channeled cascade reaction. In addition we show that increasing the degree of channeling may lead to an increase of the metabolite pool size. We substantiate that the main advantage of channeling likely lies in protecting metabolites from degradation or competing side reactions. PMID:28234973

  5. Asthma and anaphylactoid reactions to food additives.

    PubMed Central

    Tarlo, S. M.; Sussman, G. L.

    1993-01-01

    Presumed allergic reactions to hidden food additives are both controversial and important. Clinical manifestations include asthma, urticaria, angioedema, and anaphylactic-anaphylactoid events. Most adverse reactions are caused by just a few additives, such as sulfites and monosodium glutamate. Diagnosis is suspected from the history and confirmed by specific challenge. The treatment is specific avoidance. PMID:8499792

  6. Allergic and immunologic reactions to food additives.

    PubMed

    Gultekin, Fatih; Doguc, Duygu Kumbul

    2013-08-01

    For centuries, food additives have been used for flavouring, colouring and extension of the useful shelf life of food, as well as the promotion of food safety. During the last 20 years, the studies implicating the additives contained in foods and medicine as a causative factor of allergic reactions have been proliferated considerably. In this review, we aimed to overview all of the food additives which were approved to consume in EU and find out how common and serious allergic reactions come into existence following the consuming of food additives.

  7. Conjugate addition-enantioselective protonation reactions.

    PubMed

    Phelan, James P; Ellman, Jonathan A

    2016-01-01

    The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals.

  8. Adverse reactions to the sulphite additives

    PubMed Central

    Misso, Neil LA

    2012-01-01

    Sulphites are widely used as preservative and antioxidant additives in the food and pharmaceutical industries. Exposure to sulphites has been reported to induce a range of adverse clinical effects in sensitive individuals, ranging from dermatitis, urticaria, flushing, hypotension, abdominal pain and diarrhoea to life-threatening anaphylactic and asthmatic reactions. Exposure to the sulphites arises mainly from the consumption of foods and drinks that contain these additives; however exposure may also occur through the use of pharmaceutical products, as well as in occupational settings. Most studies report a prevalence of sulphite sensitivity of 3 to 10% among asthmatic subjects who ingest these additives. However, the severity of these reactions varies, and steroid-dependent asthmatics, those with marked airway hyperresponsiveness, and children with chronic asthma, appear to be at greater risk. Although a number of potential mechanisms have been proposed, the precise mechanisms underlying sulphite sensitivity remain unclear. PMID:24834193

  9. Electrophilic addition and cyclization reactions of allenes.

    PubMed

    Ma, Shengming

    2009-10-20

    Modern organic synthesis depends on the development of highly selective methods for the efficient construction of potentially useful target molecules. A primary goal in our laboratory is the discovery of new reactions that convert readily available starting materials to complex products with complete control of regio- and stereoselectivity. Allenes are one underused moiety in organic synthesis, because these groups are often thought to be highly reactive. However, many compounds containing the allene group, including natural products and pharmaceuticals, are fairly stable. The chemistry of allenes has been shown to have significant potential in organic synthesis. Electrophilic additions to allenes have often been considered to be synthetically less attractive due to the lack of efficient control of the regio- and stereoselectivity. However, this Account describes electrophilic reactions of allenes with defined regio- and stereoselectivity developed in our laboratory. Many substituted allenes are readily available from propargylic alcohols. Our work has involved an exploration of the reactions of these allenes with many different electrophiles: the E- or Z-halo- or seleno-hydroxylations of allenyl sulfoxides, sulfones, phosphine oxides, carboxylates, sulfides or selenides, butenolides, and arenes, and the halo- or selenolactonization reactions of allenoic acids and allenoates. These reactions have produced a host of new compounds such as stereodefined allylic alcohols, ethers, amides, thiiranes, and lactones. In all these reactions, water acts as a reactant and plays an important role in determining the reaction pathway and the stereoselectivity. The differing electronic properties of the two C=C bonds in these allenes determine the regioselectivity of these reactions. Through mechanistic studies of chirality transfer, isolation and reactivity of cyclic intermediates, (18)O-labeling, and substituent effects, we discovered that the E-stereoselectivity of some

  10. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Additional channel policies. 22.817 Section 22... Additional channel policies. The rules in this section govern the processing of applications for authority to operate a ground station transmitter on any ground station communication channel listed in § 22.805...

  11. Competing reaction channels in IR-laser-induced unimolecular reactions

    SciTech Connect

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO/sub 2/ laser was used as the excitation source in all experiments. The dissociation of D/sub 2/CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D/sub 2/CO. MPD yield shows a near cubic dependence in pure D/sub 2/CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 ..mu..m ir fluorescence from D/sub 2/CO is proportional to the square of the D/sub 2/CO pressure in pure D/sub 2/CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D/sub 2/CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm/sup 2/ at 946.0 cm/sup -1/. The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D/sub 2/CO. In H/sub 2/CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF/sub 4/ - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel.

  12. Oblivious Transfer from the Additive White Gaussian Noise Channel

    NASA Astrophysics Data System (ADS)

    Isaka, Motohiko

    We consider the use of the additive white Gaussian noise channel to achieve information theoretically secure oblivious transfer. A protocol for this primitive that ensures the correctness and privacy for players is presented together with the signal design. We also study the information theoretic efficiency of the protocol, and some more practical issues where the parameter of the channel is unknown to the players.

  13. Method for promoting Michael addition reactions

    DOEpatents

    Shah, Pankaj V.; Vietti, David E.; Whitman, David William

    2010-09-21

    Homogeneously dispersed solid reaction promoters having an average particle size from 0.01 .mu.m to 500 .mu.m are disclosed for preparing curable mixtures of at least one Michael donor and at least one Michael acceptor. The resulting curable mixtures are useful as coatings, adhesives, sealants and elastomers.

  14. Classification of the Electrophilic Addition Reactions of Olefins and Acetylenes

    ERIC Educational Resources Information Center

    Wilson, Michael A.

    1975-01-01

    Divides addition reactions into molecular, stepwise, or termolecular, depending on whether the reaction is synchronous or multistep; and further into nucleophilic, electrophilic, or concerted, depending on how the electrons are transferred in the initiation step. (MLH)

  15. Radical addition-initiated domino reactions of conjugated oxime ethers.

    PubMed

    Ueda, Masafumi

    2014-01-01

    The application of conjugated oxime ethers to the synthesis of complex chemical scaffolds using domino radical reactions has been described in detail. The triethylborane-mediated hydroxysulfenylation reaction allows for the regioselective construction of a carbon-sulfur bond and a carbon-oxygen bond in a single operation for the formation of β-hydroxy sulfides. This reaction proceeds via a radical pathway involving regioselective thiyl addition and the subsequent trapping of the resulting α-imino radical with O₂, where the imino group enhances the stability of the intermediate radical. Hydroxyalkylation reactions that occur via a carbon radical addition reaction followed by the hydroxylation of the resulting N-borylenamine with O₂ have also been developed. We investigated sequential radical addition aldol-type reactions in detail to explore the novel domino reactions that occur via the generation of N-borylenamine. The radical reaction of a conjugated oxime ether with triethylborane in the presence of an aldehyde affords γ-butyrolactone via sequential processes including ethyl radical addition, the generation of N-borylenamine, an aldol-type reaction with an aldehyde, and a lactonization reaction. A novel domino reaction has also been developed involving the [3,3]-sigmatropic rearrangement of N-boryl-N-phenoxyenamine. The triethylborane-mediated domino reactions of O-phenyl-conjugated oxime ethers afforded the corresponding benzofuro[2,3-b]pyrrol-2-ones via a radical addition/[3,3]-sigmatropic rearrangement/cyclization/lactamization cascade.

  16. Substrate channelling as an approach to cascade reactions

    NASA Astrophysics Data System (ADS)

    Wheeldon, Ian; Minteer, Shelley D.; Banta, Scott; Barton, Scott Calabrese; Atanassov, Plamen; Sigman, Matthew

    2016-04-01

    Millions of years of evolution have produced biological systems capable of efficient one-pot multi-step catalysis. The underlying mechanisms that facilitate these reaction processes are increasingly providing inspiration in synthetic chemistry. Substrate channelling, where intermediates between enzymatic steps are not in equilibrium with the bulk solution, enables increased efficiencies and yields in reaction and diffusion processes. Here, we review different mechanisms of substrate channelling found in nature and provide an overview of the analytical methods used to quantify these effects. The incorporation of substrate channelling into synthetic cascades is a rapidly developing concept, and recent examples of the fabrication of cascades with controlled diffusion and flux of intermediates are presented.

  17. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-01

    The prototypical multi-channel reaction H + H2S → H2 + SH/H + H2S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  18. Thiol-addition reactions and their applications in thiol recognition.

    PubMed

    Yin, Caixia; Huo, Fangjun; Zhang, Jingjing; Martínez-Máñez, Ramón; Yang, Yutao; Lv, Haigang; Li, Sidian

    2013-07-21

    Because of the biological importance of thiols, the development of probes for thiols has been an active research area in recent years. In this review, we summarize the results of recent exciting reports regarding thiol-addition reactions and their applications in thiol recognition. The examples reported can be classified into four reaction types including 1,1, 1,2, 1,3, 1,4 addition reactions, according to their addition mechanisms, based on different Michael acceptors. In all cases, the reactions are coupled to color and/or emission changes, although some examples dealing with electrochemical recognition have also been included. The use of thiol-addition reactions is a very simple and straightforward procedure for the preparation of thiol-sensing probes.

  19. Radiation Reaction in a Continuous Focusing Channel

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Chen, Pisin; Ruth, Ronald D.

    1995-03-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state to which the particle inevitably decays and yields the minimum beam emittance that one can ever attain, γɛmin = /2mc, limited only by the uncertainty principle. Because of adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss.

  20. Roaming dynamics in radical addition-elimination reactions.

    PubMed

    Joalland, Baptiste; Shi, Yuanyuan; Kamasah, Alexander; Suits, Arthur G; Mebel, Alexander M

    2014-06-06

    Radical addition-elimination reactions are a major pathway for transformation of unsaturated hydrocarbons. In the gas phase, these reactions involve formation of a transient strongly bound intermediate. However, the detailed mechanism and dynamics for these reactions remain unclear. Here we show, for reaction of chlorine atoms with butenes, that the Cl addition-HCl elimination pathway occurs from an abstraction-like Cl-H-C geometry rather than a conventional three-centre or four-centre transition state. Furthermore, access to this geometry is attained by roaming excursions of the Cl atom from the initially formed adduct. In effect, the alkene π cloud serves to capture the Cl atom and hold it, allowing many subsequent opportunities for the energized intermediate to find a suitable approach to the abstraction geometry. These bimolecular roaming reactions are closely related to the roaming radical dynamics recently discovered to play an important role in unimolecular reactions.

  1. A microfluidic abacus channel for controlling the addition of droplets.

    PubMed

    Um, Eujin; Park, Je-Kyun

    2009-01-21

    This paper reports the first use of the abacus-groove structure to handle droplets in a wide microchannel, with no external forces integrated to the system other than the pumps. Microfluidic abacus channels are demonstrated for the sequential addition of droplets at the desired location. A control channel which is analogous to biasing in electronics can also be used to precisely determine the number of added droplets, when all other experimental conditions are fixed including the size of the droplets and the frequency of droplet-generation. The device allows programmable and autonomous operations of complex two-phase microfluidics as well as new applications for the method of analysis and computations in lab-on-a-chip devices.

  2. Chromium-Catalyzed Asymmetric Dearomatization Addition Reactions of Halomethyl Heteroarenes.

    PubMed

    Tian, Qingshan; Bai, Jing; Chen, Bin; Zhang, Guozhu

    2016-04-15

    The first asymmetric dearomatization addition reaction of halomethyl arenes including benzofuran and benzothiophene was enabled by chromium catalysis. A variety of aldehydes served as suitable electrophiles under mild reaction conditions. Molecular complexities are quickly increased in a highly diastereo- and enantioselective manner.

  3. Copper-Catalyzed Divergent Addition Reactions of Enoldiazoacetamides with Nitrones.

    PubMed

    Cheng, Qing-Qing; Yedoyan, Julietta; Arman, Hadi; Doyle, Michael P

    2016-01-13

    Catalyst-controlled divergent addition reactions of enoldiazoacetamides with nitrones have been developed. By using copper(I) tetrafluoroborate/bisoxazoline complex as the catalyst, a [3+3]-cycloaddition reaction was achieved with excellent yield and enantioselectivity under exceptionally mild conditions, which represents the first highly enantioselective base-metal-catalyzed vinylcarbene transformation. When the catalyst was changed to copper(I) triflate, Mannich addition products were formed in high yields with near exclusivity under otherwise identical conditions.

  4. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  5. Stereoselective synthesis of indolines via organocatalytic thioester enolate addition reactions.

    PubMed

    Kolarovic, Andrej; Käslin, Alexander; Wennemers, Helma

    2014-08-15

    A straightforward stereoselective synthesis route to indolin-3-yl acetates has been developed using organocatalytic addition reactions of monothiomalonates to ortho-bromo nitrostyrenes as the key step. The addition products of this highly stereoselective one-pot addition-deprotection-decarboxylation sequence were easily further converted to the target indolin-3-yl acetates, via an intramolecular Buchwald-Hartwig coupling reaction. The route provided indolin-3-yl acetates bearing tertiary and exocyclic quarternary stereogenic centers in excellent stereoselectivities and overall yields of 34-83%.

  6. Catalytic Asymmetric 1,4-Addition Reactions of Simple Alkylnitriles.

    PubMed

    Yamashita, Yasuhiro; Sato, Io; Suzuki, Hirotsugu; Kobayashi, Shū

    2015-10-01

    The development of catalytic asymmetric carbon-carbon bond-forming reactions of alkylnitriles that do not have an activating group at the α-position, under proton-transfer conditions, is a challenging research topic. Here, we report catalytic asymmetric direct-type 1,4-addition reactions of alkylnitriles with α,β-unsaturated amides by using a catalytic amount of potassium hexamethyldisilazide (KHMDS) with a chiral macro crown ether. The desired reactions proceeded in high yields with good diastereo- and enantioselectivities. To our knowledge, this is the first example of catalytic asymmetric direct-type 1,4-addition reaction of alkylnitriles without any activating group at the α-position.

  7. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subscribers on the authorized channel(s), the FCC may dismiss that application without prejudice. (f... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  8. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subscribers on the authorized channel(s), the FCC may dismiss that application without prejudice. (f... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  9. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subscribers on the authorized channel(s), the FCC may dismiss that application without prejudice. (f... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  10. 47 CFR 22.817 - Additional channel policies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subscribers on the authorized channel(s), the FCC may dismiss that application without prejudice. (f... FCC may dismiss that application without prejudice. Commercial Aviation Air-Ground Systems...

  11. Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone

    SciTech Connect

    Zhao, Yan; Tishchenko, Oksana; Gour, Jeffrey R.; Li, Wei; Lutz, Jesse; Piecuch, Piotr; Truhlar, Donald G.

    2009-05-14

    The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals

  12. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  13. Choosing channel quantization levels and viterbi decoding for space diversity reception over the additive white Guassian noise channel

    NASA Technical Reports Server (NTRS)

    Kalson, S.

    1986-01-01

    Previous work in the area of choosing channel quantization levels for a additive white Gaussian noise channel composed of one receiver-demodulator is reviewed, and how this applies to the Deep Space Network composed of several receiver-demodulators (space diversity reception) is shown. Viterbi decoding for the resulting quantized channel is discussed.

  14. Kinetics of Hydrogen Abstraction and Addition Reactions of 3-Hexene by ȮH Radicals.

    PubMed

    Yang, Feiyu; Deng, Fuquan; Pan, Youshun; Zhang, Yingjia; Tang, Chenglong; Huang, Zuohua

    2017-03-09

    Rate coefficients of H atom abstraction and H atom addition reactions of 3-hexene by the hydroxyl radicals were determined using both conventional transition-state theory and canonical variational transition-state theory, with the potential energy surface (PES) evaluated at the CCSD(T)/CBS//BHandHLYP/6-311G(d,p) level and quantum mechanical effect corrected by the compounded methods including one-dimensional Wigner method, multidimensional zero-curvature tunneling method, and small-curvature tunneling method. Results reveal that accounting for approximate 70% of the overall H atom abstractions occur in the allylic site via both direct and indirect channels. The indirect channel containing two van der Waals prereactive complexes exhibits two times larger rate coefficient relative to the direct one. The OH addition reaction also contains two van der Waals complexes, and its submerged barrier results in a negative temperature coefficient behavior at low temperatures. In contrast, The OH addition pathway dominates only at temperatures below 450 K whereas the H atom abstraction reactions dominate overwhelmingly at temperature over 1000 K. All of the rate coefficients calculated with an uncertainty of a factor of 5 were fitted in a quasi-Arrhenius formula. Analyses on the PES, minimum reaction path and activation free Gibbs energy were also performed in this study.

  15. A semi-classical treatment of channeling radiation reaction

    SciTech Connect

    Huang, Z.; Chen, P.; Ruth, R.D.

    1995-11-01

    Radiation reaction including damping and quantum excitation has been studied extensively in synchrotrons and storage rings, where the effect is mainly due to the bending field. Recent development in advanced acceleration concepts requires very strong transverse focusing to maintain beam stability, and novel ideas such as channeling acceleration utilize the superstrong microscopic focusing field existing in a crystal channel. Here, a semi-classical formalism is used to calculate the radiation reaction of a relativistic particle in a straight, continuous focusing system. Due to the absence of quantum excitation in such a focusing system, the radiation damping rate of the transverse action obtained using this formalism agrees exactly with the result from the classical Lorentz-Dirac radiation reaction equation. In the limit where the pitch angle of the particle is much smaller than the radiation opening angle, the transverse action damps exponentially with an energy-independent rate that is much faster than the energy decay rate. In the opposite limit, both the transverse action and the energy damp with power laws and their relative rates are comparable. The general time-dependence of the transverse action damping and the energy decay are obtained analytically from these rate equations.

  16. A model study of sequential enzyme reactions and electrostatic channeling.

    PubMed

    Eun, Changsun; Kekenes-Huskey, Peter M; Metzger, Vincent T; McCammon, J Andrew

    2014-03-14

    We study models of two sequential enzyme-catalyzed reactions as a basic functional building block for coupled biochemical networks. We investigate the influence of enzyme distributions and long-range molecular interactions on reaction kinetics, which have been exploited in biological systems to maximize metabolic efficiency and signaling effects. Specifically, we examine how the maximal rate of product generation in a series of sequential reactions is dependent on the enzyme distribution and the electrostatic composition of its participant enzymes and substrates. We find that close proximity between enzymes does not guarantee optimal reaction rates, as the benefit of decreasing enzyme separation is countered by the volume excluded by adjacent enzymes. We further quantify the extent to which the electrostatic potential increases the efficiency of transferring substrate between enzymes, which supports the existence of electrostatic channeling in nature. Here, a major finding is that the role of attractive electrostatic interactions in confining intermediate substrates in the vicinity of the enzymes can contribute more to net reactive throughput than the directional properties of the electrostatic fields. These findings shed light on the interplay of long-range interactions and enzyme distributions in coupled enzyme-catalyzed reactions, and their influence on signaling in biological systems.

  17. Study of all Reaction Channels in Deuteron-Deuteron Scattering

    NASA Astrophysics Data System (ADS)

    Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.

    Few-nucleon systems can be used as fundamental laboratories for studying details of the nuclear force effects. We performed a series of deuteron-deuteron scattering experiments at intermediate energies. The experiments exploited BINA and BBS experimental setups and polarized deuteron beams with kinetic energies of 65 and 90 MeV/nucleon. These experiments aim to measure differential cross sections, vector and tensor analyzing powers of all available reaction channels in deuteron-deuteron scattering. With these data we will provide a systematic database, which will be used to test present theoretical approximations and upcoming ab-initio calculations in four-nucleon system.

  18. Reaction Kinetics of HBr with HO2: A New Channel for Isotope Scrambling Reactions.

    PubMed

    Church, Jonathan R; Skodje, Rex T

    2016-11-03

    The gas phase reaction kinetics of HBr with the HO2 radical are investigated over the temperature range of T = 200-1500 K using a theoretical approach based on transition state theory. The parameters for the potential energy surface are computed using density functional theory with the M11 exchange functional. The rate coefficient for the HBr + HO2 → Br + H2O2 abstraction channel is found to be somewhat larger than previous estimates at low temperatures due to quantum tunneling. The present study reveals the existence of a novel exchange pathway, HBr + H'O2 → H'Br + HO2, which exhibits a much lower reaction barrier than does the abstraction route. The transition state for this process is a symmetrical planar five-membered-ring-shaped structure. At low temperatures, this concerted double hydrogen transfer reaction is several orders of magnitude faster than the abstraction channel. The exchange process may be observed using isotope scrambling reactions; such reactions may contribute to observed isotope abundances in the atmosphere. The rate coefficients for the isotopically labeled reactions are computed.

  19. Understanding reaction mechanisms in organic chemistry from catastrophe theory: ozone addition on benzene.

    PubMed

    Ndassa, Ibrahim Mbouombouo; Silvi, Bernard; Volatron, François

    2010-12-16

    The potential energy profiles of the endo and exo additions of ozone on benzene have been theoretically investigated within the framework provided by the electron localization function (ELF). This has been done by carrying out hybrid Hartree-Fock DFT B3LYP calculation followed by a bonding evolution theory (BET) analysis. For both approaches, the reaction is exothermic by ~98 kJ mol(-1). However, the activation energy is calculated to 10 kJ mol(-1) lower in the endo channel than in the exo one; therefore the formation of the endo C(6)H(6)O(3) adduct is kinetically favored. Six structural stability domains are identified along both reaction pathways as well as the bifurcation catastrophes responsible for the changes in the topology of the system. This provides a chemical description of the reaction mechanism in terms of heterolytic synchronous bond formation.

  20. Rate constant and reaction channels for the reaction of atomic nitrogen with the ethyl radical

    SciTech Connect

    Stief, L.J.; Nesbitt, F.L.; Payne, W.A. ); Kuo, S.C.; Tao, W.; Klemm, R.B. )

    1995-04-01

    The absolute rate constant and primary reaction products have been determined at [ital T]=298 K for the atom--radical reaction N([sup 4][ital S])+C[sub 2]H[sub 5] in a discharge flow system with collision-free sampling to a mass spectrometer. The rate constant measurements employed low energy electron impact ionization while the product study used dispersed synchrotron radiation as the photoionization source. The rate constant was determined under pseudo-first-order conditions by monitoring the decay of C[sub 2]H[sub 5] or C[sub 2]D[sub 5] as a function of time in the presence of excess N atoms. The result is [ital k]=(1.1[plus minus]0.3)[times]10[sup [minus]10] cm[sup 3] molecule[sup [minus]1] s[sup [minus]1]. For the reaction product experiments using photoionization mass spectrometry, products observed at 114 nm (10.9 eV) were CD[sub 3], D[sub 2]CN and C[sub 2]D[sub 4] for the N+C[sub 2]D[sub 5] reaction. The product identification is based on the unambiguous combination of product [ital m]/[ital z] values, the shift of the [ital m]/[ital z] peaks observed for the N+C[sub 2]D[sub 5] reaction products with respect to the N+C[sub 2]H[sub 5] reaction products and the photoionization threshold measured for the major products. The observed products are consistent with the occurrence of the reaction channels D[sub 2]CN+CD[sub 3](2a) and C[sub 2]D[sub 4]+ND(2c). Formation of C[sub 2]D[sub 4] product via channel (2c) accounts for approximately 65% of the C[sub 2]D[sub 5] reacted. Most, if not all, of the remaining 35% is probably accounted for by channel (2a). These rate constant and product results are compared with those for the N+CH[sub 3] reaction as well as other atom+C[sub 2]H[sub 5] reactions. The role of the N+C[sub 2]H[sub 5] reaction in the formation of HCN in the atmospheres of Titan and Neptune is briefly considered. (Abstract Truncated)

  1. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions. [Gamma rays and electrons

    SciTech Connect

    Schaefer, K.; Asmus, K.D.

    1980-08-21

    Phosphite radicals HPO/sub 3/- and PO/sub 3//sup 2/-, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO/sub 3/- and PO/sub 3//sup 2/- are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO/sub 2/)/sub 3/- are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO/sub 3//sup 2/-. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO/sub 5//sup -/. reversible PO/sub 5//sup 2 -/. + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed.

  2. Diels-Alder reactions: The effects of catalyst on the addition reaction

    NASA Astrophysics Data System (ADS)

    Yilmaz, Özgür; Kus, Nermin Simsek; Tunç, Tuncay; Sahin, Ertan

    2015-10-01

    The reaction between 2,3-dimethyl-1,3-butadiene and dimethyl 7-oxabicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate is efficiently achieved with small amounts of catalyst, i.e. phenol, AcOH, nafion, and β-cyclodextrin. Exo-diastereoselective cycloaddition reactions were observed both without catalyst and different catalysts for 48 days. As a result, different products (tricyclicmolecule 5, retro-Diels-Alder product 6, and oxidation product 7) were obtained with different catalysts. In addition, we synthesized Diels-Alders product 8 and tricyclocyclitol 10 via Diels-Alder reaction. The structures of these products were characterized by 1H NMR, 13C NMR, MS and IR spectroscopy.

  3. HIGH TEMPERATURE POLYMERS FROM 1,3-DIPOLAR ADDITION REACTIONS.

    DTIC Science & Technology

    indazole with nitrobenzene as the reaction solvent has...phenylhydrazide chloride has been prepared. The reaction of this compound with ethynyl benzene in the presence of triethylamine yields 1,1’,5,5’- tetraphenyl-3,3...corresponding heterocycles. The polymerization reaction of 4,4’ oxydi benzoylphenyl- hydrazide chloride with p-diethynyl benzene afforded poly (1,1’,5,5’-tetraphenyl-3,3’- (oxydi-p-phenylene) -dipyrazole).

  4. HIGH TEMPERATURE POLYMERS FROM 1,3-DIPOLAR ADDITION REACTIONS.

    DTIC Science & Technology

    reaction of benzoylphenylhydrazide chloride and m-divinylbenzene in the presence of triethylamine was prepared. The polymerization reaction of p...phenylene-3,3’-disydnone with p-benzoquinone afforded poly(2,4,6,8-tetrahydro-4,8-dioxo-2,6-p-phenylenepyrazolo (3,4-f) indazole ) which had good thermal...stability and an inherent viscosity of 0.6. The polymerization reaction of terephthaloyl phenylhydrazide chloride with m-divinylbenzene gave poly(1,1

  5. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  6. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Rural Radiotelephone Service § 22.719 Additional channel... spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to..., two-way mobile and rural radiotelephone services. In the case of conventional rural...

  7. Eco-friendly polyethylene glycol promoted Michael addition reactions of α,β-unsaturated carbonyl compounds

    EPA Science Inventory

    Abstract- Intra- and inter-nucleophilic addition reactions of different unsaturated compounds were found to be highly effective without any additives in PEG-400 as a recyclable reaction medium under neutral conditions.

  8. Image Charge Method for Reaction Fields in a Hybrid Ion-Channel Model

    SciTech Connect

    Xu, Zhenli; Cai, Wei; Cheng, Xiaolin

    2011-01-01

    A multiple-image method is proposed to approximate the reaction-field potential of a source charge inside a finite length cylinder due to the electric polarization of the surrounding membrane and bulk water. When applied to a hybrid ion-channel model, this method allows a fast and accurate treatment of the electrostatic interactions of protein with membrane and solvent. To treat the channel/membrane interface boundary conditions of the electric potential, an optimization approach is used to derive image charges by fitting the reaction-field potential expressed in terms of cylindric harmonics. Meanwhile, additional image charges are introduced to satisfy the boundary conditions at the planar membrane interfaces. In the end, we convert the electrostatic interaction problem in a complex inhomogeneous system of ion channel/membrane/water into one in a homogeneous free space embedded with discrete charges (the source charge and image charges). The accuracy of this method is then validated numerically in calculating the solvation self-energy of a point charge.

  9. Why Are Addition Reactions to N2 Thermodynamically Unfavorable?

    PubMed

    Borden, Weston Thatcher

    2017-02-09

    Thermochemical data are used to show that, of the 89.9 kcal/mol difference between the endothermicity of H2 addition to N2 (ΔH = 47.9 kcal/mol) and the exothermicity of H2 addition to acetylene (ΔH = -42.0 kcal/mol), less than half is due to a stronger π bond in N2 than in acetylene. The other major contributor to the difference of 89.9 kcal/mol between the enthalpies of hydrogenation of N2 and acetylene is that the pair of N-H bonds that are created in the addition of H2 to N2 are significantly weaker than the pair of C-H bonds that are created in the addition of H2 to acetylene. The reasons for this large difference between the strengths of the N-H bonds in E-HN═NH and the C-H bonds in H2C═CH2 are analyzed and discussed.

  10. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    SciTech Connect

    Jiang, Bin; Guo, Hua

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  11. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-01

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  12. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    PubMed

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  13. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

    PubMed

    Byrd, Katherine M

    2015-01-01

    The conjugate addition reaction has been a useful tool in the formation of carbon-carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams.

  14. Diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams

    PubMed Central

    2015-01-01

    Summary The conjugate addition reaction has been a useful tool in the formation of carbon–carbon bonds. The utility of this reaction has been demonstrated in the synthesis of many natural products, materials, and pharmacological agents. In the last three decades, there has been a significant increase in the development of asymmetric variants of this reaction. Unfortunately, conjugate addition reactions using α,β-unsaturated amides and lactams remain underdeveloped due to their inherently low reactivity. This review highlights the work that has been done on both diastereoselective and enantioselective conjugate addition reactions utilizing α,β-unsaturated amides and lactams. PMID:25977728

  15. Dynamical coupled-channels study of meson production reactions from EBAC@Jlab

    SciTech Connect

    Hiroyuki Kamano

    2011-10-01

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  16. Dynamical coupled-channels study of meson production reactions from EBACatJLab

    SciTech Connect

    Kamano, Hiroyuki

    2011-10-24

    We present the current status of a combined and simultaneous analysis of meson production reactions based on a dynamical coupled-channels (DCC) model, which is conducted at Excited Baryon Analysis Center (EBAC) of Jefferson Lab.

  17. NB-PLC channel modelling with cyclostationary noise addition & OFDM implementation for smart grid

    NASA Astrophysics Data System (ADS)

    Thomas, Togis; Gupta, K. K.

    2016-03-01

    Power line communication (PLC) technology can be a viable solution for the future ubiquitous networks because it provides a cheaper alternative to other wired technology currently being used for communication. In smart grid Power Line Communication (PLC) is used to support communication with low rate on low voltage (LV) distribution network. In this paper, we propose the channel modelling of narrowband (NB) PLC in the frequency range 5 KHz to 500 KHz by using ABCD parameter with cyclostationary noise addition. Behaviour of the channel was studied by the addition of 11KV/230V transformer, by varying load location and load. Bit error rate (BER) Vs signal to noise ratio SNR) was plotted for the proposed model by employing OFDM. Our simulation results based on the proposed channel model show an acceptable performance in terms of bit error rate versus signal to noise ratio, which enables communication required for smart grid applications.

  18. The minimum Rényi entropy output of a quantum channel is locally additive

    NASA Astrophysics Data System (ADS)

    Gour, Gilad; Kemp, Todd

    2016-12-01

    We show that the minimum Rényi entropy output of a quantum channel is locally additive for Rényi parameter α >1 . While our work extends the results of Gour and Friedland (IEEE Trans. Inf. Theory 59(1):603, 2012) (in which local additivity was proven for α =1 ), it is based on several new techniques that incorporate the multiplicative nature of ℓ_p -norms, in contrast to the additivity property of the von-Neumann entropy. Our results demonstrate that the counterexamples to the Rényi additivity conjectures exhibit purely global effects of quantum channels. Interestingly, the approach presented here cannot be extended to Rényi entropies with parameter α <1.

  19. [Risk hidden in the small print? : Some food additives may trigger pseudoallergic reactions].

    PubMed

    Zuberbier, Torsten; Hengstenberg, Claudine

    2016-06-01

    Some food additives may trigger pseudoallergenic reactions. However, the prevalence of such an overreaction is - despite the increasing number of food additives - rather low in the general population. The most common triggers of pseudoallergic reactions to food are naturally occurring ingredients. However, symptoms in patients with chronic urticaria should improve significantly on a pseudoallergen-free diet. In addition, some studies indicate that certain food additives may also have an impact on the symptoms of patients with neurodermatitis and asthma.

  20. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution.

    PubMed

    Li, Jun-Jian; Wei, Wei; Qi, Xiao-Liang; Xu, Xiao; Liu, Yu-Cheng; Lin, Qiu-Han; Dong, Wei

    2016-01-05

    A new dual-channel sensor for the detection of cyanide was developed based on the conjugated of naphthalene and malononitrile. Upon the addition of CN(-), the sensor displayed very large blue-shift in both fluorescence (80nm) and absorption (120nm) spectra. The sensor of cyanide was performed via the nucleophilic attack of cyanide anion to vinylic groups of the sensor with a 1:1 binding stoichiometry and the color changed of the sensor is mainly due to the intramolecular charge transfer process improvement. The intramolecular charge transfer progress was blocked with color changed and fluorescence blue-shift. The mechanism of sensor reaction with CN(-) ion was studied using (1)H NMR and mass spectrometry.

  1. On the role of DNA in DNA-based catalytic enantioselective conjugate addition reactions.

    PubMed

    Dijk, Ewold W; Boersma, Arnold J; Feringa, Ben L; Roelfes, Gerard

    2010-09-07

    A kinetic study of DNA-based catalytic enantioselective Friedel-Crafts alkylation and Michael addition reactions showed that DNA affects the rate of these reactions significantly. Whereas in the presence of DNA, a large acceleration was found for the Friedel-Crafts alkylation and a modest acceleration in the Michael addition of dimethyl malonate, a deceleration was observed when using nitromethane as nucleophile. Also, the enantioselectivities proved to be dependent on the DNA sequence. In comparison with the previously reported Diels-Alder reaction, the results presented here suggest that DNA plays a similar role in both cycloaddition and conjugate addition reactions.

  2. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is

  3. Peptide-catalyzed 1,4-addition reactions of aldehydes to nitroolefins.

    PubMed

    Kastl, Robert; Arakawa, Yukihiro; Duschmalé, Jörg; Wiesner, Markus; Wennemers, Helma

    2013-01-01

    Conjugate addition reactions of aldehydes to nitroolefins provide synthetically useful gamma-nitroaldehydes. Here we summarize our research on peptide-catalyzed conjugate addition reactions of aldehydes to differently substituted nitroolefins. We show that peptides of the general type Pro-Pro-Xaa (Xaa = acidic amino acid) are not only highly active, robust and stereoselective catalysts but have also remarkable chemoselectivities.

  4. Intermolecular addition reactions of N-alkyl-N-chlorosulfonamides to unsaturated compounds.

    PubMed

    Heuger, Gerold; Göttlich, Richard

    2015-01-01

    N-Alkyl-N-chlorosulfonamides add to alkenes under copper(I) catalysis. In reactions of styrene derivatives with terminal double bonds the addition products were obtained in excellent yield and high regioselectivity. Lower yields are obtained in addition reactions to non-aromatic alkenes. The reaction most likely proceeds via a redox catalysis and amidyl radicals, a concerted mechanism has been ruled out and a polar mechanism via chloronium ions would lead to the opposite regiochemistry.

  5. Divergolide congeners illuminate alternative reaction channels for ansamycin diversification.

    PubMed

    Ding, Ling; Franke, Jakob; Hertweck, Christian

    2015-02-14

    Isolation and structure elucidation of six new divergolides reveal unusual ansamycin diversification reactions including formation of the unusual isobutenyl side chain from a branched polyketide synthase extender unit, azepinone ring closure, macrolide ring contraction and formation of a seco variant by a neighboring group-assisted decarboxylation.

  6. Gaussian capacity of the quantum bosonic memory channel with additive correlated Gaussian noise

    SciTech Connect

    Schaefer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2011-09-15

    We present an algorithm for calculation of the Gaussian classical capacity of a quantum bosonic memory channel with additive Gaussian noise. The algorithm, restricted to Gaussian input states, is applicable to all channels with noise correlations obeying certain conditions and works in the full input energy domain, beyond previous treatments of this problem. As an illustration, we study the optimal input states and capacity of a quantum memory channel with Gauss-Markov noise [J. Schaefer, Phys. Rev. A 80, 062313 (2009)]. We evaluate the enhancement of the transmission rate when using these optimal entangled input states by comparison with a product coherent-state encoding and find out that such a simple coherent-state encoding achieves not less than 90% of the capacity.

  7. A semi-classical treatment of channeling radiation reaction

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Chen, Pisin; Ruth, Ronald D.

    1996-10-01

    A semi-classical formalism is used to calculate the radiation reaction of a relativistic particle in a straight, continuous focusing system. Due to the absence of quantum excitation in such a focusing system, the radiation damping rate of the transverse action obtained using this formalism agrees exactly with the result from the classical Lorentz-Dirac radiation reaction equation. In the limit where the pitch angle of the particle is much smaller than the radiation opening angle, the transverse action damps exponentially with an energy-independent rate that is much faster than the energy decay rate. In the opposite limit, both the transverse action and the energy damp with power laws and their relative rates are comparable. The general time-dependence of the transverse action damping and the energy decay are obtained analytically from these rate equations.

  8. Radiation and radiation reaction in continuous focusing channels

    SciTech Connect

    Huang, Zhirong; Chen, Pisin; Ruth, R.D.

    1994-12-31

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state which the particle inevitably decays to, and yields the minimum beam emittance that one can ever attain, {gamma}{epsilon}{sub min} = {Dirac_h}/2mc, limited only by the uncertainty principle. Due to adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss. These findings may apply to bent systems provided that the focusing field dominates over the bending field.

  9. Radiation and radiation reaction in continuous focusing channels

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Chen, Pisin; Ruth, Ronald D.

    1995-06-01

    We show that the radiation damping rate of the transverse action of a particle in a straight, continuous focusing system is independent of the particle energy, and that no quantum excitation is induced. This absolute damping effect leads to the existence of a transverse ground state which the particle inevitably decays to, and yields the minimum beam emittance that one can ever attain, γɛmin=ℏ/2mc, limited only by the uncertainty principle. Due to adiabatic invariance, the particle can be accelerated along the focusing channel in its ground state without any radiation energy loss. These findings may apply to bent systems provided that the focusing field dominates over the bending field.

  10. Catalytic Direct-type 1,4-Addition Reactions of Alkylazaarenes.

    PubMed

    Suzuki, Hirotsugu; Igarashi, Ryo; Yamashita, Yasuhiro; Kobayashi, Shū

    2017-04-10

    1,4-addition reactions of alkylazaarenes catalyzed by strong Brønsted bases have been developed for the first time. The desired reactions with α,β-unsaturated amides proceeded under mild reaction conditions to give the 1,4-adducts in high yields. Both ortho- and para-substituted azaarenes afforded the desired adducts in high yields. Regioselective reactions of di- or trimethylpyridine were found to be possible depending on the acidity of the α-hydrogen atoms. Furthermore, a candidate of allosteric protein kinase modulators was synthesized in two steps. An asymmetric variant of this reaction was also found to be feasible.

  11. Comparative dynamics of the two channels of the reaction of D + MuH.

    PubMed

    Aoiz, F J; Aldegunde, J; Herrero, V J; Sáez-Rábanos, V

    2014-06-07

    The dynamics of the asymmetric D + MuH (Mu = Muonium) reaction leading to Mu exchange, DMu + H, and H abstraction, DH + Mu, channels has been investigated using time-independent quantum mechanical (QM) calculations. Reaction probabilities, cross sections, cumulative reaction probabilities, and rate coefficients were determined for the two exit channels of the reaction. Quasiclassical trajectory (QCT) calculations were also performed in order to check the reliability of the method for this reaction and to discern the genuine quantum effects. Overall, the Mu exchange channel exhibits more structured reaction probabilities and cross sections with much larger rate coefficients than the H abstraction counterpart. Over the 100-1000 K temperature interval considered in this study, the QM rate coefficients for the Mu exchange vary between ≈5 × 10(-15) and 2 × 10(-11) cm(3) s(-1) and those for the generation of DH + Mu between 2 × 10(-18) and 3.5 × 10(-12) cm(3) s(-1). In common with the rest of the isotopologues of the H + H2 system, the height of the respective barriers in the collinear (symmetric stretch) vibrationally adiabatic potential energy curves matches the classical total energy threshold very accurately. Indeed, the lower and narrower vibrationally adiabatic collinear barrier as compared with that for the DH + Mu formation determines the preponderance of the DMu + H channel. Comparison of QM and QCT results and their analysis show that tunneling accounts for the reactivity at energies below the height of these barriers and that its effect on the rate coefficients becomes appreciable below 300 K. As expected, with growing temperature the contribution of tunneling to the global reactivity decreases markedly, but the rate coefficients are still much higher for the Mu exchange channel due to the effect of MuH rotational excitation that boosts the formation of DMu while diminishing the H abstraction channel that leads to DH formation. The analysis of the

  12. Dynamical coupled-channels study of {pi}N {right arrow} {pi pi}N reactions.

    SciTech Connect

    Kamano, H.; Julia-Diaz, B.; Lee, T.-S. H.; Matsuyama, A.; Sato, T.; Physics; Jefferson Lab.; Univ. of Barcelona; Shizuoka Univ.; Osaka Univ.

    2009-02-24

    As a step toward performing a complete coupled-channels analysis of the world data of {pi}N,{gamma}*N {yields} {pi}N,{eta}N,{pi}{pi}N reactions, the {pi}N {yields} {pi}{pi}N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C 76, 065201 (2007). The channels included are {pi}N,{eta}N, and {pi}{pi}N which has {pi}{Delta},{rho}N, and {sigma}N resonant components. The nonresonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N*) states that are dressed by the nonresonant interactions as constrained by the unitarity condition. The data of total cross sections and {pi}N and {pi}{pi} invariant mass distributions of {pi} + p {yields} {pi} + {pi} + n, {pi} + {pi}0p and {pi} - p {yields} {pi} + {pi} - n, {pi} - {pi}0p,{pi}0{pi}0n reactions from threshold to the invariant mass W = 2 GeV can be described to a very large extent. We show the importance of the coupled-channels effects and the strong interference among the contributions from the {pi}{Delta},{sigma}N, and {rho}N channels. The large interference between the resonant and nonresonant amplitudes is also demonstrated. Possible future developments are discussed.

  13. The C(3P) + NH3 Reaction in Interstellar Chemistry. I. Investigation of the Product Formation Channels

    NASA Astrophysics Data System (ADS)

    Bourgalais, Jérémy; Capron, Michael; Abhinavam Kailasanathan, Ranjith Kumar; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine; Goulay, Fabien; Le Picard, Sébastien D.

    2015-10-01

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  14. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    DOE PAGES

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; ...

    2015-10-13

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzlemore » technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.« less

  15. A summary of seven- and eight-membered ring sultam syntheses via three Michael addition reactions.

    PubMed

    Niu, Ben; Xie, Ping; Wang, Min; Wang, Yanjie; Zhao, Wannian; Pittman, Charles U; Zhou, Aihua

    2015-08-01

    A series of seven- and eight-membered ring -N,O-, -N,N-, and -N,S-sultams were effectively synthesized via tandem reactions involving oxa-, aza-, and thia-Michael addition to vinyl sulfonamides. These reactions are summarized here since they enrich current synthetic methodologies for sultams and provide a good example of sultam diversity-oriented synthesis. All reactions proceeded under relatively mild and environmentally friendly conditions, and all these reactions are quite suitable for the rapid preparation of sultam compound libraries, which are valuable for biological activity explorations.

  16. Borohydride-mediated radical addition reactions of organic iodides to electron-deficient alkenes.

    PubMed

    Kawamoto, Takuji; Uehara, Shohei; Hirao, Hidefumi; Fukuyama, Takahide; Matsubara, Hiroshi; Ryu, Ilhyong

    2014-05-02

    Cyanoborohydrides are efficient reagents in the reductive addition reactions of alkyl iodides and electron-deficient olefins. In contrast to using tin reagents, the reaction took place chemoselectively at the carbon-iodine bond but not at the carbon-bromine or carbon-chlorine bond. The reaction system was successfully applied to three-component reactions, including radical carbonylation. The rate constant for the hydrogen abstraction of a primary alkyl radical from tetrabutylammonium cyanoborohydride was estimated to be <1 × 10(4) M(-1) s(-1) at 25 °C by a kinetic competition method. This value is 3 orders of magnitude smaller than that of tributyltin hydride.

  17. Dynamical Coupled-Channel Model of Meson Production Reactions in the Nucleon Resonance Region

    SciTech Connect

    T.-S. H. Lee; A. Matsuyama; T. Sato

    2006-11-15

    A dynamical coupled-channel model is presented for investigating the nucleon resonances (N*) in the meson production reactions induced by pions and photons. Our objective is to extract the N* parameters and to investigate the meson production reaction mechanisms for mapping out the quark-gluon substructure of N* from the data. The model is based on an energy-independent Hamiltonian which is derived from a set of Lagrangians by using a unitary transformation method.

  18. Michael addition reactions for the modification of gold nanoparticles facilitated by hyperbaric conditions.

    PubMed

    Hartlen, Kurtis D; Ismaili, Hossein; Zhu, Jun; Workentin, Mark S

    2012-01-10

    The chemical interfacial modification of organic solvent soluble 2.4 ± 0.5 nm maleimide-modified monolayer protected gold nanoparticles (2-C(12)AuNPs) with primary or secondary amines via Michael addition reactions is demonstrated. Michael addition reactions between 2-C(12)AuNPs and primary or secondary amines at ambient temperature and pressure and under the conditions where the AuNP is soluble and stable are possible albeit sluggish, often taking days to weeks to go to completion. The rates and efficacies of the these same reactions are drastically increased at hyperbaric pressure conditions (11 000 atm) with no observed adverse effect to the gold nanoparticle stability. The resulting Michael addition adducts (3-C(12)AuNPs) formed from 2-C(12)AuNPs and the corresponding amines were characterized by TEM and by comparison of the (1)H NMR spectra of the 3-C(12)AuNPs with those of model reactions of the same amines with N-dodecylmaleimide, 2. The Michael addition reactions occur more readily with 2 rather than 2-C(12)AuNPs, consistent with the local environment of the latter imposing additional steric or other barriers to the reaction. The use of hyperbaric conditions makes the reaction of the organic solvent soluble 2-C(12)AuNP via Michael addition a viable interfacial modification process that is otherwise impractical. The results also suggest that it is a useful protocol for facilitating Michael addition reactions generally in solution at low temperatures.

  19. Ring Substituent Effects on the Thiol Addition and Hydrolysis Reactions of N-Arylmaleimides.

    PubMed

    Chen, Yingche; Tsao, Kelvin; De Francesco, Élise; Keillor, Jeffrey W

    2015-12-18

    Maleimide groups are used extensively in bioconjugation reactions, but limited kinetic information is available regarding their thiol addition and hydrolysis reactions. We prepared a series of fluorogenic coumarin maleimide derivatives that differ by the substituent on their maleimide C═C bond. Fluorescence-based kinetic studies of the reaction with β-mercaptoethanol (BME) yielded the second-order rate constants (k2), while pH-rate studies from pH 7 to 9 gave base-catalyzed hydrolysis rate constants (kOH). Linear free-energy relationships were studied through the correlation of log k2 and log kOH to both electronic (σ(+)) and steric (Es(norm)) parameters of the C═C substituent. These correlations revealed the thiol addition reaction is primarily sensitive to the electronic effects, while steric effects dominate the hydrolysis reaction. These mechanistic studies provide the basis for the design of novel bioconjugation reactants or fluorogenic labeling agents.

  20. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

    PubMed

    Baker, Laura M S; Baker, Paul R S; Golin-Bisello, Franca; Schopfer, Francisco J; Fink, Mitchell; Woodcock, Steven R; Branchaud, Bruce P; Radi, Rafael; Freeman, Bruce A

    2007-10-19

    Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

  1. Markovnikov free radical addition reactions, a sleeping beauty kissed to life.

    PubMed

    Hoffmann, Reinhard W

    2016-02-07

    This review covers free radical additions, which are initiated by the formal addition of a hydrogen atom to a C[double bond, length as m-dash]C double bond. These reactions originated in the realms of inorganic chemistry, polymer chemistry, and organic chemistry, whereby barriers between these disciplines impeded the rapid implementation of the findings.

  2. Comparative Studies of Cathodically-Promoted and Base-Catalyzed Michael Addition Reactions of Levoglucosenone.

    PubMed

    Samet, Alexander V.; Niyazymbetov, Murat E.; Semenov, Victor V.; Laikhter, Andrei L.; Evans, Dennis H.

    1996-12-13

    Regioselective Michael addition of nitro and heterocyclic compounds to levoglucosenone, 1, is effectively catalyzed by amines and also by cathodic electrolysis. In comparison to the base-catalyzed reaction, it was found that under electrochemical conditions the reaction proceeds under milder conditions and with higher yields. Cathodically-initiated Michael addition of thiols to levoglucosenone using small currents produces the previously unknown threo addition product in several instances. The normal erythro isomer, identified as the kinetic product, tends to be formed when large currents are used. In contrast, slow, low current electrolyses promote equilibration of the two forms so that erythro can be converted to threo by the retro reaction and readdition. Addition of 2-naphthalenethiol to (R)-(+)-apoverbenone is also reported.

  3. Global sensitivity of aviation NOx effects to the HNO3-forming channel of the HO2 + NO reaction

    NASA Astrophysics Data System (ADS)

    Gottschaldt, K.; Voigt, C.; Jöckel, P.; Righi, M.; Deckert, R.; Dietmüller, S.

    2013-03-01

    The impact of a recently proposed HNO3-forming channel of the HO2 + NO reaction on atmospheric ozone, methane and their precursors is assessed with the aim to investigate its effects on aviation NOx induced radiative forcing. The first part of the study addresses the differences in stratospheric and tropospheric HOx-NOx chemistry in general, by comparing a global climate simulation without the above reaction to two simulations with different rate coefficient parameterizations for HO2 + NO → HNO3. A possible enhancement of the reaction by humidity, as found by a laboratory study, particularly reduces the oxidation capacity of the atmosphere, increasing methane lifetime significantly. Since methane lifetime is an important parameter for determining global methane budgets, this might affect estimates of the anthropogenic greenhouse effect. In the second part aviation NOx effects are isolated independently for each of the three above simulations. Warming and cooling effects of aircraft NOx emissions are both enhanced when considering the HNO3-forming channel, but the sum is shifted towards negative radiative forcing. Uncertainties associated with the inclusion of the HO2 + NO → HNO3 reaction and with its corresponding rate coefficient propagate a considerable additional uncertainty on estimates of the climate impact of aviation and on NOx-related mitigation strategies.

  4. Chiral N,N'-Dioxide-Organocatalyzed Regio-, Diastereo- and Enantioselective Michael Addition-Alkylation Reaction.

    PubMed

    Feng, Juhua; Yuan, Xiao; Luo, Weiwei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2016-10-24

    A highly regio-, diastereo- and enantioselective Michael addition-alkylation reaction between α-substituted cyano ketones and (Z)-bromonitrostyrenes has been realized by using a chiral N,N'-dioxide as organocatalyst. A variety of substrates performed well in this reaction, and the corresponding multifunctionalized chiral 2,3-dihydrofurans were obtained in up to 95 % yield with 95:5 dr and 93 % ee.

  5. Bu4N+ alkoxide-initiated/autocatalytic addition reactions with organotrimethylsilanes.

    PubMed

    Das, Manas; O'Shea, Donal F

    2014-06-20

    The use of Me3SiO(-)/Bu4N(+) as a general activator of organotrimethylsilanes for addition reactions has been established. The broad scope of the method offers trimethylsilanes (including acetate, allyl, propargyl, benzyl, dithiane, heteroaryl, and aryl derivatives) as bench-stable organometallics that can be readily utilized as carbanion equivalents for synthesis. Reactions are achieved at rt without the requirement of specialized precautions that are commonplace for other organometallics.

  6. Synthesis of trifluoromethyl-containing vicinal diamines by asymmetric decarboxylative mannich addition reactions.

    PubMed

    Wu, Lingmin; Xie, Chen; Mei, Haibo; Dai, Yanling; Han, Jianlin; Soloshonok, Vadim A; Pan, Yi

    2015-03-20

    Herein is reported a study of asymmetric decarboxylative Mannich addition reactions between (Ss)-N-t-butylsulfinyl-3,3,3-trifluoroacetaldimine and Schiff bases derived from various aldehydes and lithium 2,2-diphenylglycinate. These reactions proceed with excellent diastereoselectivities and good chemical yields, providing a practical method for preparation of trifluoromethyl-containing vicinal diamines. The procedures can be conducted under convenient conditions, rendering this approach of high synthetic value.

  7. Silica gel-promoted tandem addition-cyclization reactions of 2-alkynylbenzenamines with isothiocyanates.

    PubMed

    Ding, Qiuping; Cao, Banpeng; Zong, Zhenzhen; Peng, Yiyuan

    2010-05-10

    Tandem addition-cyclization reactions of 2-alkynylbenzenamines with isothiocyanates promoted by silica gel are described. This reaction proceeds smoothly at 80 degrees C under metal- and solvent-free conditions, which provides an efficient and practical route for the generation of 2,4-dihydro-1H-benzo[d][1,3]thiazines. The recovered silica gel could be reused for several times.

  8. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  9. Calculation of nuclear reaction cross sections on excited nuclei with the coupled-channels method

    SciTech Connect

    Kawano, T.; Talou, P.; Lynn, J. E.; Chadwick, M. B.; Madland, D. G.

    2009-08-15

    We calculate nuclear cross sections on excited nuclei in the fast neutron energy range. We partition the whole process into two contributions: the direct reaction part and the compound nuclear reactions. A coupled-channels method is used for calculating the direct transition of the nucleus from the initial excited state, which is a member of the ground-state rotational band, to the final ground and excited low-lying levels. This process is strongly affected by the channel coupling. The compound nuclear reactions on the excited state are calculated with the statistical Hauser-Feshbach model, with the transmission coefficients obtained from the coupled-channels calculation. The calculations are performed for a strongly deformed nucleus {sup 169}Tm, and selected cross sections for the ground and first excited states are compared. The calculation is also made for actinides to investigate possible modification to the fission cross section when the target is excited. It is shown that both the level coupling for the entrance channel, and the different target spin, change the fission cross section.

  10. Silicide/Silicon Heterointerfaces, Reaction Kinetics and Ultra-short Channel Devices

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    , and that limits transport parameter extraction from SB-FETs using the conventional field-effect transconductance measurements. In addition to application of silicide in Si NW devices, the fundamental materials science of Ni-Si reaction is also of interest, and in-situ TEM has been shown to be a useful tool in obtaining dynamical phase transformation information and therefore providing insights into the new phase formation process. By using in-situ TEM techniques, a new gold catalyzed solid-liquid-solid (SLS) silicide phase growth mechanism in Si NWs is observed for the first time, which shows the liquid mediating growth can be also used in synthesis of metallic silicide nanowires. SLS is analogous to the VLS in both being liquid-mediated, but is fundamentally different in terms of nucleation and mass transport. In our SLS growth at 700 ºC, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through Si NW into the pre-existing Au particle at the tip. Upon supersaturation of both Ni and Si in Au, octahedral shape of Ni disilicide phase nucleates in the middle of the Au liquid alloy, which thereafter sweeps through the Si NW and transform Si into NiSi2. Dissolution of Si by Au(Si,Ni) liquid mediating layer and growth of NiSi2 are shown to proceed in different manners. Using in-situ TEM technique, we also have the chance to present direct evidence that Si (111) twin boundaries and Si grain boundaries on Si NW surface can be efficient heterogeneous nucleation site for the silicide growth. By analyzing the nucleation site favorability, unlike other typical FCC materials like Cu or Si, we infer (111) twin defects in NiSi2 may have high interfacial energy. These results may provide valuable insights into the MOSFET source/drain (S/D) contact silicide formation process when defects are either unintentionally formed during the process or intentionally introduced to engineering the strain along the channel.

  11. [Use of the granulocytic myeloperoxidase release reaction to diagnose food additive allergies].

    PubMed

    Titova, N D

    2011-03-01

    Adverse reactions to food additives are difficult to diagnose due to the diversity of mechanisms involved in their realization and to the absence of reasonably reliable methods for their determination. Eighty-three patients with allergic diseases were examined using the granulocytic myeloperoxidase release reaction (MRR) to diagnose intolerance reactions to food additives (E102, E122, E124, E132, E110, E2111). MRR revealed leukocyte hypersensitivity to tartrazine in 10.8%, sunset yellow in 4.8%, ponceau in 13.2%, indigo carmine in 8.4%, carmoisine and benzoate in 9.6%. The findings were correlated with history data and the levels of IgE antibodies to these dyes. The practical use of the proposed MRR method makes it possible to enhance the accuracy of diagnosis of allergy to food additives.

  12. Continuous In Vitro Evolution of a Ribozyme that Catalyzes Three Successive Nucleotidyl Addition Reactions

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Wright, Martin C.; Joyce, Gerald F.

    2002-01-01

    Variants of the class I ligase ribozyme, which catalyzes joining of the 3' end of a template bound oligonucleotide to its own 5' end, have been made to evolve in a continuous manner by a simple serial transfer procedure that can be carried out indefinitely. This process was expanded to allow the evolution of ribozymes that catalyze three successive nucleotidyl addition reactions, two template-directed mononucleotide additions followed by RNA ligation. During the development of this behavior, a population of ribozymes was maintained against an overall dilution of more than 10(exp 406). The resulting ribozymes were capable of catalyzing the three-step reaction pathway, with nucleotide addition occurring in either a 5' yieldig 3' or a 3' yielding 5' direction. This purely chemical system provides a functional model of a multi-step reaction pathway that is undergoing Darwinian evolution.

  13. [Introduction of platelet additive solution in platelet concentrates: towards a decrease of blood transfusion reactions].

    PubMed

    Rebibo, D; Simonet, M; Hauser, L

    2008-11-01

    Platelet concentrates (PC) are used in thrombocytopenia for curative or preventive treatment for hemorrhagic risk. Since five years, additive solutions have been added in PCs for several reasons; one of them is to present an interest in the intolerance in plasma reactions. The literature data have shown that these solutions entail fewer allergic reactions than PCs kept in plasma. This study was reviewed on three years of transfusion in France. The main objective of this study was to see if there was a difference in frequency when these PCs were in solution or not. All adverse reactions in recipients (ARR) occurring among PCs recipients (with and without additive solution) were analysed. The categories of ARR specifically studied were: allergies, febril non haemolytic reactions (FNHR) and the category "unknown". This study shows that there is significantly lower incidence of allergies by introducing solution. For all ARRs, there is also a decrease in their frequency when PCs are in additive solution, it is significant except for the apheresis platelet concentrates. For categories FNHR and "unknown", the results are opposed and/or not significant. This study confirms that introduction of additive solutions in PCs is able to reduce some allergic transfusion reactions.

  14. On the relative preference of enamine/iminium pathways in an organocatalytic Michael addition reaction.

    PubMed

    Patil, Mahendra P; Sunoj, Raghavan B

    2009-05-04

    The mechanism of the organocatalyzed Michael addition between propanal and methyl vinyl ketone is investigated using the density functional and ab intio methods. Different modes of substrate activation offered by a secondary amine (pyrrolidine) organocatalyst are reported. The electrophilic activation of enone (P-I) through the formation of an iminium ion, and nucleophilic activation of propanal (P-II) in the form of enamine have been examined by identifying the corresponding transition states. The kinetic preference for the formation of key intermediates is established in an effort to identify the competing pathways associated with the title reaction. A comparison of barriers associated with different pathways as well as intermediate formation allows us to provide a suitable mechanistic rationale for Michael addition reactions catalyzed by a secondary amine. The overall barriers for the C-C bond formation pathways involving enol or iminium intermediates are identified as higher than the enamine pathway. Additionally, the generation of iminium is found to be less favored as compared to enamine formation. The effect of co-catalyst/protic solvent on the energetics of the overall reaction is also studied using the cluster continuum approach. Significant reduction in the activation energies for each step of the reaction is predicted for the solvent-assisted models. The co-catalyst assisted addition of propanal-enamine to methyl vinyl ketone is identified as the most preferred pathway (P-IV) for the Michael addition reaction. The results are in concurrence with the available experimental reports on the rate acceleration by the use of a co-catalyst in this reaction.

  15. Similarity between particles and bubbles as micro-additives in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2015-11-01

    The acceleration of turbulent fluid flow in a vertical channel by the use of a uniform distribution of microparticles and of microbubbles has been examined by using a direct numerical simulation to calculate the fluid velocities seen by the additives. The flows considered are the downward gas flow to which solid particles of density ratio of 103 are added and the upward liquid flow to which bubbles of density ratio of 10-3 are added. Both additives, ranging in volume fraction up to 2 ×10-3 , are represented as solid spheres. The Froude numbers are chosen so as to have similar effects in both flows by the use of the same volume fraction of the additives. The fluid-phase momentum balance, integrated over the domain, is used to examine the changes in drag, wall friction and averaged feedback force of the non-stationary flow models. The feedback force per volume fraction is unchanged in the bubble flow. It decreases with increasing volume fraction and inertia of particles in the particle flow. Similarities between the two disperse flows are seen at small times for small volume fractions. Drag is reduced by both additives. The amount of reduced drag decreases with time at large times in the bubble flow, due to the increases in the accumulation of bubbles above walls. This work was supported by JSPS KAKENHI Grant Number 26420097.

  16. Exit channel dynamics in a micro-hydrated SN2 reaction of the hydroxyl anion.

    PubMed

    Otto, R; Brox, J; Trippel, S; Stei, M; Best, T; Wester, R

    2013-08-29

    We report on the reaction dynamics of the monosolvated SN2 reaction of cold OH(-)(H2O) with CH3I that have been studied using crossed beam ion imaging. Two SN2 reaction channels are possible for this reaction: Formation of unsolvated I(-) and of solvated I(-)(H2O) products. We find a strong preference for the formation of unsolvated I(-) reaction products with respect to the energetically favored reaction toward solvated I(-)(H2O). Angle differential cross section measurements reveal similar velocity and angular distributions for all solvated and parts of the unsolvated reaction products. We furthermore find that the contribution of these two products to the total product flux can be described by the same collision energy dependence. We interpret our findings in terms of a joint reaction mechanism in which a CH3OH(H2O)···I(-) complex is formed that decays into either solvated or unsolvated products. Quantum chemical calculation are used to support this assumption.

  17. Enantioselective Synthesis of β-(3-Hydroxypyrazol-1-yl)ketones Using An Organocatalyzed Michael Addition Reaction

    PubMed Central

    Gogoi, Sanjib; Zhao, Cong-Gui; Ding, Derong

    2009-01-01

    β-(3-Hydroxypyrazol-1-yl)ketones have been prepared in high yields and excellent enantioselectivities (94–98% ee) via a Michael addition reaction between 2-pyrazolin-5-ones and aliphatic acyclic α,β-unsaturated ketones using 9-epi-9-amino-9-deoxyquinine as the catalyst. These results account for the first example of an aza-Michael addition of the ambident 2-pyrazolin-5-one anion to a Michael acceptor. PMID:19415906

  18. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Hong; Li, Kuan-Ting

    2016-12-01

    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  19. Effect of Pd Additions on the Invariant Reactions in the Ag-CuOx System

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2006-02-01

    Palladium was added as a ternary component to a series of copper oxide-silver alloys in an effort increase the use temperature of these materials for potential ceramic brazing applications. Phase equilibria at low palladium and copper oxide concentrations in the Pd-CuOx-Ag system were determined experimentally using differential scanning calorimetry, microstructural analysis, and X-ray diffraction. Small additions of palladium were generally found to increase the temperature of the eutectic reaction present in the pseudobinary system, but have little effect on a higher temperature monotectic reaction. However once enough palladium was added (~5 mol%) to increase the new eutectic temperature to that of the original pseudobinary monotectic reaction, the pseudoternary monotectic temperature correspondingly began to move upward as well. The addition of palladium also forced the eutectic point to slightly lower silver concentrations, again causing a convergence with the former monotectic line.

  20. Catalytic asymmetric direct-type 1,4-addition reactions of simple amides.

    PubMed

    Suzuki, Hirotsugu; Sato, Io; Yamashita, Yasuhiro; Kobayashi, Shū

    2015-04-08

    The development of catalytic asymmetric direct-type reactions of less acidic carbonyl compounds such as amides and esters has been a challenging theme in organic chemistry for decades. Here we describe the asymmetric direct 1,4-addition reactions of simple amides with α,β-unsaturated carbonyl compounds using a catalytic amount of a novel chiral catalyst consisting of a potassium base and a macrocyclic chiral crown ether. The desired 1,5-dicarbonyl compounds were obtained in high yields with excellent diastereo- and enantioselectivities. This is the first example of a highly enantioselective catalytic direct-type reaction of simple amides. In addition, the structure of the chiral potassium catalyst has been investigated by X-ray crystallographic, dynamic (1)H NMR, and MALDI-TOF MS analyses.

  1. Asymmetric Michael addition reactions of nitroalkanes to 2-furanones catalyzed by bifunctional thiourea catalysts.

    PubMed

    Bai, Zhushuang; Ji, Ling; Ge, Zemei; Wang, Xin; Li, Runtao

    2015-05-21

    The first bifunctional thiourea catalyzed asymmetric Michael addition reactions of nitroalkanes to 2-furanones are described. The highly functionalized γ-lactones with two or three consecutive stereogenic carbons were obtained in high yields (up to 99%), high diastereoselectivities (up to >20 : 1 dr) and enantioselectivities (up to >99% ee).

  2. Dynamical coupled-channels study of pi N --> pi pi N reactions

    SciTech Connect

    Kamano, Hiroyuki; Julia Diaz, Bruno; Lee, Tsung-Shung; Matsuyama, Akihiko; Sato, Toru

    2009-01-01

    As a step toward performing a complete coupled-channels analysis of the world data of pi N, gamma^* N --> pi N, eta N, pi pi N reactions, the pi N --> pi pi N reactions are investigated starting with the dynamical coupled-channels model developed in Phys. Rev. C76, 065201 (2007). The channels included are pi N, eta N, and pi pi N which has pi Delta, rho N, and sigma N resonant components. The non-resonant amplitudes are generated from solving a set of coupled-channels equations with the meson-baryon potentials defined by effective Lagrangians. The resonant amplitudes are generated from 16 bare excited nucleon (N^*) states which are dressed by the non-resonant interactions as constrained by the unitarity condition. The available total cross section data of pi^+ p --> pi^+ pi^+ n, pi^+ pi^0 and pi^- p --> pi^+ pi^- n, pi^- pi^0 n, pi^0 pi^0 n can be reproduced to a very large extent both in magnitudes and energy-dependence. Possible improvements of the model are investigated, in p

  3. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    PubMed

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters.

  4. Reaction products of amido-amine and epoxide useful as fuel additives

    SciTech Connect

    Efner, H.F.

    1988-04-12

    A method for reducing engine deposits in an internal combustion engine is described comprising the addition of a detergent fuel additive package to a hydrocarbon fuel for the engine. The fuel detergent is added in an amount effective to reduce deposits and the hydrocarbon fuel is used with detergent additive as fuel in an internal combustion engine. The detergent fuel additive package comprises: (1) a fuel detergent additive that is the reaction product prepared by reacting (a) vegetable oil or (b) higher carboxylic acid chosen from (i) aliphatic fatty acids having 10-25 carbon atoms and (ii) aralkyl acids having 12-42 carbon atoms with (c) multiamine to obtain a fist product mixture with the first product mixture reacted with alklylene oxide to produce a second product mixture and (2) a fuel detergent additive solvent compatible with the fuels.

  5. Expanding Radical SAM Chemistry by Using Radical Addition Reactions and SAM Analogues.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Xie, Liqi; Lu, Haojie; Ding, Wei; Zhang, Qi

    2016-09-19

    Radical S-adenosyl-l-methionine (SAM) enzymes utilize a [4Fe-4S] cluster to bind SAM and reductively cleave its carbon-sulfur bond to produce a highly reactive 5'-deoxyadenosyl (dAdo) radical. In almost all cases, the dAdo radical abstracts a hydrogen atom from the substrates or from enzymes, thereby initiating a highly diverse array of reactions. Herein, we report a change of the dAdo radical-based chemistry from hydrogen abstraction to radical addition in the reaction of the radical SAM enzyme NosL. This change was achieved by using a substrate analogue containing an olefin moiety. We also showed that two SAM analogues containing different nucleoside functionalities initiate the radical-based reactions with high efficiencies. The radical adduct with the olefin produced in the reaction was found to undergo two divergent reactions, and the mechanistic insights into this process were investigated in detail. Our study demonstrates a promising strategy in expanding radical SAM chemistry, providing an effective way to access nucleoside-containing compounds by using radical SAM-dependent reactions.

  6. Reaction enthalpies along the two channels of geminate electron recombination in liquid-to-supercritical water

    NASA Astrophysics Data System (ADS)

    Schiller, Robert; Horváth, Ákos

    2013-11-01

    Ionizing radiation or UV light produces electrons and H2O+ ions in water. These species transform into hydrated electron, e-aq, hydrated H3O+ ion, and ·OH radical in each other's neighborhood much faster than any forthcoming chemical transformation. Part of the electrons escapes their geminate partners. There exists two possible paths for the remaining fraction to react: H3O++e-aq=H3O· [channel (A)] and ·OH+e-aq=OH- [channel (B)]. We devised two thermodynamic cycles for the computation of the reaction enthalpies of both channels. Channel (A) was found to be endothermic with an enthalpy of 3.61 eV at room temperature. The enthalpy is seen to be almost constant up to 500 K, to increase at 600 K and to drop abruptly around 650 K, i.e. in the region where the dielectric constant is below 20. Channel (B) was found to be exothermic with an enthalpy of -2.33 eV at room temperature. It is becoming gradually less exothermic with increasing temperature the variation becoming fast around 650 K. The tendency of these thermochemical results parallel with recent kinetic calculations by Torres-Alacan et al. (J. Torres-Alacan, S. Kratz, P. Vöhringer, 2011. Phys. Chem. Chem. Phys. 13, 20806-20819)

  7. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide.

    PubMed

    Grünenfelder, Claudio E; Kisunzu, Jessica K; Wennemers, Helma

    2016-07-18

    The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.

  8. Effect of relative humidity and additives on the reaction of sulfur dioxide with calcium hydroxide

    SciTech Connect

    Ruiz-Alsop, R.N.

    1986-01-01

    The objective of this research was to investigate the effect of process variables and additives on the reaction rate of Ca(OH)/sub 2/ with SO/sub 2/ at conditions similar to these encountered in the bag filters used to collect solids following flue gas desulfurization by spray drying. The effect of Ca(OH)/sub 2/ loading, temperature, relative humidity, and inlet SO/sub 2/ concentration were investigated. Of these variables, relative humidity showed the greatest impact on the reaction rate. The effect of small amounts of additives were also investigated. Of the additives tried (buffer acids, organic deliquescents, and inorganic deliquescents) deliquescent salts were the only additives that improved reactivity. A shrinking core model with zero order kinetics in SO/sub 2/ was used to model experimental data. An empirical correlation was included in the model to account for shape and surface roughness of the Ca(OH)/sub 2/ particles. The diffusion coefficient of the SO/sub 2/ through the product layer was found to increase linearly with relative humidity, and the kinetic rate constant increases exponentially with relative humidity. With a few exceptions the model was able to predict the experimental data within the margin of experimental error (+/- 10%). At high relative humidity and/or high SO/sub 2/ concentration, reaction kinetics control the overall reaction rate, while at low relative humidity and/or low SO/sub 2/ concentration, SO/sub 2/ diffusion through the product layer controls the rate. The reaction solids were characterized by scanning electron microscopy, powder x-ray diffraction, Coulter counter size distribution BET (N/sub 2/) surface area, energy dispersive spectrometry, and differential scanning calorimetry.

  9. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme

    PubMed Central

    Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari

    2002-01-01

    The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824

  10. Calcium channel antagonists inhibit the acrosome reaction and bind to plasma membranes of sea urchin sperm.

    PubMed Central

    Kazazoglou, T; Schackmann, R W; Fosset, M; Shapiro, B M

    1985-01-01

    As a prerequisite to fertilization, sea urchin sperm undergo an acrosome reaction that is mediated in part by increased permeability to Ca2+, with an attendant rapid, massive intracellular Ca2+ accumulation. The acrosome reaction is inhibited by Ca2+ channel antagonists, including verapamil, D600, and dihydropyridines such as nitrendipine, nimodipine, and nisoldipine. To examine the interaction of Ca2+ antagonists with sperm, a plasma membrane preparation enriched for Na+,K+-ATPase was isolated from sea urchin sperm. These plasma membranes specifically bound [3H]nitrendipine and [3H]verapamil at concentrations similar to those that inhibit the acrosome reaction. The binding of verapamil was sigmoidal and half-maximal at 1 microM. There was a high specificity in the binding interaction, since by competition binding verapamil, (-)-D600, and (+)-D600 had different relative Kd values, 11, 2.5, and 0.5 microM, respectively. These data suggest that sperm mediate the Ca2+ influx required for induction of the acrosome reaction via Ca2+ channels with properties similar, but not identical, to those of other excitable tissues. Images PMID:3856274

  11. Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers

    NASA Astrophysics Data System (ADS)

    Albrecht, Krystyna; Moeller, Martin; Groll, Juergen

    Nano- and Microgels are predominantly prepared using radical polymerization techniques. This chapter reviews alternative approaches to microgel preparation based on addition reactions of functional oligomers and polymers. This allows preparation of microgels under physiological conditions and in the presence of biologically active molecules without affecting their function. This method is therefore predominantly used to synthesize microgels for biomedical applications. Different crosslinking chemistries that have been used in this context are presented and discussed with regard to reaction conditions and stability of the reaction product. Microgels that have been prepared by these techniques are divided into two groups. Natural polymers used for the preparation of microgels are described first, followed by artificial prepolymers that are suitable for the preparation of microgels. The different preparation methods as well as the resulting microgels and their properties are presented and discussed.

  12. Computational study on SiH4 dissociation channels and H abstraction reactions

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshio; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru

    2016-07-01

    The primary dissociation channels of SiH4 were investigated using computational chemistry. The results showed properties very similar to those of CH4. The main dissociation product was SiH2 and the second dissociation product was SiH3. SiH was produced through SiH3 to SiH + H2 dissociation by electronic excitation. H abstraction reactions by H and SiH3 were also calculated for SiH4, Si2H6, Si3H8, and Si9H14(100) cluster models. The energy barriers of H abstraction reactions were lower than those of SiH3 abstraction reactions. This result is considerably important for deposition in SiH4/H2 process plasma.

  13. Quantifying the ionic reaction channels in the Secondary Organic Aerosol formation from glyoxal

    NASA Astrophysics Data System (ADS)

    Maxut, Aurelia; Nozière, Barbara; Rossignol, Stéphanie; George, Christian; Waxman, Eleanor Marie; Laskin, Alexander; Slowik, Jay; Dommen, Josef; Prévôt, André; Baltensperger, Urs; Volkamer, Rainer

    2014-05-01

    Glyoxal, a common organic gas in the atmosphere, has been identified in recent years as an important Secondary Organic Aerosol (SOA) precursor (Volkamer et al., 2007). But, unlike with other precursors, the SOA is largely produced by particle-phase reactions (Volkamer et al., 2009) and equilibria (Kampf et al. 2013) that are still not entirely characterized. Since 2009 series of smog chamber experiments have been performed within the Eurochamp program at the Paul Scherrer Institute, Switzerland, to investigate SOA formation from glyoxal. In these experiments, glyoxal was produced by the gas-phase oxidation of acetylene in the presence of seeds, the seed composition and other conditions being varied. The 2011 campaign resulted in the identification of salting processes controlling the glyoxal partitioning in the seeds (Kampf et al. 2013). This presentation will report results of the 2013 campaign focusing on the identification of the various reactions (ionic or photo-induced) contributing to the SOA mass. In particular, the contribution of the ionic reactions, i.e. mediated by NH4+, were investigated by quantifying the formation of imidazoles (imidazole, imidazole-2-carboxaldehyde, 2,2'-biimidazole) from the small condensation channel of glyoxal with ammonia. For this, the SOA produced were collected on quartz filters and analyzed by Orbitrap LC/MS (Q-Exactive Thermo Fisher). The formation of other products such as organic acids was also investigated to determine potential competing reactions. Time-resolved MOUDI sampling coupled with nano-DESY/ESI-MS/MS analysis was also used to identify nitrogen- and sulphur-containing products from all the reactions. The results obtained for a range of conditions will be presented and compared with recent mechanistic information on the ionic reaction channels (Nozière et al., in preparation, 2013). The implementation of all this new information into a glyoxal-SOA model will be discussed.

  14. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions.

    PubMed

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-06-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an "aromatic to be" carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation.

  15. 4-Trifluoromethyl-p-quinols as dielectrophiles: three-component, double nucleophilic addition/aromatization reactions

    PubMed Central

    Dong, Jinhuan; Shi, Lou; Pan, Ling; Xu, Xianxiu; Liu, Qun

    2016-01-01

    In recent years, numerous methods have emerged for the synthesis of trifluoromethylated arenes based on the late-stage introduction of a trifluoromethyl group onto an aryl ring. In sharp comparison, the synthesis of trifluoromethylated arenes based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon has rarely been addressed. It has been found that 4-trifluoromethyl-p-quinol silyl ethers, the readily available and relatively stable compounds, can act as dielectrophiles to be applied to multi-component reactions for the synthesis of various trifluoromethylated arenes. Catalyzed by In(OTf)3, 4-trifluoromethyl-p-quinol silyl ethers react with C-, N-, and S-nucleophiles, respectively, in a regiospecific 1,2-addition manner to generate the corresponding highly reactive electrophilic intermediates. Further reaction of the in-situ generated electrophiles with a C-nucleophile followed by spontaneous aromatization enables the construction of functionalized trifluoromethyl arenes. This three-component, double nucleophilic addition/aromatization reaction based on the pre-introduction of a trifluoromethyl group onto an “aromatic to be” carbon provides a divergent strategy for the synthesis of trifluoromethylated arenes under mild reaction conditions in a single operation. PMID:27246540

  16. Expanding the scope of Lewis acid catalysis in water: remarkable ligand acceleration of aqueous ytterbium triflate catalyzed Michael addition reactions.

    PubMed

    Ding, Rui; Katebzadeh, Kambiz; Roman, Lisa; Bergquist, Karl-Erik; Lindström, Ulf M

    2006-01-06

    [reaction: see text] Significant rate acceleration of metal-catalyzed Michael addition reactions in water was observed upon addition of small, dibasic ligands. Ytterbium triflate and TMEDA was the most effective combination leading to a nearly 20-fold faster reaction than in the absence of ligand.

  17. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  18. Effect of method of heterogenization of ephedrine and reaction conditions on the enantioselectivity of Michael additions

    SciTech Connect

    Krotov, V.V.; Staroverov, S.M.; Nesterenko, P.N.; Lisichkin. G.V.

    1987-11-10

    A series of heterogeneous catalysts for asymmetric Michael additions was synthesized based on ephedrine chemically bound to the surface of silica. The length of the hydrocarbon chain binding the active center to the support surface affects the sign of rotation of the reaction product from the asymmetric addition of thiophenol to benzylideneacetophenone. Grafting ephedrine to the silica surface via a short hydrocarbon chain results in a change in the configuration of the reaction product. Silanol groups on the silica surface are involved in the transition state, as evidenced by data obtained using silica which has been exhaustively treated with trimethylchlorosilane. The absolute specific rotation of 1,3-diphenyl-3-thiophenylpropan-1-one has been established.

  19. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  20. Metal-Catalyzed β-Functionalization of Michael Acceptors through Reductive Radical Addition Reactions.

    PubMed

    Streuff, Jan; Gansäuer, Andreas

    2015-11-23

    Transition-metal-catalyzed radical reactions are becoming increasingly important in modern organic chemistry. They offer fascinating and unconventional ways for connecting molecular fragments that are often complementary to traditional methods. In particular, reductive radical additions to α,β-unsaturated compounds have recently gained substantial attention as a result of their broad applicability in organic synthesis. This Minireview critically discusses the recent landmark achievements in this field in context with earlier reports that laid the foundation for today's developments.

  1. Deracemizing organocatalyzed Michael addition reactions of 2-(arylthio)cyclobutanones with β-nitrostyrenes.

    PubMed

    Luridiana, Alberto; Frongia, Angelo; Aitken, David J; Guillot, Regis; Sarais, Giorgia; Secci, Francesco

    2016-04-07

    Organocatalyzed Michael addition reactions of 2-(arylthio)cyclobutanones with trans-β-nitrostyrenes have been carried out using a bifunctional thiourea-primary amine catalyst, providing diastereoisomerically and enantiomerically enriched 2-alkyl-2-(arylthio)cyclobutanones having two contiguous stereocenters of which one is a chiral quaternary center. The absolute configuration of these novel adducts was assigned by X-ray diffraction analysis and a transition-state model is proposed to explain the observed stereoselectivities.

  2. Michael addition-elimination reactions of chiral enolates with ethyl 3-halopropenoates.

    PubMed

    Esteban, Jorge; Costa, Anna M; Gómez, Alex; Vilarrasa, Jaume

    2008-01-03

    Key dienoic or dienal substructures of cytotoxic macrolides amphidinolide E and dictyostatin have been prepared via a Michael addition (followed by elimination of X-) of chiral enolates on beta-halo derivatives of ethyl acrylate, with full retention of the initial E or Z configuration. Evans oxazolidin-2-ones and our related thiazolidin-2-ones, as well as a fine-tuning of the reaction conditions, have been essential. Many chiral building blocks are accessible from these adducts.

  3. Initiation and Modification of Reaction by Energy Addition: Kinetic and Transport Phenomena

    DTIC Science & Technology

    1993-10-01

    MODIFICATION OF REACTION BY ENERGY ADDITION: KINETIC AND TRANSPORT PHENOMENA by Francis E. Fendell and Mau-Song Chou Center for Propulsion Technology...TA - A2 L AUHOWAC - F49620-90-C-0070 Francis E. Fendell and Mau-Song Chou 7. PEMOS101IG ORGANIZATION NAME(S AND...a gaseous mixture is more pertinent for the supersonic-combustor applications of interest to the Air Force (compare Figs. 1 and 2) (Carrier, Fendell

  4. Measurements and coupled reaction channels analysis of one- and two-proton transfer reactions for the 28Si + 90,94Zr systems

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Mandal, S.; Jhingan, A.; Gehlot, J.; Sugathan, P.; Golda, K. S.; Madhavan, N.; Garg, Ritika; Goyal, Savi; Mohanto, Gayatri; Sandal, Rohit; Chakraborty, Santosh; Verma, Shashi; Behera, Bivash; Eleonora, G.; Wollersheim, H. J.; Singh, R.

    2012-03-01

    Measurements of angular distributions for one- and two-proton stripping reactions for 28Si + 90,94Zr systems were performed at 120 MeV. The experiment was carried out with the 28Si beam at Inter University Accelerator Center, New Delhi. The theoretical calculations were performed using the quantum mechanical coupled reaction channels code fresco. The distorted wave Born approximation calculations reproduced the experimental angular distributions for the one-proton transfer channel for both the systems reasonably well but failed for the two-proton transfer channel. Coupled channels calculations including various intermediate states (involving target and projectile inelastic excitations before and/or after transfer) along with the sequential transfer were able to reproduce the two-proton transfer angular distributions for both the systems reasonably well. It seems that at an energy above the Coulomb barrier, there is significant contribution of the indirect multistep and sequential transfer to the two-proton stripping reaction.

  5. Observation of a new channel, the production of CH3, in the abstraction reaction of OH radicals with acetaldehyde.

    PubMed

    Howes, Neil U M; Lockhart, James P A; Blitz, Mark A; Carr, Scott A; Baeza-Romero, Maria Teresa; Heard, Dwayne E; Shannon, Robin J; Seakins, Paul W; Varga, T

    2016-09-29

    Using laser flash photolysis coupled to photo-ionization time-of-flight mass spectrometry (PIMS), methyl radicals (CH3) have been detected as primary products from the reaction of OH radicals with acetaldehyde (ethanal, CH3CHO) with a yield of ∼15% at 1-2 Torr of helium bath gas. Supporting measurements based on laser induced fluorescence studies of OH recycling in the OH/CH3CHO/O2 system are consistent with the PIMS study. Master equation calculations suggest that the origin of the methyl radicals is from prompt dissociation of chemically activated acetyl products and hence is consistent with previous studies which have shown that abstraction, rather than addition/elimination, is the sole route for the OH + acetaldehyde reaction. However, the observation of a significant methyl product yield suggests that energy partitioning in the reaction is different from the typical early barrier mechanism where reaction exothermicity is channeled preferentially into the newly formed bond. The master equation calculations predict atmospheric yields of methyl radicals of ∼9%. The implications of the observations in atmospheric and combustion chemistry are briefly discussed.

  6. Additives

    NASA Technical Reports Server (NTRS)

    Smalheer, C. V.

    1973-01-01

    The chemistry of lubricant additives is discussed to show what the additives are chemically and what functions they perform in the lubrication of various kinds of equipment. Current theories regarding the mode of action of lubricant additives are presented. The additive groups discussed include the following: (1) detergents and dispersants, (2) corrosion inhibitors, (3) antioxidants, (4) viscosity index improvers, (5) pour point depressants, and (6) antifouling agents.

  7. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2007-07-20

    The generality of Lewis base catalyzed, Lewis acid mediated, enantioselective vinylogous aldol addition reactions has been investigated. The combination of silicon tetrachloride and chiral phosphoramides is a competent catalyst for highly selective additions of a variety of alpha,beta-unsaturated ketone-, 1,3-diketone-, and alpha,beta-unsaturated amide-derived dienolates to aldehydes. These reactions provided high levels of gamma-site selectivity for a variety of substitution patterns on the dienyl unit. Both ketone- and morpholine amide-derived dienol ethers afforded high enantio- and diastereoselectivity in the addition to conjugated aldehydes. Although alpha,beta-unsaturated ketone-derived dienolate did not react with aliphatic aldehydes, alpha,beta-unsaturated amide-derived dienolates underwent addition at reasonable rates affording high yields of vinylogous aldol product. The enantioselectivities achieved with the morpholine derived-dienolate in the addition to aliphatic aldehydes was the highest afforded to date with the silicon tetrachloride-chiral phosphoramide system. Furthermore, the ability to cleanly convert the morpholine amide to a methyl ketone was demonstrated.

  8. PREFACE: International Symposium on Entrance Channel Effect on the Reaction Mechanism in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Giardina, Giorgio; Nasirov, Avazbek K.; Mandaglio, Giuseppe

    2014-05-01

    The aim of the Symposium has been to widen and detail the discussion of problems arising in front of experimental and theoretical groups, and to find overlap between different approaches and methods which are devoted to the studying dynamics of nuclear reactions. Therefore, the reaction product yields are determined by various processes in competition. The main topics of the Symposium have been devoted to the following well sounded problems of nuclear reactions: The synthesis of superheavy elements and the study of exotic nuclei far from the valley of the beta stability. The production mechanism of the observed new elements and isotopes. The study of transfer reactions as a way to understand mechanism of evolution of from the deep-inelastic collisions to fusion regime. The study of non-equilibrium stage of the reaction mechanism and distribution of the excitation energy between binary reaction products including spontaneous fission products are still important to have a correct presentation about the whole reaction mechanism. The similarities and difference between fusion-fission and quasifission products. Unambiguity in estimation of the realistic fusion cross sections by the experimental and theoretical methods. Angular anisotropy of the complete and incomplete fusion reaction products. The effect of the nuclear shell structure in formation of the mass symmetric and asymmetric fission products. The investigation of the role of angular momentum, mass asymmetry and orientation angles of the symmetry axes of colliding nuclei in the entrance channel in formation of the evaporation residues, mass and angular distribution of the fusion-fission and quasifission products. Multi-fragmentation and symmetry energy. The new experimental and theoretical investigations on these and related topics allow researchers to improve knowledge about nucleus-nucleus interaction dynamics and to make conclusions about perspectives in the study of the landscape of islands superheavy

  9. Numerical Simulation of High Drag Reduction in a Turbulent Channel Flow with Polymer Additives

    NASA Technical Reports Server (NTRS)

    Dubief, Yves

    2003-01-01

    The addition of small amounts of long chain polymer molecules to wall-bounded flows can lead to dramatic drag reduction. Although this phenomenon has been known for about fifty years, the action of the polymers and its effect on turbulent structures are still unclear. Detailed experiments have characterized two distinct regimes (Warholic et al. 1999), which are referred to as low drag reduction (LDR) and high drag reduction (HDR). The first regime exhibits similar statistical trends as Newtonian flow: the log-law region of the mean velocity profile remains parallel to that of the Newtonian ow but its lower bound moves away from the wall and the upward shift of the log-region is a function of drag reduction, DR. Although streamwise fluctuations are increased and transverse ones are reduced, the shape of the rms velocity profiles is not qualitatively modified. At higher drag reductions, of the order of 40-50%, the ow enters the HDR regime for which the slope of the log-law is dramatically augmented and the Reynolds shear stress is small (Warholic et al. 1999; Ptasinski et al. 2001). The drag reduction is eventually bounded by a maximum drag reduction (MDR) (Virk & Mickley 1970) which is a function of the Reynolds number. While several experiments report mean velocity profiles very close to the empirical profile of Virk & Mickley (1970) for MDR conditions, the observations regarding the structure of turbulence can differ significantly. For instance, Warholic et al. (1999) measured a near-zero Reynolds shear stress, whereas a recent experiment (Ptasinski et al. 2001) shows evidence of non-negligible Reynolds stress in their MDR flow. To the knowledge of the authors, only the LDR regime has been documented in numerical simulations (Sureshkumar et al. 1997; Dimitropoulos et al. 1998; Min et al. 2001; Dubief & Lele 2001; Sibilla & Baron 2002). This paper discusses the simulation of polymer drag reduced channel ow at HDR using the FENE-P (Finite Elastic non

  10. Influence of the heterogeneous reaction HCl + HOCl on an ozone hole model with hydrocarbon additions

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Cicerone, Ralph J.; Turco, Richard P.; Drdla, Katja; Tabazadeh, Azadeh

    1994-02-01

    Injection of ethane or propane has been suggested as a means for reducing ozone loss within the Antarctic vortex because alkanes can convert active chlorine radicals into hydrochloric acid. In kinetic models of vortex chemistry including as heterogeneous processes only the hydrolysis and HCl reactions of ClONO2 and N2O5, parts per billion by volume levels of the light alkanes counteract ozone depletion by sequestering chlorine atoms. Introduction of the surface reaction of HCl with HOCl causes ethane to deepen baseline ozone holes and generally works to impede any mitigation by hydrocarbons. The increased depletion occurs because HCl + HOCl can be driven by HOx radicals released during organic oxidation. Following initial hydrogen abstraction by chlorine, alkane breakdown leads to a net hydrochloric acid activation as the remaining hydrogen atoms enter the photochemical system. Lowering the rate constant for reactions of organic peroxy radicals with ClO to 10-13 cm3 molecule-1 s-1 does not alter results, and the major conclusions are insensitive to the timing of the ethane additions. Ignoring the organic peroxy radical plus ClO reactions entirely restores remediation capabilities by allowing HOx removal independent of HCl. Remediation also returns if early evaporation of polar stratospheric clouds leaves hydrogen atoms trapped in aldehyde intermediates, but real ozone losses are small in such cases.

  11. A Simple and Inexpensive Device for Slow, Controlled Addition of a Solution to a Reaction Mixture

    NASA Astrophysics Data System (ADS)

    Osvath, Peter

    1995-07-01

    A number of reactions require the slow and controlled addition of a solution containing one reagent to another. Attempting to control the flow rate over a number of hours using a conventional constant pressure addition funnel is a frustrating exercise; commercially available constant volume addition funnels are expensive and must be adjusted by trial and error each time a reaction is carried out. The use of an (expensive) peristaltic pump or syringe pump overcomes these problems but can introduce other complications. We have recently had occasion to carry out the synthesis of thioether macrocycles and cages requiring the slow and controlled addition of DMF solutions of (offensively odoriferous) thiols or (air-sensitive) thiolates to a reactant solution under nitrogen(1), Although the use of a syringe pump was called for, there are obvious difficulties associated with purging the solution and assembling such an apparatus under nitrogen, and we report a simple and inexpensive solution. A Male Luer Lock tip (recovered from a broken syringe) was sweated onto the flattened tip of a pressure-equalizing addition funnel and a syringe needle was attached. Judicious selection of needle length, bore size, and reactant volume can be used to control the addition time simply and reproducibly. With a 250-mL funnel, the flow rate changes by <25% from the beginning to the end of the addition. (In fact, a reduction in the rate of addition may even be advantageous as the reaction proceeds, the reagent in the receiving flask is consumed, its concentration drops, and the rate of reaction will decrease). A piece of fine Teflon tubing of appropriate length attached to the needle can be used to reduce the flow rate even further, but this is only necessary for very slow rates of addition. For example, the time of addition of 200 mL, of an ethanolic solution could be varied from approximately 5 minutes (150mm/17 gauge) to approximately 5 h (200mm/22 gauge), and once the addition time for a

  12. S3S63 Terminal Ynamides: Synthesis, Coupling Reactions and Additions to Common Electrophiles

    PubMed Central

    Cook, Andrea M.

    2015-01-01

    Ynamides consist of a polarized triple bond that is directly attached to a nitrogen atom carrying a sulfonyl, an alkoxycarbonyl, an acyl or another electron withdrawing group. The triple bond polarization renders ynamides broadly useful building blocks with synthetic opportunities that go far beyond traditional alkyne chemistry. The versatile reactivity of ynamides in cycloadditions, cycloisomerizations, regioselective additions with various nucleophiles or electrophiles, ring-closing metathesis, and many other reactions has been investigated in detail during the past decades. A common feature of these methods is that the triple bond is consumed and either cleaved or transformed to a new functionality. The wealth of reports on these ynamide reactions is in stark contrast to the dearth of carbon-carbon bond formations that leave the triple bond of terminal ynamides intact. The recent introduction of effective synthetic methods for the preparation of terminal ynamides has set the stage to fully explore the synthetic potential of this intriguing class of compounds. This digest letter summarizes the most effective routes to terminal ynamides and the current state of selective nucleophilic addition, substitution and coupling reactions, including the first examples of asymmetric synthesis. PMID:26085692

  13. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  14. Phospha-Michael Addition as a New Click Reaction for Protein Functionalization.

    PubMed

    Lee, Yan-Jiun; Kurra, Yadagiri; Liu, Wenshe R

    2016-03-15

    A new type of click reaction between an alkyl phosphine and acrylamide was developed and applied for site-specific protein labeling in vitro and in live cells. Acrylamide is a small electrophilic olefin that readily undergoes phospha-Michael addition with an alkyl phosphine. Our kinetic study indicated a second-order rate constant of 0.07 m(-1)  s(-1) for the reaction between tris(2-carboxyethyl)phosphine and acrylamide at pH 7.4. To demonstrate its application in protein functionalization, we used a dansyl-phosphine conjugate to successfully label proteins that were site-specifically installed with N(ɛ) -acryloyl-l-lysine and employed a biotin-phosphine conjugate to selectively probe human proteins that were metabolically labeled with N-acryloyl-galactosamine.

  15. Enantioselective Visible-Light-Induced Radical-Addition Reactions to 3-Alkylidene Indolin-2-ones.

    PubMed

    Lenhart, Dominik; Bauer, Andreas; Pöthig, Alexander; Bach, Thorsten

    2016-05-04

    The title compounds underwent a facile and high-yielding addition reaction (19 examples, 66-99% yield) with various N-(trimethylsilyl)methyl-substituted amines upon irradiation with visible light and catalysis by a metal complex. If the alkylidene substituent is non-symmetric and if the reaction is performed in the presence of a chiral hydrogen-bonding template, products are obtained with significant enantioselectivity (58-72% ee) as a mixture of diastereoisomers. Mechanistic studies suggest a closed catalytic cycle for the photoactive metal complex. However, the silyl transfer from the amine occurs not only to the product, but also to the substrate, and interferes with the desired chirality transfer.

  16. Substitution and addition reactions of •OH with p-substituted-phenols

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Galicia-Jiménez, Eduardo; Mendoza, Edith; Schuler, Robert H.

    2017-04-01

    The directing effect of a hydroxyl group on the substitution and addition reactions of •OH to the substituted and free positions in aromatic rings of p-substituted-phenols were studied in aqueous solutions containing either K3Fe(CN)6 as an oxidant of the substituted hydroxycyclohexadienyl radical initially formed or using ascorbic acid. The results showed that the attack of the •OH to the substituted position (ipso position) was followed by elimination of the substituent producing hydroquinone. The addition reaction of the •OH to the free position on the ring produced 4-substituent-catechol and 4-substituent-resorcinol derivatives. Identification and quantification of the radiolytic products were carried out using high performance liquid chromatography. The results of the yields are given for the p-halogen-phenols (p-X-Ph) p-F-Ph, p-Cl-Ph, p-Br-Ph and p-I-Ph. Other compounds, p-nitro-Ph, p-OH-benzoic acid, p-OH-benzonitrile, p-OH-benzaldehyde, p-OH-anisole and p-OH-benzyl alcohol (represented as p-Z-Ph), were only studied using K3Fe(CN)6 as the oxidant. The results show that the p-X-Ph are attacked by the •OH at the ipso position to the halogen in the proportion 1:0.53:0.46:0.11 for F>Cl>Br>I. The •OH attacked at the ipso position to the p-Z-Phs through a substitution reaction, which depended on the substituent group. Thus, the strongly deactivating groups produced less hydroquinone, indicating less substitution reaction than the strongly activating groups.

  17. Investigating reaction pathways in rare events simulations of antibiotics diffusion through protein channels.

    PubMed

    Hajjar, Eric; Kumar, Amit; Ruggerone, Paolo; Ceccarelli, Matteo

    2010-11-01

    In Gram-negative bacteria, outer-membrane protein channels, such as OmpF of Escherichia coli, constitute the entry point of various classes of antibiotics. While antibacterial research and development is declining, bacterial resistance to antibiotics is rising and there is an emergency call for a new way to develop potent antibacterial agents and to bring them to the market faster and at reduced cost. An emerging strategy is to follow a bottom-up approach based on microscopically founded computational based screening, however such strategy needs better-tuned methods. Here we propose to use molecular dynamics (MD) simulations combined with the metadynamics algorithm, to study antibiotic translocation through OmpF at a molecular scale. This recently designed algorithm overcomes the time scale problem of classical MD by accelerating some reaction coordinates. It is expected that the initial assumption of the reaction coordinates is a key determinant for the efficiency and accuracy of the simulations. Previous studies using different computational schemes for a similar process only used one reaction coordinate, which is the directionality. Here we go further and see how it is possible to include more informative reaction coordinates, accounting explicitly for: (i) the antibiotic flexibility and (ii) interactions with the channel. As model systems, we select two compounds covering the main classes of antibiotics, ampicillin and moxifloxacine. We decipher the molecular mechanism of translocation of each antibiotic and highlight the important parameters that should be taken into account for improving further simulations. This will benefit the screening and design for antibiotics with better permeation properties.

  18. Precipitation Reactions in Age-Hardenable Alloys During Laser Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Jägle, Eric A.; Sheng, Zhendong; Wu, Liang; Lu, Lin; Risse, Jeroen; Weisheit, Andreas; Raabe, Dierk

    2016-03-01

    We describe and study the thermal profiles experienced by various age-hardenable alloys during laser additive manufacturing (LAM), employing two different manufacturing techniques: selective laser melting and laser metal deposition. Using scanning electron microscopy and atom probe tomography, we reveal at which stages during the manufacturing process desired and undesired precipitation reactions can occur in age-hardenable alloys. Using examples from a maraging steel, a nickel-base superalloy and a scandium-containing aluminium alloy, we demonstrate that precipitation can already occur during the production of the powders used as starting material, during the deposition of material (i.e. during solidification and subsequent cooling), during the intrinsic heat treatment effected by LAM (i.e. in the heat affected zones) and, naturally, during an ageing post-heat treatment. These examples demonstrate the importance of understanding and controlling the thermal profile during the entire additive manufacturing cycle of age-hardenable materials including powder synthesis.

  19. Theoretical study of ignition reactions of linear symmetrical monoethers as potential diesel fuel additives: DFT calculations

    NASA Astrophysics Data System (ADS)

    Marrouni, Karim El; Abou-Rachid, Hakima; Kaliaguine, Serge

    This work investigates the chemical reactivity of four linear symmetrical monoethers with molecular oxygen. Such oxygenated compounds may be considered as potential diesel fuel additives in order to reduce the ignition delay in diesel fuel engines. For this purpose, a kinetic study is proposed to clarify the relation between the molecular structure of the fuel molecule and its ignition properties. To this end, DFT calculations were performed for these reactions using B3LYP/6-311G(d,p) and BH&HLYP/6-311G(d,p) to determine structures, energies, and vibrational frequencies of stationary points as well as activated complexes involved in each gas-phase combustion initiation reaction of the monoethers CH3OCH3, C2H5OC2H5, C3H7OC3H7, or C4H9OC4H9 with molecular oxygen. This theoretical kinetic study was carried out using electronic structure results and the transition state theory, to assess the rate constants for all studied combustion reactions. As it has been shown in our previous work [Abou-Rachid et al., J Mol Struct (Theochem) 2003, 621, 293], the cetane number (CN) of a pure organic molecule depends on the initiation rate of its homogeneous gas-phase reaction with molecular oxygen. Indeed, the calculated initiation rate constants of the H-abstraction process of linear monoethers with O2 show a very good correlation with experimental CN data of these pure compounds at T D 1,000 K. This temperature is representative of the operating conditions of a diesel fuel engine.0

  20. Effects of a phytogenic feed additive on susceptibility of channel catfish to Edwardsiella ictaluri and levels of mannose binding lectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to investigate the effect of a phytogenic feed additive (Digestarom® P.E.P. MGE) on growth performance and disease susceptibility to Edwardsiella ictaluri. Two hundred and fifty juvenile channel catfish (7.2 ± 0.1 g) were allotted into the following treatments: Control (float...

  1. Entrance-channel effects in odd-Z tranactinide compound nucleus reactions

    SciTech Connect

    Nelson, S.L.; Gregorich, K.E.; Dragojevic, I.; Dullmann, Ch.E.; Eichler, R.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Stavsetra, L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Swiatecki, Siwek-Wilczynska, and Wilczynski's 'Fusion By Diffusion' description [1] of transactinide (TAN) compound nucleus (CN) formation utilizes a three-step model. The first step is the 'sticking', or capture, which can be calculated relatively accurately. The second step is the probability for the formation of a CN by 'diffusion' analogous to that of Brownian motion. Lastly, there exists the probability of the CN 'surviving' deexcitation by neutron emission, which competes with fission and other de-excitation modes. This model predicts and reproduces cross sections typically within a factor of two. Producing the same CN with different projectile-target pairs is a very sensitive way to test entrance channel effects on heavy element production cross sections. If the same CN is produced at or near the same excitation energy the survival portion of the theory is nearly identical for the two reactions. This method can be used as a critical test of the novel 'diffusion' portion of the model. The reactions producing odd-Z TAN CN such as Db, Bh, Mt, and Rg (Z = 105, 107, 109, and 111, respectively) were first studied using even-Z projectiles on {sup 209}Bi targets (as opposed to odd-Z projectiles on {sup 208}Pb targets) because lower effective fissility [2] was expected to lead to larger cross sections. Many odd-Z projectile reactions producing odd-Z CN had not been studied in-depth until very recently. We have completed studies of these reaction pairs with the 88-Inch Cyclotron and the Berkeley Gas-Filled Separator (BGS) at the Lawrence Berkeley National Laboratory (LBNL), see Figure 1. Cross section ratios for several pairs of reactions will be presented and compared with theory.

  2. Ring Walking/Oxidative Addition Reactions for the Controlled Synthesis of Conjugated Polymers

    SciTech Connect

    Bazan, Guillermo C

    2012-04-03

    Power conversion efficiencies of plastic solar cells depend strongly on the molecular weight characteristics of the semiconducting polymers used for their fabrication. The synthesis of these materials typically relies on transition metal mediated catalytic reactions. In many instances, the ideal structures cannot be attained because of deficiencies in these reactions, particularly when it comes to being able to achieve high number average molecular weights and narrow molecular weight distributions. Another important conjugated polymer structure of interest is one in which a single functional group is attached at the end group of the chain. Such systems would be ideal for modifying surface properties at interfaces and for labeling biomolecular probes used in fluorescent biosensors. To respond to the challenges above, our efforts have centered on the design of homogenous transition metal complexes that are easy to prepare and effective in carrying out living, or quasi-living, condensative chain polymerization reactions. The key mechanistic challenge for the success of this reaction is to force the insertion of one monomer unit at a time via a process that involves migration of the transition metal-containing fragment to one terminus of the polymer chain. Chain growth characteristics are therefore favored when the metal does not dissociate from the newly formed reductive elimination product. We have proposed that dissociation is disfavored by the formation of a -complex, in which the metal can sample various locations of the electronically delocalized framework, a process that we term ring-walking , and find the functionality where oxidative addition takes place. Success has been achieved in the nickel-mediated cross coupling reaction of Grignard reagents with aromatic halides by using bromo[1,2-bis(diphenylphosphino)ethane]phenylnickel. This reagent can yield poly(thiophene)s (one of the most widely used type of polymer in plastic solar cells) with excellent

  3. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... The general policy of the FCC is to promote effective use of the spectrum by encouraging the use of spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... adequate spectrum available in the area to meet realistic estimates of current and future demand for...

  4. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... The general policy of the FCC is to promote effective use of the spectrum by encouraging the use of spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... adequate spectrum available in the area to meet realistic estimates of current and future demand for...

  5. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The general policy of the FCC is to promote effective use of the spectrum by encouraging the use of spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... adequate spectrum available in the area to meet realistic estimates of current and future demand for...

  6. 47 CFR 22.719 - Additional channel policy for rural radiotelephone stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... The general policy of the FCC is to promote effective use of the spectrum by encouraging the use of spectrum-efficient technologies (i.e. BETRS) and by assigning the minimum number of channels necessary to... adequate spectrum available in the area to meet realistic estimates of current and future demand for...

  7. Characterization of additional novel immune type receptors in channel catfish, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mining of channel catfish (Ictalurus punctatus) expressed sequence tag databases identified seven new novel immune type receptors (IpNITRs). These differed in sequence, but not structure, from previously described IpNITR1-11. IpNITR12a, 12b, 13 and 14, encode proteins containing a single variable (V...

  8. The role of noninnocent solvent molecules in organocatalyzed asymmetric Michael addition reactions.

    PubMed

    Patil, Mahendra P; Sunoj, Raghavan B

    2008-01-01

    A proline-catalyzed asymmetric Michael addition between ketones and trans-beta-nitrostyrene was studied by using the density-functional theory with mPW1PW91 and B3LYP functionals. Improved insight into the enantio- and diastereoselective formation of gamma-nitroketones/-aldehydes is obtained through transition-state analysis. Consideration of the activation parameters obtained from gas-phase calculations and continuum solvation models failed to reproduce the reported experimental stereoselectivities for the reaction between cyclohexanone and 3-pentanone with trans-beta-nitrostyrene. The correct diastereo- and enantioselectivites were obtained only upon explicit inclusion of solvent molecules in the diastereomeric transition states that pertain to the C--C bond formation. Among the several transition-state models that were examined, the one that exhibits cooperative hydrogen-bonding interactions with two molecules of methanol could explain the correct stereochemical outcome of the Michael reaction. The change in differential stabilization that arises as a result of electrostatic and hydrogen-bonding interactions in the key transition states is identified as the contributing factor toward obtaining the correct diastereomer. This study establishes the importance of including explicit solvent molecules in situations in which the gas-phase and continuum models are inadequate in obtaining meaningful insight regarding experimental stereoselectivities.

  9. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation.

    PubMed

    Liu, Zhen Qi; Wei, Zhao; Zhu, Xv Long; Huang, Guo You; Xu, Feng; Yang, Jian Hai; Osada, Yoshihito; Zrínyi, Miklós; Li, Jian Hui; Chen, Yong Mei

    2015-04-01

    Cell encapsulation in three-dimensional (3D) hydrogels can mimic native cell microenvironment and plays a major role in cell-based transplantation therapies. In this contribution, a novel in situ-forming hydrogel, Dex-l-DTT hydrogel ("l" means "linked-by"), by cross-linking glycidyl methacrylate derivatized dextran (Dex-GMA) and dithiothreitol (DTT) under physiological conditions, has been developed using thiol-Michael addition reaction. The mechanical properties, gelation process and degree of swelling of the hydrogel can be easily adjusted by changing the pH of phosphate buffer saline. The 3D cell encapsulation ability is demonstrated by encapsulating rat bone marrow mesenchymal stem cells (BMSCs) and NIH/3T3 fibroblasts into the in situ-forming hydrogel with maintained high viability. The BMSCs also maintain their differentiation potential after encapsulation. These results demonstrate that the Dex-l-DTT hydrogel holds great potential for biomedical field.

  10. Synthesis and characterization of polyacids from palm acid oil and sunflower oil via addition reaction.

    PubMed

    Zeimaran, Ehsan; Kadir, Mohammed Rafiq Abdul; Nor, Hussin Mohd; Kamarul, Tunku; Djordjevic, Ivan

    2013-12-15

    In this study aliphatic polyacids were synthesized using palm acid oil (PAO) and sunflower oil (SFO) via addition reaction technique. The synthesized materials were characterized using Fourier-transform infra-red (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS) and thermo-gravimetric analysis (TGA). Mixing formic acid and hydrogen peroxide with PAO or SFO at the ratio 3:10:1 produced the lowest iodine value of 10.57 and 9.24 respectively, indicating the increase in epoxidization of both oils. Adding adipic acid to the epoxidized oils at a ratio of 1:10 increases the acid values of SFO and PAO to 11.22 and 6.73 respectively. The existence of multi-acid groups present in synthesized polyacid was confirmed by MALD-ToF-MS. This feature indicates a possible value to the biomaterials development.

  11. Helical-Peptide-Catalyzed Enantioselective Michael Addition Reactions and Their Mechanistic Insights.

    PubMed

    Ueda, Atsushi; Umeno, Tomohiro; Doi, Mitsunobu; Akagawa, Kengo; Kudo, Kazuaki; Tanaka, Masakazu

    2016-08-05

    Helical peptide foldamer catalyzed Michael addition reactions of nitroalkane or dialkyl malonate to α,β-unsaturated ketones are reported along with the mechanistic considerations of the enantio-induction. A wide variety of α,β-unsaturated ketones, including β-aryl, β-alkyl enones, and cyclic enones, were found to be catalyzed by the helical peptide to give Michael adducts with high enantioselectivities (up to 99%). On the basis of X-ray crystallographic analysis and depsipeptide study, the amide protons, N(2)-H and N(3)-H, at the N terminus in the α-helical peptide catalyst were crucial for activating Michael donors, while the N-terminal primary amine activated Michael acceptors through the formation of iminium ion intermediates.

  12. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  13. Pd(Quinox)-Catalyzed Allylic Relay Suzuki Reactions of Secondary Homostyrenyl Tosylates via Alkene-Assisted Oxidative Addition.

    PubMed

    Stokes, Benjamin J; Bischoff, Amanda J; Sigman, Matthew S

    2014-06-01

    Pd-catalyzed allylic relay Suzuki cross-coupling reactions of secondary alkyl tosylates, featuring a sterically-hindered oxidative addition and precise control of β-hydride elimination, are reported. The identification of a linear free energy relationship between the relative rates of substrate consumption and the electronic nature of the substrate alkene suggests that the oxidative addition requires direct alkene involvement. A study of the effect of chain length on the reaction outcome supports a chelation-controlled oxidative addition.

  14. Trade study of substituting VIIRS M10 with aggregated I3 to enable addition of a water vapor channel

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong

    2016-09-01

    The U.S. National Weather Service currently assimilates into its numerical weather prediction models satellite observations from the aging MODIS instruments that track polar winds from motion of both clouds and atmospheric moisture. Next generation weather observations are provided by VIIRS instruments, but VIIRS lacks a water vapor channel at 6.7 μm, allowing for only cloud-tracking of winds. An addition of the 6.7 μm channel to future VIIRS instruments has been proposed. The additional channel could replace a 750-m channel at 1.6 μm (M10) that shares spectral response characteristics with a 375-m channel (I3). M10 data would then be synthesized by the 2-by-2 aggregation of I3 pixels. Radiometric response of such a synthesized channel is very similar to the actual one, although some differences exist. In this study, SNR (signal-to-noise ratio) for the M10 data simulated by the aggregation of the I3 pixels was compared with SNR for the actual M10 data. SNR for the simulated M10 was found to be always lower than SNR for the actual M10. This result contrasts with results of an analogous SNR comparison for bands I2 and M7 that share the same spectral response at 865 nm. Aggregated I2 data have SNR comparable to actual M7 data measured with the low gain, although lower than high-gain M7. The main reason for the different SNR behavior may be the use of microlenses with the I3 and M10 detectors, but not with the I2 and M7 ones.

  15. Secondary Pollutants from Ozone Reaction with Ventilation Filters and Degradation of Filter Media Additives

    SciTech Connect

    Destaillats, Hugo; Chen, Wenhao; Apte, Michael; Li, Nuan; Spears, Michael; Almosni, Jérémie; Brunner, Gregory; Zhang, Jianshun; Fisk, William J.

    2011-05-01

    Prior research suggests that chemical processes taking place on the surface of particle filters employed in buildings may lead to the formation of harmful secondary byproducts. We investigated ozone reactions with fiberglass, polyester, cotton/polyester and polyolefin filter media, as well as hydrolysis of filter media additives. Studies were carried out on unused media, and on filters that were installed for 3 months in buildings at two different locations in the San Francisco Bay Area. Specimens from each filter media were exposed to {approx}150 ppbv ozone in a flow tube under a constant flow of dry or humidified air (50percent RH). Ozone breakthrough was recorded for each sample over periods of {approx}1000 min; the ozone uptake rate was calculated for an initial transient period and for steady-state conditions. While ozone uptake was observed in all cases, we did not observe significant differences in the uptake rate and capacity for the various types of filter media tested. Most experiments were performed at an airflow rate of 1.3 L/min (face velocity = 0.013 m/s), and a few tests were also run at higher rates (8 to 10 L/min). Formaldehyde and acetaldehyde, two oxidation byproducts, were quantified downstream of each sample. Those aldehydes (m/z 31 and 45) and other volatile byproducts (m/z 57, 59, 61 and 101) were also detected in real-time using Proton-Transfer Reaction - Mass Spectrometry (PTR-MS). Low-ppbv byproduct emissions were consistently higher under humidified air than under dry conditions, and were higher when the filters were loaded with particles, as compared with unused filters. No significant differences were observed when ozone reacted over various types of filter media. Fiberglass filters heavily coated with impaction oil (tackifier) showed higher formaldehyde emissions than other samples. Those emissions were particularly high in the case of used filters, and were observed even in the absence of ozone, suggesting that hydrolysis of additives

  16. 1,4-Addition of TMSCCl₃ to nitroalkenes: efficient reaction conditions and mechanistic understanding.

    PubMed

    Wu, Na; Wahl, Benoit; Woodward, Simon; Lewis, William

    2014-06-16

    Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70%) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4-additions to a range of cyclic and acyclic nitroalkenes, in THF at 0-25 °C, typically in moderate to excellent yields (37-95%). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies ((1)H, (19)F, (13)C and (29)Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M) at -20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from -20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at -20 °C), when treated with TBAT, leads to immediate formation of the 1,4-addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3(-) addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2=NO2] is an efficient promoter. Use of H2C=CH(CH2)2CH=CHNO2 in air affords radical-derived bicyclic products arising from aerobic oxidation.

  17. 1,4-Addition of TMSCCl3 to Nitroalkenes: Efficient Reaction Conditions and Mechanistic Understanding

    PubMed Central

    Wu, Na; Wahl, Benoit; Woodward, Simon; Lewis, William

    2014-01-01

    Improved synthetic conditions allow preparation of TMSCCl3 in good yield (70 %) and excellent purity. Compounds of the type NBu4X [X=Ph3SiF2 (TBAT), F (tetrabutylammonium fluoride, TBAF), OAc, Cl and Br] act as catalytic promoters for 1,4-additions to a range of cyclic and acyclic nitroalkenes, in THF at 0–25 °C, typically in moderate to excellent yields (37–95 %). TBAT is the most effective promoter and bromide the least effective. Multinuclear NMR studies (1H, 19F, 13C and 29Si) under anaerobic conditions indicate that addition of TMSCCl3 to TBAT (both 0.13 M) at −20 °C, in the absence of nitroalkene, leads immediately to mixtures of Me3SiF, Ph3SiF and NBu4CCl3. The latter is stable to at least 0 °C and does not add nitroalkene from −20 to 0 °C, even after extended periods. Nitroalkene, in the presence of TMSCCl3 (both 0.13 M at −20 °C), when treated with TBAT, leads to immediate formation of the 1,4-addition product, suggesting the reaction proceeds via a transient [Me3Si(alkene)CCl3] species, in which (alkene) indicates an Si⋅⋅⋅O coordinated nitroalkene. The anaerobic catalytic chain is propagated through the kinetic nitronate anion resulting from 1,4 CCl3− addition to the nitroalkene. This is demonstrated by the fact that isolated NBu4[CH2−NO2] is an efficient promoter. Use of H2C−CH(CH2)2CH−CHNO2 in air affords radical-derived bicyclic products arising from aerobic oxidation. PMID:24849249

  18. Cinchona Alkaloid Catalyzed Sulfa-Michael Addition Reactions Leading to Enantiopure β-Functionalized Cysteines.

    PubMed

    Breman, Arjen C; Telderman, Suze E M; van Santen, Roy P M; Scott, Jamie I; van Maarseveen, Jan H; Ingemann, Steen; Hiemstra, Henk

    2015-11-06

    Sulfa-Michael additions to α,β-unsaturated N-acylated oxazolidin-2-ones and related α,β-unsaturated α-amino acid derivatives have been enantioselectively catalyzed by Cinchona alkaloids functionalized with a hydrogen bond donating group at the C6' position. The series of Cinchona alkaloids includes known C6' (thio)urea and sulfonamide derivatives and several novel species with a benzimidazole, squaramide or a benzamide group at the C6' position. The sulfonamides were especially suited as bifunctional organocatalysts as they gave the products in very good diastereoselectivity and high enantioselectivity. In particular, the C6' sulfonamides catalyzed the reaction with the α,β-unsaturated α-amino acid derivatives to afford the products in a diastereomeric ratio as good as 93:7, with the major isomer being formed in an ee of up to 99%. The products of the organocatalytic sulfa-Michael addition to α,β-unsaturated α-amino acid derivatives were subsequently converted in high yields to enantiopure β-functionalized cysteines suitable for native chemical ligation.

  19. Selectivity descriptors for the Michael addition reaction as obtained from density functional based approaches.

    PubMed

    Madjarova, G; Tadjer, A; Cholakova, Tz P; Dobrev, A A; Mineva, T

    2005-01-20

    Density functional (DF) based numerical approaches for computing orbital and atomic reactivity indices were employed in the study of selectivity descriptors for the 1,4 Michael addition reaction. To this aim, atomic and orbital Fukui indices and atomic softnesses for 2-arylmethylene-1,4-butanolides and N,N-disubstituted phenylacetamides were computed. Further on, these local selectivity descriptors have been rationalized in terms of the Pearson's hard-soft-acid-base principle to explain the observed regioselectivity. It is shown that the methods employed for local (atomic and orbital) reactivity index computations are useful and reliable for prediction of the regioselectivity upon conjugate addition of ambident nucleophiles to 2,3-unsaturated carboxylic esters. All the results reveal similar degree of localization/hardness of the 1,4-butanolides C4 and active alpha-carbon belonging to the N,N-dimethyl-phenylacetamide, while the soft alpha-carbon in LiCH2CN reacts with the soft C2 1,4-butanolide center.

  20. No impact of a phytogenic feed additive on digestion and unspecific immune reaction in piglets.

    PubMed

    Muhl, A; Liebert, F

    2007-10-01

    Two 35 day experiments were conducted to examine the influence of a commercial phytogenic feed additive (PFA) on nutrient digestibility and unspecific immune reaction of piglets in the post-weaning period. The PFA composition was inulin, an essential oil mix (carvacrol and thymol), chestnut meal (tannins), and cellulose powder as carrier substance. In each experiment, immediately after weaning 40 male castrated piglets were divided into four experimental groups (n = 10). Diets were based on wheat, barley, soy bean meal and fishmeal using lysine as the first limiting amino acid. In experiment 1, graded levels of the PFA were supplied (A: control; B: 0.05% PFA; C: 0.1% PFA; D: 0.15% PFA). Experiment 2 utilized equal diets with 0.1% of the PFA, but different lysine supply (A: control; B: 0.1% PFA; C: +0.35% lysine; D: 0.1% PFA + 0.35% lysine). At the end of the experimental period, acute phase proteins (APPs) haptoglobin and C-reactive protein were examined in individual blood plasma samples. Following each growth study, 16 animals (n = 4) were taken for sampling of ileal chyme and assessing of praecaecal digestibility of protein and amino acids. In addition, digesta samples of the duodenum and the total pancreatic tissue were utilized for determining the enzyme activity of alpha-amylase and trypsin. APP, praecaecal digestibility and enzyme activities did not significantly respond to the PFA supplementaion in diets.

  1. UV light-mediated difunctionalization of alkenes through aroyl radical addition/1,4-/1,2-aryl shift cascade reactions.

    PubMed

    Zheng, Lewei; Huang, Hongli; Yang, Chao; Xia, Wujiong

    2015-02-20

    UV light-mediated difunctionalization of alkenes through an aroyl radical addition/1,4-/1,2-aryl shift has been described. The resulted aroyl radical from a photocleavage reaction added to acrylamide compounds followed by cyclization led to the formation of oxindoles, whereas the addition to cinnamic amides aroused a unique 1,4-aryl shift reaction. Furthermore, the difunctionalization of alkenes of prop-2-en-1-ols was also achieved through aroyl radical addition and a sequential 1,2-aryl shift cascade reaction.

  2. The K⁻N→KΞ reaction in coupled channel chiral models up to next-to-leading order

    SciTech Connect

    Magas, V. K.; Ramos, A.; Feijoo, A.

    2009-01-01

    We study the meson-baryon interaction in S-wave in the strangeness S=-1 sector using a chiral unitary approach based on a next-to-leading order chiral SU(3) Lagrangian. We fit our model to the large set of experimental data in different two-body channels. We pay particular attention to the K⁻N→KΞ reaction, where the effect of the next-to-leading order terms in the Lagrangian are sufficiently large to be observed, since at tree level the cross section of this reaction is zero. For these channels we improve our approach by phenomenologically taking into account effects of the high spin hyperonic resonances.

  3. Perspective on the reactions between F- and CH3CH2F: the free energy landscape of the E2 and SN2 reaction channels.

    PubMed

    Ensing, Bernd; Klein, Michael L

    2005-05-10

    Recently, we computed the 3D free energy surface of the base-induced elimination reaction between F(-) and CH(3)CH(2)F by using a powerful technique within Car-Parrinello molecular dynamics simulation. Here, the set of three order parameters is expanded to six, which allows the study of the competing elimination and substitution reactions simultaneously. The power of the method is exemplified by the exploration of the six-dimensional free energy landscape, sampling, and mapping out the eight stable states as well as the connecting bottlenecks. The free energy profile and barrier along the E2 and S(N)2 reaction channels are refined by using umbrella sampling. The two mechanisms do not share a common "E2C-like" transition state. Comparison with the zero temperature profiles shows a particularly significant entropy contribution to the S(N)2 channel.

  4. Measurements and coupled reaction channels analysis of one and two proton transfer reactions for 28Si+90,94Zr systems

    NASA Astrophysics Data System (ADS)

    Kalkal, Sunil; Mandal, S.; Jhingan, A.; Gehlot, J.; Sugathan, P.; Golda, K. S.; Madhavan, N.; Garg, Ritika; Goyal, Savi; Mohanto, Gayatri; Verma, S.; Sandal, Rohit; Behera, Bivash; Eleonora, G.; Wollersheim, H. J.; Singh, R.

    2011-10-01

    Measurements of angular distributions for one and two proton stripping reactions for 28Si+90,94Zr systems were performed at lab energy 120 MeV with 28Si beam at Inter University Accelerator Center, New Delhi. Theoretical calculations performed using the quantum mechanical coupled reaction channels code FRESCO (including various intermediate states involving target and projectile excitations before and/or after transfer along with sequential transfer) were able to reproduce one and two proton transfer angular distributions for both the systems reasonably well. It was found that the DWBA calculations could describe the one proton transfer data well for both the systems but failed to reproduce the angular distributions for two proton transfer channels. The present measurements underline the importance of sequential transfer at energies much above the Coulomb barrier. We had also performed transfer reaction measurements for these systems in the sub- and near barrier region using recoil mass separator.

  5. Lewis acid promoted reactions of ethenetricarboxylates with allenes: synthesis of indenes and gamma-lactones via conjugate addition/cyclization reaction.

    PubMed

    Yamazaki, Shoko; Yamamoto, Yuko; Fukushima, Yugo; Takebayashi, Masachika; Ukai, Tetsuma; Mikata, Yuji

    2010-08-06

    Indenes are important core structures in organic chemistry. Few simple arylallenes have been used to construct indene skeletons by Friedel-Crafts reaction. Lewis acid catalyzed reaction of ethenetricarboxylates 1 and arylallenes has been examined in this study. The reaction of arylallenes and ethenetricarboxylate triesters with SnCl(4) gave indene derivatives efficiently, via a conjugate addition/Friedel-Crafts cyclization reaction. On the other hand, the reactions of 1,1-diethyl 2-hydrogen ethenetricarboxylate and arylallenes or alkylallenes with SnCl(4) at -78 degrees C or room temperature and subsequent treatment with Et(3)N gave gamma-lactones. The reactions of triethyl ethenetricarboxylate and 1,1-dialkylallenes with SnCl(4) at room temperature also gave gamma-lactones.

  6. The C(3P) + NH3 reaction in interstellar chemistry. I. Investigation of the product formation channels

    SciTech Connect

    Bourgalais, Jeremy; Capron, Michael; Kailasanathan, Ranjith Kumar Abhinavam; Osborn, David L.; Hickson, Kevin M.; Loison, Jean -Christophe; Wakelam, Valentine; Goulay, Fabien; Picard, Sebastien D. Le

    2015-10-13

    The product formation channels of ground state carbon atoms, C(3P), reacting with ammonia, NH3, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH3 reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H2CN production channel represents 100% of the product yield for this reaction. As a result, kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  7. THE C({sup 3}P) + NH{sub 3} REACTION IN INTERSTELLAR CHEMISTRY. I. INVESTIGATION OF THE PRODUCT FORMATION CHANNELS

    SciTech Connect

    Bourgalais, Jérémy; Capron, Michael; Picard, Sébastien D. Le; Kailasanathan, Ranjith Kumar Abhinavam; Goulay, Fabien; Osborn, David L.; Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine E-mail: fabien.goulay@mail.wvu.edu

    2015-10-20

    The product formation channels of ground state carbon atoms, C({sup 3}P), reacting with ammonia, NH{sub 3}, have been investigated using two complementary experiments and electronic structure calculations. Reaction products are detected in a gas flow tube experiment (330 K, 4 Torr) using tunable vacuum-ultraviolet (VUV) photoionization coupled with time of flight mass spectrometry. Temporal profiles of the species formed and photoionization spectra are used to identify primary products of the C + NH{sub 3} reaction. In addition, H-atom formation is monitored by VUV laser induced fluorescence (LIF) from room temperature to 50 K in a supersonic gas flow generated by the Laval nozzle technique. Electronic structure calculations are performed to derive intermediates, transition states, and complexes formed along the reaction coordinate. The combination of photoionization and LIF experiments supported by theoretical calculations indicate that in the temperature and pressure range investigated, the H + H{sub 2}CN production channel represents 100% of the product yield for this reaction. Kinetics measurements of the title reaction down to 50 K and the effect of the new rate constants on interstellar nitrogen hydride abundances using a model of dense interstellar clouds are reported in Paper II.

  8. Catalytic asymmetric tandem Friedel-Crafts alkylation/Michael addition reaction for the synthesis of highly functionalized chromans.

    PubMed

    Peng, Jiahuan; Du, Da-Ming

    2013-01-01

    The enantioselective tandem Friedel-Crafts alkylation/Michael addition reaction of indoles with nitroolefin enoates catalyzed by a diphenylamine-linked bis(oxazoline)-Zn(OTf)2 complex was investigated. This tandem reaction afforded functionalized chiral chromans in good yields with moderate to high stereoselectivities (up to 95:5 dr, up to 99% ee).

  9. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    NASA Astrophysics Data System (ADS)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  10. Ruthenium-catalyzed decarbonylative addition reaction of anhydrides with alkynes: a facile synthesis of isocoumarins and α-pyrones.

    PubMed

    Prakash, Rashmi; Shekarrao, Kommuri; Gogoi, Sanjib; Boruah, Romesh C

    2015-06-21

    A novel ruthenium catalyzed straightforward and efficient synthesis of isocoumarin and α-pyrone derivatives has been accomplished by the decarbonylative addition reaction of anhydrides with alkynes under thermal conditions.

  11. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2.

    PubMed

    Ma, Dongge; Yan, Yan; Ji, Hongwei; Chen, Chuncheng; Zhao, Jincai

    2015-12-21

    TiO2 photocatalysis can be performed for the addition of pyridines to vinylarenes in an anti-Markovnikov manner. Seven examples with considerable yields (56-91%) and selectivity were demonstrated. A comparative survey of the involved process through ESR revealed a novel concerted two electron transfer pathway for these photocatalytic bimolecular addition reactions.

  12. Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels.

    PubMed

    Sholokh, Marianna; Improta, Roberto; Mori, Mattia; Sharma, Rajhans; Kenfack, Cyril; Shin, Dongwon; Voltz, Karine; Stote, Roland H; Zaporozhets, Olga A; Botta, Maurizio; Tor, Yitzhak; Mély, Yves

    2016-07-04

    Thienoguanosine ((th) G) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of (th) G reveals the existence of two ground-state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)-DFT calculations, the tautomers were identified as the H1 and H3 keto-amino tautomers. When incorporated into the loop of (-)PBS, the (-)DNA copy of the HIV-1 primer binding site, both tautomers are observed and show differential sensitivity to protein binding. The red-shifted H1 tautomer is strongly favored in matched (-)/(+)PBS duplexes, while the relative emission of the H3 tautomer can be used to detect single nucleotide polymorphisms. These tautomers and their distinct environmental sensitivity provide unprecedented information channels for analyzing G residues in oligonucleotides and their complexes.

  13. Tautomers of a Fluorescent G Surrogate and Their Distinct Photophysics Provide Additional Information Channels

    PubMed Central

    Sharma, Rajhans; Kenfack, Cyril; Shin, Dongwon; Voltz, Karine; Stote, Roland H.; Zaporozhets, Olga A.; Botta, Maurizio; Tor, Yitzhak; Mély, Yves

    2016-01-01

    Thienoguanosine (thG) is an isomorphic nucleoside analogue acting as a faithful fluorescent substitute of G, with respectable quantum yield in oligonucleotides. Photophysical analysis of thG reveals the existence of two ground-state tautomers with significantly shifted absorption and emission wavelengths, and high quantum yield in buffer. Using (TD)-DFT calculations, the tautomers were identified as the H1 and H3 keto-amino tautomers. When incorporated into the loop of (−)PBS, the (−)DNA copy of the HIV-1 primer binding site, both tautomers are observed and show differential sensitivity to protein binding. The red-shifted H1 tautomer is strongly favored in matched (−)/(+)PBS duplexes, while the relative emission of the H3 tautomer can be used to detect single nucleotide polymorphisms. These tautomers and their distinct environmental sensitivity provide unprecedented information channels for analyzing G residues in oligonucleotides and their complexes. PMID:27273741

  14. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations

    NASA Technical Reports Server (NTRS)

    Kennedy, Christopher A.; Carpenter, Mark H.

    2001-01-01

    Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.

  15. Synthesis of the Hemoglobin-Conjugated Polymer Micelles by Thiol Michael Addition Reactions.

    PubMed

    Qi, Yanxin; Li, Taihang; Wang, Yupeng; Wei, Xing; Li, Bin; Chen, Xuesi; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2016-06-01

    Amphiphilic triblock copolymers mPEG-b-PMAC-b-PCL are synthesized using methoxyl poly(ethylene glycol), cyclic carbonic ester monomer including acryloyl group, and ε-caprolactone. Copolymers are self-assembled into core-shell micelles in aqueous solution. Thiolated hemoglobin (Hb) is conjugated with micelles sufficiently through thiol Michael addition reaction to form hemoglobin nanoparticles (HbNs) with 200 nm in diameter. The conjugation of Hb onto the micelle surface is further confirmed by X-ray photoelectron spectroscopy. Feeding ratio of copolymer micelles to Hb at 1:3 would lead to the highest hemoglobin loading efficiency 36.7 wt%. The UV results demonstrate that the gas transporting capacity of HbNs is well remained after Hb is conjugated with polymeric micelles. Furthermore, the obtained HbNs have no obvious detrimental effects on blood components in vitro. This system may thus have great potential as one of the candidates to be developed as oxygen carriers and provide a reference for the modification of protein drugs.

  16. Development of catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium complexes.

    PubMed

    Tsubogo, Tetsu; Saito, Susumu; Seki, Kazutaka; Yamashita, Yasuhiro; Kobayashi, Shu

    2008-10-08

    Catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions using chiral calcium species prepared from calcium isopropoxide and chiral bisoxazoline ligands have been developed. Glycine Schiff bases reacted with acrylic esters to afford 1,4-addition products, glutamic acid derivatives, in high yields with high enantioselectivities. During the investigation of the 1,4-addition reactions, we unexpectedly found that a [3 + 2] cycloaddition occurred in the reactions with crotonate derivatives, affording substituted pyrrolidine derivatives in high yields with high enantioselectivities. On the basis of this finding, we investigated asymmetric [3 + 2] cycloadditions, and it was revealed that several kinds of optically active substituted pyrrolidine derivatives containing contiguous stereogenic tertiary and quaternary carbon centers were obtained with high diastereo- and enantioselectivities. In addition, optically active pyrrolidine cores of hepatitis C virus RNA-dependent polymerase inhibitors and potential effective antiviral agents have been synthesized using this [3 + 2] cycloaddition reaction. NMR spectroscopic analysis and observation of nonamplification of enantioselectivity in nonlinear effect experiments suggested that a monomeric calcium species with an anionic ligand was formed as an active catalyst. A stepwise mechanism of the [3 + 2] cycloaddition, consisting of 1,4-addition and successive intramolecular Mannich-type reaction was suggested. Furthermore, modification of the Schiff base structure resulted in a modification of the reaction course from a [3 + 2] cycloaddition to a 1,4-addition, affording 3-substituted glutamic acid derivatives with high diasterero- and enantioselectivities.

  17. Investigation of the O+allyl addition/elimination reaction pathways from the OCH2CHCH2 radical intermediate

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Benjamin L.; Lau, Kai-Chung; Butler, Laurie J.; Lee, Shih-Huang; Lin, Jim-Min, Jr.

    2008-08-01

    These experiments study the preparation of and product channels resulting from OCH2CHCH2, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH2CHCH2 radicals; these undergo a facile ring opening to the OCH2CHCH2 radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH2CHCH2 radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C3H4O (acrolein)+H, C2H4+HCO (formyl radical), and H2CO (formaldehyde)+C2H3. A small signal from C2H2O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C2H5+CO, does not contribute significantly to the product branching. The higher internal energy onset of the acrolein+H product channel is consistent with the relative barriers en route to each of these product channels

  18. Heat enhanced by an exothermic reaction on a fully developed MHD mixed convection flow in a vertical channel

    NASA Astrophysics Data System (ADS)

    Jayabalan, C.; Sivagnana Prabhu, K. K.; Kandasamy, R.

    2016-09-01

    The problem of a fully developed MHD mixed convection flow in a vertical channel with the first-order chemical reaction is analyzed. The dimensionless governing ordinary differential equations are solved numerically by using the Maple 18 software. It is observed that dual solutions exist for both velocity and temperature.

  19. Catalytic enantioselective Friedel-Crafts/Michael addition reactions of indoles to ethenetricarboxylates.

    PubMed

    Yamazaki, Shoko; Iwata, Yuko

    2006-01-20

    [reaction: see text] The Friedel-Crafts reaction is an important reaction for the formation of new C-C bonds. Recently, catalytic enantioselective Friedel-Crafts reaction of alkylidene malonates has been reported. However, the substituents in alkylidene malonates are limited. To explore new substituents such as carboxyl and carbonyl groups, catalytic enantioselective Friedel-Crafts reactions of reactive ethenetricarboxylates and acyl-substituted methylenemalonates 1 were investigated. The reaction of 1 with indoles in the presence of catalytic amounts of chiral bisoxazoline copper(II) complex (10%) in THF at room temperature gave alkylated products in high yields and up to 95% ee. The enantioselectivity can be explained by the secondary orbital interaction on approach of indole to the less hindered side of the 1-Cu(II)-ligand complex.

  20. Synthesis of polyhydroxylated decalins via two consecutive one-pot reactions: 1,4-addition/aldol reaction followed by RCM/syn-dihydroxylation.

    PubMed

    Malik, Michał; Jarosz, Sławomir

    2016-01-01

    Synthesis of novel polyhydroxylated derivatives of decalin is described. The presented methodology consists in a one-pot copper-catalyzed 1,4-addition of vinylmagnesium bromide to sugar-derived cyclohexenone, followed by an aldol reaction with a derivative of but-3-enal. The obtained diene is then subjected to an assisted tandem catalytic sequence: ring-closing metathesis with the subsequent reuse of the Ru-catalyst in the syn-dihydroxylation. The stereochemical outcome of these reactions is discussed.

  1. The Aldol Addition and Condensation: The Effect of Conditions on Reaction Pathway

    ERIC Educational Resources Information Center

    Crouch, R. David; Richardson, Amie; Howard, Jessica L.; Harker, Rebecca L.; Barker, Kathryn H.

    2007-01-01

    The reaction of a ketone and an aldehyde in aqueous Na[subscript 2]CO[subscript 2] is described. This experiment is performed in the absence of strong bases or organic solvents and offers the opportunity for students to observe the critical role that reaction temperature and base strength have in determining the product of the base-mediated…

  2. The NBS Reaction: A Simple Explanation for the Predominance of Allylic Substitution over Olefin Addition by Bromine at Low Concentrations.

    ERIC Educational Resources Information Center

    Wamser, Carl C.; Scott, Lawrence T.

    1985-01-01

    Examines mechanisms related to use of N-bromosuccinimide (NBS) for bromination at an allylic position. Also presents derived rate laws for three possible reactions of molecular bromine with an alkene: (1) free radical substitution; (2) free radical addition; and (3) electrophilic addition. (JN)

  3. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California

    USGS Publications Warehouse

    Muhs, D.R.; Budahn, J.R.; Johnson, D.L.; Reheis, M.; Beann, J.; Skipp, G.; Fisher, E.; Jones, J.A.

    2008-01-01

    There is an increasing awareness that dust plays important roles in climate change, biogeochemical cycles, nutrient supply to ecosystems, and soil formation. In Channel Islands National Park, California, soils are clay-rich Vertisols or Alfisols and Mollisols with vertic properties. The soils are overlain by silt-rich mantles that contrast sharply with the underlying clay-rich horizons. Silt mantles contain minerals that are rare or absent in the volcanic rocks that dominate these islands. Immobile trace elements (Sc-Th-La and Ta-Nd-Cr) and rare-earth elements show that the basalt and andesite on the islands have a composition intermediate between upper-continental crust and oceanic crust. In contrast, the silt fractions and, to a lesser extent, clay fractions of the silt mantle have compositions closer to average upper-continental crust and very similar to Mojave Desert dust. Island shelves, exposed during the last glacial period, could have provided a source of eolian sediment for the silt mantles, but this is not supported by mineralogical data. We hypothesize that a more likely source for the silt-rich mantles is airborne dust from mainland California and Baja California, either from the Mojave Desert or from the continental shelf during glacial low stands of sea. Although average winds are from the northwest in coastal California, easterly winds occur numerous times of the year when "Santa Ana" conditions prevail, caused by a high-pressure cell centered over the Great Basin. The eolian silt mantles constitute an important medium of plant growth and provide evidence that abundant eolian silt and clay may be delivered to the eastern Pacific Ocean from inland desert sources. ?? 2007 Geological Society of America.

  4. Highly efficient "on water" catalyst-free nucleophilic addition reactions using difluoroenoxysilanes: dramatic fluorine effects.

    PubMed

    Yu, Jin-Sheng; Liu, Yun-Lin; Tang, Jing; Wang, Xin; Zhou, Jian

    2014-09-01

    A remarkable fluorine effect on "on water" reactions is reported. The CF⋅⋅⋅HO interactions between suitably fluorinated nucleophiles and the hydrogen-bond network at the phase boundary of oil droplets enable the formation of a unique microstructure to facilitate on water catalyst-free reactions, which are difficult to realize using nonfluorinated substrates. Accordingly, a highly efficient on water, catalyst-free reaction of difluoroenoxysilanes with aldehydes, activated ketones, and isatylidene malononitriles was developed, thus leading to the highly efficient synthesis of a variety of α,α-difluoro-β-hydroxy ketones and quaternary oxindoles.

  5. Carbocations as Lewis acid catalysts in Diels-Alder and Michael addition reactions.

    PubMed

    Bah, Juho; Franzén, Johan

    2014-01-20

    In general, Lewis acid catalysts are metal-based compounds that owe their reactivity to a low-lying empty orbital. However, one potential Lewis acid that has received negligible attention as a catalyst is the carbocation. We have demonstrated the potential of the carbocation as a highly powerful Lewis acid catalyst for organic reactions. The stable and easily available triphenylmethyl (trityl) cation was found to be a highly efficient catalyst for the Diels-Alder reaction for a range of substrates. Catalyst loadings as low as 500 ppm, excellent yields, and good endo/exo selectivities were achieved. Furthermore, by changing the electronic properties of the substituents on the tritylium ion, the Lewis acidity of the catalyst could be tuned to control the outcome of the reaction. The ability of this carbocation as a Lewis acid catalyst was also further extended to the Michael reaction.

  6. Visible-Light-Initiated Thiol-Michael Addition Polymerizations with Coumarin-Based Photobase Generators: Another Photoclick Reaction Strategy.

    PubMed

    Zhang, Xinpeng; Xi, Weixian; Wang, Chen; Podgórski, Maciej; Bowman, Christopher N

    2016-02-16

    An efficient visible-light-sensitive photobase generator for thiol-Michael addition reactions was synthesized and evaluated. This highly reactive catalyst was designed by protecting a strong base (tetramethyl guanidine, TMG) with a visible-light-responsive group which was a coumarin derivative. The coumarin-coupled TMG was shown to exhibit extraordinary catalytic activity toward initiation of the thiol-Michael reaction, including thiol-Michael addition-based polymerization, upon visible-light irradiation, leading to a stoichiometric reaction of both thiol and vinyl functional groups. Owing to its features, this visible-light photobase generator enables homogeneous network formation in thiol-Michael polymerizations and also has the potential to be exploited in other visible-light-induced, base-catalyzed thiol-click processes such as thiol-isocynate and thiol-epoxy network-forming reactions.

  7. Binding modes of noncompetitive GABA-channel blockers revisited using engineered affinity-labeling reactions combined with new docking studies.

    PubMed

    Charon, Sébastien; Taly, Antoine; Rodrigo, Jordi; Perret, Philippe; Goeldner, Maurice

    2011-04-13

    The binding modes of noncompetitive GABA(A)-channel blockers were re-examined taking into account the recent description of the 3D structure of prokaryotic pentameric ligand-gated ion channels, which provided access to new mammalian or insect GABA receptor models, emphasizing their transmembrane portion. Two putative binding modes were deciphered for this class of compounds, including the insecticide fipronil, located nearby either the intra- or the extracellular part of the membrane, respectively. These results are in full agreement with previously described affinity-labeling reactions performed with GABA(A) noncompetitive blockers (Perret et al. J. Biol. Chem.1999, 274, 25350-25354).

  8. Ratiometric fluorescent probe for rapid detection of bisulfite through 1,4-addition reaction in aqueous solution.

    PubMed

    Sun, Yue; Zhao, Dong; Fan, Shanwei; Duan, Lian; Li, Ruifeng

    2014-04-16

    A ratiometric fluorescent probe based on a positively charged benzo[e]indolium moiety for bisulfite is reported. The bisulfite underwent a 1,4-addition reaction with the C-4 atom in the ethylene group. This reaction resulted in a large emission wavelength shift (Δλ = 106 nm) and an observable fluorescent color change from orange to cyan. The reaction could be completed in 90 s in a PBS buffer solution and displayed high selectivity and sensitivity for bisulfite. A simple paper test strip system was developed to detect bisulfite rapidly. Probe 1 was used to detect bisulfite in real samples with good recovery.

  9. Relevance of the Channel Leading to Formaldehyde + Triplet Ethylidene in the O((3)P) + Propene Reaction under Combustion Conditions.

    PubMed

    Cavallotti, Carlo; Leonori, Francesca; Balucani, Nadia; Nevrly, Vaclav; Bergeat, Astrid; Falcinelli, Stefano; Vanuzzo, Gianmarco; Casavecchia, Piergiorgio

    2014-12-04

    Comprehension of the detailed mechanism of O((3)P) + unsaturated hydrocarbon reactions is complicated by the existence of many possible channels and intersystem crossing (ISC) between triplet and singlet potential energy surfaces (PESs). We report synergic experimental/theoretical studies of the O((3)P) + propene reaction by combining crossed molecular beams experiments using mass spectrometric detection at 9.3 kcal/mol collision energy (Ec) with high-level ab initio electronic structure calculations of the triplet PES and RRKM/master equation computations of branching ratios (BRs) including ISC. At high Ec's and temperatures higher than 1000 K, main products are found to be formaldehyde (H2CO) and triplet ethylidene ((3)CH3CH) formed in a reaction channel that has never been identified or considered significant in previous kinetics studies at 300 K and that, as such, is not included in combustion kinetics models. Global and channel-specific rate constants were computed and are reported as a function of temperature and pressure. This study shows that BRs of multichannel reactions useful for combustion modeling cannot be extrapolated from room-temperature kinetics studies.

  10. Constraint on Additional Planets in Planetary Systems Discovered Through the Channel of High-magnification Gravitational Microlensing Events

    NASA Astrophysics Data System (ADS)

    Shin, I.-G.; Han, C.; Choi, J.-Y.; Hwang, K.-H.; Jung, Y.-K.; Park, H.

    2015-04-01

    High-magnification gravitational microlensing events provide an important channel of detecting planetary systems with multiple giants located at their birth places. In order to investigate the potential existence of additional planets, we reanalyze the light curves of the eight high-magnification microlensing events, for each of which a single planet was previously detected. The analyzed events include OGLE-2005-BLG-071, OGLE-2005-BLG-169, MOA-2007-BLG-400, MOA-2008-BLG-310, MOA-2009-BLG-319, MOA-2009-BLG-387, MOA-2010-BLG-477, and MOA-2011-BLG-293. We find that including an additional planet improves fits with {Δ }{{χ }2}\\lt 80 for seven out of eight analyzed events. For MOA-2009-BLG-319, the improvement is relatively big with {Δ }{{χ }2}∼ 143. From inspection of the fits, we find that the improvement of the fits is attributed to systematics in data. Although no clear evidence of additional planets is found, it is still possible to constrain the existence of additional planets in the parameter space. For this purpose, we construct exclusion diagrams showing the confidence levels excluding the existence of an additional planet as a function of its separation and mass ratio. We also present the exclusion ranges of additional planets with 90% confidence level for Jupiter-, Saturn-, and Uranus-mass planets.

  11. Human spermatozoa possess a calcium-dependent chloride channel that may participate in the acrosomal reaction

    PubMed Central

    Orta, Gerardo; Ferreira, Gonzalo; José, Omar; Treviño, Claudia L; Beltrán, Carmen; Darszon, Alberto

    2012-01-01

    Motility, maturation and the acrosome reaction (AR) are fundamental functions of mammalian spermatozoa. While travelling through the female reproductive tract, spermatozoa must mature through a process named capacitation, so that they can reach the egg and undergo the AR, an exocytotic event necessary to fertilize the egg. Though Cl− is important for sperm capacitation and for the AR, not much is known about the molecular identity of the Cl− transporters involved in these processes. We implemented a modified perforated patch-clamp strategy to obtain whole cell recordings sealing on the head of mature human spermatozoa. Our whole cell recordings revealed the presence of a Ca2+-dependent Cl− current. The biophysical characteristics of this current and its sensitivity to niflumic acid (NFA) and 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid (DIDIS) are consistent with those displayed by the Ca2+-dependent Cl− channel from the anoctamin family (TMEM16). Whole cell patch clamp recordings in the cytoplasmic droplet of human spermatozoa corroborated the presence of these currents, which were sensitive to NFA and to a small molecule TMEM16A inhibitor (TMEM16Ainh, an aminophenylthiazole). Importantly, the human sperm AR induced by a recombinant human glycoprotein from the zona pellucida, rhZP3, displayed a similar sensitivity to NFA, DIDS and TMEM16Ainh as the sperm Ca2+-dependent Cl− currents. Our findings indicate the presence of Ca2+-dependent Cl− currents in human spermatozoa, that TMEM16A may contribute to these currents and also that sperm Ca2+-dependent Cl− currents may participate in the rhZP3-induced AR. PMID:22473777

  12. Effects of aluminum additions to gas atomized reaction synthesis produced oxide dispersion strengthened alloys

    NASA Astrophysics Data System (ADS)

    Spicher, Alexander Lee

    The production of an aluminum containing ferritic oxide dispersion strengthened (ODS) alloy was investigated. The production method used in this study was gas atomization reaction synthesis (GARS). GARS was chosen over the previously commercial method of mechanical alloying (MA) process due to complications from this process. The alloy compositions was determined from three main components; corrosion resistance, dispersoid formation, and additional elements. A combination of Cr and Al were necessary in order to create a protective oxide in the steam atmosphere that the boiler tubing in the next generation of coal-fired power plants would be exposed to. Hf and Y were chosen as dispersoid forming elements due to their increased thermal stability and potential to avoid decreased strength caused by additions of Al to traditional ODS materials. W was used as an additive due to benefits as a strengthener as well as its benefits for creep rupture time. The final composition chosen for the alloy was Fe-16Cr-12Al-0.9W-0.25Hf-0.2Y at%. The aforementioned alloy, GA-1-198, was created through gas atomization with atomization gas of Ar-300ppm O2. The actual composition created was found to be Fe-15Cr-12.3Al-0.9W-0.24Hf-0.19Y at%. An additional alloy that was nominally the same without the inclusion of aluminum was created as a comparison for the effects on mechanical and corrosion properties. The actual composition of the comparison alloy, GA-1-204, was Fe-16Cr-0Al-0.9W-0.25Hf-0.24Y at%. An investigation on the processing parameters for these alloys was conducted on the GA-1-198 alloy. In order to predict the necessary amount of time for heat treatment, a diffusion study was used to find the diffusion rate of oxygen in cast alloys with similar composition. The diffusion rate was found to be similar to that of other GARS compositions that have been created without the inclusion of aluminum. The effect of heat treatment time was investigated with temperatures of 950°C, 1000

  13. A method of analyzing nonstationary ionic channel current fluctuations in the presence of an additive measurement noise.

    PubMed

    Mino, H

    1993-03-01

    A method of estimating the parameters of nonstationary ionic channel current fluctuations (NST-ICF's) in the presence of an additive measurement noise is proposed. The case is considered in which the sample records of NST-ICT's corrupted by the measurement noise are available for estimation, where the experiment can be repeated many times to calculate the statistics of noisy NST-ICF's. The conventional second-order regression model expressed in terms of the mean and variance of noisy NST-ICF's is derived theoretically, assuming that NST-ICF's are binomially distributed. Since the coefficients of the regression model are explicitly related to not only the parameters of NST-ICF's but also the measurement noise component, the parameters of NST-ICF's that are of interest can be estimated without interference from the additive measurement noise by identifying the regression coefficients. Furthermore, the accuracy of the parameter estimates is theoretically evaluated using the error-covariance matrix of the regression coefficients. The validity and effectiveness of the proposed method are demonstrated in a Monte Carlo simulation in which a fundamental kinetic scheme of Na+ channels is treated as a specific example.

  14. Catalytic asymmetric aldol addition reactions of 3-fluoro-indolinone derived enolates.

    PubMed

    Zhang, Lijun; Zhang, Wenzhong; Mei, Haibo; Han, Jianlin; Soloshonok, Vadim A; Pan, Yi

    2017-01-04

    Reported herein is a Cu(i)/bisoxazoline ligand-catalyzed aldol reaction of unprotected tertiary enolates generated in situ from 3-(1,1-dihydroxy-2,2,2-trifluoroethyl)-substituted derivatives of 3-fluoro-2-oxindoles. A range of α-fluoro-β-aryl/hetaryl/alkyl-β-hydroxy-indolin-2-ones containing C-F quaternary stereogenic centers of high pharmaceutical importance were furnished in good yields and satisfactory diastereo- and enantioselectivities. The reactions were conducted under operationally convenient conditions and displayed wide substrate/functional group generality including unprotected N-H on the tertiary enolates, and aromatic, hetero-aromatic and aliphatic aldehydes.

  15. Enantio- and diastereoselective Michael addition reactions of unmodified aldehydes and ketones with nitroolefins catalyzed by a pyrrolidine sulfonamide.

    PubMed

    Wang, Jian; Li, Hao; Lou, Bihshow; Zu, Liansuo; Guo, Hua; Wang, Wei

    2006-05-24

    Chiral (S)-pyrrolidine trifluoromethanesulfonamide has been shown to serve as an effective catalyst for direct Michael addition reactions of aldehydes and ketones with nitroolefins. A wide range of aldehydes and ketones as Michael donors and nitroolefins as acceptors participate in the process, which proceeds with high levels of enantioselectivity (up to 99 % ee) and diastereoselectivity (up to 50:1 d.r.). The methodology has been employed successfully in an efficient synthesis of the potent H(3) agonist Sch 50917. In addition, a practical three-step procedure for the preparation of (S)-pyrrolidine trifluoromethanesulfonamide has been developed. The high levels of stereochemical control attending Michael addition reactions catalyzed by this pyrrolidine sulfonamide, have been investigated by using ab initio and density functional methods. Transition state structures for the rate-limiting C--C bond-forming step, corresponding to re- and si-face addition to the reactive conformation of the key enamine intermediates have been calculated. Analysis of these structures indicates that hydrogen bonding plays an important role in catalysis and that the energy barrier for si-face attack in reactions of aldehydes to form 2R,3S products is lower than that for the re-face attack leading to 2S,3R products. In contrast, the energy barrier for re-face addition is lower than that for si-face addition in reactions of ketones. The computational results, which are in good agreement with the experimental observations, are discussed in the context of the stereochemical course of these Michael addition reactions.

  16. Statistical Hauser-Feshbach theory with width-fluctuation correction including direct reaction channels for neutron-induced reactions at low energies

    NASA Astrophysics Data System (ADS)

    Kawano, T.; Capote, R.; Hilaire, S.; Chau Huu-Tai, P.

    2016-07-01

    A model to calculate particle-induced reaction cross sections with statistical Hauser-Feshbach theory including direct reactions is given. The energy average of the scattering matrix from the coupled-channels optical model is diagonalized by the transformation proposed by Engelbrecht and Weidenmüller [C. A. Engelbrecht and H. A. Weidenmüller, Phys. Rev. C 8, 859 (1973), 10.1103/PhysRevC.8.859]. The ensemble average of S -matrix elements in the diagonalized channel space is approximated by a model of Moldauer [P. A. Moldauer, Phys. Rev. C 12, 744 (1975), 10.1103/PhysRevC.12.744] using the newly parametrized channel degree-of-freedom νa to better describe the Gaussian orthogonal ensemble (GOE) reference calculations. The Moldauer approximation is confirmed by a Monte Carlo study using a randomly generated S matrix, as well as the GOE threefold integration formula. The method proposed is applied to the 238U(n ,n' ) cross-section calculation in the fast-energy range, showing an enhancement in the inelastic scattering cross sections.

  17. Effects of additives on the oscillations of the Briggs-Rauscher reaction

    NASA Astrophysics Data System (ADS)

    Cervellati, R.; Furrow, S. D.

    2013-12-01

    Perturbations with chemical species that have dissimilar physico-chemical properties, such as bromide ions, polyphenols or iron complexes, are often used to investigate the detailed molecular mechanism of the Briggs-Rauscher (BR) oscillating reaction. We describe in this review the effects caused by some of these species and present their mechanistic interpretations. Some new original results are also reported.

  18. Bromine radical-mediated sequential radical rearrangement and addition reaction of alkylidenecyclopropanes.

    PubMed

    Kippo, Takashi; Hamaoka, Kanako; Ryu, Ilhyong

    2013-01-16

    Bromine radical-mediated cyclopropylcarbinyl-homoallyl rearrangement of alkylidenecyclopropanes was effectively accomplished by C-C bond formation with allylic bromides, which led to the syntheses of 2-bromo-1,6-dienes. A three-component coupling reaction comprising alkylidenecyclopropanes, allylic bromides, and carbon monoxide also proceeded well to give 2-bromo-1,7-dien-5-ones in good yield.

  19. Synthesis of polyhydroxylated decalins via two consecutive one-pot reactions: 1,4-addition/aldol reaction followed by RCM/syn-dihydroxylation

    PubMed Central

    2016-01-01

    Synthesis of novel polyhydroxylated derivatives of decalin is described. The presented methodology consists in a one-pot copper-catalyzed 1,4-addition of vinylmagnesium bromide to sugar-derived cyclohexenone, followed by an aldol reaction with a derivative of but-3-enal. The obtained diene is then subjected to an assisted tandem catalytic sequence: ring-closing metathesis with the subsequent reuse of the Ru-catalyst in the syn-dihydroxylation. The stereochemical outcome of these reactions is discussed. PMID:28144329

  20. Muonium Addition Reactions and Kinetic Isotope Effects in the Gas Phase: k∞ Rate Constants for Mu + C2H2.

    PubMed

    Arseneau, Donald J; Garner, David M; Reid, Ivan D; Fleming, Donald G

    2015-07-16

    The kinetics of the addition reaction of muonium (Mu) to acetylene have been studied in the gas phase at N2 moderator pressures mainly from ∼800 to 1000 Torr and over the temperature range from 168 to 446 K, but also down to 200 Torr at 168 K and over a much higher range of pressures, from 10 to 44 bar at 295 K, demonstrating pressure-independent rate constants, kMu(T). Even at 200 Torr moderator pressure, the kinetics for Mu + C2H2 addition behave as if effectively in the high-pressure limit, giving k∞ = kMu due to depolarization of the muon spin in the MuC2H2 radical formed in the addition step. The rate constants kMu(T) exhibit modest Arrhenius curvature over the range of measured temperatures. Comparisons with data and with calculations for the corresponding H(D) + C2H2 addition reactions reveal a much faster rate for the Mu reaction at the lowest temperatures, by 2 orders of magnitude, in accord with the propensity of Mu to undergo quantum tunneling. Moreover, isotopic atom exchange, which contributes in a major way to the analogous D atom reaction, forming C2HD + H, is expected to be unimportant in the case of Mu addition, a consequence of the much higher zero-point energy and hence weaker C-Mu bond that would form, meaning that the present report of the Mu + C2H2 reaction is effectively the only experimental study of kinetic isotope effects in the high-pressure limit for H-atom addition to acetylene.

  1. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    PubMed

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins.

  2. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    SciTech Connect

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  3. Addition of CFCl3 to Aromatic Aldehydes via in Situ Grignard Reaction

    DOE PAGES

    Barkakaty, Balaka; Talukdar, Bandana; Lokitz, Bradley

    2015-08-18

    In the case of synthetic modification of trichlorofluoromethane (CFCl3) to non-volatile and useful fluorinated precursors, we realized that it is a cost-effective and an environmentally benign strategy for the safe consumption/destruction of the ozone depleting potential of the reagent. In our report, we present a novel method for in situ Grignard reaction using magnesium powder and CFCl3 for synthesis of dichlorofluoromethyl aromatic alcohols.

  4. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.

    PubMed

    Das, Andrew B; Nauser, Thomas; Koppenol, Willem H; Kettle, Anthony J; Winterbourn, Christine C; Nagy, Péter

    2014-05-01

    Tyrosine (Tyr) residues are major sites of radical generation during protein oxidation. We used insulin as a model to study the kinetics, mechanisms, and products of the reactions of radiation-induced or enzyme-generated protein-tyrosyl radicals with superoxide to demonstrate the feasibility of these reactions under oxidative stress conditions. We found that insulin-tyrosyl radicals combined to form dimers, mostly via the tyrosine at position 14 on the α chain (Tyr14). However, in the presence of superoxide, dimerization was largely outcompeted by the reaction of superoxide with insulin-tyrosyl radicals. Using pulse radiolysis, we measured a second-order rate constant for the latter reaction of (6±1) × 10(8) M(-1) s(-1) at pH 7.3, representing the first measured rate constant for a protein-tyrosyl radical with superoxide. Mass-spectrometry-based product analyses revealed the addition of superoxide to the insulin-Tyr14 radical to form the hydroperoxide. Glutathione efficiently reduced the hydroperoxide to the corresponding monoxide and also subsequently underwent Michael addition to the monoxide to give a diglutathionylated protein adduct. Although much slower, conjugation of the backbone amide group can form a bicyclic Tyr-monoxide derivative, allowing the addition of only one glutathione molecule. These findings suggest that Tyr-hydroperoxides should readily form on proteins under oxidative stress conditions where protein radicals and superoxide are both generated and that these should form addition products with thiol compounds such as glutathione.

  5. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  6. Tandem bis-aza-Michael addition reaction of amines in aqueous medium promoted by polystyrenesulfonic Acid

    EPA Science Inventory

    An efficient and environmentally benign tandem bis-aza-Michael addition of amines catalyzed by polystyrene sulfonic acid (PSSA) is described. This operationally simple high yielding microwave assisted synthetic protocol proceeded in water in the absence of any organic solvent.

  7. Tautomer-selective derivatives of enolate, ketone and enaminone by addition reaction of picolyl-type anions with nitriles

    NASA Astrophysics Data System (ADS)

    Bai, Jianliang; Wang, Peng; Cao, Wei; Chen, Xia

    2017-01-01

    We describe an efficient for the synthesis of compounds of tautomeric β-pyridyl/quinolyl-enol, -ketone, -enaminone, which were finally characterized by standard methods like NMR, IR or SCXRD. The addition reaction of lithiated intermediates of picoline, 2-ethylpyridine and 2-methylquinoline, respectively, with nitriles followed by acid hydrolysis afforded the corresponding tautomeric compounds of enol, ketone and emaminone. Interestingly, treatment of 2-methylpyridine or 2-ethylpyridine with nitriles, respectively, yielded mostly β-pyridyl ketone and enol tautomers without enaminones, while 2-methylquinoline with nitriles gave β-quinolyl ketone and enaminone tautomers without enols. The reaction of 2-benzylpyridine with nitriles was not available under the same conditions.

  8. A tandem reaction initiated by 1,4-addition of bis(iodozincio)methane for 1,3-diketone formation.

    PubMed

    Sada, Mutsumi; Matsubara, Seijiro

    2010-01-20

    Treatment of an gamma-acyloxy-alpha,beta-unsaturated ketone with bis(iodozincio)methane leads to a novel tandem reaction consisting of three steps: (1) 1,4-addition of the dizinc reagent to the enone, which affords the corresponding zinc enolate of the beta-zinciomethylated ketone; (2) intramolecular nucleophilic attack by the enolate on the ester group; and (3) Grob-type fragmentation of the adduct, accompanied by elimination of the zinc alkoxide of allyl alcohol. The overall reaction gives 1,3-diketones efficiently.

  9. Organocatalytic Domino Oxa-Michael/1,6-Addition Reactions: Asymmetric Synthesis of Chromans Bearing Oxindole Scaffolds.

    PubMed

    Zhao, Kun; Zhi, Ying; Shu, Tao; Valkonen, Arto; Rissanen, Kari; Enders, Dieter

    2016-09-19

    An asymmetric organocatalytic domino oxa-Michael/1,6-addition reaction of ortho-hydroxyphenyl-substituted para-quinone methides and isatin-derived enoates has been developed. In the presence of 5 mol % of a bifunctional thiourea organocatalyst, this scalable domino reaction affords 4-phenyl-substituted chromans bearing spiro-connected oxindole scaffolds and three adjacent stereogenic centers in good to excellent yields (up to 98 %) and with very high stereoselectivities (up to >20:1 d.r., >99 % ee).

  10. Temperature dependent product yields for the spin forbidden singlet channel of the C(3P) + C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Hickson, Kevin M.; Loison, Jean-Christophe; Wakelam, Valentine

    2016-08-01

    The atomic hydrogen formation channels of the C + C2H2 reaction have been investigated using a continuous supersonic flow reactor over the 52-296 K temperature range. H-atoms were detected directly at 121.567 nm by vacuum ultraviolet laser induced fluorescence. Absolute H-atom yields were determined by comparison with the H-atom signal generated by the C + C2H4 reaction. The product yields agree with earlier crossed beam experiments employing universal detection methods. Incorporating these branching ratios in a gas-grain model of dense interstellar clouds increases the c-C3H abundance. This reaction is a minor source of C3-containing molecules in the present simulations.

  11. Influence of different additives on the reaction between hydrated lime and sulfur dioxide

    SciTech Connect

    Cunill, F.; Izquierdo, J.F.; Martinez, J.C.; Tejero, J.; Querol, J. )

    1991-11-01

    Five commercial calcium hydroxides were tested in a fixed-bed reactor for SO{sub 2} removal at bag-filter conditions. Small amounts of different additives (fly ash, NaOH, NaCl and CaCl{sub 2}) were added to the commercial Ca(OH){sub 2} which showed the greatest reactivity respect to SO{sub 2} (by a drying process). Fly ash performance was negative whereas the rest of additives enhanced the desulfurization power of the Ca(OH){sub 2}, specially NaOH (due to its basic and deliquescent character) and CaCl{sub 2} (by its delilquescence). CaCl{sub 2} has been the best additive tested at the used experimental conditions.

  12. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    PubMed

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  13. Synthesis of Diverse Heterocyclic Scaffolds via Tandem Additions to Imine Derivatives and Ring-Forming Reactions

    PubMed Central

    Sunderhaus, James D.; Dockendorff, Chris; Martin, Stephen F.

    2009-01-01

    A novel strategy has been developed for the efficient syntheses of diverse arrays of heterocyclic compounds. The key elements of the approach comprise a Mannich-type, multicomponent coupling reaction in which functionalized amines, aromatic aldehydes, acylating agents, and π- and organometallic nucleophiles are combined to generate intermediates that are then further transformed into diverse heterocyclic scaffolds via a variety of cyclization manifolds. Significantly, many of these scaffolds bear functionality that may be exploited by further manipulation to create diverse collections of compounds having substructures found in biologically active natural products and clinically useful drugs. The practical utility of this strategy was exemplified by its application to the first, and extraordinarily concise synthesis of the isopavine alkaloid roelactamine. PMID:20625454

  14. Diastereoselective addition of monoorganocuprates to a chiral fumarate: reaction development and synthesis of (-)-dihydroprotolichesterinic acid.

    PubMed

    Hethcox, J Caleb; Shanahan, Charles S; Martin, Stephen F

    2015-09-16

    Recent studies of diastereoselective conjugate additions of monoorganocuprates, Li[RCuI], to chiral γ-alkoxycrotonates and fumarates are disclosed. This methodology was applied to the shortest total synthesis of (-)-dihydroprotolichesterinic acid to date, but several attempts to prepare other succinate-derived natural products, such as pilocarpine and antrodin E, were unsuccessful.

  15. The GC-MS Observation of Intermediates in a Stepwise Grignard Addition Reaction

    ERIC Educational Resources Information Center

    Latimer, Devin

    2007-01-01

    Preparation of phenylmagnesium bromide described by Eckert, addition of three equivalents of Grignard reagent to diethyl carbonate to form triphenylmethanol and a series of GC-MS procedures that form intermediates. The analysis is consistent with a gas chromatogram and mass spectrum for each of the expected intermediates and final product of the…

  16. Synthesis of a Fluorescent Acridone Using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence

    ERIC Educational Resources Information Center

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R.

    2015-01-01

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the…

  17. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water.

    PubMed

    García-Fernández, Almudena; Megens, Rik P; Villarino, Lara; Roelfes, Gerard

    2016-12-21

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a reaction that critically depends on the >700- to 990-fold rate acceleration caused by the presence of a DNA scaffold. The DNA-induced rate acceleration observed is the highest reported due to the environment presented by a biomolecular scaffold for any hybrid catalyst, to date. Based on a combination of kinetics and binding studies, it is proposed that the rate acceleration is in part due to the DNA acting as a pseudophase, analogous to micelles, in which all reaction components are concentrated, resulting in a high effective molarity. The involvement of additional second coordination sphere interactions is suggested by the enantioselectivity of the product. The results presented here show convincingly that the DNA-based catalysis concept, thanks to the DNA-accelerating effect, can be an effective approach to achieving a chemically challenging reaction in water.

  18. Michael-type addition reactions for the in situ formation of poly(vinyl alcohol)-based hydrogels.

    PubMed

    Tortora, Mariarosaria; Cavalieri, Francesca; Chiessi, Ester; Paradossi, Gaio

    2007-01-01

    Michael-type addition reactions offer the possibility to obtain in situ formation of polymeric hydrogels in the absence of a radical mechanism for the networking process. We explored such a synthetic route for obtaining a poly(vinyl alcohol) (PVA)-based hydrogel as a potential biomaterial for applications in vitro-retinal replacement surgery. The presence of radicals in the reaction medium can represent a risk for in situ surgical treatment. To circumvent this problem we have applied nucleophilic addition to ad hoc modified PVA macromers. The gel formation has been studied with respect to the timing required in this surgery and in terms of the structural characteristics of the obtained network.

  19. Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    NASA Astrophysics Data System (ADS)

    Léguillon, R.; Nishio, K.; Hirose, K.; Makii, H.; Nishinaka, I.; Orlandi, R.; Tsukada, K.; Smallcombe, J.; Chiba, S.; Aritomo, Y.; Ohtsuki, T.; Tatsuzawa, R.; Takaki, N.; Tamura, N.; Goto, S.; Tsekhanovich, I.; Petrache, C. M.; Andreyev, A. N.

    2016-10-01

    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O + 232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model.

  20. The First Example of Nickel-Catalyzed Silyl-Heck Reactions: Direct Activation of Silyl Triflates Without Iodide Additives

    PubMed Central

    McAtee, Jesse R.; Martin, Sara E. S.; Cinderella, Andrew P.; Reid, William B.; Johnson, Keywan A.

    2014-01-01

    For the first time, nickel-catalyzed silyl-Heck reactions are reported. Using simple phosphine-supported nickel catalysts, direct activation of silyl triflates has been achieved. These results contrast earlier palladium-catalyzed systems, which require iodide additives to activate silyl-triflates. These nickel-based catalysts exhibit good functional group tolerance in the preparation of vinyl silanes, and unlike earlier systems, allows for the incorporation of trialkylsilanes larger than Me3Si. PMID:24914247

  1. Dinuclear oxidative addition reactions using an isostructural series of Ni2, Co2, and Fe2 complexes.

    PubMed

    Behlen, Michael J; Zhou, You-Yun; Steiman, Talia J; Pal, Sudipta; Hartline, Douglas R; Zeller, Matthias; Uyeda, Christopher

    2016-12-20

    A family of low-valent Ni2, Co2, and Fe2 naphthyridine-diimine (NDI) complexes is presented. Ligand-based π* orbitals are sufficiently low-lying to fall within the metal 3d manifold, resulting in electronic structures that are highly delocalized across the conjugated [NDI]M2 system. This feature confers stability to metal-metal interactions during two-electron redox reactions, as demonstrated in a prototypical oxidative addition of allyl chloride.

  2. Convergent Synthesis of Diverse Nitrogen Heterocycles via Rh(III)-Catalyzed C-H Conjugate Addition/Cyclization Reactions.

    PubMed

    Weinstein, Adam B; Ellman, Jonathan A

    2016-07-01

    The development of Rh(III)-catalyzed C-H conjugate addition/cyclization reactions that provide access to synthetically useful fused bi- and tricyclic nitrogen heterocycles is reported. A broad scope of C-H functionalization substrates and electrophilic olefin coupling partners is effective, and depending on the nature of the directing group, cyclic imide, amide, or heteroaromatic products are obtained. An efficient synthesis of a pyrrolophenanthridine alkaloid natural product, oxoassoanine, highlights the utility of this method.

  3. Intramolecular 1,1-carboboration versus intermolecular FLP addition in reactions of boranes and bis(phenylethynyl)telluroether.

    PubMed

    Tsao, Fu An; Lough, Alan J; Stephan, Douglas W

    2015-03-11

    Reactions of boranes with Te(CCPh)2 proceed via initial intermolecular 1,1-carboboration followed by either an intramolecular carboboration or an FLP addition to a second molecule of the intermediate, yielding 1-bora-4-tellurocyclohexa-2,5-diene heterocycles or tricylic derivatives of 1,4-ditellurocyclohexa-2,5-diene, respectively. The latter species is also shown to convert to the former upon heating.

  4. O/S-1/ interactions - The product channels. [collisional electron quenching and chemical reaction pathway frequencies

    NASA Technical Reports Server (NTRS)

    Slanger, T. G.; Black, G.

    1978-01-01

    The first measurements are reported of the reaction pathways for the interaction between oxygen atoms in the 4.19 eV S-1 state, and four molecules, N2O, CO2, H2O, and NO. Distinction is made between three possible paths - quenching to O(D-1), quenching to O(P-3), and chemical reaction. With N2O, the most reasonable interpretation of the data indicates that there no reaction, in sharp contrast with the interaction between O(D-1) and N2O, which proceeds entirely by reaction. Similarly, there is no reaction with CO2. With H2O, the reactive pathway is the dominant one, although electronic quenching is not negligible. With NO, O(D-1) is the preferred product.

  5. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction.

    PubMed

    Wang, Juan; He, Hongliang; Cooper, Remy C; Yang, Hu

    2017-03-29

    In this work, we describe synthesis and characterization of novel in situ-forming polyamidoamine (PAMAM) dendrimer hydrogels (DHs) with tunable properties prepared via highly efficient aza-Michael addition reaction. PAMAM dendrimer G5 was chosen as the underlying core and functionalized with various degrees of acetylation using acetic anhydride. The nucleophilic amines on the dendrimer surface reacted with α, β-unsaturated ester in acrylate groups of polyethylene glycol diacrylate (PEG-DA, Mn = 575 g/mol) via aza-Michael addition reaction to form dendrimer hydrogels without the use of any catalyst. The solidification time, rheological behavior, network structure, swelling, and degradation properties of the hydrogel were tuned by adjusting the dendrimer surface acetylation degree and dendrimer concentration. The DHs were shown to be highly cytocompatible and support cell adhesion and proliferation. We also prepared an injectable dendrimer hydrogel formulation to deliver the anticancer drug 5-fluorouracil (5-FU) and demonstrated that the injectable formulation efficiently inhibited tumor growth following intratumoral injection. Taken together, this new class of dendrimer hydrogel prepared by aza-Michael addition reaction can serve as a safe tunable platform for drug delivery and tissue engineering.

  6. Core-structure-inspired asymmetric addition reactions: enantioselective synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents.

    PubMed

    Li, Shen; Ma, Jun-An

    2015-11-07

    Dihydrobenzoxazinones and dihydroquinazolinones are the core units present in many anti-HIV agents, such as Efavirenz, DPC 961, DPC 963, and DPC 083. All these molecules contain a trifluoromethyl moiety at the quaternary stereogenic carbon center with S configuration. The enantioselective addition of carbon nucleophiles to ketones or cyclic ketimines could serve as a key step to access these molecules. This tutorial review provides an overview of significant advances in the synthesis of dihydrobenzoxazinone- and dihydroquinazolinone-based anti-HIV agents and relative analogues, with an emphasis on asymmetric addition reactions for the establishment of the CF3-containing quaternary carbon centers.

  7. Synthesis of a Fluorescent Acridone using a Grignard Addition, Oxidation, and Nucleophilic Aromatic Substitution Reaction Sequence.

    PubMed

    Goodrich, Samuel; Patel, Miloni; Woydziak, Zachary R

    2015-07-14

    A three-pot synthesis oriented for an undergraduate organic chemistry laboratory was developed to construct a fluorescent acridone molecule. This laboratory experiment utilizes Grignard addition to an aldehyde, alcohol oxidation, and iterative nucleophilic aromatic substitution steps to produce the final product. Each of the intermediates and the acridone product of the synthesis are analyzed by common techniques available in most undergraduate chemistry laboratories, such as melting point, TLC, IR spectroscopy, UV-Vis spectroscopy, and fluorescence spectroscopy. Yields for each transformation in the synthesis are generally moderately low to good (20-90%) and nearly all of the students (>90%) who attempted the synthesis were able to produce the final acridone product.

  8. Barrier crossing with concentration boundary conditions in biological channels and chemical reactions

    NASA Astrophysics Data System (ADS)

    Barcilon, Victor; Chen, Duanpin; Eisenberg, Robert S.; Ratner, Mark A.

    1993-01-01

    Ions move into biological cells through pores in proteins called ionic channels, driven by gradients of potential and concentration imposed across the channel, impeded by potential barriers and friction within the pore. It is tempting to apply to channels the chemical theory of barrier crossing, but important issues must first be solved: Concentration boundary conditions must be used and flux must be predicted for applied potentials of all sizes and for barriers of all shapes, in particular, for low barriers. We use a macroscopic analysis to describe the flux as a convolution integral of a mathematically defined adjoint function, a Green's function. It so happens that the adjoint function also describes the first-passage time of a single particle moving between boundary conditions independent of concentration. The (experimentally observable) flux is computed from analytical formulas, from simulations of discrete random walks, and from simulations of the Langevin or reduced Langevin equations, with indistinguishable results. If the potential barrier has a single, large, parabolic peak, away from either boundary, an approximate expression reminiscent of Kramers' formula can be used to determine the flux. The fluxes predicted can be compared with measurements of current through single channels under a wide range of experimental conditions.

  9. Effects of protonation and C5 methylation on the electrophilic addition reaction of cytosine: a computational study.

    PubMed

    Jin, Lingxia; Wang, Wenliang; Hu, Daodao; Min, Suotian

    2013-01-10

    The mechanism for the effects of protonation and C5 methylation on the electrophilic addition reaction of Cyt has been explored by means of CBS-QB3 and CBS-QB3/PCM methods. In the gas phase, three paths, two protonated paths (N3 and O2 protonated paths B and C) as well as one neutral path (path A), were mainly discussed, and the calculated results indicate that the reaction of the HSO(3)(-) group with neutral Cyt is unlikely because of its high activation free energy, whereas O2-protonated path (path C) is the most likely to occur. In the aqueous phase, path B is the most feasible mechanism to account for the fact that the activation free energy of path B decreases compared with the corresponding path in the gas phase, whereas those of paths A and C increase. The main striking results are that the HSO(3)(-) group directly interacts with the C5═C6 bond rather than the N3═C4 bond and that the C5 methylation, compared with Cyt, by decreasing values of global electrophilicity index manifests that C5 methylation forms are less electrophilic power as well as by decreasing values of NPA charges on C5 site of the intermediates make the trend of addition reaction weaken, which is in agreement with the experimental observation that the rate of 5-MeCyt reaction is approximately 2 orders of magnitude slower than that of Cyt in the presence of bisulfite. Apart from cis and trans isomers, the rare third isomer where both the CH(3) and SO(3) occupy axial positions has been first found in the reactions of neutral and protonated 5-MeCyt with the HSO(3)(-) group. Furthermore, the transformation of the third isomer from the cis isomer can occur easily.

  10. Contribution of the t-channel N*(1535) exchange for the pp¯→ϕϕ reaction

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Dai, Jian-Ping; Zou, Bing-Song

    2011-07-01

    Since the N*(1535) resonance was found to have large coupling to the strangeness due to its possible large ss¯ component, we investigate the possible contribution of the t-channel N*(1535) exchange for the pp¯→ϕϕ reaction. Our calculation indicates that the new mechanism may give significant contribution for the energies above 2.25 GeV and may be an important source for evading the Okubo-Zweig-Iizuka rule in the ϕ production from NN¯ annihilation.

  11. tRNAHis guanylyltransferase catalyzes a 3′-5′ polymerization reaction that is distinct from G−1 addition

    PubMed Central

    Jackman, Jane E.; Phizicky, Eric M.

    2006-01-01

    Yeast tRNAHis guanylyltransferase, Thg1, is an essential protein that adds a single guanine to the 5′ end (G−1) of tRNAHis. This G−1 residue is required for aminoacylation of tRNAHis by histidyl-tRNA synthetase, both in vitro and in vivo. The guanine nucleotide addition reaction catalyzed by Thg1 extends the polynucleotide chain in the reverse (3′-5′) direction of other known polymerases, albeit by one nucleotide. Here, we show that alteration of the 3′ end of the Thg1 substrate tRNAHis unleashes an unexpected reverse polymerase activity of wild-type Thg1, resulting in the 3′-5′ addition of multiple nucleotides to the tRNA, with efficiency comparable to the G−1 addition reaction. The addition of G−1 forms a mismatched G·A base pair at the 5′ end of tRNAHis, and, with monophosphorylated tRNA substrates, it is absolutely specific for tRNAHis. By contrast, reverse polymerization forms multiple G·C or C·G base pairs, and, with preactivated tRNA species, it can initiate at positions other than −1 and is not specific for tRNAHis. Thus, wild-type Thg1 catalyzes a templated polymerization reaction acting in the reverse direction of that of canonical DNA and RNA polymerases. Surprisingly, Thg1 can also readily use dNTPs for nucleotide addition. These results suggest that 3′-5′ polymerization represents either an uncharacterized role for Thg1 in RNA or DNA repair or metabolism, or it may be a remnant of an earlier catalytic strategy used in nature. PMID:16731615

  12. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along <110> and <100> axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  13. Branching ratio for the hydrogen atom product channel in the reaction of ground-state atomic oxygen with ethylene

    SciTech Connect

    Smalley, J.F.; Nesbitt, F.L.; Klemm, R.B.

    1986-01-30

    The branching ratio, ..cap alpha../sub 1/, for the H + C/sub 2/H/sub 3/O product channel of the O(/sup 3/P) + C/sub 2/H/sub 3/O reaction was determined from measured H- and O-atom profiles in this flash photolysis-resonance fluorescence study. The relative detection sensitivity of the system for H and O atoms was determined experimentally. A chemical model was used to describe the reaction mechanism together with the relative detection sensitivity, and a value of ..cap alpha../sub 1/ = 0.27 +/- 0.05 was derived at 300 K. At higher temperatures, the value of ..cap alpha../sub 1/ appears to increase slightly. Possible reasons for this increase are discussed. 30 references, 2 figures, 7 tables.

  14. Highly Functionalized Cyclopentane Derivatives by Tandem Michael Addition/Radical Cyclization/Oxygenation Reactions.

    PubMed

    Holan, Martin; Pohl, Radek; Císařová, Ivana; Klepetářová, Blanka; Jones, Peter G; Jahn, Ullrich

    2015-06-26

    Densely functionalized cyclopentane derivatives with up to four consecutive stereocenters are assembled by a tandem Michael addition/single-electron transfer oxidation/radical cyclization/oxygenation strategy mediated by ferrocenium hexafluorophosphate, a recyclable, less toxic single-electron transfer oxidant. Ester enolates were coupled with α-benzylidene and α-alkylidene β-dicarbonyl compounds with switchable diastereoselectivity. This pivotal steering element subsequently controls the diastereoselectivity of the radical cyclization step. The substitution pattern of the radical cyclization acceptor enables a switch of the cyclization mode from a 5-exo pattern for terminally substituted olefin units to a 6-endo mode for internally substituted acceptors. The oxidative anionic/radical strategy also allows efficient termination by oxygenation with the free radical 2,2,6,6-tetramethyl-1-piperidinoxyl, and two C-C bonds and one C-O bond are thus formed in the sequence. A stereochemical model is proposed that accounts for all of the experimental results and allows the prediction of the stereochemical outcome. Further transformations of the synthesized cyclopentanes are reported.

  15. Nickel and cobalt-catalyzed coupling of alkyl halides with alkenes via heck reactions and radical conjugate addition.

    PubMed

    Qian, Qun; Zang, Zhenhua; Chen, Yang; Tong, Weiqi; Gong, Hegui

    2013-05-01

    Cross-coupling of alkyl halides with alkenes leading to Heck-type and addition products is summarized. The development of Heck reaction with aliphatic halides although has made significant progress in the past decade and particularly recently, it was much less explored in comparison with the aryl halides. The use of Ni- and Co-catalyzed protocols allowed efficient Heck coupling of activated and unactivated alkenes with 1°, 2° and 3° alkyl halides. In addition, radical conjugate addition to activated alkenes has become a well-established method that has led to efficient construction of many natural products. The utilization of Ni- and Co-catalyzed strategies would avoid toxic tin reagents, and therefore worth exploring. The recent development of Ni- and Co-catalyzed addition of alkyl halides to alkenes displays much improved reactivity and functional group tolerance. In this mini-review, we also attempt to overview the mechanisms that are proposed in the reactions, aiming at providing insight into the nickel and cobalt-catalyzed coupling of alkyl halides with alkenes.

  16. Apparent anti-Woodward-Hoffmann addition to a nickel bis(dithiolene) complex: the reaction mechanism involves reduced, dimetallic intermediates.

    PubMed

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Harrison, Daniel J; Alak, Aiman; Lough, Alan J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2013-04-01

    Nickel dithiolene complexes have been proposed as electrocatalysts for alkene purification. Recent studies of the ligand-based reactions of Ni(tfd)2 (tfd = S2C2(CF3)2) and its anion [Ni(tfd)2](-) with alkenes (ethylene and 1-hexene) showed that in the absence of the anion, the reaction proceeds most rapidly to form the intraligand adduct, which decomposes by releasing a substituted dihydrodithiin. However, the presence of the anion increases the rate of formation of the stable cis-interligand adduct, and decreases the rate of dihydrodithiin formation and decomposition. In spite of both computational and experimental studies, the mechanism, especially the role of the anion, remained somewhat elusive. We are now providing a combined experimental and computational study that addresses the mechanism and explains the role of the anion. A kinetic study (global analysis) for the reaction of 1-hexene is reported, which supports the following mechanism: (1) reversible intraligand addition, (2) oxidation of the intraligand addition product prior to decomposition, and (3) interligand adduct formation catalyzed by Ni(tfd)2(-). Density functional theory (DFT) calculations were performed on the Ni(tfd)2/Ni(tfd)2(-)/ethylene system to shed light on the selectivity of adduct formation in the absence of anion and on the mechanism in which Ni(tfd)2(-) shifts the reaction from intraligand addition to interligand addition. Computational results show that in the neutral system the free energy of activation for intraligand addition is lower than that for interligand addition, in agreement with the experimental results. The computations predict that the anion enhances the rate of the cis-interligand adduct formation by forming a dimetallic complex with the neutral complex. The [(Ni(tfd)2)2](-) dimetallic complex then coordinates ethylene and isomerizes to form a Ni,S-bound ethylene complex, which then rapidly isomerizes to the stable interligand adduct but not to the intraligand adduct

  17. Evidence that protons can be the active catalysts in Lewis acid mediated hetero-Michael addition reactions.

    PubMed

    Wabnitz, Tobias C; Yu, Jin-Quan; Spencer, Jonathan B

    2004-01-23

    The mechanism of Lewis acid catalysed hetero-Michael addition reactions of weakly basic nucleophiles to alpha,beta-unsaturated ketones was investigated. Protons, rather than metal ions, were identified as the active catalysts. Other mechanisms have been ruled out by analyses of side products and of stoichiometric enone-catalyst mixtures and by the use of radical inhibitors. No evidence for the involvement of pi-olefin-metal complexes or for carbonyl-metal-ion interactions was obtained. The reactions did not proceed in the presence of the non-coordinating base 2,6-di-tert-butylpyridine. An excellent correlation of catalytic activities with cation hydrolysis constants was obtained. Different reactivities of mono- and dicarbonyl substrates have been rationalised. A (1)H NMR probe for the assessment of proton generation was established and Lewis acids have been classified according to their propensity to hydrolyse in organic solvents. Brønsted acid-catalysed conjugate addition reactions of nitrogen, oxygen, sulfur and carbon nucleophiles are developed and implications for asymmetric Lewis acid catalysis are discussed.

  18. Scope and limitations of aliphatic Friedel-Crafts alkylations. Lewis acid catalyzed addition reactions of alkyl chlorides to carbon-carbon double bonds

    SciTech Connect

    Mayr, H.; Striepe, W.

    1983-04-22

    Lewis acid catalyzed addition reactions of alkyl halides with unsaturated hydrocarbons have been studied. 1:1 addition products are formed if the addends dissociate faster than the corresponding products; otherwise, polymerization takes place. For reaction conditions under which these compounds exist mainly undissociated, solvolysis constants of model compounds can be used to predict the outcome of any such addition reactions if systems with considerable steric hindrance are excluded.

  19. The preparation and intra- and intermolecular addition reactions of acyclic N-acylimines: application to the synthesis of (+/-)-sertraline.

    PubMed

    DeNinno, M P; Eller, C; Etienne, J B

    2001-10-19

    Intramolecular endo-cyclization reactions of N-acyliminium ions have seen wide application for the synthesis of heterocyclic compounds. The corresponding exocyclic variant, which would provide 1-aminotetralin derivatives, for example, has little precedent. We have discovered that acyclic N-acylcarbamates can be readily reduced to the corresponding N-acylhemiaminal derivatives in high yield using DIBAL as the reducing agent. These intermediates are remarkably stable and, if desired, can be purified and stored. The acyclic N-acylhemiaminals undergo both intra- and intermolecular nucleophilic addition reactions mediated by strong Lewis acids, such as TiCl(4). Diastereoselectivity, induced either by a substituent on the newly formed ring, or by utilizing a chiral ester on the carbamic acid, was disappointingly low. This methodology was successfully applied to the synthesis of the racemic form of the marketed antidepressant sertraline.

  20. Entrance-channel mass-asymmetry dependence of compound nucleus formation time in light heavy-ion reactions

    SciTech Connect

    Szanto de Toledo, A.; Carlson, B.V.; Beck, C.

    1996-12-01

    The entrance-channel mass-asymmetry dependence of the compound nucleus formation time in light heavy-ion reactions has been investigated within the framework of semiclassical dissipative collision models. The model calculations have been applied successfully to the formation of the {sup 38}Ar compound nucleus as populated via the {sup 9}Be+{sup 29}Si, {sup 11}B+{sup 27}Al, {sup 12}C+{sup 26}Mg, and {sup 19}F+{sup 19}F entrance channels. The shape evolution of several other light composite systems appears to be consistent with the so-called {open_quote}{open_quote}Fusion Inhibition Factor{close_quote}{close_quote} which has been observed experimentally. As found previously in more massive systems for the fusion-evaporation process, the entrance-channel mass-asymmetry degree of freedom appears to determine the competition between the different mechanisms as well as the time scales involved. {copyright} {ital 1996 The American Physical Society.}

  1. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel

    NASA Astrophysics Data System (ADS)

    Luna, Julio; Ocampo-Martinez, Carlos; Serra, Maria

    2015-05-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the concentrations of the different gas species inside a Proton Exchange Membrane Fuel Cell (PEMFC) anode gas channel. The purpose of the regulation relies on the rejection of the unmeasurable perturbations that affect the system: the hydrogen reaction and water transport terms. The model of the anode channel is derived from the discretisation of the partial differential equations that define the nonlinear dynamics of the system, taking into account spatial variations along the channel. Forward and backward discretisations of the distributed model are employed to take advantage of the boundary conditions of the problem. A linear observer is designed and implemented to perform output-feedback control of the plant. This information is fed to the controller to regulate the states towards their desired values. Simulation results are presented to show the performance of the proposed control method over a given case study. Different cost functions are compared and the one with minimum state-regulation error is identified. Suitable dynamic responses are obtained facing the different considered disturbances.

  2. Rare reaction channels in real-time time-dependent density functional theory: the test case of electron attachment

    NASA Astrophysics Data System (ADS)

    Lacombe, Lionel; Dinh, P. Huong Mai; Reinhard, Paul-Gerhard; Suraud, Eric; Sanche, Leon

    2015-08-01

    We present an extension of standard time-dependent density functional theory (TDDFT) to include the evaluation of rare reaction channels, taking as an example of application the theoretical modelling of electron attachment to molecules. The latter process is of great importance in radiation-induced damage of biological tissue for which dissociative electron attachment plays a decisive role. As the attachment probability is very low, it cannot be extracted from the TDDFT propagation whose mean field provides an average over various reaction channels. To extract rare events, we augment TDDFT by a perturbative treatment to account for the occasional jumps, namely electron capture in our test case. We apply the modelling to electron attachment to H2O, H3O+, and (H2O)2. Dynamical calculations have been done at low energy (3-16 eV). We explore, in particular, how core-excited states of the targets show up as resonances in the attachment probability. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  3. Kinetics and Mechanism of the CIO + CIO Reaction: Pressure and Temperature Dependences of the Bimolecular and Termolecular Channels andThermal Decomposition of Chlorine Peroxide, CIOOCI

    NASA Technical Reports Server (NTRS)

    Nickolaisen, Scott L.; Friedl, Randall R.; Sander, Stanley P.

    1993-01-01

    The kinetics and mechanism of the CIO + CIO reaction and the thermal decomposition of CIOOCI were studied using the flash photolysis/long path ultraviolet absorption technique. Pressure and temperature dependences were determined for the rate coefficients for the bimolecular and termolecular reaction channels, and for the thermal decompositon of CIOOCI.

  4. Mouse sperm patch-clamp recordings reveal single Cl- channels sensitive to niflumic acid, a blocker of the sperm acrosome reaction.

    PubMed

    Espinosa, F; de la Vega-Beltrán, J L; López-González, I; Delgado, R; Labarca, P; Darszon, A

    1998-04-10

    Ion channels lie at the heart of gamete signaling. Understanding their regulation will improve our knowledge of sperm physiology, and may lead to novel contraceptive strategies. Sperm are tiny (approximately 3 microm diameter) and, until now, direct evidence of ion channel activity in these cells was lacking. Using patch-clamp recording we document here, for the first time, the presence of cationic and anionic channels in mouse sperm. Anion selective channels were blocked by niflumic acid (NA) (IC50 = 11 microM). The blocker was effective also in inhibiting the acrosome reaction induced by the zona pellucida, GABA or progesterone. These observations suggest that Cl- channels participate in the sperm acrosome reaction in mammals.

  5. Effects of entrance channel on fusion probability in hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Su, Jun; Huang, Ching-Yuan; Zhang, Feng-Shou

    2016-12-01

    Within the framework of the dinuclear system (DNS) model, the fusion reactions leading to the compound nuclei 274Hs* and 286Cn* are investigated. The fusion probability as a function of DNS excitation energy is studied. The calculated results are in good agreement with the available experimental data. The obtained results show that the fusion probabilities are obviously enhanced for the reactions located at high place in potential energy surface, although these reactions may have small values of mass asymmetry. It is found that the enhancement is due to the large potential energy of the initial DNS. Supported by Natural Science Foundation of Guangdong Province China (2016A030310208). National Natural Science Foundation of China (11605296, 11405278, 11505150, 11635003), Fundamental Research Funds for the Central Universities (15 lgpy 30) and China Postdoctoral Science Foundation (2015M582730)

  6. Are Redox Reactions Involved in Regulation of K+ Channels in the Plasma Membrane of Limnobium stoloniferum Root Hairs?

    PubMed Central

    Grabov, A.; Bottger, M.

    1994-01-01

    The effects of the impermeant electron acceptor hexacyanoferrate III (HCF III) and the potassium channel blocker tetraethylam-monium (TEA) on the current-voltage relationship and electrical potential across the plasma membrane of Limnobium stoloniferum root hairs was investigated using a modified sucrose gap technique. One millimolar HCF III immediately and reversibly depolarized the membrane by 27 mV, whereas the effect on the trans-membrane current was markedly delayed. After 6 min of treatment with this electron acceptor, outwardly rectifying current was inhibited by 50%, whereas the inwardly rectifying current was activated approximately 3-fold. Ten millimolar TEA blocked both outward (65%) and inward (52%) currents. Differential TEA-sensitive current was shown to be blocked (55%) by HCF III at -20 mV and was shown to be stimulated (230%) by this electron acceptor at -200 mV. The inward current at -200 mV was eliminated in the absence of K+ or after addition of 10 mM Cs+ and was not affected by addition of either 10mM Na+ or Li+, independent of the presence of HCF III. The addition of any alkali cation to the external medium decreased the outward current both in the presence and in the absence of HCF III. The membrane depolarization evoked by HCF III did not correlate with the corresponding modification of the inward current. HCF III is proposed to activate inwardly rectifying potassium channels and to inactivate outwardly rectifying potassium channels. It is concluded that the plasma membrane depolarization did not result from modulation of the potassium channels by HCF III and may originate from trans-plasma membrane electron transfer. PMID:12232255

  7. Cascade intermolecular Michael addition-intramolecular azide/internal alkyne 1,3-dipolar cycloaddition reaction in one pot.

    PubMed

    Arigela, Rajesh K; Mandadapu, Anil K; Sharma, Sudhir K; Kumar, Brijesh; Kundu, Bijoy

    2012-04-06

    A rapid one-pot protocol for the synthesis of indole-based polyheterocycles via a sequential Lewis acid catalyzed intermolecular Michael addition and an intramolecular azide/internal alkyne 1,3-dipolar cycloaddition reaction has been described. The generality of the method has been demonstrated by treating a series of aromatic/aliphatic 2-alkynyl indoles with substituted (E)-1-azido-2-(2-nitrovinyl)benzenes to furnish annulated tetracyclic indolo[2,3-c][1,2,3]triazolo[1,5-a][1]benzazepines in good yields.

  8. Unexpected Formation of Highly Functionalized Dihydropyrans via Addition-Cyclization Reactions Between Dimethyl Oxoglutaconate and α,β-Unsaturated Hydrazones.

    PubMed

    Mullins, Jason E; Etoga, Jean-Louis G; Gajewski, Mariusz; Degraw, Joseph I; Thompson, Charles M

    2009-05-20

    The condensation between dienophiles and α,β-unsaturated hydrazone azadienes was previously reported to afford piperidines. During an attempt to adapt this reaction to the preparation of piperidine-based conformationally-restricted analogs of glutamate, it was discovered that the electrophile, dimethyl oxoglutaconate (DOG) led to highly substituted dihydropyrans in 20-50% yield. The unexpected pyran product likely results from an initial 1,4-addition of the hydrazone to the oxoglutaconate followed by intramolecular cyclization of the resultant enolate oxygen to the α,β-unsaturated iminium ion. Further manipulations afford substituted tetrahydropyran 6-methamino-2,4-dicarboxylic acids.

  9. Unexpected Formation of Highly Functionalized Dihydropyrans via Addition-Cyclization Reactions Between Dimethyl Oxoglutaconate and α,β-Unsaturated Hydrazones

    PubMed Central

    Mullins, Jason E.; Etoga, Jean-Louis G.; Gajewski, Mariusz; DeGraw, Joseph I.; Thompson, Charles M.

    2009-01-01

    The condensation between dienophiles and α,β-unsaturated hydrazone azadienes was previously reported to afford piperidines. During an attempt to adapt this reaction to the preparation of piperidine-based conformationally-restricted analogs of glutamate, it was discovered that the electrophile, dimethyl oxoglutaconate (DOG) led to highly substituted dihydropyrans in 20–50% yield. The unexpected pyran product likely results from an initial 1,4-addition of the hydrazone to the oxoglutaconate followed by intramolecular cyclization of the resultant enolate oxygen to the α,β-unsaturated iminium ion. Further manipulations afford substituted tetrahydropyran 6-methamino-2,4-dicarboxylic acids. PMID:20161237

  10. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions.

    PubMed

    Cichowicz, Nathan R; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-11-18

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.

  11. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  12. Selectivity in the Addition Reactions of Organometallic Reagents to Aziridine-2-carboxaldehydes: The Effects of Protecting Groups and Substitution Patterns

    PubMed Central

    Kulshrestha, Aman; Schomaker, Jennifer M.; Holmes, Daniel; Staples, Richard J.; Jackson, James E.; Borhan, Babak

    2014-01-01

    Good to excellent stereo-selectivity has been found in the addition reactions of Grignard and organo-zinc reagents to N-protected aziridine-2-carboxaldehydes. Specifically, high syn selectivity was obtained with benzyl-protected cis, tert-butyloxycar-bonyl-protected trans, and tosyl-pro-tected 2,3-disubstituted aziridine-2-car-boxaldehydes. Furthermore, rate and selectivity effects of ring substituents, temperature, solvent, and Lewis acid and base modifiers were studied. The diastereomeric preference of addition is dominated by the substrate aziri-dines’ substitution pattern and especially the electronic character and conformational preferences of the nitrogen protecting groups. To help rationalize the observed stereochemical outcomes, conformational and electronic structural analyses of a series of model systems representing the various substitution patterns have been explored by density functional calculations at the B3LYP/6–31G* level of theory with the SM8 solvation model to account for solvent effects. PMID:21928447

  13. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications.

  14. Malignant hyperthermia-like reaction in a family with a sodium channel mutation at residue 1306

    SciTech Connect

    Vita, G.M.; Jedlicka, A.E.; Levitt, R.C.

    1994-09-01

    Malignant hyperthermia susceptibility (MHS) is an autosomal dominant, hypermetabolic disorder, triggered by potent inhalational anesthetics. We have previously suggeste the skeletal muscle sodium channel {alpha}-subunit (SCN4A) as a gene candidate to explain some forms of MHS. To evaluate this gene for mutations that might lead to a MHS-like episode, we amplified genomic DNA by PCR and used SSCP to screen each exon. We studied multiple MHS families which may be linked to this gene. The proband and a sibling from one of these families suspected of having MHS experienced trismus and body rigidity after induction of anesthesia. The caffiene and halothane contracture test proved diagnostic in these individuals and EMG studies suggested a form of myotomia. A mutation co-segregating with the myotonia/MHS phenotype was found in the region of exon 22.

  15. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    SciTech Connect

    Lee, Sea-Hoon; Cho, Chun-Rae; Park, Young-Jo; Ko, Jae-Woong; Kim, Hai-Doo; Lin, Hua-Tay; Becher, Paul F

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  16. Collinear cluster tripartition channel in the reaction {sup 235}U(n{sub th}, f)

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Kopach, Yu. N.; Alexandrov, A. A.; Alexandrova, I. A.; Borzakov, S. B.; Voronov, Yu. N.; Zhuchko, V. E.; Kuznetsova, E. A. Panteleev, Ts.; Tyukavkin, A. N.

    2010-08-15

    Investigation of the {sup 235}U(n{sub th}, f) reaction using the miniFOBOS double-arm time-of-flight spectrometer of fission fragments confirmed manifestations of the earlier unknown many-body, at least ternary, decay involving almost collinear decay-product escape, which were first observed in the spontaneous fission of {sup 252}Cf(sf). The use of variables sensitive to the nuclear charge of fission fragments allowed the reliability of identification of decay events to be increased and new decay modes to be revealed.

  17. Fluorescence detection test by black printed circuit board based microfluidic channel for polymerase chain reaction.

    PubMed

    Hwang, Ji-Soo; Kim, Yu-Seop; Song, Hye-Jeong; Kim, Jong-Dae; Park, Chan-Young

    2015-01-01

    This paper proposes the optimal structure of a PCB-based micro PCR chip constructed on a PCB substrate using commercial adhesive tapes and plastic covers. The solder mask of the PCB substrate was coated black, and the area where the reaction chamber is attached was legend printed with white silk to minimize the noise during fluorescence detection. The performance of the PCR and fluorescence detection was compared using 6 types of reaction chambers, each made with different double-sided tapes. Three of the chambers were unsuccessful in completing the PCR. The performance of the other three chambers that successfully amplified DNA was compared using Taqman probe for Chlamydia Trachomatis DNA. The amplified product was illuminated diagonally with a blue LED to excite the product just before imaging, and the LED was turned off when the image was captured to prevent quenching of the probe. The images were taken 10 seconds prior to the last extension step for each cycle using a DSLR camera. The experiments were run as a quartet for each three chambers made with different double-sided tape. The results showed that there were significant difference between the three tapes.

  18. Effect of rare earth metal Ce addition to Sn-Ag solder on interfacial reactions with Cu substrate

    NASA Astrophysics Data System (ADS)

    Yoon, Jeong-Won; Noh, Bo-In; Jung, Seung-Boo

    2014-05-01

    The effect of adding a small amount of rare earth cerium (Ce) element to low Ag containing Sn-1wt%Ag Pb-free solder on its interfacial reactions with Cu substrate was investigated. The growth of intermetallic compounds (IMCs) between three Sn-1Ag-xCe solders with different Ce contents and a Cu substrate was studied and the results were compared to those obtained for the Ce-free Sn-1Ag/Cu systems. In the solid-state reactions of the Sn-1Ag(-xCe)/Cu solder joints, the two IMC layers, Cu6Sn5 and Cu3Sn, grew as aging time increased. Compared to the Sn-1Ag/Cu joint, the growth of the Cu6Sn5 and Cu3Sn layers was depressed for the Ce-containing Sn-1Ag-xCe/Cu joint. The addition of Ce to the Sn-Ag solder reduced the growth of the interfacial Cu-Sn IMCs and prevented the IMCs from spalling from the interface. The evenly-distributed Ce elements in the solder region blocked the diffusion of Sn atoms to the interface and retarded the growth of the interfacial IMC layer.

  19. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    ERIC Educational Resources Information Center

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  20. Channel specific rate constants for reactions of O(1D) with HCl and HBr

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Wells, J. R.; Ravishankara, A. R.

    1986-01-01

    The absolute rate coefficients and product yields for reactions of O(1D) with HCl(1) and HBr(2) at 287 K are presently determined by means of the time-resolved resonance fluorescence detection of O(3P) and H(2S) in conjunction with pulsed laser photolysis of O3/HX/He mixtures. Total rate coefficients for O(1D) removal are found to be, in units of 10 to the -10th cu cm/molecule per sec, k(1) = 1.50 + or - 0.18 and k(2) 1.48 + or - 0.16; the absolute accuracy of these rate coefficients is estimated to be + or - 20 percent.

  1. Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst

    NASA Astrophysics Data System (ADS)

    Uraguchi, Daisuke; Yoshioka, Ken; Ooi, Takashi

    2017-03-01

    Catalytic systems that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through minimal modification of a single catalyst scaffold remain elusive, particularly for carbon-carbon bond formations requiring simultaneous control of multiple selectivity factors. Here, we report a catalyst-directed pinpoint inversion of diastereochemical preference in the 1,6-addition of azlactones to δ-aryl dienyl carbonyl compounds with full control over other selectivities preserved. This rigorous diastereodivergence is enabled by the slight structural adjustment of a chiral iminophosphorane catalyst, providing access to all the stereoisomers with high regio-, distereo- and enantioselectivity. The utility of this method is demonstrated in the facile stereodivergent preparation of densely functionalized proline derivatives. The experimental and computational elucidation of the origin of the diastereodivergence is also reported.

  2. Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst.

    PubMed

    Uraguchi, Daisuke; Yoshioka, Ken; Ooi, Takashi

    2017-03-20

    Catalytic systems that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through minimal modification of a single catalyst scaffold remain elusive, particularly for carbon-carbon bond formations requiring simultaneous control of multiple selectivity factors. Here, we report a catalyst-directed pinpoint inversion of diastereochemical preference in the 1,6-addition of azlactones to δ-aryl dienyl carbonyl compounds with full control over other selectivities preserved. This rigorous diastereodivergence is enabled by the slight structural adjustment of a chiral iminophosphorane catalyst, providing access to all the stereoisomers with high regio-, distereo- and enantioselectivity. The utility of this method is demonstrated in the facile stereodivergent preparation of densely functionalized proline derivatives. The experimental and computational elucidation of the origin of the diastereodivergence is also reported.

  3. Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst

    PubMed Central

    Uraguchi, Daisuke; Yoshioka, Ken; Ooi, Takashi

    2017-01-01

    Catalytic systems that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through minimal modification of a single catalyst scaffold remain elusive, particularly for carbon–carbon bond formations requiring simultaneous control of multiple selectivity factors. Here, we report a catalyst-directed pinpoint inversion of diastereochemical preference in the 1,6-addition of azlactones to δ-aryl dienyl carbonyl compounds with full control over other selectivities preserved. This rigorous diastereodivergence is enabled by the slight structural adjustment of a chiral iminophosphorane catalyst, providing access to all the stereoisomers with high regio-, distereo- and enantioselectivity. The utility of this method is demonstrated in the facile stereodivergent preparation of densely functionalized proline derivatives. The experimental and computational elucidation of the origin of the diastereodivergence is also reported. PMID:28317928

  4. Design of Selective Gas Sensors Using Additive-Loaded In2O3 Hollow Spheres Prepared by Combinatorial Hydrothermal Reactions

    PubMed Central

    Kim, Sun-Jung; Hwang, In-Sung; Kang, Yun Chan; Lee, Jong-Heun

    2011-01-01

    A combinatorial hydrothermal reaction has been used to prepare pure and additive (Sb, Cu, Nb, Pd, and Ni)-loaded In2O3 hollow spheres for gas sensor applications. The operation of Pd- and Cu-loaded In2O3 sensors at 371 °C leads to selective H2S detection. Selective detection of CO and NH3 was achieved by the Ni-In2O3 sensor at sensing temperatures of 371 and 440 °C, respectively. The gas responses of six different sensors to NH3, H2S, H2, CO and CH4 produced unique gas sensing patterns that can be used for the artificial recognition of these gases. PMID:22346661

  5. Selectivity control between Mizoroki-Heck and homo-coupling reactions for synthesising multinuclear metal complexes: unique addition effects of tertiary phosphines and O2.

    PubMed

    Yamazaki, Yasuomi; Ishitani, Osamu

    2017-04-05

    The addition of a tertiary phosphine and O2 to reaction solutions strongly affected the reactivity and selectivity of coupling reactions between transition metal complexes. The Mizoroki-Heck reaction between metal complexes with bromo and those with vinyl groups in the diimine ligand did not proceed using Pd(OAc)2 in the presence of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (Sphos) under Ar but proceeded selectively after injection of air into the reaction vessel. In the absence of the phosphine ligand, on the other hand, not only the Mizoroki-Heck reaction but also a homo-coupling reaction between the metal complexes with the bromo groups proceeded at the same time. Mechanistic investigation showed that nanoparticles of Pd species were produced in the absence of the phosphine ligand and worked as catalysts for both the Mizoroki-Heck and homo-coupling reactions. On the other hand, larger Pd particles, which were produced in the presence of Sphos but after addition of air for oxidising Sphos, selectively catalysed the Mizoroki-Heck reaction. 'Molecular' Pd species that were stabilised in the presence of non-oxidised Sphos could not catalyse both coupling reactions under the reaction conditions. Based on these results, reaction conditions were established for the selective progress of the Mizoroki-Heck and the homo-coupling reactions.

  6. Hydrogenation of O and OH on Pt(111): A comparison between the reaction rates of the first and the second hydrogen addition steps

    SciTech Connect

    Näslund, L.-Å.

    2014-03-14

    The formation of water through hydrogenation of oxygen on platinum occurs at a surprisingly low reaction rate. The reaction rate limited process for this catalytic reaction is, however, yet to be settled. In the present work, the reaction rates of the first and the second hydrogen addition steps are compared when hydrogen is obtained through intense synchrotron radiation that induces proton production in a water overlayer on top of the adsorbed oxygen species. A substantial amount of the produced hydrogen diffuses to the platinum surface and promotes water formation at the two starting conditions O/Pt(111) and (H{sub 2}O+OH)/Pt(111). The comparison shows no significant difference in the reaction rate between the first and the second hydrogen addition steps, which indicates that the rate determining process of the water formation from oxygen on Pt(111) is neither the first nor the second H addition step or, alternatively, that both H addition steps exert rate control.

  7. Photolytic, thermal, addition, and cycloaddition reactions of 2-diazo-5,6- and -3,8-disubstituted acenaphthenones.

    PubMed

    Blair, Patricia A; Chang, Sou-Jen; Shechter, Harold

    2004-10-15

    Preparation and varied thermal and photolytic reactions of 2-diazo-5,6-(disubstituted)acenaphthenones (11a-d) and 2-diazo-3,8-dimethoxyacenaphthenone (12) are reported. Alcohols react thermally and photolytically with 11a-c with losses of N(2) to yield 2-alkoxynaphthenones (24a,band 47a,b) and acenaphthenones (25 and 48a,b). Aniline and diphenylamine are converted by 11a-c at 180 degrees C to acenaph[1,2-b]indoles (29a,b and 53a,b). Thermolyses of 11a-c at approximately 450 degrees C (0.15 mmHg) yield reduction products 25 and 48a,b, respectively. Wolff rearrangements to 1,8-naphthyleneketenes (15a-d) and/or their derivatives are not observed in the above experiments. Oxygen converts 11a-c thermally to acenaphthenequinones (19a-c) and/or 1,8-naphthalic anhydrides. Insertion, addition, substitution, and/or isomerization reactions occur upon irradiation of 2-diazoacenaphthenones in cyclohexane, benzene, and tetrahydrofuran. Photolysis of 11d in benzene in the presence of O(2) yields the insertion-oxidation product 2-hydroxy-5,6-dinitro-2-phenylacenaphthenone (60). Photolyses of 11a-c in nitriles result in N(2) evolution and dipolar cycloaddition to give acenaph[1,2-d]oxazoles (41 and 61a,b). Acetylenes undergo thermal and photolytic cycloaddition/1,5-sigmatropic rearrangement reactions with 11a-d with N(2) retention to give pyrazolo[5,1-a]quinolin-7-ones (69f-j). 2-Diazoacenaphthenones 1a and 11a react thermally and photolytically with electronegatively-substituted olefins with N(2) expulsion to yield (E)- and (Z)-2-oxospiro[acenaphthylene-1(2H),1'cyclopropanes] 73a-c and 74a-c, respectively. The mechanisms of the reactions of 1a, 11a-d, and 12 reported are discussed.

  8. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    PubMed

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  9. Channels of the corpus callosum. Evidence from simple reaction times to lateralized flashes in the normal and the split brain.

    PubMed

    Iacoboni, M; Zaidel, E

    1995-06-01

    We studied 75 normal subjects and three commissurotomized patients using unimanual simple reaction times to lateralized flashes as a behavioural estimate of interhemispheric transmission time. Three different versions of the paradigm were performed: (i) the basic task; (ii) a motor task, with an increased complexity of the motor response; and (iii) a visual task, with an increased complexity of the visual stimulus presentation. We tested two hypotheses. First, that the new versions of the simple reaction time task result in shifts in hemispheric specialization for processing motor output (indicated by a main effect of response hand) or visual input (indicated by a main effect of visual field) alone, without affecting callosal transmission. In that case normals and split brain patients would show no significant task by response hand by visual field interaction and no significant task by crossed-uncrossed difference interaction. Secondly, that the new versions of the task affect callosal transfer. In that case, normals, but not split brain patients, would show a significant task by response hand by visual field interaction and a significant task by crossed-uncrossed difference interaction. Results are consistent with the latter hypothesis, showing that the motor task significantly changed the response hand by visual field interaction and the crossed-uncrossed difference, but only in normal subjects, perhaps producing a switch in the callosal channel subserving the interhemispheric transfer.

  10. S-carbocysteine-lysine salt monohydrate and cAMP cause non-additive activation of the cystic fibrosis transmembrane regulator channel in human respiratory epithelium.

    PubMed

    Meyer, G; Doppierio, S; Daffonchio, L; Cremaschi, D

    1997-03-03

    S-Carbocysteine-lysine salt monohydrate (S-CMC-Lys) has been shown to open a Cl- channel in the trachea, thus aiding fluid secretion. The aim of this study was to characterize the channel and the action mechanism on a culture line of human respiratory epithelial cells. The patch-clamp technique (in cell-attached or inside-out configuration) and conventional micro-electrodes were used. The activity and density of a cAMP-dependent Cl- channel, identical to the cystic fibrosis transmembrane regulator (CFTR) channel, proved to be maximally stimulated by 100 microM S-CMC-Lys present in the cAMP-free cell incubation medium for 240-290 min (cell-attached configuration). Subsequent addition of cAMP to the medium did not determine any further activation. S-CMC-Lys acted mostly indirectly as, when placed in direct contact with a membrane patch, activation of the CFTR channel was nil (cytoplasmic side) or limited (external side).

  11. Role of Lewis acid additives in a palladium catalyzed directed C-H functionalization reaction of benzohydroxamic acid to isoxazolone.

    PubMed

    Athira, C; Sunoj, Raghavan B

    2016-12-20

    Metallic salts as well as protic additives are widely employed in transition metal catalyzed C-H bond functionalization reactions to improve the efficiency of catalytic protocols. In one such example, ZnCl2 and pivalic acid are used as additives in a palladium catalyzed synthesis of isoxazolone from a readily available benzohydroxamic acid under one pot conditions. In this article, we present some important mechanistic insights into the role of ZnCl2 and pivalic acid, gained by using density functional theory (M06) computations. Two interesting modes of action of ZnCl2 are identified in various catalytic steps involved in the formation of isoxazolone. The conventional Lewis acid coordination wherein zinc chloride (ZnCl2·(DMA)) binds to the carbonyl group is found to be more favored in the C-H activation step. However, the participation of a hetero-bimetallic Pd-Zn species is preferred in reductive elimination leading to Caryl-N bond formation. Pivalic acid helps in relay proton transfer in C-H bond activation through a cyclometallation deprotonation (CMD) process. The explicit inclusion of ZnCl2 and solvent N,N-dimethyl acetamide (DMA) stabilizes the transition state and also helps reduce the activation barrier for the C-H bond activation step. The electronic communication between the two metal species is playing a crucial role in stabilizing the Caryl-N bond formation transition state through a Pd-Zn hetero-bimetallic interaction.

  12. Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process Effects of Rare Earth Oxide Sintering Additives

    SciTech Connect

    Lee, S. H.; Ko, J. W.; Park, Y. J.; Kim, H. D.; Lin, Hua-Tay; Becher, Paul F

    2012-01-01

    Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, Lu2O3-SiO2 (US), La2O3-MgO (AM) and Y2O3-Al2O3 (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the La2O3-MgO system. Since the Lu2O3-SiO2 system has the highest melting temperature, full densification could not be achieved after sintering at 1950oC. However, the system had a reasonably high bending strength of 527 MPa at 1200oC in air and a high fracture toughness of 9.2 MPa m1/2. The Y2O3-Al2O3 system had the highest room temperature bending strength of 1.2 GPa

  13. The reaction OH + C2H4: an example of rotational channel switching.

    PubMed

    Golden, David M

    2012-05-03

    The low-temperature data for the reaction between OH and C(2)H(4) is treated canonically as either a two-well or one-well problem using the "Multiwell" suite of codes, in which a "well" refers to a minimum in the potential energy surface. The former is analogous to the two transition state model of Greenwald et al. [Greenwald, E. E.; North, S. W.; Georgievskii, Y.; Klippenstein, S. J. J. Phys. Chem. A2005, 109, 6031], while the latter reflects the dominance of the so-called "inner transition state". External rotations are treated adiabatically, causing changes in the magnitude of effective barriers as a function of temperature. Extant data are well-described with either model using only the average energy transferred in a downward direction, upon collision, ΔE(d)(T), as a fitting parameter. The best value for the parameters describing the rate coefficient as a function of temperature (200 < T/K < 400) (Data at lower temperature is too sparse to yield a recommendation.) and pressure in the form used in the NASA/JPL format [Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K et al., Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, Jet Propulsion Laboratory, 2011] are k(0) = 1.0 × 10(-28)(T/300)(-3.5) cm(6) molecule(-2) s(-1) and k(∞) to 8.0 × 10(-12)(T/300)(-2.3) cm(3) molecule(-1) s(-1).

  14. Hydrogen radical additions to unsaturated hydrocarbons and the reverse beta-scission reactions: modeling of activation energies and pre-exponential factors.

    PubMed

    Sabbe, Maarten K; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2010-01-18

    The group additivity method for Arrhenius parameters is applied to hydrogen addition to alkenes and alkynes and the reverse beta-scission reactions, an important family of reactions in thermal processes based on radical chemistry. A consistent set of group additive values for 33 groups is derived to calculate the activation energy and pre-exponential factor for a broad range of hydrogen addition reactions. The group additive values are determined from CBS-QB3 ab-initio-calculated rate coefficients. A mean factor of deviation of only two between CBS-QB3 and experimental rate coefficients for seven reactions in the range 300-1000 K is found. Tunneling coefficients for these reactions were found to be significant below 400 K and a correlation accounting for tunneling is presented. Application of the obtained group additive values to predict the kinetics for a set of 11 additions and beta-scissions yields rate coefficients within a factor of 3.5 of the CBS-QB3 results except for two beta-scissions with severe steric effects. The mean factor of deviation with respect to experimental rate coefficients of 2.0 shows that the group additive method with tunneling corrections can accurately predict the kinetics and is at least as accurate as the most commonly used density functional methods. The constructed group additive model can hence be applied to predict the kinetics of hydrogen radical additions for a broad range of unsaturated compounds.

  15. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics.

    PubMed

    Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang

    2016-01-08

    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  16. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics

    PubMed Central

    Tsai, Song-Ling; Liu, Yi-Kai; Pan, Heng; Liu, Chien-Hung; Lee, Ming-Tsang

    2016-01-01

    The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  17. Adiabatic channel capture theory applied to cold atom-molecule reactions: Li + CaH \\to LiH + Ca at 1K

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur V.; Buchachenko, Alexei A.

    2015-03-01

    We use quantum and classical adiabatic capture theories to study the chemical reaction Li + CaH \\to LiH + Ca. Using a recently developed ab initio potential energy surface, which provides an accurate representation of long-range interactions in the entrance reaction channel, we calculate the adiabatic channel potentials by diagonalizing the Li-CaH Hamiltonian as a function of the atom-molecule separation. The resulting adiabatic channel potentials are used to calculate both the classical and quantum capture probabilities as a function of collision energy, as well as the temperature dependencies of the partial and total reaction rates. The calculated reaction rate agrees well with the measured value at 1 K (V Singh et al 2012 Phys. Rev. Lett. 108 203201), suggesting that the title reaction proceeds without an activation barrier. The calculated classical adiabatic capture rate agrees well with the quantum result in the multiple-partial-wave regime of relevance to the experiment. Significant differences are found only in the ultracold limit (T\\lt 1 mK), demonstrating that adiabatic capture theories can predict the reaction rates with nearly quantitative accuracy in the multiple-partial-wave regime.

  18. Simultaneous analysis of the elastic scattering and breakup channel for the reaction 11Li+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Fernández-García, J. P.; Cubero, M.; Acosta, L.; Alcorta, M.; Alvarez, M. A. G.; Borge, M. J. G.; Buchmann, L.; Diget, C. A.; Falou, H. A.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gómez-Camacho, J.; Kanungo, R.; Lay, J. A.; Madurga, M.; Martel, I.; Moro, A. M.; Mukha, I.; Nilsson, T.; Rodríguez-Gallardo, M.; Sánchez-Benítez, A. M.; Shotter, A.; Tengblad, O.; Walden, P.

    2015-10-01

    We present a detailed analysis of the elastic scattering and breakup channel for the reaction of 11Li on 208Pb at incident laboratory energies of 24.3 and 29.8 MeV, measured at the radioactive ion beam facility of TRIUMF, in Vancouver, Canada. A large yield of 9Li fragments was detected by four charged particle telescopes in a wide angular range. The experimental angular and energy distributions of these 9Li fragments have been compared to coupled-reaction-channel and continuum-discretized coupled-channel calculations. The large production of 9Li fragments at small angles can be explained by considering a direct breakup mechanism, while at medium-large angles a competition between direct breakup and neutron transfer to the continuum of the 208Pb target was observed.

  19. Mixed N-Heterocyclic Carbene-Bis(oxazolinyl)borato Rhodium and Iridium Complexes in Photochemical and Thermal Oxidative Addition Reactions

    SciTech Connect

    Xu, Songchen; Manna, Kuntal; Ellern, Arkady; Sadow, Aaron D

    2014-12-08

    In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopic and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis

  20. Bifunctional heterogeneous catalysis of silica-alumina-supported tertiary amines with controlled acid-base interactions for efficient 1,4-addition reactions.

    PubMed

    Motokura, Ken; Tanaka, Satoka; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-10-19

    We report the first tunable bifunctional surface of silica-alumina-supported tertiary amines (SA-NEt(2)) active for catalytic 1,4-addition reactions of nitroalkanes and thiols to electron-deficient alkenes. The 1,4-addition reaction of nitroalkanes to electron-deficient alkenes is one of the most useful carbon-carbon bond-forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA-supported amine (SA-NEt(2)) catalyst enabled selective formation of a double-alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA-NEt(2) catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA-NEt(2) catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron-deficient alkenes. The solid-state magic-angle spinning (MAS) NMR spectroscopic analyses, including variable-contact-time (13)C cross-polarization (CP)/MAS NMR spectroscopy, revealed that acid-base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid-base interactions.

  1. Nucleophilic addition to olefins. 19. Abnormally high intrinsic barrier in the reaction of piperidine and morpholine with benzylideneacetylacetone

    SciTech Connect

    Bernasconi, C.F.; Kanavarioti, A.

    1986-11-26

    The title reaction leads to the formation of the zwitterionic Michael adduct T/sup +/-/ (PhCH(R/sub 2/NH/sup +/)C(COCH/sub 3/)/sub 2//sup -/) which is in rapid acid-base equilibrium with its anionic form T/sup -/ (PhCH(R/sub 2/N)C(COCH/sub 3/)/sub 2//sup -/). Rate (K/sub 1/, k/sub -1/) and equilibrium constants (K/sub 1/) for nucleophilic addition and the pK/sub a/ of the T/sup +/-/-adducts were determined in 50% Me/sub 2/SO-50% water at 20/sup 0/C. From an interpolation of the rate constants to K/sub 1/ = 1 an intrinsic rate constant, log k/sub 0/ = 0.3, was determined. This value deviates negatively by approximately 2.5 log units from a correlation of log k/sub 0/ for amine addition to five olefins of the type PhCH=CXY, with log k/sub 0/ for the deprotonation of the corresponding carbon acids CH/sub 2/XY. Two major factors are believed to contribute to this depressed intrinsic rate constant or enhanced intrinsic barrier: (1) steric inhibition of resonance in T/sup +/-/ with the steric effect developing ahead of C-N bond formation (this conclusion is supported by an X-ray crystallographic study of p-methoxybenzylideneacetylacetone which shows that steric hindrance to optimal ..pi..-overlap in the adduct T/sup+/-/ is already present in the substrate); (2) intramolecular hydrogen bonding in T/sup +/-/, which is inferred from abnormally high pK/sub a/ values and whose development lags behind C-N bond formation. These effects are shown to be manifestations of the Principle of Nonperfect Synchronization.

  2. Facile preparation and biological imaging of luminescent polymeric nanoprobes with aggregation-induced emission characteristics through Michael addition reaction.

    PubMed

    Lv, Qiulan; Wang, Ke; Xu, Dazhuang; Liu, Meiying; Wan, Qing; Huang, Hongye; Liang, Shangdong; Zhang, Xiaoyong; Wei, Yen

    2016-09-01

    Water dispersion aggregation-induced emission (AIE) dyes based nanomaterials have recently attracted increasing attention in the biomedical fields because of their unique optical properties, outstanding performance as imaging and therapeutic agents. The methods to conjugate hydrophilic polymers with AIE dyes to solve the hydrophobic nature of AIE dyes and makeS them widely used in biomedicine, which have been extensively explored and paid great effort previously. Although great advance has been made in the fabrication and biomedical applications of AIE-active polymeric nanoprobes, facile and efficient strategies for fabrication of biodegradable AIE-active nanoprobes are still high desirable. In this work, amphiphilic biodegradable fluorescent organic nanoparticles (PLL-TPE-O-E FONs) have been fabricated for the first time by conjugation of AIE dye tetraphenylethene acrylate (TPE-O-E) with Poly-l-Lysine (PLL) through a facile one-step Michael addition reaction, which was carried out under rather mild conditions, included air atmosphere, near room temperature and absent of metal catalysts or hazardous reagents. Due to the unique AIE properties, these amphiphilic copolymers tend to self-assemble into high luminescent water dispersible nanoparticles with size range from 400 to 600nm. Laser scanning microscope and cytotoxicity results revealed that PLL-TPE-O-E FONs can be internalized into cytoplasm with negative cytotoxicity, which implied that PLL-TPE-O-E FONs are promising for biological applications.

  3. Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions.

    PubMed

    Pizzolato, Stefano F; Collins, Beatrice S L; van Leeuwen, Thomas; Feringa, Ben L

    2016-11-23

    The emerging field of artificial photoswitchable catalysis has recently shown striking examples of functional light-responsive systems allowing for dynamic control of activity and selectivity in organocatalysis and metal-catalysed transformations. While our group has already disclosed systems featuring first generation molecular motors as the switchable central core, a design based on second generation molecular motors is lacking. Here, the syntheses of two bifunctionalised molecular switches based on a photoresponsive tetrasubstituted alkene core are reported. They feature a thiourea substituent as hydrogen-donor moiety in the upper half and a basic dimethylamine group in the lower half. This combination of functional groups offers the possibility for application of these molecules in photoswitchable catalytic processes. The light-responsive central cores were synthesized by a Barton-Kellogg coupling of the prefunctionalized upper and lower halves. Derivatization using Buchwald-Hartwig amination and subsequent introduction of the thiourea substituent afforded the target compounds. Control of catalytic activity in the Michael addition reaction between (E)-3-bromo-β-nitrostyrene and 2,4-pentanedione is achieved upon irradiation of stable-(E) and stable-(Z) isomers of the bifunctional catalyst 1. Both isomers display a decrease in catalytic activity upon irradiation to the metastable state, providing systems with the potential to be applied as ON/OFF catalytic photoswitches.

  4. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-06

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures.

  5. Investigation of the O+allyl addition/elimination reaction pathways from the OCH{sub 2}CHCH{sub 2} radical intermediate

    SciTech Connect

    FitzPatrick, Benjamin L.; Lau, K.-C.; Butler, Laurie J.; Lee, S.-H.; Lin, Jim Jr-Min

    2008-08-28

    These experiments study the preparation of and product channels resulting from OCH{sub 2}CHCH{sub 2}, a key radical intermediate in the O+allyl bimolecular reaction. The data include velocity map imaging and molecular beam scattering results to probe the photolytic generation of the radical intermediate and the subsequent pathways by which the radicals access the energetically allowed product channels of the bimolecular reaction. The photodissociation of epichlorohydrin at 193.3 nm produces chlorine atoms and c-OCH{sub 2}CHCH{sub 2} radicals; these undergo a facile ring opening to the OCH{sub 2}CHCH{sub 2} radical intermediate. State-selective resonance-enhanced multiphoton ionization (REMPI) detection resolves the velocity distributions of ground and spin-orbit excited state chlorine independently, allowing for a more accurate determination of the internal energy distribution of the nascent radicals. We obtain good agreement detecting the velocity distributions of the Cl atoms with REMPI, vacuum ultraviolet (VUV) photoionization at 13.8 eV, and electron bombardment ionization; all show a bimodal distribution of recoil kinetic energies. The dominant high recoil kinetic energy feature peaks near 33 kcal/mol. To elucidate the product channels resulting from the OCH{sub 2}CHCH{sub 2} radical intermediate, the crossed laser-molecular beam experiment uses VUV photoionization and detects the velocity distribution of the possible products. The data identify the three dominant product channels as C{sub 3}H{sub 4}O (acrolein)+H, C{sub 2}H{sub 4}+HCO (formyl radical), and H{sub 2}CO (formaldehyde)+C{sub 2}H{sub 3}. A small signal from C{sub 2}H{sub 2}O (ketene) product is also detected. The measured velocity distributions and relative signal intensities at m/e=27, 28, and 29 at two photoionization energies show that the most exothermic product channel, C{sub 2}H{sub 5}+CO, does not contribute significantly to the product branching. The higher internal energy onset of the

  6. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms

    SciTech Connect

    Dietrich, F S

    2006-09-25

    This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).

  7. Theoretical and Experimental Investigation of Thermodynamics and Kinetics of Thiol-Michael Addition Reactions: A Case Study of Reversible Fluorescent Probes for Glutathione Imaging in Single Cells.

    PubMed

    Chen, Jianwei; Jiang, Xiqian; Carroll, Shaina L; Huang, Jia; Wang, Jin

    2015-12-18

    Density functional theory (DFT) was applied to study the thermodynamics and kinetics of reversible thiol-Michael addition reactions. M06-2X/6-31G(d) with the SMD solvation model can reliably predict the Gibbs free energy changes (ΔG) of thiol-Michael addition reactions with an error of less than 1 kcal·mol(-1) compared with the experimental benchmarks. Taking advantage of this computational model, the first reversible reaction-based fluorescent probe was developed that can monitor the changes in glutathione levels in single living cells.

  8. Discriminative detection of low-abundance point mutations using a PCR/ligase detection reaction/capillary gel electrophoresis method and fluorescence dual-channel monitoring.

    PubMed

    Hamada, Mariko; Shimase, Koji; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2014-04-01

    We applied a facile LIF dual-channel monitoring system recently developed and reported by our group to the polymerase chain reaction/ligase detection reaction/CGE method for detecting low-abundance point mutations present in a wild-type sequence-dominated population. Mutation discrimination limits and signaling fidelity of the analytical system were evaluated using three mutant variations in codon 12 of the K-ras oncogene that have high diagnostic value for colorectal cancer. We demonstrated the high sensitivity of the present method by detecting rare mutations present among an excess of wild-type alleles (one mutation among ~100 normal sequences). This method also simultaneously interrogated the allelic compositions of the test samples with high specificity through spectral discrimination of the dye-tagged ligase detection reaction products using the dual-channel monitoring system.

  9. Performance analysis of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing wireless system in additive white Gaussian noise and indoor multipath channel

    NASA Astrophysics Data System (ADS)

    Ranjha, Bilal; Zhou, Zhou; Kavehrad, Mohsen

    2014-08-01

    We have compared the bit error rate (BER) performance of precoding-based asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) and pulse amplitude modulated discrete multitone (PAM-DMT) optical wireless (OW) systems in additive white Gaussian noise (AWGN) and indoor multipath frequency selective channel. Simulation and analytical results show that precoding schemes such as discrete Fourier transform, discrete cosine transform, and Zadoff-Chu sequences do not affect the performance of the OW systems in the AWGN channel while they do reduce the peak-to-average power ratio (PAPR) of the OFDM output signal. However, in a multipath indoor channel, using zero forcing frequency domain equalization precoding-based systems give better BER performance than their conventional counterparts. With additional clipping to further reduce the PAPR, precoding-based systems also show better BER performance compared to nonprecoded systems when clipped relative to the peak of nonprecoded systems. Therefore, precoding-based ACO-OFDM and PAM-DMT systems offer better BER performance, zero signaling overhead, and low PAPR compared to conventional systems.

  10. Decay of {sup 246}Bk* formed in similar entrance channel reactions of {sup 11}B+{sup 235}U and {sup 14}N+{sup 232}Th at low energies using the dynamical cluster-decay model

    SciTech Connect

    Singh, BirBikram; Sharma, Manoj K.; Gupta, Raj K.

    2008-05-15

    The decay of the {sup 246}Bk* nucleus, formed in entrance channel reactions {sup 11}B+{sup 235}U and {sup 14}N+{sup 232}Th at different incident energies, is studied by using the dynamical cluster-decay model (DCM) extended to include the deformations and orientations of nuclei. The main decay mode here is fission. The other (weaker) decay channels are the light particles evaporation (A{<=}4) and intermediate mass fragments (5{<=}A{<=}20). All decay products are calculated as emissions of preformed clusters through the interaction barriers. The calculated fission cross sections {sigma}{sub fiss}, taken as a sum of the energetically favored symmetric and near symmetric fragments (A{sub CN}/2{+-}7 and A=106-110 plus complementary fragments) show an excellent agreement with experimental data at all experimental incident c.m. energies for both reactions, except for the top three energies in the case of the {sup 11}B+{sup 235}U reaction. The disagreement between the DCM calculations and data at higher incident c.m. energies for the {sup 11}B+{sup 235}U entrance channel is associated with the presence of additional effects of noncompound, quasifission (qf) components, in contradiction with the measured anisotropy effects which indicate the other entrance channel {sup 14}N+{sup 232}Th to contain the noncompound nucleus contribution. The prediction of two fission windows, the symmetric fission (SF) and near symmetric or heavy mass fragments (HMFs), suggests the presence of a fine structure of fission fragments, which also need an experimental verification. The only parameter of the model is the neck length parameter {delta}R whose value is shown to depend strongly on limiting angular momentum, which in turn depends on the use of sticking or nonsticking moment of inertia for angular momentum effects.

  11. Decay of Bk246* formed in similar entrance channel reactions of B11+U235 and N14+Th232 at low energies using the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Singh, Birbikram; Sharma, Manoj K.; Gupta, Raj K.

    2008-05-01

    The decay of the Bk246* nucleus, formed in entrance channel reactions B11+U235 and N14+Th232 at different incident energies, is studied by using the dynamical cluster-decay model (DCM) extended to include the deformations and orientations of nuclei. The main decay mode here is fission. The other (weaker) decay channels are the light particles evaporation (A⩽4) and intermediate mass fragments (5⩽A⩽20). All decay products are calculated as emissions of preformed clusters through the interaction barriers. The calculated fission cross sections σfiss, taken as a sum of the energetically favored symmetric and near symmetric fragments (ACN/2±7 and A=106-110 plus complementary fragments) show an excellent agreement with experimental data at all experimental incident c.m. energies for both reactions, except for the top three energies in the case of the B11+U235 reaction. The disagreement between the DCM calculations and data at higher incident c.m. energies for the B11+U235 entrance channel is associated with the presence of additional effects of noncompound, quasifission (qf) components, in contradiction with the measured anisotropy effects which indicate the other entrance channel N14+Th232 to contain the noncompound nucleus contribution. The prediction of two fission windows, the symmetric fission (SF) and near symmetric or heavy mass fragments (HMFs), suggests the presence of a fine structure of fission fragments, which also need an experimental verification. The only parameter of the model is the neck length parameter ▵R whose value is shown to depend strongly on limiting angular momentum, which in turn depends on the use of sticking or nonsticking moment of inertia for angular momentum effects.

  12. Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the highest priority areas for improvement in aquaculture is the development of dietary additives and formulations which provide for complete mucosal health and protection of fish raised in intensive systems. Far greater attention has been paid to dietary impact on gut health than to protecti...

  13. Lewis acid-base 1,2-addition reactions: synthesis of pyrylium borates from en-ynoate precursors.

    PubMed

    Wilkins, Lewis C; Hamilton, Hugh B; Kariuki, Benson M; Hashmi, A Stephen K; Hansmann, Max M; Melen, Rebecca L

    2016-04-14

    Treatment of methyl (Z)-2-alken-4-ynoates with the strong Lewis acid tris(pentafluorophenyl) borane, B(C6F5)3, yield substituted zwitterionic pyrylium borate species via an intramolecular 6-endo-dig cyclisation reaction.

  14. Surfactant addition and alternating current electrophoretic oscillation during size fractionation of nanoparticles in channels with two or three different height segments.

    PubMed

    Xuan, Jie; Hamblin, Mark N; Stout, John M; Tolley, H Dennis; Maynes, R Daniel; Woolley, Adam T; Hawkins, Aaron R; Lee, Milton L

    2011-12-16

    An array of parallel planar nanochannels containing two or three segments with varying inner heights was fabricated and used for size fractionation of inorganic and biological nanoparticles. A liquid suspension of the particles was simply drawn through the nanochannels via capillary action. Using fluorescently labeled 30 nm polyacrylonitrile beads, different trapping behaviors were compared using nanochannels with 200-45 nm and 208-54-30 nm height segments. Addition of sodium dodecyl sulfate (SDS) surfactant to the liquid suspension and application of an AC electric field were shown to aid in the prevention of channel clogging. After initial particle trapping at the segment interfaces, significant particle redistribution occurred when applying a sinusoidal 8V peak-to-peak oscillating voltage with a frequency of 150 Hz and DC offset of 4V. Using the 208-54-30 nm channels, 30 nm hepatitis B virus (HBV) capsids were divided into three fractions. When the AC electric field was applied to this trapped sample, all of the virus particles passed through the interfaces and accumulated at the channel ends.

  15. Study of sensory-code space to assess the possibility of synthesis of additional sensory channels in a human-machine system

    NASA Astrophysics Data System (ADS)

    Antonets, V. A.; Zeveke, A. V.; Malysheva, G. I.; Polevaya, S. A.

    1994-09-01

    The attributes of the afferent flow of the cat analyzer under heat, cold, tactile, and pain stimulation are studied. It is shown the flows formed can be described by an attribute vector. It is found that unoccupied regions exist in the vector space of the descriptions of physiologically permissible codes, i.e., there is an excess of code space that could serve for the synthesis of additional channels, including those not inherent in human modalities. In many problems of engineering and medicine, this could be the only way to restore or compensate for lost functions of analyzing systems, such as vision and hearing.

  16. Recombinant human ZP3-induced sperm acrosome reaction: evidence for the involvement of T- and L-type voltage-gated calcium channels.

    PubMed

    José, Omar; Hernández-Hernández, Oscar; Chirinos, Mayel; González-González, María Elena; Larrea, Fernando; Almanza, Angélica; Felix, Ricardo; Darszon, Alberto; Treviño, Claudia L

    2010-05-14

    For successful fertilization mammalian spermatozoa must undergo the acrosome reaction (AR), an exocytotic event that allows this cell to penetrate the outer layer of the oocyte, the zona pellucida (ZP). Four glycoproteins (ZP1-ZP4) compose the human ZP, being ZP3 the physiological inductor of the AR. This process requires changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) involving not fully understood mechanisms. Even in mouse sperm, the pharmacologically documented participation of voltage-gated Ca(2+) (Ca(V)) channels and store-operated channels (SOCs) in the ZP-induced AR is being debated. The situation in human sperm is even less clear due to the limited availability of human ZP. Here, we used recombinant human ZP3 (rhZP3) produced in baculovirus-infected Sf9 cells to investigate the involvement of Ca(V) channels in the human sperm AR. Our findings showed that Ni(2+) and mibefradil at concentrations that block T-type or Ca(V)3 channels, and nimodipine and diltiazem that block L-type or Ca(V)1 channels, significantly inhibited the rhZP3-initiated AR. On the other hand, the AR was insensitive to concentrations of omega-Agatoxin IVA, omega-Conotoxin GVIA and SNX-482 that block P/Q, N and R-type channels, respectively (Ca(V)2 channels). Our overall findings suggest that Ca(V)1 and Ca(V)3 channels participate in human sperm AR. Consistent with this, we detected in human sperm transcripts for the Ca(V)1 auxiliary subunits, alpha(2)delta, beta(1), beta(2) and beta(4), but not the neuronal specific isoforms beta(3) and gamma(2).

  17. Effect of Electric Field on Dispersion of a Solute in an MHD Flow through a Vertical Channel With and Without Chemical Reaction

    NASA Astrophysics Data System (ADS)

    Umavathi, J. C.; Kumar, J. P.; Gorla, R. S. R.; Gireesha, B. J.

    2016-08-01

    The longitudinal dispersion of a solute between two parallel plates filled with two immiscible electrically conducting fluids is analyzed using Taylor's model. The fluids in both the regions are incompressible and the transport properties are assumed to be constant. The channel walls are assumed to be electrically insulating. Separate solutions are matched at the interface using suitable matching conditions. The flow is accompanied by an irreversible first-order chemical reaction. The effects of the viscosity ratio, pressure gradient and Hartman number on the effective Taylor dispersion coefficient and volumetric flow rate for an open and short circuit are drawn in the absence and in the presence of chemical reactions. As the Hartman number increases the effective Taylor diffusion coefficient decreases for both open and short circuits. When the magnetic field remains constant, the numerical results show that for homogeneous and heterogeneous reactions, the effective Taylor diffusion coefficient decreases with an increase in the reaction rate constant for both open and short circuits.

  18. Squaramide-catalysed asymmetric cascade aza-Michael/Michael addition reaction for the synthesis of chiral trisubstituted pyrrolidines.

    PubMed

    Zhao, Bo-Liang; Lin, Ye; Yan, Hao-Hao; Du, Da-Ming

    2015-12-14

    A bifunctional squaramide catalysed aza-Michael/Michael cascade reaction between nitroalkenes and tosylaminomethyl enones or enoates has been developed. This organocatalytic cascade reaction provides easy access to highly functionalized chiral pyrrolidines with a broad substrate scope, giving the desired products in good yields (up to 99%) with good diastereoselectivities (up to 91 : 9 dr) and excellent enantioselectivities (up to >99% ee) under mild conditions. This protocol provides a straightforward entry to highly functionalized chiral trisubstituted pyrrolidine derivatives from simple starting materials.

  19. Reversal of stereoselectivity in the Cu-catalyzed conjugate addition reaction of dialkylzinc to cyclic enone in the presence of a chiral azolium compound.

    PubMed

    Shibata, Naoatsu; Okamoto, Masaki; Yamamoto, Yuko; Sakaguchi, Satoshi

    2010-08-20

    Reversal of enantioselectivity in a Cu-catalyzed asymmetric conjugate addition reaction of dialkylzinc to cyclic enone with use of the same chiral ligand was successfully achieved. The reaction of 2-cyclohexen-1-one (30) with Et(2)Zn catalyzed by Cu(OTf)(2) in the presence of an azolium salt derived from a chiral beta-amino alcohol gave (S)-3-ethylcyclohexanone (31) in good enantioselectivity. Among a series of chiral azolium compounds examined, the benzimidazolium salt (10) having both a tert-butyl group at the stereogenic center and a benzyl substituent at the azolium ring was found to be the best choice of ligand in the Cu(OTf)(2)-catalyzed reaction. Good enantioselectivity was observed when the reaction was conducted by employing a benzimidazolium derivative rather than an imidazolium derivative. The influence of the substituent at the azolium ring on the stereoselectivity of the reaction was also examined. In addition, from the results of the reaction catalyzed by Cu(OTf)(2) combined with an azolium compound derived from (S)-leucine methyl ester, it was found that the hydroxy side chain in the chiral ligand is probably crucial for the enantiocontrol of the conjugate addition reaction. On the other hand, it was discovered from a screening test of copper species that the reversal of enantioselectivity was realized by allowing 30 to react with Et(2)Zn in the presence of Cu(acac)(2) combined with the same ligand precursor to afford (R)-31 as a major product. The influence of the stereodirecting group at the chiral ligand on the stereoselectivity in the Cu(acac)(2)-catalyzed reaction differed completely from that observed in the Cu(OTf)(2)-catalyzed reaction. Reaction with a cyclic enone consisting of a seven-membered ring such as 2-cyclohepten-1-one (40) resulted in increasing the enantioselectivity of the reaction. Thus, treatment of 40 with Et(2)Zn catalyzed by Cu(OTf)(2) combined with a benzimidazolium salt produced the corresponding (S)-conjugate adduct in a

  20. Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model.

    PubMed

    Ivanov, M F; Kiverin, A D; Liberman, M A

    2011-05-01

    The features of flame acceleration in channels with wall friction and the deflagration to detonation transition (DDT) are investigated theoretically and using high resolution numerical simulations of two-dimensional reactive Navier-Stokes equations, including the effects of viscosity, thermal conduction, molecular diffusion, and a detailed chemical reaction mechanism for hydrogen-oxygen gaseous mixture. It is shown that in a wide channel, from the beginning, the flame velocity increases exponentially for a short time and then flame acceleration decreases, ending up with the abrupt increase of the combustion wave velocity and the actual transition to detonation. In a thin channel with a width smaller than the critical value, the exponential increase of the flame velocity is not bounded and ends up with the transition to detonation. The transition to detonation occurs due to the pressure pulse, which is formed at the tip of the accelerating flame. The amplitude of the pressure pulse grows exponentially due to a positive feedback coupling between the pressure pulse and the heat released in the reaction. Finally, large amplitude pressure pulse steepens into a strong shock coupled with the reaction zone forming the overdriven detonation. The evolution from a temperature gradient to a detonation via the Zeldovich gradient mechanism and its applicability to the deflagration-to-detonation transition is investigated for combustible materials whose chemistry is governed by chain-branching kinetics. The results of the high resolution simulations are fully consistent with experimental observations of the flame acceleration and DDT.

  1. Irritating channels: the case of TRPA1

    PubMed Central

    Nilius, Bernd; Prenen, Jean; Owsianik, Grzegorz

    2011-01-01

    Transient receptor potential (TRP) channels have been extensively studied over the past years. Yet, in most cases, the gating mechanisms of these polymodal cation channels still remain a puzzle. Using the nociceptive channel TRPA1 as an example, we discuss the role of dynamic regulation of the pore size (pore dilatation) on channel gating. Additionally, we critically revise current knowledge of the role of intracellular domains, such as ankyrin repeats and EF hand motifs, in channel activation and function. Finally, we assess some problems inherent to activation of TRPA1 by the reaction of electrophilic compounds with the nucleophilic thiol sink of N-terminal reactive cysteines. PMID:21078588

  2. Reaction between HN and SN: a possible channel for the interstellar formation of N2 and SH in the cold interstellar clouds.

    PubMed

    Bhasi, Priya; Nhlabatsi, Zanele P; Sitha, Sanyasi

    2015-12-28

    Using computational calculations the potential energy surface (PES) of the reaction between NH and NS has been analysed. The PES of the reaction shows the formation of two very stable species, HNSN and HNNS. Out of these two, HNNS which has the signature N-N linkage was found to be the most stable species in the PES. In view of the highly exothermic nature of the reaction surface, it has been proposed that these two species can possibly be detected in the interstellar space. For the first time it has also been shown that the reaction between the NH and NS can lead to the possible formation of N2via the isomer HNNS, and how the effect of tunnelling can make this reaction very much feasible, even under the extremely low temperature conditions prevailing in the interstellar medium. Based on the already reported results, a similar kind of behaviour for the NH + NO reaction surface has also been proposed. These dissociation reactions leading to the formation of N2 can be considered as potential secondary contributing channels while accounting for the total estimates of N2 in the interstellar medium, and thus HNNS as well as HNNO can be considered as stable reservoir molecules for interstellar N2. Besides the formation of N2, the formation of another astronomically important radical, SH in the cold interstellar clouds, has also been proposed.

  3. Measurement of [Formula: see text] production with additional jet activity, including [Formula: see text] quark jets, in the dilepton decay channel using pp collisions at [Formula: see text].

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Knünz, V; König, A; Krammer, M; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schieck, J; Schöfbeck, R; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Keaveney, J; Lowette, S; Moreels, L; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Van Parijs, I; Barria, P; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Fasanella, G; Favart, L; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Perniè, L; Randle-Conde, A; Reis, T; Seva, T; Vander Velde, C; Yonamine, R; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Crucy, S; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Ocampo Rios, A A; Poyraz, D; Ryckbosch, D; Salva, S; Sigamani, M; Strobbe, N; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Mertens, A; Musich, M; Nuttens, C; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Beliy, N; Hammad, G H; Júnior, W L Aldá; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hamer, M; Hensel, C; Mora Herrera, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; De Souza Santos, A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Cheng, T; Du, R; Jiang, C H; Plestina, R; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Bodlak, M; Finger, M; Finger, M; El Sawy, M; El-Khateeb, E; Elkafrawy, T; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Dahms, T; Davignon, O; Filipovic, N; Florent, A; Granier de Cassagnac, R; Lisniak, S; Mastrolorenzo, L; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Lomidze, D; Autermann, C; Beranek, S; Edelhoff, M; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schulte, J F; Verlage, T; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Bartosik, N; Behnke, O; Behrens, U; Bell, A J; Borras, K; Burgmeier, A; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dolinska, G; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Gallo, E; Garcia, J Garay; Geiser, A; Gizhko, A; Gunnellini, P; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Trippkewitz, K D; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Schwandt, J; Sola, V; Stadie, H; Steinbrück, G; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Akbiyik, M; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Descroix, A; Dierlamm, A; Fink, S; Frensch, F; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Sieber, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Psallidas, A; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Strologas, J; Bencze, G; Hajdu, C; Hazi, A; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Mal, P; Mandal, K; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, S; Chatterjee, K; Dey, S; Dutta, S; Jain, Sa; Majumdar, N; Modak, A; Mondal, K; Mukherjee, S; Mukhopadhyay, S; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Abdulsalam, A; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Sharma, S; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Miniello, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Verwilligen, P; Abbiendi, G; Battilana, C; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Primavera, F; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Cappello, G; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Bellato, M; Benato, L; Bisello, D; Boletti, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Gonella, F; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Zanetti, A; Kropivnitskaya, T A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Sakharov, A; Son, D C; Brochero Cifuentes, J A; Kim, H; Kim, T J; Song, S; Choi, S; Go, Y; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lee, S; Park, S K; Roh, Y; Yoo, H D; Choi, M; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Wan Abdullah, W A T; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Da Cruz E Silva, C Beir Ao; Di Francesco, A; Faccioli, P; Parracho, P G Ferreira; Gallinaro, M; Leonardo, N; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, L; Safronov, G; Spiridonov, A; Vlasov, E; Zhokin, A; Bylinkin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Baskakov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Klyukhin, V; Kodolova, O; Korneeva, N; Lokhtin, I; Myagkov, I; Obraztsov, S; Perfilov, M; Petrushanko, S; Savrin, V; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Ramos, J P Fernández; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Yzquierdo, A Pérez-Calero; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Palencia Cortezon, E; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; De Castro Manzano, P; Duarte Campderros, J; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Berruti, G M; Bloch, P; Bocci, A; Bonato, A; Botta, C; Breuker, H; Camporesi, T; Castello, R; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Dünser, M; Dupont, N; Elliott-Peisert, A; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Kortelainen, M J; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Nemallapudi, M V; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Piparo, D; Racz, A; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrozzi, L; Quittnat, M; Rossini, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Robmann, P; Ronga, F J; Salerno, D; Yang, Y; Cardaci, M; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Yu, S S; Kumar, Arun; Bartek, R; Chang, P; Chang, Y H; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Grundler, U; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Petrakou, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Kovitanggoon, K; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Cerci, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Tali, B; Topakli, H; Vergili, M; Zorbilmez, C; Akin, I V; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Cripps, N; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Elwood, A; Ferguson, W; Fulcher, J; Futyan, D; Hall, G; Iles, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Scarborough, T; Wu, Z; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Fantasia, C; Gastler, D; Lawson, P; Rankin, D; Richardson, C; Rohlf, J; St John, J; Sulak, L; Zou, D; Alimena, J; Berry, E; Bhattacharya, S; Cutts, D; Dhingra, N; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Syarif, R; Breedon, R; Breto, G; De La Barca Sanchez, M Calderon; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Saltzberg, D; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Paneva, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Negrete, M Olmedo; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Welke, C; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Incandela, J; Mccoll, N; Mullin, S D; Mullin, S D; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Pierini, M; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Nauenberg, U; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Soffi, L; Sun, W; Tan, S M; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jindariani, S; Johnson, M; Joshi, U; Jung, A W; Klima, B; Kreis, B; Kwan, S; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Weber, H A; Whitbeck, A; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carnes, A; Carver, M; Curry, D; Das, S; Di Giovanni, G P; Field, R D; Furic, I K; Gleyzer, S V; Hugon, J; Konigsberg, J; Korytov, A; Low, J F; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Rossin, R; Shchutska, L; Snowball, M; Sperka, D; Terentyev, N; Thomas, L; Wang, J; Wang, S; Yelton, J; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, J R; Ackert, A; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, L D; Silkworth, C; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Anderson, I; Barnett, B A; Blumenfeld, B; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Martin, C; Osherson, M; Roskes, J; Sady, A; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Xiao, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Majumder, D; Majumder, D; Malek, M; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bierwagen, K; Brandt, S; Bierwagen, K; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Ralph, D; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Keller, J; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Ratnikov, F; Siado, J E; Snow, G R; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Trovato, M; Velasco, M; Brinkerhoff, A; Dev, N; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Lynch, S; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Pearson, T; Planer, M; Reinsvold, A; Ruchti, R; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Ji, W; Kotov, K; Ling, T Y; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Saka, H; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barnes, V E; Benedetti, D; Bortoletto, D; Gutay, L; Jha, M K; Jones, M; Jung, K; Miller, D H; Neumeister, N; Primavera, F; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Galanti, M; Galanti, M; Garcia-Bellido, A; Han, J; Harel, A; Hindrichs, O; Hindrichs, O; Khukhunaishvili, A; Petrillo, G; Tan, P; Verzetti, M; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Lath, A; Nash, K; Panwalkar, S; Park, M; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Riley, G; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Dildick, S; Eusebi, R; Gilmore, J; Kamon, T; Krutelyov, V; Krutelyov, V; Mueller, R; Osipenkov, I; Pakhotin, Y; Patel, R; Patel, R; Perloff, A; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Mao, Y; Melo, A; Ni, H; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Wood, J; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Sarangi, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Woods, N; Collaboration, Authorinst The Cms

    2016-01-01

    Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

  4. Quantum-Chemical Study of the Discrimination against dNTP in the Nucleotide Addition Reaction in the Active Site of RNA Polymerase II.

    PubMed

    Roßbach, Sven; Ochsenfeld, Christian

    2017-04-11

    Eukaryotic RNA polymerase II catalyzes the transcription of DNA into mRNA very efficiently and with an extremely low error rate with regard to matching base and sugar moiety. Despite its importance, little is known about how it discriminates against 2'-deoxy NTPs during the chemical reaction. To investigate the differences in the addition reactions of ATP and dATP, we used FF-MD and QM/MM calculations within a nudged elastic band approach, which allowed us to find the energetically accessible reaction coordinates. By converging the QM size, we found that 800 QM atoms are necessary to properly describe the active site. We show how the absence of a single hydrogen bond between the enzyme and the NTP 2'-OH group leads to an increase of the reaction barrier by 16 kcal/mol and therefore conclude that Arg446 is the key residue in the discrimination process.

  5. Non-innocent additives in a palladium(II)-catalyzed C-H bond activation reaction: insights into multimetallic active catalysts.

    PubMed

    Anand, Megha; Sunoj, Raghavan B; Schaefer, Henry F

    2014-04-16

    The role of a widely employed additive (AgOAc) in a palladium acetate-catalyzed ortho-C-H bond activation reaction has been examined using the M06 density functional theory. A new hetero-bimetallic Pd-(μ-OAc)3-Ag is identified as the most likely active species. This finding could have far-reaching implications with respect to the notion of the active species in palladium catalysis in the presence of other metal salt additives.

  6. An Experimental and Computational Approach to Defining Structure/Reactivity Relationships for Intramolecular Addition Reactions to Bicyclic Epoxonium Ions

    PubMed Central

    Wan, Shuangyi; Gunaydin, Hakan; Houk, K. N.; Floreancig, Paul E.

    2008-01-01

    In this manuscript we report that oxidative cleavage reactions can be used to form oxocarbenium ions that react with pendent epoxides to form bicyclic epoxonium ions as an entry to the formation of cyclic oligoether compounds. Bicyclic epoxonium ion structure was shown to have a dramatic impact on the ratio of exo- to endo-cyclization reactions, with bicyclo[4.1.0] intermediates showing a strong preference for endo-closures and bicyclo[3.1.0] intermediates showing a preference for exo-closures. Computational studies on the structures and energetics of the transition states using the B3LYP/6-31G(d) method provide substantial insight into the origins of this selectivity. PMID:17547399

  7. Hydrogen bonding mediated enantioselective organocatalysis in brine: significant rate acceleration and enhanced stereoselectivity in enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins.

    PubMed

    Bae, Han Yong; Some, Surajit; Oh, Joong Suk; Lee, Yong Seop; Song, Choong Eui

    2011-09-14

    Brine provides remarkable rate acceleration and a higher level of stereoselectivity over organic solvents, due to the hydrophobic hydration effect, in the enantioselective Michael addition reactions of 1,3-dicarbonyls to β-nitroolefins using chiral H-donors as organocatalysts.

  8. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  9. N-Heterocyclic Carbene-Catalyzed Diastereoselective Vinylogous Michael Addition Reaction of γ-Substituted Deconjugated Butenolides.

    PubMed

    Guo, Hao; Xing, Fen; Du, Guang-Fen; Huang, Kuo-Wei; Dai, Bin; He, Lin

    2015-12-18

    An efficient N-heterocyclic carbene (NHC)-catalyzed vinylogous Michael addition of deconjugated butenolides was developed. In the presence of 5 mol % of the NHC catalyst, both γ-alkyl- and aryl-substituted deconjugated butenolides undergo vinylogous Michael addition with various α, β-unsaturated ketones, esters, or nitriles to afford γ,γ-disubstituted butenolides containing adjacent quaternary and tertiary carbon centers in good to excellent yields with excellent diastereoselectivities. In this process, the free carbene is assumed to act as a strong Brønsted base to promote the conjugate addition.

  10. Theoretical Study of Addition Reactions of L4M(M = Rh, Ir) and L2M(M = Pd, Pt) to Li(+)@C60.

    PubMed

    Yang, Ming-Chung; Sharma, Akhilesh K; Sameera, W M C; Morokuma, Keiji; Su, Ming-Der

    2017-04-06

    The addition reaction of M(Cl)(CO)(PPh3)2 (M = Rh, Ir) and M(PPh3)2 (M = Pd, Pt) fragments with X@C60 (X = 0, Li(+)) were characterized by density functional theory (DFT) and the artificial force-induced reaction (AFIR) method. The calculated free energy profiles suggested that the η(2)[6:6]-addition is the most favorable reaction, which is consistent with the experimental observations. In the presence of Li(+) ion, the reaction is highly exothermic, leading to η(2)[6:6] product of L4IrLi(+)@C60. In contrast, an endothermic reaction was observed in the absence of a Li(+) ion. The encapsulated Li(+) ion can enhance the thermodynamic stability of the η(2)[6:6] product. The energy decomposition analysis showed that the interaction between metal fragment and X@C60 fragment is the key for the thermodynamic stability. Among the group IA and IIA metal cations, Be(2+) encapsulation is the best candidate for the development of new fullerene-transition metal complexes, which will be useful for future potential applications such as solar cells, catalysts, and electronic devices.

  11. Radical-chain oxidative addition mechanism for the reaction of an [Re(CO)5]- anion with α-bromostilbene.

    PubMed

    Sazonov, Petr K; Ptushkin, Dmitry S; Khrustalev, Victor N; Kolotyrkina, Natal'ya G; Beletskaya, Irina P

    2013-03-28

    E-α-Bromostilbene spontaneously reacts with Na[Re(CO)(5)] at 22 °C in THF to give Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] and Na[Re(2)(CO)(9){Z-C(Ph)=CHPh}] as the main products. Z-α-Bromostilbene is less reactive, but gives the same products. The reaction is stimulated by visible light or a source of solvated electrons (NaK(2.8)) and can be inhibited by a quinomethide radical trap. With an excess of Na[Re(CO)(5)] one can observe the initial formation of Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] and its complete transformation into Na[Re(2)(CO)(9){Z-C(Ph)=CHPh}]. Treatment of Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] with CO almost quantitatively converts it to [Re(CO)(5){Z-C(Ph)=CHPh}], the structure of which is established by a single-crystal X-ray diffraction study. A radical-chain mechanism is proposed for the reaction comprising the following steps: (a) coupling of a Vin˙ radical with Na[Re(CO)(5)], (b) CO-dissociation from the formed 19-electron radical-anion and (c) bromine atom abstraction by [Re(CO)(4){Z-C(Ph)=CHPh}]˙(-) from α-bromostilbene. The mechanism is confirmed by the formation of the same Na[ReBr(CO)(4){Z-C(Ph)=CHPh}] product in the presence of NaI. When the radical-chain process is inhibited, a slow halogenophilic reaction is observed, mainly giving the Z and E-isomers of the acylrhenate Na[Re(2)(CO)(9){C(O)C(Ph)=CHPh}].

  12. Energetics of tert-butoxyl addition reaction to norbornadiene: a method for estimating the pi-bond strength of a carbon-carbon double bond.

    PubMed

    Nunes, Paulo M; Estácio, Sílvia G; Lopes, Gustavo T; Agapito, Filipe; Santos, Rui C; Costa Cabral, Benedito J; Borges dos Santos, Rui M; Martinho Simões, José A

    2009-06-11

    The energetics of tert-butoxyl radical addition reaction to norbornadiene was investigated by time-resolved photoacoustic calorimetry (TR-PAC). The result, together with the C-O bond dissociation enthalpy (BDE) in the addition product, allowed us to calculate the pi-bond dissociation enthalpy in norbornadiene. Quantum chemistry (QC) methods were also used to obtain several enthalpies of reaction of the addition of oxygen-centered radicals to alkenes. The pi-bond dissociation enthalpies in these molecules were calculated by a procedure similar to that used in the case of norbornadiene and were compared with the pi-BDE values obtained by the method proposed by Benson. These two different approaches yield similar values for the pi-BDEs in alkenes, indicating that the addition method proposed in the present study is a valid way to derive that quantity. The influence of strain in the pi-BDEs of cyclic alkenes was investigated and allowed us to justify the difference between the pi-BDE in norbornene and norbornadiene. Finally, the thermochemistry of the addition and abstraction reactions involving these two molecules and tert-butoxyl radical was analyzed.

  13. New method of DNA isolation from two food additives suitable for authentication in polymerase chain reaction assays.

    PubMed

    Urdiaín, Mercedes; Doménech-Sánchez, Antonio; Albertí, Sebastián; Benedí, V Javier; Rosselló, Josep A

    2005-05-04

    Locust bean gum and guar gum are galactomannans used as additives (E 410 and E 412, respectively) in the food industry as stabilizing agents. Analytical discrimination between the two additives in gums and foods is now feasible by molecular techniques. However, only complex and time-consuming DNA isolation protocols are available to date. We have developed simple improved protocols to obtain enough DNA suitable for PCR amplification from a few milligrams of commercial E 410 and E 412 additives (containing more than 75% polysaccharides). The suspension of additives in water or 10 mM Tris-HCl, pH 8.5, efficiently recovers DNA suitable for authentication in PCR assays. However, the Tris method was much more efficient for the extraction of DNA from E 410 than for E 412 additives. Conversely, the water method was the most suitable for detecting DNA extracted from E 412 or from E 410/E 412 mixtures. Combined with the use of the two specific ribosomal primer pairs previously designed, our methods are well-suited for a fast and simple high-throughput sample treatment of commercial gums for molecular certification.

  14. Asymmetric Catalytic Enantio- and Diastereoselective Boron Conjugate Addition Reactions of α-Functionalized α,β-Unsaturated Carbonyl Substrates.

    PubMed

    Xie, Jian-Bo; Lin, Siqi; Qiao, Shuo; Li, Guigen

    2016-08-05

    An efficient catalytic system has been established for the asymmetric boron conjugate addition of B2pin2 onto α-functionalized (involving C, N, O, and Cl) α,β-unsaturated carbonyls under mild, neutral conditions involving Cu[(S)-(R)-ppfa]Cl, AgNTf2, and alcohols. The dual additives of AgNTf2 and alcohols were found to play crucial roles for achieving high catalytic activity and enantio- and diastereoselectivity (up to 98% ee and 70:1 dr).

  15. Formation of quaternary stereogenic centers by copper-catalyzed asymmetric conjugate addition reactions of alkenylaluminums to trisubstituted enones.

    PubMed

    Müller, Daniel; Alexakis, Alexandre

    2013-11-04

    Alkenylaluminums undergo asymmetric copper-catalyzed conjugate addition (ACA) to β-substituted enones allowing the formation of stereogenic all-carbon quaternary centers. Phosphinamine-copper complexes proved to be particularly active and selective compared with phosphoramidite ligands. After extensive optimization, high enantioselectivities (up to 96% ee) were obtained for the addition of alkenylalanes to β-substituted enones. Two strategies for the generation of the requisite alkenylaluminums were explored allowing for the introduction of aryl- and alkyl-substituted alkenyl nucleophiles. Moreover, alkyl-substituted phosphinamine (SimplePhos) ligands were identified for the first time as highly efficient ligands for the Cu-catalyzed ACA.

  16. Experimental and theoretical studies of the products of addition-elimination reactions between benzil dihydrazone and three isomeric chlorobenzaldehydes.

    PubMed

    Liu, Yun-Na; Cheng, Shuang-Shuang; Wang, Chao; Xing, Dian-Xiang; Liu, Yun; Tan, Xue-Jie

    2015-07-01

    A series of mono- and di-Schiff bases formed between benzil dihydrazone {BDH; systematic name: (1Z)-[(2E)-2-hydrazinylidene-1,2-diphenylethylidene]hydrazine} and three isomeric chlorobenzaldehydes were designed and synthesized to be used as model compounds to help to explain the reaction mechanisms for the formation of Schiff bases. These compounds are 1-(2-chlorobenzylidene)-2-{2-[2-(2-chlorobenzylidene)hydrazin-1-ylidene]-1,2-diphenylethylidene}hydrazine (BDHOCB), and the 3-chloro (BDHMCB) and 4-chloro (BDHPCB) analogues, all having the formula C28H20Cl2N4. Surprisingly, only di-Schiff bases were obtained; our attempts to push the reaction in favour of the mono-Schiff bases all failed. Density functional theory (DFT) calculations were performed to explain the trend in the experimental results. In the case of the systems studied, the type of Schiff base produced exhibits a clear dependence on the HOMO-LUMO energy gaps (ΔE(HOMO-LUMO)), i.e. the product is mainly governed by its stability. The compounds were characterized by single-crystal X-ray diffractometry, elemental analysis, melting point, (1)H NMR and (13)C NMR spectroscopy. The structural features of the three new Schiff bases are similar. For instance, they have the same chemical formula, all the molecules have a symmetrical double helix structure, with each Ph-C=N-N=C-Ph arm exhibiting an anti conformation, and their supramolecular interactions include intermolecular π-π and weak C-H...π stacking interactions. The crystal systems are different, however, viz. triclinic (space group P1¯) for BDHPCB, monoclinic (space group P2(1)/n) for BDHOCB and orthorhombic (space group Pnna) for BDHMCB.

  17. Synthesis of Bridged Heterocycles via Sequential 1,4- and 1,2-Addition Reactions to α,β-Unsaturated N-Acyliminium Ions: Mechanistic and Computational Studies.

    PubMed

    Yazici, Arife; Wille, Uta; Pyne, Stephen G

    2016-02-19

    Novel tricyclic bridged heterocyclic systems can be readily prepared from sequential 1,4- and 1,2-addition reactions of allyl and 3-substituted allylsilanes to indolizidine and quinolizidine α,β-unsaturated N-acyliminium ions. These reactions involve a novel N-assisted, transannular 1,5-hydride shift. Such a mechanism was supported by examining the reaction of a dideuterated indolizidine, α,β-unsaturated N-acyliminium ion precursor, which provided specifically dideuterated tricyclic bridged heterocyclic products, and from computational studies. In contrast, the corresponding pyrrolo[1,2-a]azepine system did not provide the corresponding tricyclic bridged heterocyclic product and gave only a bis-allyl adduct, while more substituted versions gave novel furo[3,2-d]pyrrolo[1,2-a]azepine products. Such heterocyclic systems would be expected to be useful scaffolds for the preparation of libraries of novel compounds for new drug discovery programs.

  18. Gamma-ray production cross sections in multiple channels for neutron induced reaction on 48Ti for En=1 to 200 MeV

    SciTech Connect

    Dashdorj, D; Mitchell, G E; Garrett, P E; Agvaanluvsan, U; Becker, J A; Bernstein, L A; Chadwick, M B; Devlin, M; Fotiades, N; Kawano, T; Nelson, R O; Younes, W

    2006-07-06

    Prompt {gamma}-ray production cross sections were measured on a {sup 48}Ti sample for incident neutron energies from 1 MeV to 200 MeV. Partial {gamma}-ray cross sections for transitions in {sup 45-48}Ti, {sup 45-48}Sc, and {sup 43-45}Ca were determined. The observation of about 130 transitions from 11 different isotopes in the present work provides a demanding test of reaction model calculations, and is the first study in this mass region to extract partial {gamma}-ray cross sections for many different reaction channels over a wide range of incident neutron energies. The neutrons were produced by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed GErmanium Array for Neutron Induced Excitations (GEANIE). Event neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections and then compared with model calculations using the enhanced GNASH reaction code. Compound nuclear, pre-equilibrium emission and direct reaction mechanisms are included. Overall the model calculations of the partial {gamma}-ray cross sections are in good agreement with measured values.

  19. An ab initio/rice--Ramsperger--Kassel--Marcus study of the reactions of propenols with OH. Mechanism and kinetics of H abstraction channels.

    PubMed

    Zhou, Chong-Wen; Mebel, Alexander M; Li, Xiang-Yuan

    2009-10-08

    Propenols have been found to be common intermediates in the hydrocarbon combustion and they are present in substantial concentrations in a wide range of flames. However, the kinetics properties of these species in combustion flames have not received much attention. In this work, the mechanism and kinetics of the OH hydrogen abstraction from propenols are investigated. Three stable conformations of propenols, (E)-1-propenol, (Z)-1-propenol, and syn-propen-2-ol, are taken into consideration. The potential energy profiles for the three reaction systems have been first investigated by the CCSD(T) method. The geometric parameters and relative energies of the reactants, reactant complexes, transition states, product complexes, and products have been investigated theoretically. The rate constants are calculated in the temperature range of 200-3000 K by the Variflex code based on the weak collision master equation/microcanonical variational RRKM theory. For all considered reactions, our results support a stepwise mechanism involving the formation of a reactant complex in the entrance channel and a product complex in the exit channel. In the reaction of OH with (E)-1-propenol, the hydrogen abstractions from the -CH(3) and -OH sites are dominant and competitive with each other in the temperature range from 500 to 2000 K. Above 2000 K, the hydrogen abstraction from the -CH group bonded to O atom becomes dominant with a relative yield of 51.1% at 3000 K. In the reaction of OH with (Z)-1-propenol, the hydrogen abstractions from -CH(3), -CH bonded to O atom, and -OH are preferable in the temperature range from 500 to 1800 K, with the first two channels being competitive with each other. Above 1800 K, the hydrogen abstraction reaction from the CH group bonded to the CH(3) group becomes dominant with the branching ratio of 90.3% at 3000 K. In the reaction of OH with syn-propen-2-ol, the abstractions from the -CH(3) and -OH sites are competitive with each other when the temperature

  20. Multifunctional Electrochemical Platforms Based on the Michael Addition/Schiff Base Reaction of Polydopamine Modified Reduced Graphene Oxide: Construction and Application.

    PubMed

    Huang, Na; Zhang, Si; Yang, Liuqing; Liu, Meiling; Li, Haitao; Zhang, Youyu; Yao, Shouzhuo

    2015-08-19

    In this paper, a new strategy for the construction of multifunctional electrochemical detection platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide was first proposed. Inspired by the mussel adhesion proteins, 3,4-dihydroxyphenylalanine (DA) was selected as a reducing agent to simultaneously reduce graphene oxide and self-polymerize to obtain the polydopamine-reduced graphene oxide (PDA-rGO). The PDA-rGO was then functionalized with thiols and amines by the reaction of thiol/amino groups with quinine groups of PDA-rGO via the Michael addition/Schiff base reaction. Several typical compounds containing thiol and/or amino groups such as 1-[(4-amino)phenylethynyl] ferrocene (Fc-NH2), cysteine (cys), and glucose oxidase (GOx) were selected as the model molecules to anchor on the surface of PDA-rGO using the strategy for construction of multifunctional electrochemical platforms. The experiments revealed that the composite grafted with ferrocene derivative shows excellent catalysis activity toward many electroactive molecules and could be used for individual or simultaneous detection of dopamine hydrochloride (DA) and uric acid (UA), or hydroquinone (HQ) and catechol (CC), while, after grafting of cysteine on PDA-rGO, simultaneous discrimination detection of Pb(2+) and Cd(2+) was realized on the composite modified electrode. In addition, direct electron transfer of GOx can be observed when GOx-PDA-rGO was immobilized on glassy carbon electrode (GCE). When glucose was added into the system, the modified electrode showed excellent electric current response toward glucose. These results inferred that the proposed multifunctional electrochemical platforms could be simply, conveniently, and effectively regulated through changing the anchored recognition or reaction groups. This study would provide a versatile method to design more detection or biosensing platforms through a chemical reaction strategy in the future.

  1. Deprotonation and reductive addition reactions of hypervalent aluminium dihydride compounds containing substituted pyrrolyl ligands with phenols, ketones, and aldehydes.

    PubMed

    Chen, I-Chun; Ho, Shi-Mau; Chen, Ya-Chi; Lin, Che-Yu; Hu, Ching-Han; Tu, Cheng-Yi; Datta, Amitabha; Huang, Jui-Hsien; Lin, Chia-Her

    2009-10-28

    The reactivities of [C4H2N(CH2NMe2)2]AlH2 (1) with primary and secondary amines, phenols, ketones, and phenyl isothiocyanate were examined. Reactions of 1 with one or two equivalents of 2,6-dichloroaniline in methylene chloride generated [C4H2N(CH2NMe2)2]AlH(NHC6H3-2,6-Cl2) (2) and [C4H2N(CH2NMe2)2]Al(NHC6H3-2,6-Cl2)2 (3), respectively, following hydrogen elimination. Similarly, the reactions of 1 with one or two equivalents of carbazole afforded [C4H2N(CH2NMe2)2]AlH(NC12H8) (4) or [C4H2N(CH2NMe2)2]Al(NC12H8)2 (5) by deprotonating the acidic N-H of carbazole. Reacting 1 with one equivalent of 2,6-diisopropylphenol in diethyl ether formed an aluminium phenoxo compound [C4H2N(CH2NMe2)2]AlH(OC6H3-2,6-iPr2) (6), by deprotonation of phenol as well with the elimination of one equivalent hydrogen. Further reaction of 6 with one equivalent of 2,4,6-trimethylacetophenone in methylene chloride generated [C4H2N(CH2NMe2)2]Al(OC6H3-2,6-iPr2)[OC(=CH2)(C6H2-2,4,6-Me3)] (7) by deprotonating the methyl proton of the acetophenone. Similar deprotonation occurred when 1 reacted with two equivalents of 2,4,6-trimethylacetophenone in methylene chloride to generate [C4H2N(CH2NMe2)2]Al[OC(=CH2)(C6H2-2,4,6-Me3)]2 (8). Compounds [C4H2N(CH2NMe2)2]Al(OCHPh2)2 (9), and [C4H2N(CH2NMe2)2]Al(SCHNPh)2 (10) could also be obtained by reacting 1 with two equivalents of benzophenone and phenyl isothiocyanate, respectively through hydroalumination. The 1H NMR spectra of 10 showed broad signals for the CH2N and NMe2 groups, which represent dynamical fluctuations of the molecules in solution state. The estimated energy barrier (DeltaG(c)(double dagger)) from the coalescence temperature for the fluctuation was estimated at 17.1 Kcal mol(-1). The solid-state structures of compounds 2, 3, 5, 7, 9, and 10 have been determined.

  2. Unprecedented chemical reactivity of a paramagnetic endohedral metallofullerene La@C(s)-C82 that leads hydrogen addition in the 1,3-dipolar cycloaddition reaction.

    PubMed

    Takano, Yuta; Slanina, Zdenek; Mateos, Jaime; Tsuchiya, Takayoshi; Kurihara, Hiroki; Uhlik, Filip; Herranz, María Ángeles; Martín, Nazario; Nagase, Shigeru; Akasaka, Takeshi

    2014-12-17

    Synthesizing unprecedented diamagnetic adducts of an endohedral metallofullerene was achieved by using 1,3-dipolar cycloaddition reaction of paramagnetic La@C(s)-C82 with a simultaneous hydrogen addition. The selective formation of two main products, La@C(s)-C82HCMe2NMeCHPh (2a and 2b), was first detected by HPLC analysis and MALDI-TOF mass spectrometry. 2a and 2b-O, which was readily formed by the oxidation of 2b, were isolated by multistep HPLC separation and were fully characterized by spectroscopic methods, including 1D and 2D-NMR, UV-vis-NIR measurements and electrochemistry. The hydrogen atom was found to be connected to the fullerene cage directly in the case of 2a, and the redox behavior indicated that the C-H bond can still be readily oxidized. The reaction mechanism and the molecular structures of 2a and 2b were reasonably proposed by the interplay between experimental observations and DFT calculations. The feasible order of the reaction process would involve a 1,3-dipolar cycloaddition followed by the hydrogen addition through a radical pathway. It is concluded that the characteristic electronic properties and molecular structure of La@C(s)-C82 resulted in a site-selective reaction, which afforded a unique chemical derivative of an endohedral metallofullerene in high yields. Derivative 2a constitutes the first endohedral metallofullerene where the direct linking of a hydrogen atom has been structurally proven.

  3. Dipeptide-Based Chiral Tertiary Amine-Catalyzed Asymmetric Conjugate Addition Reactions of 5H-Thiazol/Oxazol-4-Ones.

    PubMed

    Li, Jiangtao; Qiu, Shuai; Ye, Xinyi; Zhu, Bo; Liu, Hongjun; Jiang, Zhiyong

    2016-12-02

    Highly enantio- and chemo-selective 1,4-conjugate addition process of 5H-thiazol-4-ones with maleimides or 1,4-naphthoquinones, and 5H-oxazol-4-ones with maleimides were performed under a dipeptide-based tertiary amine (DP-UAA) catalyst. A series of valuable N,S- and N,O-containing heterocyclic compounds with excellent enantio- and disastereo-selectivities (up to >99% ee, > 20:1 dr) were attained.

  4. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions.

    PubMed

    Jackson, Paul A; Widen, John C; Harki, Daniel A; Brummond, Kay M

    2017-02-09

    Although Michael acceptors display a potent and broad spectrum of bioactivity, they have largely been ignored in drug discovery because of their presumed indiscriminate reactivity. As such, a dearth of information exists relevant to the thiol reactivity of natural products and their analogues possessing this moiety. In the midst of recently approved acrylamide-containing drugs, it is clear that a good understanding of the hetero-Michael addition reaction and the relative reactivities of biological thiols with Michael acceptors under physiological conditions is needed for the design and use of these compounds as biological tools and potential therapeutics. This Perspective provides information that will contribute to this understanding, such as kinetics of thiol addition reactions, bioactivities, as well as steric and electronic factors that influence the electrophilicity and reversibility of Michael acceptors. This Perspective is focused on α,β-unsaturated carbonyls given their preponderance in bioactive natural products.

  5. Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production--Analysis of underlying chemical reactions.

    PubMed

    Stemann, Jan; Peplinski, Burkhard; Adam, Christian

    2015-11-01

    Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000°C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P>2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash - an explanation for which clear evidence is provided for the first time.

  6. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  7. From enantiopure hydroxyaldehydes to complex heterocyclic scaffolds: development of domino Petasis/Diels-Alder and cross-metathesis/Michael addition reactions.

    PubMed

    Cannillo, Alexandre; Norsikian, Stéphanie; Tran Huu Dau, Marie-Elise; Retailleau, Pascal; Iorga, Bogdan I; Beau, Jean-Marie

    2014-09-15

    One-step assembly of hexahydroisoindole scaffolds by a sequence that combines the Petasis (borono-Mannich) and Diels-Alder reactions is described. The unique selectivity observed experimentally was confirmed by quantum calculations. The current method is applicable to a broad range of substrates, including free sugars, and holds significant potential to efficiently and stereoselectively build new heterocyclic structures. This easy and fast entry to functionalized polycyclic compounds can be pursued by further transformations, for example, additional ring closure by a cross-metathesis/Michael addition domino sequence.

  8. Combination therapy of angiotensin II receptor blocker and calcium channel blocker exerts pleiotropic therapeutic effects in addition to blood pressure lowering: amlodipine and candesartan trial in Yokohama (ACTY).

    PubMed

    Maeda, Akinobu; Tamura, Kouichi; Kanaoka, Tomohiko; Ohsawa, Masato; Haku, Sona; Azushima, Kengo; Dejima, Toru; Wakui, Hiromichi; Yanagi, Mai; Okano, Yasuko; Fujikawa, Tetsuya; Toya, Yoshiyuki; Mizushima, Shunsaku; Tochikubo, Osamu; Umemura, Satoshi

    2012-01-01

    Recent guidelines recommend combination antihypertensive therapy to achieve the target blood pressure (BP) and to suppress target organ damage. This study aimed to examine the beneficial effects of combination therapy with candesartan and amlodipine on BP control and markers of target organ function in Japanese essential hypertensive patients (N = 20) who did not achieve the target BP level during the monotherapy period with either candesartan or amlodipine. After the monotherapy period, for patients already being treated with amlodipine, a once-daily 8 mg dose of candesartan was added on during the combination therapy period (angiotensin II receptor blocker [ARB] add-on group, N = 10), and a once-daily 5 mg dose of amlodipine was added on for those already being treated with candesartan (calcium channel blocker [CCB] add-on group, N = 10). Combination therapy with candesartan and amlodipine for 12 weeks significantly decreased clinic and home systolic blood pressure (SBP) and diastolic blood pressure (DBP). In addition, the combination therapy was able to significantly reduce urine albumin excretion without decrease in estimated glomerular filtration ratio and resulted in significant improvements in brachial-ankle pulse wave velocity, central SBP, and insulin sensitivity. Furthermore, the CCB add-on group showed a significantly greater decrease in clinic and home DBP than the ARB add-on group. The calcium channel blocker add-on group also exhibited better improvements in vascular functional parameters than the ARB add-on group. These results suggest that combination therapy with candesartan and amlodipine is an efficient therapeutic strategy for hypertension with pleiotropic benefits.

  9. Effects of a phytogenic feed additive on growth performance, susceptibility of channel catfish to Edwardsiella ictaluri and levels of mannose binding lectin.

    PubMed

    Peterson, Brian C; Peatman, E; Ourth, D D; Waldbieser, G C

    2015-05-01

    A study was conducted to investigate the effect of a phytogenic feed additive (Digestarom® P.E.P. MGE; containing the essential oils carvacrol, thymol, anethol, and limonene) on growth performance and disease susceptibility to Edwardsiella ictaluri. Two hundred and fifty juvenile channel catfish, Ictalurus punctatus (7.2 ± 0.1 g) were allotted into the following treatments: Control (floating diet) and EO (floating diet supplemented with essential oils). The fish were fed their respective diets for 6 weeks. At the end of the study, all fish were exposed to virulent E. ictaluri by bath immersion (1.9 × 10(7) cfu/mL; final concentration). Plasma and tissue samples were taken to quantify protein and mRNA expression levels of mannose binding lectin (MBL). Weight gain and food conversion ratio were similar between treatments. After exposing fish to virulent E. ictaluri and monitoring mortality for 21 days, survival was 43% higher (69.5 vs 48.4%) in fish fed EO compared to fish not treated with EO (P < 0.05). One day after challenge, plasma MBL levels were down-regulated in the non-treated fish compared to non-challenged fish. In the EO fish, MBL levels were similar to non-challenged fish but significantly higher than non-treated fed fish (P < 0.001). By d 7, plasma MBL levels increased in non-treated fed fish to levels observed in the EO and non-challenged fish. On d 14, MBL mRNA levels were upregulated 15-fold in fish fed EO compared to non-treated fed fish and non-challenged fish (P < 0.001). The results demonstrate that essential oils improved survival of channel catfish challenged with E. ictaluri. Mechanisms through which essential oils improve survival may involve MBL.

  10. Evaluation of gold nanoparticles as the additive in real-time polymerase chain reaction with SYBR Green I dye

    NASA Astrophysics Data System (ADS)

    Yang, Wenchao; Mi, Lijuan; Cao, Xueyan; Zhang, Xiaodong; Fan, Chunhai; Hu, Jun

    2008-06-01

    Gold nanoparticles (AuNPs) have been proven to be able to improve the specificity or increase the efficiency of a polymerase chain reaction (PCR) when a suitable amount of AuNPs was used. However, there is still a lack of systematic evaluation of AuNPs in real-time PCR. In this study, DNA degradation and the fluorescence quenching effect of AuNPs were first tested in real-time PCR. Then two different kinds of Taq DNA polymerase, native and recombinant Taq polymerase, were employed to evaluate the AuNPs' effect on the threshold cycle (CT) values, standard curves and melting curves in real-time PCR. Different ratios of the amount of native Taq DNA polymerase to the amount of AuNPs were also tested. It was found that AuNPs could be applied in real-time PCR with correlation coefficient R2>0.989. The combination of 2.09 nM AuNPs with 3.75 U of native Taq DNA polymerase could make the amplification curves shift to the left and enhance the efficiency of the real-time PCR (0.628 39 without AuNPs compared with 0.717 89 with 2.09 nM AuNPs), thus enabling faster detection in comparison with those of control samples. However, no improvement ability of AuNPs was found in real-time PCR based on recombinant rTaq DNA polymerase. Besides, the results suggest that a complex interaction exists between AuNPs and native Taq DNA polymerase.

  11. Effects of N{sub 2}O gas addition on the properties of ZnO films grown by catalytic reaction-assisted chemical vapor deposition

    SciTech Connect

    Yasui, Kanji Morioka, Makoto; Kanauchi, Shingo; Ohashi, Yuki; Kato, Takahiro; Tamayama, Yasuhiro

    2015-11-15

    The influence of N{sub 2}O gas addition on the properties of zinc oxide (ZnO) films grown on a-plane (11–20) sapphire (a-Al{sub 2}O{sub 3}) substrates was investigated, using a chemical vapor deposition method based on the reaction between dimethylzinc and high-temperature H{sub 2}O produced by a catalytic H{sub 2}-O{sub 2} reaction on platinum (Pt) nanoparticles. The addition of N{sub 2}O was found to increase the size of the crystalline facets and to improve the crystal orientation along the c-axis. The electron mobility at 290 K was also increased to 234 cm{sup 2}/Vs following the addition of N{sub 2}O gas at a pressure of 3.2 × 10{sup −3 }Pa. In addition, the minimum full width at half maximum of the most intense photoluminescence peak derived from neutral donor bound excitons at 10 K decreased to 0.6 meV by the addition of N{sub 2}O gas at a pressure of 3.1 × 10{sup −2 }Pa.

  12. TRP Channels

    PubMed Central

    Venkatachalam, Kartik; Montell, Craig

    2011-01-01

    The TRP (Transient Receptor Potential) superfamily of cation channels is remarkable in that it displays greater diversity in activation mechanisms and selectivities than any other group of ion channels. The domain organizations of some TRP proteins are also unusual, as they consist of linked channel and enzyme domains. A unifying theme in this group is that TRP proteins play critical roles in sensory physiology, which include contributions to vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. In addition, TRP channels enable individual cells to sense changes in their local environment. Many TRP channels are activated by a variety of different stimuli and function as signal integrators. The TRP superfamily is divided into seven subfamilies: the five group 1 TRPs (TRPC, TRPV, TRPM, TRPN, and TRPA) and two group 2 subfamilies (TRPP and TRPML). TRP channels are important for human health as mutations in at least four TRP channels underlie disease. PMID:17579562

  13. Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions

    SciTech Connect

    Singh, Hardev; Sandal, Rohit; Behera, Bivash R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Ranjeet,; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2008-08-15

    Pre-scission neutron multiplicities are measured for {sup 12}C + {sup 204}Pb and {sup 19}F + {sup 197}Au reactions at laboratory energies of 75-95 MeV for the {sup 12}C beam and 98-118 MeV for the {sup 19}F beam. The chosen projectile-target combinations in the present study lie on either side of the Businaro-Gallone mass asymmetry ({alpha}{sub BG}) and populate the {sup 216}Ra compound nucleus. The dissipation strength is deduced after comparing the experimentally measured neutron yield with the statistical model predictions which contains the nuclear viscosity as a free parameter. Present results demonstrate the combined effects of entrance channel mass asymmetry and the dissipative property of nuclear matter on the pre-scission neutron multiplicity in fusion-fission reactions.

  14. Thermochemical properties, rotation barriers, and group additivity for unsaturated oxygenated hydrocarbons and radicals resulting from reaction of vinyl and phenyl radical systems with O2.

    PubMed

    Sebbarand, Nadia; Bockhorn, Henning; Bozzelli, Joseph W

    2005-03-17

    Oxidation of unsaturated and aromatic hydrocarbons in atmospheric and combustion processes results in formation of linear and cyclic unsaturated, oxygenated-hydrocarbon intermediates. The thermochemical parameters delatafH degrees 298, S degrees 298, and C(p)(f298)(T) for these intermediates are needed to understand their stability and reaction paths in further oxidation. These properties are not available for a majority of these unsaturated oxy-hydrocarbons and their corresponding radicals, even via group additivity methods. Enthalpy, entropy, and heat capacity of a series of 40 oxygenated and non-oxygenated molecules, or radicals corresponding to hydrogen atom loss from the parent stable molecules are determined in this study. Enthalpy (delatafH degrees 298 in kcal mol(-1)) is derived from the density function calculations at the B3LYP/6-311g(d,p) calculated enthalpy of reaction (delatafH degrees rxn,298) and by use of isodesmic (work) reactions. Estimation of error in enthalpy delatafH degrees 298, from use of computational chemistry coupled with work reactions analysis, is presented using comparisons between the calculated and literature enthalpies of reaction. Entropies (S degrees 298) and heat capacities (C(p)(f298)(T)) were calculated using the B3LYP/6-311G(d,p) determined frequencies and geometries. Potential barriers for internal rotors in each molecule were determined and used (in place of torsion frequencies) to calculate contributions to S and C(p)(T) from the hindered rotors. Twenty-six groups for use in group additivity (GA) are also developed.

  15. Interfacial Reactions of Zn-Al Alloys with Na Addition on Cu Substrate During Spreading Test and After Aging Treatments

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Pstruś, Janusz; Berent, Katarzyna

    2016-08-01

    Spreading tests for Cu substrate with Zn-Al eutectic-based alloys with 0.2, 0.5, and 1.0 wt.% of Na were studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed for 1, 3, 8, 15, 30, and 60 min of contact, at the temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreading area of Zn-Al + Na on Cu was determined in accordance with ISO 9455-10:2013-03. Selected, solidified solder-substrate couples were cross-sectioned and subjected to scanning electron microscopy of the interfacial microstructure. The experiment was designed to demonstrate the effect of Na addition on the kinetics of formation and growth of CuZn, Cu5Zn8, and CuZn4 phases, which were identified using x-ray diffraction and energy-dispersive spectroscopy analysis. The addition of Na to eutectic Zn-Al caused the spreading area to decrease and the thickness of intermetallic compound layers at the interface to reduce. Samples after the spreading test at 500 °C for 1 min were subjected to aging for 1, 10, and 30 days at 120,170, and 250 °C. The greater thicknesses of IMC layers were obtained for a temperature of 250 °C. With increasing Na content in Zn-Al + Na alloys, the thickness reduced, which correlates to the highest value of activation energy for Zn-Al with 1% Na.

  16. Direct dynamics simulations of the product channels and atomistic mechanisms for the OH(-) + CH3I reaction. Comparison with experiment.

    PubMed

    Xie, Jing; Sun, Rui; Siebert, Matthew R; Otto, Rico; Wester, Roland; Hase, William L

    2013-08-15

    Electronic structure and direct dynamics calculations were used to study the potential energy surface and atomic-level dynamics for the OH(-) + CH3I reactions. The results are compared with crossed molecular beam, ion imaging experiments. The DFT/B97-1/ECP/d level of theory gives reaction energetics in good agreement with experiment and higher level calculations, and it was used for the direct dynamics simulations that were performed for reactant collision energies of 2.0, 1.0, 0.5, and 0.05 eV. Five different pathways are observed in the simulations, forming CH3OH + I(-), CH2I(-) + H2O, CH2 + I(-) + H2O, IOH(-) + CH3, and [CH3--I--OH](-). The SN2 first pathway and the proton-transfer second pathway dominate the reaction dynamics. Though the reaction energetics favor the SN2 pathway, the proton-transfer pathway is more important except for the lowest collision energy. The relative ion yield determined from the simulations is in overall good agreement with experiment. Both the SN2 and proton-transfer pathways occur via direct rebound, direct stripping, and indirect mechanisms. Except for the highest collision energy, 70-90% of the indirect reaction for the SN2 pathway occurs via formation of the hydrogen-bonded OH(-)---HCH2I prereaction complex. For the proton-transfer pathway the indirect reaction is more complex with the roundabout mechanism and formation of the OH(-)---HCH2I and CH2I(-)---HOH complexes contributing to the reaction. The majority of the SN2 reaction is direct at 2.0, 1.0, and 0.5 eV, dominated by stripping. At 0.05 eV the two direct mechanisms and the indirect mechanisms have nearly equal contributions. The majority of the proton-transfer pathway is direct stripping at 2.0, 1.0, and 0.5 eV, but the majority of the reaction is indirect at 0.05 eV. The product relative translational energy distributions are in good agreement with experiment for both the SN2 and proton-transfer pathways. For both, direct reaction preferentially transfers the product

  17. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE PAGES

    Bourgin, D.; Courtin, S.; Haas, F.; ...

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  18. Novel glycol chitosan-based polymeric gene carrier synthesized by a Michael addition reaction with low molecular weight polyethylenimine.

    PubMed

    Lee, Young Hwa; Park, Hae In; Choi, Joon Sig

    2016-02-10

    A glycol chitosan-based polymer that spontaneously assembles with plasmid DNA into nanorods was evaluated as a non-viral vector for gene delivery. Glycol chitosan-methyl acrylate-polyethylenimine (GMP) was synthesized by grafting polyethylenimine onto glycol chitosan via amidation after Michael addition using methyl acrylate. Gel retardation and PicoGreen assay experiments showed complete complex formation with plasmid DNA. GMP/pDNA complexes were characterized using biophysical techniques and were found to be positively charged rod-shape structures with widths in the nanometer scale and lengths in the micrometer scale. Transfection efficiency and cytotoxicity of GMP polymer was evaluated in human epithelial ovary carcinoma (HeLa) cells, human embryonic kidney 293 (HEK293) cells, and human hepatocellular liver carcinoma (HepG2) cells, in comparison to high molecular weight polyethylenimine, a commonly used transfection reagent. Intracellular polymer uptake was compared and confirmed by confocal microscopy. The results demonstrate that GMP, a hybrid polymer of glycol chitosan grafted with branched polyethylenimine, may serve as a promising vehicle for efficient gene delivery.

  19. Expanding Mg-Zn hybrid chemistry: inorganic salt effects in addition reactions of organozinc reagents to trifluoroacetophenone and the implications for a synergistic lithium-magnesium-zinc activation.

    PubMed

    Armstrong, David R; Clegg, William; García-Álvarez, Pablo; Kennedy, Alan R; McCall, Matthew D; Russo, Luca; Hevia, Eva

    2011-07-18

    Numerous organic transformations rely on organozinc compounds made through salt-metathesis (exchange) reactions from organolithium or Grignard reagents with a suitable zinc precursor. By combining X-ray crystallography, NMR spectroscopy and DFT calculations, this study sheds new light on the constitution of the organometallic species involved in this important synthetic tool. Investigations into the metathesis reactions of equimolar amounts of Grignard reagents (RMgX) and ZnCl(2) in THF led to the isolation of novel magnesium-zinc hybrids, [{(thf)(2)Mg(μ-Cl)(3)ZnR}(2)] (R=Et, tBu, nBu or o-OMe-C(6)H(4)), which exhibit an unprecedented structural motif in mixed magnesium-zinc chemistry. Furthermore, theoretical modelling of the reaction of EtMgCl with ZnCl(2) reveals that formation of the mixed-metal compound is thermodynamically preferred to that of the expected homometallic products, RZnCl and MgCl(2). This study also assesses the alkylating ability of hybrid 3 towards the sensitive ketone trifluoroacetophenone, revealing a dramatic increase in the chemoselectivity of the reaction when LiCl is introduced as an additive. This observation, combined with recent related breakthroughs in synthesis, points towards the existence of a trilateral Li/Mg/Zn synergistic effect.

  20. Reactions of Anilines and Benzamides with a Fourteen-Electron Iridium(I) Bis(Phosphinite) Complex: N-H Oxidative Addition versus Lewis Base Coordination

    PubMed Central

    Sykes, Alison Cartwright; White, Peter

    2008-01-01

    Anilines react with (POCOP)Ir(C6H5)(H), 12, (POCOP = 2,6-(OPtBu2)2C6H3) to yield equilibrium mixtures of 12, the Ir(I) σ-complexes (POCOP)Ir(NH2Ar), 13, and the Ir(III) oxidative addition adducts (POCOP)Ir(H)(NHAr), 14. Quantitative studies of these equilibria for a series of anilines were carried out. Anilines possessing electron-withdrawing groups favor the Ir(III) oxidative addition adduct over the Ir(I) sigma complex. Low temperature studies using p-chloroaniline show that the Ir(I) σ-complex is the kinetic product of reaction and is likely the precursor to the Ir(III) oxidative addition adduct. Reductive elimination of complexes 14 in the presence of ethylene led to the corresponding anilines and the ethylene complex (POCOP)Ir(C2H4). Kinetic analysis of these reactions for 14e,f,g bearing electron-withdrawing aryl groups (Ar- = p-CF3C6H4-, C6F5-, 3,5-bis(CF3)C6H3-) shows the rate is independent of ethylene concentration. The ΔG‡ values for these reductive eliminations fall in the range of 21–22 kcal/mol. X-Ray analysis establishes 14f (Ar- = C6F5-) as a square pyramidal complex with the hydride occupying the apical site. Reaction of 12 with benzamides 21a,b yields quantitatively the Ir(III) oxidative addition adducts, (POCOP)Ir(H)(NHC(O)Ar), 22. X-Ray analysis of 22b (Ar- = C6F5-) shows significant interaction of the carbonyl oxygen with Ir in the site trans to hydride. The barrier to reductive elimination of 22a, 29 kcal/mol, is substantially higher than for complexes 14e,f,g. PMID:19079781

  1. Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles generated highly substituted cyclopentenes through an unexpected phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Chuang, Shih-Ching; Sung, Shih-Ping; Deng, Jie-Cheng; Chiou, Mong-Feng; Hsu, Day-Shin

    2016-02-21

    Multicomponent reactions of phosphines, enynedioates and benzylidene malononitriles provide highly substituted syn-selective cyclopentenes appending the phosphorus ylide moiety in good yield with a diastereoselectivity of up to 100% through resonance-derived 1,5-dipolar species as the key intermediates, via the nucleophilic α(δ')-attack of phosphines toward enynedioates followed by addition to benzylidene malononitriles and 5-exo-dig cyclization. Through computational analyses, the overall reactions for the formation of syn- and anti-diastereomers are both exothermic with 65.6 and 66.3 kcal mol(-1) at the B3LYP-D3/6-31G(d) level of theory and were found to be kinetically controlled, which favours the formation of syn-diastereomers.

  2. X-Ray absorption in homogeneous catalysis research: the iron-catalyzed Michael addition reaction by XAS, RIXS and multi-dimensional spectroscopy.

    PubMed

    Bauer, Matthias; Gastl, Christoph

    2010-06-07

    A survey over X-ray absorption methods in homogeneous catalysis research is given with the example of the iron-catalyzed Michael addition reaction. A thorough investigation of the catalytic cycle was possible by combination of conventional X-ray absorption spectroscopy (XAS), resonant inelastic X-ray scattering (RIXS) and multi-dimensional spectroscopy. The catalytically active compound formed in the first step of the Michael reaction of methyl vinyl ketone with 2-oxocyclopentanecarboxylate (1) could be elucidated in situ by RIXS spectroscopy, and the reduced catalytic activity of FeCl(3) x 6 H(2)O (2) compared to Fe(ClO(4))(3) x 9 H(2)O (3) could be further explained by the formation of a [Fe(III)Cl(4)(-)](3)[Fe(III)(1-H)(2)(H(2)O)(2)(+)][H(+)](2) complex. Chloride was identified as catalyst poison with a combined XAS-UV/vis study, which revealed that Cl(-) binds quantitatively to the available iron centers that are deactivated by formation of [FeCl(4)(-)]. Operando studies in the course of the reaction of methyl vinyl ketone with 1 by combined XAS-Raman spectroscopy allowed the exclusion of changes in the oxidation state and the octahedral geometry at the iron site; a reaction order of two with respect to methyl vinyl ketone and a rate constant of k = 1.413 min(-2) were determined by analysis of the C=C and C=O vibration band. Finally, a dedicated experimental set-up for three-dimensional spectroscopic studies (XAS, UV/vis and Raman) of homogeneous catalytic reactions under laboratory conditions, which emerged from the discussed investigations, is presented.

  3. The influence of an additional load on time and force changes in the ground reaction force during the countermovement vertical jump.

    PubMed

    Vaverka, Frantisek; Jakubsova, Zlatava; Jandacka, Daniel; Zahradnik, David; Farana, Roman; Uchytil, Jaroslav; Supej, Matej; Vodicar, Janez

    2013-01-01

    The aim of this study was to determine how an additional load influences the force-vs-time relationship of the countermovement vertical jump (CMVJ). The participants that took part in the experiment were 18 male university students who played sport recreationally, including regular games of volleyball. They were asked to perform a CMVJ without involving the arms under four conditions: without and with additional loads of 10%, 20%, and 30% of their body weight (BW). The vertical component of the ground reaction force (GRF) was measured by a force plate. The GRF was used to calculate the durations of the preparatory, braking, and acceleration phases, the total duration of the jump, force impulses during the braking and acceleration phases, average forces during the braking and acceleration phases, and the maximum force of impact at landing. Results were evaluated using repeated-measures ANOVA. Increasing the additional load prolonged both the braking and acceleration phases of the jump, with statistically significant changes in the duration of the acceleration phase found for an additional load of 20% BW. The magnitude of the force systematically and significantly increased with the additional load. The force impulse during the acceleration phase did not differ significantly between jumps performed with loads of 20% and 30% BW. The results suggest that the optimal additional load for developing explosive strength in vertical jumping ranges from 20% to 30% of BW, with this value varying between individual subjects.

  4. Shedding new light on ZnCl2-mediated addition reactions of Grignard reagents to ketones: structural authentication of key intermediates and diffusion-ordered NMR studies.

    PubMed

    Armstrong, David R; Clegg, William; García-Alvarez, Pablo; McCall, Matthew D; Nuttall, Lorraine; Kennedy, Alan R; Russo, Luca; Hevia, Eva

    2011-04-11

    Building on recent advances in synthesis showing that the addition of inorganic salts to Grignard reagents can greatly enhance their performance in alkylation reactions to ketones, this study explores the reactions of EtMgCl with benzophenone in the presence of stoichiometric or catalytic amounts of ZnCl(2) with the aim of furthering the understanding of the role and constitution of the organometallic species involved in these transformations. Investigations into the metathesis reactions of three molar equivalents of EtMgCl with ZnCl(2) led to the isolation and characterisation (X-ray crystallography and (1)H and (13)C NMR spectroscopy) of novel magnesium "zinc-rich" zincate [{(THF)(6)Mg(2)Cl(3)}(+){Zn(2)Et(5)}(-)] (1), whose complicated constitution in THF solutions was assessed by variable-temperature (1)H DOSY NMR studies. Compound 1 reacted with one equivalent of benzophenone to yield magnesium magnesiate [{(THF)(6)Mg(2)Cl(3)}(+){Mg(2)(OC(Et)Ph(2))(2)Cl(3)(THF)}(-)] (3), whose structure was determined by X-ray crystallography. (1)H NMR monitoring of this reaction showed two equivalents of ZnEt(2) formed as a co-product, which together with the "magnesium only constitution" of 3 provides experimental insights into how zinc can be efficiently recycled in these reactions, and therefore used catalytically. The chemoselectivity of this reaction can be rationalised in terms of the synergic effect of magnesium and zinc and contrasts with the results obtained when benzophenone was allowed to react with EtMgCl in the absence of ZnCl(2), where the reduction of the ketone takes place preferentially. The reduction product [{(THF)(5)Mg(3)Cl(4){OC(H)Ph(CF(3))}(2)] (4) obtained from the reaction of EtMgCl with 2,2,2-trifluoroacetophenone was established by X-ray crystallography and multinuclear ((1)H, (13)C and (19)F) NMR spectroscopy. Compounds 3 and 4 exhibit new structural motifs in magnesium chemistry having MgCl(2) integrated within their constitution, which highlights

  5. Enhanced luminescence properties of CaTiO(3):Pr(3+) phosphor with addition of SiO(2) by solid-state reaction.

    PubMed

    Chen, Rui; Chen, Donghua

    2014-06-05

    Red phosphors CaTiO3:Pr(3+) with addition of SiO2 were prepared by solid-state reaction technique (SS). The effect of SiO2 on the crystalline phase, surface morphology and luminescence properties of CaTiO3:Pr(3+) was studied by X-ray diffractometer, transmission electron microscope, brightness meter and photoluminescence spectrometer, respectively. The results indicated that the content of SiO2 has influence on luminescence intensity, initial brightness and persistent time of samples. The red phosphor CaTi0.5Si0.5O3:Pr(3+) exhibited the optimal luminescence properties.

  6. Ambiphilic properties of SF5CF2CF2Br derived perfluorinated radical in addition reactions across carbon-carbon double bonds.

    PubMed

    Dudziński, Piotr; Matsnev, Andrej V; Thrasher, Joseph S; Haufe, Günter

    2015-03-06

    The extraordinary properties of the pentafluorosulfanyl (SF5) group attract attention of organic chemists. While numerous SF5-substituted compounds have been synthesized, the direct introduction of SF5(CF2)n moieties has remained almost unexplored. Our investigations revealed the ambiphilic character of the SF5CF2CF2 radical. Addition reactions to electron-rich or electron-deficient alkenes profit either from its electrophilic or nucleophilic properties. Thus, the readily available SF5CF2CF2Br proved to be a promising and versatile building block for the introduction of this perfluorinated moiety.

  7. Selectivity Guidelines and a Reductive Elimination-Based Model for Predicting the Stereochemical Course of Conjugate Addition Reactions of Organocuprates to γ-Alkoxy-α,β-Enoates

    PubMed Central

    Kireev, Artem S.; Manpadi, Madhuri; Kornienko, Alexander

    2008-01-01

    Current models used to predict the stereochemical outcome of organocopper conjugate addition processes focus on the nucleophilic addition step as stereochemistry-determining. Recent kinetic, NMR, kinetic isotope effect and theoretical density functional studies strongly support the proposal that stereochemical preferences in these processes are dictated by the reductive elimination step, transforming CuIII to CuI intermediates. A new model that considers various steric and stereoelectronic factors involved in the transition state of the reductive elimination step is proposed and then used to interpret the results of systematic studies of arylcuprate conjugate addition reactions with cis and trans γ-alkoxy-α,β-enoates. The results give rise to the following selectivity guidelines for this process. To achieve high anti-addition diastereoselectivities the use of trans esters with a bulky non-alkoxy substituent at the γ-position is recommended. While stereoelectronics disfavor syn-addition, a judicious choice of properly sized γ-substituents may lead to the predominant formation of syn-products, especially with cis enoates. However, high syn-selelectivities may be achieved by using γ-amino-α,β-enoates. PMID:16555814

  8. Selectivity guidelines and a reductive elimination-based model for predicting the stereochemical course of conjugate addition reactions of organocuprates to gamma-alkoxy-alpha,beta-enoates.

    PubMed

    Kireev, Artem S; Manpadi, Madhuri; Kornienko, Alexander

    2006-03-31

    Current models used to predict the stereochemical outcome of organocopper conjugate addition processes focus on the nucleophilic addition step as stereochemistry-determining. Recent kinetic, NMR, kinetic isotope effect, and theoretical density functional studies strongly support the proposal that stereochemical preferences in these processes are dictated by the reductive elimination step, transforming Cu(III) to Cu(I) intermediates. A new model that considers various steric and stereoelectronic factors involved in the transition state of the reductive elimination step is proposed and then used to interpret the results of systematic studies of arylcuprate conjugate addition reactions with cis and trans gamma-alkoxy-alpha,beta-enoates. The results give rise to the following selectivity guidelines for this process. To achieve high anti-addition diastereoselectivities the use of trans esters with a bulky nonalkoxy substituent at the gamma-position is recommended. While stereoelectronics disfavor syn-addition, a judicious choice of properly sized gamma-substituents may lead to the predominant formation of syn-products, especially with cis enoates. However, high syn-selectivities may be achieved by using gamma-amino-alpha,beta-enoates.

  9. Organocatalytic Enantioselective Synthesis of Tetrahydrofluoren-9-ones via Vinylogous Michael Addition/Henry Reaction Cascade of 1,3-Indandione-Derived Pronucleophiles.

    PubMed

    Möhlmann, Lennart; Chang, Geng-Hua; Madhusudhan Reddy, G; Lee, Chia-Jui; Lin, Wenwei

    2016-02-19

    An unprecedented organocatalytic enantioselective vinylogous Michael addition/Henry cyclization cascade is presented for the synthesis of highly substituted tetrahydrofluoren-9-ones 3 employing novel 1,3-indandione-derived pronucleophiles 1a-g and nitroalkenes 2. Following a very simple protocol, a wide range of products were obtained in good to excellent yields and with excellent enantioinduction (43-98% yield, up to 98% ee). The reaction proceeded with excellent diastereocontrol despite the simultaneous generation of four stereogenic centers. Surprisingly, when 2-(1-phenylethylidene)-1H-indandione (1h) was used as a pronucleophile, no cyclization was observed, and only Michael addition adducts 4a-x were furnished in very good yields and excellent enantioselectivities.

  10. Frustrated Lewis Pair-Like Reactivity of Rare-Earth Metal Complexes: 1,4-Addition Reactions and Polymerizations of Conjugated Polar Alkenes.

    PubMed

    Xu, Pengfei; Yao, Yingming; Xu, Xin

    2017-01-26

    Three rare-earth aryloxide ion pairs {[L1REOAr](+) /[B(C6 F5 )4 ](-) ; L1=CH3 C(2,6-iPr2 C6 H3 N)CHC(CH3 )(NCH2 CH2 PPh2 ); RE=Sc, Y, Lu; Ar=2,6-tBu2 C6 H3 } were reported that feature rare-earth/phosphorus (RE/P) combinations exhibiting frustrated Lewis pair (FLP)-like 1,4-addition reactions towards conjugated carbonyl substrates (e.g., enone, ynone, and acrylic substrates). Furthermore, these RE/P complexes were found to be effective catalysts for the polymerization of conjugated polar alkene monomers. Mechanistic studies revealed that the rare-earth metal-catalyzed polymerizations were initiated by new FLP-type 1,4-additions rather than traditional and ubiquitous covalent RE-E (E=H, C, N, etc.) bond insertion or single-electron transfer.

  11. Selective Fluorescence Detection of Cysteine over Homocysteine and Glutathione Based on a Cysteine-Triggered Dual Michael Addition/Retro-aza-aldol Cascade Reaction.

    PubMed

    Liu, Yawei; Lv, Xin; Hou, Min; Shi, Yawei; Guo, Wei

    2015-11-17

    In this work, a cysteine (Cys)-triggered dual Michael addition/retro-aza-aldol cascade reaction has been exploited and utilized to construct a fluorescent probe for Cys for the first time. The resulting fluorescent probe 8-alkynylBodipy 1 contains an activated alkynyl unit as Michael receptor and a Bodipy dye as fluorescence reporter and can highly selectively detect Cys over homocysteine (Hcy)/glutathione (GSH) as well as other amino acids with a significant fluorescence off-on response (∼4500-fold) and an ultralow detection limit (0.38 nM). The high selectivity of 1 for Cys could be attributed to a kinetically favored five-membered cyclic intermediate produced by the dual Michael addition of Cys with the activated alkynyl unit of 1. The big fluorescence off-on response is due to the subsequent retro-aza-aldol reaction of the five-membered cyclic intermediate that results in the release of a highly fluorescent 8-methylBodipy dye 2. The probe has been successfully used to detect and image Cys in serum and cells, respectively.

  12. Effects of Interface Coating and Nitride Enhancing Additive on Properties of Hi-Nicalon SiC Fiber Reinforced Reaction-Bonded Silicon Nitride Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishana T.; Hull, David R.; Eldridge, Jeffrey I.; Babuder, Raymond

    2000-01-01

    Strong and tough Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride matrix composites (SiC/ RBSN) have been fabricated by the fiber lay-up approach. Commercially available uncoated and PBN, PBN/Si-rich PBN, and BN/SiC coated SiC Hi-Nicalon fiber tows were used as reinforcement. The composites contained approximately 24 vol % of aligned 14 micron diameter SiC fibers in a porous RBSN matrix. Both one- and two-dimensional composites were characterized. The effects of interface coating composition, and the nitridation enhancing additive, NiO, on the room temperature physical, tensile, and interfacial shear strength properties of SiC/RBSN matrix composites were evaluated. Results indicate that for all three coated fibers, the thickness of the coatings decreased from the outer periphery to the interior of the tows, and that from 10 to 30 percent of the fibers were not covered with the interface coating. In the uncoated regions, chemical reaction between the NiO additive and the SiC fiber occurs causing degradation of tensile properties of the composites. Among the three interface coating combinations investigated, the BN/SiC coated Hi-Nicalon SiC fiber reinforced RBSN matrix composite showed the least amount of uncoated regions and reasonably uniform interface coating thickness. The matrix cracking stress in SiC/RBSN composites was predicted using a fracture mechanics based crack bridging model.

  13. Description of nucleon-transfer and fusion reactions within time-dependent approaches and coupled-channel method

    SciTech Connect

    Samarin, V. V.

    2015-01-15

    The time-dependent Schrödinger equation and the method of perturbed stationary states that is based on the expansion of the total wave function for the system of two nuclear cores and a nucleon in a set of nucleon two-center functions are used to describe nucleon transfers and fusion in low-energy nuclear reactions. A set of multichannel equations that couple the relative motion of nuclei to the motion of the nucleon is obtained. The kinetic-energy coupling matrix is similar to the coupling matrix for collective excitations of nuclei.

  14. Scattering of 14.7 MeV neutrons from 12C and evidence for a new reaction channel

    NASA Astrophysics Data System (ADS)

    Gul, K.; Anwar, M.; Ahmad, M.; Saleem, S. M.; Khan, Naeem A.

    1981-12-01

    Measurements of neutron scattering from carbon have been carried out for 14.7 MeV neutrons using associated particle and time-of-flight techniques. Angular distributions for the ground state, 4.43, and 7.65 MeV states have been measured in the laboratory angular range 30-130° and for the 9.63 MeV state in the range 30-70°. Double differential scattering cross sections have been obtained in the energy range 3-14 MeV. Monte Carlo simulation has been used to correct for multiple scattering including scattered flux attenuation. The integrated cross sections for 4.43 and 7.65 MeV states have been obtained as 214+/-8 and 9.3+/-1.6 mb, respectively. The present data have been compared with the published data. Evidence for a 12C(n,α)9Be reaction populating the 6.76 MeV state and subsequently decaying by emission of a neutron has been observed for the first time. The presence of a neutron group of 5.6 MeV energy at backward angles has been discussed. NUCLEAR REACTIONS 12C(n,n), 12C(n,n'), 12C(n,αn), E=14.7 MeV; measured σ(E,θ), double differential scattering cross sections, integrated cross sections, natural target.

  15. Effect of relative humidity and additives on the reaction of sulfur dioxide with calcium hydroxide. Final report, January 1984-June 1986

    SciTech Connect

    Ruiz-Alsop, R.; Rochelle, G.T.

    1988-07-01

    This paper gives results of a study of the reaction of SO/sub 2/ with Ca(OH)/sub 2/ at conditions similar to those of commercial-scale bag filters: 19-74% relative humidity (RH), 30.4-95 C, and 300-4000 ppm SO/sub 2/. The study was carried out in a bench-scale reactor with powder reagent Ca(OH)/sub 2/ dispersed in silica sand. The gas phase was a mixture of N/sub 2/, SO/sub 2/, and water vapor. The effects of Ca(OH)/sub 2/ leading, temperature, RH, inlet SO/sub 2/ concentration, and additives were investigated. Of the additives tried (buffer acids, and organic and inorganic deliquescents), only the deliquescent salts improved Ca(OH)/sub 2/ reactivity toward SO/sub 2/. The improvement depends on the type and amount of salt and on the RH. The experimental data were modeled by a shrinking core model with zero-order kinetics in SO/sub 2/, using an empirical correlation to account for shape and surface roughness of the Ca(OH)/sub 2/ particles. The diffusion coefficient of the SO/sub 2/ through the product layer (De) increases linearly with RH and the amount of additive, and the kinetic rate constant (ks) increases exponentially with RH and the amount of additive.

  16. Brief communication: Additional cases of maxillary canine-first premolar transposition in several prehistoric skeletal assemblages from the Santa Barbara Channel Islands of California.

    PubMed

    Sholts, Sabrina B; Clement, Anna F; Wärmländer, Sebastian K T S

    2010-09-01

    This article identifies and discusses seven new cases of complete maxillary canine-premolar transposition in ancient populations from the Santa Barbara Channel region of California. A high frequency of this tooth transposition has been previously documented within a single prehistoric cemetery on one of the Channel Islands. A total of 966 crania representing 30 local sites and about 7,000 years of human occupation were examined, revealing an abnormally high prevalence of this transposition trait among islanders during the Early period of southern California prehistory ( approximately 5500-600 B.C.). One of the affected crania is from a cemetery more than 7,000-years-old and constitutes the earliest case of tooth transposition in humans so far reported. The results are consistent with findings by other studies that have indicated inbreeding among the early Channel Islands groups. Together with the normal transposition rates among mainland populations, the decreasing prevalence of maxillary canine-first premolar transposition among island populations across the Holocene suggests that inbreeding on the northern Channel Islands had all but ceased by the end of the first millennium B.C., most likely as a result of increased cross-channel migration and interaction.

  17. DFT investigation of the mecahanism and stereochemistry of electrophilic transannular addition reaction of bromine to tricyclo[4.2.2.02,5]deca-3,7-diene.

    PubMed

    Abbasoglu, Rza; Misir, Miraç Nedim

    2012-03-01

    Full geometric optimization of tricyclo[4.2.2.02,5]deca-3,7-diene (TDD) has been done by DFT/B3LYP methods and the structure of the molecule was investigated. Cyclobuten double bond (I) of molecule is syn pyramidalized, and bicyclookten double bond (II) is also exo pyramidalized. The double bond (I) is more pyramidalized than the double bond (II) and it has higher reactivity. The TDD-Br2 system has been investigated by B3LYP/6-311++G(d,p) method and their stable configurations have been determined. The cationic intermediates and products obtained as a result of the addition reaction has been studied using B3LYP/6-311G(d,p) and B3LYP/6-311++G(d,p) methods. Bridged bromonium cation is more stable than U-type cation. Considering that the bridged cation does not isomerize to the less stable U-type cation, it is not possible for the U-type product to be obtained in the reaction. The bridged bromonium cation transformed into the more stable N-type cation and the N-type product was obtained via this cation. The thermodynamic stability of the anti, exo and anti, endo isomers of N-type dibromide molecule were almost identical. N-type product is 11.759 kcal mol more stable than U-type product.

  18. Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

    SciTech Connect

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L.; Taatjes, Craig A.; Sheps, Leonid

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

  19. Addition Reactions of Me3 SiCN with Aldehydes Catalyzed by Aluminum Complexes Containing in their Coordination Sphere O, S, and N Ligands.

    PubMed

    Yang, Zhi; Yi, Yafei; Zhong, Mingdong; De, Sriman; Mondal, Totan; Koley, Debasis; Ma, Xiaoli; Zhang, Dongxiang; Roesky, Herbert W

    2016-05-10

    The reaction of one equivalent of LAlH2 (1; L=HC(CMeNAr)2 , Ar=2,6-iPr2 C6 H3 , β-diketiminate ligand) with two equivalents of 2-mercapto-4,6-dimethylpyrimidine hydrate resulted in LAl[(μ-S)(m-C4 N2 H)(CH2 )2 ]2 (2) in good yield. Similarly, when N-2-pyridylsalicylideneamine, N-(2,6-diisopropylphenyl)salicylaldimine, and ethyl 3-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxylate were used as starting materials, the corresponding products LAl[(μ-O)(o-C6 H4 )CN(C5 NH4 )]2 (3), LAlH[(μ-O)(o-C4 H4 )CN(2,6-iPr2 C6 H3 )] (4), and LAl[(μ-NH)(o-C8 SH8 )(COOC2 H5 )]2 (5) were isolated. Compounds 2-5 were characterized by (1) H and (13) C NMR spectroscopy as well as by single-crystal X-ray structural analysis. Surprisingly, compounds 2-5 exhibit good catalytic activity in addition reactions of aldehydes with trimethylsilyl cyanide (TMSCN).

  20. Pressure-dependent competition among reaction pathways from first- and second-O2 additions in the low-temperature oxidation of tetrahydrofuran

    DOE PAGES

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; ...

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importancemore » in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less

  1. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran.

    PubMed

    Antonov, Ivan O; Zádor, Judit; Rotavera, Brandon; Papajak, Ewa; Osborn, David L; Taatjes, Craig A; Sheps, Leonid

    2016-08-25

    We report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10-2000 Torr and T = 400-700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely of central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O2 and QOOH + O2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.

  2. Enantioselective cascade Michael addition/cyclization reactions of 3-nitro-2H-chromenes with 3-isothiocyanato oxindoles: efficient synthesis of functionalized polycyclic spirooxindoles.

    PubMed

    Tan, Fen; Lu, Liang-Qiu; Yang, Qing-Qing; Guo, Wei; Bian, Qiao; Chen, Jia-Rong; Xiao, Wen-Jing

    2014-03-17

    An unprecedented Zn(OTf)2-catalyzed asymmetric Michael addition/cyclization cascade of 3-nitro-2H-chromenes with 3-isothiocyanato oxindoles has been disclosed. This transformation provides an efficient access to various synthetically important polycyclic spirooxindoles in a highly stereoselective manner under mild conditions (72–99% yields, up to >95:5 d.r. and >99% ee). The reaction leads to the formation of three consecutive stereocenters, including 1,3-nonadjacent tetrasubstituted carbon stereocenters, in a single operation. A bifunctional activation model of the chiral Zn(OTf)2/bis(oxazoline) complex was proposed based on control experiments, wherein the ZnII moiety serves as a Lewis acid and the N atom of the free NH group acts as a Lewis base by a hydrogen-bonding interaction.

  3. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  4. 15N electron nuclear double resonance of the primary donor cation radical P+.865 in reaction centers of Rhodopseudomonas sphaeroides: additional evidence for the dimer model.

    PubMed Central

    Lubitz, W; Isaacson, R A; Abresch, E C; Feher, G

    1984-01-01

    Four 15N hyperfine coupling constants, including signs, have been measured by electron nuclear double resonance (ENDOR) and electron nuclear nuclear triple resonance (TRIPLE) for the bacteriochlorophyll a radical cation, BChla+., in vitro and for the light-induced primary donor radical cation, P+.865, in reaction centers of Rhodopseudomonas sphaeroides R-26. A comparison of the data shows that the hyperfine coupling constants have the same sign in both radicals and are, on the average, smaller by a factor of 2 in P+.865. These results provide additional evidence that P+.865 is a bacteriochlorophyll dimer and are in contradiction with the monomer structure of P+.865 recently proposed by O'Malley and Babcock. The reduction factors of the individual 15N couplings, together with the evidence from proton ENDOR data and molecular orbital calculations, indicate a dimer structure in which only two rings (either I and I or III and III) of the bacteriochlorophyll macrocycles overlap. PMID:6096857

  5. Effect of sodium acetate additive in successive ionic layer adsorption and reaction on the performance of CdS quantum-dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, I.-Ping; Chen, Liang-Yih; Lee, Yuh-Lang

    2016-09-01

    Sodium acetate (NaAc) is utilized as an additive in cationic precursors of the successive ionic layer adsorption and reaction (SILAR) process to fabricate CdS quantum-dot (QD)-sensitized photoelectrodes. The effects of the NaAc concentration on the deposition rate and distribution of QDs in mesoporous TiO2 films, as well as on the performance of CdS-sensitized solar cells are studied. The experimental results show that the presence of NaAc can significantly accelerate the deposition of CdS, improve the QD distribution across photoelectrodes, and thereby, increase the performance of solar cells. These results are mainly attributed to the pH-elevation effect of NaAc to the cationic precursors which increases the electrostatic interaction of the TiO2 film to cadmium ions. The light-to-energy conversion efficiency of the CdS-sensitized solar cell increases with increasing concentration of the NaAc and approaches a maximum value (3.11%) at 0.05 M NaAc. Additionally, an ionic exchange is carried out on the photoelectrode to transform the deposited CdS into CdS1-xSex ternary QDs. The light-absorption range of the photoelectrode is extended and an exceptional power conversion efficiency of 4.51% is achieved due to this treatment.

  6. The electrochemical reactions of pure In with Li and Na: anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance

    SciTech Connect

    Hawks, Samantha A; Baggetto, Loic; Bridges, Craig A; Veith, Gabriel M

    2014-01-01

    Indium thin films are evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g-1 for Li and 467 mAh g-1 for Na). The native surface oxides are responsible for the anomalous electrolyte decomposition during the first cycle while oxidized In species are found to be responsible for the electrolyte decomposition during the subsequent cycles. The presence of 5wt% FEC electrolyte additive suppresses the occurrence of the anomalous electrolyte decomposition during the first cycle but is not sufficient to prevent the decomposition upon further cycling from 0 to 2 V. Prevention of the anomalous decomposition can be achieved by restricting the charge cut-off, for instance at 1.1 V, or by using larger amounts of FEC. The In films show moderately good capacity retention with storage capacities when cycled with Li (950 mAh g-1) but significantly less when cycled with Na (125 mAh g-1). XRD data reveal that several known Li-In phases (i.e LiIn, Li3In2, LiIn2 and Li13In3) form during the electrochemical reaction. In contrast, the reaction with Na is severely limited. The largest amount of inserted Na is evidenced for cells short-circuited 40 hrs at 65C, for which the XRD data show the coexistence of NaIn, In, and an unknown phase. During cycling, mechanical degradation due to repeated expansion/shrinkage, evidenced by SEM, coupled with SEI formation is the primary source of the capacity fade. Finally, we show that the In thin films exhibit very high rate capability for both Li (100 C) and Na (30 C).

  7. Observation of the 3n Evaporation Channel in the Complete Hot-Fusion Reaction {sup 26}Mg+{sup 248}Cm Leading to the New Superheavy Nuclide {sup 271}Hs

    SciTech Connect

    Dvorak, J.; Dvorakova, Z.; Kruecken, R.; Nebel, F.; Perego, R.; Schuber, R.; Tuerler, A.; Wierczinski, B.; Yakushev, A.; Bruechle, W.; Jaeger, E.; Schaedel, M.; Schausten, B.; Schimpf, E.; Chelnokov, M.; Kuznetsov, A.; Yeremin, A.; Duellmann, Ch. E.; Eberhardt, K.; Nagame, Y.

    2008-04-04

    The analysis of a large body of heavy ion fusion reaction data with medium-heavy projectiles (6{<=}Z{<=}18) and actinide targets suggests a disappearance of the 3n exit channel with increasing atomic number of the projectile. Here, we report a measurement of the excitation function of the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and the observation of the new nuclide {sup 271}Hs produced in the 3n evaporation channel at a beam energy well below the Bass fusion barrier with a cross section comparable to the maxima of the 4n and 5n channels. This indicates the possible discovery of new neutron-rich transactinide nuclei using relatively light heavy ion beams of the most neutron-rich stable isotopes and actinide targets.

  8. C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles.

    PubMed

    Hatano, Manabu; Yamashita, Kenji; Ishihara, Kazuaki

    2015-05-15

    Highly practical synthetic methods were developed for the C- and N-selective Grignard addition reactions of N-4-MeOC6H4-protected α-aldimino esters in the presence or absence of zinc(II) chloride. Diastereoselective C-alkyl addition, tandem C-alkyl addition-N-alkylation, and some transformations to synthetically useful optically active azacycles were demonstrated.

  9. Transformations and reactions of Re2(CO)8(mu-SbPh2)(mu-H) induced by the addition of a platinum(tri-t-butylphosphine) group.

    PubMed

    Adams, Richard D; Hall, Michael B; Pearl, William C; Yang, Xinzheng

    2009-01-19

    Three products Re(2)[Pt(PBu(t)(3))](mu-SbPh(2))(CO)(8)(mu-H), 2, Re(2)[Pt(CO)(PBu(t)(3))]Ph(CO)(8)(mu(3)-SbPh)(mu-H), 3, and Re(2)[Pt(PBu(t)(3))](2)(CO)(8)(mu(4)-Sb(2)Ph(2))(mu-H)(2), 4, were obtained from the reaction of Re(2)(CO)(8)(mu-SbPh(2))(mu-H), 1, with Pt(PBu(t)(3))(2). Compound 3 was also obtained from 2 by further reaction with Pt(PBu(t)(3))(2). Compound 2 is a Pt(PBu(t)(3)) adduct of 1 formed by the insertion of the platinum atom into one of the Re-Sb bonds of 1 with formation of two Pt-Re bonds. Compound 3 contains an open Re(2)Pt cluster and was also obtained in a low yield by the addition of CO to 2. The addition of SbPh(3) to 2 yielded the compound Re(2)Pt(PBu(t)(3))(Ph)(CO)(8)(SbPh(3))(mu(3)-SbPh)(mu-H), 5, a SbPh(3) derivative of 3. Compound 4 can be viewed as a dimer of the fragment Re[Pt(PBu(t)(3))](CO)(4)(SbPh)(mu-H). The two halves of the molecule are held together by Pt-Sb bonds and a significant interaction directly between the Sb atoms, Sb-Sb distance, 2.9834(7) A. The Sb-Sb bonding in 4 was explained by density functional calculations. Compound 4 adds 2 equiv of CO at 1 atm/25 degrees C, one to each platinum atom, to yield the compound [Re(CO)(4)Pt(H)(CO)(PBu(t)(3))(mu(3)-SbPh)](2) which exists as a mixture of two noninterconverting isomers, cis-6 and trans-6. Both isomers of 6 were isolated and structurally characterized. Each isomer of 6 consists of a central planar Re(2)Sb(2) core composed of two Re(CO)(4) groups with two bridging SbPh ligands. There is a Pt(H)(CO)(PBu(t)(3)) group coordinated to each antimony atom of 6. In the cis-isomer both Pt(H)(CO)(PBu(t)(3)) groups lie on the same side of the Re(2)Sb(2) plane. In the trans-isomer the Pt(H)(CO)(PBu(t)(3)) groups lie on opposite sides of the Re(2)Sb(2) plane.

  10. Channelling experiments on the lattice location of hydrogen in metals using the nuclear reaction 1H(11B, α)αα

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi

    1992-03-01

    In order to locate hydrogen dissolved in metals a nuclear reaction 1H(11B, α)αα was applied to a channelling method. As an example of this application the results of the following two experiments were briefly reported. (1) The lattice location of H in V was investigated under a <001> compressive stress of 7 kg/mm2 below the elastic limit. The configuration of hydrogen is extremely sensitive to compressive stress and changes from a tetrahedral (T) site to a diplaced-T or 4T configuration. On release of this stress the hydrogen atoms returned to T-sites. (2) To elucidate the mechanism of the enhancement of the terminal solubility for hydrogen (TSH) in Nb on alloying with undersized Mo atoms, the state of hydrogen was studied in Nb-based Nb-Mo dilute alloys. It was demonstrated that H atoms are trapped by Mo atoms and located at sites displaced from T-sites by about 0.6 Å. This result supports the trapping model for the enhancement of the TSH in the region of low Mo concentration.

  11. Molecular Characterization of Thiols in Fossil Fuels by Michael Addition Reaction Derivatization and Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    Wang, Meng; Zhao, Suoqi; Liu, Xuxia; Shi, Quan

    2016-10-04

    Thiols widely occur in sediments and fossil fuels. However, the molecular composition of these compounds is unclear due to the lack of appropriate analytical methods. In this work, a characterization method for thiols in fossil fuels was developed on the basis of Michael addition reaction derivatization followed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). Model thiol compound studies showed that thiols were selectively reacted with phenylvinylsulfone and transformed to sulfones with greater than 98% conversions. This method was applied to a coker naphtha, light and heavy gas oils, and crude oils from various geological sources. The results showed that long alkyl chain thiols are readily present in petroleum, which have up to 30 carbon atoms. Large DBE dispersity of thiols indicates that naphthenic and aromatic thiols are also present in the petroleum. This method is capable of detecting thiol compounds in the part per million range by weight. This method allows characterization of thiols in a complex hydrocarbon matrix, which is complementary to the comprehensive analysis of sulfur compounds in fossil fuels.

  12. Effect of reaction pH and CuSO4 addition on the formation of catechinone due to oxidation of (+)-catechin.

    PubMed

    Matsubara, T; Wataoka, I; Urakawa, H; Yasunaga, H

    2013-08-01

    A novel hair dyeing technique being milder and safer for a human body is desired. The oxidation product of (+)-catechin, catechinone, was invented as a safer dyestuff for hair colouring under such the situation. The preparation of catechinone by a chemical oxidation is a practical way and the objective of the study is clarify the effect of the solution pH and in the presence or absence of Cu(2+) on the formation rate and yield of catechinone in order to improve the efficiency of the dye formation. The catechinone formation was monitored by ultraviolet-visible spectroscopy. Catechinone was prepared chemically from (+)-catechin in aqueous solution with O2 gas introduced over a pH range of 7.1-11.7. The rate and amount of the dye formation increase with increasing pH. Dissociation of the hydroxyl group of the catechol part of (+)-catechin is significant for the oxidation of (+)-catechin and promotes the dye production. This is because the deprotonated (+)-catechin has a higher reactivity with O2 . The production of catechinone is accelerated by the addition of CuSO4 and the production rate reaches the maximum at pH = 8.8. (+)-Catechin - Cu(2+) complexes are formed and the formation promotes the oxidation of the catechol part of (+)-catechin at pH ≤ 8.8. On the other hand, the complex becomes too stable to proceed for the oxidation reaction at pH > 8.8.

  13. Addition complex and insertion isomers on the potential energy surface of the reaction of indium dimer with water studied with relativistic ECP

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2013-10-01

    Stationary points on the lowest singlet and triplet In2 + H2O potential energy surfaces (PESs) have been explored using the coupled cluster method, including single and double excitations with perturbative triples (CCSD(T)), and the density functional theory (DFT), employing the effective core potential (ECP) for indium (In), which accounts for scalar relativistic effects, with the triple-zeta quality basis set. The CCSD(T) calculated binding energy and anharmonic ν2-bending mode frequency for the triplet ground-state addition complex, In2… OH2(3B1), are consistent with the complex detected in the matrix isolation infrared (IR) spectroscopic study under the thermal conditions. The two minimum energy crossing points between the triplet and the singlet PESs that have been located between the structures of In2…OH2 and the transition state for the O-H bond breakage are not likely to be thermally accessible under the low-temperature matrix conditions. With the CCSD(T)-calculated In2 + H2O reaction profile and anharmonic vibrational frequencies for several In2(H)(OH) insertion product isomers, we support the IR matrix isolation detection (by two experimental groups) of the lowest energy singlet double-bridged In(μ-H)(μ-OH)In isomer. For the proposed two-step mechanism of H2 elimination from the In2(H)(OH) species, the estimated energy barriers are also compatible with experiment.

  14. Sulfonic acid resin-catalyzed addition of phenols, carboxylic acids, and water to olefins: Model reactions for catalytic upgrading of bio-oil.

    PubMed

    Zhang, Zhi-Jun; Wang, Qing-Wen; Yang, Xu-Lai; Chatterjee, Sabornie; Pittman, Charles U

    2010-05-01

    Acid-catalyzed 1-octene reactions with phenol and mixtures of phenol with water, acetic acid and 1-butanol were studied as partial bio-oil upgrading models. Bio-oil from fast biomass pyrolysis has poor fuel properties due to the presence of substantial amounts of water, carboxylic acid, phenolic derivatives and other hydroxyl-containing compounds. Additions across olefins offer a route to simultaneously lower water content and acidity while increasing hydrophobicity, stability and heating value. Amberlyst15, Dowex50WX2 and Dowex50WX4 effectively catalyzed phenol O- and C-alkylation from 65 to 120 degrees C, giving high O-alkylation selectivities in the presence of water, acetic acid and 1-butanol. Octanols and dioctyl ethers were formed from water and octyl acetates and phenol acetates from acetic acid. Phenol alkylation slowed in the presence of water. Dowex50WX2 and Dowex50WX4 were more stable in the presence of water than Amberlyst15 and were successfully recycled. Adding 1-butanol to phenol/water/1-octene, gave emulsion-like mixtures which improved phenol conversion and olefin hydration.

  15. Market surveillance on non-halal additives incorporated in surimi based products using polymerase chain reaction (PCR)-southern hybridization analysis

    NASA Astrophysics Data System (ADS)

    Aravindran, S.; Sahilah, A. M.; Aminah, A.

    2014-09-01

    Halal surveillance on halal ingredients incorporated in surimi based products were studied using polymerase chain reaction (PCR)-southern hybridization on chip analysis. The primers used in this technique were targeted on mitochondria DNA (mtDNA) of cytochrome b (cyt b) gene sequence which able to differentiate 7 type (beef, chicken, duck, goat, buffalo, lamb and pork) of species on a single chip. 17 (n = 17*3) different brands of surimi-based product were purchased randomly from Selangor local market in January 2013. Of 17 brands, 3 (n = 3*3) brands were positive for chicken DNA, 1 (n = 1*3) brand was positive for goat DNA, and the remainder 13 brands (n = 13*3) have no DNA species detected. The sensitivity of PCR-southern hybridization primers to detect each meat species was 0.1 ng. In the present study, it is evidence that PCR-Southern Hybridization analysis offered a reliable result due to its highly specific and sensitive properties in detecting non-halal additive such as plasma protein incorporation in surimi-based product.

  16. A theoretical study of the atmospherically important radical-radical reaction BrO + HO2; the product channel O2(a(1)Δg) + HOBr is formed with the highest rate.

    PubMed

    Chow, Ronald; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2016-11-09

    A theoretical study has been made of the BrO + HO2 reaction, a radical-radical reaction which contributes to ozone depletion in the atmosphere via production of HOBr. Reaction enthalpies, activation energies and mechanisms have been determined for five reaction channels. Also rate coefficients have been calculated, in the atmospherically important temperature range 200-400 K, for the two channels with the lowest activation energies, both of which produce HOBr: (R1a) HOBr(X(1)A') + O2(X(3)Σ) and (R1b) HOBr(X(1)A') + O2(a(1)Δg). The other channels considered are: (R2) BrO + HO2 → HBr + O3, (R3) BrO + HO2 → OBrO + OH and (R4) BrO + HO2 → BrOO + OH. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/AVDZ level, while relative energies of the stationary points on the reaction surface were improved at a higher level (BD(TQ)/CBS or CCSD(T)/CBS). The computed standard reaction enthalpies (ΔH) for channels (R1a), (R1b), (R2), (R3) and (R4) are -47.5, -25.0, -4.3, 14.9 and 5.9 kcal mol(-1), and the corresponding computed activation energies (ΔE) are 2.53, -3.07, 11.83, 35.0 and 37.81 kcal mol(-1). These values differ significantly from those obtained in earlier work by Kaltsoyannis and Rowley (Phys. Chem. Chem. Phys., 2002, 4, 419-427), particularly for channel (R1b), and reasons for this are discussed. In particular, the importance of obtaining an open-shell singlet wavefunction, rather than a closed-shell singlet wavefunction, for the transition state of this channel is emphasized. Rate coefficient calculations from computed potential energy surfaces were made for BrO + HO2 for the first time. Although channel (R1a) is the most exothermic, channel (R1b) has the lowest barrier height, which is negative (at -3.07 kcal mol(-1)). Most rate coefficient calculations were therefore made for (R1b). A two transition state model has been used, involving an outer and an inner transition state. The inner transition state was

  17. Assessment of a phytogenic feed additive (Digestarom P.E.P. MGE) on growth performance, processing yield, fillet composition, and survival of channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of feed additives to improve production has been identified as an important area for development in aquaculture. A study was conducted to investigate the effects of a phytogenic feed additive (Digestarom® P.E.P. MGE) on growth performance, processing yield, fillet composition, and survival ...

  18. Effects of dietary addition of vitamins C and D3 on growth and calcium and phosphorus content of pond-cultured channel catfish

    USGS Publications Warehouse

    Launer, C.A.; Tiemeier, O.W.; Deyoe, C.W.

    1978-01-01

    Fingerling channel catfish, Ictalurus punctatus, were fed one of three diets: one deficient in vitamin C (ascorbic acid), one deficient in vitamin D3 (cholecalciferol), or one containing both vitamins. Semimonthly from May to September and monthly from September to February, calcium and phosphorus were determined in eviscerated bodies and fat-free skeletons by neutron activation analysis. Body weight gains, survival rate, and feed conversion rates were determined for the May to September period. Fish on the three diet regimens showed no significant difference in weight gain, feed conversion, or survival. Interactions between sampling date and diet indicated no correlation between vitamin C or D3 and the calcium and phosphorus in eviscerated bodies and fat-free skeletons of the fish.

  19. Comparison of DNA breaks at entrance channel and Bragg peak induced by fast C6+ ions--influence of the addition of platinum atoms on DNA.

    PubMed

    Usami, Noriko; Kobayashi, Katsumi; Hirayama, Ryoichi; Furusawa, Yoshiya; Porcel, Erika; Lacombe, Sandrine; Le Sech, Claude

    2010-01-01

    When energetic carbon ion beam (GeV range) goes through the matter, inelastic processes such as electronic ionization, molecular and nuclear fragmentation occur. For carbontherapy (hadrontherapy) purpose, it is of interest to compare the number of DNA breaks -single SSB or double DSB- for a given dose at the entrance channel and at the Bragg peak to look for a possible differential effect in the number of DNA breaks induced at these two locations. Samples of free plasmids DNA and complexes of plasmids DNA added with molecules containing platinum have been placed at different locations of an experimental setup simulating penetration depths of the ion beam in water and irradiated by carbon ions 290 MeV/amu. The DNA breaks have been quantified by subsequent electrophoresis on agarose gels. To disentangle the respective role of the direct and indirect effect, a free radical scavenger of hydroxyl radicals HO degree-dimethylsulfoxide DMSO- has been added in some of the experiments. In the range of Linear Energy Transfer-LET 13 - 110 keV/microm-, the number of the DSB was found to be constant versus the LET for a given dose. Contrary, the number of the SSB decreases at the Bragg peak compared to the entrance channel. In the presence of platinum, the number of single and double breaks was considerably enhanced, and follows a similar behaviour than in the free-DNA experiments. Quantitative results on DNA damages do not show significant enhancement due to the nuclear or to the molecular fragmentation in the present experiments.

  20. 3,2-Hydroxypyridinone (3,2-HOPO) vinyl sulfonamide and acrylamide linkers: Aza-Michael addition reactions and the preparation of poly-HOPO chelators.

    PubMed

    Martinez, Gloria; Arumugam, Jayanthi; Jacobs, Hollie K; Gopalan, Aravamudan S

    2013-02-13

    The HOPO vinyl sulfonamide 3 and the corresponding HOPO acrylamide 10, were easily prepared by short synthetic sequences. Investigation of the aza-Michael reactions of these linkers showed that they proceed at a higher rate in solvent systems containing water. The scope and limits of the aza-Michael reactions of 3 and 10 were examined. Reagents 3 and 10 reacted cleanly with piperazine to give the corresponding adducts which were deprotected to give the di-HOPO ligands 7 and 16. Reaction of HOPO acrylamide 10 with 1,4,7-triazacyclononane gave the tris-adduct 17 which was deprotected to give the desired tris-HOPO ligand 18. Overall, the aza-Michael reactions of 3 and 10 appear to be governed not only by the solvent but also by the nature of the amine and the solubility of the reaction intermediates.

  1. The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance

    NASA Astrophysics Data System (ADS)

    Webb, Samantha A.; Baggetto, Loïc; Bridges, Craig A.; Veith, Gabriel M.

    2014-02-01

    Indium thin films were evaluated as an anode material for Li-ion and Na-ion batteries (theoretical capacities of 1012 mAh g-1 for Li and 467 mAh g-1 for Na). XRD data reveal that several known Li-In phases (LiIn, Li3In2, LiIn2 and Li13In3) form providing 950 mAh g-1 reversible capacity. In contrast, the reaction with Na is severely limited (75-125 mAh g-1). XRD data of short-circuited cells (40 h at 65 °C) show the coexistence of NaIn, In, and an unknown NaxIn phase. In electrodes exhibit anomalous electrolyte decomposition characterized by large discharge plateaus at 1.4 V vs Li/Li+ and 0.9 V vs Na/Na+. The presence of 5 wt% fluoroethylene carbonate additive suppresses the occurrence of the electrolyte decomposition during the first cycle but does not necessarily prevent it upon further cycling. Prevention of the anomalous decomposition can be achieved by restricting the (dis)charge voltages, increasing the current or by using larger amounts of FEC. The native surface oxides (In2O3) are responsible for the pronounced electrolyte decomposition during the first cycle while other In3+ species are responsible during the subsequent cycles. We also show that indium electrodes can exhibit very high rate capability for both Li (100 C-rate) and Na (30 C-rate).

  2. High performance addition-type thermoplastics (ATTs) - Evidence for the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated material and a bismaleimide

    NASA Technical Reports Server (NTRS)

    Pater, R. H.; Soucek, M. D.; Chang, A. C.; Partos, R. D.

    1991-01-01

    Recently, the concept and demonstration of a new versatile synthetic reaction for making a large number of high-performance addition-type thermoplastics (ATTs) were reported. The synthesis shows promise for providing polymers having an attractive combination of easy processability, good toughness, respectable high temperature mechanical performance, and excellent thermo-oxidative stability. The new chemistry involves the reaction of an acetylene-terminated material with a bismaleimide or benzoquinone. In order to clarify the reaction mechanism, model compound studies were undertaken in solutions as well as in the solid state. The reaction products were purified by flash chromatography and characterized by conventional analytical techniques including NMR, FT-IR, UV-visible, mass spectroscopy, and high pressure liquid chromatography. The results are presented of the model compound studies which strongly support the formation of a Diels-Alder adduct in the reaction of an acetylene-terminated compound and a bismaleimide or benzoquinone.

  3. Phosphine-Catalyzed Addition/Cycloaddition Domino Reactions of β'-Acetoxy Allenoate: Highly Stereoselective Access to 2-Oxabicyclo[3.3.1]nonane and Cyclopenta[a]pyrrolizine.

    PubMed

    Gu, Yiting; Hu, Pengfei; Ni, Chunjie; Tong, Xiaofeng

    2015-05-20

    Two classes of phosphine-catalyzed addition/cycloaddition domino reactions of β'-acetoxy allenoate 1 have been developed. The reaction of 1 with 2-acyl-3-methyl-acrylonitrile 2 readily occurs to give 2-oxabicyclo[3.3.1]nonane 3, furnishing the β'-addition/[4 + 4] cycloaddition domino sequence. In this sequence, β'C of allenoate 1 is an electrophilic center, and its β'C and γC serve as a 1,4-dipole. When the other reaction partner is switched to 2-acyl-3-(2-pyrrole)-acrylonitrile 8, a γ-addition/[3 + 2] cycloaddition domino reaction is instead observed, in which allenoate 1 exhibits dual electrophilic reactivity of γC and 1,3-dipole chemical behavior of βC and β'C. Furthermore, both of these two asymmetric variants have also been achieved with up to 93% ee. The domino reactions presented in this report are valuable for highly stereoselective construction of complex structures under mild reaction conditions.

  4. Control of Subthreshold Characteristics of Narrow-Channel Silicon-on-Insulator n-Type Metal-Oxide-Semiconductor Transistor with Additional Side Gate Electrodes

    NASA Astrophysics Data System (ADS)

    Okuyama, Kiyoshi; Yoshikawa, Koji; Sunami, Hideo

    2007-04-01

    A silicon-on-insulator (SOI) n-type metal-oxide-semiconductor (MOS) transistor with additional side gate electrodes is fabricated and its subthreshold characteristics are discussed. Since its device structure provides independent biasing to gates, flexible device-characteristic control for the respective device is expected. The key fabrication process is the formation of transistor gates. Additional side gate electrodes are formed by reactive ion etching (RIE) with a SiO2-covered top gate as an etching mask. Subthreshold characteristics are improved by negative side-gate biasing. In addition, the side-gate voltage VSG required to decrease off-leakage current by one decade is around 100 mV. Since the sidewall oxide thickness is chosen to be 5 nm, which is the same as the top-oxide thickness, rather sensitive subthreshold-characteristic control compared with that of biasing through a thick buried-oxide layer is achieved in response to performance requirement. In the viewpoint of stand-by-power suppression, these provide a certain controllability to a circuit operation.

  5. KANTBP 2.0: New version of a program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2008-11-01

    A FORTRAN 77 program for calculating energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach is presented. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on a finite interval with homogeneous boundary conditions: (i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann and third type at the right boundary point for the discrete spectrum problem. The resulting system of radial equations containing the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite element method. As a test desk, the program is applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675]. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 20 403 No. of bytes in distributed program, including test data, etc.: 147 563 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: This depends on the

  6. KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Abrashkevich, A. G.; Amaya-Tapia, A.; Kaschiev, M. S.; Larsen, S. Y.; Vinitsky, S. I.

    2007-10-01

    A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type. The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials. Program summaryProgram title: KANTBP Catalogue identifier: ADZH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4224 No. of bytes in distributed program, including test data, etc.: 31 232 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and (d) the number of eigensolutions required. Test run requires 30 MB Classification: 2.1, 2.4 External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986] Nature of problem: In the hyperspherical adiabatic

  7. Discovery-Oriented Approach To Organic Synthesis: Tandem Aldol Condensation-Michael Addition Reactions. Identifying Diastereotopic Hydrogens in an Achiral Molecule by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Reddin, Kendra

    2001-09-01

    We have found a beautiful example of anisochrony of diastereotopic acyclic methylene hydrogens in a symmetric diketone, synthesized by techniques traditionally performed in an introductory organic laboratory course. Synthesis of the diketone is high-yielding and easy to carry out, and the products can be directly isolated with a good degree of purity with no need of further manipulation. The reaction can be accomplished in a single laboratory session.

  8. Experience in using the covariances of some ENDF/B-V dosimetry cross sections: proposed improvements and addition of cross-reaction covariances

    SciTech Connect

    Fu, C.Y.; Hetrick, D.M.

    1982-01-01

    Recent ratio data, with carefully evaluated covariances, were combined with eleven of the ENDF/B-V dosimetry cross sections using the generalized least-squares method. The purpose was to improve these evaluated cross sections and covariances, as well as to generate values for the cross-reaction covariances. The results represent improved cross sections as well as realistic and usable covariances. The latter are necessary for meaningful intergral-differential comparisons and for spectrum unfolding.

  9. Measurement of $\\mathrm{ t \\bar{t} } $ production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at $\\sqrt{s} =$ 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2016-07-07

    Jet multiplicity distributions in top quark pair (tt-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 fb-1. The measurement is performed in the dilepton decay channels (e+e-+μ- and e±μ). Furthermore, the absolute and normalized differential cross sections for tt-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential tt-barb and tt-barbb-bar cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. Finally, the data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading ordercalculation.

  10. Measurement of $$\\mathrm{ t \\bar{t} } $$ production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at $$\\sqrt{s} =$$ 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-07-07

    Jet multiplicity distributions in top quark pair (tt-bar) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 fb-1. The measurement is performed in the dilepton decay channels (e+e-,μ+μ- and e±μ∓). Furthermore, the absolute and normalized differential cross sections for tt-bar production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential tt-barb and tt-barbb-bar cross sections are presented formore » the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. Finally, the data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading ordercalculation.« less

  11. Measurement of toverline{t} production with additional jet activity, including b quark jets, in the dilepton decay channel using pp collisions at √{s} = 8 {TeV}

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Yonamine, R.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2016-07-01

    Jet multiplicity distributions in top quark pair ({t}{overline{t}}) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7 {fb}^ {-1}. The measurement is performed in the dilepton decay channels (e^+e^-, μ^+ μ^-, and e^{±} μ^{∓}). The absolute and normalized differential cross sections for {t}overline{t} production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential {t overline{t} b} and {t overline{t} b overline{b}} cross sections are presented for the first time as a function of the kinematic properties of the leading additional b jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.

  12. Cascade Michael addition/cycloketalization of cyclic 1,3-dicarbonyl compounds: important role of the tethered alcohol of α,β-unsaturated carbonyl compounds on reaction rate and regioselectivity.

    PubMed

    Yao, Hongliang; Song, Liyan; Liu, Yuan; Tong, Rongbiao

    2014-09-19

    Reactions of α,β-unsaturated aldehydes and cyclic 1,3-dicarbonyl compounds proceed primarily by cascade Knoevenagel condensation/six-π-electron electrocyclization (K6EC, formal [3 + 3] cycloaddition), while α,β-unsaturated ketones usually react with cyclic 1,3-dicarbonyl compounds in a 1,4-addition manner. This paper discloses our findings that under acidic conditions, α,β-unsaturated carbonyl compounds (ketones and aldehydes) with a tethered alcohol react with cyclic 1,3-dicarbonyl compounds in a highly regioselective 1,4-addition fashion via in situ generation of a hypothetical α-methylene cyclic oxonium ion as the reactive Michael acceptor. Our studies uncovered the important effect of the tethered alcohol on the reaction rate and/or efficiency and some new mechanistic aspects of the cascade Michael addition/cycloketalization. Finally, the substrate scope was examined, and 43 analogues of penicipyrone and tenuipyrone were prepared in good to excellent yields.

  13. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  14. Reinvestigation of the Unimolecular Reactions of CHF2CHF2: Identification of the 1,1-HF Elimination Component from Addition of :CFCHF2 to trans-2-Butene.

    PubMed

    Smith, Caleb A; Heard, George L; Setser, D W; Holmes, Bert E

    2016-12-01

    The recombination of ·CHF2 radicals in a room-temperature bath gas was used to generate CHF2CHF2* (where * indicates vibrational excitation) molecules with 96 kcal mol(-1) of vibrational energy. The CHF2CHF2* molecules decompose by four-centered 1,2-HF elimination and by three-centered 1,1-HF elimination reactions to give HF and either CHF═CF2 or :CFCHF2, respectively. The 1,1-HF component was identified by trapping the :CFCHF2 carbene with trans-2-butene that forms 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane. The total rate constant for the decomposition of CHF2CHF2* was 6.0 × 10(5) s(-1), and the rate constant for the 1,1-HF pathway forming the carbene, as measured by the 1-fluoro-1-difluoromethyl-2,3-dimethylcyclopropane yield, was 1.4 × 10(5) s(-1). On the basis of matching the experimental rate constants to calculated statistical rate constants, the threshold energies for the four-centered and three-centered reactions are 78 and ≤85 kcal mol(-1), respectively.

  15. Phospha-Michael addition reaction of maleimides employing N-heterocyclic phosphine-thiourea as a phosphonylation reagent: synthesis of 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonate derivatives.

    PubMed

    Molleti, Nagaraju; Bjornberg, Chad; Kang, Jun Yong

    2016-12-07

    N-Heterocyclic phosphine (NHP)-thiourea as a novel phosphonylation reagent has been successfully applied for the phospha-Michael reaction of maleimides under catalyst and additive free reaction conditions. This methodology enables desymmetrization of a variety of maleimide derivatives to provide 1-aryl-2,5-dioxopyrrolidine-3-yl-phosphonates in up to 92% yield. Synthetic manipulation of this Michael adduct afforded an ethylphosphonate and a phosphino lactam. Furthermore, a scale-up experiment for its practical usage as a versatile precursor in organic synthesis was readily demonstrated.

  16. rac-9-ethyl-12a-hydroxytetradecahydrotriphenylene-1,5(2H,4bH)-dione: stabilization of a new isomer of a functionalized perhydrotriphenylene through a tandem Michael addition-aldol reaction.

    PubMed

    García, Luis Arturo; Bernès, Sylvain; Anaya de Parrodi, Cecilia

    2008-06-01

    The title compound, C20H30O3, is a new functionalized perhydrotriphenylene derivative formed via a tandem Michael addition-aldol reaction. The structural study reveals that the system of fused rings approximates a C2 point symmetry, with trans-cis-cis ring junctions, while highly symmetric all-trans perhydrotriphenylene, previously characterized, approximates a D3 symmetry. The perhydrotriphenylene nucleus of the title compound corresponds to the third stable stereoisomer isolated for this polycyclic system. Considering that the C(s) isomer was obtained recently through a similar tandem reaction, a general strategy is proposed which may help to obtain other stable stereoisomers of perhydrotriphenylene.

  17. Tandem Esterification/1,4-Addition-Type Friedel-Crafts Alkylation Reactions of Phenols/Naphthols with Olefinic Thioazlactones: Access to Functionalized 1,2-Dihydrobenzo[f]chromen-3-ones and 3,4-Dihydrochromen-2-ones.

    PubMed

    Ziyaei Halimehjani, Azim; Khoshdoun, Maryam

    2016-07-01

    An efficient approach for the synthesis of novel alkyl 2,3-dihydro-3-oxo-1-aryl-1H-benzo[f]chromen-2-ylcarbamodithioates and alkyl 3,4-dihydro-2-oxo-4-aryl-2H-chromen-3-ylcarbamodithioates from 2-(alkylthio)thioazlactones (thioazlactones) and phenols or naphthols catalyzed by PTSA was developed. The reaction proceeds via a domino esterification/intramolecular 1,4-addition-type Friedel-Crafts alkylation reaction to afford interesting complex molecules by a simple procedure with high yields and diastereoselectivity. An X-ray analysis was carried out to firmly establish the stereochemistry of the products.

  18. Theoretical study on the reaction mechanisms of CH 2SH + NO reaction

    NASA Astrophysics Data System (ADS)

    Zhan, Peiying; Pan, Yaru; Tang, Yizhen

    2009-06-01

    The mechanisms for the CH2SH + NO reaction were investigated on both of the singlet and triplet PES at the BMC-CCSD//B3LYP/6-311+G(d,p) level. The results indicate that the singlet PES is much lower than the triplet PES energetically; therefore, the reaction occurs on the singlet PES dominantly. The most favorable channel on the singlet PES takes place by a barrierless addition of N atom to CH2SH radical to form HSCH2NO. Subsequently, the rearrangement of the initial adduct HSCH2NO (IM1) to form another intermediate IM3 via a four-center transition state, followed by the C-O bond fission in IM3 leading to the major product CH2S + HNO. Due to high barriers, other product including HC(N)SH + HO, HON + CH2S, and HNO + CHSH could be negligible. The direct abstraction channel was also determined to yield CH2S + HON. With high barrier (33.3 kcal/mol), it is not competitive with the addition channel, in which all stationary points are lower than reactant energetically. While on the triplet PES, with the lowest barrier height (18.8 kcal/mol), the direct N-abstracted channel to form CH2S + HNO is dominant. However, it is not competitive with the channels on the singlet PES. Our results are in good accordance with experimental conclusions that the reaction proceeds via addition mechanism.

  19. On the role of energy separated in fission process, excitation energy and reaction channels effects in the isomeric ratios of fission product 135Xe in photofission of actinide elements

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Mishinski, G. V.; Zhemenik, V. I.

    2016-07-01

    In this work we present the isomeric ratio of fission product 135Xe in the photo-fission of actinide elements 232Th, 233U and 237Np induced by end-point bremsstrahlung energies of 13.5, 23.5 and 25.0 MeV which were determined by the method of inert gaseous flow. The data were analyzed, discussed and compared with the similar data from literature to examine the role of energy separated in fission process, excitation energy and reaction channels effects.

  20. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  1. Amino group combined P/Ge and P/Sn Lewis pairs: synthesis and dipolar addition reactions to alkyne and aldehyde molecules.

    PubMed

    Yu, Ying; Li, Jiancheng; Liu, Weiping; Ye, Qingsong; Zhu, Hongping

    2016-04-14

    Amino group combined P/Ge-based frustrated Lewis pairs (FLPs) Ph2PN(R)GeCl3 (R = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2), and C6H11 (3)) and Ph2PN(2,6-iPr2C6H3)GeMe3 (4) as well as P/Sn-based FLP Ph2PN(2,6-iPr2C6H3)SnMe3 (5) were prepared and utilized for reactions with alkyne and aldehyde molecules. Compounds 1-3 each reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give zwitterionic cyclic vinyls [Ph2PN(R)GeCl3](MeO2CC[double bond, length as m-dash]CCO2Me) (6-8) and compound 1 reacted with HC[triple bond, length as m-dash]CCO2Me to give the similar compound [Ph2PN(2,4,6-Me3C6H2)GeCl3](HC[double bond, length as m-dash]CCO2Me) (9). Compound 4 reacted with RC[triple bond, length as m-dash]CCO2Me to afford acyclic vinyls 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(R)[double bond, length as m-dash]C(CO2Me)GeMe3 (R = CO2Me (10), H (11)) and 5 reacted with MeO2CC[triple bond, length as m-dash]CCO2Me to give 2,6-iPr2C6H3N[double bond, length as m-dash]P(Ph2)C(CO2Me)[double bond, length as m-dash]C(CO2Me)SnMe3 (12). The reactions of 1 with CH3CH2CHO and 1,4-(CHO)2C6H4 were also investigated and yielded novel zwitterionic OCPNGe five-heteroatom cycles [Ph2PN(2,6-iPr2C6H3)GeCl3][CH(CH2CH3)O] (13) and [Ph2PN(2,6-iPr2C6H3)GeCl3][p-(OCH)C6H4CHO][Cl3GeN(2,6-iPr2C6H3)PPh2] (14). Compounds 1-14 were characterized by NMR ((1)H, (13)C, and (31)P) and CHN elemental analysis, of which 1, 7, and 10-14 were further studied by X-ray crystallography. The reactions of 4 (or 5) with RC[triple bond, length as m-dash]CCO2Me to produce 10-12 present a novel way of obtaining the germyl (or stannyl) and iminophosphoranyl co-substituted vinyls.

  2. Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Mokhtari, O.; Bottrill, M.; Clode, M. P.; Green, M. A.; Mannan, S. H.

    2010-12-01

    In this study we consider the effect of separately adding 0.5 wt.% to 1.5 wt.% Zn or 0.5 wt.% to 2 wt.% Al to the eutectic Sn-3.5Ag lead-free solder alloy to limit intermetallic compound (IMC) growth between a limited volume of solder and the contact metallization. The resultant solder joint microstructure after reflow and high-temperature storage at 150°C for up to 1000 h was investigated. Experimental results confirmed that the addition of 1.0 wt.% to 1.5 wt.% Zn leads to the formation of Cu-Zn on the Cu substrate, followed by massive spalling of the Cu-Zn IMC from the Cu substrate. Growth of the Cu6Sn5 IMC layer is significantly suppressed. The addition of 0.5 wt.% Zn does not result in the formation of a Cu-Zn layer. On Ni substrates, the Zn segregates to the Ni3Sn4 IMC layer and suppresses its growth. The addition of Al to Sn-3.5Ag solder results in the formation of Al-Cu IMC particles in the solder matrix when reflowed on the Cu substrate, while on Ni substrates Al-Ni IMCs spall into the solder matrix. The formation of a continuous barrier layer in the presence of Al and Zn, as reported when using solder baths, is not observed because of the limited solder volumes used, which are more typical of reflow soldering.

  3. Converged three-dimensional quantum mechanical reaction probabilities for the F + H2 reaction on a potential energy surface with realistic entrance and exit channels and comparisons to results for three other surfaces

    NASA Technical Reports Server (NTRS)

    Lynch, Gillian C.; Halvick, Philippe; Zhao, Meishan; Truhlar, Donald G.; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.

    1991-01-01

    Accurate three-dimensional quantum mechanical reaction probabilities are presented for the reaction F + H2 yields HF + H on the new global potential energy surface 5SEC for total angular momentum J = 0 over a range of translational energies from 0.15 to 4.6 kcal/mol. It is found that the v-prime = 3 HF vibrational product state has a threshold as low as for v-prime = 2.

  4. Barrierless reactions between two closed-shell molecules. II. Dynamics of F2 + CH3SSCH3 reaction.

    PubMed

    Shao, Hua-Chieh; Xie, Tingxian; Lu, Yu-Ju; Chang, Chih-Hsuan; Pan, Jun-Wei; Lin, Jim J

    2009-01-07

    A second example of a barrierless reaction between two closed-shell molecules is reported. The reaction F(2)+CH(3)SSCH(3) has been investigated with crossed molecular beam experiments and ab initio calculations. Compared with previous results of the F(2)+CH(3)SCH(3) reaction [J. Chem. Phys. 127, 101101 (2007); J. Chem. Phys. 128, 104317 (2008)], a new product channel leading to CH(3)SF+CH(3)SF is observed to be predominant in the title reaction, whereas the anticipated HF+C(2)H(5)S(2)F channel is not found. In addition, the F+C(2)H(6)S(2)F product channel, the analog to the F+C(2)H(6)SF channel in the F(2)+CH(3)SCH(3) reaction, opens up at collision energies higher than 4.3 kcal/mol. Angular and translational energy distributions of the products are reported and collision energy dependences of the reaction cross section and product branching ratio are shown. The reaction barrier is found to be negligible (<1 kcal/mol). Multireference ab initio calculations suggest a reaction mechanism involving a short-lived intermediate which can be formed without activation energy.

  5. Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes generated furans appending reactive phosphorus ylides through cumulated trienoates as key intermediates: a phosphine α-addition-δ-evolvement of an anion pathway.

    PubMed

    Deng, Jie-Cheng; Chuang, Shih-Ching

    2014-11-07

    Multicomponent reactions of phosphines, diynedioates, and aryl aldehydes have been demonstrated, providing trisubstituted furans appending reactive phosphorus ylides, through cumulated trienoates as key intermediates. The proposed trienoate intermediates, 1,5-dipolar species formed via nucleophilic α-attack of phosphines toward diynedioates (α-addition-δ-evolvement of an anion, abbreviated αAδE), undergo addition to aryl aldehydes followed by 5-endo-dig cyclization, proton transfer, and resonance to give trisubstituted furans. Furthermore, the phosphorus ylides are oxidized to α-keto ester furans and utilized as Wittig reagents.

  6. Efficient Cu-catalyzed atom transfer radical addition reactions of fluoroalkylsulfonyl chlorides with electron-deficient alkenes induced by visible light.

    PubMed

    Tang, Xiao-Jun; Dolbier, William R

    2015-03-27

    Fluoroalkylsulfonyl chlorides, R(f)SO2Cl, in which R(f)=CF3, C4F9, CF2H, CH2F, and CH2CF3, are used as a source of fluorinated radicals to add fluoroalkyl groups to electron-deficient, unsaturated carbonyl compounds. Photochemical conditions, using Cu mediation, are used to produce the respective α-chloro-β-fluoroalkylcarbonyl products in excellent yields through an atom transfer radical addition (ATRA) process. Facile nucleophilic replacement of the α-chloro substituent is shown to lead to further diverse functionalization of the products.

  7. Cross sections for the formation of 69Znm,g and 71Znm,g in neutron induced reactions near their thresholds: Effect of reaction channel on the isomeric cross-section ratio

    NASA Astrophysics Data System (ADS)

    Nesaraja, C. D.; Sudár, S.; Qaim, S. M.

    2003-08-01

    Excitation functions were measured for the reactions 72Ge(n,α)69Znm,g, 69Ga(n,p)69Znm,g, 70Zn(n,2n)69Znm,g, 74Ge(n,α)71Znm,g, and 71Ga(n,p)71Znm,g over the neutron energy range of 6.3 12.4 MeV. Quasimonoenergetic neutrons in this energy range were produced via the 2H(d,n)3He reaction using a deuterium gas target at the Jülich variable energy compact cyclotron. Use was made of the activation technique in combination with high-resolution HPGe-detector γ-ray spectroscopy. In a few cases low-level β-counting was also applied. In order to decrease the interfering activities in those cases, either radiochemical separations were performed or isotopically enriched targets were used. For most of the reactions, the present measurements provide the first consistent sets of data near their thresholds. From the available experimental data, isomeric cross-section ratios were determined for the isomeric pair 69Znm,g in (n,α), (n,p), and (n,2n) reactions, and for the pair 71Znm,g in (n,α) and (n,p) reactions. Nuclear model calculations using the code STAPRE, which employs the Hauser-Feshbach (statistical model) and exciton model (precompound effects) formalisms, were undertaken to describe the formation of both isomeric and ground states of the products. The calculational results on the total (n,α), (n,p), and (n,2n) cross sections agree fairly well with the experimental data. The experimental isomeric cross-section ratios, however, are reproduced only approximately by the calculation. For both the isomeric pairs investigated, the isomeric cross-section ratio in the (n,p) reaction is higher than in other reactions.

  8. Channel plate for DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1998-01-01

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface.

  9. Channel plate for DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1998-01-13

    This invention is a channel plate that facilitates data compaction in DNA sequencing. The channel plate has a length, a width and a thickness, and further has a plurality of channels that are parallel. Each channel has a depth partially through the thickness of the channel plate. Additionally an interface edge permits electrical communication across an interface through a buffer to a deposition membrane surface. 15 figs.

  10. Development of a ligase detection reaction/CGE method using a LIF dual-channel detection system for direct identification of allelic composition of mutated DNA in a mixed population of excess wild-type DNA.

    PubMed

    Hamada, Mariko; Shimase, Koji; Noda, Keiichi; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-05-01

    We developed an inexpensive LIF dual-channel detection system and applied it to a ligase detection reaction (LDR)/CGE method to identify the allelic composition of low-abundance point mutations in a large excess of wild-type DNA in a single reaction with a high degree of certainty. Ligation was performed in a tube with a nonlabeled common primer and multiplex discriminating primers, each labeled with a different standard fluorophore. The discriminating primers were directed against three mutant variations in codon 12 of the K-ras oncogene that have a high diagnostic value for colorectal cancer. LDR products generated from a particular K-ras mutation through successful ligation events were separated from remaining discriminating primers by CGE, followed by LIF detection using the new system, which consists of two photomultiplier tubes, each with a unique optical filter. Each fluorophore label conjugated to the corresponding LDR product produced a distinct fluorescence signal intensity ratio from the two detection channels, allowing spectral discrimination of the three labels. The ability of this system to detect point mutations in a wild-type sequence-dominated population, and to disclose their allelic composition, was thus demonstrated successfully.

  11. The Davis-Beirut reaction: N1,N2-disubstituted-1H-indazolones via 1,6-electrophilic addition to 3-alkoxy-2H-indazoles.

    PubMed

    Conrad, Wayne E; Fukazawa, Ryo; Haddadin, Makhluf J; Kurth, Mark J

    2011-06-17

    A variety of electrophiles (anhydrides, acid chlorides, carbonochloridates, sulfonyl chlorides, and alkyl bromides) react with 3-methoxy-2H-indazole (1a), benzoxazin[3,2-b]indazole (1d), and oxazolino[3,2-b]indazole (1e) - substrates available by the Davis-Beirut reaction - to yield a diverse set of N(1),N(2)-disubstituted-1H-indazolones. With certain electrophiles, an AERORC (Addition of the Electrophile, Ring Opening, and Ring Closure) process on indazole 1d results in indazoloindazolone formation. An intriguing aspect of these N(1),N(2)-disubstituted-1H-indazolones is that they are poised for diversification through, for example, azide-alkyne cycloaddition chemistry reported here.

  12. Integrated polymerase chain reaction/electrophoresis instrument

    DOEpatents

    Andresen, Brian D.

    2000-01-01

    A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.

  13. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  14. Communication: Probing the entrance channels of the X + CH{sub 4}{yields} HX + CH{sub 3} (X = F, Cl, Br, I) reactions via photodetachment of X{sup -}-CH{sub 4}

    SciTech Connect

    Cheng Min; Feng Yuan; Du Yikui; Zhu Qihe; Zheng Weijun; Czako, Gabor; Bowman, Joel M.

    2011-05-21

    The entrance channel potentials of the prototypical polyatomic reaction family X + CH{sub 4}{yields} HX + CH{sub 3} (X = F, Cl, Br, I) are investigated using anion photoelectron spectroscopy and high-level ab initio electronic structure computations. The pre-reactive van der Waals (vdW) wells of these reactions are probed for X = Cl, Br, I by photodetachment spectra of the corresponding X{sup -}-CH{sub 4} anion complex. For F-CH{sub 4}, a spin-orbit splitting ({approx}1310 cm{sup -1}) much larger than that of the F atom (404 cm{sup -1}) was observed, in good agreement with theory. This showed that in the case of the F-CH{sub 4} system the vertical transition from the anion ground state to the neutral potentials accesses a region between the vdW valley and transition state of the early-barrier F + CH{sub 4} reaction. The doublet splittings observed in the other halogen complexes are close to the isolated atomic spin-orbit splittings, also in agreement with theory.

  15. Infrared Stark and Zeeman spectroscopy of OH-CO: The entrance channel complex along the OH + CO → trans-HOCO reaction pathway

    NASA Astrophysics Data System (ADS)

    Brice, Joseph T.; Liang, Tao; Raston, Paul L.; McCoy, Anne B.; Douberly, Gary E.

    2016-09-01

    Sequential capture of OH and CO by superfluid helium droplets leads exclusively to the formation of the linear, entrance-channel complex, OH-CO. This species is characterized by infrared laser Stark and Zeeman spectroscopy via measurements of the fundamental OH stretching vibration. Experimental dipole moments are in disagreement with ab initio calculations at the equilibrium geometry, indicating large-amplitude motion on the ground state potential energy surface. Vibrational averaging along the hydroxyl bending coordinate recovers 80% of the observed deviation from the equilibrium dipole moment. Inhomogeneous line broadening in the zero-field spectrum is modeled with an effective Hamiltonian approach that aims to account for the anisotropic molecule-helium interaction potential that arises as the OH-CO complex is displaced from the center of the droplet.

  16. Additive Effects on Asymmetric Catalysis.

    PubMed

    Hong, Liang; Sun, Wangsheng; Yang, Dongxu; Li, Guofeng; Wang, Rui

    2016-03-23

    This review highlights a number of additives that can be used to make asymmetric reactions perfect. Without changing other reaction conditions, simply adding additives can lead to improved asymmetric catalysis, such as reduced reaction time, improved yield, or/and increased selectivity.

  17. NIF Gamma Reaction History

    NASA Astrophysics Data System (ADS)

    Herrmann, H. W.; Kim, Y.; Young, C. S.; Mack, J. M.; McEvoy, A. M.; Hoffman, N. M.; Wilson, D. C.; Langenbrunner, J. R.; Evans, S.; Batha, S. H.; Stoeffl, W.; Lee, A.; Horsfield, C. J.; Rubery, M.; Miller, E. K.; Malone, R. M.; Kaufman, M. I.

    2010-11-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostics is to provide bang time and burn width information based upon measurement of fusion gamma-rays. This is accomplished with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. In addition, the GRH detectors can perform γ-ray spectroscopy to explore other nuclear processes from which additional significant implosion parameters may be inferred (e.g., plastic ablator areal density). Implementation is occurring in 2 phases: 1) four PMT-based channels mounted to the outside of the NIF target chamber at ˜6 m from TCC (GRH-6m) for the 3e13-3e16 DT neutron yield range expected during the early ignition-tuning campaigns; and 2) several channels located just inside the target bay shield wall at ˜15 m from TCC (GRH-15m) with optical paths leading through the wall into well-shielded streak cameras and PMTs for the 1e16-1e20 yield range expected during the DT ignition campaign. This suite of diagnostics will allow exploration of interesting γ-ray physics well beyond the ignition campaign. Recent data from OMEGA and NIF will be shown.

  18. First principles (DFT) characterization of Rh(I) /dppp-catalyzed C-H activation by tandem 1,2-addition/1,4-Rh shift reactions of norbornene to phenylboronic acid.

    PubMed

    Kantchev, Eric Assen B; Pangestu, Surya R; Zhou, Feng; Sullivan, Michael B; Su, Hai-Bin

    2014-11-17

    The C-H activation in the tandem, "merry-go-round", [(dppp)Rh]-catalyzed (dppp=1,3-bis(diphenylphosphino)propane), four-fold addition of norborene to PhB(OH)2 has been postulated to occur by a C(alkyl)H oxidative addition to square-pyramidal Rh(III) -H species, which in turn undergoes a C(aryl)-H reductive elimination. Our DFT calculations confirm the Rh(I) /Rh(III) mechanism. At the IEFPCM(toluene, 373.15 K)/PBE0/DGDZVP level of theory, the oxidative addition barrier was calculated to be 12.9 kcal mol(-1) , and that of reductive elimination was 5.0 kcal mol(-1) . The observed selectivity of the reaction correlates well with the relative energy barriers of the cycle steps. The higher barrier (20.9 kcal mol(-1) ) for norbornyl-Rh protonation ensures that the reaction is steered towards the 1,4-shift (total barrier of 16.3 kcal mol(-1) ), acting as an equilibration shuttle. The carborhodation (13.2 kcal mol(-1) ) proceeds through a lower barrier than the protonation (16.7 kcal mol(-1) ) of the rearranged aryl-Rh species in the absence of o- or m-substituents, ensuring multiple carborhodations take place. However, for 2,5-dimethylphenyl, which was used as a model substrate, the barrier for carborhodation is increased to 19.4 kcal mol(-1) , explaining the observed termination of the reaction at 1,2,3,4-tetra(exo-norborn-2-yl)benzene. Finally, calculations with (Z)-2-butene gave a carborhodation barrier of 20.2 kcal mol(-1) , suggesting that carborhodation of non-strained, open-chain substrates would be disfavored relative to protonation.

  19. Reaction Mechanism of the Symmetry-Forbidden [2+2] Addition of Ethylene and Acetylene to Amido-Substituted Digermynes and Distannynes Ph2N-EE-NPh2, (E = Ge, Sn): A Theoretical Study.

    PubMed

    Zhao, Lili; Jones, Cameron; Frenking, Gernot

    2015-08-24

    Quantum chemical calculations of reaction mechanisms for the formal [2+2] addition of ethylene and acetylene to the amido-substituted digermyne and distannyne Ph2N-EE-NPh2 (E = Ge, Sn) have been carried out by using density functional theory at the BP86/def2-TZVPP level. The nature and bonding situations were studied with the NBO method and with the charge and energy decomposition analysis EDA-NOCV. The addition of ethylene to Ph2N-EE-NPh2 takes place through an initial [2+1] addition to one metal atom and consecutive rearrangement to four-membered cyclic species, which feature a weak E-E bond. Rotation about the C-C bond with concomitant rupture of the E-E bond leads to the 1,2-disubstituted ethanes, which have terminal E(NPh2) groups. The overall reaction Ph2N-EE-NPh2+C2H4→(Ph2N)E-C2H4-E(NPh2) has very low activation barriers and is slightly exergonic for E = Ge but slightly endergonic for E = Sn. The analysis of the electronic structure shows that there is charge donation of nearly one electron to the ethylene moiety already in the first part of the reaction. The energy partitioning analysis suggests that the HOMO(Ph2N-EE-NPh2)→LUMO(C2H4) interaction has a similar strength as the HOMO(C2H4)→LUMO(Ph2N-EE-NPh2) interaction. The [2+2] addition of acetylene to Ph2N-EE-NPh2 also takes place through an initial [2+1] approach, which eventually leads to 1,2-disubstituted olefins (Ph2N)E-C2H2-E(NPh2). The formation of the energetically lowest lying conformations of cis-(Ph2N)E-C2H2-E(NPh2), which occurs with very low activation barriers, is clearly exergonic for the germanium and the tin compound. The trans-coordinated isomers of (Ph2N)E-C2H2-E(NPh2) are slightly lower in energy than the cis form but they are separated by a substantial energy barrier for the rotation about the C-C bond. The energy decomposition analysis indicates that the initial reaction takes place under formation of electron-sharing bonds between triplet fragments rather than HOMO

  20. SU-E-T-236: Deconvolution of the Total Nuclear Cross-Sections of Therapeutic Protons and the Characterization of the Reaction Channels

    SciTech Connect

    Ulmer, W.

    2015-06-15

    Purpose: The knowledge of the total nuclear cross-section Qtot(E) of therapeutic protons Qtot(E) provides important information in advanced radiotherapy with protons, such as the decrease of fluence of primary protons, the release of secondary particles (neutrons, protons, deuterons, etc.), and the production of nuclear fragments (heavy recoils), which usually undergo β+/− decay by emission of γ-quanta. Therefore determination of Qtot(E) is an important tool for sophisticated calculation algorithms of dose distributions. This cross-section can be determined by a linear combination of shifted Gaussian kernels and an error-function. The resonances resulting from deconvolutions in the energy space can be associated with typical nuclear reactions. Methods: The described method of the determination of Qtot(E) results from an extension of the Breit-Wigner formula and a rather extended version of the nuclear shell theory to include nuclear correlation effects, clusters and highly excited/virtually excited nuclear states. The elastic energy transfer of protons to nucleons (the quantum numbers of the target nucleus remain constant) can be removed by the mentioned deconvolution. Results: The deconvolution of the term related to the error-function of the type cerf*er((E-ETh)/σerf] is the main contribution to obtain various nuclear reactions as resonances, since the elastic part of energy transfer is removed. The nuclear products of various elements of therapeutic interest like oxygen, calcium are classified and calculated. Conclusions: The release of neutrons is completely underrated, in particular, for low-energy protons. The transport of seconary particles, e.g. cluster formation by deuterium, tritium and α-particles, show an essential contribution to secondary particles, and the heavy recoils, which create γ-quanta by decay reactions, lead to broadening of the scatter profiles. These contributions cannot be accounted for by one single Gaussian kernel for the

  1. A Calibration Reaction For NIF

    NASA Astrophysics Data System (ADS)

    Vande Kolk, B.; Chen, Y.; Deboer, R. J.; Gilardy, G.; Liu, Q.; Lyons, S.; Manukyan, K.; Moran, M.; Seymour, C.; Stech, E.; Strauss, S.; Wiescher, M.

    2016-09-01

    The National Ignition Facility (NIF) can produce a temperature range imitating that which occurs in a star during its hydrogen burning phase. The 10B(p, α)7Be reaction has been selected as a way to determine the temperatures created at NIF. The advantage of this calibration reaction is the product: Be-7 has a half-life of 53.2 days, sufficient for gathering and studying the abundance created while also decaying within several months. A 10 keV resonance exists which dominates the 10B(p, α)7Be reaction as well as 10B(p, γ)11C, another reaction channel of 10B+p. Additionally, another resonance exists for both reactions at 600 keV. There is not reliable extrapolation to the low energies corresponding to those of NIF due to the two mentioned resonances interfering, with a shared spin-parity 5/2+. Measurements were performed and will be presented for the cross-sections of the 10B(p, α)7Be and 10B(p, γ)11C reactions to more confidently extrapolate to lower energies. Research supported by NSF PHY-1419765 and JINA-CEE PHY-1430152.

  2. Relationship between the para-homologous sodium channel point mutation (g --> c at nucleotide 2979) and knockdown resistance in the German cockroach using multiplex polymerase chain reaction to discern genotype.

    PubMed

    Valles, Steven M; Perera, Omaththage P; Strong, Charles A

    2003-06-01

    Extensive use of pyrethroid insecticides for urban pest control has led to widespread pyrethroid resistance in the German cockroach. A mutation at nucleotide position 2979 (G to C, causing a leucine to phenylalanine change) in the S6 transmembrane segment of domain II of the para-homologous voltage-gated sodium channel has been previously identified in knockdown-resistant cockroaches and demonstrated by site-directed mutagenesis to reduce channel sensitivity to pyrethroids. In a recent survey, 83% of pyrethroid-resistant German cockroach populations were found to possess this mutation. A German cockroach strain with a low incidence of the L993F mutation was subjected to selection pressure with cypermethrin and subsequently evaluated over several generations for the knockdown resistance phenotype. Correspondingly, we determined the genotype of individual cockroaches of each population at the 2979 position of the para-homologous gene. Genotype was discerned by development of a polymerase chain reaction method that employed a mismatched primer-template set. A direct relationship was observed between mean knockdown time and the presence of the kdr mutation. Furthermore, individuals homozygous for the kdr mutation exhibited a significantly higher mean knockdown time than heterozygotes or wildtype cockroaches. This is the first report demonstrating the progressive expression of the kdr allele in response to insecticide selection pressure.

  3. Chemistry in Microfluidic Channels

    ERIC Educational Resources Information Center

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  4. Mechanistic investigations of CO-photoextrusion and oxidative addition reactions of early transition-metal carbonyls: (η(5)-C5H5)M(CO)4 (M = V, Nb, Ta).

    PubMed

    Su, Shih-Hao; Su, Ming-Der

    2016-06-28

    The mechanisms for the photochemical Si-H bond activation reaction are studied theoretically using a model system of the group 5 organometallic compounds, η(5)-CpM(CO)4 (M = V, Nb, and Ta), with the M06-2X method and the Def2-SVPD basis set. Three types of reaction pathways that lead to final insertion products are identified. The structures of the intersystem crossings, which play a central role in these photo-activation reactions, are determined. The intermediates and transitional structures in either the singlet or triplet states are also calculated to provide a mechanistic explanation of the reaction pathways. All of the potential energy surfaces for the group 5 η(5)-CpM(CO)4 complexes are quite similar. In particular, the theoretical evidence suggests that after irradiation using light, η(5)-CpM(CO)4 quickly loses one CO ligand to yield two tricarbonyls, in either the singlet or the triplet states. The triplet tricarbonyl 16-electron intermediates, ([η(5)-CpM(CO)3](3)), play a key role in the formation of the final oxidative addition product, η(5)-CpM(CO)3(H)(SiMe3). However, the singlet counterparts, ([η(5)-CpM(CO)3](1)), play no role in the formation of the final product molecule, but their singlet metal centers interact weakly with solvent molecules ((Me3)SiH) to produce alkyl-solvated organometallic complexes, which are observable experimentally. This theoretical evidence is in accordance with the available experimental observations.

  5. Growth of Thin, Anisotropic, π-Conjugated Molecular Films by Step-Wise `Click' Assembly of Molecular Building Blocks: Characterizing Reaction Yield, Surface Coverage, and Film Thickness vs. Addition Step Number

    NASA Astrophysics Data System (ADS)

    Demissie, Abel; Haugstad, Greg; Frisbie, C. Daniel

    2015-03-01

    Molecular electronics is an active field of nanotechnology that has gained much interest due to the advent of modern microscopy techniques, and thin film synthesis using click chemistry - an approach which has enabled scientists to achieve a sub-angstrom control of monolayer length. Among the major challenges to grow oriented, surface-confined wires by click chemistry is development of synthetic routes that yield monodisperse wires, and lack of systematic way to measure the surface coverage of molecules. In this work, we report a comprehensive characterization of π-conjugated oligophenylene imine (OPI) wires synthesized step-wise by imine condensation click chemistry. OPI wire synthesis began with a self-assembled monolayer (SAM) of 4-formylthiophenol or 4-aminothiophenol on Au, followed by alternate addition of terepthaldehyde or phenylenediamine. OPI wires were characterized after each monomer addition via Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, cyclic voltammetry, reflection-absorption infra-red spectroscopy, and nuclear reaction analysis. We have determined an average extent of reaction greater than 98% completion for each growth step using five different techniques. Overall, these nanoscale scale surface characterization techniques proved to be an extremely sufficient method for monitoring wire growth and surface coverage.

  6. DFT Investigation of the Mechanism and Stereochemistry of Electrophilic Transannular Addition Reaction of Chlorine to Bisbenzotetracyclo[6.2.2.23,6 .02,7]tetradeca-4,9,11,13-tetraene.

    PubMed

    Abbasoglu, Rza

    2010-12-01

    The mechanism and stereochemistry of electrophilic addition of chlorine to bisbenzotetracyclo[6.2.2.23,6.02,7]tetradeca-4,9,11,13-tetraene (BBTT) molecule were investigated by DFT methods. The geometry and the electronic structure of BBTT molecule was studied by DFT/B3LYP method using the 6-311G(d) and 6-311++G(d,p) basis sets. The double bonds of BBTT molecule are endo-pyramidalized. The structure and stability of the cationic intermediates and products of the addition reaction were investigated by B3LYP/6-311G(d) and B3LYP/6-311+G(2d,p) methods. The solvent effect was evaluated using SCI-PCM method. The bridged chloronium cation is isomerized into the more stable nonclassical delocalized N- and U-type cations, and the difference between the stability of these cations is small. For the determination of the direction of addition reaction and the stereochemistry of the products, the stability of nonclassical delocalized N- and U-type ions and the structure of their cationic centres play a vital role for the determination of the direction of addition reaction and the stereochemistry of the products. Since the cationic centre of the N-type ion is in interaction with the benzene ring from the exo face, the nucleophilic attack of the chloride anion to this centre occurs from the endo face, and the exo,endo-isomer of the N-type product is obtained. The attack of chloride anion towards the cationic centre of U-type ion from the endo face is sterically hindered by the hydrogen atom, therefore the attack occurs from the exo face, which interacts with the benzene ring and the more stable exo,exo-isomer of U-type product is formed. Although, the U-type cation was 3.485 kcal mol-1 more stable than the N-type cation, the U-type product was 1.886 kcal mol-1 [SCI-PCM-B3LYP/6-311++G(2d,p)// B3LYP/6-311G(d)] less stable than the N-type product.

  7. The elementary steps of the photodissociation and recombination reactions of iodine molecules enclosed in cages and channels of zeolite crystals: A femtosecond time-resolved study of the geometry effect

    NASA Astrophysics Data System (ADS)

    Flachenecker, G.; Materny, A.

    2004-03-01

    We present femtosecond time-resolved pump-probe experiments on iodine molecules enclosed into well-defined cages and channels of different crystalline SiO2 modifications of zeolites. The new experimental results obtained from iodine in TON (Silica-ZSM-22), FER (Silica-Ferrierit), and MFI (Silicalit-1) porosils are compared with data published earlier on the iodine/DDR (Decadodecasil 3R) porosil system [Flachenecker et al., Phys. Chem. Chem. Phys. 5, 865 (2003)]. A summary of all findings is given. The processes analyzed by means of the ultrafast spectroscopy are the vibrational relaxation as well as the dissociation and recombination reactions, which are caused by the interaction of the photo-excited iodine molecules with the cavity walls of the porosils. A clear dependence of the observed dynamics on the geometry of the surrounding lattice structure can be seen. These measurements are supported by temperature-dependent experiments. Making use of a theoretical model which is based on the classical Langevin equation, an analysis of the geometry-reaction relation is performed. The Brownian dynamics simulations show that in contrast to the vibrational relaxation the predissociation dynamics are independent of the frequency of collisions with the surroundings. From the results obtained in the different surroundings, we conclude that mainly local fields are responsible for the crossing from the bound B state to the repulsive a/a' states of the iodine molecules.

  8. Photosensitized Heterogeneous Oxidation Reactions of Organic Biomass Burning Aerosol Surrogates by Ozone Using a Novel Irradiation-Permitting Rectangular Channel Flow Reactor

    NASA Astrophysics Data System (ADS)

    Forrester, S. M.; Knopf, D. A.

    2012-12-01

    Organic aerosol particles are ubiquitous in the atmosphere and can influence the climate both directly through scattering and absorption of radiation and indirectly through modification of cloud properties. Biomass burning is a major source of organic aerosol particles to the atmosphere. Source apportionment of biomass burning plumes relies heavily on biomolecular markers such as levoglucosan. However, these compounds can react heterogeneously with trace gases, which may cause source strength underestimation. The presence of light absorbing material known as photosensitizers can cause biomolecular markers to react more efficiently with trace gases when exposed to radiation. In this study, the heterogeneous kinetics between ozone and compounds typical of organic biomass burning aerosol particles are determined in the absence and presence of a photosensitizing compound. The effect of visible or UV radiation on the heterogeneous kinetics is investigated. Levoglucosan and nitroguaiacol serve as surrogates for organic biomass burning aerosol and Pahokee peat serves as a surrogate for HuLIS (humic-like substances). The latter is known to be a photosensitizer and can be found in biomass burning aerosol particles. The reactive uptake experiments are conducted with a newly designed rectangular channel flow reactor that allows controlled visible and UV irradiation of the organic substrates. The absolute irradiance of the visible and UV light sources is characterized using a calibrated fiber optic spectrometer. Reactive uptake coefficients are determined by monitoring the gas-phase loss of ozone to the organic substrate using a custom-built chemical ionization mass spectrometer (CIMS). The heterogeneous kinetics are derived in the presence of atmospherically relevant O3 and O2 concentrations and total pressure is about 2-3 hPa, ensuring negligible diffusion limitations. Reactive uptake experiments are also performed as a function of total incoming photon flux and ozone

  9. Food additives

    PubMed Central

    Spencer, Michael

    1974-01-01

    Food additives are discussed from the food technology point of view. The reasons for their use are summarized: (1) to protect food from chemical and microbiological attack; (2) to even out seasonal supplies; (3) to improve their eating quality; (4) to improve their nutritional value. The various types of food additives are considered, e.g. colours, flavours, emulsifiers, bread and flour additives, preservatives, and nutritional additives. The paper concludes with consideration of those circumstances in which the use of additives is (a) justified and (b) unjustified. PMID:4467857

  10. Basaltic Lava Channels

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Griffiths, R. W.; Kerr, R. C.

    2004-12-01

    In Hawaii, the mode of lava transport - through open channels or through insulating lava tubes - determines the thermal, rheological, and emplacement history of a lava flow. Most Hawaiian lavas are erupted at near-liquidus temperatures and are therefore crystal-poor; lava transport through open channels allows rapid cooling and consequent rapid increases in lava crystallinity. Solidified aa flows resulting from channelized flow are typically fine-grained throughout their thickness, indicating cooling of the entire flow thickness during transport. In contrast, transport of lava through insulating tubes permits flow over long distances with little cooling. Flows emerging from such tubes typically have pahoehoe flow surfaces with glassy crusts. Groundmass textures that coarsen from the flow rind to the interior reflect rates of post-emplacement, rather than syn-emplacement, cooling. To distinguish eruption conditions that result in lava channels from those that allow formation of lava tubes, we have performed a series of laboratory experiments involving injection of PEG 600 (a wax with a Newtonian rheology and freezing temperature of 19ºC) into cold water through both uniform and non-uniform sloping channels. In uniform channels, tube formation can be distinguished from open channel flow using a dimensionless parameter based on a solidification time scale, an advection time scale, and a Rayleigh number that describes convection by heat loss from crust-free shear zones. Theoretical analysis predicts that in the open channel regime, the width of the crust (dc) will vary with the channel width (W) as dc = W5/3. Crustal coverage of non-uniform channels in both laboratory experiments and field examples from Kilauea Volcano, Hawaii, is consistent with this prediction. However, experiments in non-uniform channels illustrate additional controls on the surface coverage of lava channels. Most important is crustal extension resulting from flow acceleration through constrictions

  11. Reversible methanol addition to copper Schiff base complexes: a kinetic, structural and spectroscopic study of reactions at azomethine C[double bond, length as m-dash]N bonds.

    PubMed

    Zhang, Wuyu; Saraei, Nina; Nie, Hanlin; Vaughn, John R; Jones, Alexis S; Mashuta, Mark S; Buchanan, Robert M; Grapperhaus, Craig A

    2016-10-12

    The reversible methanolysis of an azomethine C[double bond, length as m-dash]N in a series of copper(ii) Schiff base complexes has been investigated through combined spectroscopic, structural, and kinetic studies. Pentadentate copper(ii) complexes [L1-Cu(X)]Y (L1 = 1,2-bis[(1-methyl-2-imidazolyl)methyleneamino]ethane; X = Y = ClO4(-) (1); X = Y = TfO(-) (2); X = Y = BF4(-) (3); X = H2O, Y = (ClO4(-))2 (4) spontaneously add methanol in a ligand centered reaction to yield stable, isolable hemiaminal ether product complexes 5-8. In methanol free solution, 5-8 spontaneously release alcohol to regenerate 1-4. The methanol addition reaction is first-order in methanol and first-order in complex with second-order rate constants varying from 1.1 × 10(-4) to 187 × 10(-4) M(-1) s(-1) dependent on the donor ability of the axial ligand. Rate constants for methanol elimination vary from 0.67 to 3.7 × 10(-4) s(-1) with dependence on the counterion and water content of the solvent. Equilibrium constants for methanolysis range from 1.5 to 51 M(-1). Structural comparisons of the Schiff base complexes 1-4 and the hemiaminal ether complexes 5-8 suggest methanol addition is favored by the release of ligand strain associated with three planar five-membered chelates in 1-4.

  12. Tougher Addition Polyimides Containing Siloxane

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Maudgal, S.

    1986-01-01

    Laminates show increased impact resistances and other desirable mechanical properties. Bismaleamic acid extended by reaction of diaminosiloxane with maleic anhydride in 1:1 molar ratio, followed by reaction with half this molar ratio of aromatic dianhydride. Bismaleamic acid also extended by reaction of diaminosiloxane with maleic anhydride in 1:2 molar ratio, followed by reaction with half this molar ratio of aromatic diamine (Michael-addition reaction). Impact resistances improved over those of unmodified bismaleimide, showing significant increase in toughness. Aromatic addition polyimides developed as both matrix and adhesive resins for applications on future aircraft and spacecraft.

  13. Noradrenaline upregulates T-type calcium channels in rat pinealocytes

    PubMed Central

    Yu, Haijie; Seo, Jong Bae; Jung, Seung-Ryoung; Koh, Duk-Su; Hille, Bertil

    2015-01-01

    Our basic hypothesis is that mammalian pinealocytes have cycling electrical excitability and Ca2+ signalling that may contribute to the circadian rhythm of pineal melatonin secretion. This study asked whether the functional expression of voltage-gated Ca2+ channels (CaV channels) in rat pinealocytes is changed by culturing them in noradrenaline (NA) as a surrogate for the night signal. Channel activity was assayed as ionic currents under patch clamp and as optical signals from a Ca2+-sensitive dye. Channel mRNAs were assayed by quantitative polymerase chain reaction. Cultured without NA, pinealocytes showed only non-inactivating L-type dihydropyridine-sensitive Ca2+ current. After 24 h in NA, additional low-voltage activated transient Ca2+ current developed whose pharmacology and kinetics corresponded to a T-type CaV3.1 channel. This change was initiated by β-adrenergic receptors, cyclic AMP and protein kinase A as revealed by pharmacological experiments. mRNA for CaV3.1 T-type channels became significantly elevated, but mRNA for another T-type channel and for the major L-type channel did not change. After only 8 h of NA treatment, the CaV3.1 mRNA was already elevated, but the transient Ca2+ current was not. Even a 16 h wait without NA following the 8 h NA treatment induced little additional transient current. However, these cells were somehow primed to make transient current as a second NA exposure for only 60 min sufficed to induce large T-type currents. The NA-induced T-type channel mediated an increased Ca2+ entry during short depolarizations and supported modest transient electrical responses to depolarizing stimuli. Such experiments reveal the potential for circadian regulation of excitability. PMID:25504572

  14. Food additives

    MedlinePlus

    ... or natural. Natural food additives include: Herbs or spices to add flavor to foods Vinegar for pickling ... Certain colors improve the appearance of foods. Many spices, as well as natural and man-made flavors, ...

  15. The ipso addition of OH to methylated benzenes

    NASA Astrophysics Data System (ADS)

    Alarcon, Paulo; Bohn, Birger; Zetzsch, Cornelius

    2013-04-01

    The reaction of OH with hexamethylbenzene has been observed to be a rapid process (Berndt and Böge, 2001) and to proceed via reversible addition (Koch et al., 2007, von Buttlar et al., 2008). Abstraction and elimination of a methyl group are only minor channels at room temperature (Loison et al., 2012). Obviously the ipso addition on an already occupied position of the ring is solely accessible for hexamethylbenzene, whereas for the lower methylated benzenes (toluene and the xylenes) this contribution is small. All three trimethylbenzenes (Bohn and Zetzsch, 2012) have been demonstrated very recently to comprise both channels. The present study reports on the reactions of OH with toluene, p-xylene, tetramethylated benzenes and pentamethylbenzene, employing the technique of pulsed vacuum UV flash photolysis of H2O with resonance fluorescence detection of OH. Triexponential decays of OH are observed (most clearly and pronounced for the highly symmetrical durene), and the analytical solution of the differential equation system describing the contribution of two adducts enables us to separate the two predominating addition channels for these compounds. The consequences of ipso addition of OH to aromatics for photochemical ozone production remain uncertain, and product studies for higher methylated benzenes are missing. References Berndt T, Böge O, Int J Chem Kinet, 33, 124-129 (2001). Bohn B, Zetzsch C, PCCP 14, 13933-13948 (2012). Loison JC, Rayez MT, Rayez JC, Gratien A, Morajkar P, Fittschen C, Villenave E, J Phys Chem A, 12189-12197 (2012). Koch R, Knispel R, Elend M, Siese M, Zetzsch C, Atmos Chem Phys 7, 2057-2071 (2007). von Buttlar J, Koch R, Siese M, Zetzsch C, What is the contribution of ipso-addition of OH in the reaction of methylated benzene-aromatics: first results on hexamethylbenzene, Geophys Abstr EGU2008-A-10576 (2008).

  16. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  17. TRP Channels

    NASA Astrophysics Data System (ADS)

    Voets, Thomas; Owsianik, Grzegorz; Nilius, Bernd

    The TRP superfamily represents a highly diverse group of cation-permeable ion channels related to the product of the Drosophila trp (transient receptor potential) gene. The cloning and characterization of members of this cation channel family has experienced a remarkable growth during the last decade, uncovering a wealth of information concerning the role of TRP channels in a variety of cell types, tissues, and species. Initially, TRP channels were mainly considered as phospholipase C (PLC)-dependent and/or store-operated Ca2+-permeable cation channels. More recent research has highlighted the sensitivity of TRP channels to a broad array of chemical and physical stimuli, allowing them to function as dedicated biological sensors involved in processes ranging from vision to taste, tactile sensation, and hearing. Moreover, the tailored selectivity of certain TRP channels enables them to play key roles in the cellular uptake and/or transepithelial transport of Ca2+, Mg2+, and trace metal ions. In this chapter we give a brief overview of the TRP channel superfamily followed by a survey of current knowledge concerning their structure and activation mechanisms.

  18. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  19. High spin spectroscopy near the N=Z line: Channel selection and excitation energy systematics

    SciTech Connect

    Svensson, C.E.; Cameron, J.A.; Flibotte, S.

    1996-12-31

    The total {gamma}-ray and charged-particle energies emitted in fusion-evaporation reactions leading to N=Z compound systems in the A = 50-70 mass region have been measured with the 8{pi} {gamma}-ray spectrometer and the miniball charged-particle detector array. A new method of channel selection has been developed which combines particle identification with these total energy measurements and greatly improves upon the selectivity possible with particle detection alone. In addition, the event by event measurement of total {gamma}-ray energies using the BGO ball of the 8{pi} spectrometer has allowed a determination of excitation energies following particle evaporation for a large number of channels in several different reactions. The new channel selection procedure and excitation energy systematics are illustrated with data from the reaction of {sup 24}Mg on {sup 40}Ca at E{sub lab} = 80MeV.

  20. Potlining Additives

    SciTech Connect

    Rudolf Keller

    2004-08-10

    In this project, a concept to improve the performance of aluminum production cells by introducing potlining additives was examined and tested. Boron oxide was added to cathode blocks, and titanium was dissolved in the metal pool; this resulted in the formation of titanium diboride and caused the molten aluminum to wet the carbonaceous cathode surface. Such wetting reportedly leads to operational improvements and extended cell life. In addition, boron oxide suppresses cyanide formation. This final report presents and discusses the results of this project. Substantial economic benefits for the practical implementation of the technology are projected, especially for modern cells with graphitized blocks. For example, with an energy savings of about 5% and an increase in pot life from 1500 to 2500 days, a cost savings of $ 0.023 per pound of aluminum produced is projected for a 200 kA pot.

  1. Phosphazene additives

    DOEpatents

    Harrup, Mason K; Rollins, Harry W

    2013-11-26

    An additive comprising a phosphazene compound that has at least two reactive functional groups and at least one capping functional group bonded to phosphorus atoms of the phosphazene compound. One of the at least two reactive functional groups is configured to react with cellulose and the other of the at least two reactive functional groups is configured to react with a resin, such as an amine resin of a polycarboxylic acid resin. The at least one capping functional group is selected from the group consisting of a short chain ether group, an alkoxy group, or an aryloxy group. Also disclosed are an additive-resin admixture, a method of treating a wood product, and a wood product.

  2. Effect of core-shell structure and chitosan addition on catalytic activities of copper-containing silica-aluminosilicate composites in deNO(x) reaction by H2.

    PubMed

    Chamnankid, Busaya; Samanpratan, Rattanaporn; Kongkachuichay, Paisan

    2012-12-01

    Mesoporous silica-aluminosilicate composites were used as supports for selective catalytic reduction of NO by H2 using copper catalyst. Effect of loading techniques and structures of the supports on the catalytic performance were investigated. The nature, the oxidation state of copper, the structural properties and the morphology of the catalysts were characterized by means of UV-vis spectra, Fourier Transform Infrared Spectroscopy (FTIR), nitrogen sorption, and transmission electron microscopy, respectively. By using substitution technique, the copper(II) species were introduced into the silica-aluminosilicate framework by replacing aluminum atoms that located in the tetrahedral coordination. On the other hand, by using incipient wetness impregnation method, the copper species were deposited on the surface of composite materials. Upon testing their performances in deNO(x) reaction, the catalysts prepared by incipient wetness impregnation method showed higher catalytic activity than those prepared by substitution technique in any copper content. The core-shell structure was able to enhance the catalytic performance. It was found that, among the tested catalysts, the 1.5% Cu loaded core-shell mesoporous silica aluminosilicate composites prepared by an incipient wetness impregnation yielded the highest NO conversion of approximately 59%. However, the addition of chitosan creating macroporosity and controlling the uniform small clusters did not improve the catalytic performance.

  3. Probing reaction dynamics with the {sup 196}Pt(n,xn{gamma}) reactions for x{le}15

    SciTech Connect

    Bernstein, L.A.; Becker, J.A.; Younes, W.; Archer, D.E.; Hauschild, K.; Nelson, R.O.; Wilburn, W.S. Drake, D.M.

    1998-06-01

    Discrete {gamma}-ray spectra have been measured as a function of incident neutron energy for nuclei produced in the {sup 196}Pt(n,xn{gamma}) reactions. Spectroscopy was done using the large-scale Compton suppressed Ge {gamma}-ray spectrometer GEANIE. The {open_quotes}white{close_quotes} source neutron beam was produced at the Los Alamos Neutron Science WNR facility. Reaction neutron energy was determined using the time-of-flight technique. Reaction-channel yields were inferred from the measured intensity sum of the 2{sub 1}{sup +}{r_arrow}0{sub 1}{sup +} and the 2{sub 2}{sup +}{r_arrow}0{sub 1}{sup +} transitions for the {sup 196}Pt(n,xn) reactions for x{le}15. Weisskopf-Ewing calculations (including precompound) done with the HMS-ALICE code correctly predict the bulk of the (n,xn) reaction products for low multiplicity. However, they do not accurately predict yield ratios of the different (n,xn) reactions for x{ge}9. In addition, there is no consistent experimental indication of charged-particle reaction channels (n,pxn) for incident neutron energies above 60 MeV where they are predicted to account for approximately 1/3 of the total reaction cross section. Several possible causes are discussed for these discrepancies. Finally, the region of E-J phase space populated in this reaction is probed for several of the strongest reaction channels through the observation of relative yields for different yrast and off-yrast states. {copyright} {ital 1998} {ital The American Physical Society}

  4. Statistical Theory of Breakup Reactions

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos A.; Descouvemont, Pierre; Hussein, Mahir S.

    2014-04-01

    We propose an alternative for Coupled-Channels calculations with looselybound exotic nuclei(CDCC), based on the the Random Matrix Model of the statistical theory of nuclear reactions. The coupled channels equations are divided into two sets. The first set, described by the CDCC, and the other set treated with RMT. The resulting theory is a Statistical CDCC (CDCCs), able in principle to take into account many pseudo channels.

  5. Channel catfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter provides a comprehensive overview of channel catfish aquaculture. Sections include fish biology; commercial culture; culture facilities; production practices; water quality management; nutrition, feeding and feed formulation; infectious diseases; harvesting and processing; and the...

  6. Mechanosensitive Channels

    NASA Astrophysics Data System (ADS)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  7. Experiments concerning the laser-enhanced reaction between vibrationally excited O3 and NO

    NASA Technical Reports Server (NTRS)

    Hui, K.-K.; Cool, T. A.

    1978-01-01

    The enhancement in reaction rate between O3 and NO is studied for the case of O3 vibrationally excited by a CO2 laser. Chemiluminescence observations of a vibrationally excited and an electronically excited nitrogen dioxide reaction product provide information on the separate contributions to the overall reaction rate of these two reactive channels. The contribution of the stretching and bending modes of O3 to the reaction rate enhancement is also discussed. In addition, consideration is given to the nonreactive vibrational deactivation of vibrationally excited O3.

  8. Cl(-) channels in apoptosis.

    PubMed

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida; MacAulay, Nanna; Schreiber, Rainer; Kunzelmann, Karl

    2016-10-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also determines sensitivity towards cytostatic drugs such as cisplatin. Recent data point to a molecular and functional relationship of LRRC8A and anoctamins (ANOs). ANO6, 9, and 10 (TMEM16F, J, and K) augment apoptotic Cl(-) currents and AVD, but it remains unclear whether these anoctamins operate as Cl(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling.

  9. Two-center three-electron bonding in ClNH3 revealed via helium droplet infrared laser Stark spectroscopy: Entrance channel complex along the Cl + NH3 → ClNH2 + H reaction

    NASA Astrophysics Data System (ADS)

    Moradi, Christopher P.; Xie, Changjian; Kaufmann, Matin; Guo, Hua; Douberly, Gary E.

    2016-04-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence in experimental spectra of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction Cl + NH3 → HCl + NH2.

  10. Two-Center Three-Electron Bonding in ClNH3 Revealed via Helium Droplet Infrared Spectroscopy: Entrance Channel Complex Along the cl + NH3 → ClNH2 + H Reaction

    NASA Astrophysics Data System (ADS)

    Franke, Peter R.; Moradi, Christopher P.; Kaufmann, Matin; Xie, Changjian; Guo, Hua; Douberly, Gary E.

    2016-06-01

    Pyrolytic dissociation of Cl2 is employed to dope helium droplets with single Cl atoms. Sequential addition of NH3 to Cl-doped droplets leads to the formation of a complex residing in the entry valley to the substitution reaction, Cl + NH3 → ClNH2 + H. Infrared Stark spectroscopy in the NH stretching region reveals symmetric and antisymmetric vibrations of a C3v symmetric top. Frequency shifts from NH3 and dipole moment measurements are consistent with a ClNH3 complex containing a relatively strong two-center three-electron (2c-3e) bond. The nature of the 2c-3e bonding in ClNH3 is explored computationally and found to be consistent with the complexation-induced blue shifts observed experimentally. Computations of interconversion pathways reveal nearly barrierless routes to the formation of this complex, consistent with the absence of two other complexes, NH3Cl and Cl-HNH2, which are predicted in the entry valley to the hydrogen abstraction reaction, Cl + NH3 → HCl + NH2

  11. Electrophilic addition of astatine

    SciTech Connect

    Norseev, Yu.V.; Vasaros, L.; Nhan, D.D.; Huan, N.K.

    1988-03-01

    It has been shown for the first time that astatine is capable of undergoing addition reactions to unsaturated hydrocarbons. A new compound of astatine, viz., ethylene astatohydrin, has been obtained, and its retention numbers of squalane, Apiezon, and tricresyl phosphate have been found. The influence of various factors on the formation of ethylene astatohydrin has been studied. It has been concluded on the basis of the results obtained that the univalent cations of astatine in an acidic medium is protonated hypoastatous acid.

  12. English Channel

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cloud covered earthscape of Northern Europe demonstrates the difficulty of photographing this elusive subject from space. The English Channel (51.0N, 1.5E) separating the British Islands from Europe is in the center of the scene. The white cliffs of Dover on the SE coast of the UK, the Thames River estuary and a partial view of the city of London can be seen on the north side of the Channel while the Normandy coast of France is to the south.

  13. Smog control fuel additives

    SciTech Connect

    Lundby, W.

    1993-06-29

    A method is described of controlling, reducing or eliminating, ozone and related smog resulting from photochemical reactions between ozone and automotive or industrial gases comprising the addition of iodine or compounds of iodine to hydrocarbon-base fuels prior to or during combustion in an amount of about 1 part iodine per 240 to 10,000,000 parts fuel, by weight, to be accomplished by: (a) the addition of these inhibitors during or after the refining or manufacturing process of liquid fuels; (b) the production of these inhibitors for addition into fuel tanks, such as automotive or industrial tanks; or (c) the addition of these inhibitors into combustion chambers of equipment utilizing solid fuels for the purpose of reducing ozone.

  14. Radiation Reaction in a Bent Focusing System

    NASA Astrophysics Data System (ADS)

    Huang, Zhirong; Chen, Pisin; Ruth, Ronald D.

    1996-05-01

    We have shown that in a straight, continuous focusing channel the radiation reaction is different from that in a bending magnet. Quantum excitation to the transverse action is absent in this focusing system, and the radiation damping is faster in the transverse direction than in the longitudinal one. In this talk we study the effect of radiation in a combined-function system, where both focusing and bending fields are present. In one case where the bending dominates over the focusing, we recover the result of standard synchrotron radiation damping in storage rings. In the other case where the focusing dominates over the bending, we find that the lack of quantum excitation and the asymmetric damping found in a straight focusing channel still hold. In addition, the possibility of designing a focusing-dominated damping ring to demonstrate and apply this effect is discussed.

  15. Chaos in quantum channels

    DOE PAGES

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; ...

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back upmore » our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.« less

  16. Chaos in quantum channels

    SciTech Connect

    Hosur, Pavan; Qi, Xiao-Liang; Roberts, Daniel A.; Yoshida, Beni

    2016-02-01

    For this research, we study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. In conclusion, these results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  17. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  18. Multi-channel gas-delivery system

    SciTech Connect

    Rozenzon, Yan; Trujillo, Robert T.; Beese, Steven C.

    2016-09-13

    One embodiment of the present invention provides a gas-delivery system for delivering reaction gas to a reactor chamber. The gas-delivery system includes a main gas-inlet port for receiving reaction gases and a gas-delivery plate that includes a plurality of gas channels. A gas channel includes a plurality of gas holes for allowing the reaction gases to enter the reactor chamber from the gas channel. The gas-delivery system further includes a plurality of sub-gas lines coupling together the main gas-inlet port and the gas-delivery plate, and a respective sub-gas line is configured to deliver a portion of the received reaction gases to a corresponding gas channel.

  19. The channels of Mars

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.

    1988-01-01

    The geomorphology of Mars is discussed, focusing on the Martian channels. The great flood channels of Mars, the processes of channel erosion, and dendritic channel networks, are examined. The topography of the Channeled Scabland region of the northwestern U.S. is described and compared to the Martian channels. The importance of water in the evolution of the channel systems is considered.

  20. Starburst Channels

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Translucent carbon dioxide ice covers the polar regions of Mars seasonally. It is warmed and sublimates (evaporates) from below, and escaping gas carves a numerous channel morphologies.

    In this example (figure 1) the channels form a 'starburst' pattern, radiating out into feathery extensions. The center of the pattern is being buried with dust and new darker dust fans ring the outer edges. This may be an example of an expanding morphology, where new channels are formed as the older ones fill and are no longer efficiently channeling the subliming gas out.

    Observation Geometry Image PSP_003443_0980 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 21-Apr-2007. The complete image is centered at -81.8 degrees latitude, 76.2 degrees East longitude. The range to the target site was 247.1 km (154.4 miles). At this distance the image scale is 24.7 cm/pixel (with 1 x 1 binning) so objects 74 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 04:52 PM and the scene is illuminated from the west with a solar incidence angle of 71 degrees, thus the sun was about 19 degrees above the horizon. At a solar longitude of 223.4 degrees, the season on Mars is Northern Autumn.

  1. Nonlinear channelizer.

    PubMed

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D; Leung, Daniel; Liu, Norman; Meadows, Brian K; Gordon, Frank; Bulsara, Adi R; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  2. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.

  3. Theoretical approach to the mechanism of reactions between halogen atoms and unsaturated hydrocarbons: the Cl + propene reaction.

    PubMed

    Braña, Pedro; Sordo, José A

    2003-12-01

    The potential energy surface for the Cl + propene reaction was analyzed at the MP2 level using Pople's 6-31G(d,p) and 6-311+G(d,p), and Dunning's cc-pVDZ and aug-cc-pVDZ basis sets. Two different channels for the addition reaction leading to chloroalkyl radicals and five alternative channels for the abstraction reaction leading to C(3)H(5) (.) + HCl were explored. The corresponding energy profiles were computed at the QCISD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level of theory. Theoretical results suggest that the previously established mechanism consisting of (1) direct abstraction and (2) addition-elimination steps is instead made up of (1) addition through an intermediate and (2) two-step abstraction processes. No direct abstraction mechanism exists on the potential energy surface. The kinetic equations derived for the new mechanism are consistent with the pressure dependence experimentally observed for this reaction.

  4. Dehydrofluorination of Hydrofluorocarbons by Titanium Alkylidynes via Sequential C-H/C-F Bond Activation Reactions. A Synthetic, Structural, and Mechanistic Study of 1,2-CH Bond Addition and [beta]-Fluoride Elimination

    SciTech Connect

    Fout, A.R.; Scott, J.; Miller, D.L.; Bailey, B.C.; Pink, M.; Mindiola, D.J.

    2009-01-07

    The neopentylidene-neopentyl complex (PNP)Ti=CH{sup t}Bu(CH{sub 2}{sup t}Bu) (1); (PNP{sup -} = N[2-P(CHMe{sub 2}){sub 2}-4-methylphenyl]{sub 2}) extrudes neopentane in neat fluorobenzene under mild conditions (25 C) to generate the transient titanium alkylidyne (PNP)Ti-C{sup t}Bu (A), which subsequently undergoes regioselective 1,2-CH bond addition of a fluorobenzene across the Ti-C linkage to generate (PNP)Ti=CH{sup t}Bu(o-FC{sub 6}H{sub 4}) (2). Kinetic and mechanistic studies suggest that the C-H activation process is pseudo-first-order in titanium, with the {alpha}-hydrogen abstraction being the rate-determining step and the post-rate-determining step being the C-H bond activation of fluorobenzene. At 100 C complex 2 does not equilibrate back to A and the preference for C-H activation in benzene versus fluorobenzene is 2:3, respectively. Compound 1 also reacts readily, and in most cases cleanly, with a series of hydrofluoroarenes (HAr{sub F}), to form a family of alkylidene-arylfluoride derivatives of the type (PNP)Ti=CH{sup t}Bu(Ar{sub F}). Thermolysis of the latter compounds generates the titanium alkylidene-fluoride (PNP)Ti=CH{sup t}Bu(F) (14) by a {beta}-fluoride elimination, concurrent with formation of o-benzyne. {beta}-Fluoride elimination to yield 14 occurs from 2 under elevated temperatures with k{sub average} = 4.96(16) x 10{sup -5} s{sup -1} and with activation parameters {Delta}H{sub {-+}} = 29(1) kcal/mol and {Delta}S{sub {-+}} = -3(4) cal/mol {center_dot}K. It was found that {beta}-fluoride elimination is accelerated when electron-rich groups are adjacent to the fluoride group, thus implying that a positive charge buildup at the arylfluoride ring occurs in the activated complex of 2. The alkylidene derivative (PNP)Ti=CHSiMe{sub 3}(CH{sub 2}SiMe{sub 3}) (15) also undergoes {alpha}-hydrogen abstraction to form the putative (PNP)Ti'-CSiMe{sub 3} (B) at higher temperatures (>70 C) and dehydrofluorinates the same series of HArF when the reaction

  5. Ionic Channels in Thunderclouds

    NASA Astrophysics Data System (ADS)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  6. Hydrogen evolution from water through metal sulfide reactions

    NASA Astrophysics Data System (ADS)

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-01

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX- (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4- isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4- and M2S5- isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4- and M2S5- clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6- is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  7. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  8. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  9. Velocity pump reaction turbine

    SciTech Connect

    House, P.A.

    1984-02-07

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  10. Velocity pump reaction turbine

    SciTech Connect

    House, P.A.

    1982-06-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an interrotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal application

  11. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  12. Dynamic Channel Allocation

    DTIC Science & Technology

    2003-09-01

    7 1 . Fixed Channel Allocation (FCA) ........................................................7 2. Dynamic Channel ...19 7. CSMA/CD-Based Multiple Network Lines .....................................20 8. Hybrid Channel Allocation in Wireless Networks...28 1 . Channel Allocation

  13. The alpha channeling effect

    SciTech Connect

    Fisch, N. J.

    2015-12-10

    Alpha particles born through fusion reactions in a tokamak reactor tend to slow down on electrons, but that could take up to hundreds of milliseconds. Before that happens, the energy in these alpha particles can destabilize on collisionless timescales toroidal Alfven modes and other waves, in a way deleterious to energy confinement. However, it has been speculated that this energy might be instead be channeled into useful energy, so as to heat fuel ions or to drive current. Such a channeling needs to be catalyzed by waves Waves can produce diffusion in energy of the alpha particles in a way that is strictly coupled to diffusion in space. If these diffusion paths in energy-position space point from high energy in the center to low energy on the periphery, then alpha particles will be cooled while forced to the periphery. The energy from the alpha particles is absorbed by the wave. The amplified wave can then heat ions or drive current. This process or paradigm for extracting alpha particle energy collisionlessly has been called alpha channeling. While the effect is speculative, the upside potential for economical fusion is immense. The paradigm also operates more generally in other contexts of magnetically confined plasma.

  14. Ruthenium(II)/chiral Brønsted acid co-catalyzed enantioselective four-component reaction/cascade aza-Michael addition for efficient construction of 1,3,4-tetrasubstituted tetrahydroisoquinolines.

    PubMed

    Jiang, Jun; Ma, Xiaochu; Ji, Changge; Guo, Zhenqiu; Shi, Taoda; Liu, Shunying; Hu, Wenhao

    2014-02-03

    An elegant synergistic catalytic system comprising a ruthenium complex with a chiral Brønsted acid was developed for a four-component Mannich/cascade aza-Michael reaction. The ruthenium-associated ammonium ylides successfully trapped with in situ generated imines indicates a stepwise process of proton transfer in the ruthenium-catalyzed carbenoid N-H insertion reaction. The different decomposition abilities of various ruthenium complexes towards diazo compounds were well explained by the calculated thermodynamic data. The transformation features a mild, rapid, and efficient method for the synthesis of enantiomerically pure 1,3,4-tetrasubstituted tetrahydroquinolines bearing a quaternary stereogenic carbon center from simple starting precursors in moderate yields with high diastereo- and enantioselectivity.

  15. Sleeve reaction chamber system

    DOEpatents

    Northrup, M. Allen; Beeman, Barton V.; Benett, William J.; Hadley, Dean R.; Landre, Phoebe; Lehew, Stacy L.; Krulevitch, Peter A.

    2009-08-25

    A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

  16. Degradations and Rearrangement Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  17. Theoretical characterization of aflatoxins and their phototoxic reactions

    NASA Astrophysics Data System (ADS)

    Guedes, Rita C.; Eriksson, Leif A.

    2006-05-01

    Key molecular properties are calculated for the 8 most common aflatoxins at the B3LYP/6-31 + G(d,p) level. Special attention is given the possibility of aflatoxins to generate reactive oxygen species (ROS). It is concluded that the excited triplet states of the aflatoxins have properties that make them very potent ROS generators, in addition to direct photoinduced addition reactions. The elevated toxicity of aflatoxin B1 is discussed in terms of its lower ionization potential, and the coincidence of higher lying triplet states with dominant low-lying singlet excitations, which enables rapid intersystem crossing and decay along the triplet channel to the T 1 state.

  18. Products of the Benzene + O(3P) Reaction

    SciTech Connect

    Taatjes, Craig A.; Osborn, David L.; Selby, Talitha M.; Meloni, Giovanni; Trevitt, Adam J.; Epifanovsky, Evgeny; Krylov, Anna I.; Sirjean, Baptiste; Dames, Enoch; Wang, Hai

    2009-12-21

    The gas-phase reaction of benzene with O(3P) is of considerable interest for modeling of aromatic oxidation, and also because there exist fundamental questions concerning the prominence of intersystem crossing in the reaction. While its overall rate constant has been studied extensively, there are still significant uncertainties in the product distribution. The reaction proceeds mainly through the addition of the O atom to benzene, forming an initial triplet diradical adduct, which can either dissociate to form the phenoxy radical and H atom, or undergo intersystem crossing onto a singlet surface, followed by a multiplicity of internal isomerizations, leading to several possible reaction products. In this work, we examined the product branching ratios of the reaction between benzene and O(3P) over the temperature range of 300 to 1000 K and pressure range of 1 to 10 Torr. The reactions were initiated by pulsed-laser photolysis of NO2 in the presence of benzene and helium buffer in a slow-flow reactor, and reaction products were identified by using the multiplexed chemical kinetics photoionization mass spectrometer operating at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory. Phenol and phenoxy radical were detected and quantified. Cyclopentadiene and cyclopentadienyl radical were directly identified for the first time. Finally, ab initio calculations and master equation/RRKM modeling were used to reproduce the experimental branching ratios, yielding pressure-dependent rate expressions for the reaction channels, including phenoxy + H, phenol, cyclopentadiene + CO, which are proposed for kinetic modeling of benzene oxidation.

  19. Multi-channel probes to understand fission dynamics

    SciTech Connect

    Mosby, Shea Morgan

    2016-04-15

    Explaining the origin of the elements is a major outstanding question in nuclear astrophysics. Observed elemental abundance distribution shows strong nuclear physics effects. In conclusion, neutron-induced reactions are important for nuclear astrophysics and applied fields in nuclear energy and security. LANSCE has a program to address many of these questions directly with neutron beams on (near-)stable nuclei. Increasing demand for correlated data to test details of fission models poses additional challenges. Possibilities exist to extend existing experimental efforts to radioactive beam facilities. Kinematic focusing from using inverse kinematics has potential to circumvent some challenges associated with measuring correlations between fission output channels.

  20. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    NASA Astrophysics Data System (ADS)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N-H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  1. Thermochemistry and reaction paths in the oxidation reaction of benzoyl radical: C6H5C•(═O).

    PubMed

    Sebbar, Nadia; Bozzelli, Joseph W; Bockhorn, Henning

    2011-10-27

    Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(•)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(•)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.

  2. Pharmacology of cardiac potassium channels.

    PubMed

    Tamargo, Juan; Caballero, Ricardo; Gómez, Ricardo; Valenzuela, Carmen; Delpón, Eva

    2004-04-01

    Cardiac K+ channels are membrane-spanning proteins that allow the passive movement of K+ ions across the cell membrane along its electrochemical gradient. They regulate the resting membrane potential, the frequency of pacemaker cells and the shape and duration of the cardiac action potential. Additionally, they have been recognized as potential targets for the actions of neurotransmitters and hormones and class III antiarrhythmic drugs that prolong the action potential duration (APD) and refractoriness and have been found effective to prevent/suppress cardiac arrhythmias. In the human heart, K+ channels include voltage-gated channels, such as the rapidly activating and inactivating transient outward current (Ito1), the ultrarapid (IKur), rapid (IKr) and slow (IKs) components of the delayed rectifier current and the inward rectifier current (IK1), the ligand-gated channels, including the adenosine triphosphate-sensitive (IKATP) and the acetylcholine-activated (IKAch) currents and the leak channels. Changes in the expression of K+ channels explain the regional variations in the morphology and duration of the cardiac action potential among different cardiac regions and are influenced by heart rate, intracellular signalling pathways, drugs and cardiovascular disorders. A progressive number of cardiac and noncardiac drugs block cardiac K+ channels and can cause a marked prolongation of the action potential duration (i.e. an acquired long QT syndrome, LQTS) and a distinct polymorphic ventricular tachycardia termed torsades de pointes. In addition, mutations in the genes encoding IKr (KCNH2/KCNE2) and IKs (KCNQ1/KCNE1) channels have been identified in some types of the congenital long QT syndrome. This review concentrates on the function, molecular determinants, regulation and, particularly, on the mechanism of action of drugs modulating the K+ channels present in the sarcolemma of human cardiac myocytes that contribute to the different phases of the cardiac action

  3. How do strain and steric interactions affect the reactions of aromatic compounds with free radicals? Characterization of the radicals formed by muonium addition to p-xylene and [2.2]paracyclophane by DFT calculations and muon spin spectroscopy.

    PubMed

    McKenzie, Iain; Scheuermann, Robert; Sedlak, Kamil

    2012-07-26

    Muoniated radicals were produced by the addition of muonium (Mu) to the aromatic compound p-xylene (1) in the solid and liquid states and to the strained aromatic compound [2.2]paracyclophane (2) in the solid state. The radicals were characterized by avoided level crossing muon spin resonance spectroscopy and identified by comparing the experimentally determined muon hyperfine coupling constants with values obtained from DFT calculations. Mu was observed to add to both the secondary and tertiary carbons of 1, with the relative yield of the Mu adduct of the tertiary carbons estimated to be ∼10% in the liquid phase. The relative yield of the tertiary adduct is much higher in the solid state although this cannot be calculated exactly due to the overlap of resonances and the apparent nonuniform distribution of the radical orientations. There are three possible addition sites in 2 due to the lower symmetry of the six-membered ring compared with 1. Mu can add to the secondary carbons either from the outside of 2, generating the "exo" adduct, or from the inside, generating the "endo" adduct. The relative yields of the exo, endo, and tertiary carbon adducts are 67.1(1), 21.8(1), and 11.1(1)%, respectively. The barriers to Mu addition at the different sites of isolated molecules were determined from DFT calculations. The barriers for Mu addition to 2 are lower than the barriers for Mu addition to 1, except for addition to the "endo" position, where the unfavorable steric interactions with the second ring of 2 raise the addition barrier considerably. The measured relative yields do not reflect the distribution of products calculated using the activation energies obtained from the DFT calculations due to strong steric interactions with neighboring molecules.

  4. Forgetfulness of continuous Markovian quantum channels

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Memarzadeh, Laleh; Mancini, Stefano

    2009-10-01

    The notion of forgetfulness, used in discrete quantum memory channels, is slightly weakened in order to be applied to the case of continuous channels. This is done in the context of quantum memory channels with Markovian noise. As a case study, we apply the notion of weak forgetfulness to a bosonic memory channel with additive noise. A suitable encoding and decoding unitary transformation allows us to unravel the effects of the memory, hence the channel capacities can be computed using known results from the memoryless setting.

  5. Forgetfulness of continuous Markovian quantum channels

    SciTech Connect

    Lupo, Cosmo; Memarzadeh, Laleh; Mancini, Stefano

    2009-10-15

    The notion of forgetfulness, used in discrete quantum memory channels, is slightly weakened in order to be applied to the case of continuous channels. This is done in the context of quantum memory channels with Markovian noise. As a case study, we apply the notion of weak forgetfulness to a bosonic memory channel with additive noise. A suitable encoding and decoding unitary transformation allows us to unravel the effects of the memory, hence the channel capacities can be computed using known results from the memoryless setting.

  6. Noncanonical reactions of flavoenzymes.

    PubMed

    Sobrado, Pablo

    2012-11-05

    Enzymes containing flavin cofactors are predominantly involved in redox reactions in numerous cellular processes where the protein environment modulates the chemical reactivity of the flavin to either transfer one or two electrons. Some flavoenzymes catalyze reactions with no net redox change. In these reactions, the protein environment modulates the reactivity of the flavin to perform novel chemistries. Recent mechanistic and structural data supporting novel flavin functionalities in reactions catalyzed by chorismate synthase, type II isopentenyl diphosphate isomerase, UDP-galactopyranose mutase, and alkyl-dihydroxyacetonephosphate synthase are presented in this review. In these enzymes, the flavin plays either a direct role in acid/base reactions or as a nucleophile or electrophile. In addition, the flavin cofactor is proposed to function as a "molecular scaffold" in the formation of UDP-galactofuranose and alkyl-dihydroxyacetonephosphate by forming a covalent adduct with reaction intermediates.

  7. Reaction of Phenyl Radical with O2: Thermodynamic Properties, Important Reaction Paths and Kinetics

    SciTech Connect

    Bozzelli, J; Sebbar, N; Pitz, W; Bockhorn, H

    2001-04-12

    The Phenyl + O{sub 2} association results in a chemically activated phenyl-peroxy radical which can dissociate to phenoxy radical + O, undergo intramolecular addition of the peroxy radical to several unsaturated carbon sites or react back to phenyl + O{sub 2}. The intramolecular addition channels further react through several paths to ring opening (unsaturated + carbonyl moieties) as well as cyclopentadieny radical + CO{sub 2}. Enthalpy ({Delta}H{sub f(298)}{sup o}), Entropy (S{sub 298}), and heat capacities Cp(T) for species in the decomposition of the ring are evaluated using density functional and ab initio calculations and by comparisons to vinyl + O{sub 2} data of Mebel et al, and phenyl + O{sub 2} data of Hadad et al. Isodesmic reaction analysis is used to estimate enthalpy values of the intermediates and well depths of the adducts. High Pressure limit kinetic parameters are obtained from the calculation results using canonical Transition State Theory. Quantum RRK analysis is utilized to obtain k(E) and modified strong collision or master equation analysis is used for evaluation of pressure fall-off in this complex bimolecular, chemical activation, reaction system. Uncertainty in key barriers is discussed, resulting variations in important reaction product ratios are illustrated, and changes in these branching ratios are evaluated with a detailed reaction mechanism.

  8. A Light-Activated Reaction Manifold.

    PubMed

    Hiltebrandt, Kai; Elies, Katharina; D'hooge, Dagmar R; Blinco, James P; Barner-Kowollik, Christopher

    2016-06-08

    We introduce an efficient reaction manifold where the rate of a thermally induced ligation can be controlled by a photonic field via two competing reaction channels. The effectiveness of the reaction manifold is evidenced by following the transformations of macromolecular chain termini via high-resolution mass spectrometry and subsequently by selective block copolymer formation. The light-controlled reaction manifold consists of a so-called o-quinodimethane species, a photocaged diene, that reacts in the presence of light with suitable enes in a Diels-Alder reaction and undergoes a transformation into imines with amines in the absence of light. The chemical selectivity of the manifold is controlled by the amount of ene present in the reaction and can be adjusted from 100% imine formation (0% photo product) to 5% imine formation (95% photo product). The reported light-controlled reaction manifold is highly attractive because a simple external field is used to switch the selectivity of specific reaction channels.

  9. Eukaryotic mechanosensitive channels.

    PubMed

    Arnadóttir, Jóhanna; Chalfie, Martin

    2010-01-01

    Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.

  10. Kinetics of the Gas-Phase Reaction of OH with Chlorobenzene

    NASA Astrophysics Data System (ADS)

    Bryukov, Mikhail G.; Knyazev, Vadim D.; Gehling, William M.; Dellinger, Barry

    2009-09-01

    The kinetics of the reaction of hydroxyl radicals with chlorobenzene was studied experimentally using a pulsed laser photolysis/pulsed laser induced fluorescence technique over a wide range of temperatures, 298-670 K, and at pressures between 13.33 and 39.92 kPa. The bimolecular rate constants demonstrate different behavior at low and high temperatures. At room temperature, T = 298.8 ± 1.5 K, the rate constant is equal to (6.02 ± 0.34) × 10-13 cm3 molecule-1 s-1; at high temperatures (474-670 K), the rate constant values are significantly lower and have a positive temperature dependence that can be described by an Arrhenius expression k1(T) = (1.01 ± 0.35) × 10-11 exp[(-2490 ± 170 K)/T] cm3 molecule-1 s-1. This behavior is consistent with the low-temperature reaction being dominated by reversible addition and the high-temperature reaction representing abstraction and addition-elimination channels. The potential energy surface of the reaction was studied using quantum chemical methods, and a transition state theory model was developed for all reaction channels. The temperature dependences of the high-temperature rate constants obtained in calculations using the method of isodesmic reactions for transition states (IRTS) and the CBS-QB3 method are in very good agreement with experiment, with deviations smaller than the estimated experimental uncertainties. The G3//B3LYP-based calculated rate constants are in disagreement with the experimental values. The IRTS-based model was used to provide modified Arrhenius expressions for the temperature dependences of the rate constant for the abstraction and addition-elimination (Cl replacement) channels of the reaction.

  11. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels

    PubMed Central

    1991-01-01

    In this study, single-channel recordings of high-conductance Ca(2+)- activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)- blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed- blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. PMID:2056305

  12. Functional ion channels in stem cells

    PubMed Central

    Li, Gui-Rong; Deng, Xiu-Ling

    2011-01-01

    Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation. PMID:21607133

  13. Quartz Channel Fabrication for Electrokinetically Driven Separations

    SciTech Connect

    Arnold, D.W.; Ashby, C.I.H.; Bailey, C.G.; Kravitz, S.H., Warren, M.E.; Matzke, C.M.

    1998-12-01

    For well resolved electrokinetic separation, we L tilize crystalline quartz to micromachine a uniformly packe Q&iKLmnel. Packing features are posts 5 Vm on a side with:} pm spacing and etched 42 Vm deep. In addition to anisotropic wet etch characteristics for micromachining, quartz propmties are compatible with chemical soiutioits, ekctrokinetic high voltage operation, and stationary phase film depositions. To seal these channels, we employ a room temperature silicon-oxynhride deposition to forma membrane, that is subsequently coated for mechanical stability. Using this technique, particulate issues and global warp, that make large area wafer bon ding methods difficult, are avoided, and a room temperature process, in contrast to high temperature bonding techniques, accommodate preprocessing of metal films for electrical interconnect. After sealing channels, a number of macro-assembly steps are required to attach a micro-optical detection system and fluid interconnects. Keywords: microcharmel, integrated channel, micromachined channel, packed channel, electrokinetic channel, eleetrophoretic channel

  14. Simulating the Activation of Voltage Sensing Domain for a Voltage-Gated Sodium Channel Using Polarizable Force Field.

    PubMed

    Sun, Rui-Ning; Gong, Haipeng

    2017-03-02

    Voltage-gated sodium (NaV) channels play vital roles in the signal transduction of excitable cells. Upon activation of a NaV channel, the change of transmembrane voltage triggers conformational change of the voltage sensing domain, which then elicits opening of the pore domain and thus allows an influx of Na(+) ions. Description of this process with atomistic details is in urgent demand. In this work, we simulated the partial activation process of the voltage sensing domain of a prokaryotic NaV channel using a polarizable force field. We not only observed the conformational change of the voltage sensing domain from resting to preactive state, but also rigorously estimated the free energy profile along the identified reaction pathway. Comparison with the control simulation using an additive force field indicates that voltage-gating thermodynamics of NaV channels may be inaccurately described without considering the electrostatic polarization effect.

  15. Universality of Poisson indicator and Fano factor of transport event statistics in ion channels and enzyme kinetics.

    PubMed

    Chaudhury, Srabanti; Cao, Jianshu; Sinitsyn, Nikolai A

    2013-01-17

    We consider a generic stochastic model of ion transport through a single channel with arbitrary internal structure and kinetic rates of transitions between internal states. This model is also applicable to describe kinetics of a class of enzymes in which turnover events correspond to conversion of substrate into product by a single enzyme molecule. We show that measurement of statistics of single molecule transition time through the channel contains only restricted information about internal structure of the channel. In particular, the most accessible flux fluctuation characteristics, such as the Poisson indicator (P) and the Fano factor (F) as function of solute concentration, depend only on three parameters in addition to the parameters of the Michaelis-Menten curve that characterizes average current through the channel. Nevertheless, measurement of Poisson indicator or Fano factor for such renewal processes can discriminate reactions with multiple intermediate steps as well as provide valuable information about the internal kinetic rates.

  16. Deepening and Extending Channels for Navigation. Charleston Harbor, South Carolina.

    DTIC Science & Technology

    1980-04-01

    consists of deepening the existing Charleston Harbor and Shipyard River channels. Minor channel widening and improving the anchorage and turning basins to...channel depths of 42 feet in the outer bar and jetty channel, 40 feet in Charleston Harbor and 38 feet in Shipyard River . Additional channel and basin ...and Carbide Inc. plant on Shipyard River including two turning basins , one opposite the -K Gulf Oil Corporation terminal and another at the upper end

  17. Optimal reaction for synthesis of superheavy element 117

    SciTech Connect

    Liu, Z. H.; Bao Jingdong

    2009-09-15

    Fusion reactions leading to the formation of superheavy element 117 are systematically analyzed. Among the reactions considered, the {sup 250}Bk({sup 48}Ca,4n){sup 294}117 reaction has the largest evaporation residue (ER) cross section of about 2 pb. However, this reaction is hard to realize experimentally because it is difficult to accumulate sufficient amount of target material due to the short lifetime of {sup 250}Bk nucleus. For the reaction {sup 48}Ca+{sup 249}Bk, our estimation shows that the ER cross sections in 3n and 4n channels may be expected to be greater than 1 pb. Therefore, {sup 48}Ca and {sup 249}Bk should be the optimal projectile-target combination for synthesis of superheavy element 117 in practice. In addition, as a main result of systematic analysis, we find that the ER cross section exponentially depends on the mass difference (in unit of temperature) of fission and neutron emission saddle points. Therefore, it is of essential importance for the successful synthesis of superheavy nuclei to select the isotopic composition of projectile and/or target so as the mass difference of fission and neutron emission saddle points as large as possible. Entrance channel effects are examined by means of a comparison of the reactions {sup 48}Ca+{sup 245}Bk, {sup 50}Ti+{sup 243}Am, and {sup 55}Mn+{sup 238}U leading to the same compound nucleus {sup 293}117. The ER cross sections of the reactions {sup 50}Ti+{sup 243}Am and {sup 55}Mn+{sup 238}U are much smaller than that of {sup 48}Ca+{sup 245}Bk.

  18. Site selectivity and reversibility in the reactions of titanium hydrazides with Si-H, Si-X, C-X and H+ reagents: Ti=N(α) 1,2-silane addition, Nβ alkylation, Nα protonation and σ-bond metathesis.

    PubMed

    Tiong, Pei Jen; Nova, Ainara; Schwarz, Andrew D; Selby, Jonathan D; Clot, Eric; Mountford, Philip

    2012-02-28

    We report a combined experimental and computational comparative study of the reactions of the homologous titanium dialkyl- and diphenylhydrazido and imido compounds Cp*Ti{MeC(N(i)Pr)(2)}(NNR(2)) (R = Me (1) or Ph (2)) and Cp*Ti{MeC(N(i)Pr)(2)}(NTol) (3) with silanes, halosilanes, alkyl halides and [Et(3)NH][BPh(4)]. Compound 1 underwent reversible Si-H 1,2-addition to Ti=N(α) with RSiH(3) (experimental ΔH ca. -17 kcal mol(-1)), and irreversible addition with PhSiH(2)X (X = Cl, Br). DFT found that the reaction products and certain intermediates were stabilised by β-NMe(2) coordination to titanium. The Ti-D bond in Cp*Ti{MeC(N(i)Pr)(2)}(D){N(NMe(2))SiD(2)Ph} underwent σ-bond metathesis with BuSiH(3) and H(2). Compound 1 reacted with RR'SiCl(2) at N(α) to transfer both Cl atoms to Ti; 2 underwent a similar reaction. Compound 3 did not react with RSiH(3) or alkyl halides but formed unstable Ti=N(α) 1,2-addition or N(α) protonation products with PhSiH(2)X or [Et(3)NH][BPh(4)]. Compound 1 underwent exclusive alkylation at N(β) with RCH(2)X (R = H, Me or Ph; X = Br or I) whereas protonation using [Et(3)NH][BPh(4)] occurred at N(α). DFT studies found that in all cases electrophile addition to N(α) (with or without NMe(2) chelation) was thermodynamically favoured compared to addition to N(β).

  19. Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol.

  20. Determination of the Temperature Dependence of the Rate Constants for HO2/Acetonylperoxy Reaction and Acetonylperoxy Self-Reaction

    NASA Astrophysics Data System (ADS)

    Darby, E. C.; Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.

    2014-12-01

    Reactions of hydroperoxy radical, HO2, with carbonyl containing RO2 can play an important role in the oxidation chemistry of the troposphere. Discovered radical product channels in addition to radical termination channels have resulted in increased study of these important reactions. In our continued study of HO2 reactions with acetonylperoxy and acetylperoxy radicals, we report here our first results on the kinetics of the acetonylperoxy system. Previous studies have resulted in conflicting results and no temperature dependence of the rate constants. Using the Infrared Kinetic Spectroscopy (IRKS) method in which a temperature-controlled slow-flow tube apparatus and laser flash photolysis of Cl2 are used to produce HO2 and CH3C(O)CH2O2 from methanol and acetone, respectively, we studied the chemical kinetics involved over the temperature range of 295 to 240 K. Rates of chemical reaction were determined by monitoring the HO2 concentration as a function of time by sensitive near-IR diode laser wavelength modulation spectroscopy while simultaneously measuring the disappearance of [CH3C(O)CH2O2] in the ultraviolet at 300 nm. The simultaneous fits resulted in the determination of the temperature dependence of the rate constants for the HO2/acetonylperoxy reaction and the acetonylperoxy self-reaction. At the lower temperatures, the reactions of HO2 and CH3C(O)CH2O2 with the adducts HO2•CH3OH and HO2•CH3C(O)CH3 formed in significant concentrations needed to be included in the fitting models.